]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: tone down ext4_da_writepages warnings
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@redhat.com), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48                                               loff_t new_size)
49 {
50         return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51                                                    new_size);
52 }
53
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
55
56 /*
57  * Test whether an inode is a fast symlink.
58  */
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
60 {
61         int ea_blocks = EXT4_I(inode)->i_file_acl ?
62                 (inode->i_sb->s_blocksize >> 9) : 0;
63
64         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
65 }
66
67 /*
68  * The ext4 forget function must perform a revoke if we are freeing data
69  * which has been journaled.  Metadata (eg. indirect blocks) must be
70  * revoked in all cases.
71  *
72  * "bh" may be NULL: a metadata block may have been freed from memory
73  * but there may still be a record of it in the journal, and that record
74  * still needs to be revoked.
75  */
76 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
77                         struct buffer_head *bh, ext4_fsblk_t blocknr)
78 {
79         int err;
80
81         might_sleep();
82
83         BUFFER_TRACE(bh, "enter");
84
85         jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
86                   "data mode %lx\n",
87                   bh, is_metadata, inode->i_mode,
88                   test_opt(inode->i_sb, DATA_FLAGS));
89
90         /* Never use the revoke function if we are doing full data
91          * journaling: there is no need to, and a V1 superblock won't
92          * support it.  Otherwise, only skip the revoke on un-journaled
93          * data blocks. */
94
95         if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
96             (!is_metadata && !ext4_should_journal_data(inode))) {
97                 if (bh) {
98                         BUFFER_TRACE(bh, "call jbd2_journal_forget");
99                         return ext4_journal_forget(handle, bh);
100                 }
101                 return 0;
102         }
103
104         /*
105          * data!=journal && (is_metadata || should_journal_data(inode))
106          */
107         BUFFER_TRACE(bh, "call ext4_journal_revoke");
108         err = ext4_journal_revoke(handle, blocknr, bh);
109         if (err)
110                 ext4_abort(inode->i_sb, __func__,
111                            "error %d when attempting revoke", err);
112         BUFFER_TRACE(bh, "exit");
113         return err;
114 }
115
116 /*
117  * Work out how many blocks we need to proceed with the next chunk of a
118  * truncate transaction.
119  */
120 static unsigned long blocks_for_truncate(struct inode *inode)
121 {
122         ext4_lblk_t needed;
123
124         needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
125
126         /* Give ourselves just enough room to cope with inodes in which
127          * i_blocks is corrupt: we've seen disk corruptions in the past
128          * which resulted in random data in an inode which looked enough
129          * like a regular file for ext4 to try to delete it.  Things
130          * will go a bit crazy if that happens, but at least we should
131          * try not to panic the whole kernel. */
132         if (needed < 2)
133                 needed = 2;
134
135         /* But we need to bound the transaction so we don't overflow the
136          * journal. */
137         if (needed > EXT4_MAX_TRANS_DATA)
138                 needed = EXT4_MAX_TRANS_DATA;
139
140         return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
141 }
142
143 /*
144  * Truncate transactions can be complex and absolutely huge.  So we need to
145  * be able to restart the transaction at a conventient checkpoint to make
146  * sure we don't overflow the journal.
147  *
148  * start_transaction gets us a new handle for a truncate transaction,
149  * and extend_transaction tries to extend the existing one a bit.  If
150  * extend fails, we need to propagate the failure up and restart the
151  * transaction in the top-level truncate loop. --sct
152  */
153 static handle_t *start_transaction(struct inode *inode)
154 {
155         handle_t *result;
156
157         result = ext4_journal_start(inode, blocks_for_truncate(inode));
158         if (!IS_ERR(result))
159                 return result;
160
161         ext4_std_error(inode->i_sb, PTR_ERR(result));
162         return result;
163 }
164
165 /*
166  * Try to extend this transaction for the purposes of truncation.
167  *
168  * Returns 0 if we managed to create more room.  If we can't create more
169  * room, and the transaction must be restarted we return 1.
170  */
171 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
172 {
173         if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
174                 return 0;
175         if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
176                 return 0;
177         return 1;
178 }
179
180 /*
181  * Restart the transaction associated with *handle.  This does a commit,
182  * so before we call here everything must be consistently dirtied against
183  * this transaction.
184  */
185 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
186 {
187         jbd_debug(2, "restarting handle %p\n", handle);
188         return ext4_journal_restart(handle, blocks_for_truncate(inode));
189 }
190
191 /*
192  * Called at the last iput() if i_nlink is zero.
193  */
194 void ext4_delete_inode(struct inode *inode)
195 {
196         handle_t *handle;
197         int err;
198
199         if (ext4_should_order_data(inode))
200                 ext4_begin_ordered_truncate(inode, 0);
201         truncate_inode_pages(&inode->i_data, 0);
202
203         if (is_bad_inode(inode))
204                 goto no_delete;
205
206         handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207         if (IS_ERR(handle)) {
208                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
209                 /*
210                  * If we're going to skip the normal cleanup, we still need to
211                  * make sure that the in-core orphan linked list is properly
212                  * cleaned up.
213                  */
214                 ext4_orphan_del(NULL, inode);
215                 goto no_delete;
216         }
217
218         if (IS_SYNC(inode))
219                 handle->h_sync = 1;
220         inode->i_size = 0;
221         err = ext4_mark_inode_dirty(handle, inode);
222         if (err) {
223                 ext4_warning(inode->i_sb, __func__,
224                              "couldn't mark inode dirty (err %d)", err);
225                 goto stop_handle;
226         }
227         if (inode->i_blocks)
228                 ext4_truncate(inode);
229
230         /*
231          * ext4_ext_truncate() doesn't reserve any slop when it
232          * restarts journal transactions; therefore there may not be
233          * enough credits left in the handle to remove the inode from
234          * the orphan list and set the dtime field.
235          */
236         if (handle->h_buffer_credits < 3) {
237                 err = ext4_journal_extend(handle, 3);
238                 if (err > 0)
239                         err = ext4_journal_restart(handle, 3);
240                 if (err != 0) {
241                         ext4_warning(inode->i_sb, __func__,
242                                      "couldn't extend journal (err %d)", err);
243                 stop_handle:
244                         ext4_journal_stop(handle);
245                         goto no_delete;
246                 }
247         }
248
249         /*
250          * Kill off the orphan record which ext4_truncate created.
251          * AKPM: I think this can be inside the above `if'.
252          * Note that ext4_orphan_del() has to be able to cope with the
253          * deletion of a non-existent orphan - this is because we don't
254          * know if ext4_truncate() actually created an orphan record.
255          * (Well, we could do this if we need to, but heck - it works)
256          */
257         ext4_orphan_del(handle, inode);
258         EXT4_I(inode)->i_dtime  = get_seconds();
259
260         /*
261          * One subtle ordering requirement: if anything has gone wrong
262          * (transaction abort, IO errors, whatever), then we can still
263          * do these next steps (the fs will already have been marked as
264          * having errors), but we can't free the inode if the mark_dirty
265          * fails.
266          */
267         if (ext4_mark_inode_dirty(handle, inode))
268                 /* If that failed, just do the required in-core inode clear. */
269                 clear_inode(inode);
270         else
271                 ext4_free_inode(handle, inode);
272         ext4_journal_stop(handle);
273         return;
274 no_delete:
275         clear_inode(inode);     /* We must guarantee clearing of inode... */
276 }
277
278 typedef struct {
279         __le32  *p;
280         __le32  key;
281         struct buffer_head *bh;
282 } Indirect;
283
284 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
285 {
286         p->key = *(p->p = v);
287         p->bh = bh;
288 }
289
290 /**
291  *      ext4_block_to_path - parse the block number into array of offsets
292  *      @inode: inode in question (we are only interested in its superblock)
293  *      @i_block: block number to be parsed
294  *      @offsets: array to store the offsets in
295  *      @boundary: set this non-zero if the referred-to block is likely to be
296  *             followed (on disk) by an indirect block.
297  *
298  *      To store the locations of file's data ext4 uses a data structure common
299  *      for UNIX filesystems - tree of pointers anchored in the inode, with
300  *      data blocks at leaves and indirect blocks in intermediate nodes.
301  *      This function translates the block number into path in that tree -
302  *      return value is the path length and @offsets[n] is the offset of
303  *      pointer to (n+1)th node in the nth one. If @block is out of range
304  *      (negative or too large) warning is printed and zero returned.
305  *
306  *      Note: function doesn't find node addresses, so no IO is needed. All
307  *      we need to know is the capacity of indirect blocks (taken from the
308  *      inode->i_sb).
309  */
310
311 /*
312  * Portability note: the last comparison (check that we fit into triple
313  * indirect block) is spelled differently, because otherwise on an
314  * architecture with 32-bit longs and 8Kb pages we might get into trouble
315  * if our filesystem had 8Kb blocks. We might use long long, but that would
316  * kill us on x86. Oh, well, at least the sign propagation does not matter -
317  * i_block would have to be negative in the very beginning, so we would not
318  * get there at all.
319  */
320
321 static int ext4_block_to_path(struct inode *inode,
322                         ext4_lblk_t i_block,
323                         ext4_lblk_t offsets[4], int *boundary)
324 {
325         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
326         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
327         const long direct_blocks = EXT4_NDIR_BLOCKS,
328                 indirect_blocks = ptrs,
329                 double_blocks = (1 << (ptrs_bits * 2));
330         int n = 0;
331         int final = 0;
332
333         if (i_block < 0) {
334                 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
335         } else if (i_block < direct_blocks) {
336                 offsets[n++] = i_block;
337                 final = direct_blocks;
338         } else if ((i_block -= direct_blocks) < indirect_blocks) {
339                 offsets[n++] = EXT4_IND_BLOCK;
340                 offsets[n++] = i_block;
341                 final = ptrs;
342         } else if ((i_block -= indirect_blocks) < double_blocks) {
343                 offsets[n++] = EXT4_DIND_BLOCK;
344                 offsets[n++] = i_block >> ptrs_bits;
345                 offsets[n++] = i_block & (ptrs - 1);
346                 final = ptrs;
347         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348                 offsets[n++] = EXT4_TIND_BLOCK;
349                 offsets[n++] = i_block >> (ptrs_bits * 2);
350                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351                 offsets[n++] = i_block & (ptrs - 1);
352                 final = ptrs;
353         } else {
354                 ext4_warning(inode->i_sb, "ext4_block_to_path",
355                                 "block %lu > max",
356                                 i_block + direct_blocks +
357                                 indirect_blocks + double_blocks);
358         }
359         if (boundary)
360                 *boundary = final - 1 - (i_block & (ptrs - 1));
361         return n;
362 }
363
364 /**
365  *      ext4_get_branch - read the chain of indirect blocks leading to data
366  *      @inode: inode in question
367  *      @depth: depth of the chain (1 - direct pointer, etc.)
368  *      @offsets: offsets of pointers in inode/indirect blocks
369  *      @chain: place to store the result
370  *      @err: here we store the error value
371  *
372  *      Function fills the array of triples <key, p, bh> and returns %NULL
373  *      if everything went OK or the pointer to the last filled triple
374  *      (incomplete one) otherwise. Upon the return chain[i].key contains
375  *      the number of (i+1)-th block in the chain (as it is stored in memory,
376  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
377  *      number (it points into struct inode for i==0 and into the bh->b_data
378  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379  *      block for i>0 and NULL for i==0. In other words, it holds the block
380  *      numbers of the chain, addresses they were taken from (and where we can
381  *      verify that chain did not change) and buffer_heads hosting these
382  *      numbers.
383  *
384  *      Function stops when it stumbles upon zero pointer (absent block)
385  *              (pointer to last triple returned, *@err == 0)
386  *      or when it gets an IO error reading an indirect block
387  *              (ditto, *@err == -EIO)
388  *      or when it reads all @depth-1 indirect blocks successfully and finds
389  *      the whole chain, all way to the data (returns %NULL, *err == 0).
390  *
391  *      Need to be called with
392  *      down_read(&EXT4_I(inode)->i_data_sem)
393  */
394 static Indirect *ext4_get_branch(struct inode *inode, int depth,
395                                  ext4_lblk_t  *offsets,
396                                  Indirect chain[4], int *err)
397 {
398         struct super_block *sb = inode->i_sb;
399         Indirect *p = chain;
400         struct buffer_head *bh;
401
402         *err = 0;
403         /* i_data is not going away, no lock needed */
404         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405         if (!p->key)
406                 goto no_block;
407         while (--depth) {
408                 bh = sb_bread(sb, le32_to_cpu(p->key));
409                 if (!bh)
410                         goto failure;
411                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
412                 /* Reader: end */
413                 if (!p->key)
414                         goto no_block;
415         }
416         return NULL;
417
418 failure:
419         *err = -EIO;
420 no_block:
421         return p;
422 }
423
424 /**
425  *      ext4_find_near - find a place for allocation with sufficient locality
426  *      @inode: owner
427  *      @ind: descriptor of indirect block.
428  *
429  *      This function returns the preferred place for block allocation.
430  *      It is used when heuristic for sequential allocation fails.
431  *      Rules are:
432  *        + if there is a block to the left of our position - allocate near it.
433  *        + if pointer will live in indirect block - allocate near that block.
434  *        + if pointer will live in inode - allocate in the same
435  *          cylinder group.
436  *
437  * In the latter case we colour the starting block by the callers PID to
438  * prevent it from clashing with concurrent allocations for a different inode
439  * in the same block group.   The PID is used here so that functionally related
440  * files will be close-by on-disk.
441  *
442  *      Caller must make sure that @ind is valid and will stay that way.
443  */
444 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
445 {
446         struct ext4_inode_info *ei = EXT4_I(inode);
447         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
448         __le32 *p;
449         ext4_fsblk_t bg_start;
450         ext4_fsblk_t last_block;
451         ext4_grpblk_t colour;
452
453         /* Try to find previous block */
454         for (p = ind->p - 1; p >= start; p--) {
455                 if (*p)
456                         return le32_to_cpu(*p);
457         }
458
459         /* No such thing, so let's try location of indirect block */
460         if (ind->bh)
461                 return ind->bh->b_blocknr;
462
463         /*
464          * It is going to be referred to from the inode itself? OK, just put it
465          * into the same cylinder group then.
466          */
467         bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
468         last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
469
470         if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
471                 colour = (current->pid % 16) *
472                         (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
473         else
474                 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
475         return bg_start + colour;
476 }
477
478 /**
479  *      ext4_find_goal - find a preferred place for allocation.
480  *      @inode: owner
481  *      @block:  block we want
482  *      @partial: pointer to the last triple within a chain
483  *
484  *      Normally this function find the preferred place for block allocation,
485  *      returns it.
486  */
487 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
488                 Indirect *partial)
489 {
490         /*
491          * XXX need to get goal block from mballoc's data structures
492          */
493
494         return ext4_find_near(inode, partial);
495 }
496
497 /**
498  *      ext4_blks_to_allocate: Look up the block map and count the number
499  *      of direct blocks need to be allocated for the given branch.
500  *
501  *      @branch: chain of indirect blocks
502  *      @k: number of blocks need for indirect blocks
503  *      @blks: number of data blocks to be mapped.
504  *      @blocks_to_boundary:  the offset in the indirect block
505  *
506  *      return the total number of blocks to be allocate, including the
507  *      direct and indirect blocks.
508  */
509 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
510                 int blocks_to_boundary)
511 {
512         unsigned long count = 0;
513
514         /*
515          * Simple case, [t,d]Indirect block(s) has not allocated yet
516          * then it's clear blocks on that path have not allocated
517          */
518         if (k > 0) {
519                 /* right now we don't handle cross boundary allocation */
520                 if (blks < blocks_to_boundary + 1)
521                         count += blks;
522                 else
523                         count += blocks_to_boundary + 1;
524                 return count;
525         }
526
527         count++;
528         while (count < blks && count <= blocks_to_boundary &&
529                 le32_to_cpu(*(branch[0].p + count)) == 0) {
530                 count++;
531         }
532         return count;
533 }
534
535 /**
536  *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
537  *      @indirect_blks: the number of blocks need to allocate for indirect
538  *                      blocks
539  *
540  *      @new_blocks: on return it will store the new block numbers for
541  *      the indirect blocks(if needed) and the first direct block,
542  *      @blks:  on return it will store the total number of allocated
543  *              direct blocks
544  */
545 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
546                                 ext4_lblk_t iblock, ext4_fsblk_t goal,
547                                 int indirect_blks, int blks,
548                                 ext4_fsblk_t new_blocks[4], int *err)
549 {
550         struct ext4_allocation_request ar;
551         int target, i;
552         unsigned long count = 0, blk_allocated = 0;
553         int index = 0;
554         ext4_fsblk_t current_block = 0;
555         int ret = 0;
556
557         /*
558          * Here we try to allocate the requested multiple blocks at once,
559          * on a best-effort basis.
560          * To build a branch, we should allocate blocks for
561          * the indirect blocks(if not allocated yet), and at least
562          * the first direct block of this branch.  That's the
563          * minimum number of blocks need to allocate(required)
564          */
565         /* first we try to allocate the indirect blocks */
566         target = indirect_blks;
567         while (target > 0) {
568                 count = target;
569                 /* allocating blocks for indirect blocks and direct blocks */
570                 current_block = ext4_new_meta_blocks(handle, inode,
571                                                         goal, &count, err);
572                 if (*err)
573                         goto failed_out;
574
575                 target -= count;
576                 /* allocate blocks for indirect blocks */
577                 while (index < indirect_blks && count) {
578                         new_blocks[index++] = current_block++;
579                         count--;
580                 }
581                 if (count > 0) {
582                         /*
583                          * save the new block number
584                          * for the first direct block
585                          */
586                         new_blocks[index] = current_block;
587                         printk(KERN_INFO "%s returned more blocks than "
588                                                 "requested\n", __func__);
589                         WARN_ON(1);
590                         break;
591                 }
592         }
593
594         target = blks - count ;
595         blk_allocated = count;
596         if (!target)
597                 goto allocated;
598         /* Now allocate data blocks */
599         memset(&ar, 0, sizeof(ar));
600         ar.inode = inode;
601         ar.goal = goal;
602         ar.len = target;
603         ar.logical = iblock;
604         if (S_ISREG(inode->i_mode))
605                 /* enable in-core preallocation only for regular files */
606                 ar.flags = EXT4_MB_HINT_DATA;
607
608         current_block = ext4_mb_new_blocks(handle, &ar, err);
609
610         if (*err && (target == blks)) {
611                 /*
612                  * if the allocation failed and we didn't allocate
613                  * any blocks before
614                  */
615                 goto failed_out;
616         }
617         if (!*err) {
618                 if (target == blks) {
619                 /*
620                  * save the new block number
621                  * for the first direct block
622                  */
623                         new_blocks[index] = current_block;
624                 }
625                 blk_allocated += ar.len;
626         }
627 allocated:
628         /* total number of blocks allocated for direct blocks */
629         ret = blk_allocated;
630         *err = 0;
631         return ret;
632 failed_out:
633         for (i = 0; i < index; i++)
634                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635         return ret;
636 }
637
638 /**
639  *      ext4_alloc_branch - allocate and set up a chain of blocks.
640  *      @inode: owner
641  *      @indirect_blks: number of allocated indirect blocks
642  *      @blks: number of allocated direct blocks
643  *      @offsets: offsets (in the blocks) to store the pointers to next.
644  *      @branch: place to store the chain in.
645  *
646  *      This function allocates blocks, zeroes out all but the last one,
647  *      links them into chain and (if we are synchronous) writes them to disk.
648  *      In other words, it prepares a branch that can be spliced onto the
649  *      inode. It stores the information about that chain in the branch[], in
650  *      the same format as ext4_get_branch() would do. We are calling it after
651  *      we had read the existing part of chain and partial points to the last
652  *      triple of that (one with zero ->key). Upon the exit we have the same
653  *      picture as after the successful ext4_get_block(), except that in one
654  *      place chain is disconnected - *branch->p is still zero (we did not
655  *      set the last link), but branch->key contains the number that should
656  *      be placed into *branch->p to fill that gap.
657  *
658  *      If allocation fails we free all blocks we've allocated (and forget
659  *      their buffer_heads) and return the error value the from failed
660  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661  *      as described above and return 0.
662  */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664                                 ext4_lblk_t iblock, int indirect_blks,
665                                 int *blks, ext4_fsblk_t goal,
666                                 ext4_lblk_t *offsets, Indirect *branch)
667 {
668         int blocksize = inode->i_sb->s_blocksize;
669         int i, n = 0;
670         int err = 0;
671         struct buffer_head *bh;
672         int num;
673         ext4_fsblk_t new_blocks[4];
674         ext4_fsblk_t current_block;
675
676         num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677                                 *blks, new_blocks, &err);
678         if (err)
679                 return err;
680
681         branch[0].key = cpu_to_le32(new_blocks[0]);
682         /*
683          * metadata blocks and data blocks are allocated.
684          */
685         for (n = 1; n <= indirect_blks;  n++) {
686                 /*
687                  * Get buffer_head for parent block, zero it out
688                  * and set the pointer to new one, then send
689                  * parent to disk.
690                  */
691                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692                 branch[n].bh = bh;
693                 lock_buffer(bh);
694                 BUFFER_TRACE(bh, "call get_create_access");
695                 err = ext4_journal_get_create_access(handle, bh);
696                 if (err) {
697                         unlock_buffer(bh);
698                         brelse(bh);
699                         goto failed;
700                 }
701
702                 memset(bh->b_data, 0, blocksize);
703                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704                 branch[n].key = cpu_to_le32(new_blocks[n]);
705                 *branch[n].p = branch[n].key;
706                 if (n == indirect_blks) {
707                         current_block = new_blocks[n];
708                         /*
709                          * End of chain, update the last new metablock of
710                          * the chain to point to the new allocated
711                          * data blocks numbers
712                          */
713                         for (i=1; i < num; i++)
714                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
715                 }
716                 BUFFER_TRACE(bh, "marking uptodate");
717                 set_buffer_uptodate(bh);
718                 unlock_buffer(bh);
719
720                 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721                 err = ext4_journal_dirty_metadata(handle, bh);
722                 if (err)
723                         goto failed;
724         }
725         *blks = num;
726         return err;
727 failed:
728         /* Allocation failed, free what we already allocated */
729         for (i = 1; i <= n ; i++) {
730                 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731                 ext4_journal_forget(handle, branch[i].bh);
732         }
733         for (i = 0; i < indirect_blks; i++)
734                 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736         ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738         return err;
739 }
740
741 /**
742  * ext4_splice_branch - splice the allocated branch onto inode.
743  * @inode: owner
744  * @block: (logical) number of block we are adding
745  * @chain: chain of indirect blocks (with a missing link - see
746  *      ext4_alloc_branch)
747  * @where: location of missing link
748  * @num:   number of indirect blocks we are adding
749  * @blks:  number of direct blocks we are adding
750  *
751  * This function fills the missing link and does all housekeeping needed in
752  * inode (->i_blocks, etc.). In case of success we end up with the full
753  * chain to new block and return 0.
754  */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756                         ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758         int i;
759         int err = 0;
760         ext4_fsblk_t current_block;
761
762         /*
763          * If we're splicing into a [td]indirect block (as opposed to the
764          * inode) then we need to get write access to the [td]indirect block
765          * before the splice.
766          */
767         if (where->bh) {
768                 BUFFER_TRACE(where->bh, "get_write_access");
769                 err = ext4_journal_get_write_access(handle, where->bh);
770                 if (err)
771                         goto err_out;
772         }
773         /* That's it */
774
775         *where->p = where->key;
776
777         /*
778          * Update the host buffer_head or inode to point to more just allocated
779          * direct blocks blocks
780          */
781         if (num == 0 && blks > 1) {
782                 current_block = le32_to_cpu(where->key) + 1;
783                 for (i = 1; i < blks; i++)
784                         *(where->p + i) = cpu_to_le32(current_block++);
785         }
786
787         /* We are done with atomic stuff, now do the rest of housekeeping */
788
789         inode->i_ctime = ext4_current_time(inode);
790         ext4_mark_inode_dirty(handle, inode);
791
792         /* had we spliced it onto indirect block? */
793         if (where->bh) {
794                 /*
795                  * If we spliced it onto an indirect block, we haven't
796                  * altered the inode.  Note however that if it is being spliced
797                  * onto an indirect block at the very end of the file (the
798                  * file is growing) then we *will* alter the inode to reflect
799                  * the new i_size.  But that is not done here - it is done in
800                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
801                  */
802                 jbd_debug(5, "splicing indirect only\n");
803                 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
804                 err = ext4_journal_dirty_metadata(handle, where->bh);
805                 if (err)
806                         goto err_out;
807         } else {
808                 /*
809                  * OK, we spliced it into the inode itself on a direct block.
810                  * Inode was dirtied above.
811                  */
812                 jbd_debug(5, "splicing direct\n");
813         }
814         return err;
815
816 err_out:
817         for (i = 1; i <= num; i++) {
818                 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
819                 ext4_journal_forget(handle, where[i].bh);
820                 ext4_free_blocks(handle, inode,
821                                         le32_to_cpu(where[i-1].key), 1, 0);
822         }
823         ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
824
825         return err;
826 }
827
828 /*
829  * Allocation strategy is simple: if we have to allocate something, we will
830  * have to go the whole way to leaf. So let's do it before attaching anything
831  * to tree, set linkage between the newborn blocks, write them if sync is
832  * required, recheck the path, free and repeat if check fails, otherwise
833  * set the last missing link (that will protect us from any truncate-generated
834  * removals - all blocks on the path are immune now) and possibly force the
835  * write on the parent block.
836  * That has a nice additional property: no special recovery from the failed
837  * allocations is needed - we simply release blocks and do not touch anything
838  * reachable from inode.
839  *
840  * `handle' can be NULL if create == 0.
841  *
842  * return > 0, # of blocks mapped or allocated.
843  * return = 0, if plain lookup failed.
844  * return < 0, error case.
845  *
846  *
847  * Need to be called with
848  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
849  * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
850  */
851 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
852                 ext4_lblk_t iblock, unsigned long maxblocks,
853                 struct buffer_head *bh_result,
854                 int create, int extend_disksize)
855 {
856         int err = -EIO;
857         ext4_lblk_t offsets[4];
858         Indirect chain[4];
859         Indirect *partial;
860         ext4_fsblk_t goal;
861         int indirect_blks;
862         int blocks_to_boundary = 0;
863         int depth;
864         struct ext4_inode_info *ei = EXT4_I(inode);
865         int count = 0;
866         ext4_fsblk_t first_block = 0;
867         loff_t disksize;
868
869
870         J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
871         J_ASSERT(handle != NULL || create == 0);
872         depth = ext4_block_to_path(inode, iblock, offsets,
873                                         &blocks_to_boundary);
874
875         if (depth == 0)
876                 goto out;
877
878         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
879
880         /* Simplest case - block found, no allocation needed */
881         if (!partial) {
882                 first_block = le32_to_cpu(chain[depth - 1].key);
883                 clear_buffer_new(bh_result);
884                 count++;
885                 /*map more blocks*/
886                 while (count < maxblocks && count <= blocks_to_boundary) {
887                         ext4_fsblk_t blk;
888
889                         blk = le32_to_cpu(*(chain[depth-1].p + count));
890
891                         if (blk == first_block + count)
892                                 count++;
893                         else
894                                 break;
895                 }
896                 goto got_it;
897         }
898
899         /* Next simple case - plain lookup or failed read of indirect block */
900         if (!create || err == -EIO)
901                 goto cleanup;
902
903         /*
904          * Okay, we need to do block allocation.
905         */
906         goal = ext4_find_goal(inode, iblock, partial);
907
908         /* the number of blocks need to allocate for [d,t]indirect blocks */
909         indirect_blks = (chain + depth) - partial - 1;
910
911         /*
912          * Next look up the indirect map to count the totoal number of
913          * direct blocks to allocate for this branch.
914          */
915         count = ext4_blks_to_allocate(partial, indirect_blks,
916                                         maxblocks, blocks_to_boundary);
917         /*
918          * Block out ext4_truncate while we alter the tree
919          */
920         err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
921                                         &count, goal,
922                                         offsets + (partial - chain), partial);
923
924         /*
925          * The ext4_splice_branch call will free and forget any buffers
926          * on the new chain if there is a failure, but that risks using
927          * up transaction credits, especially for bitmaps where the
928          * credits cannot be returned.  Can we handle this somehow?  We
929          * may need to return -EAGAIN upwards in the worst case.  --sct
930          */
931         if (!err)
932                 err = ext4_splice_branch(handle, inode, iblock,
933                                         partial, indirect_blks, count);
934         /*
935          * i_disksize growing is protected by i_data_sem.  Don't forget to
936          * protect it if you're about to implement concurrent
937          * ext4_get_block() -bzzz
938         */
939         if (!err && extend_disksize) {
940                 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
941                 if (disksize > i_size_read(inode))
942                         disksize = i_size_read(inode);
943                 if (disksize > ei->i_disksize)
944                         ei->i_disksize = disksize;
945         }
946         if (err)
947                 goto cleanup;
948
949         set_buffer_new(bh_result);
950 got_it:
951         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
952         if (count > blocks_to_boundary)
953                 set_buffer_boundary(bh_result);
954         err = count;
955         /* Clean up and exit */
956         partial = chain + depth - 1;    /* the whole chain */
957 cleanup:
958         while (partial > chain) {
959                 BUFFER_TRACE(partial->bh, "call brelse");
960                 brelse(partial->bh);
961                 partial--;
962         }
963         BUFFER_TRACE(bh_result, "returned");
964 out:
965         return err;
966 }
967
968 /*
969  * Calculate the number of metadata blocks need to reserve
970  * to allocate @blocks for non extent file based file
971  */
972 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
973 {
974         int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
975         int ind_blks, dind_blks, tind_blks;
976
977         /* number of new indirect blocks needed */
978         ind_blks = (blocks + icap - 1) / icap;
979
980         dind_blks = (ind_blks + icap - 1) / icap;
981
982         tind_blks = 1;
983
984         return ind_blks + dind_blks + tind_blks;
985 }
986
987 /*
988  * Calculate the number of metadata blocks need to reserve
989  * to allocate given number of blocks
990  */
991 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
992 {
993         if (!blocks)
994                 return 0;
995
996         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
997                 return ext4_ext_calc_metadata_amount(inode, blocks);
998
999         return ext4_indirect_calc_metadata_amount(inode, blocks);
1000 }
1001
1002 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1003 {
1004         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1005         int total, mdb, mdb_free;
1006
1007         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1008         /* recalculate the number of metablocks still need to be reserved */
1009         total = EXT4_I(inode)->i_reserved_data_blocks - used;
1010         mdb = ext4_calc_metadata_amount(inode, total);
1011
1012         /* figure out how many metablocks to release */
1013         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1014         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1015
1016         if (mdb_free) {
1017                 /* Account for allocated meta_blocks */
1018                 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1019
1020                 /* update fs dirty blocks counter */
1021                 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1022                 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1023                 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1024         }
1025
1026         /* update per-inode reservations */
1027         BUG_ON(used  > EXT4_I(inode)->i_reserved_data_blocks);
1028         EXT4_I(inode)->i_reserved_data_blocks -= used;
1029
1030         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1031 }
1032
1033 /*
1034  * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1035  * and returns if the blocks are already mapped.
1036  *
1037  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1038  * and store the allocated blocks in the result buffer head and mark it
1039  * mapped.
1040  *
1041  * If file type is extents based, it will call ext4_ext_get_blocks(),
1042  * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1043  * based files
1044  *
1045  * On success, it returns the number of blocks being mapped or allocate.
1046  * if create==0 and the blocks are pre-allocated and uninitialized block,
1047  * the result buffer head is unmapped. If the create ==1, it will make sure
1048  * the buffer head is mapped.
1049  *
1050  * It returns 0 if plain look up failed (blocks have not been allocated), in
1051  * that casem, buffer head is unmapped
1052  *
1053  * It returns the error in case of allocation failure.
1054  */
1055 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1056                         unsigned long max_blocks, struct buffer_head *bh,
1057                         int create, int extend_disksize, int flag)
1058 {
1059         int retval;
1060
1061         clear_buffer_mapped(bh);
1062
1063         /*
1064          * Try to see if we can get  the block without requesting
1065          * for new file system block.
1066          */
1067         down_read((&EXT4_I(inode)->i_data_sem));
1068         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1069                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1070                                 bh, 0, 0);
1071         } else {
1072                 retval = ext4_get_blocks_handle(handle,
1073                                 inode, block, max_blocks, bh, 0, 0);
1074         }
1075         up_read((&EXT4_I(inode)->i_data_sem));
1076
1077         /* If it is only a block(s) look up */
1078         if (!create)
1079                 return retval;
1080
1081         /*
1082          * Returns if the blocks have already allocated
1083          *
1084          * Note that if blocks have been preallocated
1085          * ext4_ext_get_block() returns th create = 0
1086          * with buffer head unmapped.
1087          */
1088         if (retval > 0 && buffer_mapped(bh))
1089                 return retval;
1090
1091         /*
1092          * New blocks allocate and/or writing to uninitialized extent
1093          * will possibly result in updating i_data, so we take
1094          * the write lock of i_data_sem, and call get_blocks()
1095          * with create == 1 flag.
1096          */
1097         down_write((&EXT4_I(inode)->i_data_sem));
1098
1099         /*
1100          * if the caller is from delayed allocation writeout path
1101          * we have already reserved fs blocks for allocation
1102          * let the underlying get_block() function know to
1103          * avoid double accounting
1104          */
1105         if (flag)
1106                 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1107         /*
1108          * We need to check for EXT4 here because migrate
1109          * could have changed the inode type in between
1110          */
1111         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1112                 retval =  ext4_ext_get_blocks(handle, inode, block, max_blocks,
1113                                 bh, create, extend_disksize);
1114         } else {
1115                 retval = ext4_get_blocks_handle(handle, inode, block,
1116                                 max_blocks, bh, create, extend_disksize);
1117
1118                 if (retval > 0 && buffer_new(bh)) {
1119                         /*
1120                          * We allocated new blocks which will result in
1121                          * i_data's format changing.  Force the migrate
1122                          * to fail by clearing migrate flags
1123                          */
1124                         EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1125                                                         ~EXT4_EXT_MIGRATE;
1126                 }
1127         }
1128
1129         if (flag) {
1130                 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1131                 /*
1132                  * Update reserved blocks/metadata blocks
1133                  * after successful block allocation
1134                  * which were deferred till now
1135                  */
1136                 if ((retval > 0) && buffer_delay(bh))
1137                         ext4_da_update_reserve_space(inode, retval);
1138         }
1139
1140         up_write((&EXT4_I(inode)->i_data_sem));
1141         return retval;
1142 }
1143
1144 /* Maximum number of blocks we map for direct IO at once. */
1145 #define DIO_MAX_BLOCKS 4096
1146
1147 int ext4_get_block(struct inode *inode, sector_t iblock,
1148                    struct buffer_head *bh_result, int create)
1149 {
1150         handle_t *handle = ext4_journal_current_handle();
1151         int ret = 0, started = 0;
1152         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1153         int dio_credits;
1154
1155         if (create && !handle) {
1156                 /* Direct IO write... */
1157                 if (max_blocks > DIO_MAX_BLOCKS)
1158                         max_blocks = DIO_MAX_BLOCKS;
1159                 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1160                 handle = ext4_journal_start(inode, dio_credits);
1161                 if (IS_ERR(handle)) {
1162                         ret = PTR_ERR(handle);
1163                         goto out;
1164                 }
1165                 started = 1;
1166         }
1167
1168         ret = ext4_get_blocks_wrap(handle, inode, iblock,
1169                                         max_blocks, bh_result, create, 0, 0);
1170         if (ret > 0) {
1171                 bh_result->b_size = (ret << inode->i_blkbits);
1172                 ret = 0;
1173         }
1174         if (started)
1175                 ext4_journal_stop(handle);
1176 out:
1177         return ret;
1178 }
1179
1180 /*
1181  * `handle' can be NULL if create is zero
1182  */
1183 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1184                                 ext4_lblk_t block, int create, int *errp)
1185 {
1186         struct buffer_head dummy;
1187         int fatal = 0, err;
1188
1189         J_ASSERT(handle != NULL || create == 0);
1190
1191         dummy.b_state = 0;
1192         dummy.b_blocknr = -1000;
1193         buffer_trace_init(&dummy.b_history);
1194         err = ext4_get_blocks_wrap(handle, inode, block, 1,
1195                                         &dummy, create, 1, 0);
1196         /*
1197          * ext4_get_blocks_handle() returns number of blocks
1198          * mapped. 0 in case of a HOLE.
1199          */
1200         if (err > 0) {
1201                 if (err > 1)
1202                         WARN_ON(1);
1203                 err = 0;
1204         }
1205         *errp = err;
1206         if (!err && buffer_mapped(&dummy)) {
1207                 struct buffer_head *bh;
1208                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1209                 if (!bh) {
1210                         *errp = -EIO;
1211                         goto err;
1212                 }
1213                 if (buffer_new(&dummy)) {
1214                         J_ASSERT(create != 0);
1215                         J_ASSERT(handle != NULL);
1216
1217                         /*
1218                          * Now that we do not always journal data, we should
1219                          * keep in mind whether this should always journal the
1220                          * new buffer as metadata.  For now, regular file
1221                          * writes use ext4_get_block instead, so it's not a
1222                          * problem.
1223                          */
1224                         lock_buffer(bh);
1225                         BUFFER_TRACE(bh, "call get_create_access");
1226                         fatal = ext4_journal_get_create_access(handle, bh);
1227                         if (!fatal && !buffer_uptodate(bh)) {
1228                                 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1229                                 set_buffer_uptodate(bh);
1230                         }
1231                         unlock_buffer(bh);
1232                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1233                         err = ext4_journal_dirty_metadata(handle, bh);
1234                         if (!fatal)
1235                                 fatal = err;
1236                 } else {
1237                         BUFFER_TRACE(bh, "not a new buffer");
1238                 }
1239                 if (fatal) {
1240                         *errp = fatal;
1241                         brelse(bh);
1242                         bh = NULL;
1243                 }
1244                 return bh;
1245         }
1246 err:
1247         return NULL;
1248 }
1249
1250 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1251                                ext4_lblk_t block, int create, int *err)
1252 {
1253         struct buffer_head *bh;
1254
1255         bh = ext4_getblk(handle, inode, block, create, err);
1256         if (!bh)
1257                 return bh;
1258         if (buffer_uptodate(bh))
1259                 return bh;
1260         ll_rw_block(READ_META, 1, &bh);
1261         wait_on_buffer(bh);
1262         if (buffer_uptodate(bh))
1263                 return bh;
1264         put_bh(bh);
1265         *err = -EIO;
1266         return NULL;
1267 }
1268
1269 static int walk_page_buffers(handle_t *handle,
1270                              struct buffer_head *head,
1271                              unsigned from,
1272                              unsigned to,
1273                              int *partial,
1274                              int (*fn)(handle_t *handle,
1275                                        struct buffer_head *bh))
1276 {
1277         struct buffer_head *bh;
1278         unsigned block_start, block_end;
1279         unsigned blocksize = head->b_size;
1280         int err, ret = 0;
1281         struct buffer_head *next;
1282
1283         for (bh = head, block_start = 0;
1284              ret == 0 && (bh != head || !block_start);
1285              block_start = block_end, bh = next)
1286         {
1287                 next = bh->b_this_page;
1288                 block_end = block_start + blocksize;
1289                 if (block_end <= from || block_start >= to) {
1290                         if (partial && !buffer_uptodate(bh))
1291                                 *partial = 1;
1292                         continue;
1293                 }
1294                 err = (*fn)(handle, bh);
1295                 if (!ret)
1296                         ret = err;
1297         }
1298         return ret;
1299 }
1300
1301 /*
1302  * To preserve ordering, it is essential that the hole instantiation and
1303  * the data write be encapsulated in a single transaction.  We cannot
1304  * close off a transaction and start a new one between the ext4_get_block()
1305  * and the commit_write().  So doing the jbd2_journal_start at the start of
1306  * prepare_write() is the right place.
1307  *
1308  * Also, this function can nest inside ext4_writepage() ->
1309  * block_write_full_page(). In that case, we *know* that ext4_writepage()
1310  * has generated enough buffer credits to do the whole page.  So we won't
1311  * block on the journal in that case, which is good, because the caller may
1312  * be PF_MEMALLOC.
1313  *
1314  * By accident, ext4 can be reentered when a transaction is open via
1315  * quota file writes.  If we were to commit the transaction while thus
1316  * reentered, there can be a deadlock - we would be holding a quota
1317  * lock, and the commit would never complete if another thread had a
1318  * transaction open and was blocking on the quota lock - a ranking
1319  * violation.
1320  *
1321  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1322  * will _not_ run commit under these circumstances because handle->h_ref
1323  * is elevated.  We'll still have enough credits for the tiny quotafile
1324  * write.
1325  */
1326 static int do_journal_get_write_access(handle_t *handle,
1327                                         struct buffer_head *bh)
1328 {
1329         if (!buffer_mapped(bh) || buffer_freed(bh))
1330                 return 0;
1331         return ext4_journal_get_write_access(handle, bh);
1332 }
1333
1334 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1335                                 loff_t pos, unsigned len, unsigned flags,
1336                                 struct page **pagep, void **fsdata)
1337 {
1338         struct inode *inode = mapping->host;
1339         int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1340         handle_t *handle;
1341         int retries = 0;
1342         struct page *page;
1343         pgoff_t index;
1344         unsigned from, to;
1345
1346         index = pos >> PAGE_CACHE_SHIFT;
1347         from = pos & (PAGE_CACHE_SIZE - 1);
1348         to = from + len;
1349
1350 retry:
1351         handle = ext4_journal_start(inode, needed_blocks);
1352         if (IS_ERR(handle)) {
1353                 ret = PTR_ERR(handle);
1354                 goto out;
1355         }
1356
1357         page = grab_cache_page_write_begin(mapping, index, flags);
1358         if (!page) {
1359                 ext4_journal_stop(handle);
1360                 ret = -ENOMEM;
1361                 goto out;
1362         }
1363         *pagep = page;
1364
1365         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1366                                                         ext4_get_block);
1367
1368         if (!ret && ext4_should_journal_data(inode)) {
1369                 ret = walk_page_buffers(handle, page_buffers(page),
1370                                 from, to, NULL, do_journal_get_write_access);
1371         }
1372
1373         if (ret) {
1374                 unlock_page(page);
1375                 ext4_journal_stop(handle);
1376                 page_cache_release(page);
1377                 /*
1378                  * block_write_begin may have instantiated a few blocks
1379                  * outside i_size.  Trim these off again. Don't need
1380                  * i_size_read because we hold i_mutex.
1381                  */
1382                 if (pos + len > inode->i_size)
1383                         vmtruncate(inode, inode->i_size);
1384         }
1385
1386         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1387                 goto retry;
1388 out:
1389         return ret;
1390 }
1391
1392 /* For write_end() in data=journal mode */
1393 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1394 {
1395         if (!buffer_mapped(bh) || buffer_freed(bh))
1396                 return 0;
1397         set_buffer_uptodate(bh);
1398         return ext4_journal_dirty_metadata(handle, bh);
1399 }
1400
1401 /*
1402  * We need to pick up the new inode size which generic_commit_write gave us
1403  * `file' can be NULL - eg, when called from page_symlink().
1404  *
1405  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1406  * buffers are managed internally.
1407  */
1408 static int ext4_ordered_write_end(struct file *file,
1409                                 struct address_space *mapping,
1410                                 loff_t pos, unsigned len, unsigned copied,
1411                                 struct page *page, void *fsdata)
1412 {
1413         handle_t *handle = ext4_journal_current_handle();
1414         struct inode *inode = mapping->host;
1415         int ret = 0, ret2;
1416
1417         ret = ext4_jbd2_file_inode(handle, inode);
1418
1419         if (ret == 0) {
1420                 loff_t new_i_size;
1421
1422                 new_i_size = pos + copied;
1423                 if (new_i_size > EXT4_I(inode)->i_disksize) {
1424                         ext4_update_i_disksize(inode, new_i_size);
1425                         /* We need to mark inode dirty even if
1426                          * new_i_size is less that inode->i_size
1427                          * bu greater than i_disksize.(hint delalloc)
1428                          */
1429                         ext4_mark_inode_dirty(handle, inode);
1430                 }
1431
1432                 ret2 = generic_write_end(file, mapping, pos, len, copied,
1433                                                         page, fsdata);
1434                 copied = ret2;
1435                 if (ret2 < 0)
1436                         ret = ret2;
1437         }
1438         ret2 = ext4_journal_stop(handle);
1439         if (!ret)
1440                 ret = ret2;
1441
1442         return ret ? ret : copied;
1443 }
1444
1445 static int ext4_writeback_write_end(struct file *file,
1446                                 struct address_space *mapping,
1447                                 loff_t pos, unsigned len, unsigned copied,
1448                                 struct page *page, void *fsdata)
1449 {
1450         handle_t *handle = ext4_journal_current_handle();
1451         struct inode *inode = mapping->host;
1452         int ret = 0, ret2;
1453         loff_t new_i_size;
1454
1455         new_i_size = pos + copied;
1456         if (new_i_size > EXT4_I(inode)->i_disksize) {
1457                 ext4_update_i_disksize(inode, new_i_size);
1458                 /* We need to mark inode dirty even if
1459                  * new_i_size is less that inode->i_size
1460                  * bu greater than i_disksize.(hint delalloc)
1461                  */
1462                 ext4_mark_inode_dirty(handle, inode);
1463         }
1464
1465         ret2 = generic_write_end(file, mapping, pos, len, copied,
1466                                                         page, fsdata);
1467         copied = ret2;
1468         if (ret2 < 0)
1469                 ret = ret2;
1470
1471         ret2 = ext4_journal_stop(handle);
1472         if (!ret)
1473                 ret = ret2;
1474
1475         return ret ? ret : copied;
1476 }
1477
1478 static int ext4_journalled_write_end(struct file *file,
1479                                 struct address_space *mapping,
1480                                 loff_t pos, unsigned len, unsigned copied,
1481                                 struct page *page, void *fsdata)
1482 {
1483         handle_t *handle = ext4_journal_current_handle();
1484         struct inode *inode = mapping->host;
1485         int ret = 0, ret2;
1486         int partial = 0;
1487         unsigned from, to;
1488         loff_t new_i_size;
1489
1490         from = pos & (PAGE_CACHE_SIZE - 1);
1491         to = from + len;
1492
1493         if (copied < len) {
1494                 if (!PageUptodate(page))
1495                         copied = 0;
1496                 page_zero_new_buffers(page, from+copied, to);
1497         }
1498
1499         ret = walk_page_buffers(handle, page_buffers(page), from,
1500                                 to, &partial, write_end_fn);
1501         if (!partial)
1502                 SetPageUptodate(page);
1503         new_i_size = pos + copied;
1504         if (new_i_size > inode->i_size)
1505                 i_size_write(inode, pos+copied);
1506         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507         if (new_i_size > EXT4_I(inode)->i_disksize) {
1508                 ext4_update_i_disksize(inode, new_i_size);
1509                 ret2 = ext4_mark_inode_dirty(handle, inode);
1510                 if (!ret)
1511                         ret = ret2;
1512         }
1513
1514         unlock_page(page);
1515         ret2 = ext4_journal_stop(handle);
1516         if (!ret)
1517                 ret = ret2;
1518         page_cache_release(page);
1519
1520         return ret ? ret : copied;
1521 }
1522
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525         int retries = 0;
1526        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527        unsigned long md_needed, mdblocks, total = 0;
1528
1529         /*
1530          * recalculate the amount of metadata blocks to reserve
1531          * in order to allocate nrblocks
1532          * worse case is one extent per block
1533          */
1534 repeat:
1535         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536         total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537         mdblocks = ext4_calc_metadata_amount(inode, total);
1538         BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540         md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541         total = md_needed + nrblocks;
1542
1543         if (ext4_claim_free_blocks(sbi, total)) {
1544                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546                         yield();
1547                         goto repeat;
1548                 }
1549                 return -ENOSPC;
1550         }
1551         EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552         EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555         return 0;       /* success */
1556 }
1557
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561         int total, mdb, mdb_free, release;
1562
1563         if (!to_free)
1564                 return;         /* Nothing to release, exit */
1565
1566         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567
1568         if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569                 /*
1570                  * if there is no reserved blocks, but we try to free some
1571                  * then the counter is messed up somewhere.
1572                  * but since this function is called from invalidate
1573                  * page, it's harmless to return without any action
1574                  */
1575                 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576                             "blocks for inode %lu, but there is no reserved "
1577                             "data blocks\n", to_free, inode->i_ino);
1578                 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579                 return;
1580         }
1581
1582         /* recalculate the number of metablocks still need to be reserved */
1583         total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584         mdb = ext4_calc_metadata_amount(inode, total);
1585
1586         /* figure out how many metablocks to release */
1587         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588         mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
1590         release = to_free + mdb_free;
1591
1592         /* update fs dirty blocks counter for truncate case */
1593         percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594
1595         /* update per-inode reservations */
1596         BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597         EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598
1599         BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600         EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603
1604 static void ext4_da_page_release_reservation(struct page *page,
1605                                                 unsigned long offset)
1606 {
1607         int to_release = 0;
1608         struct buffer_head *head, *bh;
1609         unsigned int curr_off = 0;
1610
1611         head = page_buffers(page);
1612         bh = head;
1613         do {
1614                 unsigned int next_off = curr_off + bh->b_size;
1615
1616                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617                         to_release++;
1618                         clear_buffer_delay(bh);
1619                 }
1620                 curr_off = next_off;
1621         } while ((bh = bh->b_this_page) != head);
1622         ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624
1625 /*
1626  * Delayed allocation stuff
1627  */
1628
1629 struct mpage_da_data {
1630         struct inode *inode;
1631         struct buffer_head lbh;                 /* extent of blocks */
1632         unsigned long first_page, next_page;    /* extent of pages */
1633         get_block_t *get_block;
1634         struct writeback_control *wbc;
1635         int io_done;
1636         long pages_written;
1637         int retval;
1638 };
1639
1640 /*
1641  * mpage_da_submit_io - walks through extent of pages and try to write
1642  * them with writepage() call back
1643  *
1644  * @mpd->inode: inode
1645  * @mpd->first_page: first page of the extent
1646  * @mpd->next_page: page after the last page of the extent
1647  * @mpd->get_block: the filesystem's block mapper function
1648  *
1649  * By the time mpage_da_submit_io() is called we expect all blocks
1650  * to be allocated. this may be wrong if allocation failed.
1651  *
1652  * As pages are already locked by write_cache_pages(), we can't use it
1653  */
1654 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1655 {
1656         struct address_space *mapping = mpd->inode->i_mapping;
1657         int ret = 0, err, nr_pages, i;
1658         unsigned long index, end;
1659         struct pagevec pvec;
1660         long pages_skipped;
1661
1662         BUG_ON(mpd->next_page <= mpd->first_page);
1663         pagevec_init(&pvec, 0);
1664         index = mpd->first_page;
1665         end = mpd->next_page - 1;
1666
1667         while (index <= end) {
1668                 /*
1669                  * We can use PAGECACHE_TAG_DIRTY lookup here because
1670                  * even though we have cleared the dirty flag on the page
1671                  * We still keep the page in the radix tree with tag
1672                  * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1673                  * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1674                  * which is called via the below writepage callback.
1675                  */
1676                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1677                                         PAGECACHE_TAG_DIRTY,
1678                                         min(end - index,
1679                                         (pgoff_t)PAGEVEC_SIZE-1) + 1);
1680                 if (nr_pages == 0)
1681                         break;
1682                 for (i = 0; i < nr_pages; i++) {
1683                         struct page *page = pvec.pages[i];
1684
1685                         pages_skipped = mpd->wbc->pages_skipped;
1686                         err = mapping->a_ops->writepage(page, mpd->wbc);
1687                         if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1688                                 /*
1689                                  * have successfully written the page
1690                                  * without skipping the same
1691                                  */
1692                                 mpd->pages_written++;
1693                         /*
1694                          * In error case, we have to continue because
1695                          * remaining pages are still locked
1696                          * XXX: unlock and re-dirty them?
1697                          */
1698                         if (ret == 0)
1699                                 ret = err;
1700                 }
1701                 pagevec_release(&pvec);
1702         }
1703         return ret;
1704 }
1705
1706 /*
1707  * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1708  *
1709  * @mpd->inode - inode to walk through
1710  * @exbh->b_blocknr - first block on a disk
1711  * @exbh->b_size - amount of space in bytes
1712  * @logical - first logical block to start assignment with
1713  *
1714  * the function goes through all passed space and put actual disk
1715  * block numbers into buffer heads, dropping BH_Delay
1716  */
1717 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1718                                  struct buffer_head *exbh)
1719 {
1720         struct inode *inode = mpd->inode;
1721         struct address_space *mapping = inode->i_mapping;
1722         int blocks = exbh->b_size >> inode->i_blkbits;
1723         sector_t pblock = exbh->b_blocknr, cur_logical;
1724         struct buffer_head *head, *bh;
1725         pgoff_t index, end;
1726         struct pagevec pvec;
1727         int nr_pages, i;
1728
1729         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1730         end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1731         cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1732
1733         pagevec_init(&pvec, 0);
1734
1735         while (index <= end) {
1736                 /* XXX: optimize tail */
1737                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1738                 if (nr_pages == 0)
1739                         break;
1740                 for (i = 0; i < nr_pages; i++) {
1741                         struct page *page = pvec.pages[i];
1742
1743                         index = page->index;
1744                         if (index > end)
1745                                 break;
1746                         index++;
1747
1748                         BUG_ON(!PageLocked(page));
1749                         BUG_ON(PageWriteback(page));
1750                         BUG_ON(!page_has_buffers(page));
1751
1752                         bh = page_buffers(page);
1753                         head = bh;
1754
1755                         /* skip blocks out of the range */
1756                         do {
1757                                 if (cur_logical >= logical)
1758                                         break;
1759                                 cur_logical++;
1760                         } while ((bh = bh->b_this_page) != head);
1761
1762                         do {
1763                                 if (cur_logical >= logical + blocks)
1764                                         break;
1765                                 if (buffer_delay(bh)) {
1766                                         bh->b_blocknr = pblock;
1767                                         clear_buffer_delay(bh);
1768                                         bh->b_bdev = inode->i_sb->s_bdev;
1769                                 } else if (buffer_unwritten(bh)) {
1770                                         bh->b_blocknr = pblock;
1771                                         clear_buffer_unwritten(bh);
1772                                         set_buffer_mapped(bh);
1773                                         set_buffer_new(bh);
1774                                         bh->b_bdev = inode->i_sb->s_bdev;
1775                                 } else if (buffer_mapped(bh))
1776                                         BUG_ON(bh->b_blocknr != pblock);
1777
1778                                 cur_logical++;
1779                                 pblock++;
1780                         } while ((bh = bh->b_this_page) != head);
1781                 }
1782                 pagevec_release(&pvec);
1783         }
1784 }
1785
1786
1787 /*
1788  * __unmap_underlying_blocks - just a helper function to unmap
1789  * set of blocks described by @bh
1790  */
1791 static inline void __unmap_underlying_blocks(struct inode *inode,
1792                                              struct buffer_head *bh)
1793 {
1794         struct block_device *bdev = inode->i_sb->s_bdev;
1795         int blocks, i;
1796
1797         blocks = bh->b_size >> inode->i_blkbits;
1798         for (i = 0; i < blocks; i++)
1799                 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1800 }
1801
1802 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1803                                         sector_t logical, long blk_cnt)
1804 {
1805         int nr_pages, i;
1806         pgoff_t index, end;
1807         struct pagevec pvec;
1808         struct inode *inode = mpd->inode;
1809         struct address_space *mapping = inode->i_mapping;
1810
1811         index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1812         end   = (logical + blk_cnt - 1) >>
1813                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1814         while (index <= end) {
1815                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1816                 if (nr_pages == 0)
1817                         break;
1818                 for (i = 0; i < nr_pages; i++) {
1819                         struct page *page = pvec.pages[i];
1820                         index = page->index;
1821                         if (index > end)
1822                                 break;
1823                         index++;
1824
1825                         BUG_ON(!PageLocked(page));
1826                         BUG_ON(PageWriteback(page));
1827                         block_invalidatepage(page, 0);
1828                         ClearPageUptodate(page);
1829                         unlock_page(page);
1830                 }
1831         }
1832         return;
1833 }
1834
1835 static void ext4_print_free_blocks(struct inode *inode)
1836 {
1837         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1838         printk(KERN_EMERG "Total free blocks count %lld\n",
1839                         ext4_count_free_blocks(inode->i_sb));
1840         printk(KERN_EMERG "Free/Dirty block details\n");
1841         printk(KERN_EMERG "free_blocks=%lld\n",
1842                         (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1843         printk(KERN_EMERG "dirty_blocks=%lld\n",
1844                         (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1845         printk(KERN_EMERG "Block reservation details\n");
1846         printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1847                         EXT4_I(inode)->i_reserved_data_blocks);
1848         printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1849                         EXT4_I(inode)->i_reserved_meta_blocks);
1850         return;
1851 }
1852
1853 /*
1854  * mpage_da_map_blocks - go through given space
1855  *
1856  * @mpd->lbh - bh describing space
1857  * @mpd->get_block - the filesystem's block mapper function
1858  *
1859  * The function skips space we know is already mapped to disk blocks.
1860  *
1861  */
1862 static int  mpage_da_map_blocks(struct mpage_da_data *mpd)
1863 {
1864         int err = 0;
1865         struct buffer_head new;
1866         struct buffer_head *lbh = &mpd->lbh;
1867         sector_t next;
1868
1869         /*
1870          * We consider only non-mapped and non-allocated blocks
1871          */
1872         if (buffer_mapped(lbh) && !buffer_delay(lbh))
1873                 return 0;
1874         new.b_state = lbh->b_state;
1875         new.b_blocknr = 0;
1876         new.b_size = lbh->b_size;
1877         next = lbh->b_blocknr;
1878         /*
1879          * If we didn't accumulate anything
1880          * to write simply return
1881          */
1882         if (!new.b_size)
1883                 return 0;
1884         err = mpd->get_block(mpd->inode, next, &new, 1);
1885         if (err) {
1886
1887                 /* If get block returns with error
1888                  * we simply return. Later writepage
1889                  * will redirty the page and writepages
1890                  * will find the dirty page again
1891                  */
1892                 if (err == -EAGAIN)
1893                         return 0;
1894
1895                 if (err == -ENOSPC &&
1896                                 ext4_count_free_blocks(mpd->inode->i_sb)) {
1897                         mpd->retval = err;
1898                         return 0;
1899                 }
1900
1901                 /*
1902                  * get block failure will cause us
1903                  * to loop in writepages. Because
1904                  * a_ops->writepage won't be able to
1905                  * make progress. The page will be redirtied
1906                  * by writepage and writepages will again
1907                  * try to write the same.
1908                  */
1909                 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1910                                   "at logical offset %llu with max blocks "
1911                                   "%zd with error %d\n",
1912                                   __func__, mpd->inode->i_ino,
1913                                   (unsigned long long)next,
1914                                   lbh->b_size >> mpd->inode->i_blkbits, err);
1915                 printk(KERN_EMERG "This should not happen.!! "
1916                                         "Data will be lost\n");
1917                 if (err == -ENOSPC) {
1918                         ext4_print_free_blocks(mpd->inode);
1919                 }
1920                 /* invlaidate all the pages */
1921                 ext4_da_block_invalidatepages(mpd, next,
1922                                 lbh->b_size >> mpd->inode->i_blkbits);
1923                 return err;
1924         }
1925         BUG_ON(new.b_size == 0);
1926
1927         if (buffer_new(&new))
1928                 __unmap_underlying_blocks(mpd->inode, &new);
1929
1930         /*
1931          * If blocks are delayed marked, we need to
1932          * put actual blocknr and drop delayed bit
1933          */
1934         if (buffer_delay(lbh) || buffer_unwritten(lbh))
1935                 mpage_put_bnr_to_bhs(mpd, next, &new);
1936
1937         return 0;
1938 }
1939
1940 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1941                 (1 << BH_Delay) | (1 << BH_Unwritten))
1942
1943 /*
1944  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1945  *
1946  * @mpd->lbh - extent of blocks
1947  * @logical - logical number of the block in the file
1948  * @bh - bh of the block (used to access block's state)
1949  *
1950  * the function is used to collect contig. blocks in same state
1951  */
1952 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1953                                    sector_t logical, struct buffer_head *bh)
1954 {
1955         sector_t next;
1956         size_t b_size = bh->b_size;
1957         struct buffer_head *lbh = &mpd->lbh;
1958         int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1959
1960         /* check if thereserved journal credits might overflow */
1961         if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1962                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1963                         /*
1964                          * With non-extent format we are limited by the journal
1965                          * credit available.  Total credit needed to insert
1966                          * nrblocks contiguous blocks is dependent on the
1967                          * nrblocks.  So limit nrblocks.
1968                          */
1969                         goto flush_it;
1970                 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1971                                 EXT4_MAX_TRANS_DATA) {
1972                         /*
1973                          * Adding the new buffer_head would make it cross the
1974                          * allowed limit for which we have journal credit
1975                          * reserved. So limit the new bh->b_size
1976                          */
1977                         b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1978                                                 mpd->inode->i_blkbits;
1979                         /* we will do mpage_da_submit_io in the next loop */
1980                 }
1981         }
1982         /*
1983          * First block in the extent
1984          */
1985         if (lbh->b_size == 0) {
1986                 lbh->b_blocknr = logical;
1987                 lbh->b_size = b_size;
1988                 lbh->b_state = bh->b_state & BH_FLAGS;
1989                 return;
1990         }
1991
1992         next = lbh->b_blocknr + nrblocks;
1993         /*
1994          * Can we merge the block to our big extent?
1995          */
1996         if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1997                 lbh->b_size += b_size;
1998                 return;
1999         }
2000
2001 flush_it:
2002         /*
2003          * We couldn't merge the block to our extent, so we
2004          * need to flush current  extent and start new one
2005          */
2006         if (mpage_da_map_blocks(mpd) == 0)
2007                 mpage_da_submit_io(mpd);
2008         mpd->io_done = 1;
2009         return;
2010 }
2011
2012 /*
2013  * __mpage_da_writepage - finds extent of pages and blocks
2014  *
2015  * @page: page to consider
2016  * @wbc: not used, we just follow rules
2017  * @data: context
2018  *
2019  * The function finds extents of pages and scan them for all blocks.
2020  */
2021 static int __mpage_da_writepage(struct page *page,
2022                                 struct writeback_control *wbc, void *data)
2023 {
2024         struct mpage_da_data *mpd = data;
2025         struct inode *inode = mpd->inode;
2026         struct buffer_head *bh, *head, fake;
2027         sector_t logical;
2028
2029         if (mpd->io_done) {
2030                 /*
2031                  * Rest of the page in the page_vec
2032                  * redirty then and skip then. We will
2033                  * try to to write them again after
2034                  * starting a new transaction
2035                  */
2036                 redirty_page_for_writepage(wbc, page);
2037                 unlock_page(page);
2038                 return MPAGE_DA_EXTENT_TAIL;
2039         }
2040         /*
2041          * Can we merge this page to current extent?
2042          */
2043         if (mpd->next_page != page->index) {
2044                 /*
2045                  * Nope, we can't. So, we map non-allocated blocks
2046                  * and start IO on them using writepage()
2047                  */
2048                 if (mpd->next_page != mpd->first_page) {
2049                         if (mpage_da_map_blocks(mpd) == 0)
2050                                 mpage_da_submit_io(mpd);
2051                         /*
2052                          * skip rest of the page in the page_vec
2053                          */
2054                         mpd->io_done = 1;
2055                         redirty_page_for_writepage(wbc, page);
2056                         unlock_page(page);
2057                         return MPAGE_DA_EXTENT_TAIL;
2058                 }
2059
2060                 /*
2061                  * Start next extent of pages ...
2062                  */
2063                 mpd->first_page = page->index;
2064
2065                 /*
2066                  * ... and blocks
2067                  */
2068                 mpd->lbh.b_size = 0;
2069                 mpd->lbh.b_state = 0;
2070                 mpd->lbh.b_blocknr = 0;
2071         }
2072
2073         mpd->next_page = page->index + 1;
2074         logical = (sector_t) page->index <<
2075                   (PAGE_CACHE_SHIFT - inode->i_blkbits);
2076
2077         if (!page_has_buffers(page)) {
2078                 /*
2079                  * There is no attached buffer heads yet (mmap?)
2080                  * we treat the page asfull of dirty blocks
2081                  */
2082                 bh = &fake;
2083                 bh->b_size = PAGE_CACHE_SIZE;
2084                 bh->b_state = 0;
2085                 set_buffer_dirty(bh);
2086                 set_buffer_uptodate(bh);
2087                 mpage_add_bh_to_extent(mpd, logical, bh);
2088                 if (mpd->io_done)
2089                         return MPAGE_DA_EXTENT_TAIL;
2090         } else {
2091                 /*
2092                  * Page with regular buffer heads, just add all dirty ones
2093                  */
2094                 head = page_buffers(page);
2095                 bh = head;
2096                 do {
2097                         BUG_ON(buffer_locked(bh));
2098                         if (buffer_dirty(bh) &&
2099                                 (!buffer_mapped(bh) || buffer_delay(bh))) {
2100                                 mpage_add_bh_to_extent(mpd, logical, bh);
2101                                 if (mpd->io_done)
2102                                         return MPAGE_DA_EXTENT_TAIL;
2103                         }
2104                         logical++;
2105                 } while ((bh = bh->b_this_page) != head);
2106         }
2107
2108         return 0;
2109 }
2110
2111 /*
2112  * mpage_da_writepages - walk the list of dirty pages of the given
2113  * address space, allocates non-allocated blocks, maps newly-allocated
2114  * blocks to existing bhs and issue IO them
2115  *
2116  * @mapping: address space structure to write
2117  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2118  * @get_block: the filesystem's block mapper function.
2119  *
2120  * This is a library function, which implements the writepages()
2121  * address_space_operation.
2122  */
2123 static int mpage_da_writepages(struct address_space *mapping,
2124                                struct writeback_control *wbc,
2125                                struct mpage_da_data *mpd)
2126 {
2127         int ret;
2128
2129         if (!mpd->get_block)
2130                 return generic_writepages(mapping, wbc);
2131
2132         mpd->lbh.b_size = 0;
2133         mpd->lbh.b_state = 0;
2134         mpd->lbh.b_blocknr = 0;
2135         mpd->first_page = 0;
2136         mpd->next_page = 0;
2137         mpd->io_done = 0;
2138         mpd->pages_written = 0;
2139         mpd->retval = 0;
2140
2141         ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2142         /*
2143          * Handle last extent of pages
2144          */
2145         if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2146                 if (mpage_da_map_blocks(mpd) == 0)
2147                         mpage_da_submit_io(mpd);
2148
2149                 mpd->io_done = 1;
2150                 ret = MPAGE_DA_EXTENT_TAIL;
2151         }
2152         wbc->nr_to_write -= mpd->pages_written;
2153         return ret;
2154 }
2155
2156 /*
2157  * this is a special callback for ->write_begin() only
2158  * it's intention is to return mapped block or reserve space
2159  */
2160 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2161                                   struct buffer_head *bh_result, int create)
2162 {
2163         int ret = 0;
2164
2165         BUG_ON(create == 0);
2166         BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2167
2168         /*
2169          * first, we need to know whether the block is allocated already
2170          * preallocated blocks are unmapped but should treated
2171          * the same as allocated blocks.
2172          */
2173         ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1,  bh_result, 0, 0, 0);
2174         if ((ret == 0) && !buffer_delay(bh_result)) {
2175                 /* the block isn't (pre)allocated yet, let's reserve space */
2176                 /*
2177                  * XXX: __block_prepare_write() unmaps passed block,
2178                  * is it OK?
2179                  */
2180                 ret = ext4_da_reserve_space(inode, 1);
2181                 if (ret)
2182                         /* not enough space to reserve */
2183                         return ret;
2184
2185                 map_bh(bh_result, inode->i_sb, 0);
2186                 set_buffer_new(bh_result);
2187                 set_buffer_delay(bh_result);
2188         } else if (ret > 0) {
2189                 bh_result->b_size = (ret << inode->i_blkbits);
2190                 ret = 0;
2191         }
2192
2193         return ret;
2194 }
2195 #define         EXT4_DELALLOC_RSVED     1
2196 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2197                                    struct buffer_head *bh_result, int create)
2198 {
2199         int ret;
2200         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2201         loff_t disksize = EXT4_I(inode)->i_disksize;
2202         handle_t *handle = NULL;
2203
2204         handle = ext4_journal_current_handle();
2205         BUG_ON(!handle);
2206         ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2207                         bh_result, create, 0, EXT4_DELALLOC_RSVED);
2208         if (ret > 0) {
2209
2210                 bh_result->b_size = (ret << inode->i_blkbits);
2211
2212                 if (ext4_should_order_data(inode)) {
2213                         int retval;
2214                         retval = ext4_jbd2_file_inode(handle, inode);
2215                         if (retval)
2216                                 /*
2217                                  * Failed to add inode for ordered
2218                                  * mode. Don't update file size
2219                                  */
2220                                 return retval;
2221                 }
2222
2223                 /*
2224                  * Update on-disk size along with block allocation
2225                  * we don't use 'extend_disksize' as size may change
2226                  * within already allocated block -bzzz
2227                  */
2228                 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2229                 if (disksize > i_size_read(inode))
2230                         disksize = i_size_read(inode);
2231                 if (disksize > EXT4_I(inode)->i_disksize) {
2232                         ext4_update_i_disksize(inode, disksize);
2233                         ret = ext4_mark_inode_dirty(handle, inode);
2234                         return ret;
2235                 }
2236                 ret = 0;
2237         }
2238         return ret;
2239 }
2240
2241 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2242 {
2243         /*
2244          * unmapped buffer is possible for holes.
2245          * delay buffer is possible with delayed allocation
2246          */
2247         return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2248 }
2249
2250 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2251                                    struct buffer_head *bh_result, int create)
2252 {
2253         int ret = 0;
2254         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2255
2256         /*
2257          * we don't want to do block allocation in writepage
2258          * so call get_block_wrap with create = 0
2259          */
2260         ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2261                                    bh_result, 0, 0, 0);
2262         if (ret > 0) {
2263                 bh_result->b_size = (ret << inode->i_blkbits);
2264                 ret = 0;
2265         }
2266         return ret;
2267 }
2268
2269 /*
2270  * get called vi ext4_da_writepages after taking page lock (have journal handle)
2271  * get called via journal_submit_inode_data_buffers (no journal handle)
2272  * get called via shrink_page_list via pdflush (no journal handle)
2273  * or grab_page_cache when doing write_begin (have journal handle)
2274  */
2275 static int ext4_da_writepage(struct page *page,
2276                                 struct writeback_control *wbc)
2277 {
2278         int ret = 0;
2279         loff_t size;
2280         unsigned long len;
2281         struct buffer_head *page_bufs;
2282         struct inode *inode = page->mapping->host;
2283
2284         size = i_size_read(inode);
2285         if (page->index == size >> PAGE_CACHE_SHIFT)
2286                 len = size & ~PAGE_CACHE_MASK;
2287         else
2288                 len = PAGE_CACHE_SIZE;
2289
2290         if (page_has_buffers(page)) {
2291                 page_bufs = page_buffers(page);
2292                 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2293                                         ext4_bh_unmapped_or_delay)) {
2294                         /*
2295                          * We don't want to do  block allocation
2296                          * So redirty the page and return
2297                          * We may reach here when we do a journal commit
2298                          * via journal_submit_inode_data_buffers.
2299                          * If we don't have mapping block we just ignore
2300                          * them. We can also reach here via shrink_page_list
2301                          */
2302                         redirty_page_for_writepage(wbc, page);
2303                         unlock_page(page);
2304                         return 0;
2305                 }
2306         } else {
2307                 /*
2308                  * The test for page_has_buffers() is subtle:
2309                  * We know the page is dirty but it lost buffers. That means
2310                  * that at some moment in time after write_begin()/write_end()
2311                  * has been called all buffers have been clean and thus they
2312                  * must have been written at least once. So they are all
2313                  * mapped and we can happily proceed with mapping them
2314                  * and writing the page.
2315                  *
2316                  * Try to initialize the buffer_heads and check whether
2317                  * all are mapped and non delay. We don't want to
2318                  * do block allocation here.
2319                  */
2320                 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2321                                                 ext4_normal_get_block_write);
2322                 if (!ret) {
2323                         page_bufs = page_buffers(page);
2324                         /* check whether all are mapped and non delay */
2325                         if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2326                                                 ext4_bh_unmapped_or_delay)) {
2327                                 redirty_page_for_writepage(wbc, page);
2328                                 unlock_page(page);
2329                                 return 0;
2330                         }
2331                 } else {
2332                         /*
2333                          * We can't do block allocation here
2334                          * so just redity the page and unlock
2335                          * and return
2336                          */
2337                         redirty_page_for_writepage(wbc, page);
2338                         unlock_page(page);
2339                         return 0;
2340                 }
2341                 /* now mark the buffer_heads as dirty and uptodate */
2342                 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2343         }
2344
2345         if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2346                 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2347         else
2348                 ret = block_write_full_page(page,
2349                                                 ext4_normal_get_block_write,
2350                                                 wbc);
2351
2352         return ret;
2353 }
2354
2355 /*
2356  * This is called via ext4_da_writepages() to
2357  * calulate the total number of credits to reserve to fit
2358  * a single extent allocation into a single transaction,
2359  * ext4_da_writpeages() will loop calling this before
2360  * the block allocation.
2361  */
2362
2363 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2364 {
2365         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2366
2367         /*
2368          * With non-extent format the journal credit needed to
2369          * insert nrblocks contiguous block is dependent on
2370          * number of contiguous block. So we will limit
2371          * number of contiguous block to a sane value
2372          */
2373         if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2374             (max_blocks > EXT4_MAX_TRANS_DATA))
2375                 max_blocks = EXT4_MAX_TRANS_DATA;
2376
2377         return ext4_chunk_trans_blocks(inode, max_blocks);
2378 }
2379
2380 static int ext4_da_writepages(struct address_space *mapping,
2381                               struct writeback_control *wbc)
2382 {
2383         pgoff_t index;
2384         int range_whole = 0;
2385         handle_t *handle = NULL;
2386         struct mpage_da_data mpd;
2387         struct inode *inode = mapping->host;
2388         int no_nrwrite_index_update;
2389         long pages_written = 0, pages_skipped;
2390         int needed_blocks, ret = 0, nr_to_writebump = 0;
2391         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2392
2393         /*
2394          * No pages to write? This is mainly a kludge to avoid starting
2395          * a transaction for special inodes like journal inode on last iput()
2396          * because that could violate lock ordering on umount
2397          */
2398         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2399                 return 0;
2400
2401         /*
2402          * If the filesystem has aborted, it is read-only, so return
2403          * right away instead of dumping stack traces later on that
2404          * will obscure the real source of the problem.  We test
2405          * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2406          * the latter could be true if the filesystem is mounted
2407          * read-only, and in that case, ext4_da_writepages should
2408          * *never* be called, so if that ever happens, we would want
2409          * the stack trace.
2410          */
2411         if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2412                 return -EROFS;
2413
2414         /*
2415          * Make sure nr_to_write is >= sbi->s_mb_stream_request
2416          * This make sure small files blocks are allocated in
2417          * single attempt. This ensure that small files
2418          * get less fragmented.
2419          */
2420         if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2421                 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2422                 wbc->nr_to_write = sbi->s_mb_stream_request;
2423         }
2424         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2425                 range_whole = 1;
2426
2427         if (wbc->range_cyclic)
2428                 index = mapping->writeback_index;
2429         else
2430                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2431
2432         mpd.wbc = wbc;
2433         mpd.inode = mapping->host;
2434
2435         /*
2436          * we don't want write_cache_pages to update
2437          * nr_to_write and writeback_index
2438          */
2439         no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2440         wbc->no_nrwrite_index_update = 1;
2441         pages_skipped = wbc->pages_skipped;
2442
2443         while (!ret && wbc->nr_to_write > 0) {
2444
2445                 /*
2446                  * we  insert one extent at a time. So we need
2447                  * credit needed for single extent allocation.
2448                  * journalled mode is currently not supported
2449                  * by delalloc
2450                  */
2451                 BUG_ON(ext4_should_journal_data(inode));
2452                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2453
2454                 /* start a new transaction*/
2455                 handle = ext4_journal_start(inode, needed_blocks);
2456                 if (IS_ERR(handle)) {
2457                         ret = PTR_ERR(handle);
2458                         printk(KERN_CRIT "%s: jbd2_start: "
2459                                "%ld pages, ino %lu; err %d\n", __func__,
2460                                 wbc->nr_to_write, inode->i_ino, ret);
2461                         dump_stack();
2462                         goto out_writepages;
2463                 }
2464                 mpd.get_block = ext4_da_get_block_write;
2465                 ret = mpage_da_writepages(mapping, wbc, &mpd);
2466
2467                 ext4_journal_stop(handle);
2468
2469                 if (mpd.retval == -ENOSPC) {
2470                         /* commit the transaction which would
2471                          * free blocks released in the transaction
2472                          * and try again
2473                          */
2474                         jbd2_journal_force_commit_nested(sbi->s_journal);
2475                         wbc->pages_skipped = pages_skipped;
2476                         ret = 0;
2477                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2478                         /*
2479                          * got one extent now try with
2480                          * rest of the pages
2481                          */
2482                         pages_written += mpd.pages_written;
2483                         wbc->pages_skipped = pages_skipped;
2484                         ret = 0;
2485                 } else if (wbc->nr_to_write)
2486                         /*
2487                          * There is no more writeout needed
2488                          * or we requested for a noblocking writeout
2489                          * and we found the device congested
2490                          */
2491                         break;
2492         }
2493         if (pages_skipped != wbc->pages_skipped)
2494                 printk(KERN_EMERG "This should not happen leaving %s "
2495                                 "with nr_to_write = %ld ret = %d\n",
2496                                 __func__, wbc->nr_to_write, ret);
2497
2498         /* Update index */
2499         index += pages_written;
2500         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2501                 /*
2502                  * set the writeback_index so that range_cyclic
2503                  * mode will write it back later
2504                  */
2505                 mapping->writeback_index = index;
2506
2507 out_writepages:
2508         if (!no_nrwrite_index_update)
2509                 wbc->no_nrwrite_index_update = 0;
2510         wbc->nr_to_write -= nr_to_writebump;
2511         return ret;
2512 }
2513
2514 #define FALL_BACK_TO_NONDELALLOC 1
2515 static int ext4_nonda_switch(struct super_block *sb)
2516 {
2517         s64 free_blocks, dirty_blocks;
2518         struct ext4_sb_info *sbi = EXT4_SB(sb);
2519
2520         /*
2521          * switch to non delalloc mode if we are running low
2522          * on free block. The free block accounting via percpu
2523          * counters can get slightly wrong with FBC_BATCH getting
2524          * accumulated on each CPU without updating global counters
2525          * Delalloc need an accurate free block accounting. So switch
2526          * to non delalloc when we are near to error range.
2527          */
2528         free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2529         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2530         if (2 * free_blocks < 3 * dirty_blocks ||
2531                 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2532                 /*
2533                  * free block count is less that 150% of dirty blocks
2534                  * or free blocks is less that watermark
2535                  */
2536                 return 1;
2537         }
2538         return 0;
2539 }
2540
2541 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2542                                 loff_t pos, unsigned len, unsigned flags,
2543                                 struct page **pagep, void **fsdata)
2544 {
2545         int ret, retries = 0;
2546         struct page *page;
2547         pgoff_t index;
2548         unsigned from, to;
2549         struct inode *inode = mapping->host;
2550         handle_t *handle;
2551
2552         index = pos >> PAGE_CACHE_SHIFT;
2553         from = pos & (PAGE_CACHE_SIZE - 1);
2554         to = from + len;
2555
2556         if (ext4_nonda_switch(inode->i_sb)) {
2557                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2558                 return ext4_write_begin(file, mapping, pos,
2559                                         len, flags, pagep, fsdata);
2560         }
2561         *fsdata = (void *)0;
2562 retry:
2563         /*
2564          * With delayed allocation, we don't log the i_disksize update
2565          * if there is delayed block allocation. But we still need
2566          * to journalling the i_disksize update if writes to the end
2567          * of file which has an already mapped buffer.
2568          */
2569         handle = ext4_journal_start(inode, 1);
2570         if (IS_ERR(handle)) {
2571                 ret = PTR_ERR(handle);
2572                 goto out;
2573         }
2574
2575         page = grab_cache_page_write_begin(mapping, index, flags);
2576         if (!page) {
2577                 ext4_journal_stop(handle);
2578                 ret = -ENOMEM;
2579                 goto out;
2580         }
2581         *pagep = page;
2582
2583         ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2584                                                         ext4_da_get_block_prep);
2585         if (ret < 0) {
2586                 unlock_page(page);
2587                 ext4_journal_stop(handle);
2588                 page_cache_release(page);
2589                 /*
2590                  * block_write_begin may have instantiated a few blocks
2591                  * outside i_size.  Trim these off again. Don't need
2592                  * i_size_read because we hold i_mutex.
2593                  */
2594                 if (pos + len > inode->i_size)
2595                         vmtruncate(inode, inode->i_size);
2596         }
2597
2598         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2599                 goto retry;
2600 out:
2601         return ret;
2602 }
2603
2604 /*
2605  * Check if we should update i_disksize
2606  * when write to the end of file but not require block allocation
2607  */
2608 static int ext4_da_should_update_i_disksize(struct page *page,
2609                                          unsigned long offset)
2610 {
2611         struct buffer_head *bh;
2612         struct inode *inode = page->mapping->host;
2613         unsigned int idx;
2614         int i;
2615
2616         bh = page_buffers(page);
2617         idx = offset >> inode->i_blkbits;
2618
2619         for (i = 0; i < idx; i++)
2620                 bh = bh->b_this_page;
2621
2622         if (!buffer_mapped(bh) || (buffer_delay(bh)))
2623                 return 0;
2624         return 1;
2625 }
2626
2627 static int ext4_da_write_end(struct file *file,
2628                                 struct address_space *mapping,
2629                                 loff_t pos, unsigned len, unsigned copied,
2630                                 struct page *page, void *fsdata)
2631 {
2632         struct inode *inode = mapping->host;
2633         int ret = 0, ret2;
2634         handle_t *handle = ext4_journal_current_handle();
2635         loff_t new_i_size;
2636         unsigned long start, end;
2637         int write_mode = (int)(unsigned long)fsdata;
2638
2639         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2640                 if (ext4_should_order_data(inode)) {
2641                         return ext4_ordered_write_end(file, mapping, pos,
2642                                         len, copied, page, fsdata);
2643                 } else if (ext4_should_writeback_data(inode)) {
2644                         return ext4_writeback_write_end(file, mapping, pos,
2645                                         len, copied, page, fsdata);
2646                 } else {
2647                         BUG();
2648                 }
2649         }
2650
2651         start = pos & (PAGE_CACHE_SIZE - 1);
2652         end = start + copied - 1;
2653
2654         /*
2655          * generic_write_end() will run mark_inode_dirty() if i_size
2656          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2657          * into that.
2658          */
2659
2660         new_i_size = pos + copied;
2661         if (new_i_size > EXT4_I(inode)->i_disksize) {
2662                 if (ext4_da_should_update_i_disksize(page, end)) {
2663                         down_write(&EXT4_I(inode)->i_data_sem);
2664                         if (new_i_size > EXT4_I(inode)->i_disksize) {
2665                                 /*
2666                                  * Updating i_disksize when extending file
2667                                  * without needing block allocation
2668                                  */
2669                                 if (ext4_should_order_data(inode))
2670                                         ret = ext4_jbd2_file_inode(handle,
2671                                                                    inode);
2672
2673                                 EXT4_I(inode)->i_disksize = new_i_size;
2674                         }
2675                         up_write(&EXT4_I(inode)->i_data_sem);
2676                         /* We need to mark inode dirty even if
2677                          * new_i_size is less that inode->i_size
2678                          * bu greater than i_disksize.(hint delalloc)
2679                          */
2680                         ext4_mark_inode_dirty(handle, inode);
2681                 }
2682         }
2683         ret2 = generic_write_end(file, mapping, pos, len, copied,
2684                                                         page, fsdata);
2685         copied = ret2;
2686         if (ret2 < 0)
2687                 ret = ret2;
2688         ret2 = ext4_journal_stop(handle);
2689         if (!ret)
2690                 ret = ret2;
2691
2692         return ret ? ret : copied;
2693 }
2694
2695 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2696 {
2697         /*
2698          * Drop reserved blocks
2699          */
2700         BUG_ON(!PageLocked(page));
2701         if (!page_has_buffers(page))
2702                 goto out;
2703
2704         ext4_da_page_release_reservation(page, offset);
2705
2706 out:
2707         ext4_invalidatepage(page, offset);
2708
2709         return;
2710 }
2711
2712
2713 /*
2714  * bmap() is special.  It gets used by applications such as lilo and by
2715  * the swapper to find the on-disk block of a specific piece of data.
2716  *
2717  * Naturally, this is dangerous if the block concerned is still in the
2718  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2719  * filesystem and enables swap, then they may get a nasty shock when the
2720  * data getting swapped to that swapfile suddenly gets overwritten by
2721  * the original zero's written out previously to the journal and
2722  * awaiting writeback in the kernel's buffer cache.
2723  *
2724  * So, if we see any bmap calls here on a modified, data-journaled file,
2725  * take extra steps to flush any blocks which might be in the cache.
2726  */
2727 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2728 {
2729         struct inode *inode = mapping->host;
2730         journal_t *journal;
2731         int err;
2732
2733         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2734                         test_opt(inode->i_sb, DELALLOC)) {
2735                 /*
2736                  * With delalloc we want to sync the file
2737                  * so that we can make sure we allocate
2738                  * blocks for file
2739                  */
2740                 filemap_write_and_wait(mapping);
2741         }
2742
2743         if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2744                 /*
2745                  * This is a REALLY heavyweight approach, but the use of
2746                  * bmap on dirty files is expected to be extremely rare:
2747                  * only if we run lilo or swapon on a freshly made file
2748                  * do we expect this to happen.
2749                  *
2750                  * (bmap requires CAP_SYS_RAWIO so this does not
2751                  * represent an unprivileged user DOS attack --- we'd be
2752                  * in trouble if mortal users could trigger this path at
2753                  * will.)
2754                  *
2755                  * NB. EXT4_STATE_JDATA is not set on files other than
2756                  * regular files.  If somebody wants to bmap a directory
2757                  * or symlink and gets confused because the buffer
2758                  * hasn't yet been flushed to disk, they deserve
2759                  * everything they get.
2760                  */
2761
2762                 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2763                 journal = EXT4_JOURNAL(inode);
2764                 jbd2_journal_lock_updates(journal);
2765                 err = jbd2_journal_flush(journal);
2766                 jbd2_journal_unlock_updates(journal);
2767
2768                 if (err)
2769                         return 0;
2770         }
2771
2772         return generic_block_bmap(mapping, block, ext4_get_block);
2773 }
2774
2775 static int bget_one(handle_t *handle, struct buffer_head *bh)
2776 {
2777         get_bh(bh);
2778         return 0;
2779 }
2780
2781 static int bput_one(handle_t *handle, struct buffer_head *bh)
2782 {
2783         put_bh(bh);
2784         return 0;
2785 }
2786
2787 /*
2788  * Note that we don't need to start a transaction unless we're journaling data
2789  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2790  * need to file the inode to the transaction's list in ordered mode because if
2791  * we are writing back data added by write(), the inode is already there and if
2792  * we are writing back data modified via mmap(), noone guarantees in which
2793  * transaction the data will hit the disk. In case we are journaling data, we
2794  * cannot start transaction directly because transaction start ranks above page
2795  * lock so we have to do some magic.
2796  *
2797  * In all journaling modes block_write_full_page() will start the I/O.
2798  *
2799  * Problem:
2800  *
2801  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2802  *              ext4_writepage()
2803  *
2804  * Similar for:
2805  *
2806  *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2807  *
2808  * Same applies to ext4_get_block().  We will deadlock on various things like
2809  * lock_journal and i_data_sem
2810  *
2811  * Setting PF_MEMALLOC here doesn't work - too many internal memory
2812  * allocations fail.
2813  *
2814  * 16May01: If we're reentered then journal_current_handle() will be
2815  *          non-zero. We simply *return*.
2816  *
2817  * 1 July 2001: @@@ FIXME:
2818  *   In journalled data mode, a data buffer may be metadata against the
2819  *   current transaction.  But the same file is part of a shared mapping
2820  *   and someone does a writepage() on it.
2821  *
2822  *   We will move the buffer onto the async_data list, but *after* it has
2823  *   been dirtied. So there's a small window where we have dirty data on
2824  *   BJ_Metadata.
2825  *
2826  *   Note that this only applies to the last partial page in the file.  The
2827  *   bit which block_write_full_page() uses prepare/commit for.  (That's
2828  *   broken code anyway: it's wrong for msync()).
2829  *
2830  *   It's a rare case: affects the final partial page, for journalled data
2831  *   where the file is subject to bith write() and writepage() in the same
2832  *   transction.  To fix it we'll need a custom block_write_full_page().
2833  *   We'll probably need that anyway for journalling writepage() output.
2834  *
2835  * We don't honour synchronous mounts for writepage().  That would be
2836  * disastrous.  Any write() or metadata operation will sync the fs for
2837  * us.
2838  *
2839  */
2840 static int __ext4_normal_writepage(struct page *page,
2841                                 struct writeback_control *wbc)
2842 {
2843         struct inode *inode = page->mapping->host;
2844
2845         if (test_opt(inode->i_sb, NOBH))
2846                 return nobh_writepage(page,
2847                                         ext4_normal_get_block_write, wbc);
2848         else
2849                 return block_write_full_page(page,
2850                                                 ext4_normal_get_block_write,
2851                                                 wbc);
2852 }
2853
2854 static int ext4_normal_writepage(struct page *page,
2855                                 struct writeback_control *wbc)
2856 {
2857         struct inode *inode = page->mapping->host;
2858         loff_t size = i_size_read(inode);
2859         loff_t len;
2860
2861         J_ASSERT(PageLocked(page));
2862         if (page->index == size >> PAGE_CACHE_SHIFT)
2863                 len = size & ~PAGE_CACHE_MASK;
2864         else
2865                 len = PAGE_CACHE_SIZE;
2866
2867         if (page_has_buffers(page)) {
2868                 /* if page has buffers it should all be mapped
2869                  * and allocated. If there are not buffers attached
2870                  * to the page we know the page is dirty but it lost
2871                  * buffers. That means that at some moment in time
2872                  * after write_begin() / write_end() has been called
2873                  * all buffers have been clean and thus they must have been
2874                  * written at least once. So they are all mapped and we can
2875                  * happily proceed with mapping them and writing the page.
2876                  */
2877                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2878                                         ext4_bh_unmapped_or_delay));
2879         }
2880
2881         if (!ext4_journal_current_handle())
2882                 return __ext4_normal_writepage(page, wbc);
2883
2884         redirty_page_for_writepage(wbc, page);
2885         unlock_page(page);
2886         return 0;
2887 }
2888
2889 static int __ext4_journalled_writepage(struct page *page,
2890                                 struct writeback_control *wbc)
2891 {
2892         struct address_space *mapping = page->mapping;
2893         struct inode *inode = mapping->host;
2894         struct buffer_head *page_bufs;
2895         handle_t *handle = NULL;
2896         int ret = 0;
2897         int err;
2898
2899         ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2900                                         ext4_normal_get_block_write);
2901         if (ret != 0)
2902                 goto out_unlock;
2903
2904         page_bufs = page_buffers(page);
2905         walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2906                                                                 bget_one);
2907         /* As soon as we unlock the page, it can go away, but we have
2908          * references to buffers so we are safe */
2909         unlock_page(page);
2910
2911         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2912         if (IS_ERR(handle)) {
2913                 ret = PTR_ERR(handle);
2914                 goto out;
2915         }
2916
2917         ret = walk_page_buffers(handle, page_bufs, 0,
2918                         PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2919
2920         err = walk_page_buffers(handle, page_bufs, 0,
2921                                 PAGE_CACHE_SIZE, NULL, write_end_fn);
2922         if (ret == 0)
2923                 ret = err;
2924         err = ext4_journal_stop(handle);
2925         if (!ret)
2926                 ret = err;
2927
2928         walk_page_buffers(handle, page_bufs, 0,
2929                                 PAGE_CACHE_SIZE, NULL, bput_one);
2930         EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2931         goto out;
2932
2933 out_unlock:
2934         unlock_page(page);
2935 out:
2936         return ret;
2937 }
2938
2939 static int ext4_journalled_writepage(struct page *page,
2940                                 struct writeback_control *wbc)
2941 {
2942         struct inode *inode = page->mapping->host;
2943         loff_t size = i_size_read(inode);
2944         loff_t len;
2945
2946         J_ASSERT(PageLocked(page));
2947         if (page->index == size >> PAGE_CACHE_SHIFT)
2948                 len = size & ~PAGE_CACHE_MASK;
2949         else
2950                 len = PAGE_CACHE_SIZE;
2951
2952         if (page_has_buffers(page)) {
2953                 /* if page has buffers it should all be mapped
2954                  * and allocated. If there are not buffers attached
2955                  * to the page we know the page is dirty but it lost
2956                  * buffers. That means that at some moment in time
2957                  * after write_begin() / write_end() has been called
2958                  * all buffers have been clean and thus they must have been
2959                  * written at least once. So they are all mapped and we can
2960                  * happily proceed with mapping them and writing the page.
2961                  */
2962                 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2963                                         ext4_bh_unmapped_or_delay));
2964         }
2965
2966         if (ext4_journal_current_handle())
2967                 goto no_write;
2968
2969         if (PageChecked(page)) {
2970                 /*
2971                  * It's mmapped pagecache.  Add buffers and journal it.  There
2972                  * doesn't seem much point in redirtying the page here.
2973                  */
2974                 ClearPageChecked(page);
2975                 return __ext4_journalled_writepage(page, wbc);
2976         } else {
2977                 /*
2978                  * It may be a page full of checkpoint-mode buffers.  We don't
2979                  * really know unless we go poke around in the buffer_heads.
2980                  * But block_write_full_page will do the right thing.
2981                  */
2982                 return block_write_full_page(page,
2983                                                 ext4_normal_get_block_write,
2984                                                 wbc);
2985         }
2986 no_write:
2987         redirty_page_for_writepage(wbc, page);
2988         unlock_page(page);
2989         return 0;
2990 }
2991
2992 static int ext4_readpage(struct file *file, struct page *page)
2993 {
2994         return mpage_readpage(page, ext4_get_block);
2995 }
2996
2997 static int
2998 ext4_readpages(struct file *file, struct address_space *mapping,
2999                 struct list_head *pages, unsigned nr_pages)
3000 {
3001         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3002 }
3003
3004 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3005 {
3006         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3007
3008         /*
3009          * If it's a full truncate we just forget about the pending dirtying
3010          */
3011         if (offset == 0)
3012                 ClearPageChecked(page);
3013
3014         jbd2_journal_invalidatepage(journal, page, offset);
3015 }
3016
3017 static int ext4_releasepage(struct page *page, gfp_t wait)
3018 {
3019         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3020
3021         WARN_ON(PageChecked(page));
3022         if (!page_has_buffers(page))
3023                 return 0;
3024         return jbd2_journal_try_to_free_buffers(journal, page, wait);
3025 }
3026
3027 /*
3028  * If the O_DIRECT write will extend the file then add this inode to the
3029  * orphan list.  So recovery will truncate it back to the original size
3030  * if the machine crashes during the write.
3031  *
3032  * If the O_DIRECT write is intantiating holes inside i_size and the machine
3033  * crashes then stale disk data _may_ be exposed inside the file. But current
3034  * VFS code falls back into buffered path in that case so we are safe.
3035  */
3036 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3037                         const struct iovec *iov, loff_t offset,
3038                         unsigned long nr_segs)
3039 {
3040         struct file *file = iocb->ki_filp;
3041         struct inode *inode = file->f_mapping->host;
3042         struct ext4_inode_info *ei = EXT4_I(inode);
3043         handle_t *handle;
3044         ssize_t ret;
3045         int orphan = 0;
3046         size_t count = iov_length(iov, nr_segs);
3047
3048         if (rw == WRITE) {
3049                 loff_t final_size = offset + count;
3050
3051                 if (final_size > inode->i_size) {
3052                         /* Credits for sb + inode write */
3053                         handle = ext4_journal_start(inode, 2);
3054                         if (IS_ERR(handle)) {
3055                                 ret = PTR_ERR(handle);
3056                                 goto out;
3057                         }
3058                         ret = ext4_orphan_add(handle, inode);
3059                         if (ret) {
3060                                 ext4_journal_stop(handle);
3061                                 goto out;
3062                         }
3063                         orphan = 1;
3064                         ei->i_disksize = inode->i_size;
3065                         ext4_journal_stop(handle);
3066                 }
3067         }
3068
3069         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3070                                  offset, nr_segs,
3071                                  ext4_get_block, NULL);
3072
3073         if (orphan) {
3074                 int err;
3075
3076                 /* Credits for sb + inode write */
3077                 handle = ext4_journal_start(inode, 2);
3078                 if (IS_ERR(handle)) {
3079                         /* This is really bad luck. We've written the data
3080                          * but cannot extend i_size. Bail out and pretend
3081                          * the write failed... */
3082                         ret = PTR_ERR(handle);
3083                         goto out;
3084                 }
3085                 if (inode->i_nlink)
3086                         ext4_orphan_del(handle, inode);
3087                 if (ret > 0) {
3088                         loff_t end = offset + ret;
3089                         if (end > inode->i_size) {
3090                                 ei->i_disksize = end;
3091                                 i_size_write(inode, end);
3092                                 /*
3093                                  * We're going to return a positive `ret'
3094                                  * here due to non-zero-length I/O, so there's
3095                                  * no way of reporting error returns from
3096                                  * ext4_mark_inode_dirty() to userspace.  So
3097                                  * ignore it.
3098                                  */
3099                                 ext4_mark_inode_dirty(handle, inode);
3100                         }
3101                 }
3102                 err = ext4_journal_stop(handle);
3103                 if (ret == 0)
3104                         ret = err;
3105         }
3106 out:
3107         return ret;
3108 }
3109
3110 /*
3111  * Pages can be marked dirty completely asynchronously from ext4's journalling
3112  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3113  * much here because ->set_page_dirty is called under VFS locks.  The page is
3114  * not necessarily locked.
3115  *
3116  * We cannot just dirty the page and leave attached buffers clean, because the
3117  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3118  * or jbddirty because all the journalling code will explode.
3119  *
3120  * So what we do is to mark the page "pending dirty" and next time writepage
3121  * is called, propagate that into the buffers appropriately.
3122  */
3123 static int ext4_journalled_set_page_dirty(struct page *page)
3124 {
3125         SetPageChecked(page);
3126         return __set_page_dirty_nobuffers(page);
3127 }
3128
3129 static const struct address_space_operations ext4_ordered_aops = {
3130         .readpage               = ext4_readpage,
3131         .readpages              = ext4_readpages,
3132         .writepage              = ext4_normal_writepage,
3133         .sync_page              = block_sync_page,
3134         .write_begin            = ext4_write_begin,
3135         .write_end              = ext4_ordered_write_end,
3136         .bmap                   = ext4_bmap,
3137         .invalidatepage         = ext4_invalidatepage,
3138         .releasepage            = ext4_releasepage,
3139         .direct_IO              = ext4_direct_IO,
3140         .migratepage            = buffer_migrate_page,
3141         .is_partially_uptodate  = block_is_partially_uptodate,
3142 };
3143
3144 static const struct address_space_operations ext4_writeback_aops = {
3145         .readpage               = ext4_readpage,
3146         .readpages              = ext4_readpages,
3147         .writepage              = ext4_normal_writepage,
3148         .sync_page              = block_sync_page,
3149         .write_begin            = ext4_write_begin,
3150         .write_end              = ext4_writeback_write_end,
3151         .bmap                   = ext4_bmap,
3152         .invalidatepage         = ext4_invalidatepage,
3153         .releasepage            = ext4_releasepage,
3154         .direct_IO              = ext4_direct_IO,
3155         .migratepage            = buffer_migrate_page,
3156         .is_partially_uptodate  = block_is_partially_uptodate,
3157 };
3158
3159 static const struct address_space_operations ext4_journalled_aops = {
3160         .readpage               = ext4_readpage,
3161         .readpages              = ext4_readpages,
3162         .writepage              = ext4_journalled_writepage,
3163         .sync_page              = block_sync_page,
3164         .write_begin            = ext4_write_begin,
3165         .write_end              = ext4_journalled_write_end,
3166         .set_page_dirty         = ext4_journalled_set_page_dirty,
3167         .bmap                   = ext4_bmap,
3168         .invalidatepage         = ext4_invalidatepage,
3169         .releasepage            = ext4_releasepage,
3170         .is_partially_uptodate  = block_is_partially_uptodate,
3171 };
3172
3173 static const struct address_space_operations ext4_da_aops = {
3174         .readpage               = ext4_readpage,
3175         .readpages              = ext4_readpages,
3176         .writepage              = ext4_da_writepage,
3177         .writepages             = ext4_da_writepages,
3178         .sync_page              = block_sync_page,
3179         .write_begin            = ext4_da_write_begin,
3180         .write_end              = ext4_da_write_end,
3181         .bmap                   = ext4_bmap,
3182         .invalidatepage         = ext4_da_invalidatepage,
3183         .releasepage            = ext4_releasepage,
3184         .direct_IO              = ext4_direct_IO,
3185         .migratepage            = buffer_migrate_page,
3186         .is_partially_uptodate  = block_is_partially_uptodate,
3187 };
3188
3189 void ext4_set_aops(struct inode *inode)
3190 {
3191         if (ext4_should_order_data(inode) &&
3192                 test_opt(inode->i_sb, DELALLOC))
3193                 inode->i_mapping->a_ops = &ext4_da_aops;
3194         else if (ext4_should_order_data(inode))
3195                 inode->i_mapping->a_ops = &ext4_ordered_aops;
3196         else if (ext4_should_writeback_data(inode) &&
3197                  test_opt(inode->i_sb, DELALLOC))
3198                 inode->i_mapping->a_ops = &ext4_da_aops;
3199         else if (ext4_should_writeback_data(inode))
3200                 inode->i_mapping->a_ops = &ext4_writeback_aops;
3201         else
3202                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3203 }
3204
3205 /*
3206  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3207  * up to the end of the block which corresponds to `from'.
3208  * This required during truncate. We need to physically zero the tail end
3209  * of that block so it doesn't yield old data if the file is later grown.
3210  */
3211 int ext4_block_truncate_page(handle_t *handle,
3212                 struct address_space *mapping, loff_t from)
3213 {
3214         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3215         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3216         unsigned blocksize, length, pos;
3217         ext4_lblk_t iblock;
3218         struct inode *inode = mapping->host;
3219         struct buffer_head *bh;
3220         struct page *page;
3221         int err = 0;
3222
3223         page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3224         if (!page)
3225                 return -EINVAL;
3226
3227         blocksize = inode->i_sb->s_blocksize;
3228         length = blocksize - (offset & (blocksize - 1));
3229         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3230
3231         /*
3232          * For "nobh" option,  we can only work if we don't need to
3233          * read-in the page - otherwise we create buffers to do the IO.
3234          */
3235         if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3236              ext4_should_writeback_data(inode) && PageUptodate(page)) {
3237                 zero_user(page, offset, length);
3238                 set_page_dirty(page);
3239                 goto unlock;
3240         }
3241
3242         if (!page_has_buffers(page))
3243                 create_empty_buffers(page, blocksize, 0);
3244
3245         /* Find the buffer that contains "offset" */
3246         bh = page_buffers(page);
3247         pos = blocksize;
3248         while (offset >= pos) {
3249                 bh = bh->b_this_page;
3250                 iblock++;
3251                 pos += blocksize;
3252         }
3253
3254         err = 0;
3255         if (buffer_freed(bh)) {
3256                 BUFFER_TRACE(bh, "freed: skip");
3257                 goto unlock;
3258         }
3259
3260         if (!buffer_mapped(bh)) {
3261                 BUFFER_TRACE(bh, "unmapped");
3262                 ext4_get_block(inode, iblock, bh, 0);
3263                 /* unmapped? It's a hole - nothing to do */
3264                 if (!buffer_mapped(bh)) {
3265                         BUFFER_TRACE(bh, "still unmapped");
3266                         goto unlock;
3267                 }
3268         }
3269
3270         /* Ok, it's mapped. Make sure it's up-to-date */
3271         if (PageUptodate(page))
3272                 set_buffer_uptodate(bh);
3273
3274         if (!buffer_uptodate(bh)) {
3275                 err = -EIO;
3276                 ll_rw_block(READ, 1, &bh);
3277                 wait_on_buffer(bh);
3278                 /* Uhhuh. Read error. Complain and punt. */
3279                 if (!buffer_uptodate(bh))
3280                         goto unlock;
3281         }
3282
3283         if (ext4_should_journal_data(inode)) {
3284                 BUFFER_TRACE(bh, "get write access");
3285                 err = ext4_journal_get_write_access(handle, bh);
3286                 if (err)
3287                         goto unlock;
3288         }
3289
3290         zero_user(page, offset, length);
3291
3292         BUFFER_TRACE(bh, "zeroed end of block");
3293
3294         err = 0;
3295         if (ext4_should_journal_data(inode)) {
3296                 err = ext4_journal_dirty_metadata(handle, bh);
3297         } else {
3298                 if (ext4_should_order_data(inode))
3299                         err = ext4_jbd2_file_inode(handle, inode);
3300                 mark_buffer_dirty(bh);
3301         }
3302
3303 unlock:
3304         unlock_page(page);
3305         page_cache_release(page);
3306         return err;
3307 }
3308
3309 /*
3310  * Probably it should be a library function... search for first non-zero word
3311  * or memcmp with zero_page, whatever is better for particular architecture.
3312  * Linus?
3313  */
3314 static inline int all_zeroes(__le32 *p, __le32 *q)
3315 {
3316         while (p < q)
3317                 if (*p++)
3318                         return 0;
3319         return 1;
3320 }
3321
3322 /**
3323  *      ext4_find_shared - find the indirect blocks for partial truncation.
3324  *      @inode:   inode in question
3325  *      @depth:   depth of the affected branch
3326  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3327  *      @chain:   place to store the pointers to partial indirect blocks
3328  *      @top:     place to the (detached) top of branch
3329  *
3330  *      This is a helper function used by ext4_truncate().
3331  *
3332  *      When we do truncate() we may have to clean the ends of several
3333  *      indirect blocks but leave the blocks themselves alive. Block is
3334  *      partially truncated if some data below the new i_size is refered
3335  *      from it (and it is on the path to the first completely truncated
3336  *      data block, indeed).  We have to free the top of that path along
3337  *      with everything to the right of the path. Since no allocation
3338  *      past the truncation point is possible until ext4_truncate()
3339  *      finishes, we may safely do the latter, but top of branch may
3340  *      require special attention - pageout below the truncation point
3341  *      might try to populate it.
3342  *
3343  *      We atomically detach the top of branch from the tree, store the
3344  *      block number of its root in *@top, pointers to buffer_heads of
3345  *      partially truncated blocks - in @chain[].bh and pointers to
3346  *      their last elements that should not be removed - in
3347  *      @chain[].p. Return value is the pointer to last filled element
3348  *      of @chain.
3349  *
3350  *      The work left to caller to do the actual freeing of subtrees:
3351  *              a) free the subtree starting from *@top
3352  *              b) free the subtrees whose roots are stored in
3353  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3354  *              c) free the subtrees growing from the inode past the @chain[0].
3355  *                      (no partially truncated stuff there).  */
3356
3357 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3358                         ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3359 {
3360         Indirect *partial, *p;
3361         int k, err;
3362
3363         *top = 0;
3364         /* Make k index the deepest non-null offest + 1 */
3365         for (k = depth; k > 1 && !offsets[k-1]; k--)
3366                 ;
3367         partial = ext4_get_branch(inode, k, offsets, chain, &err);
3368         /* Writer: pointers */
3369         if (!partial)
3370                 partial = chain + k-1;
3371         /*
3372          * If the branch acquired continuation since we've looked at it -
3373          * fine, it should all survive and (new) top doesn't belong to us.
3374          */
3375         if (!partial->key && *partial->p)
3376                 /* Writer: end */
3377                 goto no_top;
3378         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3379                 ;
3380         /*
3381          * OK, we've found the last block that must survive. The rest of our
3382          * branch should be detached before unlocking. However, if that rest
3383          * of branch is all ours and does not grow immediately from the inode
3384          * it's easier to cheat and just decrement partial->p.
3385          */
3386         if (p == chain + k - 1 && p > chain) {
3387                 p->p--;
3388         } else {
3389                 *top = *p->p;
3390                 /* Nope, don't do this in ext4.  Must leave the tree intact */
3391 #if 0
3392                 *p->p = 0;
3393 #endif
3394         }
3395         /* Writer: end */
3396
3397         while (partial > p) {
3398                 brelse(partial->bh);
3399                 partial--;
3400         }
3401 no_top:
3402         return partial;
3403 }
3404
3405 /*
3406  * Zero a number of block pointers in either an inode or an indirect block.
3407  * If we restart the transaction we must again get write access to the
3408  * indirect block for further modification.
3409  *
3410  * We release `count' blocks on disk, but (last - first) may be greater
3411  * than `count' because there can be holes in there.
3412  */
3413 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3414                 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3415                 unsigned long count, __le32 *first, __le32 *last)
3416 {
3417         __le32 *p;
3418         if (try_to_extend_transaction(handle, inode)) {
3419                 if (bh) {
3420                         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3421                         ext4_journal_dirty_metadata(handle, bh);
3422                 }
3423                 ext4_mark_inode_dirty(handle, inode);
3424                 ext4_journal_test_restart(handle, inode);
3425                 if (bh) {
3426                         BUFFER_TRACE(bh, "retaking write access");
3427                         ext4_journal_get_write_access(handle, bh);
3428                 }
3429         }
3430
3431         /*
3432          * Any buffers which are on the journal will be in memory. We find
3433          * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3434          * on them.  We've already detached each block from the file, so
3435          * bforget() in jbd2_journal_forget() should be safe.
3436          *
3437          * AKPM: turn on bforget in jbd2_journal_forget()!!!
3438          */
3439         for (p = first; p < last; p++) {
3440                 u32 nr = le32_to_cpu(*p);
3441                 if (nr) {
3442                         struct buffer_head *tbh;
3443
3444                         *p = 0;
3445                         tbh = sb_find_get_block(inode->i_sb, nr);
3446                         ext4_forget(handle, 0, inode, tbh, nr);
3447                 }
3448         }
3449
3450         ext4_free_blocks(handle, inode, block_to_free, count, 0);
3451 }
3452
3453 /**
3454  * ext4_free_data - free a list of data blocks
3455  * @handle:     handle for this transaction
3456  * @inode:      inode we are dealing with
3457  * @this_bh:    indirect buffer_head which contains *@first and *@last
3458  * @first:      array of block numbers
3459  * @last:       points immediately past the end of array
3460  *
3461  * We are freeing all blocks refered from that array (numbers are stored as
3462  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3463  *
3464  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
3465  * blocks are contiguous then releasing them at one time will only affect one
3466  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3467  * actually use a lot of journal space.
3468  *
3469  * @this_bh will be %NULL if @first and @last point into the inode's direct
3470  * block pointers.
3471  */
3472 static void ext4_free_data(handle_t *handle, struct inode *inode,
3473                            struct buffer_head *this_bh,
3474                            __le32 *first, __le32 *last)
3475 {
3476         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
3477         unsigned long count = 0;            /* Number of blocks in the run */
3478         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
3479                                                corresponding to
3480                                                block_to_free */
3481         ext4_fsblk_t nr;                    /* Current block # */
3482         __le32 *p;                          /* Pointer into inode/ind
3483                                                for current block */
3484         int err;
3485
3486         if (this_bh) {                          /* For indirect block */
3487                 BUFFER_TRACE(this_bh, "get_write_access");
3488                 err = ext4_journal_get_write_access(handle, this_bh);
3489                 /* Important: if we can't update the indirect pointers
3490                  * to the blocks, we can't free them. */
3491                 if (err)
3492                         return;
3493         }
3494
3495         for (p = first; p < last; p++) {
3496                 nr = le32_to_cpu(*p);
3497                 if (nr) {
3498                         /* accumulate blocks to free if they're contiguous */
3499                         if (count == 0) {
3500                                 block_to_free = nr;
3501                                 block_to_free_p = p;
3502                                 count = 1;
3503                         } else if (nr == block_to_free + count) {
3504                                 count++;
3505                         } else {
3506                                 ext4_clear_blocks(handle, inode, this_bh,
3507                                                   block_to_free,
3508                                                   count, block_to_free_p, p);
3509                                 block_to_free = nr;
3510                                 block_to_free_p = p;
3511                                 count = 1;
3512                         }
3513                 }
3514         }
3515
3516         if (count > 0)
3517                 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3518                                   count, block_to_free_p, p);
3519
3520         if (this_bh) {
3521                 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3522
3523                 /*
3524                  * The buffer head should have an attached journal head at this
3525                  * point. However, if the data is corrupted and an indirect
3526                  * block pointed to itself, it would have been detached when
3527                  * the block was cleared. Check for this instead of OOPSing.
3528                  */
3529                 if (bh2jh(this_bh))
3530                         ext4_journal_dirty_metadata(handle, this_bh);
3531                 else
3532                         ext4_error(inode->i_sb, __func__,
3533                                    "circular indirect block detected, "
3534                                    "inode=%lu, block=%llu",
3535                                    inode->i_ino,
3536                                    (unsigned long long) this_bh->b_blocknr);
3537         }
3538 }
3539
3540 /**
3541  *      ext4_free_branches - free an array of branches
3542  *      @handle: JBD handle for this transaction
3543  *      @inode: inode we are dealing with
3544  *      @parent_bh: the buffer_head which contains *@first and *@last
3545  *      @first: array of block numbers
3546  *      @last:  pointer immediately past the end of array
3547  *      @depth: depth of the branches to free
3548  *
3549  *      We are freeing all blocks refered from these branches (numbers are
3550  *      stored as little-endian 32-bit) and updating @inode->i_blocks
3551  *      appropriately.
3552  */
3553 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3554                                struct buffer_head *parent_bh,
3555                                __le32 *first, __le32 *last, int depth)
3556 {
3557         ext4_fsblk_t nr;
3558         __le32 *p;
3559
3560         if (is_handle_aborted(handle))
3561                 return;
3562
3563         if (depth--) {
3564                 struct buffer_head *bh;
3565                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3566                 p = last;
3567                 while (--p >= first) {
3568                         nr = le32_to_cpu(*p);
3569                         if (!nr)
3570                                 continue;               /* A hole */
3571
3572                         /* Go read the buffer for the next level down */
3573                         bh = sb_bread(inode->i_sb, nr);
3574
3575                         /*
3576                          * A read failure? Report error and clear slot
3577                          * (should be rare).
3578                          */
3579                         if (!bh) {
3580                                 ext4_error(inode->i_sb, "ext4_free_branches",
3581                                            "Read failure, inode=%lu, block=%llu",
3582                                            inode->i_ino, nr);
3583                                 continue;
3584                         }
3585
3586                         /* This zaps the entire block.  Bottom up. */
3587                         BUFFER_TRACE(bh, "free child branches");
3588                         ext4_free_branches(handle, inode, bh,
3589                                         (__le32 *) bh->b_data,
3590                                         (__le32 *) bh->b_data + addr_per_block,
3591                                         depth);
3592
3593                         /*
3594                          * We've probably journalled the indirect block several
3595                          * times during the truncate.  But it's no longer
3596                          * needed and we now drop it from the transaction via
3597                          * jbd2_journal_revoke().
3598                          *
3599                          * That's easy if it's exclusively part of this
3600                          * transaction.  But if it's part of the committing
3601                          * transaction then jbd2_journal_forget() will simply
3602                          * brelse() it.  That means that if the underlying
3603                          * block is reallocated in ext4_get_block(),
3604                          * unmap_underlying_metadata() will find this block
3605                          * and will try to get rid of it.  damn, damn.
3606                          *
3607                          * If this block has already been committed to the
3608                          * journal, a revoke record will be written.  And
3609                          * revoke records must be emitted *before* clearing
3610                          * this block's bit in the bitmaps.
3611                          */
3612                         ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3613
3614                         /*
3615                          * Everything below this this pointer has been
3616                          * released.  Now let this top-of-subtree go.
3617                          *
3618                          * We want the freeing of this indirect block to be
3619                          * atomic in the journal with the updating of the
3620                          * bitmap block which owns it.  So make some room in
3621                          * the journal.
3622                          *
3623                          * We zero the parent pointer *after* freeing its
3624                          * pointee in the bitmaps, so if extend_transaction()
3625                          * for some reason fails to put the bitmap changes and
3626                          * the release into the same transaction, recovery
3627                          * will merely complain about releasing a free block,
3628                          * rather than leaking blocks.
3629                          */
3630                         if (is_handle_aborted(handle))
3631                                 return;
3632                         if (try_to_extend_transaction(handle, inode)) {
3633                                 ext4_mark_inode_dirty(handle, inode);
3634                                 ext4_journal_test_restart(handle, inode);
3635                         }
3636
3637                         ext4_free_blocks(handle, inode, nr, 1, 1);
3638
3639                         if (parent_bh) {
3640                                 /*
3641                                  * The block which we have just freed is
3642                                  * pointed to by an indirect block: journal it
3643                                  */
3644                                 BUFFER_TRACE(parent_bh, "get_write_access");
3645                                 if (!ext4_journal_get_write_access(handle,
3646                                                                    parent_bh)){
3647                                         *p = 0;
3648                                         BUFFER_TRACE(parent_bh,
3649                                         "call ext4_journal_dirty_metadata");
3650                                         ext4_journal_dirty_metadata(handle,
3651                                                                     parent_bh);
3652                                 }
3653                         }
3654                 }
3655         } else {
3656                 /* We have reached the bottom of the tree. */
3657                 BUFFER_TRACE(parent_bh, "free data blocks");
3658                 ext4_free_data(handle, inode, parent_bh, first, last);
3659         }
3660 }
3661
3662 int ext4_can_truncate(struct inode *inode)
3663 {
3664         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3665                 return 0;
3666         if (S_ISREG(inode->i_mode))
3667                 return 1;
3668         if (S_ISDIR(inode->i_mode))
3669                 return 1;
3670         if (S_ISLNK(inode->i_mode))
3671                 return !ext4_inode_is_fast_symlink(inode);
3672         return 0;
3673 }
3674
3675 /*
3676  * ext4_truncate()
3677  *
3678  * We block out ext4_get_block() block instantiations across the entire
3679  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3680  * simultaneously on behalf of the same inode.
3681  *
3682  * As we work through the truncate and commmit bits of it to the journal there
3683  * is one core, guiding principle: the file's tree must always be consistent on
3684  * disk.  We must be able to restart the truncate after a crash.
3685  *
3686  * The file's tree may be transiently inconsistent in memory (although it
3687  * probably isn't), but whenever we close off and commit a journal transaction,
3688  * the contents of (the filesystem + the journal) must be consistent and
3689  * restartable.  It's pretty simple, really: bottom up, right to left (although
3690  * left-to-right works OK too).
3691  *
3692  * Note that at recovery time, journal replay occurs *before* the restart of
3693  * truncate against the orphan inode list.
3694  *
3695  * The committed inode has the new, desired i_size (which is the same as
3696  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3697  * that this inode's truncate did not complete and it will again call
3698  * ext4_truncate() to have another go.  So there will be instantiated blocks
3699  * to the right of the truncation point in a crashed ext4 filesystem.  But
3700  * that's fine - as long as they are linked from the inode, the post-crash
3701  * ext4_truncate() run will find them and release them.
3702  */
3703 void ext4_truncate(struct inode *inode)
3704 {
3705         handle_t *handle;
3706         struct ext4_inode_info *ei = EXT4_I(inode);
3707         __le32 *i_data = ei->i_data;
3708         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3709         struct address_space *mapping = inode->i_mapping;
3710         ext4_lblk_t offsets[4];
3711         Indirect chain[4];
3712         Indirect *partial;
3713         __le32 nr = 0;
3714         int n;
3715         ext4_lblk_t last_block;
3716         unsigned blocksize = inode->i_sb->s_blocksize;
3717
3718         if (!ext4_can_truncate(inode))
3719                 return;
3720
3721         if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3722                 ext4_ext_truncate(inode);
3723                 return;
3724         }
3725
3726         handle = start_transaction(inode);
3727         if (IS_ERR(handle))
3728                 return;         /* AKPM: return what? */
3729
3730         last_block = (inode->i_size + blocksize-1)
3731                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3732
3733         if (inode->i_size & (blocksize - 1))
3734                 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3735                         goto out_stop;
3736
3737         n = ext4_block_to_path(inode, last_block, offsets, NULL);
3738         if (n == 0)
3739                 goto out_stop;  /* error */
3740
3741         /*
3742          * OK.  This truncate is going to happen.  We add the inode to the
3743          * orphan list, so that if this truncate spans multiple transactions,
3744          * and we crash, we will resume the truncate when the filesystem
3745          * recovers.  It also marks the inode dirty, to catch the new size.
3746          *
3747          * Implication: the file must always be in a sane, consistent
3748          * truncatable state while each transaction commits.
3749          */
3750         if (ext4_orphan_add(handle, inode))
3751                 goto out_stop;
3752
3753         /*
3754          * From here we block out all ext4_get_block() callers who want to
3755          * modify the block allocation tree.
3756          */
3757         down_write(&ei->i_data_sem);
3758
3759         ext4_discard_preallocations(inode);
3760
3761         /*
3762          * The orphan list entry will now protect us from any crash which
3763          * occurs before the truncate completes, so it is now safe to propagate
3764          * the new, shorter inode size (held for now in i_size) into the
3765          * on-disk inode. We do this via i_disksize, which is the value which
3766          * ext4 *really* writes onto the disk inode.
3767          */
3768         ei->i_disksize = inode->i_size;
3769
3770         if (n == 1) {           /* direct blocks */
3771                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3772                                i_data + EXT4_NDIR_BLOCKS);
3773                 goto do_indirects;
3774         }
3775
3776         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3777         /* Kill the top of shared branch (not detached) */
3778         if (nr) {
3779                 if (partial == chain) {
3780                         /* Shared branch grows from the inode */
3781                         ext4_free_branches(handle, inode, NULL,
3782                                            &nr, &nr+1, (chain+n-1) - partial);
3783                         *partial->p = 0;
3784                         /*
3785                          * We mark the inode dirty prior to restart,
3786                          * and prior to stop.  No need for it here.
3787                          */
3788                 } else {
3789                         /* Shared branch grows from an indirect block */
3790                         BUFFER_TRACE(partial->bh, "get_write_access");
3791                         ext4_free_branches(handle, inode, partial->bh,
3792                                         partial->p,
3793                                         partial->p+1, (chain+n-1) - partial);
3794                 }
3795         }
3796         /* Clear the ends of indirect blocks on the shared branch */
3797         while (partial > chain) {
3798                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3799                                    (__le32*)partial->bh->b_data+addr_per_block,
3800                                    (chain+n-1) - partial);
3801                 BUFFER_TRACE(partial->bh, "call brelse");
3802                 brelse (partial->bh);
3803                 partial--;
3804         }
3805 do_indirects:
3806         /* Kill the remaining (whole) subtrees */
3807         switch (offsets[0]) {
3808         default:
3809                 nr = i_data[EXT4_IND_BLOCK];
3810                 if (nr) {
3811                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3812                         i_data[EXT4_IND_BLOCK] = 0;
3813                 }
3814         case EXT4_IND_BLOCK:
3815                 nr = i_data[EXT4_DIND_BLOCK];
3816                 if (nr) {
3817                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3818                         i_data[EXT4_DIND_BLOCK] = 0;
3819                 }
3820         case EXT4_DIND_BLOCK:
3821                 nr = i_data[EXT4_TIND_BLOCK];
3822                 if (nr) {
3823                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3824                         i_data[EXT4_TIND_BLOCK] = 0;
3825                 }
3826         case EXT4_TIND_BLOCK:
3827                 ;
3828         }
3829
3830         up_write(&ei->i_data_sem);
3831         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3832         ext4_mark_inode_dirty(handle, inode);
3833
3834         /*
3835          * In a multi-transaction truncate, we only make the final transaction
3836          * synchronous
3837          */
3838         if (IS_SYNC(inode))
3839                 handle->h_sync = 1;
3840 out_stop:
3841         /*
3842          * If this was a simple ftruncate(), and the file will remain alive
3843          * then we need to clear up the orphan record which we created above.
3844          * However, if this was a real unlink then we were called by
3845          * ext4_delete_inode(), and we allow that function to clean up the
3846          * orphan info for us.
3847          */
3848         if (inode->i_nlink)
3849                 ext4_orphan_del(handle, inode);
3850
3851         ext4_journal_stop(handle);
3852 }
3853
3854 /*
3855  * ext4_get_inode_loc returns with an extra refcount against the inode's
3856  * underlying buffer_head on success. If 'in_mem' is true, we have all
3857  * data in memory that is needed to recreate the on-disk version of this
3858  * inode.
3859  */
3860 static int __ext4_get_inode_loc(struct inode *inode,
3861                                 struct ext4_iloc *iloc, int in_mem)
3862 {
3863         struct ext4_group_desc  *gdp;
3864         struct buffer_head      *bh;
3865         struct super_block      *sb = inode->i_sb;
3866         ext4_fsblk_t            block;
3867         int                     inodes_per_block, inode_offset;
3868
3869         iloc->bh = 0;
3870         if (!ext4_valid_inum(sb, inode->i_ino))
3871                 return -EIO;
3872
3873         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3874         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3875         if (!gdp)
3876                 return -EIO;
3877
3878         /*
3879          * Figure out the offset within the block group inode table
3880          */
3881         inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3882         inode_offset = ((inode->i_ino - 1) %
3883                         EXT4_INODES_PER_GROUP(sb));
3884         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3885         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3886
3887         bh = sb_getblk(sb, block);
3888         if (!bh) {
3889                 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3890                            "inode block - inode=%lu, block=%llu",
3891                            inode->i_ino, block);
3892                 return -EIO;
3893         }
3894         if (!buffer_uptodate(bh)) {
3895                 lock_buffer(bh);
3896
3897                 /*
3898                  * If the buffer has the write error flag, we have failed
3899                  * to write out another inode in the same block.  In this
3900                  * case, we don't have to read the block because we may
3901                  * read the old inode data successfully.
3902                  */
3903                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3904                         set_buffer_uptodate(bh);
3905
3906                 if (buffer_uptodate(bh)) {
3907                         /* someone brought it uptodate while we waited */
3908                         unlock_buffer(bh);
3909                         goto has_buffer;
3910                 }
3911
3912                 /*
3913                  * If we have all information of the inode in memory and this
3914                  * is the only valid inode in the block, we need not read the
3915                  * block.
3916                  */
3917                 if (in_mem) {
3918                         struct buffer_head *bitmap_bh;
3919                         int i, start;
3920
3921                         start = inode_offset & ~(inodes_per_block - 1);
3922
3923                         /* Is the inode bitmap in cache? */
3924                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3925                         if (!bitmap_bh)
3926                                 goto make_io;
3927
3928                         /*
3929                          * If the inode bitmap isn't in cache then the
3930                          * optimisation may end up performing two reads instead
3931                          * of one, so skip it.
3932                          */
3933                         if (!buffer_uptodate(bitmap_bh)) {
3934                                 brelse(bitmap_bh);
3935                                 goto make_io;
3936                         }
3937                         for (i = start; i < start + inodes_per_block; i++) {
3938                                 if (i == inode_offset)
3939                                         continue;
3940                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3941                                         break;
3942                         }
3943                         brelse(bitmap_bh);
3944                         if (i == start + inodes_per_block) {
3945                                 /* all other inodes are free, so skip I/O */
3946                                 memset(bh->b_data, 0, bh->b_size);
3947                                 set_buffer_uptodate(bh);
3948                                 unlock_buffer(bh);
3949                                 goto has_buffer;
3950                         }
3951                 }
3952
3953 make_io:
3954                 /*
3955                  * If we need to do any I/O, try to pre-readahead extra
3956                  * blocks from the inode table.
3957                  */
3958                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3959                         ext4_fsblk_t b, end, table;
3960                         unsigned num;
3961
3962                         table = ext4_inode_table(sb, gdp);
3963                         /* Make sure s_inode_readahead_blks is a power of 2 */
3964                         while (EXT4_SB(sb)->s_inode_readahead_blks &
3965                                (EXT4_SB(sb)->s_inode_readahead_blks-1))
3966                                 EXT4_SB(sb)->s_inode_readahead_blks = 
3967                                    (EXT4_SB(sb)->s_inode_readahead_blks &
3968                                     (EXT4_SB(sb)->s_inode_readahead_blks-1));
3969                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3970                         if (table > b)
3971                                 b = table;
3972                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3973                         num = EXT4_INODES_PER_GROUP(sb);
3974                         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3975                                        EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3976                                 num -= le16_to_cpu(gdp->bg_itable_unused);
3977                         table += num / inodes_per_block;
3978                         if (end > table)
3979                                 end = table;
3980                         while (b <= end)
3981                                 sb_breadahead(sb, b++);
3982                 }
3983
3984                 /*
3985                  * There are other valid inodes in the buffer, this inode
3986                  * has in-inode xattrs, or we don't have this inode in memory.
3987                  * Read the block from disk.
3988                  */
3989                 get_bh(bh);
3990                 bh->b_end_io = end_buffer_read_sync;
3991                 submit_bh(READ_META, bh);
3992                 wait_on_buffer(bh);
3993                 if (!buffer_uptodate(bh)) {
3994                         ext4_error(sb, __func__,
3995                                    "unable to read inode block - inode=%lu, "
3996                                    "block=%llu", inode->i_ino, block);
3997                         brelse(bh);
3998                         return -EIO;
3999                 }
4000         }
4001 has_buffer:
4002         iloc->bh = bh;
4003         return 0;
4004 }
4005
4006 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4007 {
4008         /* We have all inode data except xattrs in memory here. */
4009         return __ext4_get_inode_loc(inode, iloc,
4010                 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4011 }
4012
4013 void ext4_set_inode_flags(struct inode *inode)
4014 {
4015         unsigned int flags = EXT4_I(inode)->i_flags;
4016
4017         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4018         if (flags & EXT4_SYNC_FL)
4019                 inode->i_flags |= S_SYNC;
4020         if (flags & EXT4_APPEND_FL)
4021                 inode->i_flags |= S_APPEND;
4022         if (flags & EXT4_IMMUTABLE_FL)
4023                 inode->i_flags |= S_IMMUTABLE;
4024         if (flags & EXT4_NOATIME_FL)
4025                 inode->i_flags |= S_NOATIME;
4026         if (flags & EXT4_DIRSYNC_FL)
4027                 inode->i_flags |= S_DIRSYNC;
4028 }
4029
4030 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4031 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4032 {
4033         unsigned int flags = ei->vfs_inode.i_flags;
4034
4035         ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4036                         EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4037         if (flags & S_SYNC)
4038                 ei->i_flags |= EXT4_SYNC_FL;
4039         if (flags & S_APPEND)
4040                 ei->i_flags |= EXT4_APPEND_FL;
4041         if (flags & S_IMMUTABLE)
4042                 ei->i_flags |= EXT4_IMMUTABLE_FL;
4043         if (flags & S_NOATIME)
4044                 ei->i_flags |= EXT4_NOATIME_FL;
4045         if (flags & S_DIRSYNC)
4046                 ei->i_flags |= EXT4_DIRSYNC_FL;
4047 }
4048 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4049                                         struct ext4_inode_info *ei)
4050 {
4051         blkcnt_t i_blocks ;
4052         struct inode *inode = &(ei->vfs_inode);
4053         struct super_block *sb = inode->i_sb;
4054
4055         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4056                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4057                 /* we are using combined 48 bit field */
4058                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4059                                         le32_to_cpu(raw_inode->i_blocks_lo);
4060                 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4061                         /* i_blocks represent file system block size */
4062                         return i_blocks  << (inode->i_blkbits - 9);
4063                 } else {
4064                         return i_blocks;
4065                 }
4066         } else {
4067                 return le32_to_cpu(raw_inode->i_blocks_lo);
4068         }
4069 }
4070
4071 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4072 {
4073         struct ext4_iloc iloc;
4074         struct ext4_inode *raw_inode;
4075         struct ext4_inode_info *ei;
4076         struct buffer_head *bh;
4077         struct inode *inode;
4078         long ret;
4079         int block;
4080
4081         inode = iget_locked(sb, ino);
4082         if (!inode)
4083                 return ERR_PTR(-ENOMEM);
4084         if (!(inode->i_state & I_NEW))
4085                 return inode;
4086
4087         ei = EXT4_I(inode);
4088 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4089         ei->i_acl = EXT4_ACL_NOT_CACHED;
4090         ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4091 #endif
4092
4093         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4094         if (ret < 0)
4095                 goto bad_inode;
4096         bh = iloc.bh;
4097         raw_inode = ext4_raw_inode(&iloc);
4098         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4099         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4100         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4101         if (!(test_opt(inode->i_sb, NO_UID32))) {
4102                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4103                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4104         }
4105         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4106
4107         ei->i_state = 0;
4108         ei->i_dir_start_lookup = 0;
4109         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4110         /* We now have enough fields to check if the inode was active or not.
4111          * This is needed because nfsd might try to access dead inodes
4112          * the test is that same one that e2fsck uses
4113          * NeilBrown 1999oct15
4114          */
4115         if (inode->i_nlink == 0) {
4116                 if (inode->i_mode == 0 ||
4117                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4118                         /* this inode is deleted */
4119                         brelse(bh);
4120                         ret = -ESTALE;
4121                         goto bad_inode;
4122                 }
4123                 /* The only unlinked inodes we let through here have
4124                  * valid i_mode and are being read by the orphan
4125                  * recovery code: that's fine, we're about to complete
4126                  * the process of deleting those. */
4127         }
4128         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4129         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4130         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4131         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4132             cpu_to_le32(EXT4_OS_HURD)) {
4133                 ei->i_file_acl |=
4134                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4135         }
4136         inode->i_size = ext4_isize(raw_inode);
4137         ei->i_disksize = inode->i_size;
4138         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4139         ei->i_block_group = iloc.block_group;
4140         /*
4141          * NOTE! The in-memory inode i_data array is in little-endian order
4142          * even on big-endian machines: we do NOT byteswap the block numbers!
4143          */
4144         for (block = 0; block < EXT4_N_BLOCKS; block++)
4145                 ei->i_data[block] = raw_inode->i_block[block];
4146         INIT_LIST_HEAD(&ei->i_orphan);
4147
4148         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4149                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4150                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4151                     EXT4_INODE_SIZE(inode->i_sb)) {
4152                         brelse(bh);
4153                         ret = -EIO;
4154                         goto bad_inode;
4155                 }
4156                 if (ei->i_extra_isize == 0) {
4157                         /* The extra space is currently unused. Use it. */
4158                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4159                                             EXT4_GOOD_OLD_INODE_SIZE;
4160                 } else {
4161                         __le32 *magic = (void *)raw_inode +
4162                                         EXT4_GOOD_OLD_INODE_SIZE +
4163                                         ei->i_extra_isize;
4164                         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4165                                  ei->i_state |= EXT4_STATE_XATTR;
4166                 }
4167         } else
4168                 ei->i_extra_isize = 0;
4169
4170         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4171         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4172         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4173         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4174
4175         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4176         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4177                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4178                         inode->i_version |=
4179                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4180         }
4181
4182         if (S_ISREG(inode->i_mode)) {
4183                 inode->i_op = &ext4_file_inode_operations;
4184                 inode->i_fop = &ext4_file_operations;
4185                 ext4_set_aops(inode);
4186         } else if (S_ISDIR(inode->i_mode)) {
4187                 inode->i_op = &ext4_dir_inode_operations;
4188                 inode->i_fop = &ext4_dir_operations;
4189         } else if (S_ISLNK(inode->i_mode)) {
4190                 if (ext4_inode_is_fast_symlink(inode)) {
4191                         inode->i_op = &ext4_fast_symlink_inode_operations;
4192                         nd_terminate_link(ei->i_data, inode->i_size,
4193                                 sizeof(ei->i_data) - 1);
4194                 } else {
4195                         inode->i_op = &ext4_symlink_inode_operations;
4196                         ext4_set_aops(inode);
4197                 }
4198         } else {
4199                 inode->i_op = &ext4_special_inode_operations;
4200                 if (raw_inode->i_block[0])
4201                         init_special_inode(inode, inode->i_mode,
4202                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4203                 else
4204                         init_special_inode(inode, inode->i_mode,
4205                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4206         }
4207         brelse(iloc.bh);
4208         ext4_set_inode_flags(inode);
4209         unlock_new_inode(inode);
4210         return inode;
4211
4212 bad_inode:
4213         iget_failed(inode);
4214         return ERR_PTR(ret);
4215 }
4216
4217 static int ext4_inode_blocks_set(handle_t *handle,
4218                                 struct ext4_inode *raw_inode,
4219                                 struct ext4_inode_info *ei)
4220 {
4221         struct inode *inode = &(ei->vfs_inode);
4222         u64 i_blocks = inode->i_blocks;
4223         struct super_block *sb = inode->i_sb;
4224
4225         if (i_blocks <= ~0U) {
4226                 /*
4227                  * i_blocks can be represnted in a 32 bit variable
4228                  * as multiple of 512 bytes
4229                  */
4230                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4231                 raw_inode->i_blocks_high = 0;
4232                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4233                 return 0;
4234         }
4235         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4236                 return -EFBIG;
4237
4238         if (i_blocks <= 0xffffffffffffULL) {
4239                 /*
4240                  * i_blocks can be represented in a 48 bit variable
4241                  * as multiple of 512 bytes
4242                  */
4243                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4244                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4245                 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4246         } else {
4247                 ei->i_flags |= EXT4_HUGE_FILE_FL;
4248                 /* i_block is stored in file system block size */
4249                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4250                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4251                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4252         }
4253         return 0;
4254 }
4255
4256 /*
4257  * Post the struct inode info into an on-disk inode location in the
4258  * buffer-cache.  This gobbles the caller's reference to the
4259  * buffer_head in the inode location struct.
4260  *
4261  * The caller must have write access to iloc->bh.
4262  */
4263 static int ext4_do_update_inode(handle_t *handle,
4264                                 struct inode *inode,
4265                                 struct ext4_iloc *iloc)
4266 {
4267         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4268         struct ext4_inode_info *ei = EXT4_I(inode);
4269         struct buffer_head *bh = iloc->bh;
4270         int err = 0, rc, block;
4271
4272         /* For fields not not tracking in the in-memory inode,
4273          * initialise them to zero for new inodes. */
4274         if (ei->i_state & EXT4_STATE_NEW)
4275                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4276
4277         ext4_get_inode_flags(ei);
4278         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4279         if (!(test_opt(inode->i_sb, NO_UID32))) {
4280                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4281                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4282 /*
4283  * Fix up interoperability with old kernels. Otherwise, old inodes get
4284  * re-used with the upper 16 bits of the uid/gid intact
4285  */
4286                 if (!ei->i_dtime) {
4287                         raw_inode->i_uid_high =
4288                                 cpu_to_le16(high_16_bits(inode->i_uid));
4289                         raw_inode->i_gid_high =
4290                                 cpu_to_le16(high_16_bits(inode->i_gid));
4291                 } else {
4292                         raw_inode->i_uid_high = 0;
4293                         raw_inode->i_gid_high = 0;
4294                 }
4295         } else {
4296                 raw_inode->i_uid_low =
4297                         cpu_to_le16(fs_high2lowuid(inode->i_uid));
4298                 raw_inode->i_gid_low =
4299                         cpu_to_le16(fs_high2lowgid(inode->i_gid));
4300                 raw_inode->i_uid_high = 0;
4301                 raw_inode->i_gid_high = 0;
4302         }
4303         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4304
4305         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4306         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4307         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4308         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4309
4310         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4311                 goto out_brelse;
4312         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4313         /* clear the migrate flag in the raw_inode */
4314         raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4315         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4316             cpu_to_le32(EXT4_OS_HURD))
4317                 raw_inode->i_file_acl_high =
4318                         cpu_to_le16(ei->i_file_acl >> 32);
4319         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4320         ext4_isize_set(raw_inode, ei->i_disksize);
4321         if (ei->i_disksize > 0x7fffffffULL) {
4322                 struct super_block *sb = inode->i_sb;
4323                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4324                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4325                                 EXT4_SB(sb)->s_es->s_rev_level ==
4326                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4327                         /* If this is the first large file
4328                          * created, add a flag to the superblock.
4329                          */
4330                         err = ext4_journal_get_write_access(handle,
4331                                         EXT4_SB(sb)->s_sbh);
4332                         if (err)
4333                                 goto out_brelse;
4334                         ext4_update_dynamic_rev(sb);
4335                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4336                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4337                         sb->s_dirt = 1;
4338                         handle->h_sync = 1;
4339                         err = ext4_journal_dirty_metadata(handle,
4340                                         EXT4_SB(sb)->s_sbh);
4341                 }
4342         }
4343         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4344         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4345                 if (old_valid_dev(inode->i_rdev)) {
4346                         raw_inode->i_block[0] =
4347                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4348                         raw_inode->i_block[1] = 0;
4349                 } else {
4350                         raw_inode->i_block[0] = 0;
4351                         raw_inode->i_block[1] =
4352                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4353                         raw_inode->i_block[2] = 0;
4354                 }
4355         } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4356                 raw_inode->i_block[block] = ei->i_data[block];
4357
4358         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4359         if (ei->i_extra_isize) {
4360                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4361                         raw_inode->i_version_hi =
4362                         cpu_to_le32(inode->i_version >> 32);
4363                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4364         }
4365
4366
4367         BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4368         rc = ext4_journal_dirty_metadata(handle, bh);
4369         if (!err)
4370                 err = rc;
4371         ei->i_state &= ~EXT4_STATE_NEW;
4372
4373 out_brelse:
4374         brelse(bh);
4375         ext4_std_error(inode->i_sb, err);
4376         return err;
4377 }
4378
4379 /*
4380  * ext4_write_inode()
4381  *
4382  * We are called from a few places:
4383  *
4384  * - Within generic_file_write() for O_SYNC files.
4385  *   Here, there will be no transaction running. We wait for any running
4386  *   trasnaction to commit.
4387  *
4388  * - Within sys_sync(), kupdate and such.
4389  *   We wait on commit, if tol to.
4390  *
4391  * - Within prune_icache() (PF_MEMALLOC == true)
4392  *   Here we simply return.  We can't afford to block kswapd on the
4393  *   journal commit.
4394  *
4395  * In all cases it is actually safe for us to return without doing anything,
4396  * because the inode has been copied into a raw inode buffer in
4397  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4398  * knfsd.
4399  *
4400  * Note that we are absolutely dependent upon all inode dirtiers doing the
4401  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4402  * which we are interested.
4403  *
4404  * It would be a bug for them to not do this.  The code:
4405  *
4406  *      mark_inode_dirty(inode)
4407  *      stuff();
4408  *      inode->i_size = expr;
4409  *
4410  * is in error because a kswapd-driven write_inode() could occur while
4411  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4412  * will no longer be on the superblock's dirty inode list.
4413  */
4414 int ext4_write_inode(struct inode *inode, int wait)
4415 {
4416         if (current->flags & PF_MEMALLOC)
4417                 return 0;
4418
4419         if (ext4_journal_current_handle()) {
4420                 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4421                 dump_stack();
4422                 return -EIO;
4423         }
4424
4425         if (!wait)
4426                 return 0;
4427
4428         return ext4_force_commit(inode->i_sb);
4429 }
4430
4431 /*
4432  * ext4_setattr()
4433  *
4434  * Called from notify_change.
4435  *
4436  * We want to trap VFS attempts to truncate the file as soon as
4437  * possible.  In particular, we want to make sure that when the VFS
4438  * shrinks i_size, we put the inode on the orphan list and modify
4439  * i_disksize immediately, so that during the subsequent flushing of
4440  * dirty pages and freeing of disk blocks, we can guarantee that any
4441  * commit will leave the blocks being flushed in an unused state on
4442  * disk.  (On recovery, the inode will get truncated and the blocks will
4443  * be freed, so we have a strong guarantee that no future commit will
4444  * leave these blocks visible to the user.)
4445  *
4446  * Another thing we have to assure is that if we are in ordered mode
4447  * and inode is still attached to the committing transaction, we must
4448  * we start writeout of all the dirty pages which are being truncated.
4449  * This way we are sure that all the data written in the previous
4450  * transaction are already on disk (truncate waits for pages under
4451  * writeback).
4452  *
4453  * Called with inode->i_mutex down.
4454  */
4455 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4456 {
4457         struct inode *inode = dentry->d_inode;
4458         int error, rc = 0;
4459         const unsigned int ia_valid = attr->ia_valid;
4460
4461         error = inode_change_ok(inode, attr);
4462         if (error)
4463                 return error;
4464
4465         if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4466                 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4467                 handle_t *handle;
4468
4469                 /* (user+group)*(old+new) structure, inode write (sb,
4470                  * inode block, ? - but truncate inode update has it) */
4471                 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4472                                         EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4473                 if (IS_ERR(handle)) {
4474                         error = PTR_ERR(handle);
4475                         goto err_out;
4476                 }
4477                 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4478                 if (error) {
4479                         ext4_journal_stop(handle);
4480                         return error;
4481                 }
4482                 /* Update corresponding info in inode so that everything is in
4483                  * one transaction */
4484                 if (attr->ia_valid & ATTR_UID)
4485                         inode->i_uid = attr->ia_uid;
4486                 if (attr->ia_valid & ATTR_GID)
4487                         inode->i_gid = attr->ia_gid;
4488                 error = ext4_mark_inode_dirty(handle, inode);
4489                 ext4_journal_stop(handle);
4490         }
4491
4492         if (attr->ia_valid & ATTR_SIZE) {
4493                 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4494                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4495
4496                         if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4497                                 error = -EFBIG;
4498                                 goto err_out;
4499                         }
4500                 }
4501         }
4502
4503         if (S_ISREG(inode->i_mode) &&
4504             attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4505                 handle_t *handle;
4506
4507                 handle = ext4_journal_start(inode, 3);
4508                 if (IS_ERR(handle)) {
4509                         error = PTR_ERR(handle);
4510                         goto err_out;
4511                 }
4512
4513                 error = ext4_orphan_add(handle, inode);
4514                 EXT4_I(inode)->i_disksize = attr->ia_size;
4515                 rc = ext4_mark_inode_dirty(handle, inode);
4516                 if (!error)
4517                         error = rc;
4518                 ext4_journal_stop(handle);
4519
4520                 if (ext4_should_order_data(inode)) {
4521                         error = ext4_begin_ordered_truncate(inode,
4522                                                             attr->ia_size);
4523                         if (error) {
4524                                 /* Do as much error cleanup as possible */
4525                                 handle = ext4_journal_start(inode, 3);
4526                                 if (IS_ERR(handle)) {
4527                                         ext4_orphan_del(NULL, inode);
4528                                         goto err_out;
4529                                 }
4530                                 ext4_orphan_del(handle, inode);
4531                                 ext4_journal_stop(handle);
4532                                 goto err_out;
4533                         }
4534                 }
4535         }
4536
4537         rc = inode_setattr(inode, attr);
4538
4539         /* If inode_setattr's call to ext4_truncate failed to get a
4540          * transaction handle at all, we need to clean up the in-core
4541          * orphan list manually. */
4542         if (inode->i_nlink)
4543                 ext4_orphan_del(NULL, inode);
4544
4545         if (!rc && (ia_valid & ATTR_MODE))
4546                 rc = ext4_acl_chmod(inode);
4547
4548 err_out:
4549         ext4_std_error(inode->i_sb, error);
4550         if (!error)
4551                 error = rc;
4552         return error;
4553 }
4554
4555 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4556                  struct kstat *stat)
4557 {
4558         struct inode *inode;
4559         unsigned long delalloc_blocks;
4560
4561         inode = dentry->d_inode;
4562         generic_fillattr(inode, stat);
4563
4564         /*
4565          * We can't update i_blocks if the block allocation is delayed
4566          * otherwise in the case of system crash before the real block
4567          * allocation is done, we will have i_blocks inconsistent with
4568          * on-disk file blocks.
4569          * We always keep i_blocks updated together with real
4570          * allocation. But to not confuse with user, stat
4571          * will return the blocks that include the delayed allocation
4572          * blocks for this file.
4573          */
4574         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4575         delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4576         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4577
4578         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4579         return 0;
4580 }
4581
4582 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4583                                       int chunk)
4584 {
4585         int indirects;
4586
4587         /* if nrblocks are contiguous */
4588         if (chunk) {
4589                 /*
4590                  * With N contiguous data blocks, it need at most
4591                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4592                  * 2 dindirect blocks
4593                  * 1 tindirect block
4594                  */
4595                 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4596                 return indirects + 3;
4597         }
4598         /*
4599          * if nrblocks are not contiguous, worse case, each block touch
4600          * a indirect block, and each indirect block touch a double indirect
4601          * block, plus a triple indirect block
4602          */
4603         indirects = nrblocks * 2 + 1;
4604         return indirects;
4605 }
4606
4607 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4608 {
4609         if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4610                 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4611         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4612 }
4613
4614 /*
4615  * Account for index blocks, block groups bitmaps and block group
4616  * descriptor blocks if modify datablocks and index blocks
4617  * worse case, the indexs blocks spread over different block groups
4618  *
4619  * If datablocks are discontiguous, they are possible to spread over
4620  * different block groups too. If they are contiugous, with flexbg,
4621  * they could still across block group boundary.
4622  *
4623  * Also account for superblock, inode, quota and xattr blocks
4624  */
4625 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4626 {
4627         int groups, gdpblocks;
4628         int idxblocks;
4629         int ret = 0;
4630
4631         /*
4632          * How many index blocks need to touch to modify nrblocks?
4633          * The "Chunk" flag indicating whether the nrblocks is
4634          * physically contiguous on disk
4635          *
4636          * For Direct IO and fallocate, they calls get_block to allocate
4637          * one single extent at a time, so they could set the "Chunk" flag
4638          */
4639         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4640
4641         ret = idxblocks;
4642
4643         /*
4644          * Now let's see how many group bitmaps and group descriptors need
4645          * to account
4646          */
4647         groups = idxblocks;
4648         if (chunk)
4649                 groups += 1;
4650         else
4651                 groups += nrblocks;
4652
4653         gdpblocks = groups;
4654         if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4655                 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4656         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4657                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4658
4659         /* bitmaps and block group descriptor blocks */
4660         ret += groups + gdpblocks;
4661
4662         /* Blocks for super block, inode, quota and xattr blocks */
4663         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4664
4665         return ret;
4666 }
4667
4668 /*
4669  * Calulate the total number of credits to reserve to fit
4670  * the modification of a single pages into a single transaction,
4671  * which may include multiple chunks of block allocations.
4672  *
4673  * This could be called via ext4_write_begin()
4674  *
4675  * We need to consider the worse case, when
4676  * one new block per extent.
4677  */
4678 int ext4_writepage_trans_blocks(struct inode *inode)
4679 {
4680         int bpp = ext4_journal_blocks_per_page(inode);
4681         int ret;
4682
4683         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4684
4685         /* Account for data blocks for journalled mode */
4686         if (ext4_should_journal_data(inode))
4687                 ret += bpp;
4688         return ret;
4689 }
4690
4691 /*
4692  * Calculate the journal credits for a chunk of data modification.
4693  *
4694  * This is called from DIO, fallocate or whoever calling
4695  * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4696  *
4697  * journal buffers for data blocks are not included here, as DIO
4698  * and fallocate do no need to journal data buffers.
4699  */
4700 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4701 {
4702         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4703 }
4704
4705 /*
4706  * The caller must have previously called ext4_reserve_inode_write().
4707  * Give this, we know that the caller already has write access to iloc->bh.
4708  */
4709 int ext4_mark_iloc_dirty(handle_t *handle,
4710                 struct inode *inode, struct ext4_iloc *iloc)
4711 {
4712         int err = 0;
4713
4714         if (test_opt(inode->i_sb, I_VERSION))
4715                 inode_inc_iversion(inode);
4716
4717         /* the do_update_inode consumes one bh->b_count */
4718         get_bh(iloc->bh);
4719
4720         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4721         err = ext4_do_update_inode(handle, inode, iloc);
4722         put_bh(iloc->bh);
4723         return err;
4724 }
4725
4726 /*
4727  * On success, We end up with an outstanding reference count against
4728  * iloc->bh.  This _must_ be cleaned up later.
4729  */
4730
4731 int
4732 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4733                          struct ext4_iloc *iloc)
4734 {
4735         int err = 0;
4736         if (handle) {
4737                 err = ext4_get_inode_loc(inode, iloc);
4738                 if (!err) {
4739                         BUFFER_TRACE(iloc->bh, "get_write_access");
4740                         err = ext4_journal_get_write_access(handle, iloc->bh);
4741                         if (err) {
4742                                 brelse(iloc->bh);
4743                                 iloc->bh = NULL;
4744                         }
4745                 }
4746         }
4747         ext4_std_error(inode->i_sb, err);
4748         return err;
4749 }
4750
4751 /*
4752  * Expand an inode by new_extra_isize bytes.
4753  * Returns 0 on success or negative error number on failure.
4754  */
4755 static int ext4_expand_extra_isize(struct inode *inode,
4756                                    unsigned int new_extra_isize,
4757                                    struct ext4_iloc iloc,
4758                                    handle_t *handle)
4759 {
4760         struct ext4_inode *raw_inode;
4761         struct ext4_xattr_ibody_header *header;
4762         struct ext4_xattr_entry *entry;
4763
4764         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4765                 return 0;
4766
4767         raw_inode = ext4_raw_inode(&iloc);
4768
4769         header = IHDR(inode, raw_inode);
4770         entry = IFIRST(header);
4771
4772         /* No extended attributes present */
4773         if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4774                 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4775                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4776                         new_extra_isize);
4777                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4778                 return 0;
4779         }
4780
4781         /* try to expand with EAs present */
4782         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4783                                           raw_inode, handle);
4784 }
4785
4786 /*
4787  * What we do here is to mark the in-core inode as clean with respect to inode
4788  * dirtiness (it may still be data-dirty).
4789  * This means that the in-core inode may be reaped by prune_icache
4790  * without having to perform any I/O.  This is a very good thing,
4791  * because *any* task may call prune_icache - even ones which
4792  * have a transaction open against a different journal.
4793  *
4794  * Is this cheating?  Not really.  Sure, we haven't written the
4795  * inode out, but prune_icache isn't a user-visible syncing function.
4796  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4797  * we start and wait on commits.
4798  *
4799  * Is this efficient/effective?  Well, we're being nice to the system
4800  * by cleaning up our inodes proactively so they can be reaped
4801  * without I/O.  But we are potentially leaving up to five seconds'
4802  * worth of inodes floating about which prune_icache wants us to
4803  * write out.  One way to fix that would be to get prune_icache()
4804  * to do a write_super() to free up some memory.  It has the desired
4805  * effect.
4806  */
4807 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4808 {
4809         struct ext4_iloc iloc;
4810         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4811         static unsigned int mnt_count;
4812         int err, ret;
4813
4814         might_sleep();
4815         err = ext4_reserve_inode_write(handle, inode, &iloc);
4816         if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4817             !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4818                 /*
4819                  * We need extra buffer credits since we may write into EA block
4820                  * with this same handle. If journal_extend fails, then it will
4821                  * only result in a minor loss of functionality for that inode.
4822                  * If this is felt to be critical, then e2fsck should be run to
4823                  * force a large enough s_min_extra_isize.
4824                  */
4825                 if ((jbd2_journal_extend(handle,
4826                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4827                         ret = ext4_expand_extra_isize(inode,
4828                                                       sbi->s_want_extra_isize,
4829                                                       iloc, handle);
4830                         if (ret) {
4831                                 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4832                                 if (mnt_count !=
4833                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4834                                         ext4_warning(inode->i_sb, __func__,
4835                                         "Unable to expand inode %lu. Delete"
4836                                         " some EAs or run e2fsck.",
4837                                         inode->i_ino);
4838                                         mnt_count =
4839                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4840                                 }
4841                         }
4842                 }
4843         }
4844         if (!err)
4845                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4846         return err;
4847 }
4848
4849 /*
4850  * ext4_dirty_inode() is called from __mark_inode_dirty()
4851  *
4852  * We're really interested in the case where a file is being extended.
4853  * i_size has been changed by generic_commit_write() and we thus need
4854  * to include the updated inode in the current transaction.
4855  *
4856  * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4857  * are allocated to the file.
4858  *
4859  * If the inode is marked synchronous, we don't honour that here - doing
4860  * so would cause a commit on atime updates, which we don't bother doing.
4861  * We handle synchronous inodes at the highest possible level.
4862  */
4863 void ext4_dirty_inode(struct inode *inode)
4864 {
4865         handle_t *current_handle = ext4_journal_current_handle();
4866         handle_t *handle;
4867
4868         handle = ext4_journal_start(inode, 2);
4869         if (IS_ERR(handle))
4870                 goto out;
4871         if (current_handle &&
4872                 current_handle->h_transaction != handle->h_transaction) {
4873                 /* This task has a transaction open against a different fs */
4874                 printk(KERN_EMERG "%s: transactions do not match!\n",
4875                        __func__);
4876         } else {
4877                 jbd_debug(5, "marking dirty.  outer handle=%p\n",
4878                                 current_handle);
4879                 ext4_mark_inode_dirty(handle, inode);
4880         }
4881         ext4_journal_stop(handle);
4882 out:
4883         return;
4884 }
4885
4886 #if 0
4887 /*
4888  * Bind an inode's backing buffer_head into this transaction, to prevent
4889  * it from being flushed to disk early.  Unlike
4890  * ext4_reserve_inode_write, this leaves behind no bh reference and
4891  * returns no iloc structure, so the caller needs to repeat the iloc
4892  * lookup to mark the inode dirty later.
4893  */
4894 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4895 {
4896         struct ext4_iloc iloc;
4897
4898         int err = 0;
4899         if (handle) {
4900                 err = ext4_get_inode_loc(inode, &iloc);
4901                 if (!err) {
4902                         BUFFER_TRACE(iloc.bh, "get_write_access");
4903                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4904                         if (!err)
4905                                 err = ext4_journal_dirty_metadata(handle,
4906                                                                   iloc.bh);
4907                         brelse(iloc.bh);
4908                 }
4909         }
4910         ext4_std_error(inode->i_sb, err);
4911         return err;
4912 }
4913 #endif
4914
4915 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4916 {
4917         journal_t *journal;
4918         handle_t *handle;
4919         int err;
4920
4921         /*
4922          * We have to be very careful here: changing a data block's
4923          * journaling status dynamically is dangerous.  If we write a
4924          * data block to the journal, change the status and then delete
4925          * that block, we risk forgetting to revoke the old log record
4926          * from the journal and so a subsequent replay can corrupt data.
4927          * So, first we make sure that the journal is empty and that
4928          * nobody is changing anything.
4929          */
4930
4931         journal = EXT4_JOURNAL(inode);
4932         if (is_journal_aborted(journal))
4933                 return -EROFS;
4934
4935         jbd2_journal_lock_updates(journal);
4936         jbd2_journal_flush(journal);
4937
4938         /*
4939          * OK, there are no updates running now, and all cached data is
4940          * synced to disk.  We are now in a completely consistent state
4941          * which doesn't have anything in the journal, and we know that
4942          * no filesystem updates are running, so it is safe to modify
4943          * the inode's in-core data-journaling state flag now.
4944          */
4945
4946         if (val)
4947                 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4948         else
4949                 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4950         ext4_set_aops(inode);
4951
4952         jbd2_journal_unlock_updates(journal);
4953
4954         /* Finally we can mark the inode as dirty. */
4955
4956         handle = ext4_journal_start(inode, 1);
4957         if (IS_ERR(handle))
4958                 return PTR_ERR(handle);
4959
4960         err = ext4_mark_inode_dirty(handle, inode);
4961         handle->h_sync = 1;
4962         ext4_journal_stop(handle);
4963         ext4_std_error(inode->i_sb, err);
4964
4965         return err;
4966 }
4967
4968 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4969 {
4970         return !buffer_mapped(bh);
4971 }
4972
4973 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4974 {
4975         loff_t size;
4976         unsigned long len;
4977         int ret = -EINVAL;
4978         void *fsdata;
4979         struct file *file = vma->vm_file;
4980         struct inode *inode = file->f_path.dentry->d_inode;
4981         struct address_space *mapping = inode->i_mapping;
4982
4983         /*
4984          * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4985          * get i_mutex because we are already holding mmap_sem.
4986          */
4987         down_read(&inode->i_alloc_sem);
4988         size = i_size_read(inode);
4989         if (page->mapping != mapping || size <= page_offset(page)
4990             || !PageUptodate(page)) {
4991                 /* page got truncated from under us? */
4992                 goto out_unlock;
4993         }
4994         ret = 0;
4995         if (PageMappedToDisk(page))
4996                 goto out_unlock;
4997
4998         if (page->index == size >> PAGE_CACHE_SHIFT)
4999                 len = size & ~PAGE_CACHE_MASK;
5000         else
5001                 len = PAGE_CACHE_SIZE;
5002
5003         if (page_has_buffers(page)) {
5004                 /* return if we have all the buffers mapped */
5005                 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5006                                        ext4_bh_unmapped))
5007                         goto out_unlock;
5008         }
5009         /*
5010          * OK, we need to fill the hole... Do write_begin write_end
5011          * to do block allocation/reservation.We are not holding
5012          * inode.i__mutex here. That allow * parallel write_begin,
5013          * write_end call. lock_page prevent this from happening
5014          * on the same page though
5015          */
5016         ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5017                         len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5018         if (ret < 0)
5019                 goto out_unlock;
5020         ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5021                         len, len, page, fsdata);
5022         if (ret < 0)
5023                 goto out_unlock;
5024         ret = 0;
5025 out_unlock:
5026         up_read(&inode->i_alloc_sem);
5027         return ret;
5028 }