]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
80c710ae470bf306f9fb35da2cf9d61ef1792573
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139
140 /*
141  * Test whether an inode is a fast symlink.
142  */
143 static int ext4_inode_is_fast_symlink(struct inode *inode)
144 {
145         int ea_blocks = EXT4_I(inode)->i_file_acl ?
146                 (inode->i_sb->s_blocksize >> 9) : 0;
147
148         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
149 }
150
151 /*
152  * Restart the transaction associated with *handle.  This does a commit,
153  * so before we call here everything must be consistently dirtied against
154  * this transaction.
155  */
156 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
157                                  int nblocks)
158 {
159         int ret;
160
161         /*
162          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
163          * moment, get_block can be called only for blocks inside i_size since
164          * page cache has been already dropped and writes are blocked by
165          * i_mutex. So we can safely drop the i_data_sem here.
166          */
167         BUG_ON(EXT4_JOURNAL(inode) == NULL);
168         jbd_debug(2, "restarting handle %p\n", handle);
169         up_write(&EXT4_I(inode)->i_data_sem);
170         ret = ext4_journal_restart(handle, nblocks);
171         down_write(&EXT4_I(inode)->i_data_sem);
172         ext4_discard_preallocations(inode);
173
174         return ret;
175 }
176
177 /*
178  * Called at the last iput() if i_nlink is zero.
179  */
180 void ext4_evict_inode(struct inode *inode)
181 {
182         handle_t *handle;
183         int err;
184
185         trace_ext4_evict_inode(inode);
186
187         if (inode->i_nlink) {
188                 /*
189                  * When journalling data dirty buffers are tracked only in the
190                  * journal. So although mm thinks everything is clean and
191                  * ready for reaping the inode might still have some pages to
192                  * write in the running transaction or waiting to be
193                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
194                  * (via truncate_inode_pages()) to discard these buffers can
195                  * cause data loss. Also even if we did not discard these
196                  * buffers, we would have no way to find them after the inode
197                  * is reaped and thus user could see stale data if he tries to
198                  * read them before the transaction is checkpointed. So be
199                  * careful and force everything to disk here... We use
200                  * ei->i_datasync_tid to store the newest transaction
201                  * containing inode's data.
202                  *
203                  * Note that directories do not have this problem because they
204                  * don't use page cache.
205                  */
206                 if (ext4_should_journal_data(inode) &&
207                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
208                     inode->i_ino != EXT4_JOURNAL_INO) {
209                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
210                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
211
212                         jbd2_complete_transaction(journal, commit_tid);
213                         filemap_write_and_wait(&inode->i_data);
214                 }
215                 truncate_inode_pages(&inode->i_data, 0);
216                 ext4_ioend_shutdown(inode);
217                 goto no_delete;
218         }
219
220         if (!is_bad_inode(inode))
221                 dquot_initialize(inode);
222
223         if (ext4_should_order_data(inode))
224                 ext4_begin_ordered_truncate(inode, 0);
225         truncate_inode_pages(&inode->i_data, 0);
226         ext4_ioend_shutdown(inode);
227
228         if (is_bad_inode(inode))
229                 goto no_delete;
230
231         /*
232          * Protect us against freezing - iput() caller didn't have to have any
233          * protection against it
234          */
235         sb_start_intwrite(inode->i_sb);
236         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237                                     ext4_blocks_for_truncate(inode)+3);
238         if (IS_ERR(handle)) {
239                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240                 /*
241                  * If we're going to skip the normal cleanup, we still need to
242                  * make sure that the in-core orphan linked list is properly
243                  * cleaned up.
244                  */
245                 ext4_orphan_del(NULL, inode);
246                 sb_end_intwrite(inode->i_sb);
247                 goto no_delete;
248         }
249
250         if (IS_SYNC(inode))
251                 ext4_handle_sync(handle);
252         inode->i_size = 0;
253         err = ext4_mark_inode_dirty(handle, inode);
254         if (err) {
255                 ext4_warning(inode->i_sb,
256                              "couldn't mark inode dirty (err %d)", err);
257                 goto stop_handle;
258         }
259         if (inode->i_blocks)
260                 ext4_truncate(inode);
261
262         /*
263          * ext4_ext_truncate() doesn't reserve any slop when it
264          * restarts journal transactions; therefore there may not be
265          * enough credits left in the handle to remove the inode from
266          * the orphan list and set the dtime field.
267          */
268         if (!ext4_handle_has_enough_credits(handle, 3)) {
269                 err = ext4_journal_extend(handle, 3);
270                 if (err > 0)
271                         err = ext4_journal_restart(handle, 3);
272                 if (err != 0) {
273                         ext4_warning(inode->i_sb,
274                                      "couldn't extend journal (err %d)", err);
275                 stop_handle:
276                         ext4_journal_stop(handle);
277                         ext4_orphan_del(NULL, inode);
278                         sb_end_intwrite(inode->i_sb);
279                         goto no_delete;
280                 }
281         }
282
283         /*
284          * Kill off the orphan record which ext4_truncate created.
285          * AKPM: I think this can be inside the above `if'.
286          * Note that ext4_orphan_del() has to be able to cope with the
287          * deletion of a non-existent orphan - this is because we don't
288          * know if ext4_truncate() actually created an orphan record.
289          * (Well, we could do this if we need to, but heck - it works)
290          */
291         ext4_orphan_del(handle, inode);
292         EXT4_I(inode)->i_dtime  = get_seconds();
293
294         /*
295          * One subtle ordering requirement: if anything has gone wrong
296          * (transaction abort, IO errors, whatever), then we can still
297          * do these next steps (the fs will already have been marked as
298          * having errors), but we can't free the inode if the mark_dirty
299          * fails.
300          */
301         if (ext4_mark_inode_dirty(handle, inode))
302                 /* If that failed, just do the required in-core inode clear. */
303                 ext4_clear_inode(inode);
304         else
305                 ext4_free_inode(handle, inode);
306         ext4_journal_stop(handle);
307         sb_end_intwrite(inode->i_sb);
308         return;
309 no_delete:
310         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
311 }
312
313 #ifdef CONFIG_QUOTA
314 qsize_t *ext4_get_reserved_space(struct inode *inode)
315 {
316         return &EXT4_I(inode)->i_reserved_quota;
317 }
318 #endif
319
320 /*
321  * Calculate the number of metadata blocks need to reserve
322  * to allocate a block located at @lblock
323  */
324 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
325 {
326         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
327                 return ext4_ext_calc_metadata_amount(inode, lblock);
328
329         return ext4_ind_calc_metadata_amount(inode, lblock);
330 }
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
354                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
355                         "with only %d reserved metadata blocks "
356                         "(releasing %d blocks with reserved %d data blocks)",
357                         inode->i_ino, ei->i_allocated_meta_blocks,
358                              ei->i_reserved_meta_blocks, used,
359                              ei->i_reserved_data_blocks);
360                 WARN_ON(1);
361                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
362         }
363
364         /* Update per-inode reservations */
365         ei->i_reserved_data_blocks -= used;
366         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
367         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
368                            used + ei->i_allocated_meta_blocks);
369         ei->i_allocated_meta_blocks = 0;
370
371         if (ei->i_reserved_data_blocks == 0) {
372                 /*
373                  * We can release all of the reserved metadata blocks
374                  * only when we have written all of the delayed
375                  * allocation blocks.
376                  */
377                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
378                                    ei->i_reserved_meta_blocks);
379                 ei->i_reserved_meta_blocks = 0;
380                 ei->i_da_metadata_calc_len = 0;
381         }
382         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
383
384         /* Update quota subsystem for data blocks */
385         if (quota_claim)
386                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
387         else {
388                 /*
389                  * We did fallocate with an offset that is already delayed
390                  * allocated. So on delayed allocated writeback we should
391                  * not re-claim the quota for fallocated blocks.
392                  */
393                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
394         }
395
396         /*
397          * If we have done all the pending block allocations and if
398          * there aren't any writers on the inode, we can discard the
399          * inode's preallocations.
400          */
401         if ((ei->i_reserved_data_blocks == 0) &&
402             (atomic_read(&inode->i_writecount) == 0))
403                 ext4_discard_preallocations(inode);
404 }
405
406 static int __check_block_validity(struct inode *inode, const char *func,
407                                 unsigned int line,
408                                 struct ext4_map_blocks *map)
409 {
410         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
411                                    map->m_len)) {
412                 ext4_error_inode(inode, func, line, map->m_pblk,
413                                  "lblock %lu mapped to illegal pblock "
414                                  "(length %d)", (unsigned long) map->m_lblk,
415                                  map->m_len);
416                 return -EIO;
417         }
418         return 0;
419 }
420
421 #define check_block_validity(inode, map)        \
422         __check_block_validity((inode), __func__, __LINE__, (map))
423
424 #ifdef ES_AGGRESSIVE_TEST
425 static void ext4_map_blocks_es_recheck(handle_t *handle,
426                                        struct inode *inode,
427                                        struct ext4_map_blocks *es_map,
428                                        struct ext4_map_blocks *map,
429                                        int flags)
430 {
431         int retval;
432
433         map->m_flags = 0;
434         /*
435          * There is a race window that the result is not the same.
436          * e.g. xfstests #223 when dioread_nolock enables.  The reason
437          * is that we lookup a block mapping in extent status tree with
438          * out taking i_data_sem.  So at the time the unwritten extent
439          * could be converted.
440          */
441         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
442                 down_read((&EXT4_I(inode)->i_data_sem));
443         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
444                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
445                                              EXT4_GET_BLOCKS_KEEP_SIZE);
446         } else {
447                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         }
450         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
451                 up_read((&EXT4_I(inode)->i_data_sem));
452         /*
453          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
454          * because it shouldn't be marked in es_map->m_flags.
455          */
456         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
457
458         /*
459          * We don't check m_len because extent will be collpased in status
460          * tree.  So the m_len might not equal.
461          */
462         if (es_map->m_lblk != map->m_lblk ||
463             es_map->m_flags != map->m_flags ||
464             es_map->m_pblk != map->m_pblk) {
465                 printk("ES cache assertation failed for inode: %lu "
466                        "es_cached ex [%d/%d/%llu/%x] != "
467                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468                        inode->i_ino, es_map->m_lblk, es_map->m_len,
469                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
470                        map->m_len, map->m_pblk, map->m_flags,
471                        retval, flags);
472         }
473 }
474 #endif /* ES_AGGRESSIVE_TEST */
475
476 /*
477  * The ext4_map_blocks() function tries to look up the requested blocks,
478  * and returns if the blocks are already mapped.
479  *
480  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481  * and store the allocated blocks in the result buffer head and mark it
482  * mapped.
483  *
484  * If file type is extents based, it will call ext4_ext_map_blocks(),
485  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
486  * based files
487  *
488  * On success, it returns the number of blocks being mapped or allocate.
489  * if create==0 and the blocks are pre-allocated and uninitialized block,
490  * the result buffer head is unmapped. If the create ==1, it will make sure
491  * the buffer head is mapped.
492  *
493  * It returns 0 if plain look up failed (blocks have not been allocated), in
494  * that case, buffer head is unmapped
495  *
496  * It returns the error in case of allocation failure.
497  */
498 int ext4_map_blocks(handle_t *handle, struct inode *inode,
499                     struct ext4_map_blocks *map, int flags)
500 {
501         struct extent_status es;
502         int retval;
503 #ifdef ES_AGGRESSIVE_TEST
504         struct ext4_map_blocks orig_map;
505
506         memcpy(&orig_map, map, sizeof(*map));
507 #endif
508
509         map->m_flags = 0;
510         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
512                   (unsigned long) map->m_lblk);
513
514         /* Lookup extent status tree firstly */
515         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517                         map->m_pblk = ext4_es_pblock(&es) +
518                                         map->m_lblk - es.es_lblk;
519                         map->m_flags |= ext4_es_is_written(&es) ?
520                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521                         retval = es.es_len - (map->m_lblk - es.es_lblk);
522                         if (retval > map->m_len)
523                                 retval = map->m_len;
524                         map->m_len = retval;
525                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526                         retval = 0;
527                 } else {
528                         BUG_ON(1);
529                 }
530 #ifdef ES_AGGRESSIVE_TEST
531                 ext4_map_blocks_es_recheck(handle, inode, map,
532                                            &orig_map, flags);
533 #endif
534                 goto found;
535         }
536
537         /*
538          * Try to see if we can get the block without requesting a new
539          * file system block.
540          */
541         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
542                 down_read((&EXT4_I(inode)->i_data_sem));
543         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
544                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
545                                              EXT4_GET_BLOCKS_KEEP_SIZE);
546         } else {
547                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
548                                              EXT4_GET_BLOCKS_KEEP_SIZE);
549         }
550         if (retval > 0) {
551                 int ret;
552                 unsigned long long status;
553
554 #ifdef ES_AGGRESSIVE_TEST
555                 if (retval != map->m_len) {
556                         printk("ES len assertation failed for inode: %lu "
557                                "retval %d != map->m_len %d "
558                                "in %s (lookup)\n", inode->i_ino, retval,
559                                map->m_len, __func__);
560                 }
561 #endif
562
563                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566                     ext4_find_delalloc_range(inode, map->m_lblk,
567                                              map->m_lblk + map->m_len - 1))
568                         status |= EXTENT_STATUS_DELAYED;
569                 ret = ext4_es_insert_extent(inode, map->m_lblk,
570                                             map->m_len, map->m_pblk, status);
571                 if (ret < 0)
572                         retval = ret;
573         }
574         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
575                 up_read((&EXT4_I(inode)->i_data_sem));
576
577 found:
578         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
579                 int ret = check_block_validity(inode, map);
580                 if (ret != 0)
581                         return ret;
582         }
583
584         /* If it is only a block(s) look up */
585         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
586                 return retval;
587
588         /*
589          * Returns if the blocks have already allocated
590          *
591          * Note that if blocks have been preallocated
592          * ext4_ext_get_block() returns the create = 0
593          * with buffer head unmapped.
594          */
595         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
596                 return retval;
597
598         /*
599          * Here we clear m_flags because after allocating an new extent,
600          * it will be set again.
601          */
602         map->m_flags &= ~EXT4_MAP_FLAGS;
603
604         /*
605          * New blocks allocate and/or writing to uninitialized extent
606          * will possibly result in updating i_data, so we take
607          * the write lock of i_data_sem, and call get_blocks()
608          * with create == 1 flag.
609          */
610         down_write((&EXT4_I(inode)->i_data_sem));
611
612         /*
613          * if the caller is from delayed allocation writeout path
614          * we have already reserved fs blocks for allocation
615          * let the underlying get_block() function know to
616          * avoid double accounting
617          */
618         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
619                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620         /*
621          * We need to check for EXT4 here because migrate
622          * could have changed the inode type in between
623          */
624         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
626         } else {
627                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628
629                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630                         /*
631                          * We allocated new blocks which will result in
632                          * i_data's format changing.  Force the migrate
633                          * to fail by clearing migrate flags
634                          */
635                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636                 }
637
638                 /*
639                  * Update reserved blocks/metadata blocks after successful
640                  * block allocation which had been deferred till now. We don't
641                  * support fallocate for non extent files. So we can update
642                  * reserve space here.
643                  */
644                 if ((retval > 0) &&
645                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646                         ext4_da_update_reserve_space(inode, retval, 1);
647         }
648         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
649                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
650
651         if (retval > 0) {
652                 int ret;
653                 unsigned long long status;
654
655 #ifdef ES_AGGRESSIVE_TEST
656                 if (retval != map->m_len) {
657                         printk("ES len assertation failed for inode: %lu "
658                                "retval %d != map->m_len %d "
659                                "in %s (allocation)\n", inode->i_ino, retval,
660                                map->m_len, __func__);
661                 }
662 #endif
663
664                 /*
665                  * If the extent has been zeroed out, we don't need to update
666                  * extent status tree.
667                  */
668                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
670                         if (ext4_es_is_written(&es))
671                                 goto has_zeroout;
672                 }
673                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676                     ext4_find_delalloc_range(inode, map->m_lblk,
677                                              map->m_lblk + map->m_len - 1))
678                         status |= EXTENT_STATUS_DELAYED;
679                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
680                                             map->m_pblk, status);
681                 if (ret < 0)
682                         retval = ret;
683         }
684
685 has_zeroout:
686         up_write((&EXT4_I(inode)->i_data_sem));
687         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
688                 int ret = check_block_validity(inode, map);
689                 if (ret != 0)
690                         return ret;
691         }
692         return retval;
693 }
694
695 /* Maximum number of blocks we map for direct IO at once. */
696 #define DIO_MAX_BLOCKS 4096
697
698 static int _ext4_get_block(struct inode *inode, sector_t iblock,
699                            struct buffer_head *bh, int flags)
700 {
701         handle_t *handle = ext4_journal_current_handle();
702         struct ext4_map_blocks map;
703         int ret = 0, started = 0;
704         int dio_credits;
705
706         if (ext4_has_inline_data(inode))
707                 return -ERANGE;
708
709         map.m_lblk = iblock;
710         map.m_len = bh->b_size >> inode->i_blkbits;
711
712         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
713                 /* Direct IO write... */
714                 if (map.m_len > DIO_MAX_BLOCKS)
715                         map.m_len = DIO_MAX_BLOCKS;
716                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
717                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
718                                             dio_credits);
719                 if (IS_ERR(handle)) {
720                         ret = PTR_ERR(handle);
721                         return ret;
722                 }
723                 started = 1;
724         }
725
726         ret = ext4_map_blocks(handle, inode, &map, flags);
727         if (ret > 0) {
728                 map_bh(bh, inode->i_sb, map.m_pblk);
729                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
730                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
731                 ret = 0;
732         }
733         if (started)
734                 ext4_journal_stop(handle);
735         return ret;
736 }
737
738 int ext4_get_block(struct inode *inode, sector_t iblock,
739                    struct buffer_head *bh, int create)
740 {
741         return _ext4_get_block(inode, iblock, bh,
742                                create ? EXT4_GET_BLOCKS_CREATE : 0);
743 }
744
745 /*
746  * `handle' can be NULL if create is zero
747  */
748 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
749                                 ext4_lblk_t block, int create, int *errp)
750 {
751         struct ext4_map_blocks map;
752         struct buffer_head *bh;
753         int fatal = 0, err;
754
755         J_ASSERT(handle != NULL || create == 0);
756
757         map.m_lblk = block;
758         map.m_len = 1;
759         err = ext4_map_blocks(handle, inode, &map,
760                               create ? EXT4_GET_BLOCKS_CREATE : 0);
761
762         /* ensure we send some value back into *errp */
763         *errp = 0;
764
765         if (create && err == 0)
766                 err = -ENOSPC;  /* should never happen */
767         if (err < 0)
768                 *errp = err;
769         if (err <= 0)
770                 return NULL;
771
772         bh = sb_getblk(inode->i_sb, map.m_pblk);
773         if (unlikely(!bh)) {
774                 *errp = -ENOMEM;
775                 return NULL;
776         }
777         if (map.m_flags & EXT4_MAP_NEW) {
778                 J_ASSERT(create != 0);
779                 J_ASSERT(handle != NULL);
780
781                 /*
782                  * Now that we do not always journal data, we should
783                  * keep in mind whether this should always journal the
784                  * new buffer as metadata.  For now, regular file
785                  * writes use ext4_get_block instead, so it's not a
786                  * problem.
787                  */
788                 lock_buffer(bh);
789                 BUFFER_TRACE(bh, "call get_create_access");
790                 fatal = ext4_journal_get_create_access(handle, bh);
791                 if (!fatal && !buffer_uptodate(bh)) {
792                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
793                         set_buffer_uptodate(bh);
794                 }
795                 unlock_buffer(bh);
796                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
797                 err = ext4_handle_dirty_metadata(handle, inode, bh);
798                 if (!fatal)
799                         fatal = err;
800         } else {
801                 BUFFER_TRACE(bh, "not a new buffer");
802         }
803         if (fatal) {
804                 *errp = fatal;
805                 brelse(bh);
806                 bh = NULL;
807         }
808         return bh;
809 }
810
811 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
812                                ext4_lblk_t block, int create, int *err)
813 {
814         struct buffer_head *bh;
815
816         bh = ext4_getblk(handle, inode, block, create, err);
817         if (!bh)
818                 return bh;
819         if (buffer_uptodate(bh))
820                 return bh;
821         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
822         wait_on_buffer(bh);
823         if (buffer_uptodate(bh))
824                 return bh;
825         put_bh(bh);
826         *err = -EIO;
827         return NULL;
828 }
829
830 int ext4_walk_page_buffers(handle_t *handle,
831                            struct buffer_head *head,
832                            unsigned from,
833                            unsigned to,
834                            int *partial,
835                            int (*fn)(handle_t *handle,
836                                      struct buffer_head *bh))
837 {
838         struct buffer_head *bh;
839         unsigned block_start, block_end;
840         unsigned blocksize = head->b_size;
841         int err, ret = 0;
842         struct buffer_head *next;
843
844         for (bh = head, block_start = 0;
845              ret == 0 && (bh != head || !block_start);
846              block_start = block_end, bh = next) {
847                 next = bh->b_this_page;
848                 block_end = block_start + blocksize;
849                 if (block_end <= from || block_start >= to) {
850                         if (partial && !buffer_uptodate(bh))
851                                 *partial = 1;
852                         continue;
853                 }
854                 err = (*fn)(handle, bh);
855                 if (!ret)
856                         ret = err;
857         }
858         return ret;
859 }
860
861 /*
862  * To preserve ordering, it is essential that the hole instantiation and
863  * the data write be encapsulated in a single transaction.  We cannot
864  * close off a transaction and start a new one between the ext4_get_block()
865  * and the commit_write().  So doing the jbd2_journal_start at the start of
866  * prepare_write() is the right place.
867  *
868  * Also, this function can nest inside ext4_writepage().  In that case, we
869  * *know* that ext4_writepage() has generated enough buffer credits to do the
870  * whole page.  So we won't block on the journal in that case, which is good,
871  * because the caller may be PF_MEMALLOC.
872  *
873  * By accident, ext4 can be reentered when a transaction is open via
874  * quota file writes.  If we were to commit the transaction while thus
875  * reentered, there can be a deadlock - we would be holding a quota
876  * lock, and the commit would never complete if another thread had a
877  * transaction open and was blocking on the quota lock - a ranking
878  * violation.
879  *
880  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
881  * will _not_ run commit under these circumstances because handle->h_ref
882  * is elevated.  We'll still have enough credits for the tiny quotafile
883  * write.
884  */
885 int do_journal_get_write_access(handle_t *handle,
886                                 struct buffer_head *bh)
887 {
888         int dirty = buffer_dirty(bh);
889         int ret;
890
891         if (!buffer_mapped(bh) || buffer_freed(bh))
892                 return 0;
893         /*
894          * __block_write_begin() could have dirtied some buffers. Clean
895          * the dirty bit as jbd2_journal_get_write_access() could complain
896          * otherwise about fs integrity issues. Setting of the dirty bit
897          * by __block_write_begin() isn't a real problem here as we clear
898          * the bit before releasing a page lock and thus writeback cannot
899          * ever write the buffer.
900          */
901         if (dirty)
902                 clear_buffer_dirty(bh);
903         ret = ext4_journal_get_write_access(handle, bh);
904         if (!ret && dirty)
905                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
906         return ret;
907 }
908
909 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
910                    struct buffer_head *bh_result, int create);
911 static int ext4_write_begin(struct file *file, struct address_space *mapping,
912                             loff_t pos, unsigned len, unsigned flags,
913                             struct page **pagep, void **fsdata)
914 {
915         struct inode *inode = mapping->host;
916         int ret, needed_blocks;
917         handle_t *handle;
918         int retries = 0;
919         struct page *page;
920         pgoff_t index;
921         unsigned from, to;
922
923         trace_ext4_write_begin(inode, pos, len, flags);
924         /*
925          * Reserve one block more for addition to orphan list in case
926          * we allocate blocks but write fails for some reason
927          */
928         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
929         index = pos >> PAGE_CACHE_SHIFT;
930         from = pos & (PAGE_CACHE_SIZE - 1);
931         to = from + len;
932
933         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
934                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
935                                                     flags, pagep);
936                 if (ret < 0)
937                         return ret;
938                 if (ret == 1)
939                         return 0;
940         }
941
942         /*
943          * grab_cache_page_write_begin() can take a long time if the
944          * system is thrashing due to memory pressure, or if the page
945          * is being written back.  So grab it first before we start
946          * the transaction handle.  This also allows us to allocate
947          * the page (if needed) without using GFP_NOFS.
948          */
949 retry_grab:
950         page = grab_cache_page_write_begin(mapping, index, flags);
951         if (!page)
952                 return -ENOMEM;
953         unlock_page(page);
954
955 retry_journal:
956         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
957         if (IS_ERR(handle)) {
958                 page_cache_release(page);
959                 return PTR_ERR(handle);
960         }
961
962         lock_page(page);
963         if (page->mapping != mapping) {
964                 /* The page got truncated from under us */
965                 unlock_page(page);
966                 page_cache_release(page);
967                 ext4_journal_stop(handle);
968                 goto retry_grab;
969         }
970         wait_on_page_writeback(page);
971
972         if (ext4_should_dioread_nolock(inode))
973                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
974         else
975                 ret = __block_write_begin(page, pos, len, ext4_get_block);
976
977         if (!ret && ext4_should_journal_data(inode)) {
978                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
979                                              from, to, NULL,
980                                              do_journal_get_write_access);
981         }
982
983         if (ret) {
984                 unlock_page(page);
985                 /*
986                  * __block_write_begin may have instantiated a few blocks
987                  * outside i_size.  Trim these off again. Don't need
988                  * i_size_read because we hold i_mutex.
989                  *
990                  * Add inode to orphan list in case we crash before
991                  * truncate finishes
992                  */
993                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
994                         ext4_orphan_add(handle, inode);
995
996                 ext4_journal_stop(handle);
997                 if (pos + len > inode->i_size) {
998                         ext4_truncate_failed_write(inode);
999                         /*
1000                          * If truncate failed early the inode might
1001                          * still be on the orphan list; we need to
1002                          * make sure the inode is removed from the
1003                          * orphan list in that case.
1004                          */
1005                         if (inode->i_nlink)
1006                                 ext4_orphan_del(NULL, inode);
1007                 }
1008
1009                 if (ret == -ENOSPC &&
1010                     ext4_should_retry_alloc(inode->i_sb, &retries))
1011                         goto retry_journal;
1012                 page_cache_release(page);
1013                 return ret;
1014         }
1015         *pagep = page;
1016         return ret;
1017 }
1018
1019 /* For write_end() in data=journal mode */
1020 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1021 {
1022         int ret;
1023         if (!buffer_mapped(bh) || buffer_freed(bh))
1024                 return 0;
1025         set_buffer_uptodate(bh);
1026         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1027         clear_buffer_meta(bh);
1028         clear_buffer_prio(bh);
1029         return ret;
1030 }
1031
1032 /*
1033  * We need to pick up the new inode size which generic_commit_write gave us
1034  * `file' can be NULL - eg, when called from page_symlink().
1035  *
1036  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1037  * buffers are managed internally.
1038  */
1039 static int ext4_write_end(struct file *file,
1040                           struct address_space *mapping,
1041                           loff_t pos, unsigned len, unsigned copied,
1042                           struct page *page, void *fsdata)
1043 {
1044         handle_t *handle = ext4_journal_current_handle();
1045         struct inode *inode = mapping->host;
1046         int ret = 0, ret2;
1047         int i_size_changed = 0;
1048
1049         trace_ext4_write_end(inode, pos, len, copied);
1050         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1051                 ret = ext4_jbd2_file_inode(handle, inode);
1052                 if (ret) {
1053                         unlock_page(page);
1054                         page_cache_release(page);
1055                         goto errout;
1056                 }
1057         }
1058
1059         if (ext4_has_inline_data(inode))
1060                 copied = ext4_write_inline_data_end(inode, pos, len,
1061                                                     copied, page);
1062         else
1063                 copied = block_write_end(file, mapping, pos,
1064                                          len, copied, page, fsdata);
1065
1066         /*
1067          * No need to use i_size_read() here, the i_size
1068          * cannot change under us because we hole i_mutex.
1069          *
1070          * But it's important to update i_size while still holding page lock:
1071          * page writeout could otherwise come in and zero beyond i_size.
1072          */
1073         if (pos + copied > inode->i_size) {
1074                 i_size_write(inode, pos + copied);
1075                 i_size_changed = 1;
1076         }
1077
1078         if (pos + copied > EXT4_I(inode)->i_disksize) {
1079                 /* We need to mark inode dirty even if
1080                  * new_i_size is less that inode->i_size
1081                  * but greater than i_disksize. (hint delalloc)
1082                  */
1083                 ext4_update_i_disksize(inode, (pos + copied));
1084                 i_size_changed = 1;
1085         }
1086         unlock_page(page);
1087         page_cache_release(page);
1088
1089         /*
1090          * Don't mark the inode dirty under page lock. First, it unnecessarily
1091          * makes the holding time of page lock longer. Second, it forces lock
1092          * ordering of page lock and transaction start for journaling
1093          * filesystems.
1094          */
1095         if (i_size_changed)
1096                 ext4_mark_inode_dirty(handle, inode);
1097
1098         if (copied < 0)
1099                 ret = copied;
1100         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1101                 /* if we have allocated more blocks and copied
1102                  * less. We will have blocks allocated outside
1103                  * inode->i_size. So truncate them
1104                  */
1105                 ext4_orphan_add(handle, inode);
1106 errout:
1107         ret2 = ext4_journal_stop(handle);
1108         if (!ret)
1109                 ret = ret2;
1110
1111         if (pos + len > inode->i_size) {
1112                 ext4_truncate_failed_write(inode);
1113                 /*
1114                  * If truncate failed early the inode might still be
1115                  * on the orphan list; we need to make sure the inode
1116                  * is removed from the orphan list in that case.
1117                  */
1118                 if (inode->i_nlink)
1119                         ext4_orphan_del(NULL, inode);
1120         }
1121
1122         return ret ? ret : copied;
1123 }
1124
1125 static int ext4_journalled_write_end(struct file *file,
1126                                      struct address_space *mapping,
1127                                      loff_t pos, unsigned len, unsigned copied,
1128                                      struct page *page, void *fsdata)
1129 {
1130         handle_t *handle = ext4_journal_current_handle();
1131         struct inode *inode = mapping->host;
1132         int ret = 0, ret2;
1133         int partial = 0;
1134         unsigned from, to;
1135         loff_t new_i_size;
1136
1137         trace_ext4_journalled_write_end(inode, pos, len, copied);
1138         from = pos & (PAGE_CACHE_SIZE - 1);
1139         to = from + len;
1140
1141         BUG_ON(!ext4_handle_valid(handle));
1142
1143         if (ext4_has_inline_data(inode))
1144                 copied = ext4_write_inline_data_end(inode, pos, len,
1145                                                     copied, page);
1146         else {
1147                 if (copied < len) {
1148                         if (!PageUptodate(page))
1149                                 copied = 0;
1150                         page_zero_new_buffers(page, from+copied, to);
1151                 }
1152
1153                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1154                                              to, &partial, write_end_fn);
1155                 if (!partial)
1156                         SetPageUptodate(page);
1157         }
1158         new_i_size = pos + copied;
1159         if (new_i_size > inode->i_size)
1160                 i_size_write(inode, pos+copied);
1161         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1162         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1163         if (new_i_size > EXT4_I(inode)->i_disksize) {
1164                 ext4_update_i_disksize(inode, new_i_size);
1165                 ret2 = ext4_mark_inode_dirty(handle, inode);
1166                 if (!ret)
1167                         ret = ret2;
1168         }
1169
1170         unlock_page(page);
1171         page_cache_release(page);
1172         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1173                 /* if we have allocated more blocks and copied
1174                  * less. We will have blocks allocated outside
1175                  * inode->i_size. So truncate them
1176                  */
1177                 ext4_orphan_add(handle, inode);
1178
1179         ret2 = ext4_journal_stop(handle);
1180         if (!ret)
1181                 ret = ret2;
1182         if (pos + len > inode->i_size) {
1183                 ext4_truncate_failed_write(inode);
1184                 /*
1185                  * If truncate failed early the inode might still be
1186                  * on the orphan list; we need to make sure the inode
1187                  * is removed from the orphan list in that case.
1188                  */
1189                 if (inode->i_nlink)
1190                         ext4_orphan_del(NULL, inode);
1191         }
1192
1193         return ret ? ret : copied;
1194 }
1195
1196 /*
1197  * Reserve a metadata for a single block located at lblock
1198  */
1199 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1200 {
1201         int retries = 0;
1202         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203         struct ext4_inode_info *ei = EXT4_I(inode);
1204         unsigned int md_needed;
1205         ext4_lblk_t save_last_lblock;
1206         int save_len;
1207
1208         /*
1209          * recalculate the amount of metadata blocks to reserve
1210          * in order to allocate nrblocks
1211          * worse case is one extent per block
1212          */
1213 repeat:
1214         spin_lock(&ei->i_block_reservation_lock);
1215         /*
1216          * ext4_calc_metadata_amount() has side effects, which we have
1217          * to be prepared undo if we fail to claim space.
1218          */
1219         save_len = ei->i_da_metadata_calc_len;
1220         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1221         md_needed = EXT4_NUM_B2C(sbi,
1222                                  ext4_calc_metadata_amount(inode, lblock));
1223         trace_ext4_da_reserve_space(inode, md_needed);
1224
1225         /*
1226          * We do still charge estimated metadata to the sb though;
1227          * we cannot afford to run out of free blocks.
1228          */
1229         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1230                 ei->i_da_metadata_calc_len = save_len;
1231                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1232                 spin_unlock(&ei->i_block_reservation_lock);
1233                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1234                         cond_resched();
1235                         goto repeat;
1236                 }
1237                 return -ENOSPC;
1238         }
1239         ei->i_reserved_meta_blocks += md_needed;
1240         spin_unlock(&ei->i_block_reservation_lock);
1241
1242         return 0;       /* success */
1243 }
1244
1245 /*
1246  * Reserve a single cluster located at lblock
1247  */
1248 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1249 {
1250         int retries = 0;
1251         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1252         struct ext4_inode_info *ei = EXT4_I(inode);
1253         unsigned int md_needed;
1254         int ret;
1255         ext4_lblk_t save_last_lblock;
1256         int save_len;
1257
1258         /*
1259          * We will charge metadata quota at writeout time; this saves
1260          * us from metadata over-estimation, though we may go over by
1261          * a small amount in the end.  Here we just reserve for data.
1262          */
1263         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1264         if (ret)
1265                 return ret;
1266
1267         /*
1268          * recalculate the amount of metadata blocks to reserve
1269          * in order to allocate nrblocks
1270          * worse case is one extent per block
1271          */
1272 repeat:
1273         spin_lock(&ei->i_block_reservation_lock);
1274         /*
1275          * ext4_calc_metadata_amount() has side effects, which we have
1276          * to be prepared undo if we fail to claim space.
1277          */
1278         save_len = ei->i_da_metadata_calc_len;
1279         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1280         md_needed = EXT4_NUM_B2C(sbi,
1281                                  ext4_calc_metadata_amount(inode, lblock));
1282         trace_ext4_da_reserve_space(inode, md_needed);
1283
1284         /*
1285          * We do still charge estimated metadata to the sb though;
1286          * we cannot afford to run out of free blocks.
1287          */
1288         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1289                 ei->i_da_metadata_calc_len = save_len;
1290                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1291                 spin_unlock(&ei->i_block_reservation_lock);
1292                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1293                         cond_resched();
1294                         goto repeat;
1295                 }
1296                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1297                 return -ENOSPC;
1298         }
1299         ei->i_reserved_data_blocks++;
1300         ei->i_reserved_meta_blocks += md_needed;
1301         spin_unlock(&ei->i_block_reservation_lock);
1302
1303         return 0;       /* success */
1304 }
1305
1306 static void ext4_da_release_space(struct inode *inode, int to_free)
1307 {
1308         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1309         struct ext4_inode_info *ei = EXT4_I(inode);
1310
1311         if (!to_free)
1312                 return;         /* Nothing to release, exit */
1313
1314         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1315
1316         trace_ext4_da_release_space(inode, to_free);
1317         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1318                 /*
1319                  * if there aren't enough reserved blocks, then the
1320                  * counter is messed up somewhere.  Since this
1321                  * function is called from invalidate page, it's
1322                  * harmless to return without any action.
1323                  */
1324                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1325                          "ino %lu, to_free %d with only %d reserved "
1326                          "data blocks", inode->i_ino, to_free,
1327                          ei->i_reserved_data_blocks);
1328                 WARN_ON(1);
1329                 to_free = ei->i_reserved_data_blocks;
1330         }
1331         ei->i_reserved_data_blocks -= to_free;
1332
1333         if (ei->i_reserved_data_blocks == 0) {
1334                 /*
1335                  * We can release all of the reserved metadata blocks
1336                  * only when we have written all of the delayed
1337                  * allocation blocks.
1338                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1339                  * i_reserved_data_blocks, etc. refer to number of clusters.
1340                  */
1341                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1342                                    ei->i_reserved_meta_blocks);
1343                 ei->i_reserved_meta_blocks = 0;
1344                 ei->i_da_metadata_calc_len = 0;
1345         }
1346
1347         /* update fs dirty data blocks counter */
1348         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1349
1350         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1351
1352         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1353 }
1354
1355 static void ext4_da_page_release_reservation(struct page *page,
1356                                              unsigned int offset,
1357                                              unsigned int length)
1358 {
1359         int to_release = 0;
1360         struct buffer_head *head, *bh;
1361         unsigned int curr_off = 0;
1362         struct inode *inode = page->mapping->host;
1363         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1364         unsigned int stop = offset + length;
1365         int num_clusters;
1366         ext4_fsblk_t lblk;
1367
1368         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1369
1370         head = page_buffers(page);
1371         bh = head;
1372         do {
1373                 unsigned int next_off = curr_off + bh->b_size;
1374
1375                 if (next_off > stop)
1376                         break;
1377
1378                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1379                         to_release++;
1380                         clear_buffer_delay(bh);
1381                 }
1382                 curr_off = next_off;
1383         } while ((bh = bh->b_this_page) != head);
1384
1385         if (to_release) {
1386                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1387                 ext4_es_remove_extent(inode, lblk, to_release);
1388         }
1389
1390         /* If we have released all the blocks belonging to a cluster, then we
1391          * need to release the reserved space for that cluster. */
1392         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1393         while (num_clusters > 0) {
1394                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1395                         ((num_clusters - 1) << sbi->s_cluster_bits);
1396                 if (sbi->s_cluster_ratio == 1 ||
1397                     !ext4_find_delalloc_cluster(inode, lblk))
1398                         ext4_da_release_space(inode, 1);
1399
1400                 num_clusters--;
1401         }
1402 }
1403
1404 /*
1405  * Delayed allocation stuff
1406  */
1407
1408 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd);
1409
1410 /*
1411  * mpage_da_submit_io - walks through extent of pages and try to write
1412  * them with writepage() call back
1413  *
1414  * @mpd->inode: inode
1415  * @mpd->first_page: first page of the extent
1416  * @mpd->next_page: page after the last page of the extent
1417  *
1418  * By the time mpage_da_submit_io() is called we expect all blocks
1419  * to be allocated. this may be wrong if allocation failed.
1420  *
1421  * As pages are already locked by write_cache_pages(), we can't use it
1422  */
1423 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1424                               struct ext4_map_blocks *map)
1425 {
1426         struct pagevec pvec;
1427         unsigned long index, end;
1428         int ret = 0, err, nr_pages, i;
1429         struct inode *inode = mpd->inode;
1430         struct address_space *mapping = inode->i_mapping;
1431         loff_t size = i_size_read(inode);
1432         unsigned int len, block_start;
1433         struct buffer_head *bh, *page_bufs = NULL;
1434         sector_t pblock = 0, cur_logical = 0;
1435         struct ext4_io_submit io_submit;
1436
1437         BUG_ON(mpd->next_page <= mpd->first_page);
1438         ext4_io_submit_init(&io_submit, mpd->wbc);
1439         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1440         if (!io_submit.io_end) {
1441                 ext4_da_block_invalidatepages(mpd);
1442                 return -ENOMEM;
1443         }
1444         /*
1445          * We need to start from the first_page to the next_page - 1
1446          * to make sure we also write the mapped dirty buffer_heads.
1447          * If we look at mpd->b_blocknr we would only be looking
1448          * at the currently mapped buffer_heads.
1449          */
1450         index = mpd->first_page;
1451         end = mpd->next_page - 1;
1452
1453         pagevec_init(&pvec, 0);
1454         while (index <= end) {
1455                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1456                 if (nr_pages == 0)
1457                         break;
1458                 for (i = 0; i < nr_pages; i++) {
1459                         int skip_page = 0;
1460                         struct page *page = pvec.pages[i];
1461
1462                         index = page->index;
1463                         if (index > end)
1464                                 break;
1465
1466                         if (index == size >> PAGE_CACHE_SHIFT)
1467                                 len = size & ~PAGE_CACHE_MASK;
1468                         else
1469                                 len = PAGE_CACHE_SIZE;
1470                         if (map) {
1471                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1472                                                         inode->i_blkbits);
1473                                 pblock = map->m_pblk + (cur_logical -
1474                                                         map->m_lblk);
1475                         }
1476                         index++;
1477
1478                         BUG_ON(!PageLocked(page));
1479                         BUG_ON(PageWriteback(page));
1480
1481                         bh = page_bufs = page_buffers(page);
1482                         block_start = 0;
1483                         do {
1484                                 if (map && (cur_logical >= map->m_lblk) &&
1485                                     (cur_logical <= (map->m_lblk +
1486                                                      (map->m_len - 1)))) {
1487                                         if (buffer_delay(bh)) {
1488                                                 clear_buffer_delay(bh);
1489                                                 bh->b_blocknr = pblock;
1490                                         }
1491                                         if (buffer_unwritten(bh) ||
1492                                             buffer_mapped(bh))
1493                                                 BUG_ON(bh->b_blocknr != pblock);
1494                                         if (map->m_flags & EXT4_MAP_UNINIT)
1495                                                 set_buffer_uninit(bh);
1496                                         clear_buffer_unwritten(bh);
1497                                 }
1498
1499                                 /*
1500                                  * skip page if block allocation undone and
1501                                  * block is dirty
1502                                  */
1503                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1504                                         skip_page = 1;
1505                                 bh = bh->b_this_page;
1506                                 block_start += bh->b_size;
1507                                 cur_logical++;
1508                                 pblock++;
1509                         } while (bh != page_bufs);
1510
1511                         if (skip_page) {
1512                                 unlock_page(page);
1513                                 continue;
1514                         }
1515
1516                         clear_page_dirty_for_io(page);
1517                         err = ext4_bio_write_page(&io_submit, page, len,
1518                                                   mpd->wbc);
1519                         if (!err)
1520                                 mpd->pages_written++;
1521                         /*
1522                          * In error case, we have to continue because
1523                          * remaining pages are still locked
1524                          */
1525                         if (ret == 0)
1526                                 ret = err;
1527                 }
1528                 pagevec_release(&pvec);
1529         }
1530         ext4_io_submit(&io_submit);
1531         /* Drop io_end reference we got from init */
1532         ext4_put_io_end_defer(io_submit.io_end);
1533         return ret;
1534 }
1535
1536 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1537 {
1538         int nr_pages, i;
1539         pgoff_t index, end;
1540         struct pagevec pvec;
1541         struct inode *inode = mpd->inode;
1542         struct address_space *mapping = inode->i_mapping;
1543         ext4_lblk_t start, last;
1544
1545         index = mpd->first_page;
1546         end   = mpd->next_page - 1;
1547
1548         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1549         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1550         ext4_es_remove_extent(inode, start, last - start + 1);
1551
1552         pagevec_init(&pvec, 0);
1553         while (index <= end) {
1554                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1555                 if (nr_pages == 0)
1556                         break;
1557                 for (i = 0; i < nr_pages; i++) {
1558                         struct page *page = pvec.pages[i];
1559                         if (page->index > end)
1560                                 break;
1561                         BUG_ON(!PageLocked(page));
1562                         BUG_ON(PageWriteback(page));
1563                         block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1564                         ClearPageUptodate(page);
1565                         unlock_page(page);
1566                 }
1567                 index = pvec.pages[nr_pages - 1]->index + 1;
1568                 pagevec_release(&pvec);
1569         }
1570         return;
1571 }
1572
1573 static void ext4_print_free_blocks(struct inode *inode)
1574 {
1575         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1576         struct super_block *sb = inode->i_sb;
1577         struct ext4_inode_info *ei = EXT4_I(inode);
1578
1579         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1580                EXT4_C2B(EXT4_SB(inode->i_sb),
1581                         ext4_count_free_clusters(sb)));
1582         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1583         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1584                (long long) EXT4_C2B(EXT4_SB(sb),
1585                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1586         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1587                (long long) EXT4_C2B(EXT4_SB(sb),
1588                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1589         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1590         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1591                  ei->i_reserved_data_blocks);
1592         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1593                ei->i_reserved_meta_blocks);
1594         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1595                ei->i_allocated_meta_blocks);
1596         return;
1597 }
1598
1599 /*
1600  * mpage_da_map_and_submit - go through given space, map them
1601  *       if necessary, and then submit them for I/O
1602  *
1603  * @mpd - bh describing space
1604  *
1605  * The function skips space we know is already mapped to disk blocks.
1606  *
1607  */
1608 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1609 {
1610         int err, blks, get_blocks_flags;
1611         struct ext4_map_blocks map, *mapp = NULL;
1612         sector_t next = mpd->b_blocknr;
1613         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1614         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1615         handle_t *handle = NULL;
1616
1617         /*
1618          * If the blocks are mapped already, or we couldn't accumulate
1619          * any blocks, then proceed immediately to the submission stage.
1620          */
1621         if ((mpd->b_size == 0) ||
1622             ((mpd->b_state  & (1 << BH_Mapped)) &&
1623              !(mpd->b_state & (1 << BH_Delay)) &&
1624              !(mpd->b_state & (1 << BH_Unwritten))))
1625                 goto submit_io;
1626
1627         handle = ext4_journal_current_handle();
1628         BUG_ON(!handle);
1629
1630         /*
1631          * Call ext4_map_blocks() to allocate any delayed allocation
1632          * blocks, or to convert an uninitialized extent to be
1633          * initialized (in the case where we have written into
1634          * one or more preallocated blocks).
1635          *
1636          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1637          * indicate that we are on the delayed allocation path.  This
1638          * affects functions in many different parts of the allocation
1639          * call path.  This flag exists primarily because we don't
1640          * want to change *many* call functions, so ext4_map_blocks()
1641          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1642          * inode's allocation semaphore is taken.
1643          *
1644          * If the blocks in questions were delalloc blocks, set
1645          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1646          * variables are updated after the blocks have been allocated.
1647          */
1648         map.m_lblk = next;
1649         map.m_len = max_blocks;
1650         /*
1651          * We're in delalloc path and it is possible that we're going to
1652          * need more metadata blocks than previously reserved. However
1653          * we must not fail because we're in writeback and there is
1654          * nothing we can do about it so it might result in data loss.
1655          * So use reserved blocks to allocate metadata if possible.
1656          */
1657         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1658                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
1659         if (ext4_should_dioread_nolock(mpd->inode))
1660                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1661         if (mpd->b_state & (1 << BH_Delay))
1662                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1663
1664
1665         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1666         if (blks < 0) {
1667                 struct super_block *sb = mpd->inode->i_sb;
1668
1669                 err = blks;
1670                 /*
1671                  * If get block returns EAGAIN or ENOSPC and there
1672                  * appears to be free blocks we will just let
1673                  * mpage_da_submit_io() unlock all of the pages.
1674                  */
1675                 if (err == -EAGAIN)
1676                         goto submit_io;
1677
1678                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1679                         mpd->retval = err;
1680                         goto submit_io;
1681                 }
1682
1683                 /*
1684                  * get block failure will cause us to loop in
1685                  * writepages, because a_ops->writepage won't be able
1686                  * to make progress. The page will be redirtied by
1687                  * writepage and writepages will again try to write
1688                  * the same.
1689                  */
1690                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1691                         ext4_msg(sb, KERN_CRIT,
1692                                  "delayed block allocation failed for inode %lu "
1693                                  "at logical offset %llu with max blocks %zd "
1694                                  "with error %d", mpd->inode->i_ino,
1695                                  (unsigned long long) next,
1696                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1697                         ext4_msg(sb, KERN_CRIT,
1698                                 "This should not happen!! Data will be lost");
1699                         if (err == -ENOSPC)
1700                                 ext4_print_free_blocks(mpd->inode);
1701                 }
1702                 /* invalidate all the pages */
1703                 ext4_da_block_invalidatepages(mpd);
1704
1705                 /* Mark this page range as having been completed */
1706                 mpd->io_done = 1;
1707                 return;
1708         }
1709         BUG_ON(blks == 0);
1710
1711         mapp = &map;
1712         if (map.m_flags & EXT4_MAP_NEW) {
1713                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1714                 int i;
1715
1716                 for (i = 0; i < map.m_len; i++)
1717                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1718         }
1719
1720         /*
1721          * Update on-disk size along with block allocation.
1722          */
1723         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1724         if (disksize > i_size_read(mpd->inode))
1725                 disksize = i_size_read(mpd->inode);
1726         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1727                 ext4_update_i_disksize(mpd->inode, disksize);
1728                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1729                 if (err)
1730                         ext4_error(mpd->inode->i_sb,
1731                                    "Failed to mark inode %lu dirty",
1732                                    mpd->inode->i_ino);
1733         }
1734
1735 submit_io:
1736         mpage_da_submit_io(mpd, mapp);
1737         mpd->io_done = 1;
1738 }
1739
1740 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1741                 (1 << BH_Delay) | (1 << BH_Unwritten))
1742
1743 /*
1744  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1745  *
1746  * @mpd->lbh - extent of blocks
1747  * @logical - logical number of the block in the file
1748  * @b_state - b_state of the buffer head added
1749  *
1750  * the function is used to collect contig. blocks in same state
1751  */
1752 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1753                                    unsigned long b_state)
1754 {
1755         sector_t next;
1756         int blkbits = mpd->inode->i_blkbits;
1757         int nrblocks = mpd->b_size >> blkbits;
1758
1759         /*
1760          * XXX Don't go larger than mballoc is willing to allocate
1761          * This is a stopgap solution.  We eventually need to fold
1762          * mpage_da_submit_io() into this function and then call
1763          * ext4_map_blocks() multiple times in a loop
1764          */
1765         if (nrblocks >= (8*1024*1024 >> blkbits))
1766                 goto flush_it;
1767
1768         /* check if the reserved journal credits might overflow */
1769         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1770                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1771                         /*
1772                          * With non-extent format we are limited by the journal
1773                          * credit available.  Total credit needed to insert
1774                          * nrblocks contiguous blocks is dependent on the
1775                          * nrblocks.  So limit nrblocks.
1776                          */
1777                         goto flush_it;
1778                 }
1779         }
1780         /*
1781          * First block in the extent
1782          */
1783         if (mpd->b_size == 0) {
1784                 mpd->b_blocknr = logical;
1785                 mpd->b_size = 1 << blkbits;
1786                 mpd->b_state = b_state & BH_FLAGS;
1787                 return;
1788         }
1789
1790         next = mpd->b_blocknr + nrblocks;
1791         /*
1792          * Can we merge the block to our big extent?
1793          */
1794         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1795                 mpd->b_size += 1 << blkbits;
1796                 return;
1797         }
1798
1799 flush_it:
1800         /*
1801          * We couldn't merge the block to our extent, so we
1802          * need to flush current  extent and start new one
1803          */
1804         mpage_da_map_and_submit(mpd);
1805         return;
1806 }
1807
1808 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1809 {
1810         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1811 }
1812
1813 /*
1814  * This function is grabs code from the very beginning of
1815  * ext4_map_blocks, but assumes that the caller is from delayed write
1816  * time. This function looks up the requested blocks and sets the
1817  * buffer delay bit under the protection of i_data_sem.
1818  */
1819 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1820                               struct ext4_map_blocks *map,
1821                               struct buffer_head *bh)
1822 {
1823         struct extent_status es;
1824         int retval;
1825         sector_t invalid_block = ~((sector_t) 0xffff);
1826 #ifdef ES_AGGRESSIVE_TEST
1827         struct ext4_map_blocks orig_map;
1828
1829         memcpy(&orig_map, map, sizeof(*map));
1830 #endif
1831
1832         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1833                 invalid_block = ~0;
1834
1835         map->m_flags = 0;
1836         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1837                   "logical block %lu\n", inode->i_ino, map->m_len,
1838                   (unsigned long) map->m_lblk);
1839
1840         /* Lookup extent status tree firstly */
1841         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1842
1843                 if (ext4_es_is_hole(&es)) {
1844                         retval = 0;
1845                         down_read((&EXT4_I(inode)->i_data_sem));
1846                         goto add_delayed;
1847                 }
1848
1849                 /*
1850                  * Delayed extent could be allocated by fallocate.
1851                  * So we need to check it.
1852                  */
1853                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1854                         map_bh(bh, inode->i_sb, invalid_block);
1855                         set_buffer_new(bh);
1856                         set_buffer_delay(bh);
1857                         return 0;
1858                 }
1859
1860                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1861                 retval = es.es_len - (iblock - es.es_lblk);
1862                 if (retval > map->m_len)
1863                         retval = map->m_len;
1864                 map->m_len = retval;
1865                 if (ext4_es_is_written(&es))
1866                         map->m_flags |= EXT4_MAP_MAPPED;
1867                 else if (ext4_es_is_unwritten(&es))
1868                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1869                 else
1870                         BUG_ON(1);
1871
1872 #ifdef ES_AGGRESSIVE_TEST
1873                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1874 #endif
1875                 return retval;
1876         }
1877
1878         /*
1879          * Try to see if we can get the block without requesting a new
1880          * file system block.
1881          */
1882         down_read((&EXT4_I(inode)->i_data_sem));
1883         if (ext4_has_inline_data(inode)) {
1884                 /*
1885                  * We will soon create blocks for this page, and let
1886                  * us pretend as if the blocks aren't allocated yet.
1887                  * In case of clusters, we have to handle the work
1888                  * of mapping from cluster so that the reserved space
1889                  * is calculated properly.
1890                  */
1891                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1892                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1893                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1894                 retval = 0;
1895         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1896                 retval = ext4_ext_map_blocks(NULL, inode, map,
1897                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1898         else
1899                 retval = ext4_ind_map_blocks(NULL, inode, map,
1900                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1901
1902 add_delayed:
1903         if (retval == 0) {
1904                 int ret;
1905                 /*
1906                  * XXX: __block_prepare_write() unmaps passed block,
1907                  * is it OK?
1908                  */
1909                 /*
1910                  * If the block was allocated from previously allocated cluster,
1911                  * then we don't need to reserve it again. However we still need
1912                  * to reserve metadata for every block we're going to write.
1913                  */
1914                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1915                         ret = ext4_da_reserve_space(inode, iblock);
1916                         if (ret) {
1917                                 /* not enough space to reserve */
1918                                 retval = ret;
1919                                 goto out_unlock;
1920                         }
1921                 } else {
1922                         ret = ext4_da_reserve_metadata(inode, iblock);
1923                         if (ret) {
1924                                 /* not enough space to reserve */
1925                                 retval = ret;
1926                                 goto out_unlock;
1927                         }
1928                 }
1929
1930                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1931                                             ~0, EXTENT_STATUS_DELAYED);
1932                 if (ret) {
1933                         retval = ret;
1934                         goto out_unlock;
1935                 }
1936
1937                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1938                  * and it should not appear on the bh->b_state.
1939                  */
1940                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1941
1942                 map_bh(bh, inode->i_sb, invalid_block);
1943                 set_buffer_new(bh);
1944                 set_buffer_delay(bh);
1945         } else if (retval > 0) {
1946                 int ret;
1947                 unsigned long long status;
1948
1949 #ifdef ES_AGGRESSIVE_TEST
1950                 if (retval != map->m_len) {
1951                         printk("ES len assertation failed for inode: %lu "
1952                                "retval %d != map->m_len %d "
1953                                "in %s (lookup)\n", inode->i_ino, retval,
1954                                map->m_len, __func__);
1955                 }
1956 #endif
1957
1958                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1959                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1960                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1961                                             map->m_pblk, status);
1962                 if (ret != 0)
1963                         retval = ret;
1964         }
1965
1966 out_unlock:
1967         up_read((&EXT4_I(inode)->i_data_sem));
1968
1969         return retval;
1970 }
1971
1972 /*
1973  * This is a special get_blocks_t callback which is used by
1974  * ext4_da_write_begin().  It will either return mapped block or
1975  * reserve space for a single block.
1976  *
1977  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1978  * We also have b_blocknr = -1 and b_bdev initialized properly
1979  *
1980  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1981  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1982  * initialized properly.
1983  */
1984 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1985                            struct buffer_head *bh, int create)
1986 {
1987         struct ext4_map_blocks map;
1988         int ret = 0;
1989
1990         BUG_ON(create == 0);
1991         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1992
1993         map.m_lblk = iblock;
1994         map.m_len = 1;
1995
1996         /*
1997          * first, we need to know whether the block is allocated already
1998          * preallocated blocks are unmapped but should treated
1999          * the same as allocated blocks.
2000          */
2001         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2002         if (ret <= 0)
2003                 return ret;
2004
2005         map_bh(bh, inode->i_sb, map.m_pblk);
2006         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2007
2008         if (buffer_unwritten(bh)) {
2009                 /* A delayed write to unwritten bh should be marked
2010                  * new and mapped.  Mapped ensures that we don't do
2011                  * get_block multiple times when we write to the same
2012                  * offset and new ensures that we do proper zero out
2013                  * for partial write.
2014                  */
2015                 set_buffer_new(bh);
2016                 set_buffer_mapped(bh);
2017         }
2018         return 0;
2019 }
2020
2021 static int bget_one(handle_t *handle, struct buffer_head *bh)
2022 {
2023         get_bh(bh);
2024         return 0;
2025 }
2026
2027 static int bput_one(handle_t *handle, struct buffer_head *bh)
2028 {
2029         put_bh(bh);
2030         return 0;
2031 }
2032
2033 static int __ext4_journalled_writepage(struct page *page,
2034                                        unsigned int len)
2035 {
2036         struct address_space *mapping = page->mapping;
2037         struct inode *inode = mapping->host;
2038         struct buffer_head *page_bufs = NULL;
2039         handle_t *handle = NULL;
2040         int ret = 0, err = 0;
2041         int inline_data = ext4_has_inline_data(inode);
2042         struct buffer_head *inode_bh = NULL;
2043
2044         ClearPageChecked(page);
2045
2046         if (inline_data) {
2047                 BUG_ON(page->index != 0);
2048                 BUG_ON(len > ext4_get_max_inline_size(inode));
2049                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2050                 if (inode_bh == NULL)
2051                         goto out;
2052         } else {
2053                 page_bufs = page_buffers(page);
2054                 if (!page_bufs) {
2055                         BUG();
2056                         goto out;
2057                 }
2058                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2059                                        NULL, bget_one);
2060         }
2061         /* As soon as we unlock the page, it can go away, but we have
2062          * references to buffers so we are safe */
2063         unlock_page(page);
2064
2065         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2066                                     ext4_writepage_trans_blocks(inode));
2067         if (IS_ERR(handle)) {
2068                 ret = PTR_ERR(handle);
2069                 goto out;
2070         }
2071
2072         BUG_ON(!ext4_handle_valid(handle));
2073
2074         if (inline_data) {
2075                 ret = ext4_journal_get_write_access(handle, inode_bh);
2076
2077                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2078
2079         } else {
2080                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2081                                              do_journal_get_write_access);
2082
2083                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2084                                              write_end_fn);
2085         }
2086         if (ret == 0)
2087                 ret = err;
2088         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2089         err = ext4_journal_stop(handle);
2090         if (!ret)
2091                 ret = err;
2092
2093         if (!ext4_has_inline_data(inode))
2094                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2095                                        NULL, bput_one);
2096         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2097 out:
2098         brelse(inode_bh);
2099         return ret;
2100 }
2101
2102 /*
2103  * Note that we don't need to start a transaction unless we're journaling data
2104  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2105  * need to file the inode to the transaction's list in ordered mode because if
2106  * we are writing back data added by write(), the inode is already there and if
2107  * we are writing back data modified via mmap(), no one guarantees in which
2108  * transaction the data will hit the disk. In case we are journaling data, we
2109  * cannot start transaction directly because transaction start ranks above page
2110  * lock so we have to do some magic.
2111  *
2112  * This function can get called via...
2113  *   - ext4_da_writepages after taking page lock (have journal handle)
2114  *   - journal_submit_inode_data_buffers (no journal handle)
2115  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2116  *   - grab_page_cache when doing write_begin (have journal handle)
2117  *
2118  * We don't do any block allocation in this function. If we have page with
2119  * multiple blocks we need to write those buffer_heads that are mapped. This
2120  * is important for mmaped based write. So if we do with blocksize 1K
2121  * truncate(f, 1024);
2122  * a = mmap(f, 0, 4096);
2123  * a[0] = 'a';
2124  * truncate(f, 4096);
2125  * we have in the page first buffer_head mapped via page_mkwrite call back
2126  * but other buffer_heads would be unmapped but dirty (dirty done via the
2127  * do_wp_page). So writepage should write the first block. If we modify
2128  * the mmap area beyond 1024 we will again get a page_fault and the
2129  * page_mkwrite callback will do the block allocation and mark the
2130  * buffer_heads mapped.
2131  *
2132  * We redirty the page if we have any buffer_heads that is either delay or
2133  * unwritten in the page.
2134  *
2135  * We can get recursively called as show below.
2136  *
2137  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2138  *              ext4_writepage()
2139  *
2140  * But since we don't do any block allocation we should not deadlock.
2141  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2142  */
2143 static int ext4_writepage(struct page *page,
2144                           struct writeback_control *wbc)
2145 {
2146         int ret = 0;
2147         loff_t size;
2148         unsigned int len;
2149         struct buffer_head *page_bufs = NULL;
2150         struct inode *inode = page->mapping->host;
2151         struct ext4_io_submit io_submit;
2152
2153         trace_ext4_writepage(page);
2154         size = i_size_read(inode);
2155         if (page->index == size >> PAGE_CACHE_SHIFT)
2156                 len = size & ~PAGE_CACHE_MASK;
2157         else
2158                 len = PAGE_CACHE_SIZE;
2159
2160         page_bufs = page_buffers(page);
2161         /*
2162          * We cannot do block allocation or other extent handling in this
2163          * function. If there are buffers needing that, we have to redirty
2164          * the page. But we may reach here when we do a journal commit via
2165          * journal_submit_inode_data_buffers() and in that case we must write
2166          * allocated buffers to achieve data=ordered mode guarantees.
2167          */
2168         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2169                                    ext4_bh_delay_or_unwritten)) {
2170                 redirty_page_for_writepage(wbc, page);
2171                 if (current->flags & PF_MEMALLOC) {
2172                         /*
2173                          * For memory cleaning there's no point in writing only
2174                          * some buffers. So just bail out. Warn if we came here
2175                          * from direct reclaim.
2176                          */
2177                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2178                                                         == PF_MEMALLOC);
2179                         unlock_page(page);
2180                         return 0;
2181                 }
2182         }
2183
2184         if (PageChecked(page) && ext4_should_journal_data(inode))
2185                 /*
2186                  * It's mmapped pagecache.  Add buffers and journal it.  There
2187                  * doesn't seem much point in redirtying the page here.
2188                  */
2189                 return __ext4_journalled_writepage(page, len);
2190
2191         ext4_io_submit_init(&io_submit, wbc);
2192         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2193         if (!io_submit.io_end) {
2194                 redirty_page_for_writepage(wbc, page);
2195                 unlock_page(page);
2196                 return -ENOMEM;
2197         }
2198         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2199         ext4_io_submit(&io_submit);
2200         /* Drop io_end reference we got from init */
2201         ext4_put_io_end_defer(io_submit.io_end);
2202         return ret;
2203 }
2204
2205 /*
2206  * This is called via ext4_da_writepages() to
2207  * calculate the total number of credits to reserve to fit
2208  * a single extent allocation into a single transaction,
2209  * ext4_da_writpeages() will loop calling this before
2210  * the block allocation.
2211  */
2212
2213 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2214 {
2215         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2216
2217         /*
2218          * With non-extent format the journal credit needed to
2219          * insert nrblocks contiguous block is dependent on
2220          * number of contiguous block. So we will limit
2221          * number of contiguous block to a sane value
2222          */
2223         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2224             (max_blocks > EXT4_MAX_TRANS_DATA))
2225                 max_blocks = EXT4_MAX_TRANS_DATA;
2226
2227         return ext4_chunk_trans_blocks(inode, max_blocks);
2228 }
2229
2230 /*
2231  * write_cache_pages_da - walk the list of dirty pages of the given
2232  * address space and accumulate pages that need writing, and call
2233  * mpage_da_map_and_submit to map a single contiguous memory region
2234  * and then write them.
2235  */
2236 static int write_cache_pages_da(handle_t *handle,
2237                                 struct address_space *mapping,
2238                                 struct writeback_control *wbc,
2239                                 struct mpage_da_data *mpd,
2240                                 pgoff_t *done_index)
2241 {
2242         struct buffer_head      *bh, *head;
2243         struct inode            *inode = mapping->host;
2244         struct pagevec          pvec;
2245         unsigned int            nr_pages;
2246         sector_t                logical;
2247         pgoff_t                 index, end;
2248         long                    nr_to_write = wbc->nr_to_write;
2249         int                     i, tag, ret = 0;
2250
2251         memset(mpd, 0, sizeof(struct mpage_da_data));
2252         mpd->wbc = wbc;
2253         mpd->inode = inode;
2254         pagevec_init(&pvec, 0);
2255         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2256         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2257
2258         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2259                 tag = PAGECACHE_TAG_TOWRITE;
2260         else
2261                 tag = PAGECACHE_TAG_DIRTY;
2262
2263         *done_index = index;
2264         while (index <= end) {
2265                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2266                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2267                 if (nr_pages == 0)
2268                         return 0;
2269
2270                 for (i = 0; i < nr_pages; i++) {
2271                         struct page *page = pvec.pages[i];
2272
2273                         /*
2274                          * At this point, the page may be truncated or
2275                          * invalidated (changing page->mapping to NULL), or
2276                          * even swizzled back from swapper_space to tmpfs file
2277                          * mapping. However, page->index will not change
2278                          * because we have a reference on the page.
2279                          */
2280                         if (page->index > end)
2281                                 goto out;
2282
2283                         *done_index = page->index + 1;
2284
2285                         /*
2286                          * If we can't merge this page, and we have
2287                          * accumulated an contiguous region, write it
2288                          */
2289                         if ((mpd->next_page != page->index) &&
2290                             (mpd->next_page != mpd->first_page)) {
2291                                 mpage_da_map_and_submit(mpd);
2292                                 goto ret_extent_tail;
2293                         }
2294
2295                         lock_page(page);
2296
2297                         /*
2298                          * If the page is no longer dirty, or its
2299                          * mapping no longer corresponds to inode we
2300                          * are writing (which means it has been
2301                          * truncated or invalidated), or the page is
2302                          * already under writeback and we are not
2303                          * doing a data integrity writeback, skip the page
2304                          */
2305                         if (!PageDirty(page) ||
2306                             (PageWriteback(page) &&
2307                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2308                             unlikely(page->mapping != mapping)) {
2309                                 unlock_page(page);
2310                                 continue;
2311                         }
2312
2313                         wait_on_page_writeback(page);
2314                         BUG_ON(PageWriteback(page));
2315
2316                         /*
2317                          * If we have inline data and arrive here, it means that
2318                          * we will soon create the block for the 1st page, so
2319                          * we'd better clear the inline data here.
2320                          */
2321                         if (ext4_has_inline_data(inode)) {
2322                                 BUG_ON(ext4_test_inode_state(inode,
2323                                                 EXT4_STATE_MAY_INLINE_DATA));
2324                                 ext4_destroy_inline_data(handle, inode);
2325                         }
2326
2327                         if (mpd->next_page != page->index)
2328                                 mpd->first_page = page->index;
2329                         mpd->next_page = page->index + 1;
2330                         logical = (sector_t) page->index <<
2331                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2332
2333                         /* Add all dirty buffers to mpd */
2334                         head = page_buffers(page);
2335                         bh = head;
2336                         do {
2337                                 BUG_ON(buffer_locked(bh));
2338                                 /*
2339                                  * We need to try to allocate unmapped blocks
2340                                  * in the same page.  Otherwise we won't make
2341                                  * progress with the page in ext4_writepage
2342                                  */
2343                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2344                                         mpage_add_bh_to_extent(mpd, logical,
2345                                                                bh->b_state);
2346                                         if (mpd->io_done)
2347                                                 goto ret_extent_tail;
2348                                 } else if (buffer_dirty(bh) &&
2349                                            buffer_mapped(bh)) {
2350                                         /*
2351                                          * mapped dirty buffer. We need to
2352                                          * update the b_state because we look
2353                                          * at b_state in mpage_da_map_blocks.
2354                                          * We don't update b_size because if we
2355                                          * find an unmapped buffer_head later
2356                                          * we need to use the b_state flag of
2357                                          * that buffer_head.
2358                                          */
2359                                         if (mpd->b_size == 0)
2360                                                 mpd->b_state =
2361                                                         bh->b_state & BH_FLAGS;
2362                                 }
2363                                 logical++;
2364                         } while ((bh = bh->b_this_page) != head);
2365
2366                         if (nr_to_write > 0) {
2367                                 nr_to_write--;
2368                                 if (nr_to_write == 0 &&
2369                                     wbc->sync_mode == WB_SYNC_NONE)
2370                                         /*
2371                                          * We stop writing back only if we are
2372                                          * not doing integrity sync. In case of
2373                                          * integrity sync we have to keep going
2374                                          * because someone may be concurrently
2375                                          * dirtying pages, and we might have
2376                                          * synced a lot of newly appeared dirty
2377                                          * pages, but have not synced all of the
2378                                          * old dirty pages.
2379                                          */
2380                                         goto out;
2381                         }
2382                 }
2383                 pagevec_release(&pvec);
2384                 cond_resched();
2385         }
2386         return 0;
2387 ret_extent_tail:
2388         ret = MPAGE_DA_EXTENT_TAIL;
2389 out:
2390         pagevec_release(&pvec);
2391         cond_resched();
2392         return ret;
2393 }
2394
2395
2396 static int ext4_da_writepages(struct address_space *mapping,
2397                               struct writeback_control *wbc)
2398 {
2399         pgoff_t index;
2400         int range_whole = 0;
2401         handle_t *handle = NULL;
2402         struct mpage_da_data mpd;
2403         struct inode *inode = mapping->host;
2404         int pages_written = 0;
2405         int range_cyclic, cycled = 1, io_done = 0;
2406         int needed_blocks, ret = 0;
2407         loff_t range_start = wbc->range_start;
2408         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2409         pgoff_t done_index = 0;
2410         pgoff_t end;
2411         struct blk_plug plug;
2412
2413         trace_ext4_da_writepages(inode, wbc);
2414
2415         /*
2416          * No pages to write? This is mainly a kludge to avoid starting
2417          * a transaction for special inodes like journal inode on last iput()
2418          * because that could violate lock ordering on umount
2419          */
2420         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2421                 return 0;
2422
2423         /*
2424          * If the filesystem has aborted, it is read-only, so return
2425          * right away instead of dumping stack traces later on that
2426          * will obscure the real source of the problem.  We test
2427          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2428          * the latter could be true if the filesystem is mounted
2429          * read-only, and in that case, ext4_da_writepages should
2430          * *never* be called, so if that ever happens, we would want
2431          * the stack trace.
2432          */
2433         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2434                 return -EROFS;
2435
2436         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2437                 range_whole = 1;
2438
2439         range_cyclic = wbc->range_cyclic;
2440         if (wbc->range_cyclic) {
2441                 index = mapping->writeback_index;
2442                 if (index)
2443                         cycled = 0;
2444                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2445                 wbc->range_end  = LLONG_MAX;
2446                 wbc->range_cyclic = 0;
2447                 end = -1;
2448         } else {
2449                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2450                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2451         }
2452
2453 retry:
2454         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2455                 tag_pages_for_writeback(mapping, index, end);
2456
2457         blk_start_plug(&plug);
2458         while (!ret && wbc->nr_to_write > 0) {
2459
2460                 /*
2461                  * we  insert one extent at a time. So we need
2462                  * credit needed for single extent allocation.
2463                  * journalled mode is currently not supported
2464                  * by delalloc
2465                  */
2466                 BUG_ON(ext4_should_journal_data(inode));
2467                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2468
2469                 /* start a new transaction*/
2470                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2471                                             needed_blocks);
2472                 if (IS_ERR(handle)) {
2473                         ret = PTR_ERR(handle);
2474                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2475                                "%ld pages, ino %lu; err %d", __func__,
2476                                 wbc->nr_to_write, inode->i_ino, ret);
2477                         blk_finish_plug(&plug);
2478                         goto out_writepages;
2479                 }
2480
2481                 /*
2482                  * Now call write_cache_pages_da() to find the next
2483                  * contiguous region of logical blocks that need
2484                  * blocks to be allocated by ext4 and submit them.
2485                  */
2486                 ret = write_cache_pages_da(handle, mapping,
2487                                            wbc, &mpd, &done_index);
2488                 /*
2489                  * If we have a contiguous extent of pages and we
2490                  * haven't done the I/O yet, map the blocks and submit
2491                  * them for I/O.
2492                  */
2493                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2494                         mpage_da_map_and_submit(&mpd);
2495                         ret = MPAGE_DA_EXTENT_TAIL;
2496                 }
2497                 trace_ext4_da_write_pages(inode, &mpd);
2498                 wbc->nr_to_write -= mpd.pages_written;
2499
2500                 ext4_journal_stop(handle);
2501
2502                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2503                         /* commit the transaction which would
2504                          * free blocks released in the transaction
2505                          * and try again
2506                          */
2507                         jbd2_journal_force_commit_nested(sbi->s_journal);
2508                         ret = 0;
2509                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2510                         /*
2511                          * Got one extent now try with rest of the pages.
2512                          * If mpd.retval is set -EIO, journal is aborted.
2513                          * So we don't need to write any more.
2514                          */
2515                         pages_written += mpd.pages_written;
2516                         ret = mpd.retval;
2517                         io_done = 1;
2518                 } else if (wbc->nr_to_write)
2519                         /*
2520                          * There is no more writeout needed
2521                          * or we requested for a noblocking writeout
2522                          * and we found the device congested
2523                          */
2524                         break;
2525         }
2526         blk_finish_plug(&plug);
2527         if (!io_done && !cycled) {
2528                 cycled = 1;
2529                 index = 0;
2530                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2531                 wbc->range_end  = mapping->writeback_index - 1;
2532                 goto retry;
2533         }
2534
2535         /* Update index */
2536         wbc->range_cyclic = range_cyclic;
2537         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2538                 /*
2539                  * set the writeback_index so that range_cyclic
2540                  * mode will write it back later
2541                  */
2542                 mapping->writeback_index = done_index;
2543
2544 out_writepages:
2545         wbc->range_start = range_start;
2546         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2547         return ret;
2548 }
2549
2550 static int ext4_nonda_switch(struct super_block *sb)
2551 {
2552         s64 free_clusters, dirty_clusters;
2553         struct ext4_sb_info *sbi = EXT4_SB(sb);
2554
2555         /*
2556          * switch to non delalloc mode if we are running low
2557          * on free block. The free block accounting via percpu
2558          * counters can get slightly wrong with percpu_counter_batch getting
2559          * accumulated on each CPU without updating global counters
2560          * Delalloc need an accurate free block accounting. So switch
2561          * to non delalloc when we are near to error range.
2562          */
2563         free_clusters =
2564                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2565         dirty_clusters =
2566                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2567         /*
2568          * Start pushing delalloc when 1/2 of free blocks are dirty.
2569          */
2570         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2571                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2572
2573         if (2 * free_clusters < 3 * dirty_clusters ||
2574             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2575                 /*
2576                  * free block count is less than 150% of dirty blocks
2577                  * or free blocks is less than watermark
2578                  */
2579                 return 1;
2580         }
2581         return 0;
2582 }
2583
2584 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2585                                loff_t pos, unsigned len, unsigned flags,
2586                                struct page **pagep, void **fsdata)
2587 {
2588         int ret, retries = 0;
2589         struct page *page;
2590         pgoff_t index;
2591         struct inode *inode = mapping->host;
2592         handle_t *handle;
2593
2594         index = pos >> PAGE_CACHE_SHIFT;
2595
2596         if (ext4_nonda_switch(inode->i_sb)) {
2597                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2598                 return ext4_write_begin(file, mapping, pos,
2599                                         len, flags, pagep, fsdata);
2600         }
2601         *fsdata = (void *)0;
2602         trace_ext4_da_write_begin(inode, pos, len, flags);
2603
2604         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2605                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2606                                                       pos, len, flags,
2607                                                       pagep, fsdata);
2608                 if (ret < 0)
2609                         return ret;
2610                 if (ret == 1)
2611                         return 0;
2612         }
2613
2614         /*
2615          * grab_cache_page_write_begin() can take a long time if the
2616          * system is thrashing due to memory pressure, or if the page
2617          * is being written back.  So grab it first before we start
2618          * the transaction handle.  This also allows us to allocate
2619          * the page (if needed) without using GFP_NOFS.
2620          */
2621 retry_grab:
2622         page = grab_cache_page_write_begin(mapping, index, flags);
2623         if (!page)
2624                 return -ENOMEM;
2625         unlock_page(page);
2626
2627         /*
2628          * With delayed allocation, we don't log the i_disksize update
2629          * if there is delayed block allocation. But we still need
2630          * to journalling the i_disksize update if writes to the end
2631          * of file which has an already mapped buffer.
2632          */
2633 retry_journal:
2634         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2635         if (IS_ERR(handle)) {
2636                 page_cache_release(page);
2637                 return PTR_ERR(handle);
2638         }
2639
2640         lock_page(page);
2641         if (page->mapping != mapping) {
2642                 /* The page got truncated from under us */
2643                 unlock_page(page);
2644                 page_cache_release(page);
2645                 ext4_journal_stop(handle);
2646                 goto retry_grab;
2647         }
2648         /* In case writeback began while the page was unlocked */
2649         wait_on_page_writeback(page);
2650
2651         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2652         if (ret < 0) {
2653                 unlock_page(page);
2654                 ext4_journal_stop(handle);
2655                 /*
2656                  * block_write_begin may have instantiated a few blocks
2657                  * outside i_size.  Trim these off again. Don't need
2658                  * i_size_read because we hold i_mutex.
2659                  */
2660                 if (pos + len > inode->i_size)
2661                         ext4_truncate_failed_write(inode);
2662
2663                 if (ret == -ENOSPC &&
2664                     ext4_should_retry_alloc(inode->i_sb, &retries))
2665                         goto retry_journal;
2666
2667                 page_cache_release(page);
2668                 return ret;
2669         }
2670
2671         *pagep = page;
2672         return ret;
2673 }
2674
2675 /*
2676  * Check if we should update i_disksize
2677  * when write to the end of file but not require block allocation
2678  */
2679 static int ext4_da_should_update_i_disksize(struct page *page,
2680                                             unsigned long offset)
2681 {
2682         struct buffer_head *bh;
2683         struct inode *inode = page->mapping->host;
2684         unsigned int idx;
2685         int i;
2686
2687         bh = page_buffers(page);
2688         idx = offset >> inode->i_blkbits;
2689
2690         for (i = 0; i < idx; i++)
2691                 bh = bh->b_this_page;
2692
2693         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2694                 return 0;
2695         return 1;
2696 }
2697
2698 static int ext4_da_write_end(struct file *file,
2699                              struct address_space *mapping,
2700                              loff_t pos, unsigned len, unsigned copied,
2701                              struct page *page, void *fsdata)
2702 {
2703         struct inode *inode = mapping->host;
2704         int ret = 0, ret2;
2705         handle_t *handle = ext4_journal_current_handle();
2706         loff_t new_i_size;
2707         unsigned long start, end;
2708         int write_mode = (int)(unsigned long)fsdata;
2709
2710         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2711                 return ext4_write_end(file, mapping, pos,
2712                                       len, copied, page, fsdata);
2713
2714         trace_ext4_da_write_end(inode, pos, len, copied);
2715         start = pos & (PAGE_CACHE_SIZE - 1);
2716         end = start + copied - 1;
2717
2718         /*
2719          * generic_write_end() will run mark_inode_dirty() if i_size
2720          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2721          * into that.
2722          */
2723         new_i_size = pos + copied;
2724         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2725                 if (ext4_has_inline_data(inode) ||
2726                     ext4_da_should_update_i_disksize(page, end)) {
2727                         down_write(&EXT4_I(inode)->i_data_sem);
2728                         if (new_i_size > EXT4_I(inode)->i_disksize)
2729                                 EXT4_I(inode)->i_disksize = new_i_size;
2730                         up_write(&EXT4_I(inode)->i_data_sem);
2731                         /* We need to mark inode dirty even if
2732                          * new_i_size is less that inode->i_size
2733                          * bu greater than i_disksize.(hint delalloc)
2734                          */
2735                         ext4_mark_inode_dirty(handle, inode);
2736                 }
2737         }
2738
2739         if (write_mode != CONVERT_INLINE_DATA &&
2740             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2741             ext4_has_inline_data(inode))
2742                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2743                                                      page);
2744         else
2745                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2746                                                         page, fsdata);
2747
2748         copied = ret2;
2749         if (ret2 < 0)
2750                 ret = ret2;
2751         ret2 = ext4_journal_stop(handle);
2752         if (!ret)
2753                 ret = ret2;
2754
2755         return ret ? ret : copied;
2756 }
2757
2758 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2759                                    unsigned int length)
2760 {
2761         /*
2762          * Drop reserved blocks
2763          */
2764         BUG_ON(!PageLocked(page));
2765         if (!page_has_buffers(page))
2766                 goto out;
2767
2768         ext4_da_page_release_reservation(page, offset, length);
2769
2770 out:
2771         ext4_invalidatepage(page, offset, length);
2772
2773         return;
2774 }
2775
2776 /*
2777  * Force all delayed allocation blocks to be allocated for a given inode.
2778  */
2779 int ext4_alloc_da_blocks(struct inode *inode)
2780 {
2781         trace_ext4_alloc_da_blocks(inode);
2782
2783         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2784             !EXT4_I(inode)->i_reserved_meta_blocks)
2785                 return 0;
2786
2787         /*
2788          * We do something simple for now.  The filemap_flush() will
2789          * also start triggering a write of the data blocks, which is
2790          * not strictly speaking necessary (and for users of
2791          * laptop_mode, not even desirable).  However, to do otherwise
2792          * would require replicating code paths in:
2793          *
2794          * ext4_da_writepages() ->
2795          *    write_cache_pages() ---> (via passed in callback function)
2796          *        __mpage_da_writepage() -->
2797          *           mpage_add_bh_to_extent()
2798          *           mpage_da_map_blocks()
2799          *
2800          * The problem is that write_cache_pages(), located in
2801          * mm/page-writeback.c, marks pages clean in preparation for
2802          * doing I/O, which is not desirable if we're not planning on
2803          * doing I/O at all.
2804          *
2805          * We could call write_cache_pages(), and then redirty all of
2806          * the pages by calling redirty_page_for_writepage() but that
2807          * would be ugly in the extreme.  So instead we would need to
2808          * replicate parts of the code in the above functions,
2809          * simplifying them because we wouldn't actually intend to
2810          * write out the pages, but rather only collect contiguous
2811          * logical block extents, call the multi-block allocator, and
2812          * then update the buffer heads with the block allocations.
2813          *
2814          * For now, though, we'll cheat by calling filemap_flush(),
2815          * which will map the blocks, and start the I/O, but not
2816          * actually wait for the I/O to complete.
2817          */
2818         return filemap_flush(inode->i_mapping);
2819 }
2820
2821 /*
2822  * bmap() is special.  It gets used by applications such as lilo and by
2823  * the swapper to find the on-disk block of a specific piece of data.
2824  *
2825  * Naturally, this is dangerous if the block concerned is still in the
2826  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2827  * filesystem and enables swap, then they may get a nasty shock when the
2828  * data getting swapped to that swapfile suddenly gets overwritten by
2829  * the original zero's written out previously to the journal and
2830  * awaiting writeback in the kernel's buffer cache.
2831  *
2832  * So, if we see any bmap calls here on a modified, data-journaled file,
2833  * take extra steps to flush any blocks which might be in the cache.
2834  */
2835 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2836 {
2837         struct inode *inode = mapping->host;
2838         journal_t *journal;
2839         int err;
2840
2841         /*
2842          * We can get here for an inline file via the FIBMAP ioctl
2843          */
2844         if (ext4_has_inline_data(inode))
2845                 return 0;
2846
2847         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2848                         test_opt(inode->i_sb, DELALLOC)) {
2849                 /*
2850                  * With delalloc we want to sync the file
2851                  * so that we can make sure we allocate
2852                  * blocks for file
2853                  */
2854                 filemap_write_and_wait(mapping);
2855         }
2856
2857         if (EXT4_JOURNAL(inode) &&
2858             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2859                 /*
2860                  * This is a REALLY heavyweight approach, but the use of
2861                  * bmap on dirty files is expected to be extremely rare:
2862                  * only if we run lilo or swapon on a freshly made file
2863                  * do we expect this to happen.
2864                  *
2865                  * (bmap requires CAP_SYS_RAWIO so this does not
2866                  * represent an unprivileged user DOS attack --- we'd be
2867                  * in trouble if mortal users could trigger this path at
2868                  * will.)
2869                  *
2870                  * NB. EXT4_STATE_JDATA is not set on files other than
2871                  * regular files.  If somebody wants to bmap a directory
2872                  * or symlink and gets confused because the buffer
2873                  * hasn't yet been flushed to disk, they deserve
2874                  * everything they get.
2875                  */
2876
2877                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2878                 journal = EXT4_JOURNAL(inode);
2879                 jbd2_journal_lock_updates(journal);
2880                 err = jbd2_journal_flush(journal);
2881                 jbd2_journal_unlock_updates(journal);
2882
2883                 if (err)
2884                         return 0;
2885         }
2886
2887         return generic_block_bmap(mapping, block, ext4_get_block);
2888 }
2889
2890 static int ext4_readpage(struct file *file, struct page *page)
2891 {
2892         int ret = -EAGAIN;
2893         struct inode *inode = page->mapping->host;
2894
2895         trace_ext4_readpage(page);
2896
2897         if (ext4_has_inline_data(inode))
2898                 ret = ext4_readpage_inline(inode, page);
2899
2900         if (ret == -EAGAIN)
2901                 return mpage_readpage(page, ext4_get_block);
2902
2903         return ret;
2904 }
2905
2906 static int
2907 ext4_readpages(struct file *file, struct address_space *mapping,
2908                 struct list_head *pages, unsigned nr_pages)
2909 {
2910         struct inode *inode = mapping->host;
2911
2912         /* If the file has inline data, no need to do readpages. */
2913         if (ext4_has_inline_data(inode))
2914                 return 0;
2915
2916         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2917 }
2918
2919 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2920                                 unsigned int length)
2921 {
2922         trace_ext4_invalidatepage(page, offset, length);
2923
2924         /* No journalling happens on data buffers when this function is used */
2925         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2926
2927         block_invalidatepage(page, offset, length);
2928 }
2929
2930 static int __ext4_journalled_invalidatepage(struct page *page,
2931                                             unsigned int offset,
2932                                             unsigned int length)
2933 {
2934         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2935
2936         trace_ext4_journalled_invalidatepage(page, offset, length);
2937
2938         /*
2939          * If it's a full truncate we just forget about the pending dirtying
2940          */
2941         if (offset == 0 && length == PAGE_CACHE_SIZE)
2942                 ClearPageChecked(page);
2943
2944         return jbd2_journal_invalidatepage(journal, page, offset, length);
2945 }
2946
2947 /* Wrapper for aops... */
2948 static void ext4_journalled_invalidatepage(struct page *page,
2949                                            unsigned int offset,
2950                                            unsigned int length)
2951 {
2952         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2953 }
2954
2955 static int ext4_releasepage(struct page *page, gfp_t wait)
2956 {
2957         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2958
2959         trace_ext4_releasepage(page);
2960
2961         /* Page has dirty journalled data -> cannot release */
2962         if (PageChecked(page))
2963                 return 0;
2964         if (journal)
2965                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2966         else
2967                 return try_to_free_buffers(page);
2968 }
2969
2970 /*
2971  * ext4_get_block used when preparing for a DIO write or buffer write.
2972  * We allocate an uinitialized extent if blocks haven't been allocated.
2973  * The extent will be converted to initialized after the IO is complete.
2974  */
2975 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2976                    struct buffer_head *bh_result, int create)
2977 {
2978         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2979                    inode->i_ino, create);
2980         return _ext4_get_block(inode, iblock, bh_result,
2981                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2982 }
2983
2984 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2985                    struct buffer_head *bh_result, int create)
2986 {
2987         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2988                    inode->i_ino, create);
2989         return _ext4_get_block(inode, iblock, bh_result,
2990                                EXT4_GET_BLOCKS_NO_LOCK);
2991 }
2992
2993 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2994                             ssize_t size, void *private, int ret,
2995                             bool is_async)
2996 {
2997         struct inode *inode = file_inode(iocb->ki_filp);
2998         ext4_io_end_t *io_end = iocb->private;
2999
3000         /* if not async direct IO just return */
3001         if (!io_end) {
3002                 inode_dio_done(inode);
3003                 if (is_async)
3004                         aio_complete(iocb, ret, 0);
3005                 return;
3006         }
3007
3008         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3009                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3010                   iocb->private, io_end->inode->i_ino, iocb, offset,
3011                   size);
3012
3013         iocb->private = NULL;
3014         io_end->offset = offset;
3015         io_end->size = size;
3016         if (is_async) {
3017                 io_end->iocb = iocb;
3018                 io_end->result = ret;
3019         }
3020         ext4_put_io_end_defer(io_end);
3021 }
3022
3023 /*
3024  * For ext4 extent files, ext4 will do direct-io write to holes,
3025  * preallocated extents, and those write extend the file, no need to
3026  * fall back to buffered IO.
3027  *
3028  * For holes, we fallocate those blocks, mark them as uninitialized
3029  * If those blocks were preallocated, we mark sure they are split, but
3030  * still keep the range to write as uninitialized.
3031  *
3032  * The unwritten extents will be converted to written when DIO is completed.
3033  * For async direct IO, since the IO may still pending when return, we
3034  * set up an end_io call back function, which will do the conversion
3035  * when async direct IO completed.
3036  *
3037  * If the O_DIRECT write will extend the file then add this inode to the
3038  * orphan list.  So recovery will truncate it back to the original size
3039  * if the machine crashes during the write.
3040  *
3041  */
3042 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3043                               const struct iovec *iov, loff_t offset,
3044                               unsigned long nr_segs)
3045 {
3046         struct file *file = iocb->ki_filp;
3047         struct inode *inode = file->f_mapping->host;
3048         ssize_t ret;
3049         size_t count = iov_length(iov, nr_segs);
3050         int overwrite = 0;
3051         get_block_t *get_block_func = NULL;
3052         int dio_flags = 0;
3053         loff_t final_size = offset + count;
3054         ext4_io_end_t *io_end = NULL;
3055
3056         /* Use the old path for reads and writes beyond i_size. */
3057         if (rw != WRITE || final_size > inode->i_size)
3058                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3059
3060         BUG_ON(iocb->private == NULL);
3061
3062         /* If we do a overwrite dio, i_mutex locking can be released */
3063         overwrite = *((int *)iocb->private);
3064
3065         if (overwrite) {
3066                 atomic_inc(&inode->i_dio_count);
3067                 down_read(&EXT4_I(inode)->i_data_sem);
3068                 mutex_unlock(&inode->i_mutex);
3069         }
3070
3071         /*
3072          * We could direct write to holes and fallocate.
3073          *
3074          * Allocated blocks to fill the hole are marked as
3075          * uninitialized to prevent parallel buffered read to expose
3076          * the stale data before DIO complete the data IO.
3077          *
3078          * As to previously fallocated extents, ext4 get_block will
3079          * just simply mark the buffer mapped but still keep the
3080          * extents uninitialized.
3081          *
3082          * For non AIO case, we will convert those unwritten extents
3083          * to written after return back from blockdev_direct_IO.
3084          *
3085          * For async DIO, the conversion needs to be deferred when the
3086          * IO is completed. The ext4 end_io callback function will be
3087          * called to take care of the conversion work.  Here for async
3088          * case, we allocate an io_end structure to hook to the iocb.
3089          */
3090         iocb->private = NULL;
3091         ext4_inode_aio_set(inode, NULL);
3092         if (!is_sync_kiocb(iocb)) {
3093                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3094                 if (!io_end) {
3095                         ret = -ENOMEM;
3096                         goto retake_lock;
3097                 }
3098                 io_end->flag |= EXT4_IO_END_DIRECT;
3099                 /*
3100                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3101                  */
3102                 iocb->private = ext4_get_io_end(io_end);
3103                 /*
3104                  * we save the io structure for current async direct
3105                  * IO, so that later ext4_map_blocks() could flag the
3106                  * io structure whether there is a unwritten extents
3107                  * needs to be converted when IO is completed.
3108                  */
3109                 ext4_inode_aio_set(inode, io_end);
3110         }
3111
3112         if (overwrite) {
3113                 get_block_func = ext4_get_block_write_nolock;
3114         } else {
3115                 get_block_func = ext4_get_block_write;
3116                 dio_flags = DIO_LOCKING;
3117         }
3118         ret = __blockdev_direct_IO(rw, iocb, inode,
3119                                    inode->i_sb->s_bdev, iov,
3120                                    offset, nr_segs,
3121                                    get_block_func,
3122                                    ext4_end_io_dio,
3123                                    NULL,
3124                                    dio_flags);
3125
3126         /*
3127          * Put our reference to io_end. This can free the io_end structure e.g.
3128          * in sync IO case or in case of error. It can even perform extent
3129          * conversion if all bios we submitted finished before we got here.
3130          * Note that in that case iocb->private can be already set to NULL
3131          * here.
3132          */
3133         if (io_end) {
3134                 ext4_inode_aio_set(inode, NULL);
3135                 ext4_put_io_end(io_end);
3136                 /*
3137                  * When no IO was submitted ext4_end_io_dio() was not
3138                  * called so we have to put iocb's reference.
3139                  */
3140                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3141                         WARN_ON(iocb->private != io_end);
3142                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3143                         WARN_ON(io_end->iocb);
3144                         /*
3145                          * Generic code already did inode_dio_done() so we
3146                          * have to clear EXT4_IO_END_DIRECT to not do it for
3147                          * the second time.
3148                          */
3149                         io_end->flag = 0;
3150                         ext4_put_io_end(io_end);
3151                         iocb->private = NULL;
3152                 }
3153         }
3154         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3155                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3156                 int err;
3157                 /*
3158                  * for non AIO case, since the IO is already
3159                  * completed, we could do the conversion right here
3160                  */
3161                 err = ext4_convert_unwritten_extents(inode,
3162                                                      offset, ret);
3163                 if (err < 0)
3164                         ret = err;
3165                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3166         }
3167
3168 retake_lock:
3169         /* take i_mutex locking again if we do a ovewrite dio */
3170         if (overwrite) {
3171                 inode_dio_done(inode);
3172                 up_read(&EXT4_I(inode)->i_data_sem);
3173                 mutex_lock(&inode->i_mutex);
3174         }
3175
3176         return ret;
3177 }
3178
3179 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3180                               const struct iovec *iov, loff_t offset,
3181                               unsigned long nr_segs)
3182 {
3183         struct file *file = iocb->ki_filp;
3184         struct inode *inode = file->f_mapping->host;
3185         ssize_t ret;
3186
3187         /*
3188          * If we are doing data journalling we don't support O_DIRECT
3189          */
3190         if (ext4_should_journal_data(inode))
3191                 return 0;
3192
3193         /* Let buffer I/O handle the inline data case. */
3194         if (ext4_has_inline_data(inode))
3195                 return 0;
3196
3197         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3198         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3199                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3200         else
3201                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3202         trace_ext4_direct_IO_exit(inode, offset,
3203                                 iov_length(iov, nr_segs), rw, ret);
3204         return ret;
3205 }
3206
3207 /*
3208  * Pages can be marked dirty completely asynchronously from ext4's journalling
3209  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3210  * much here because ->set_page_dirty is called under VFS locks.  The page is
3211  * not necessarily locked.
3212  *
3213  * We cannot just dirty the page and leave attached buffers clean, because the
3214  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3215  * or jbddirty because all the journalling code will explode.
3216  *
3217  * So what we do is to mark the page "pending dirty" and next time writepage
3218  * is called, propagate that into the buffers appropriately.
3219  */
3220 static int ext4_journalled_set_page_dirty(struct page *page)
3221 {
3222         SetPageChecked(page);
3223         return __set_page_dirty_nobuffers(page);
3224 }
3225
3226 static const struct address_space_operations ext4_aops = {
3227         .readpage               = ext4_readpage,
3228         .readpages              = ext4_readpages,
3229         .writepage              = ext4_writepage,
3230         .write_begin            = ext4_write_begin,
3231         .write_end              = ext4_write_end,
3232         .bmap                   = ext4_bmap,
3233         .invalidatepage         = ext4_invalidatepage,
3234         .releasepage            = ext4_releasepage,
3235         .direct_IO              = ext4_direct_IO,
3236         .migratepage            = buffer_migrate_page,
3237         .is_partially_uptodate  = block_is_partially_uptodate,
3238         .error_remove_page      = generic_error_remove_page,
3239 };
3240
3241 static const struct address_space_operations ext4_journalled_aops = {
3242         .readpage               = ext4_readpage,
3243         .readpages              = ext4_readpages,
3244         .writepage              = ext4_writepage,
3245         .write_begin            = ext4_write_begin,
3246         .write_end              = ext4_journalled_write_end,
3247         .set_page_dirty         = ext4_journalled_set_page_dirty,
3248         .bmap                   = ext4_bmap,
3249         .invalidatepage         = ext4_journalled_invalidatepage,
3250         .releasepage            = ext4_releasepage,
3251         .direct_IO              = ext4_direct_IO,
3252         .is_partially_uptodate  = block_is_partially_uptodate,
3253         .error_remove_page      = generic_error_remove_page,
3254 };
3255
3256 static const struct address_space_operations ext4_da_aops = {
3257         .readpage               = ext4_readpage,
3258         .readpages              = ext4_readpages,
3259         .writepage              = ext4_writepage,
3260         .writepages             = ext4_da_writepages,
3261         .write_begin            = ext4_da_write_begin,
3262         .write_end              = ext4_da_write_end,
3263         .bmap                   = ext4_bmap,
3264         .invalidatepage         = ext4_da_invalidatepage,
3265         .releasepage            = ext4_releasepage,
3266         .direct_IO              = ext4_direct_IO,
3267         .migratepage            = buffer_migrate_page,
3268         .is_partially_uptodate  = block_is_partially_uptodate,
3269         .error_remove_page      = generic_error_remove_page,
3270 };
3271
3272 void ext4_set_aops(struct inode *inode)
3273 {
3274         switch (ext4_inode_journal_mode(inode)) {
3275         case EXT4_INODE_ORDERED_DATA_MODE:
3276                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3277                 break;
3278         case EXT4_INODE_WRITEBACK_DATA_MODE:
3279                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3280                 break;
3281         case EXT4_INODE_JOURNAL_DATA_MODE:
3282                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3283                 return;
3284         default:
3285                 BUG();
3286         }
3287         if (test_opt(inode->i_sb, DELALLOC))
3288                 inode->i_mapping->a_ops = &ext4_da_aops;
3289         else
3290                 inode->i_mapping->a_ops = &ext4_aops;
3291 }
3292
3293 /*
3294  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3295  * up to the end of the block which corresponds to `from'.
3296  * This required during truncate. We need to physically zero the tail end
3297  * of that block so it doesn't yield old data if the file is later grown.
3298  */
3299 int ext4_block_truncate_page(handle_t *handle,
3300                 struct address_space *mapping, loff_t from)
3301 {
3302         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3303         unsigned length;
3304         unsigned blocksize;
3305         struct inode *inode = mapping->host;
3306
3307         blocksize = inode->i_sb->s_blocksize;
3308         length = blocksize - (offset & (blocksize - 1));
3309
3310         return ext4_block_zero_page_range(handle, mapping, from, length);
3311 }
3312
3313 /*
3314  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3315  * starting from file offset 'from'.  The range to be zero'd must
3316  * be contained with in one block.  If the specified range exceeds
3317  * the end of the block it will be shortened to end of the block
3318  * that cooresponds to 'from'
3319  */
3320 int ext4_block_zero_page_range(handle_t *handle,
3321                 struct address_space *mapping, loff_t from, loff_t length)
3322 {
3323         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3324         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3325         unsigned blocksize, max, pos;
3326         ext4_lblk_t iblock;
3327         struct inode *inode = mapping->host;
3328         struct buffer_head *bh;
3329         struct page *page;
3330         int err = 0;
3331
3332         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3333                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3334         if (!page)
3335                 return -ENOMEM;
3336
3337         blocksize = inode->i_sb->s_blocksize;
3338         max = blocksize - (offset & (blocksize - 1));
3339
3340         /*
3341          * correct length if it does not fall between
3342          * 'from' and the end of the block
3343          */
3344         if (length > max || length < 0)
3345                 length = max;
3346
3347         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3348
3349         if (!page_has_buffers(page))
3350                 create_empty_buffers(page, blocksize, 0);
3351
3352         /* Find the buffer that contains "offset" */
3353         bh = page_buffers(page);
3354         pos = blocksize;
3355         while (offset >= pos) {
3356                 bh = bh->b_this_page;
3357                 iblock++;
3358                 pos += blocksize;
3359         }
3360
3361         err = 0;
3362         if (buffer_freed(bh)) {
3363                 BUFFER_TRACE(bh, "freed: skip");
3364                 goto unlock;
3365         }
3366
3367         if (!buffer_mapped(bh)) {
3368                 BUFFER_TRACE(bh, "unmapped");
3369                 ext4_get_block(inode, iblock, bh, 0);
3370                 /* unmapped? It's a hole - nothing to do */
3371                 if (!buffer_mapped(bh)) {
3372                         BUFFER_TRACE(bh, "still unmapped");
3373                         goto unlock;
3374                 }
3375         }
3376
3377         /* Ok, it's mapped. Make sure it's up-to-date */
3378         if (PageUptodate(page))
3379                 set_buffer_uptodate(bh);
3380
3381         if (!buffer_uptodate(bh)) {
3382                 err = -EIO;
3383                 ll_rw_block(READ, 1, &bh);
3384                 wait_on_buffer(bh);
3385                 /* Uhhuh. Read error. Complain and punt. */
3386                 if (!buffer_uptodate(bh))
3387                         goto unlock;
3388         }
3389
3390         if (ext4_should_journal_data(inode)) {
3391                 BUFFER_TRACE(bh, "get write access");
3392                 err = ext4_journal_get_write_access(handle, bh);
3393                 if (err)
3394                         goto unlock;
3395         }
3396
3397         zero_user(page, offset, length);
3398
3399         BUFFER_TRACE(bh, "zeroed end of block");
3400
3401         err = 0;
3402         if (ext4_should_journal_data(inode)) {
3403                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3404         } else {
3405                 mark_buffer_dirty(bh);
3406                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3407                         err = ext4_jbd2_file_inode(handle, inode);
3408         }
3409
3410 unlock:
3411         unlock_page(page);
3412         page_cache_release(page);
3413         return err;
3414 }
3415
3416 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3417                              loff_t lstart, loff_t length)
3418 {
3419         struct super_block *sb = inode->i_sb;
3420         struct address_space *mapping = inode->i_mapping;
3421         unsigned partial = lstart & (sb->s_blocksize - 1);
3422         ext4_fsblk_t start, end;
3423         loff_t byte_end = (lstart + length - 1);
3424         int err = 0;
3425
3426         start = lstart >> sb->s_blocksize_bits;
3427         end = byte_end >> sb->s_blocksize_bits;
3428
3429         /* Handle partial zero within the single block */
3430         if (start == end) {
3431                 err = ext4_block_zero_page_range(handle, mapping,
3432                                                  lstart, length);
3433                 return err;
3434         }
3435         /* Handle partial zero out on the start of the range */
3436         if (partial) {
3437                 err = ext4_block_zero_page_range(handle, mapping,
3438                                                  lstart, sb->s_blocksize);
3439                 if (err)
3440                         return err;
3441         }
3442         /* Handle partial zero out on the end of the range */
3443         partial = byte_end & (sb->s_blocksize - 1);
3444         if (partial != sb->s_blocksize - 1)
3445                 err = ext4_block_zero_page_range(handle, mapping,
3446                                                  byte_end - partial,
3447                                                  partial + 1);
3448         return err;
3449 }
3450
3451 int ext4_can_truncate(struct inode *inode)
3452 {
3453         if (S_ISREG(inode->i_mode))
3454                 return 1;
3455         if (S_ISDIR(inode->i_mode))
3456                 return 1;
3457         if (S_ISLNK(inode->i_mode))
3458                 return !ext4_inode_is_fast_symlink(inode);
3459         return 0;
3460 }
3461
3462 /*
3463  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3464  * associated with the given offset and length
3465  *
3466  * @inode:  File inode
3467  * @offset: The offset where the hole will begin
3468  * @len:    The length of the hole
3469  *
3470  * Returns: 0 on success or negative on failure
3471  */
3472
3473 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3474 {
3475         struct inode *inode = file_inode(file);
3476         struct super_block *sb = inode->i_sb;
3477         ext4_lblk_t first_block, stop_block;
3478         struct address_space *mapping = inode->i_mapping;
3479         loff_t first_block_offset, last_block_offset;
3480         handle_t *handle;
3481         unsigned int credits;
3482         int ret = 0;
3483
3484         if (!S_ISREG(inode->i_mode))
3485                 return -EOPNOTSUPP;
3486
3487         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3488                 /* TODO: Add support for bigalloc file systems */
3489                 return -EOPNOTSUPP;
3490         }
3491
3492         trace_ext4_punch_hole(inode, offset, length);
3493
3494         /*
3495          * Write out all dirty pages to avoid race conditions
3496          * Then release them.
3497          */
3498         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3499                 ret = filemap_write_and_wait_range(mapping, offset,
3500                                                    offset + length - 1);
3501                 if (ret)
3502                         return ret;
3503         }
3504
3505         mutex_lock(&inode->i_mutex);
3506         /* It's not possible punch hole on append only file */
3507         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3508                 ret = -EPERM;
3509                 goto out_mutex;
3510         }
3511         if (IS_SWAPFILE(inode)) {
3512                 ret = -ETXTBSY;
3513                 goto out_mutex;
3514         }
3515
3516         /* No need to punch hole beyond i_size */
3517         if (offset >= inode->i_size)
3518                 goto out_mutex;
3519
3520         /*
3521          * If the hole extends beyond i_size, set the hole
3522          * to end after the page that contains i_size
3523          */
3524         if (offset + length > inode->i_size) {
3525                 length = inode->i_size +
3526                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3527                    offset;
3528         }
3529
3530         first_block_offset = round_up(offset, sb->s_blocksize);
3531         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3532
3533         /* Now release the pages and zero block aligned part of pages*/
3534         if (last_block_offset > first_block_offset)
3535                 truncate_pagecache_range(inode, first_block_offset,
3536                                          last_block_offset);
3537
3538         /* Wait all existing dio workers, newcomers will block on i_mutex */
3539         ext4_inode_block_unlocked_dio(inode);
3540         ret = ext4_flush_unwritten_io(inode);
3541         if (ret)
3542                 goto out_dio;
3543         inode_dio_wait(inode);
3544
3545         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3546                 credits = ext4_writepage_trans_blocks(inode);
3547         else
3548                 credits = ext4_blocks_for_truncate(inode);
3549         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3550         if (IS_ERR(handle)) {
3551                 ret = PTR_ERR(handle);
3552                 ext4_std_error(sb, ret);
3553                 goto out_dio;
3554         }
3555
3556         ret = ext4_zero_partial_blocks(handle, inode, offset,
3557                                        length);
3558         if (ret)
3559                 goto out_stop;
3560
3561         first_block = (offset + sb->s_blocksize - 1) >>
3562                 EXT4_BLOCK_SIZE_BITS(sb);
3563         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3564
3565         /* If there are no blocks to remove, return now */
3566         if (first_block >= stop_block)
3567                 goto out_stop;
3568
3569         down_write(&EXT4_I(inode)->i_data_sem);
3570         ext4_discard_preallocations(inode);
3571
3572         ret = ext4_es_remove_extent(inode, first_block,
3573                                     stop_block - first_block);
3574         if (ret) {
3575                 up_write(&EXT4_I(inode)->i_data_sem);
3576                 goto out_stop;
3577         }
3578
3579         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580                 ret = ext4_ext_remove_space(inode, first_block,
3581                                             stop_block - 1);
3582         else
3583                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3584                                             stop_block);
3585
3586         ext4_discard_preallocations(inode);
3587         up_write(&EXT4_I(inode)->i_data_sem);
3588         if (IS_SYNC(inode))
3589                 ext4_handle_sync(handle);
3590         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3591         ext4_mark_inode_dirty(handle, inode);
3592 out_stop:
3593         ext4_journal_stop(handle);
3594 out_dio:
3595         ext4_inode_resume_unlocked_dio(inode);
3596 out_mutex:
3597         mutex_unlock(&inode->i_mutex);
3598         return ret;
3599 }
3600
3601 /*
3602  * ext4_truncate()
3603  *
3604  * We block out ext4_get_block() block instantiations across the entire
3605  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3606  * simultaneously on behalf of the same inode.
3607  *
3608  * As we work through the truncate and commit bits of it to the journal there
3609  * is one core, guiding principle: the file's tree must always be consistent on
3610  * disk.  We must be able to restart the truncate after a crash.
3611  *
3612  * The file's tree may be transiently inconsistent in memory (although it
3613  * probably isn't), but whenever we close off and commit a journal transaction,
3614  * the contents of (the filesystem + the journal) must be consistent and
3615  * restartable.  It's pretty simple, really: bottom up, right to left (although
3616  * left-to-right works OK too).
3617  *
3618  * Note that at recovery time, journal replay occurs *before* the restart of
3619  * truncate against the orphan inode list.
3620  *
3621  * The committed inode has the new, desired i_size (which is the same as
3622  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3623  * that this inode's truncate did not complete and it will again call
3624  * ext4_truncate() to have another go.  So there will be instantiated blocks
3625  * to the right of the truncation point in a crashed ext4 filesystem.  But
3626  * that's fine - as long as they are linked from the inode, the post-crash
3627  * ext4_truncate() run will find them and release them.
3628  */
3629 void ext4_truncate(struct inode *inode)
3630 {
3631         struct ext4_inode_info *ei = EXT4_I(inode);
3632         unsigned int credits;
3633         handle_t *handle;
3634         struct address_space *mapping = inode->i_mapping;
3635
3636         /*
3637          * There is a possibility that we're either freeing the inode
3638          * or it completely new indode. In those cases we might not
3639          * have i_mutex locked because it's not necessary.
3640          */
3641         if (!(inode->i_state & (I_NEW|I_FREEING)))
3642                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3643         trace_ext4_truncate_enter(inode);
3644
3645         if (!ext4_can_truncate(inode))
3646                 return;
3647
3648         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3649
3650         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3651                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3652
3653         if (ext4_has_inline_data(inode)) {
3654                 int has_inline = 1;
3655
3656                 ext4_inline_data_truncate(inode, &has_inline);
3657                 if (has_inline)
3658                         return;
3659         }
3660
3661         /*
3662          * finish any pending end_io work so we won't run the risk of
3663          * converting any truncated blocks to initialized later
3664          */
3665         ext4_flush_unwritten_io(inode);
3666
3667         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3668                 credits = ext4_writepage_trans_blocks(inode);
3669         else
3670                 credits = ext4_blocks_for_truncate(inode);
3671
3672         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673         if (IS_ERR(handle)) {
3674                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3675                 return;
3676         }
3677
3678         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3679                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3680
3681         /*
3682          * We add the inode to the orphan list, so that if this
3683          * truncate spans multiple transactions, and we crash, we will
3684          * resume the truncate when the filesystem recovers.  It also
3685          * marks the inode dirty, to catch the new size.
3686          *
3687          * Implication: the file must always be in a sane, consistent
3688          * truncatable state while each transaction commits.
3689          */
3690         if (ext4_orphan_add(handle, inode))
3691                 goto out_stop;
3692
3693         down_write(&EXT4_I(inode)->i_data_sem);
3694
3695         ext4_discard_preallocations(inode);
3696
3697         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3698                 ext4_ext_truncate(handle, inode);
3699         else
3700                 ext4_ind_truncate(handle, inode);
3701
3702         up_write(&ei->i_data_sem);
3703
3704         if (IS_SYNC(inode))
3705                 ext4_handle_sync(handle);
3706
3707 out_stop:
3708         /*
3709          * If this was a simple ftruncate() and the file will remain alive,
3710          * then we need to clear up the orphan record which we created above.
3711          * However, if this was a real unlink then we were called by
3712          * ext4_delete_inode(), and we allow that function to clean up the
3713          * orphan info for us.
3714          */
3715         if (inode->i_nlink)
3716                 ext4_orphan_del(handle, inode);
3717
3718         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3719         ext4_mark_inode_dirty(handle, inode);
3720         ext4_journal_stop(handle);
3721
3722         trace_ext4_truncate_exit(inode);
3723 }
3724
3725 /*
3726  * ext4_get_inode_loc returns with an extra refcount against the inode's
3727  * underlying buffer_head on success. If 'in_mem' is true, we have all
3728  * data in memory that is needed to recreate the on-disk version of this
3729  * inode.
3730  */
3731 static int __ext4_get_inode_loc(struct inode *inode,
3732                                 struct ext4_iloc *iloc, int in_mem)
3733 {
3734         struct ext4_group_desc  *gdp;
3735         struct buffer_head      *bh;
3736         struct super_block      *sb = inode->i_sb;
3737         ext4_fsblk_t            block;
3738         int                     inodes_per_block, inode_offset;
3739
3740         iloc->bh = NULL;
3741         if (!ext4_valid_inum(sb, inode->i_ino))
3742                 return -EIO;
3743
3744         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3745         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3746         if (!gdp)
3747                 return -EIO;
3748
3749         /*
3750          * Figure out the offset within the block group inode table
3751          */
3752         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3753         inode_offset = ((inode->i_ino - 1) %
3754                         EXT4_INODES_PER_GROUP(sb));
3755         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3756         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3757
3758         bh = sb_getblk(sb, block);
3759         if (unlikely(!bh))
3760                 return -ENOMEM;
3761         if (!buffer_uptodate(bh)) {
3762                 lock_buffer(bh);
3763
3764                 /*
3765                  * If the buffer has the write error flag, we have failed
3766                  * to write out another inode in the same block.  In this
3767                  * case, we don't have to read the block because we may
3768                  * read the old inode data successfully.
3769                  */
3770                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3771                         set_buffer_uptodate(bh);
3772
3773                 if (buffer_uptodate(bh)) {
3774                         /* someone brought it uptodate while we waited */
3775                         unlock_buffer(bh);
3776                         goto has_buffer;
3777                 }
3778
3779                 /*
3780                  * If we have all information of the inode in memory and this
3781                  * is the only valid inode in the block, we need not read the
3782                  * block.
3783                  */
3784                 if (in_mem) {
3785                         struct buffer_head *bitmap_bh;
3786                         int i, start;
3787
3788                         start = inode_offset & ~(inodes_per_block - 1);
3789
3790                         /* Is the inode bitmap in cache? */
3791                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3792                         if (unlikely(!bitmap_bh))
3793                                 goto make_io;
3794
3795                         /*
3796                          * If the inode bitmap isn't in cache then the
3797                          * optimisation may end up performing two reads instead
3798                          * of one, so skip it.
3799                          */
3800                         if (!buffer_uptodate(bitmap_bh)) {
3801                                 brelse(bitmap_bh);
3802                                 goto make_io;
3803                         }
3804                         for (i = start; i < start + inodes_per_block; i++) {
3805                                 if (i == inode_offset)
3806                                         continue;
3807                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3808                                         break;
3809                         }
3810                         brelse(bitmap_bh);
3811                         if (i == start + inodes_per_block) {
3812                                 /* all other inodes are free, so skip I/O */
3813                                 memset(bh->b_data, 0, bh->b_size);
3814                                 set_buffer_uptodate(bh);
3815                                 unlock_buffer(bh);
3816                                 goto has_buffer;
3817                         }
3818                 }
3819
3820 make_io:
3821                 /*
3822                  * If we need to do any I/O, try to pre-readahead extra
3823                  * blocks from the inode table.
3824                  */
3825                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3826                         ext4_fsblk_t b, end, table;
3827                         unsigned num;
3828                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3829
3830                         table = ext4_inode_table(sb, gdp);
3831                         /* s_inode_readahead_blks is always a power of 2 */
3832                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3833                         if (table > b)
3834                                 b = table;
3835                         end = b + ra_blks;
3836                         num = EXT4_INODES_PER_GROUP(sb);
3837                         if (ext4_has_group_desc_csum(sb))
3838                                 num -= ext4_itable_unused_count(sb, gdp);
3839                         table += num / inodes_per_block;
3840                         if (end > table)
3841                                 end = table;
3842                         while (b <= end)
3843                                 sb_breadahead(sb, b++);
3844                 }
3845
3846                 /*
3847                  * There are other valid inodes in the buffer, this inode
3848                  * has in-inode xattrs, or we don't have this inode in memory.
3849                  * Read the block from disk.
3850                  */
3851                 trace_ext4_load_inode(inode);
3852                 get_bh(bh);
3853                 bh->b_end_io = end_buffer_read_sync;
3854                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3855                 wait_on_buffer(bh);
3856                 if (!buffer_uptodate(bh)) {
3857                         EXT4_ERROR_INODE_BLOCK(inode, block,
3858                                                "unable to read itable block");
3859                         brelse(bh);
3860                         return -EIO;
3861                 }
3862         }
3863 has_buffer:
3864         iloc->bh = bh;
3865         return 0;
3866 }
3867
3868 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3869 {
3870         /* We have all inode data except xattrs in memory here. */
3871         return __ext4_get_inode_loc(inode, iloc,
3872                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3873 }
3874
3875 void ext4_set_inode_flags(struct inode *inode)
3876 {
3877         unsigned int flags = EXT4_I(inode)->i_flags;
3878
3879         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3880         if (flags & EXT4_SYNC_FL)
3881                 inode->i_flags |= S_SYNC;
3882         if (flags & EXT4_APPEND_FL)
3883                 inode->i_flags |= S_APPEND;
3884         if (flags & EXT4_IMMUTABLE_FL)
3885                 inode->i_flags |= S_IMMUTABLE;
3886         if (flags & EXT4_NOATIME_FL)
3887                 inode->i_flags |= S_NOATIME;
3888         if (flags & EXT4_DIRSYNC_FL)
3889                 inode->i_flags |= S_DIRSYNC;
3890 }
3891
3892 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3893 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3894 {
3895         unsigned int vfs_fl;
3896         unsigned long old_fl, new_fl;
3897
3898         do {
3899                 vfs_fl = ei->vfs_inode.i_flags;
3900                 old_fl = ei->i_flags;
3901                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3902                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3903                                 EXT4_DIRSYNC_FL);
3904                 if (vfs_fl & S_SYNC)
3905                         new_fl |= EXT4_SYNC_FL;
3906                 if (vfs_fl & S_APPEND)
3907                         new_fl |= EXT4_APPEND_FL;
3908                 if (vfs_fl & S_IMMUTABLE)
3909                         new_fl |= EXT4_IMMUTABLE_FL;
3910                 if (vfs_fl & S_NOATIME)
3911                         new_fl |= EXT4_NOATIME_FL;
3912                 if (vfs_fl & S_DIRSYNC)
3913                         new_fl |= EXT4_DIRSYNC_FL;
3914         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3915 }
3916
3917 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3918                                   struct ext4_inode_info *ei)
3919 {
3920         blkcnt_t i_blocks ;
3921         struct inode *inode = &(ei->vfs_inode);
3922         struct super_block *sb = inode->i_sb;
3923
3924         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3925                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3926                 /* we are using combined 48 bit field */
3927                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3928                                         le32_to_cpu(raw_inode->i_blocks_lo);
3929                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3930                         /* i_blocks represent file system block size */
3931                         return i_blocks  << (inode->i_blkbits - 9);
3932                 } else {
3933                         return i_blocks;
3934                 }
3935         } else {
3936                 return le32_to_cpu(raw_inode->i_blocks_lo);
3937         }
3938 }
3939
3940 static inline void ext4_iget_extra_inode(struct inode *inode,
3941                                          struct ext4_inode *raw_inode,
3942                                          struct ext4_inode_info *ei)
3943 {
3944         __le32 *magic = (void *)raw_inode +
3945                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3946         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3947                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3948                 ext4_find_inline_data_nolock(inode);
3949         } else
3950                 EXT4_I(inode)->i_inline_off = 0;
3951 }
3952
3953 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3954 {
3955         struct ext4_iloc iloc;
3956         struct ext4_inode *raw_inode;
3957         struct ext4_inode_info *ei;
3958         struct inode *inode;
3959         journal_t *journal = EXT4_SB(sb)->s_journal;
3960         long ret;
3961         int block;
3962         uid_t i_uid;
3963         gid_t i_gid;
3964
3965         inode = iget_locked(sb, ino);
3966         if (!inode)
3967                 return ERR_PTR(-ENOMEM);
3968         if (!(inode->i_state & I_NEW))
3969                 return inode;
3970
3971         ei = EXT4_I(inode);
3972         iloc.bh = NULL;
3973
3974         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3975         if (ret < 0)
3976                 goto bad_inode;
3977         raw_inode = ext4_raw_inode(&iloc);
3978
3979         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3980                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3981                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3982                     EXT4_INODE_SIZE(inode->i_sb)) {
3983                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3984                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3985                                 EXT4_INODE_SIZE(inode->i_sb));
3986                         ret = -EIO;
3987                         goto bad_inode;
3988                 }
3989         } else
3990                 ei->i_extra_isize = 0;
3991
3992         /* Precompute checksum seed for inode metadata */
3993         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3995                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3996                 __u32 csum;
3997                 __le32 inum = cpu_to_le32(inode->i_ino);
3998                 __le32 gen = raw_inode->i_generation;
3999                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4000                                    sizeof(inum));
4001                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4002                                               sizeof(gen));
4003         }
4004
4005         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4006                 EXT4_ERROR_INODE(inode, "checksum invalid");
4007                 ret = -EIO;
4008                 goto bad_inode;
4009         }
4010
4011         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4012         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4013         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4014         if (!(test_opt(inode->i_sb, NO_UID32))) {
4015                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4016                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4017         }
4018         i_uid_write(inode, i_uid);
4019         i_gid_write(inode, i_gid);
4020         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4021
4022         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4023         ei->i_inline_off = 0;
4024         ei->i_dir_start_lookup = 0;
4025         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4026         /* We now have enough fields to check if the inode was active or not.
4027          * This is needed because nfsd might try to access dead inodes
4028          * the test is that same one that e2fsck uses
4029          * NeilBrown 1999oct15
4030          */
4031         if (inode->i_nlink == 0) {
4032                 if ((inode->i_mode == 0 ||
4033                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4034                     ino != EXT4_BOOT_LOADER_INO) {
4035                         /* this inode is deleted */
4036                         ret = -ESTALE;
4037                         goto bad_inode;
4038                 }
4039                 /* The only unlinked inodes we let through here have
4040                  * valid i_mode and are being read by the orphan
4041                  * recovery code: that's fine, we're about to complete
4042                  * the process of deleting those.
4043                  * OR it is the EXT4_BOOT_LOADER_INO which is
4044                  * not initialized on a new filesystem. */
4045         }
4046         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4047         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4048         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4049         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4050                 ei->i_file_acl |=
4051                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4052         inode->i_size = ext4_isize(raw_inode);
4053         ei->i_disksize = inode->i_size;
4054 #ifdef CONFIG_QUOTA
4055         ei->i_reserved_quota = 0;
4056 #endif
4057         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4058         ei->i_block_group = iloc.block_group;
4059         ei->i_last_alloc_group = ~0;
4060         /*
4061          * NOTE! The in-memory inode i_data array is in little-endian order
4062          * even on big-endian machines: we do NOT byteswap the block numbers!
4063          */
4064         for (block = 0; block < EXT4_N_BLOCKS; block++)
4065                 ei->i_data[block] = raw_inode->i_block[block];
4066         INIT_LIST_HEAD(&ei->i_orphan);
4067
4068         /*
4069          * Set transaction id's of transactions that have to be committed
4070          * to finish f[data]sync. We set them to currently running transaction
4071          * as we cannot be sure that the inode or some of its metadata isn't
4072          * part of the transaction - the inode could have been reclaimed and
4073          * now it is reread from disk.
4074          */
4075         if (journal) {
4076                 transaction_t *transaction;
4077                 tid_t tid;
4078
4079                 read_lock(&journal->j_state_lock);
4080                 if (journal->j_running_transaction)
4081                         transaction = journal->j_running_transaction;
4082                 else
4083                         transaction = journal->j_committing_transaction;
4084                 if (transaction)
4085                         tid = transaction->t_tid;
4086                 else
4087                         tid = journal->j_commit_sequence;
4088                 read_unlock(&journal->j_state_lock);
4089                 ei->i_sync_tid = tid;
4090                 ei->i_datasync_tid = tid;
4091         }
4092
4093         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4094                 if (ei->i_extra_isize == 0) {
4095                         /* The extra space is currently unused. Use it. */
4096                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4097                                             EXT4_GOOD_OLD_INODE_SIZE;
4098                 } else {
4099                         ext4_iget_extra_inode(inode, raw_inode, ei);
4100                 }
4101         }
4102
4103         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4104         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4105         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4106         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4107
4108         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4109         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4110                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4111                         inode->i_version |=
4112                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4113         }
4114
4115         ret = 0;
4116         if (ei->i_file_acl &&
4117             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4118                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4119                                  ei->i_file_acl);
4120                 ret = -EIO;
4121                 goto bad_inode;
4122         } else if (!ext4_has_inline_data(inode)) {
4123                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4124                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4125                             (S_ISLNK(inode->i_mode) &&
4126                              !ext4_inode_is_fast_symlink(inode))))
4127                                 /* Validate extent which is part of inode */
4128                                 ret = ext4_ext_check_inode(inode);
4129                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4130                            (S_ISLNK(inode->i_mode) &&
4131                             !ext4_inode_is_fast_symlink(inode))) {
4132                         /* Validate block references which are part of inode */
4133                         ret = ext4_ind_check_inode(inode);
4134                 }
4135         }
4136         if (ret)
4137                 goto bad_inode;
4138
4139         if (S_ISREG(inode->i_mode)) {
4140                 inode->i_op = &ext4_file_inode_operations;
4141                 inode->i_fop = &ext4_file_operations;
4142                 ext4_set_aops(inode);
4143         } else if (S_ISDIR(inode->i_mode)) {
4144                 inode->i_op = &ext4_dir_inode_operations;
4145                 inode->i_fop = &ext4_dir_operations;
4146         } else if (S_ISLNK(inode->i_mode)) {
4147                 if (ext4_inode_is_fast_symlink(inode)) {
4148                         inode->i_op = &ext4_fast_symlink_inode_operations;
4149                         nd_terminate_link(ei->i_data, inode->i_size,
4150                                 sizeof(ei->i_data) - 1);
4151                 } else {
4152                         inode->i_op = &ext4_symlink_inode_operations;
4153                         ext4_set_aops(inode);
4154                 }
4155         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4156               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4157                 inode->i_op = &ext4_special_inode_operations;
4158                 if (raw_inode->i_block[0])
4159                         init_special_inode(inode, inode->i_mode,
4160                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4161                 else
4162                         init_special_inode(inode, inode->i_mode,
4163                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4164         } else if (ino == EXT4_BOOT_LOADER_INO) {
4165                 make_bad_inode(inode);
4166         } else {
4167                 ret = -EIO;
4168                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4169                 goto bad_inode;
4170         }
4171         brelse(iloc.bh);
4172         ext4_set_inode_flags(inode);
4173         unlock_new_inode(inode);
4174         return inode;
4175
4176 bad_inode:
4177         brelse(iloc.bh);
4178         iget_failed(inode);
4179         return ERR_PTR(ret);
4180 }
4181
4182 static int ext4_inode_blocks_set(handle_t *handle,
4183                                 struct ext4_inode *raw_inode,
4184                                 struct ext4_inode_info *ei)
4185 {
4186         struct inode *inode = &(ei->vfs_inode);
4187         u64 i_blocks = inode->i_blocks;
4188         struct super_block *sb = inode->i_sb;
4189
4190         if (i_blocks <= ~0U) {
4191                 /*
4192                  * i_blocks can be represented in a 32 bit variable
4193                  * as multiple of 512 bytes
4194                  */
4195                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4196                 raw_inode->i_blocks_high = 0;
4197                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4198                 return 0;
4199         }
4200         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4201                 return -EFBIG;
4202
4203         if (i_blocks <= 0xffffffffffffULL) {
4204                 /*
4205                  * i_blocks can be represented in a 48 bit variable
4206                  * as multiple of 512 bytes
4207                  */
4208                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4209                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4210                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4211         } else {
4212                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4213                 /* i_block is stored in file system block size */
4214                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4215                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4216                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4217         }
4218         return 0;
4219 }
4220
4221 /*
4222  * Post the struct inode info into an on-disk inode location in the
4223  * buffer-cache.  This gobbles the caller's reference to the
4224  * buffer_head in the inode location struct.
4225  *
4226  * The caller must have write access to iloc->bh.
4227  */
4228 static int ext4_do_update_inode(handle_t *handle,
4229                                 struct inode *inode,
4230                                 struct ext4_iloc *iloc)
4231 {
4232         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4233         struct ext4_inode_info *ei = EXT4_I(inode);
4234         struct buffer_head *bh = iloc->bh;
4235         int err = 0, rc, block;
4236         int need_datasync = 0;
4237         uid_t i_uid;
4238         gid_t i_gid;
4239
4240         /* For fields not not tracking in the in-memory inode,
4241          * initialise them to zero for new inodes. */
4242         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4243                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4244
4245         ext4_get_inode_flags(ei);
4246         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4247         i_uid = i_uid_read(inode);
4248         i_gid = i_gid_read(inode);
4249         if (!(test_opt(inode->i_sb, NO_UID32))) {
4250                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4251                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4252 /*
4253  * Fix up interoperability with old kernels. Otherwise, old inodes get
4254  * re-used with the upper 16 bits of the uid/gid intact
4255  */
4256                 if (!ei->i_dtime) {
4257                         raw_inode->i_uid_high =
4258                                 cpu_to_le16(high_16_bits(i_uid));
4259                         raw_inode->i_gid_high =
4260                                 cpu_to_le16(high_16_bits(i_gid));
4261                 } else {
4262                         raw_inode->i_uid_high = 0;
4263                         raw_inode->i_gid_high = 0;
4264                 }
4265         } else {
4266                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4267                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4268                 raw_inode->i_uid_high = 0;
4269                 raw_inode->i_gid_high = 0;
4270         }
4271         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4272
4273         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4274         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4275         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4276         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4277
4278         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4279                 goto out_brelse;
4280         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4281         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4282         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4283             cpu_to_le32(EXT4_OS_HURD))
4284                 raw_inode->i_file_acl_high =
4285                         cpu_to_le16(ei->i_file_acl >> 32);
4286         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4287         if (ei->i_disksize != ext4_isize(raw_inode)) {
4288                 ext4_isize_set(raw_inode, ei->i_disksize);
4289                 need_datasync = 1;
4290         }
4291         if (ei->i_disksize > 0x7fffffffULL) {
4292                 struct super_block *sb = inode->i_sb;
4293                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4294                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4295                                 EXT4_SB(sb)->s_es->s_rev_level ==
4296                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4297                         /* If this is the first large file
4298                          * created, add a flag to the superblock.
4299                          */
4300                         err = ext4_journal_get_write_access(handle,
4301                                         EXT4_SB(sb)->s_sbh);
4302                         if (err)
4303                                 goto out_brelse;
4304                         ext4_update_dynamic_rev(sb);
4305                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4306                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4307                         ext4_handle_sync(handle);
4308                         err = ext4_handle_dirty_super(handle, sb);
4309                 }
4310         }
4311         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4312         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4313                 if (old_valid_dev(inode->i_rdev)) {
4314                         raw_inode->i_block[0] =
4315                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4316                         raw_inode->i_block[1] = 0;
4317                 } else {
4318                         raw_inode->i_block[0] = 0;
4319                         raw_inode->i_block[1] =
4320                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4321                         raw_inode->i_block[2] = 0;
4322                 }
4323         } else if (!ext4_has_inline_data(inode)) {
4324                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4325                         raw_inode->i_block[block] = ei->i_data[block];
4326         }
4327
4328         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4329         if (ei->i_extra_isize) {
4330                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4331                         raw_inode->i_version_hi =
4332                         cpu_to_le32(inode->i_version >> 32);
4333                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4334         }
4335
4336         ext4_inode_csum_set(inode, raw_inode, ei);
4337
4338         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4339         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4340         if (!err)
4341                 err = rc;
4342         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4343
4344         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4345 out_brelse:
4346         brelse(bh);
4347         ext4_std_error(inode->i_sb, err);
4348         return err;
4349 }
4350
4351 /*
4352  * ext4_write_inode()
4353  *
4354  * We are called from a few places:
4355  *
4356  * - Within generic_file_write() for O_SYNC files.
4357  *   Here, there will be no transaction running. We wait for any running
4358  *   transaction to commit.
4359  *
4360  * - Within sys_sync(), kupdate and such.
4361  *   We wait on commit, if tol to.
4362  *
4363  * - Within prune_icache() (PF_MEMALLOC == true)
4364  *   Here we simply return.  We can't afford to block kswapd on the
4365  *   journal commit.
4366  *
4367  * In all cases it is actually safe for us to return without doing anything,
4368  * because the inode has been copied into a raw inode buffer in
4369  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4370  * knfsd.
4371  *
4372  * Note that we are absolutely dependent upon all inode dirtiers doing the
4373  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4374  * which we are interested.
4375  *
4376  * It would be a bug for them to not do this.  The code:
4377  *
4378  *      mark_inode_dirty(inode)
4379  *      stuff();
4380  *      inode->i_size = expr;
4381  *
4382  * is in error because a kswapd-driven write_inode() could occur while
4383  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4384  * will no longer be on the superblock's dirty inode list.
4385  */
4386 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4387 {
4388         int err;
4389
4390         if (current->flags & PF_MEMALLOC)
4391                 return 0;
4392
4393         if (EXT4_SB(inode->i_sb)->s_journal) {
4394                 if (ext4_journal_current_handle()) {
4395                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4396                         dump_stack();
4397                         return -EIO;
4398                 }
4399
4400                 if (wbc->sync_mode != WB_SYNC_ALL)
4401                         return 0;
4402
4403                 err = ext4_force_commit(inode->i_sb);
4404         } else {
4405                 struct ext4_iloc iloc;
4406
4407                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4408                 if (err)
4409                         return err;
4410                 if (wbc->sync_mode == WB_SYNC_ALL)
4411                         sync_dirty_buffer(iloc.bh);
4412                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4413                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4414                                          "IO error syncing inode");
4415                         err = -EIO;
4416                 }
4417                 brelse(iloc.bh);
4418         }
4419         return err;
4420 }
4421
4422 /*
4423  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4424  * buffers that are attached to a page stradding i_size and are undergoing
4425  * commit. In that case we have to wait for commit to finish and try again.
4426  */
4427 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4428 {
4429         struct page *page;
4430         unsigned offset;
4431         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4432         tid_t commit_tid = 0;
4433         int ret;
4434
4435         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4436         /*
4437          * All buffers in the last page remain valid? Then there's nothing to
4438          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4439          * blocksize case
4440          */
4441         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4442                 return;
4443         while (1) {
4444                 page = find_lock_page(inode->i_mapping,
4445                                       inode->i_size >> PAGE_CACHE_SHIFT);
4446                 if (!page)
4447                         return;
4448                 ret = __ext4_journalled_invalidatepage(page, offset,
4449                                                 PAGE_CACHE_SIZE - offset);
4450                 unlock_page(page);
4451                 page_cache_release(page);
4452                 if (ret != -EBUSY)
4453                         return;
4454                 commit_tid = 0;
4455                 read_lock(&journal->j_state_lock);
4456                 if (journal->j_committing_transaction)
4457                         commit_tid = journal->j_committing_transaction->t_tid;
4458                 read_unlock(&journal->j_state_lock);
4459                 if (commit_tid)
4460                         jbd2_log_wait_commit(journal, commit_tid);
4461         }
4462 }
4463
4464 /*
4465  * ext4_setattr()
4466  *
4467  * Called from notify_change.
4468  *
4469  * We want to trap VFS attempts to truncate the file as soon as
4470  * possible.  In particular, we want to make sure that when the VFS
4471  * shrinks i_size, we put the inode on the orphan list and modify
4472  * i_disksize immediately, so that during the subsequent flushing of
4473  * dirty pages and freeing of disk blocks, we can guarantee that any
4474  * commit will leave the blocks being flushed in an unused state on
4475  * disk.  (On recovery, the inode will get truncated and the blocks will
4476  * be freed, so we have a strong guarantee that no future commit will
4477  * leave these blocks visible to the user.)
4478  *
4479  * Another thing we have to assure is that if we are in ordered mode
4480  * and inode is still attached to the committing transaction, we must
4481  * we start writeout of all the dirty pages which are being truncated.
4482  * This way we are sure that all the data written in the previous
4483  * transaction are already on disk (truncate waits for pages under
4484  * writeback).
4485  *
4486  * Called with inode->i_mutex down.
4487  */
4488 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4489 {
4490         struct inode *inode = dentry->d_inode;
4491         int error, rc = 0;
4492         int orphan = 0;
4493         const unsigned int ia_valid = attr->ia_valid;
4494
4495         error = inode_change_ok(inode, attr);
4496         if (error)
4497                 return error;
4498
4499         if (is_quota_modification(inode, attr))
4500                 dquot_initialize(inode);
4501         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4502             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4503                 handle_t *handle;
4504
4505                 /* (user+group)*(old+new) structure, inode write (sb,
4506                  * inode block, ? - but truncate inode update has it) */
4507                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4508                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4509                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4510                 if (IS_ERR(handle)) {
4511                         error = PTR_ERR(handle);
4512                         goto err_out;
4513                 }
4514                 error = dquot_transfer(inode, attr);
4515                 if (error) {
4516                         ext4_journal_stop(handle);
4517                         return error;
4518                 }
4519                 /* Update corresponding info in inode so that everything is in
4520                  * one transaction */
4521                 if (attr->ia_valid & ATTR_UID)
4522                         inode->i_uid = attr->ia_uid;
4523                 if (attr->ia_valid & ATTR_GID)
4524                         inode->i_gid = attr->ia_gid;
4525                 error = ext4_mark_inode_dirty(handle, inode);
4526                 ext4_journal_stop(handle);
4527         }
4528
4529         if (attr->ia_valid & ATTR_SIZE) {
4530
4531                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4532                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4533
4534                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4535                                 return -EFBIG;
4536                 }
4537         }
4538
4539         if (S_ISREG(inode->i_mode) &&
4540             attr->ia_valid & ATTR_SIZE &&
4541             (attr->ia_size < inode->i_size)) {
4542                 handle_t *handle;
4543
4544                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4545                 if (IS_ERR(handle)) {
4546                         error = PTR_ERR(handle);
4547                         goto err_out;
4548                 }
4549                 if (ext4_handle_valid(handle)) {
4550                         error = ext4_orphan_add(handle, inode);
4551                         orphan = 1;
4552                 }
4553                 EXT4_I(inode)->i_disksize = attr->ia_size;
4554                 rc = ext4_mark_inode_dirty(handle, inode);
4555                 if (!error)
4556                         error = rc;
4557                 ext4_journal_stop(handle);
4558
4559                 if (ext4_should_order_data(inode)) {
4560                         error = ext4_begin_ordered_truncate(inode,
4561                                                             attr->ia_size);
4562                         if (error) {
4563                                 /* Do as much error cleanup as possible */
4564                                 handle = ext4_journal_start(inode,
4565                                                             EXT4_HT_INODE, 3);
4566                                 if (IS_ERR(handle)) {
4567                                         ext4_orphan_del(NULL, inode);
4568                                         goto err_out;
4569                                 }
4570                                 ext4_orphan_del(handle, inode);
4571                                 orphan = 0;
4572                                 ext4_journal_stop(handle);
4573                                 goto err_out;
4574                         }
4575                 }
4576         }
4577
4578         if (attr->ia_valid & ATTR_SIZE) {
4579                 if (attr->ia_size != inode->i_size) {
4580                         loff_t oldsize = inode->i_size;
4581
4582                         i_size_write(inode, attr->ia_size);
4583                         /*
4584                          * Blocks are going to be removed from the inode. Wait
4585                          * for dio in flight.  Temporarily disable
4586                          * dioread_nolock to prevent livelock.
4587                          */
4588                         if (orphan) {
4589                                 if (!ext4_should_journal_data(inode)) {
4590                                         ext4_inode_block_unlocked_dio(inode);
4591                                         inode_dio_wait(inode);
4592                                         ext4_inode_resume_unlocked_dio(inode);
4593                                 } else
4594                                         ext4_wait_for_tail_page_commit(inode);
4595                         }
4596                         /*
4597                          * Truncate pagecache after we've waited for commit
4598                          * in data=journal mode to make pages freeable.
4599                          */
4600                         truncate_pagecache(inode, oldsize, inode->i_size);
4601                 }
4602                 ext4_truncate(inode);
4603         }
4604
4605         if (!rc) {
4606                 setattr_copy(inode, attr);
4607                 mark_inode_dirty(inode);
4608         }
4609
4610         /*
4611          * If the call to ext4_truncate failed to get a transaction handle at
4612          * all, we need to clean up the in-core orphan list manually.
4613          */
4614         if (orphan && inode->i_nlink)
4615                 ext4_orphan_del(NULL, inode);
4616
4617         if (!rc && (ia_valid & ATTR_MODE))
4618                 rc = ext4_acl_chmod(inode);
4619
4620 err_out:
4621         ext4_std_error(inode->i_sb, error);
4622         if (!error)
4623                 error = rc;
4624         return error;
4625 }
4626
4627 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4628                  struct kstat *stat)
4629 {
4630         struct inode *inode;
4631         unsigned long long delalloc_blocks;
4632
4633         inode = dentry->d_inode;
4634         generic_fillattr(inode, stat);
4635
4636         /*
4637          * We can't update i_blocks if the block allocation is delayed
4638          * otherwise in the case of system crash before the real block
4639          * allocation is done, we will have i_blocks inconsistent with
4640          * on-disk file blocks.
4641          * We always keep i_blocks updated together with real
4642          * allocation. But to not confuse with user, stat
4643          * will return the blocks that include the delayed allocation
4644          * blocks for this file.
4645          */
4646         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4647                                 EXT4_I(inode)->i_reserved_data_blocks);
4648
4649         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
4650         return 0;
4651 }
4652
4653 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4654 {
4655         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4656                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4657         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4658 }
4659
4660 /*
4661  * Account for index blocks, block groups bitmaps and block group
4662  * descriptor blocks if modify datablocks and index blocks
4663  * worse case, the indexs blocks spread over different block groups
4664  *
4665  * If datablocks are discontiguous, they are possible to spread over
4666  * different block groups too. If they are contiguous, with flexbg,
4667  * they could still across block group boundary.
4668  *
4669  * Also account for superblock, inode, quota and xattr blocks
4670  */
4671 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4672 {
4673         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4674         int gdpblocks;
4675         int idxblocks;
4676         int ret = 0;
4677
4678         /*
4679          * How many index blocks need to touch to modify nrblocks?
4680          * The "Chunk" flag indicating whether the nrblocks is
4681          * physically contiguous on disk
4682          *
4683          * For Direct IO and fallocate, they calls get_block to allocate
4684          * one single extent at a time, so they could set the "Chunk" flag
4685          */
4686         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4687
4688         ret = idxblocks;
4689
4690         /*
4691          * Now let's see how many group bitmaps and group descriptors need
4692          * to account
4693          */
4694         groups = idxblocks;
4695         if (chunk)
4696                 groups += 1;
4697         else
4698                 groups += nrblocks;
4699
4700         gdpblocks = groups;
4701         if (groups > ngroups)
4702                 groups = ngroups;
4703         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4704                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4705
4706         /* bitmaps and block group descriptor blocks */
4707         ret += groups + gdpblocks;
4708
4709         /* Blocks for super block, inode, quota and xattr blocks */
4710         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4711
4712         return ret;
4713 }
4714
4715 /*
4716  * Calculate the total number of credits to reserve to fit
4717  * the modification of a single pages into a single transaction,
4718  * which may include multiple chunks of block allocations.
4719  *
4720  * This could be called via ext4_write_begin()
4721  *
4722  * We need to consider the worse case, when
4723  * one new block per extent.
4724  */
4725 int ext4_writepage_trans_blocks(struct inode *inode)
4726 {
4727         int bpp = ext4_journal_blocks_per_page(inode);
4728         int ret;
4729
4730         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4731
4732         /* Account for data blocks for journalled mode */
4733         if (ext4_should_journal_data(inode))
4734                 ret += bpp;
4735         return ret;
4736 }
4737
4738 /*
4739  * Calculate the journal credits for a chunk of data modification.
4740  *
4741  * This is called from DIO, fallocate or whoever calling
4742  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4743  *
4744  * journal buffers for data blocks are not included here, as DIO
4745  * and fallocate do no need to journal data buffers.
4746  */
4747 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4748 {
4749         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4750 }
4751
4752 /*
4753  * The caller must have previously called ext4_reserve_inode_write().
4754  * Give this, we know that the caller already has write access to iloc->bh.
4755  */
4756 int ext4_mark_iloc_dirty(handle_t *handle,
4757                          struct inode *inode, struct ext4_iloc *iloc)
4758 {
4759         int err = 0;
4760
4761         if (IS_I_VERSION(inode))
4762                 inode_inc_iversion(inode);
4763
4764         /* the do_update_inode consumes one bh->b_count */
4765         get_bh(iloc->bh);
4766
4767         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4768         err = ext4_do_update_inode(handle, inode, iloc);
4769         put_bh(iloc->bh);
4770         return err;
4771 }
4772
4773 /*
4774  * On success, We end up with an outstanding reference count against
4775  * iloc->bh.  This _must_ be cleaned up later.
4776  */
4777
4778 int
4779 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4780                          struct ext4_iloc *iloc)
4781 {
4782         int err;
4783
4784         err = ext4_get_inode_loc(inode, iloc);
4785         if (!err) {
4786                 BUFFER_TRACE(iloc->bh, "get_write_access");
4787                 err = ext4_journal_get_write_access(handle, iloc->bh);
4788                 if (err) {
4789                         brelse(iloc->bh);
4790                         iloc->bh = NULL;
4791                 }
4792         }
4793         ext4_std_error(inode->i_sb, err);
4794         return err;
4795 }
4796
4797 /*
4798  * Expand an inode by new_extra_isize bytes.
4799  * Returns 0 on success or negative error number on failure.
4800  */
4801 static int ext4_expand_extra_isize(struct inode *inode,
4802                                    unsigned int new_extra_isize,
4803                                    struct ext4_iloc iloc,
4804                                    handle_t *handle)
4805 {
4806         struct ext4_inode *raw_inode;
4807         struct ext4_xattr_ibody_header *header;
4808
4809         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4810                 return 0;
4811
4812         raw_inode = ext4_raw_inode(&iloc);
4813
4814         header = IHDR(inode, raw_inode);
4815
4816         /* No extended attributes present */
4817         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4818             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4819                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4820                         new_extra_isize);
4821                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4822                 return 0;
4823         }
4824
4825         /* try to expand with EAs present */
4826         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4827                                           raw_inode, handle);
4828 }
4829
4830 /*
4831  * What we do here is to mark the in-core inode as clean with respect to inode
4832  * dirtiness (it may still be data-dirty).
4833  * This means that the in-core inode may be reaped by prune_icache
4834  * without having to perform any I/O.  This is a very good thing,
4835  * because *any* task may call prune_icache - even ones which
4836  * have a transaction open against a different journal.
4837  *
4838  * Is this cheating?  Not really.  Sure, we haven't written the
4839  * inode out, but prune_icache isn't a user-visible syncing function.
4840  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4841  * we start and wait on commits.
4842  */
4843 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4844 {
4845         struct ext4_iloc iloc;
4846         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4847         static unsigned int mnt_count;
4848         int err, ret;
4849
4850         might_sleep();
4851         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4852         err = ext4_reserve_inode_write(handle, inode, &iloc);
4853         if (ext4_handle_valid(handle) &&
4854             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4855             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4856                 /*
4857                  * We need extra buffer credits since we may write into EA block
4858                  * with this same handle. If journal_extend fails, then it will
4859                  * only result in a minor loss of functionality for that inode.
4860                  * If this is felt to be critical, then e2fsck should be run to
4861                  * force a large enough s_min_extra_isize.
4862                  */
4863                 if ((jbd2_journal_extend(handle,
4864                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4865                         ret = ext4_expand_extra_isize(inode,
4866                                                       sbi->s_want_extra_isize,
4867                                                       iloc, handle);
4868                         if (ret) {
4869                                 ext4_set_inode_state(inode,
4870                                                      EXT4_STATE_NO_EXPAND);
4871                                 if (mnt_count !=
4872                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4873                                         ext4_warning(inode->i_sb,
4874                                         "Unable to expand inode %lu. Delete"
4875                                         " some EAs or run e2fsck.",
4876                                         inode->i_ino);
4877                                         mnt_count =
4878                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4879                                 }
4880                         }
4881                 }
4882         }
4883         if (!err)
4884                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4885         return err;
4886 }
4887
4888 /*
4889  * ext4_dirty_inode() is called from __mark_inode_dirty()
4890  *
4891  * We're really interested in the case where a file is being extended.
4892  * i_size has been changed by generic_commit_write() and we thus need
4893  * to include the updated inode in the current transaction.
4894  *
4895  * Also, dquot_alloc_block() will always dirty the inode when blocks
4896  * are allocated to the file.
4897  *
4898  * If the inode is marked synchronous, we don't honour that here - doing
4899  * so would cause a commit on atime updates, which we don't bother doing.
4900  * We handle synchronous inodes at the highest possible level.
4901  */
4902 void ext4_dirty_inode(struct inode *inode, int flags)
4903 {
4904         handle_t *handle;
4905
4906         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4907         if (IS_ERR(handle))
4908                 goto out;
4909
4910         ext4_mark_inode_dirty(handle, inode);
4911
4912         ext4_journal_stop(handle);
4913 out:
4914         return;
4915 }
4916
4917 #if 0
4918 /*
4919  * Bind an inode's backing buffer_head into this transaction, to prevent
4920  * it from being flushed to disk early.  Unlike
4921  * ext4_reserve_inode_write, this leaves behind no bh reference and
4922  * returns no iloc structure, so the caller needs to repeat the iloc
4923  * lookup to mark the inode dirty later.
4924  */
4925 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4926 {
4927         struct ext4_iloc iloc;
4928
4929         int err = 0;
4930         if (handle) {
4931                 err = ext4_get_inode_loc(inode, &iloc);
4932                 if (!err) {
4933                         BUFFER_TRACE(iloc.bh, "get_write_access");
4934                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4935                         if (!err)
4936                                 err = ext4_handle_dirty_metadata(handle,
4937                                                                  NULL,
4938                                                                  iloc.bh);
4939                         brelse(iloc.bh);
4940                 }
4941         }
4942         ext4_std_error(inode->i_sb, err);
4943         return err;
4944 }
4945 #endif
4946
4947 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4948 {
4949         journal_t *journal;
4950         handle_t *handle;
4951         int err;
4952
4953         /*
4954          * We have to be very careful here: changing a data block's
4955          * journaling status dynamically is dangerous.  If we write a
4956          * data block to the journal, change the status and then delete
4957          * that block, we risk forgetting to revoke the old log record
4958          * from the journal and so a subsequent replay can corrupt data.
4959          * So, first we make sure that the journal is empty and that
4960          * nobody is changing anything.
4961          */
4962
4963         journal = EXT4_JOURNAL(inode);
4964         if (!journal)
4965                 return 0;
4966         if (is_journal_aborted(journal))
4967                 return -EROFS;
4968         /* We have to allocate physical blocks for delalloc blocks
4969          * before flushing journal. otherwise delalloc blocks can not
4970          * be allocated any more. even more truncate on delalloc blocks
4971          * could trigger BUG by flushing delalloc blocks in journal.
4972          * There is no delalloc block in non-journal data mode.
4973          */
4974         if (val && test_opt(inode->i_sb, DELALLOC)) {
4975                 err = ext4_alloc_da_blocks(inode);
4976                 if (err < 0)
4977                         return err;
4978         }
4979
4980         /* Wait for all existing dio workers */
4981         ext4_inode_block_unlocked_dio(inode);
4982         inode_dio_wait(inode);
4983
4984         jbd2_journal_lock_updates(journal);
4985
4986         /*
4987          * OK, there are no updates running now, and all cached data is
4988          * synced to disk.  We are now in a completely consistent state
4989          * which doesn't have anything in the journal, and we know that
4990          * no filesystem updates are running, so it is safe to modify
4991          * the inode's in-core data-journaling state flag now.
4992          */
4993
4994         if (val)
4995                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4996         else {
4997                 jbd2_journal_flush(journal);
4998                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4999         }
5000         ext4_set_aops(inode);
5001
5002         jbd2_journal_unlock_updates(journal);
5003         ext4_inode_resume_unlocked_dio(inode);
5004
5005         /* Finally we can mark the inode as dirty. */
5006
5007         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5008         if (IS_ERR(handle))
5009                 return PTR_ERR(handle);
5010
5011         err = ext4_mark_inode_dirty(handle, inode);
5012         ext4_handle_sync(handle);
5013         ext4_journal_stop(handle);
5014         ext4_std_error(inode->i_sb, err);
5015
5016         return err;
5017 }
5018
5019 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5020 {
5021         return !buffer_mapped(bh);
5022 }
5023
5024 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5025 {
5026         struct page *page = vmf->page;
5027         loff_t size;
5028         unsigned long len;
5029         int ret;
5030         struct file *file = vma->vm_file;
5031         struct inode *inode = file_inode(file);
5032         struct address_space *mapping = inode->i_mapping;
5033         handle_t *handle;
5034         get_block_t *get_block;
5035         int retries = 0;
5036
5037         sb_start_pagefault(inode->i_sb);
5038         file_update_time(vma->vm_file);
5039         /* Delalloc case is easy... */
5040         if (test_opt(inode->i_sb, DELALLOC) &&
5041             !ext4_should_journal_data(inode) &&
5042             !ext4_nonda_switch(inode->i_sb)) {
5043                 do {
5044                         ret = __block_page_mkwrite(vma, vmf,
5045                                                    ext4_da_get_block_prep);
5046                 } while (ret == -ENOSPC &&
5047                        ext4_should_retry_alloc(inode->i_sb, &retries));
5048                 goto out_ret;
5049         }
5050
5051         lock_page(page);
5052         size = i_size_read(inode);
5053         /* Page got truncated from under us? */
5054         if (page->mapping != mapping || page_offset(page) > size) {
5055                 unlock_page(page);
5056                 ret = VM_FAULT_NOPAGE;
5057                 goto out;
5058         }
5059
5060         if (page->index == size >> PAGE_CACHE_SHIFT)
5061                 len = size & ~PAGE_CACHE_MASK;
5062         else
5063                 len = PAGE_CACHE_SIZE;
5064         /*
5065          * Return if we have all the buffers mapped. This avoids the need to do
5066          * journal_start/journal_stop which can block and take a long time
5067          */
5068         if (page_has_buffers(page)) {
5069                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5070                                             0, len, NULL,
5071                                             ext4_bh_unmapped)) {
5072                         /* Wait so that we don't change page under IO */
5073                         wait_for_stable_page(page);
5074                         ret = VM_FAULT_LOCKED;
5075                         goto out;
5076                 }
5077         }
5078         unlock_page(page);
5079         /* OK, we need to fill the hole... */
5080         if (ext4_should_dioread_nolock(inode))
5081                 get_block = ext4_get_block_write;
5082         else
5083                 get_block = ext4_get_block;
5084 retry_alloc:
5085         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5086                                     ext4_writepage_trans_blocks(inode));
5087         if (IS_ERR(handle)) {
5088                 ret = VM_FAULT_SIGBUS;
5089                 goto out;
5090         }
5091         ret = __block_page_mkwrite(vma, vmf, get_block);
5092         if (!ret && ext4_should_journal_data(inode)) {
5093                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5094                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5095                         unlock_page(page);
5096                         ret = VM_FAULT_SIGBUS;
5097                         ext4_journal_stop(handle);
5098                         goto out;
5099                 }
5100                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5101         }
5102         ext4_journal_stop(handle);
5103         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5104                 goto retry_alloc;
5105 out_ret:
5106         ret = block_page_mkwrite_return(ret);
5107 out:
5108         sb_end_pagefault(inode->i_sb);
5109         return ret;
5110 }