]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: simplify mpage_add_bh_to_extent()
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         ext4_ioend_wait(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_log_start_commit(journal, commit_tid);
215                         jbd2_log_wait_commit(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
238         if (IS_ERR(handle)) {
239                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
240                 /*
241                  * If we're going to skip the normal cleanup, we still need to
242                  * make sure that the in-core orphan linked list is properly
243                  * cleaned up.
244                  */
245                 ext4_orphan_del(NULL, inode);
246                 sb_end_intwrite(inode->i_sb);
247                 goto no_delete;
248         }
249
250         if (IS_SYNC(inode))
251                 ext4_handle_sync(handle);
252         inode->i_size = 0;
253         err = ext4_mark_inode_dirty(handle, inode);
254         if (err) {
255                 ext4_warning(inode->i_sb,
256                              "couldn't mark inode dirty (err %d)", err);
257                 goto stop_handle;
258         }
259         if (inode->i_blocks)
260                 ext4_truncate(inode);
261
262         /*
263          * ext4_ext_truncate() doesn't reserve any slop when it
264          * restarts journal transactions; therefore there may not be
265          * enough credits left in the handle to remove the inode from
266          * the orphan list and set the dtime field.
267          */
268         if (!ext4_handle_has_enough_credits(handle, 3)) {
269                 err = ext4_journal_extend(handle, 3);
270                 if (err > 0)
271                         err = ext4_journal_restart(handle, 3);
272                 if (err != 0) {
273                         ext4_warning(inode->i_sb,
274                                      "couldn't extend journal (err %d)", err);
275                 stop_handle:
276                         ext4_journal_stop(handle);
277                         ext4_orphan_del(NULL, inode);
278                         sb_end_intwrite(inode->i_sb);
279                         goto no_delete;
280                 }
281         }
282
283         /*
284          * Kill off the orphan record which ext4_truncate created.
285          * AKPM: I think this can be inside the above `if'.
286          * Note that ext4_orphan_del() has to be able to cope with the
287          * deletion of a non-existent orphan - this is because we don't
288          * know if ext4_truncate() actually created an orphan record.
289          * (Well, we could do this if we need to, but heck - it works)
290          */
291         ext4_orphan_del(handle, inode);
292         EXT4_I(inode)->i_dtime  = get_seconds();
293
294         /*
295          * One subtle ordering requirement: if anything has gone wrong
296          * (transaction abort, IO errors, whatever), then we can still
297          * do these next steps (the fs will already have been marked as
298          * having errors), but we can't free the inode if the mark_dirty
299          * fails.
300          */
301         if (ext4_mark_inode_dirty(handle, inode))
302                 /* If that failed, just do the required in-core inode clear. */
303                 ext4_clear_inode(inode);
304         else
305                 ext4_free_inode(handle, inode);
306         ext4_journal_stop(handle);
307         sb_end_intwrite(inode->i_sb);
308         return;
309 no_delete:
310         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
311 }
312
313 #ifdef CONFIG_QUOTA
314 qsize_t *ext4_get_reserved_space(struct inode *inode)
315 {
316         return &EXT4_I(inode)->i_reserved_quota;
317 }
318 #endif
319
320 /*
321  * Calculate the number of metadata blocks need to reserve
322  * to allocate a block located at @lblock
323  */
324 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
325 {
326         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
327                 return ext4_ext_calc_metadata_amount(inode, lblock);
328
329         return ext4_ind_calc_metadata_amount(inode, lblock);
330 }
331
332 /*
333  * Called with i_data_sem down, which is important since we can call
334  * ext4_discard_preallocations() from here.
335  */
336 void ext4_da_update_reserve_space(struct inode *inode,
337                                         int used, int quota_claim)
338 {
339         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340         struct ext4_inode_info *ei = EXT4_I(inode);
341
342         spin_lock(&ei->i_block_reservation_lock);
343         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344         if (unlikely(used > ei->i_reserved_data_blocks)) {
345                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
346                          "with only %d reserved data blocks",
347                          __func__, inode->i_ino, used,
348                          ei->i_reserved_data_blocks);
349                 WARN_ON(1);
350                 used = ei->i_reserved_data_blocks;
351         }
352
353         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
354                 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
355                          "with only %d reserved metadata blocks\n", __func__,
356                          inode->i_ino, ei->i_allocated_meta_blocks,
357                          ei->i_reserved_meta_blocks);
358                 WARN_ON(1);
359                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
360         }
361
362         /* Update per-inode reservations */
363         ei->i_reserved_data_blocks -= used;
364         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
365         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
366                            used + ei->i_allocated_meta_blocks);
367         ei->i_allocated_meta_blocks = 0;
368
369         if (ei->i_reserved_data_blocks == 0) {
370                 /*
371                  * We can release all of the reserved metadata blocks
372                  * only when we have written all of the delayed
373                  * allocation blocks.
374                  */
375                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
376                                    ei->i_reserved_meta_blocks);
377                 ei->i_reserved_meta_blocks = 0;
378                 ei->i_da_metadata_calc_len = 0;
379         }
380         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
381
382         /* Update quota subsystem for data blocks */
383         if (quota_claim)
384                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
385         else {
386                 /*
387                  * We did fallocate with an offset that is already delayed
388                  * allocated. So on delayed allocated writeback we should
389                  * not re-claim the quota for fallocated blocks.
390                  */
391                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
392         }
393
394         /*
395          * If we have done all the pending block allocations and if
396          * there aren't any writers on the inode, we can discard the
397          * inode's preallocations.
398          */
399         if ((ei->i_reserved_data_blocks == 0) &&
400             (atomic_read(&inode->i_writecount) == 0))
401                 ext4_discard_preallocations(inode);
402 }
403
404 static int __check_block_validity(struct inode *inode, const char *func,
405                                 unsigned int line,
406                                 struct ext4_map_blocks *map)
407 {
408         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
409                                    map->m_len)) {
410                 ext4_error_inode(inode, func, line, map->m_pblk,
411                                  "lblock %lu mapped to illegal pblock "
412                                  "(length %d)", (unsigned long) map->m_lblk,
413                                  map->m_len);
414                 return -EIO;
415         }
416         return 0;
417 }
418
419 #define check_block_validity(inode, map)        \
420         __check_block_validity((inode), __func__, __LINE__, (map))
421
422 /*
423  * Return the number of contiguous dirty pages in a given inode
424  * starting at page frame idx.
425  */
426 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
427                                     unsigned int max_pages)
428 {
429         struct address_space *mapping = inode->i_mapping;
430         pgoff_t index;
431         struct pagevec pvec;
432         pgoff_t num = 0;
433         int i, nr_pages, done = 0;
434
435         if (max_pages == 0)
436                 return 0;
437         pagevec_init(&pvec, 0);
438         while (!done) {
439                 index = idx;
440                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
441                                               PAGECACHE_TAG_DIRTY,
442                                               (pgoff_t)PAGEVEC_SIZE);
443                 if (nr_pages == 0)
444                         break;
445                 for (i = 0; i < nr_pages; i++) {
446                         struct page *page = pvec.pages[i];
447                         struct buffer_head *bh, *head;
448
449                         lock_page(page);
450                         if (unlikely(page->mapping != mapping) ||
451                             !PageDirty(page) ||
452                             PageWriteback(page) ||
453                             page->index != idx) {
454                                 done = 1;
455                                 unlock_page(page);
456                                 break;
457                         }
458                         if (page_has_buffers(page)) {
459                                 bh = head = page_buffers(page);
460                                 do {
461                                         if (!buffer_delay(bh) &&
462                                             !buffer_unwritten(bh))
463                                                 done = 1;
464                                         bh = bh->b_this_page;
465                                 } while (!done && (bh != head));
466                         }
467                         unlock_page(page);
468                         if (done)
469                                 break;
470                         idx++;
471                         num++;
472                         if (num >= max_pages) {
473                                 done = 1;
474                                 break;
475                         }
476                 }
477                 pagevec_release(&pvec);
478         }
479         return num;
480 }
481
482 /*
483  * The ext4_map_blocks() function tries to look up the requested blocks,
484  * and returns if the blocks are already mapped.
485  *
486  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
487  * and store the allocated blocks in the result buffer head and mark it
488  * mapped.
489  *
490  * If file type is extents based, it will call ext4_ext_map_blocks(),
491  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
492  * based files
493  *
494  * On success, it returns the number of blocks being mapped or allocate.
495  * if create==0 and the blocks are pre-allocated and uninitialized block,
496  * the result buffer head is unmapped. If the create ==1, it will make sure
497  * the buffer head is mapped.
498  *
499  * It returns 0 if plain look up failed (blocks have not been allocated), in
500  * that case, buffer head is unmapped
501  *
502  * It returns the error in case of allocation failure.
503  */
504 int ext4_map_blocks(handle_t *handle, struct inode *inode,
505                     struct ext4_map_blocks *map, int flags)
506 {
507         int retval;
508
509         map->m_flags = 0;
510         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
512                   (unsigned long) map->m_lblk);
513         /*
514          * Try to see if we can get the block without requesting a new
515          * file system block.
516          */
517         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
518                 down_read((&EXT4_I(inode)->i_data_sem));
519         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
520                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
521                                              EXT4_GET_BLOCKS_KEEP_SIZE);
522         } else {
523                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
524                                              EXT4_GET_BLOCKS_KEEP_SIZE);
525         }
526         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
527                 up_read((&EXT4_I(inode)->i_data_sem));
528
529         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
530                 int ret;
531                 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
532                         /* delayed alloc may be allocated by fallocate and
533                          * coverted to initialized by directIO.
534                          * we need to handle delayed extent here.
535                          */
536                         down_write((&EXT4_I(inode)->i_data_sem));
537                         goto delayed_mapped;
538                 }
539                 ret = check_block_validity(inode, map);
540                 if (ret != 0)
541                         return ret;
542         }
543
544         /* If it is only a block(s) look up */
545         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
546                 return retval;
547
548         /*
549          * Returns if the blocks have already allocated
550          *
551          * Note that if blocks have been preallocated
552          * ext4_ext_get_block() returns the create = 0
553          * with buffer head unmapped.
554          */
555         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
556                 return retval;
557
558         /*
559          * When we call get_blocks without the create flag, the
560          * BH_Unwritten flag could have gotten set if the blocks
561          * requested were part of a uninitialized extent.  We need to
562          * clear this flag now that we are committed to convert all or
563          * part of the uninitialized extent to be an initialized
564          * extent.  This is because we need to avoid the combination
565          * of BH_Unwritten and BH_Mapped flags being simultaneously
566          * set on the buffer_head.
567          */
568         map->m_flags &= ~EXT4_MAP_UNWRITTEN;
569
570         /*
571          * New blocks allocate and/or writing to uninitialized extent
572          * will possibly result in updating i_data, so we take
573          * the write lock of i_data_sem, and call get_blocks()
574          * with create == 1 flag.
575          */
576         down_write((&EXT4_I(inode)->i_data_sem));
577
578         /*
579          * if the caller is from delayed allocation writeout path
580          * we have already reserved fs blocks for allocation
581          * let the underlying get_block() function know to
582          * avoid double accounting
583          */
584         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
585                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
586         /*
587          * We need to check for EXT4 here because migrate
588          * could have changed the inode type in between
589          */
590         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
591                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
592         } else {
593                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
594
595                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
596                         /*
597                          * We allocated new blocks which will result in
598                          * i_data's format changing.  Force the migrate
599                          * to fail by clearing migrate flags
600                          */
601                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
602                 }
603
604                 /*
605                  * Update reserved blocks/metadata blocks after successful
606                  * block allocation which had been deferred till now. We don't
607                  * support fallocate for non extent files. So we can update
608                  * reserve space here.
609                  */
610                 if ((retval > 0) &&
611                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
612                         ext4_da_update_reserve_space(inode, retval, 1);
613         }
614         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
615                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
616
617                 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
618                         int ret;
619 delayed_mapped:
620                         /* delayed allocation blocks has been allocated */
621                         ret = ext4_es_remove_extent(inode, map->m_lblk,
622                                                     map->m_len);
623                         if (ret < 0)
624                                 retval = ret;
625                 }
626         }
627
628         up_write((&EXT4_I(inode)->i_data_sem));
629         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
630                 int ret = check_block_validity(inode, map);
631                 if (ret != 0)
632                         return ret;
633         }
634         return retval;
635 }
636
637 /* Maximum number of blocks we map for direct IO at once. */
638 #define DIO_MAX_BLOCKS 4096
639
640 static int _ext4_get_block(struct inode *inode, sector_t iblock,
641                            struct buffer_head *bh, int flags)
642 {
643         handle_t *handle = ext4_journal_current_handle();
644         struct ext4_map_blocks map;
645         int ret = 0, started = 0;
646         int dio_credits;
647
648         if (ext4_has_inline_data(inode))
649                 return -ERANGE;
650
651         map.m_lblk = iblock;
652         map.m_len = bh->b_size >> inode->i_blkbits;
653
654         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
655                 /* Direct IO write... */
656                 if (map.m_len > DIO_MAX_BLOCKS)
657                         map.m_len = DIO_MAX_BLOCKS;
658                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
659                 handle = ext4_journal_start(inode, dio_credits);
660                 if (IS_ERR(handle)) {
661                         ret = PTR_ERR(handle);
662                         return ret;
663                 }
664                 started = 1;
665         }
666
667         ret = ext4_map_blocks(handle, inode, &map, flags);
668         if (ret > 0) {
669                 map_bh(bh, inode->i_sb, map.m_pblk);
670                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
671                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
672                 ret = 0;
673         }
674         if (started)
675                 ext4_journal_stop(handle);
676         return ret;
677 }
678
679 int ext4_get_block(struct inode *inode, sector_t iblock,
680                    struct buffer_head *bh, int create)
681 {
682         return _ext4_get_block(inode, iblock, bh,
683                                create ? EXT4_GET_BLOCKS_CREATE : 0);
684 }
685
686 /*
687  * `handle' can be NULL if create is zero
688  */
689 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
690                                 ext4_lblk_t block, int create, int *errp)
691 {
692         struct ext4_map_blocks map;
693         struct buffer_head *bh;
694         int fatal = 0, err;
695
696         J_ASSERT(handle != NULL || create == 0);
697
698         map.m_lblk = block;
699         map.m_len = 1;
700         err = ext4_map_blocks(handle, inode, &map,
701                               create ? EXT4_GET_BLOCKS_CREATE : 0);
702
703         /* ensure we send some value back into *errp */
704         *errp = 0;
705
706         if (err < 0)
707                 *errp = err;
708         if (err <= 0)
709                 return NULL;
710
711         bh = sb_getblk(inode->i_sb, map.m_pblk);
712         if (unlikely(!bh)) {
713                 *errp = -ENOMEM;
714                 return NULL;
715         }
716         if (map.m_flags & EXT4_MAP_NEW) {
717                 J_ASSERT(create != 0);
718                 J_ASSERT(handle != NULL);
719
720                 /*
721                  * Now that we do not always journal data, we should
722                  * keep in mind whether this should always journal the
723                  * new buffer as metadata.  For now, regular file
724                  * writes use ext4_get_block instead, so it's not a
725                  * problem.
726                  */
727                 lock_buffer(bh);
728                 BUFFER_TRACE(bh, "call get_create_access");
729                 fatal = ext4_journal_get_create_access(handle, bh);
730                 if (!fatal && !buffer_uptodate(bh)) {
731                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
732                         set_buffer_uptodate(bh);
733                 }
734                 unlock_buffer(bh);
735                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
736                 err = ext4_handle_dirty_metadata(handle, inode, bh);
737                 if (!fatal)
738                         fatal = err;
739         } else {
740                 BUFFER_TRACE(bh, "not a new buffer");
741         }
742         if (fatal) {
743                 *errp = fatal;
744                 brelse(bh);
745                 bh = NULL;
746         }
747         return bh;
748 }
749
750 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
751                                ext4_lblk_t block, int create, int *err)
752 {
753         struct buffer_head *bh;
754
755         bh = ext4_getblk(handle, inode, block, create, err);
756         if (!bh)
757                 return bh;
758         if (buffer_uptodate(bh))
759                 return bh;
760         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
761         wait_on_buffer(bh);
762         if (buffer_uptodate(bh))
763                 return bh;
764         put_bh(bh);
765         *err = -EIO;
766         return NULL;
767 }
768
769 int ext4_walk_page_buffers(handle_t *handle,
770                            struct buffer_head *head,
771                            unsigned from,
772                            unsigned to,
773                            int *partial,
774                            int (*fn)(handle_t *handle,
775                                      struct buffer_head *bh))
776 {
777         struct buffer_head *bh;
778         unsigned block_start, block_end;
779         unsigned blocksize = head->b_size;
780         int err, ret = 0;
781         struct buffer_head *next;
782
783         for (bh = head, block_start = 0;
784              ret == 0 && (bh != head || !block_start);
785              block_start = block_end, bh = next) {
786                 next = bh->b_this_page;
787                 block_end = block_start + blocksize;
788                 if (block_end <= from || block_start >= to) {
789                         if (partial && !buffer_uptodate(bh))
790                                 *partial = 1;
791                         continue;
792                 }
793                 err = (*fn)(handle, bh);
794                 if (!ret)
795                         ret = err;
796         }
797         return ret;
798 }
799
800 /*
801  * To preserve ordering, it is essential that the hole instantiation and
802  * the data write be encapsulated in a single transaction.  We cannot
803  * close off a transaction and start a new one between the ext4_get_block()
804  * and the commit_write().  So doing the jbd2_journal_start at the start of
805  * prepare_write() is the right place.
806  *
807  * Also, this function can nest inside ext4_writepage().  In that case, we
808  * *know* that ext4_writepage() has generated enough buffer credits to do the
809  * whole page.  So we won't block on the journal in that case, which is good,
810  * because the caller may be PF_MEMALLOC.
811  *
812  * By accident, ext4 can be reentered when a transaction is open via
813  * quota file writes.  If we were to commit the transaction while thus
814  * reentered, there can be a deadlock - we would be holding a quota
815  * lock, and the commit would never complete if another thread had a
816  * transaction open and was blocking on the quota lock - a ranking
817  * violation.
818  *
819  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
820  * will _not_ run commit under these circumstances because handle->h_ref
821  * is elevated.  We'll still have enough credits for the tiny quotafile
822  * write.
823  */
824 int do_journal_get_write_access(handle_t *handle,
825                                 struct buffer_head *bh)
826 {
827         int dirty = buffer_dirty(bh);
828         int ret;
829
830         if (!buffer_mapped(bh) || buffer_freed(bh))
831                 return 0;
832         /*
833          * __block_write_begin() could have dirtied some buffers. Clean
834          * the dirty bit as jbd2_journal_get_write_access() could complain
835          * otherwise about fs integrity issues. Setting of the dirty bit
836          * by __block_write_begin() isn't a real problem here as we clear
837          * the bit before releasing a page lock and thus writeback cannot
838          * ever write the buffer.
839          */
840         if (dirty)
841                 clear_buffer_dirty(bh);
842         ret = ext4_journal_get_write_access(handle, bh);
843         if (!ret && dirty)
844                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
845         return ret;
846 }
847
848 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
849                    struct buffer_head *bh_result, int create);
850 static int ext4_write_begin(struct file *file, struct address_space *mapping,
851                             loff_t pos, unsigned len, unsigned flags,
852                             struct page **pagep, void **fsdata)
853 {
854         struct inode *inode = mapping->host;
855         int ret, needed_blocks;
856         handle_t *handle;
857         int retries = 0;
858         struct page *page;
859         pgoff_t index;
860         unsigned from, to;
861
862         trace_ext4_write_begin(inode, pos, len, flags);
863         /*
864          * Reserve one block more for addition to orphan list in case
865          * we allocate blocks but write fails for some reason
866          */
867         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
868         index = pos >> PAGE_CACHE_SHIFT;
869         from = pos & (PAGE_CACHE_SIZE - 1);
870         to = from + len;
871
872         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
873                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
874                                                     flags, pagep);
875                 if (ret < 0)
876                         goto out;
877                 if (ret == 1) {
878                         ret = 0;
879                         goto out;
880                 }
881         }
882
883 retry:
884         handle = ext4_journal_start(inode, needed_blocks);
885         if (IS_ERR(handle)) {
886                 ret = PTR_ERR(handle);
887                 goto out;
888         }
889
890         /* We cannot recurse into the filesystem as the transaction is already
891          * started */
892         flags |= AOP_FLAG_NOFS;
893
894         page = grab_cache_page_write_begin(mapping, index, flags);
895         if (!page) {
896                 ext4_journal_stop(handle);
897                 ret = -ENOMEM;
898                 goto out;
899         }
900
901         *pagep = page;
902
903         if (ext4_should_dioread_nolock(inode))
904                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
905         else
906                 ret = __block_write_begin(page, pos, len, ext4_get_block);
907
908         if (!ret && ext4_should_journal_data(inode)) {
909                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
910                                              from, to, NULL,
911                                              do_journal_get_write_access);
912         }
913
914         if (ret) {
915                 unlock_page(page);
916                 page_cache_release(page);
917                 /*
918                  * __block_write_begin may have instantiated a few blocks
919                  * outside i_size.  Trim these off again. Don't need
920                  * i_size_read because we hold i_mutex.
921                  *
922                  * Add inode to orphan list in case we crash before
923                  * truncate finishes
924                  */
925                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
926                         ext4_orphan_add(handle, inode);
927
928                 ext4_journal_stop(handle);
929                 if (pos + len > inode->i_size) {
930                         ext4_truncate_failed_write(inode);
931                         /*
932                          * If truncate failed early the inode might
933                          * still be on the orphan list; we need to
934                          * make sure the inode is removed from the
935                          * orphan list in that case.
936                          */
937                         if (inode->i_nlink)
938                                 ext4_orphan_del(NULL, inode);
939                 }
940         }
941
942         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
943                 goto retry;
944 out:
945         return ret;
946 }
947
948 /* For write_end() in data=journal mode */
949 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
950 {
951         if (!buffer_mapped(bh) || buffer_freed(bh))
952                 return 0;
953         set_buffer_uptodate(bh);
954         return ext4_handle_dirty_metadata(handle, NULL, bh);
955 }
956
957 static int ext4_generic_write_end(struct file *file,
958                                   struct address_space *mapping,
959                                   loff_t pos, unsigned len, unsigned copied,
960                                   struct page *page, void *fsdata)
961 {
962         int i_size_changed = 0;
963         struct inode *inode = mapping->host;
964         handle_t *handle = ext4_journal_current_handle();
965
966         if (ext4_has_inline_data(inode))
967                 copied = ext4_write_inline_data_end(inode, pos, len,
968                                                     copied, page);
969         else
970                 copied = block_write_end(file, mapping, pos,
971                                          len, copied, page, fsdata);
972
973         /*
974          * No need to use i_size_read() here, the i_size
975          * cannot change under us because we hold i_mutex.
976          *
977          * But it's important to update i_size while still holding page lock:
978          * page writeout could otherwise come in and zero beyond i_size.
979          */
980         if (pos + copied > inode->i_size) {
981                 i_size_write(inode, pos + copied);
982                 i_size_changed = 1;
983         }
984
985         if (pos + copied >  EXT4_I(inode)->i_disksize) {
986                 /* We need to mark inode dirty even if
987                  * new_i_size is less that inode->i_size
988                  * bu greater than i_disksize.(hint delalloc)
989                  */
990                 ext4_update_i_disksize(inode, (pos + copied));
991                 i_size_changed = 1;
992         }
993         unlock_page(page);
994         page_cache_release(page);
995
996         /*
997          * Don't mark the inode dirty under page lock. First, it unnecessarily
998          * makes the holding time of page lock longer. Second, it forces lock
999          * ordering of page lock and transaction start for journaling
1000          * filesystems.
1001          */
1002         if (i_size_changed)
1003                 ext4_mark_inode_dirty(handle, inode);
1004
1005         return copied;
1006 }
1007
1008 /*
1009  * We need to pick up the new inode size which generic_commit_write gave us
1010  * `file' can be NULL - eg, when called from page_symlink().
1011  *
1012  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1013  * buffers are managed internally.
1014  */
1015 static int ext4_ordered_write_end(struct file *file,
1016                                   struct address_space *mapping,
1017                                   loff_t pos, unsigned len, unsigned copied,
1018                                   struct page *page, void *fsdata)
1019 {
1020         handle_t *handle = ext4_journal_current_handle();
1021         struct inode *inode = mapping->host;
1022         int ret = 0, ret2;
1023
1024         trace_ext4_ordered_write_end(inode, pos, len, copied);
1025         ret = ext4_jbd2_file_inode(handle, inode);
1026
1027         if (ret == 0) {
1028                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1029                                                         page, fsdata);
1030                 copied = ret2;
1031                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1032                         /* if we have allocated more blocks and copied
1033                          * less. We will have blocks allocated outside
1034                          * inode->i_size. So truncate them
1035                          */
1036                         ext4_orphan_add(handle, inode);
1037                 if (ret2 < 0)
1038                         ret = ret2;
1039         } else {
1040                 unlock_page(page);
1041                 page_cache_release(page);
1042         }
1043
1044         ret2 = ext4_journal_stop(handle);
1045         if (!ret)
1046                 ret = ret2;
1047
1048         if (pos + len > inode->i_size) {
1049                 ext4_truncate_failed_write(inode);
1050                 /*
1051                  * If truncate failed early the inode might still be
1052                  * on the orphan list; we need to make sure the inode
1053                  * is removed from the orphan list in that case.
1054                  */
1055                 if (inode->i_nlink)
1056                         ext4_orphan_del(NULL, inode);
1057         }
1058
1059
1060         return ret ? ret : copied;
1061 }
1062
1063 static int ext4_writeback_write_end(struct file *file,
1064                                     struct address_space *mapping,
1065                                     loff_t pos, unsigned len, unsigned copied,
1066                                     struct page *page, void *fsdata)
1067 {
1068         handle_t *handle = ext4_journal_current_handle();
1069         struct inode *inode = mapping->host;
1070         int ret = 0, ret2;
1071
1072         trace_ext4_writeback_write_end(inode, pos, len, copied);
1073         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1074                                                         page, fsdata);
1075         copied = ret2;
1076         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1077                 /* if we have allocated more blocks and copied
1078                  * less. We will have blocks allocated outside
1079                  * inode->i_size. So truncate them
1080                  */
1081                 ext4_orphan_add(handle, inode);
1082
1083         if (ret2 < 0)
1084                 ret = ret2;
1085
1086         ret2 = ext4_journal_stop(handle);
1087         if (!ret)
1088                 ret = ret2;
1089
1090         if (pos + len > inode->i_size) {
1091                 ext4_truncate_failed_write(inode);
1092                 /*
1093                  * If truncate failed early the inode might still be
1094                  * on the orphan list; we need to make sure the inode
1095                  * is removed from the orphan list in that case.
1096                  */
1097                 if (inode->i_nlink)
1098                         ext4_orphan_del(NULL, inode);
1099         }
1100
1101         return ret ? ret : copied;
1102 }
1103
1104 static int ext4_journalled_write_end(struct file *file,
1105                                      struct address_space *mapping,
1106                                      loff_t pos, unsigned len, unsigned copied,
1107                                      struct page *page, void *fsdata)
1108 {
1109         handle_t *handle = ext4_journal_current_handle();
1110         struct inode *inode = mapping->host;
1111         int ret = 0, ret2;
1112         int partial = 0;
1113         unsigned from, to;
1114         loff_t new_i_size;
1115
1116         trace_ext4_journalled_write_end(inode, pos, len, copied);
1117         from = pos & (PAGE_CACHE_SIZE - 1);
1118         to = from + len;
1119
1120         BUG_ON(!ext4_handle_valid(handle));
1121
1122         if (ext4_has_inline_data(inode))
1123                 copied = ext4_write_inline_data_end(inode, pos, len,
1124                                                     copied, page);
1125         else {
1126                 if (copied < len) {
1127                         if (!PageUptodate(page))
1128                                 copied = 0;
1129                         page_zero_new_buffers(page, from+copied, to);
1130                 }
1131
1132                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1133                                              to, &partial, write_end_fn);
1134                 if (!partial)
1135                         SetPageUptodate(page);
1136         }
1137         new_i_size = pos + copied;
1138         if (new_i_size > inode->i_size)
1139                 i_size_write(inode, pos+copied);
1140         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1141         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1142         if (new_i_size > EXT4_I(inode)->i_disksize) {
1143                 ext4_update_i_disksize(inode, new_i_size);
1144                 ret2 = ext4_mark_inode_dirty(handle, inode);
1145                 if (!ret)
1146                         ret = ret2;
1147         }
1148
1149         unlock_page(page);
1150         page_cache_release(page);
1151         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1152                 /* if we have allocated more blocks and copied
1153                  * less. We will have blocks allocated outside
1154                  * inode->i_size. So truncate them
1155                  */
1156                 ext4_orphan_add(handle, inode);
1157
1158         ret2 = ext4_journal_stop(handle);
1159         if (!ret)
1160                 ret = ret2;
1161         if (pos + len > inode->i_size) {
1162                 ext4_truncate_failed_write(inode);
1163                 /*
1164                  * If truncate failed early the inode might still be
1165                  * on the orphan list; we need to make sure the inode
1166                  * is removed from the orphan list in that case.
1167                  */
1168                 if (inode->i_nlink)
1169                         ext4_orphan_del(NULL, inode);
1170         }
1171
1172         return ret ? ret : copied;
1173 }
1174
1175 /*
1176  * Reserve a single cluster located at lblock
1177  */
1178 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1179 {
1180         int retries = 0;
1181         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1182         struct ext4_inode_info *ei = EXT4_I(inode);
1183         unsigned int md_needed;
1184         int ret;
1185         ext4_lblk_t save_last_lblock;
1186         int save_len;
1187
1188         /*
1189          * We will charge metadata quota at writeout time; this saves
1190          * us from metadata over-estimation, though we may go over by
1191          * a small amount in the end.  Here we just reserve for data.
1192          */
1193         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1194         if (ret)
1195                 return ret;
1196
1197         /*
1198          * recalculate the amount of metadata blocks to reserve
1199          * in order to allocate nrblocks
1200          * worse case is one extent per block
1201          */
1202 repeat:
1203         spin_lock(&ei->i_block_reservation_lock);
1204         /*
1205          * ext4_calc_metadata_amount() has side effects, which we have
1206          * to be prepared undo if we fail to claim space.
1207          */
1208         save_len = ei->i_da_metadata_calc_len;
1209         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1210         md_needed = EXT4_NUM_B2C(sbi,
1211                                  ext4_calc_metadata_amount(inode, lblock));
1212         trace_ext4_da_reserve_space(inode, md_needed);
1213
1214         /*
1215          * We do still charge estimated metadata to the sb though;
1216          * we cannot afford to run out of free blocks.
1217          */
1218         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1219                 ei->i_da_metadata_calc_len = save_len;
1220                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1221                 spin_unlock(&ei->i_block_reservation_lock);
1222                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1223                         yield();
1224                         goto repeat;
1225                 }
1226                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1227                 return -ENOSPC;
1228         }
1229         ei->i_reserved_data_blocks++;
1230         ei->i_reserved_meta_blocks += md_needed;
1231         spin_unlock(&ei->i_block_reservation_lock);
1232
1233         return 0;       /* success */
1234 }
1235
1236 static void ext4_da_release_space(struct inode *inode, int to_free)
1237 {
1238         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1239         struct ext4_inode_info *ei = EXT4_I(inode);
1240
1241         if (!to_free)
1242                 return;         /* Nothing to release, exit */
1243
1244         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1245
1246         trace_ext4_da_release_space(inode, to_free);
1247         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1248                 /*
1249                  * if there aren't enough reserved blocks, then the
1250                  * counter is messed up somewhere.  Since this
1251                  * function is called from invalidate page, it's
1252                  * harmless to return without any action.
1253                  */
1254                 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1255                          "ino %lu, to_free %d with only %d reserved "
1256                          "data blocks", inode->i_ino, to_free,
1257                          ei->i_reserved_data_blocks);
1258                 WARN_ON(1);
1259                 to_free = ei->i_reserved_data_blocks;
1260         }
1261         ei->i_reserved_data_blocks -= to_free;
1262
1263         if (ei->i_reserved_data_blocks == 0) {
1264                 /*
1265                  * We can release all of the reserved metadata blocks
1266                  * only when we have written all of the delayed
1267                  * allocation blocks.
1268                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1269                  * i_reserved_data_blocks, etc. refer to number of clusters.
1270                  */
1271                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1272                                    ei->i_reserved_meta_blocks);
1273                 ei->i_reserved_meta_blocks = 0;
1274                 ei->i_da_metadata_calc_len = 0;
1275         }
1276
1277         /* update fs dirty data blocks counter */
1278         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1279
1280         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1281
1282         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1283 }
1284
1285 static void ext4_da_page_release_reservation(struct page *page,
1286                                              unsigned long offset)
1287 {
1288         int to_release = 0;
1289         struct buffer_head *head, *bh;
1290         unsigned int curr_off = 0;
1291         struct inode *inode = page->mapping->host;
1292         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1293         int num_clusters;
1294         ext4_fsblk_t lblk;
1295
1296         head = page_buffers(page);
1297         bh = head;
1298         do {
1299                 unsigned int next_off = curr_off + bh->b_size;
1300
1301                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1302                         to_release++;
1303                         clear_buffer_delay(bh);
1304                 }
1305                 curr_off = next_off;
1306         } while ((bh = bh->b_this_page) != head);
1307
1308         if (to_release) {
1309                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1310                 ext4_es_remove_extent(inode, lblk, to_release);
1311         }
1312
1313         /* If we have released all the blocks belonging to a cluster, then we
1314          * need to release the reserved space for that cluster. */
1315         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1316         while (num_clusters > 0) {
1317                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1318                         ((num_clusters - 1) << sbi->s_cluster_bits);
1319                 if (sbi->s_cluster_ratio == 1 ||
1320                     !ext4_find_delalloc_cluster(inode, lblk))
1321                         ext4_da_release_space(inode, 1);
1322
1323                 num_clusters--;
1324         }
1325 }
1326
1327 /*
1328  * Delayed allocation stuff
1329  */
1330
1331 /*
1332  * mpage_da_submit_io - walks through extent of pages and try to write
1333  * them with writepage() call back
1334  *
1335  * @mpd->inode: inode
1336  * @mpd->first_page: first page of the extent
1337  * @mpd->next_page: page after the last page of the extent
1338  *
1339  * By the time mpage_da_submit_io() is called we expect all blocks
1340  * to be allocated. this may be wrong if allocation failed.
1341  *
1342  * As pages are already locked by write_cache_pages(), we can't use it
1343  */
1344 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1345                               struct ext4_map_blocks *map)
1346 {
1347         struct pagevec pvec;
1348         unsigned long index, end;
1349         int ret = 0, err, nr_pages, i;
1350         struct inode *inode = mpd->inode;
1351         struct address_space *mapping = inode->i_mapping;
1352         loff_t size = i_size_read(inode);
1353         unsigned int len, block_start;
1354         struct buffer_head *bh, *page_bufs = NULL;
1355         sector_t pblock = 0, cur_logical = 0;
1356         struct ext4_io_submit io_submit;
1357
1358         BUG_ON(mpd->next_page <= mpd->first_page);
1359         memset(&io_submit, 0, sizeof(io_submit));
1360         /*
1361          * We need to start from the first_page to the next_page - 1
1362          * to make sure we also write the mapped dirty buffer_heads.
1363          * If we look at mpd->b_blocknr we would only be looking
1364          * at the currently mapped buffer_heads.
1365          */
1366         index = mpd->first_page;
1367         end = mpd->next_page - 1;
1368
1369         pagevec_init(&pvec, 0);
1370         while (index <= end) {
1371                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1372                 if (nr_pages == 0)
1373                         break;
1374                 for (i = 0; i < nr_pages; i++) {
1375                         int skip_page = 0;
1376                         struct page *page = pvec.pages[i];
1377
1378                         index = page->index;
1379                         if (index > end)
1380                                 break;
1381
1382                         if (index == size >> PAGE_CACHE_SHIFT)
1383                                 len = size & ~PAGE_CACHE_MASK;
1384                         else
1385                                 len = PAGE_CACHE_SIZE;
1386                         if (map) {
1387                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1388                                                         inode->i_blkbits);
1389                                 pblock = map->m_pblk + (cur_logical -
1390                                                         map->m_lblk);
1391                         }
1392                         index++;
1393
1394                         BUG_ON(!PageLocked(page));
1395                         BUG_ON(PageWriteback(page));
1396
1397                         bh = page_bufs = page_buffers(page);
1398                         block_start = 0;
1399                         do {
1400                                 if (map && (cur_logical >= map->m_lblk) &&
1401                                     (cur_logical <= (map->m_lblk +
1402                                                      (map->m_len - 1)))) {
1403                                         if (buffer_delay(bh)) {
1404                                                 clear_buffer_delay(bh);
1405                                                 bh->b_blocknr = pblock;
1406                                         }
1407                                         if (buffer_unwritten(bh) ||
1408                                             buffer_mapped(bh))
1409                                                 BUG_ON(bh->b_blocknr != pblock);
1410                                         if (map->m_flags & EXT4_MAP_UNINIT)
1411                                                 set_buffer_uninit(bh);
1412                                         clear_buffer_unwritten(bh);
1413                                 }
1414
1415                                 /*
1416                                  * skip page if block allocation undone and
1417                                  * block is dirty
1418                                  */
1419                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1420                                         skip_page = 1;
1421                                 bh = bh->b_this_page;
1422                                 block_start += bh->b_size;
1423                                 cur_logical++;
1424                                 pblock++;
1425                         } while (bh != page_bufs);
1426
1427                         if (skip_page) {
1428                                 unlock_page(page);
1429                                 continue;
1430                         }
1431
1432                         clear_page_dirty_for_io(page);
1433                         err = ext4_bio_write_page(&io_submit, page, len,
1434                                                   mpd->wbc);
1435                         if (!err)
1436                                 mpd->pages_written++;
1437                         /*
1438                          * In error case, we have to continue because
1439                          * remaining pages are still locked
1440                          */
1441                         if (ret == 0)
1442                                 ret = err;
1443                 }
1444                 pagevec_release(&pvec);
1445         }
1446         ext4_io_submit(&io_submit);
1447         return ret;
1448 }
1449
1450 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1451 {
1452         int nr_pages, i;
1453         pgoff_t index, end;
1454         struct pagevec pvec;
1455         struct inode *inode = mpd->inode;
1456         struct address_space *mapping = inode->i_mapping;
1457         ext4_lblk_t start, last;
1458
1459         index = mpd->first_page;
1460         end   = mpd->next_page - 1;
1461
1462         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1463         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1464         ext4_es_remove_extent(inode, start, last - start + 1);
1465
1466         pagevec_init(&pvec, 0);
1467         while (index <= end) {
1468                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1469                 if (nr_pages == 0)
1470                         break;
1471                 for (i = 0; i < nr_pages; i++) {
1472                         struct page *page = pvec.pages[i];
1473                         if (page->index > end)
1474                                 break;
1475                         BUG_ON(!PageLocked(page));
1476                         BUG_ON(PageWriteback(page));
1477                         block_invalidatepage(page, 0);
1478                         ClearPageUptodate(page);
1479                         unlock_page(page);
1480                 }
1481                 index = pvec.pages[nr_pages - 1]->index + 1;
1482                 pagevec_release(&pvec);
1483         }
1484         return;
1485 }
1486
1487 static void ext4_print_free_blocks(struct inode *inode)
1488 {
1489         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1490         struct super_block *sb = inode->i_sb;
1491
1492         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1493                EXT4_C2B(EXT4_SB(inode->i_sb),
1494                         ext4_count_free_clusters(inode->i_sb)));
1495         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1496         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1497                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1498                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1499         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1500                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1501                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1502         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1503         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1504                  EXT4_I(inode)->i_reserved_data_blocks);
1505         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1506                EXT4_I(inode)->i_reserved_meta_blocks);
1507         return;
1508 }
1509
1510 /*
1511  * mpage_da_map_and_submit - go through given space, map them
1512  *       if necessary, and then submit them for I/O
1513  *
1514  * @mpd - bh describing space
1515  *
1516  * The function skips space we know is already mapped to disk blocks.
1517  *
1518  */
1519 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1520 {
1521         int err, blks, get_blocks_flags;
1522         struct ext4_map_blocks map, *mapp = NULL;
1523         sector_t next = mpd->b_blocknr;
1524         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1525         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1526         handle_t *handle = NULL;
1527
1528         /*
1529          * If the blocks are mapped already, or we couldn't accumulate
1530          * any blocks, then proceed immediately to the submission stage.
1531          */
1532         if ((mpd->b_size == 0) ||
1533             ((mpd->b_state  & (1 << BH_Mapped)) &&
1534              !(mpd->b_state & (1 << BH_Delay)) &&
1535              !(mpd->b_state & (1 << BH_Unwritten))))
1536                 goto submit_io;
1537
1538         handle = ext4_journal_current_handle();
1539         BUG_ON(!handle);
1540
1541         /*
1542          * Call ext4_map_blocks() to allocate any delayed allocation
1543          * blocks, or to convert an uninitialized extent to be
1544          * initialized (in the case where we have written into
1545          * one or more preallocated blocks).
1546          *
1547          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1548          * indicate that we are on the delayed allocation path.  This
1549          * affects functions in many different parts of the allocation
1550          * call path.  This flag exists primarily because we don't
1551          * want to change *many* call functions, so ext4_map_blocks()
1552          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1553          * inode's allocation semaphore is taken.
1554          *
1555          * If the blocks in questions were delalloc blocks, set
1556          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1557          * variables are updated after the blocks have been allocated.
1558          */
1559         map.m_lblk = next;
1560         map.m_len = max_blocks;
1561         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1562         if (ext4_should_dioread_nolock(mpd->inode))
1563                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1564         if (mpd->b_state & (1 << BH_Delay))
1565                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1566
1567         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1568         if (blks < 0) {
1569                 struct super_block *sb = mpd->inode->i_sb;
1570
1571                 err = blks;
1572                 /*
1573                  * If get block returns EAGAIN or ENOSPC and there
1574                  * appears to be free blocks we will just let
1575                  * mpage_da_submit_io() unlock all of the pages.
1576                  */
1577                 if (err == -EAGAIN)
1578                         goto submit_io;
1579
1580                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1581                         mpd->retval = err;
1582                         goto submit_io;
1583                 }
1584
1585                 /*
1586                  * get block failure will cause us to loop in
1587                  * writepages, because a_ops->writepage won't be able
1588                  * to make progress. The page will be redirtied by
1589                  * writepage and writepages will again try to write
1590                  * the same.
1591                  */
1592                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1593                         ext4_msg(sb, KERN_CRIT,
1594                                  "delayed block allocation failed for inode %lu "
1595                                  "at logical offset %llu with max blocks %zd "
1596                                  "with error %d", mpd->inode->i_ino,
1597                                  (unsigned long long) next,
1598                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1599                         ext4_msg(sb, KERN_CRIT,
1600                                 "This should not happen!! Data will be lost\n");
1601                         if (err == -ENOSPC)
1602                                 ext4_print_free_blocks(mpd->inode);
1603                 }
1604                 /* invalidate all the pages */
1605                 ext4_da_block_invalidatepages(mpd);
1606
1607                 /* Mark this page range as having been completed */
1608                 mpd->io_done = 1;
1609                 return;
1610         }
1611         BUG_ON(blks == 0);
1612
1613         mapp = &map;
1614         if (map.m_flags & EXT4_MAP_NEW) {
1615                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1616                 int i;
1617
1618                 for (i = 0; i < map.m_len; i++)
1619                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1620         }
1621
1622         /*
1623          * Update on-disk size along with block allocation.
1624          */
1625         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1626         if (disksize > i_size_read(mpd->inode))
1627                 disksize = i_size_read(mpd->inode);
1628         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1629                 ext4_update_i_disksize(mpd->inode, disksize);
1630                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1631                 if (err)
1632                         ext4_error(mpd->inode->i_sb,
1633                                    "Failed to mark inode %lu dirty",
1634                                    mpd->inode->i_ino);
1635         }
1636
1637 submit_io:
1638         mpage_da_submit_io(mpd, mapp);
1639         mpd->io_done = 1;
1640 }
1641
1642 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1643                 (1 << BH_Delay) | (1 << BH_Unwritten))
1644
1645 /*
1646  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1647  *
1648  * @mpd->lbh - extent of blocks
1649  * @logical - logical number of the block in the file
1650  * @b_state - b_state of the buffer head added
1651  *
1652  * the function is used to collect contig. blocks in same state
1653  */
1654 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1655                                    unsigned long b_state)
1656 {
1657         sector_t next;
1658         int blkbits = mpd->inode->i_blkbits;
1659         int nrblocks = mpd->b_size >> blkbits;
1660
1661         /*
1662          * XXX Don't go larger than mballoc is willing to allocate
1663          * This is a stopgap solution.  We eventually need to fold
1664          * mpage_da_submit_io() into this function and then call
1665          * ext4_map_blocks() multiple times in a loop
1666          */
1667         if (nrblocks >= (8*1024*1024 >> blkbits))
1668                 goto flush_it;
1669
1670         /* check if the reserved journal credits might overflow */
1671         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1672                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1673                         /*
1674                          * With non-extent format we are limited by the journal
1675                          * credit available.  Total credit needed to insert
1676                          * nrblocks contiguous blocks is dependent on the
1677                          * nrblocks.  So limit nrblocks.
1678                          */
1679                         goto flush_it;
1680                 }
1681         }
1682         /*
1683          * First block in the extent
1684          */
1685         if (mpd->b_size == 0) {
1686                 mpd->b_blocknr = logical;
1687                 mpd->b_size = 1 << blkbits;
1688                 mpd->b_state = b_state & BH_FLAGS;
1689                 return;
1690         }
1691
1692         next = mpd->b_blocknr + nrblocks;
1693         /*
1694          * Can we merge the block to our big extent?
1695          */
1696         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1697                 mpd->b_size += 1 << blkbits;
1698                 return;
1699         }
1700
1701 flush_it:
1702         /*
1703          * We couldn't merge the block to our extent, so we
1704          * need to flush current  extent and start new one
1705          */
1706         mpage_da_map_and_submit(mpd);
1707         return;
1708 }
1709
1710 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1711 {
1712         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1713 }
1714
1715 /*
1716  * This function is grabs code from the very beginning of
1717  * ext4_map_blocks, but assumes that the caller is from delayed write
1718  * time. This function looks up the requested blocks and sets the
1719  * buffer delay bit under the protection of i_data_sem.
1720  */
1721 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1722                               struct ext4_map_blocks *map,
1723                               struct buffer_head *bh)
1724 {
1725         int retval;
1726         sector_t invalid_block = ~((sector_t) 0xffff);
1727
1728         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1729                 invalid_block = ~0;
1730
1731         map->m_flags = 0;
1732         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1733                   "logical block %lu\n", inode->i_ino, map->m_len,
1734                   (unsigned long) map->m_lblk);
1735         /*
1736          * Try to see if we can get the block without requesting a new
1737          * file system block.
1738          */
1739         down_read((&EXT4_I(inode)->i_data_sem));
1740         if (ext4_has_inline_data(inode)) {
1741                 /*
1742                  * We will soon create blocks for this page, and let
1743                  * us pretend as if the blocks aren't allocated yet.
1744                  * In case of clusters, we have to handle the work
1745                  * of mapping from cluster so that the reserved space
1746                  * is calculated properly.
1747                  */
1748                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1749                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1750                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1751                 retval = 0;
1752         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1753                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1754         else
1755                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1756
1757         if (retval == 0) {
1758                 /*
1759                  * XXX: __block_prepare_write() unmaps passed block,
1760                  * is it OK?
1761                  */
1762                 /* If the block was allocated from previously allocated cluster,
1763                  * then we dont need to reserve it again. */
1764                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1765                         retval = ext4_da_reserve_space(inode, iblock);
1766                         if (retval)
1767                                 /* not enough space to reserve */
1768                                 goto out_unlock;
1769                 }
1770
1771                 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1772                 if (retval)
1773                         goto out_unlock;
1774
1775                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1776                  * and it should not appear on the bh->b_state.
1777                  */
1778                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1779
1780                 map_bh(bh, inode->i_sb, invalid_block);
1781                 set_buffer_new(bh);
1782                 set_buffer_delay(bh);
1783         }
1784
1785 out_unlock:
1786         up_read((&EXT4_I(inode)->i_data_sem));
1787
1788         return retval;
1789 }
1790
1791 /*
1792  * This is a special get_blocks_t callback which is used by
1793  * ext4_da_write_begin().  It will either return mapped block or
1794  * reserve space for a single block.
1795  *
1796  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1797  * We also have b_blocknr = -1 and b_bdev initialized properly
1798  *
1799  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1800  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1801  * initialized properly.
1802  */
1803 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1804                            struct buffer_head *bh, int create)
1805 {
1806         struct ext4_map_blocks map;
1807         int ret = 0;
1808
1809         BUG_ON(create == 0);
1810         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1811
1812         map.m_lblk = iblock;
1813         map.m_len = 1;
1814
1815         /*
1816          * first, we need to know whether the block is allocated already
1817          * preallocated blocks are unmapped but should treated
1818          * the same as allocated blocks.
1819          */
1820         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1821         if (ret <= 0)
1822                 return ret;
1823
1824         map_bh(bh, inode->i_sb, map.m_pblk);
1825         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1826
1827         if (buffer_unwritten(bh)) {
1828                 /* A delayed write to unwritten bh should be marked
1829                  * new and mapped.  Mapped ensures that we don't do
1830                  * get_block multiple times when we write to the same
1831                  * offset and new ensures that we do proper zero out
1832                  * for partial write.
1833                  */
1834                 set_buffer_new(bh);
1835                 set_buffer_mapped(bh);
1836         }
1837         return 0;
1838 }
1839
1840 static int bget_one(handle_t *handle, struct buffer_head *bh)
1841 {
1842         get_bh(bh);
1843         return 0;
1844 }
1845
1846 static int bput_one(handle_t *handle, struct buffer_head *bh)
1847 {
1848         put_bh(bh);
1849         return 0;
1850 }
1851
1852 static int __ext4_journalled_writepage(struct page *page,
1853                                        unsigned int len)
1854 {
1855         struct address_space *mapping = page->mapping;
1856         struct inode *inode = mapping->host;
1857         struct buffer_head *page_bufs = NULL;
1858         handle_t *handle = NULL;
1859         int ret = 0, err = 0;
1860         int inline_data = ext4_has_inline_data(inode);
1861         struct buffer_head *inode_bh = NULL;
1862
1863         ClearPageChecked(page);
1864
1865         if (inline_data) {
1866                 BUG_ON(page->index != 0);
1867                 BUG_ON(len > ext4_get_max_inline_size(inode));
1868                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1869                 if (inode_bh == NULL)
1870                         goto out;
1871         } else {
1872                 page_bufs = page_buffers(page);
1873                 if (!page_bufs) {
1874                         BUG();
1875                         goto out;
1876                 }
1877                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1878                                        NULL, bget_one);
1879         }
1880         /* As soon as we unlock the page, it can go away, but we have
1881          * references to buffers so we are safe */
1882         unlock_page(page);
1883
1884         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1885         if (IS_ERR(handle)) {
1886                 ret = PTR_ERR(handle);
1887                 goto out;
1888         }
1889
1890         BUG_ON(!ext4_handle_valid(handle));
1891
1892         if (inline_data) {
1893                 ret = ext4_journal_get_write_access(handle, inode_bh);
1894
1895                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1896
1897         } else {
1898                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1899                                              do_journal_get_write_access);
1900
1901                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1902                                              write_end_fn);
1903         }
1904         if (ret == 0)
1905                 ret = err;
1906         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1907         err = ext4_journal_stop(handle);
1908         if (!ret)
1909                 ret = err;
1910
1911         if (!ext4_has_inline_data(inode))
1912                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1913                                        NULL, bput_one);
1914         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1915 out:
1916         brelse(inode_bh);
1917         return ret;
1918 }
1919
1920 /*
1921  * Note that we don't need to start a transaction unless we're journaling data
1922  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1923  * need to file the inode to the transaction's list in ordered mode because if
1924  * we are writing back data added by write(), the inode is already there and if
1925  * we are writing back data modified via mmap(), no one guarantees in which
1926  * transaction the data will hit the disk. In case we are journaling data, we
1927  * cannot start transaction directly because transaction start ranks above page
1928  * lock so we have to do some magic.
1929  *
1930  * This function can get called via...
1931  *   - ext4_da_writepages after taking page lock (have journal handle)
1932  *   - journal_submit_inode_data_buffers (no journal handle)
1933  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1934  *   - grab_page_cache when doing write_begin (have journal handle)
1935  *
1936  * We don't do any block allocation in this function. If we have page with
1937  * multiple blocks we need to write those buffer_heads that are mapped. This
1938  * is important for mmaped based write. So if we do with blocksize 1K
1939  * truncate(f, 1024);
1940  * a = mmap(f, 0, 4096);
1941  * a[0] = 'a';
1942  * truncate(f, 4096);
1943  * we have in the page first buffer_head mapped via page_mkwrite call back
1944  * but other buffer_heads would be unmapped but dirty (dirty done via the
1945  * do_wp_page). So writepage should write the first block. If we modify
1946  * the mmap area beyond 1024 we will again get a page_fault and the
1947  * page_mkwrite callback will do the block allocation and mark the
1948  * buffer_heads mapped.
1949  *
1950  * We redirty the page if we have any buffer_heads that is either delay or
1951  * unwritten in the page.
1952  *
1953  * We can get recursively called as show below.
1954  *
1955  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1956  *              ext4_writepage()
1957  *
1958  * But since we don't do any block allocation we should not deadlock.
1959  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1960  */
1961 static int ext4_writepage(struct page *page,
1962                           struct writeback_control *wbc)
1963 {
1964         int ret = 0;
1965         loff_t size;
1966         unsigned int len;
1967         struct buffer_head *page_bufs = NULL;
1968         struct inode *inode = page->mapping->host;
1969         struct ext4_io_submit io_submit;
1970
1971         trace_ext4_writepage(page);
1972         size = i_size_read(inode);
1973         if (page->index == size >> PAGE_CACHE_SHIFT)
1974                 len = size & ~PAGE_CACHE_MASK;
1975         else
1976                 len = PAGE_CACHE_SIZE;
1977
1978         page_bufs = page_buffers(page);
1979         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1980                                    ext4_bh_delay_or_unwritten)) {
1981                 /*
1982                  * We don't want to do block allocation, so redirty
1983                  * the page and return.  We may reach here when we do
1984                  * a journal commit via journal_submit_inode_data_buffers.
1985                  * We can also reach here via shrink_page_list but it
1986                  * should never be for direct reclaim so warn if that
1987                  * happens
1988                  */
1989                 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1990                                                                 PF_MEMALLOC);
1991                 redirty_page_for_writepage(wbc, page);
1992                 unlock_page(page);
1993                 return 0;
1994         }
1995
1996         if (PageChecked(page) && ext4_should_journal_data(inode))
1997                 /*
1998                  * It's mmapped pagecache.  Add buffers and journal it.  There
1999                  * doesn't seem much point in redirtying the page here.
2000                  */
2001                 return __ext4_journalled_writepage(page, len);
2002
2003         memset(&io_submit, 0, sizeof(io_submit));
2004         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2005         ext4_io_submit(&io_submit);
2006         return ret;
2007 }
2008
2009 /*
2010  * This is called via ext4_da_writepages() to
2011  * calculate the total number of credits to reserve to fit
2012  * a single extent allocation into a single transaction,
2013  * ext4_da_writpeages() will loop calling this before
2014  * the block allocation.
2015  */
2016
2017 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2018 {
2019         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2020
2021         /*
2022          * With non-extent format the journal credit needed to
2023          * insert nrblocks contiguous block is dependent on
2024          * number of contiguous block. So we will limit
2025          * number of contiguous block to a sane value
2026          */
2027         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2028             (max_blocks > EXT4_MAX_TRANS_DATA))
2029                 max_blocks = EXT4_MAX_TRANS_DATA;
2030
2031         return ext4_chunk_trans_blocks(inode, max_blocks);
2032 }
2033
2034 /*
2035  * write_cache_pages_da - walk the list of dirty pages of the given
2036  * address space and accumulate pages that need writing, and call
2037  * mpage_da_map_and_submit to map a single contiguous memory region
2038  * and then write them.
2039  */
2040 static int write_cache_pages_da(handle_t *handle,
2041                                 struct address_space *mapping,
2042                                 struct writeback_control *wbc,
2043                                 struct mpage_da_data *mpd,
2044                                 pgoff_t *done_index)
2045 {
2046         struct buffer_head      *bh, *head;
2047         struct inode            *inode = mapping->host;
2048         struct pagevec          pvec;
2049         unsigned int            nr_pages;
2050         sector_t                logical;
2051         pgoff_t                 index, end;
2052         long                    nr_to_write = wbc->nr_to_write;
2053         int                     i, tag, ret = 0;
2054
2055         memset(mpd, 0, sizeof(struct mpage_da_data));
2056         mpd->wbc = wbc;
2057         mpd->inode = inode;
2058         pagevec_init(&pvec, 0);
2059         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2060         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2061
2062         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2063                 tag = PAGECACHE_TAG_TOWRITE;
2064         else
2065                 tag = PAGECACHE_TAG_DIRTY;
2066
2067         *done_index = index;
2068         while (index <= end) {
2069                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2070                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2071                 if (nr_pages == 0)
2072                         return 0;
2073
2074                 for (i = 0; i < nr_pages; i++) {
2075                         struct page *page = pvec.pages[i];
2076
2077                         /*
2078                          * At this point, the page may be truncated or
2079                          * invalidated (changing page->mapping to NULL), or
2080                          * even swizzled back from swapper_space to tmpfs file
2081                          * mapping. However, page->index will not change
2082                          * because we have a reference on the page.
2083                          */
2084                         if (page->index > end)
2085                                 goto out;
2086
2087                         *done_index = page->index + 1;
2088
2089                         /*
2090                          * If we can't merge this page, and we have
2091                          * accumulated an contiguous region, write it
2092                          */
2093                         if ((mpd->next_page != page->index) &&
2094                             (mpd->next_page != mpd->first_page)) {
2095                                 mpage_da_map_and_submit(mpd);
2096                                 goto ret_extent_tail;
2097                         }
2098
2099                         lock_page(page);
2100
2101                         /*
2102                          * If the page is no longer dirty, or its
2103                          * mapping no longer corresponds to inode we
2104                          * are writing (which means it has been
2105                          * truncated or invalidated), or the page is
2106                          * already under writeback and we are not
2107                          * doing a data integrity writeback, skip the page
2108                          */
2109                         if (!PageDirty(page) ||
2110                             (PageWriteback(page) &&
2111                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2112                             unlikely(page->mapping != mapping)) {
2113                                 unlock_page(page);
2114                                 continue;
2115                         }
2116
2117                         wait_on_page_writeback(page);
2118                         BUG_ON(PageWriteback(page));
2119
2120                         /*
2121                          * If we have inline data and arrive here, it means that
2122                          * we will soon create the block for the 1st page, so
2123                          * we'd better clear the inline data here.
2124                          */
2125                         if (ext4_has_inline_data(inode)) {
2126                                 BUG_ON(ext4_test_inode_state(inode,
2127                                                 EXT4_STATE_MAY_INLINE_DATA));
2128                                 ext4_destroy_inline_data(handle, inode);
2129                         }
2130
2131                         if (mpd->next_page != page->index)
2132                                 mpd->first_page = page->index;
2133                         mpd->next_page = page->index + 1;
2134                         logical = (sector_t) page->index <<
2135                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2136
2137                         /* Add all dirty buffers to mpd */
2138                         head = page_buffers(page);
2139                         bh = head;
2140                         do {
2141                                 BUG_ON(buffer_locked(bh));
2142                                 /*
2143                                  * We need to try to allocate unmapped blocks
2144                                  * in the same page.  Otherwise we won't make
2145                                  * progress with the page in ext4_writepage
2146                                  */
2147                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2148                                         mpage_add_bh_to_extent(mpd, logical,
2149                                                                bh->b_state);
2150                                         if (mpd->io_done)
2151                                                 goto ret_extent_tail;
2152                                 } else if (buffer_dirty(bh) &&
2153                                            buffer_mapped(bh)) {
2154                                         /*
2155                                          * mapped dirty buffer. We need to
2156                                          * update the b_state because we look
2157                                          * at b_state in mpage_da_map_blocks.
2158                                          * We don't update b_size because if we
2159                                          * find an unmapped buffer_head later
2160                                          * we need to use the b_state flag of
2161                                          * that buffer_head.
2162                                          */
2163                                         if (mpd->b_size == 0)
2164                                                 mpd->b_state =
2165                                                         bh->b_state & BH_FLAGS;
2166                                 }
2167                                 logical++;
2168                         } while ((bh = bh->b_this_page) != head);
2169
2170                         if (nr_to_write > 0) {
2171                                 nr_to_write--;
2172                                 if (nr_to_write == 0 &&
2173                                     wbc->sync_mode == WB_SYNC_NONE)
2174                                         /*
2175                                          * We stop writing back only if we are
2176                                          * not doing integrity sync. In case of
2177                                          * integrity sync we have to keep going
2178                                          * because someone may be concurrently
2179                                          * dirtying pages, and we might have
2180                                          * synced a lot of newly appeared dirty
2181                                          * pages, but have not synced all of the
2182                                          * old dirty pages.
2183                                          */
2184                                         goto out;
2185                         }
2186                 }
2187                 pagevec_release(&pvec);
2188                 cond_resched();
2189         }
2190         return 0;
2191 ret_extent_tail:
2192         ret = MPAGE_DA_EXTENT_TAIL;
2193 out:
2194         pagevec_release(&pvec);
2195         cond_resched();
2196         return ret;
2197 }
2198
2199
2200 static int ext4_da_writepages(struct address_space *mapping,
2201                               struct writeback_control *wbc)
2202 {
2203         pgoff_t index;
2204         int range_whole = 0;
2205         handle_t *handle = NULL;
2206         struct mpage_da_data mpd;
2207         struct inode *inode = mapping->host;
2208         int pages_written = 0;
2209         unsigned int max_pages;
2210         int range_cyclic, cycled = 1, io_done = 0;
2211         int needed_blocks, ret = 0;
2212         long desired_nr_to_write, nr_to_writebump = 0;
2213         loff_t range_start = wbc->range_start;
2214         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2215         pgoff_t done_index = 0;
2216         pgoff_t end;
2217         struct blk_plug plug;
2218
2219         trace_ext4_da_writepages(inode, wbc);
2220
2221         /*
2222          * No pages to write? This is mainly a kludge to avoid starting
2223          * a transaction for special inodes like journal inode on last iput()
2224          * because that could violate lock ordering on umount
2225          */
2226         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2227                 return 0;
2228
2229         /*
2230          * If the filesystem has aborted, it is read-only, so return
2231          * right away instead of dumping stack traces later on that
2232          * will obscure the real source of the problem.  We test
2233          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2234          * the latter could be true if the filesystem is mounted
2235          * read-only, and in that case, ext4_da_writepages should
2236          * *never* be called, so if that ever happens, we would want
2237          * the stack trace.
2238          */
2239         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2240                 return -EROFS;
2241
2242         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2243                 range_whole = 1;
2244
2245         range_cyclic = wbc->range_cyclic;
2246         if (wbc->range_cyclic) {
2247                 index = mapping->writeback_index;
2248                 if (index)
2249                         cycled = 0;
2250                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2251                 wbc->range_end  = LLONG_MAX;
2252                 wbc->range_cyclic = 0;
2253                 end = -1;
2254         } else {
2255                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2256                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2257         }
2258
2259         /*
2260          * This works around two forms of stupidity.  The first is in
2261          * the writeback code, which caps the maximum number of pages
2262          * written to be 1024 pages.  This is wrong on multiple
2263          * levels; different architectues have a different page size,
2264          * which changes the maximum amount of data which gets
2265          * written.  Secondly, 4 megabytes is way too small.  XFS
2266          * forces this value to be 16 megabytes by multiplying
2267          * nr_to_write parameter by four, and then relies on its
2268          * allocator to allocate larger extents to make them
2269          * contiguous.  Unfortunately this brings us to the second
2270          * stupidity, which is that ext4's mballoc code only allocates
2271          * at most 2048 blocks.  So we force contiguous writes up to
2272          * the number of dirty blocks in the inode, or
2273          * sbi->max_writeback_mb_bump whichever is smaller.
2274          */
2275         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2276         if (!range_cyclic && range_whole) {
2277                 if (wbc->nr_to_write == LONG_MAX)
2278                         desired_nr_to_write = wbc->nr_to_write;
2279                 else
2280                         desired_nr_to_write = wbc->nr_to_write * 8;
2281         } else
2282                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2283                                                            max_pages);
2284         if (desired_nr_to_write > max_pages)
2285                 desired_nr_to_write = max_pages;
2286
2287         if (wbc->nr_to_write < desired_nr_to_write) {
2288                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2289                 wbc->nr_to_write = desired_nr_to_write;
2290         }
2291
2292 retry:
2293         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2294                 tag_pages_for_writeback(mapping, index, end);
2295
2296         blk_start_plug(&plug);
2297         while (!ret && wbc->nr_to_write > 0) {
2298
2299                 /*
2300                  * we  insert one extent at a time. So we need
2301                  * credit needed for single extent allocation.
2302                  * journalled mode is currently not supported
2303                  * by delalloc
2304                  */
2305                 BUG_ON(ext4_should_journal_data(inode));
2306                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2307
2308                 /* start a new transaction*/
2309                 handle = ext4_journal_start(inode, needed_blocks);
2310                 if (IS_ERR(handle)) {
2311                         ret = PTR_ERR(handle);
2312                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2313                                "%ld pages, ino %lu; err %d", __func__,
2314                                 wbc->nr_to_write, inode->i_ino, ret);
2315                         blk_finish_plug(&plug);
2316                         goto out_writepages;
2317                 }
2318
2319                 /*
2320                  * Now call write_cache_pages_da() to find the next
2321                  * contiguous region of logical blocks that need
2322                  * blocks to be allocated by ext4 and submit them.
2323                  */
2324                 ret = write_cache_pages_da(handle, mapping,
2325                                            wbc, &mpd, &done_index);
2326                 /*
2327                  * If we have a contiguous extent of pages and we
2328                  * haven't done the I/O yet, map the blocks and submit
2329                  * them for I/O.
2330                  */
2331                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2332                         mpage_da_map_and_submit(&mpd);
2333                         ret = MPAGE_DA_EXTENT_TAIL;
2334                 }
2335                 trace_ext4_da_write_pages(inode, &mpd);
2336                 wbc->nr_to_write -= mpd.pages_written;
2337
2338                 ext4_journal_stop(handle);
2339
2340                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2341                         /* commit the transaction which would
2342                          * free blocks released in the transaction
2343                          * and try again
2344                          */
2345                         jbd2_journal_force_commit_nested(sbi->s_journal);
2346                         ret = 0;
2347                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2348                         /*
2349                          * Got one extent now try with rest of the pages.
2350                          * If mpd.retval is set -EIO, journal is aborted.
2351                          * So we don't need to write any more.
2352                          */
2353                         pages_written += mpd.pages_written;
2354                         ret = mpd.retval;
2355                         io_done = 1;
2356                 } else if (wbc->nr_to_write)
2357                         /*
2358                          * There is no more writeout needed
2359                          * or we requested for a noblocking writeout
2360                          * and we found the device congested
2361                          */
2362                         break;
2363         }
2364         blk_finish_plug(&plug);
2365         if (!io_done && !cycled) {
2366                 cycled = 1;
2367                 index = 0;
2368                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2369                 wbc->range_end  = mapping->writeback_index - 1;
2370                 goto retry;
2371         }
2372
2373         /* Update index */
2374         wbc->range_cyclic = range_cyclic;
2375         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2376                 /*
2377                  * set the writeback_index so that range_cyclic
2378                  * mode will write it back later
2379                  */
2380                 mapping->writeback_index = done_index;
2381
2382 out_writepages:
2383         wbc->nr_to_write -= nr_to_writebump;
2384         wbc->range_start = range_start;
2385         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2386         return ret;
2387 }
2388
2389 static int ext4_nonda_switch(struct super_block *sb)
2390 {
2391         s64 free_blocks, dirty_blocks;
2392         struct ext4_sb_info *sbi = EXT4_SB(sb);
2393
2394         /*
2395          * switch to non delalloc mode if we are running low
2396          * on free block. The free block accounting via percpu
2397          * counters can get slightly wrong with percpu_counter_batch getting
2398          * accumulated on each CPU without updating global counters
2399          * Delalloc need an accurate free block accounting. So switch
2400          * to non delalloc when we are near to error range.
2401          */
2402         free_blocks  = EXT4_C2B(sbi,
2403                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2404         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2405         /*
2406          * Start pushing delalloc when 1/2 of free blocks are dirty.
2407          */
2408         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2409             !writeback_in_progress(sb->s_bdi) &&
2410             down_read_trylock(&sb->s_umount)) {
2411                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2412                 up_read(&sb->s_umount);
2413         }
2414
2415         if (2 * free_blocks < 3 * dirty_blocks ||
2416                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2417                 /*
2418                  * free block count is less than 150% of dirty blocks
2419                  * or free blocks is less than watermark
2420                  */
2421                 return 1;
2422         }
2423         return 0;
2424 }
2425
2426 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2427                                loff_t pos, unsigned len, unsigned flags,
2428                                struct page **pagep, void **fsdata)
2429 {
2430         int ret, retries = 0;
2431         struct page *page;
2432         pgoff_t index;
2433         struct inode *inode = mapping->host;
2434         handle_t *handle;
2435
2436         index = pos >> PAGE_CACHE_SHIFT;
2437
2438         if (ext4_nonda_switch(inode->i_sb)) {
2439                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2440                 return ext4_write_begin(file, mapping, pos,
2441                                         len, flags, pagep, fsdata);
2442         }
2443         *fsdata = (void *)0;
2444         trace_ext4_da_write_begin(inode, pos, len, flags);
2445
2446         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2447                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2448                                                       pos, len, flags,
2449                                                       pagep, fsdata);
2450                 if (ret < 0)
2451                         goto out;
2452                 if (ret == 1) {
2453                         ret = 0;
2454                         goto out;
2455                 }
2456         }
2457
2458 retry:
2459         /*
2460          * With delayed allocation, we don't log the i_disksize update
2461          * if there is delayed block allocation. But we still need
2462          * to journalling the i_disksize update if writes to the end
2463          * of file which has an already mapped buffer.
2464          */
2465         handle = ext4_journal_start(inode, 1);
2466         if (IS_ERR(handle)) {
2467                 ret = PTR_ERR(handle);
2468                 goto out;
2469         }
2470         /* We cannot recurse into the filesystem as the transaction is already
2471          * started */
2472         flags |= AOP_FLAG_NOFS;
2473
2474         page = grab_cache_page_write_begin(mapping, index, flags);
2475         if (!page) {
2476                 ext4_journal_stop(handle);
2477                 ret = -ENOMEM;
2478                 goto out;
2479         }
2480         *pagep = page;
2481
2482         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2483         if (ret < 0) {
2484                 unlock_page(page);
2485                 ext4_journal_stop(handle);
2486                 page_cache_release(page);
2487                 /*
2488                  * block_write_begin may have instantiated a few blocks
2489                  * outside i_size.  Trim these off again. Don't need
2490                  * i_size_read because we hold i_mutex.
2491                  */
2492                 if (pos + len > inode->i_size)
2493                         ext4_truncate_failed_write(inode);
2494         }
2495
2496         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2497                 goto retry;
2498 out:
2499         return ret;
2500 }
2501
2502 /*
2503  * Check if we should update i_disksize
2504  * when write to the end of file but not require block allocation
2505  */
2506 static int ext4_da_should_update_i_disksize(struct page *page,
2507                                             unsigned long offset)
2508 {
2509         struct buffer_head *bh;
2510         struct inode *inode = page->mapping->host;
2511         unsigned int idx;
2512         int i;
2513
2514         bh = page_buffers(page);
2515         idx = offset >> inode->i_blkbits;
2516
2517         for (i = 0; i < idx; i++)
2518                 bh = bh->b_this_page;
2519
2520         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2521                 return 0;
2522         return 1;
2523 }
2524
2525 static int ext4_da_write_end(struct file *file,
2526                              struct address_space *mapping,
2527                              loff_t pos, unsigned len, unsigned copied,
2528                              struct page *page, void *fsdata)
2529 {
2530         struct inode *inode = mapping->host;
2531         int ret = 0, ret2;
2532         handle_t *handle = ext4_journal_current_handle();
2533         loff_t new_i_size;
2534         unsigned long start, end;
2535         int write_mode = (int)(unsigned long)fsdata;
2536
2537         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2538                 switch (ext4_inode_journal_mode(inode)) {
2539                 case EXT4_INODE_ORDERED_DATA_MODE:
2540                         return ext4_ordered_write_end(file, mapping, pos,
2541                                         len, copied, page, fsdata);
2542                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2543                         return ext4_writeback_write_end(file, mapping, pos,
2544                                         len, copied, page, fsdata);
2545                 default:
2546                         BUG();
2547                 }
2548         }
2549
2550         trace_ext4_da_write_end(inode, pos, len, copied);
2551         start = pos & (PAGE_CACHE_SIZE - 1);
2552         end = start + copied - 1;
2553
2554         /*
2555          * generic_write_end() will run mark_inode_dirty() if i_size
2556          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2557          * into that.
2558          */
2559         new_i_size = pos + copied;
2560         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2561                 if (ext4_has_inline_data(inode) ||
2562                     ext4_da_should_update_i_disksize(page, end)) {
2563                         down_write(&EXT4_I(inode)->i_data_sem);
2564                         if (new_i_size > EXT4_I(inode)->i_disksize)
2565                                 EXT4_I(inode)->i_disksize = new_i_size;
2566                         up_write(&EXT4_I(inode)->i_data_sem);
2567                         /* We need to mark inode dirty even if
2568                          * new_i_size is less that inode->i_size
2569                          * bu greater than i_disksize.(hint delalloc)
2570                          */
2571                         ext4_mark_inode_dirty(handle, inode);
2572                 }
2573         }
2574
2575         if (write_mode != CONVERT_INLINE_DATA &&
2576             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2577             ext4_has_inline_data(inode))
2578                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2579                                                      page);
2580         else
2581                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2582                                                         page, fsdata);
2583
2584         copied = ret2;
2585         if (ret2 < 0)
2586                 ret = ret2;
2587         ret2 = ext4_journal_stop(handle);
2588         if (!ret)
2589                 ret = ret2;
2590
2591         return ret ? ret : copied;
2592 }
2593
2594 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2595 {
2596         /*
2597          * Drop reserved blocks
2598          */
2599         BUG_ON(!PageLocked(page));
2600         if (!page_has_buffers(page))
2601                 goto out;
2602
2603         ext4_da_page_release_reservation(page, offset);
2604
2605 out:
2606         ext4_invalidatepage(page, offset);
2607
2608         return;
2609 }
2610
2611 /*
2612  * Force all delayed allocation blocks to be allocated for a given inode.
2613  */
2614 int ext4_alloc_da_blocks(struct inode *inode)
2615 {
2616         trace_ext4_alloc_da_blocks(inode);
2617
2618         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2619             !EXT4_I(inode)->i_reserved_meta_blocks)
2620                 return 0;
2621
2622         /*
2623          * We do something simple for now.  The filemap_flush() will
2624          * also start triggering a write of the data blocks, which is
2625          * not strictly speaking necessary (and for users of
2626          * laptop_mode, not even desirable).  However, to do otherwise
2627          * would require replicating code paths in:
2628          *
2629          * ext4_da_writepages() ->
2630          *    write_cache_pages() ---> (via passed in callback function)
2631          *        __mpage_da_writepage() -->
2632          *           mpage_add_bh_to_extent()
2633          *           mpage_da_map_blocks()
2634          *
2635          * The problem is that write_cache_pages(), located in
2636          * mm/page-writeback.c, marks pages clean in preparation for
2637          * doing I/O, which is not desirable if we're not planning on
2638          * doing I/O at all.
2639          *
2640          * We could call write_cache_pages(), and then redirty all of
2641          * the pages by calling redirty_page_for_writepage() but that
2642          * would be ugly in the extreme.  So instead we would need to
2643          * replicate parts of the code in the above functions,
2644          * simplifying them because we wouldn't actually intend to
2645          * write out the pages, but rather only collect contiguous
2646          * logical block extents, call the multi-block allocator, and
2647          * then update the buffer heads with the block allocations.
2648          *
2649          * For now, though, we'll cheat by calling filemap_flush(),
2650          * which will map the blocks, and start the I/O, but not
2651          * actually wait for the I/O to complete.
2652          */
2653         return filemap_flush(inode->i_mapping);
2654 }
2655
2656 /*
2657  * bmap() is special.  It gets used by applications such as lilo and by
2658  * the swapper to find the on-disk block of a specific piece of data.
2659  *
2660  * Naturally, this is dangerous if the block concerned is still in the
2661  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2662  * filesystem and enables swap, then they may get a nasty shock when the
2663  * data getting swapped to that swapfile suddenly gets overwritten by
2664  * the original zero's written out previously to the journal and
2665  * awaiting writeback in the kernel's buffer cache.
2666  *
2667  * So, if we see any bmap calls here on a modified, data-journaled file,
2668  * take extra steps to flush any blocks which might be in the cache.
2669  */
2670 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2671 {
2672         struct inode *inode = mapping->host;
2673         journal_t *journal;
2674         int err;
2675
2676         /*
2677          * We can get here for an inline file via the FIBMAP ioctl
2678          */
2679         if (ext4_has_inline_data(inode))
2680                 return 0;
2681
2682         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2683                         test_opt(inode->i_sb, DELALLOC)) {
2684                 /*
2685                  * With delalloc we want to sync the file
2686                  * so that we can make sure we allocate
2687                  * blocks for file
2688                  */
2689                 filemap_write_and_wait(mapping);
2690         }
2691
2692         if (EXT4_JOURNAL(inode) &&
2693             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2694                 /*
2695                  * This is a REALLY heavyweight approach, but the use of
2696                  * bmap on dirty files is expected to be extremely rare:
2697                  * only if we run lilo or swapon on a freshly made file
2698                  * do we expect this to happen.
2699                  *
2700                  * (bmap requires CAP_SYS_RAWIO so this does not
2701                  * represent an unprivileged user DOS attack --- we'd be
2702                  * in trouble if mortal users could trigger this path at
2703                  * will.)
2704                  *
2705                  * NB. EXT4_STATE_JDATA is not set on files other than
2706                  * regular files.  If somebody wants to bmap a directory
2707                  * or symlink and gets confused because the buffer
2708                  * hasn't yet been flushed to disk, they deserve
2709                  * everything they get.
2710                  */
2711
2712                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2713                 journal = EXT4_JOURNAL(inode);
2714                 jbd2_journal_lock_updates(journal);
2715                 err = jbd2_journal_flush(journal);
2716                 jbd2_journal_unlock_updates(journal);
2717
2718                 if (err)
2719                         return 0;
2720         }
2721
2722         return generic_block_bmap(mapping, block, ext4_get_block);
2723 }
2724
2725 static int ext4_readpage(struct file *file, struct page *page)
2726 {
2727         int ret = -EAGAIN;
2728         struct inode *inode = page->mapping->host;
2729
2730         trace_ext4_readpage(page);
2731
2732         if (ext4_has_inline_data(inode))
2733                 ret = ext4_readpage_inline(inode, page);
2734
2735         if (ret == -EAGAIN)
2736                 return mpage_readpage(page, ext4_get_block);
2737
2738         return ret;
2739 }
2740
2741 static int
2742 ext4_readpages(struct file *file, struct address_space *mapping,
2743                 struct list_head *pages, unsigned nr_pages)
2744 {
2745         struct inode *inode = mapping->host;
2746
2747         /* If the file has inline data, no need to do readpages. */
2748         if (ext4_has_inline_data(inode))
2749                 return 0;
2750
2751         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2752 }
2753
2754 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2755 {
2756         trace_ext4_invalidatepage(page, offset);
2757
2758         /* No journalling happens on data buffers when this function is used */
2759         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2760
2761         block_invalidatepage(page, offset);
2762 }
2763
2764 static int __ext4_journalled_invalidatepage(struct page *page,
2765                                             unsigned long offset)
2766 {
2767         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2768
2769         trace_ext4_journalled_invalidatepage(page, offset);
2770
2771         /*
2772          * If it's a full truncate we just forget about the pending dirtying
2773          */
2774         if (offset == 0)
2775                 ClearPageChecked(page);
2776
2777         return jbd2_journal_invalidatepage(journal, page, offset);
2778 }
2779
2780 /* Wrapper for aops... */
2781 static void ext4_journalled_invalidatepage(struct page *page,
2782                                            unsigned long offset)
2783 {
2784         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2785 }
2786
2787 static int ext4_releasepage(struct page *page, gfp_t wait)
2788 {
2789         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2790
2791         trace_ext4_releasepage(page);
2792
2793         WARN_ON(PageChecked(page));
2794         if (!page_has_buffers(page))
2795                 return 0;
2796         if (journal)
2797                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2798         else
2799                 return try_to_free_buffers(page);
2800 }
2801
2802 /*
2803  * ext4_get_block used when preparing for a DIO write or buffer write.
2804  * We allocate an uinitialized extent if blocks haven't been allocated.
2805  * The extent will be converted to initialized after the IO is complete.
2806  */
2807 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2808                    struct buffer_head *bh_result, int create)
2809 {
2810         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2811                    inode->i_ino, create);
2812         return _ext4_get_block(inode, iblock, bh_result,
2813                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
2814 }
2815
2816 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2817                    struct buffer_head *bh_result, int create)
2818 {
2819         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2820                    inode->i_ino, create);
2821         return _ext4_get_block(inode, iblock, bh_result,
2822                                EXT4_GET_BLOCKS_NO_LOCK);
2823 }
2824
2825 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2826                             ssize_t size, void *private, int ret,
2827                             bool is_async)
2828 {
2829         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2830         ext4_io_end_t *io_end = iocb->private;
2831
2832         /* if not async direct IO or dio with 0 bytes write, just return */
2833         if (!io_end || !size)
2834                 goto out;
2835
2836         ext_debug("ext4_end_io_dio(): io_end 0x%p "
2837                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2838                   iocb->private, io_end->inode->i_ino, iocb, offset,
2839                   size);
2840
2841         iocb->private = NULL;
2842
2843         /* if not aio dio with unwritten extents, just free io and return */
2844         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2845                 ext4_free_io_end(io_end);
2846 out:
2847                 if (is_async)
2848                         aio_complete(iocb, ret, 0);
2849                 inode_dio_done(inode);
2850                 return;
2851         }
2852
2853         io_end->offset = offset;
2854         io_end->size = size;
2855         if (is_async) {
2856                 io_end->iocb = iocb;
2857                 io_end->result = ret;
2858         }
2859
2860         ext4_add_complete_io(io_end);
2861 }
2862
2863 /*
2864  * For ext4 extent files, ext4 will do direct-io write to holes,
2865  * preallocated extents, and those write extend the file, no need to
2866  * fall back to buffered IO.
2867  *
2868  * For holes, we fallocate those blocks, mark them as uninitialized
2869  * If those blocks were preallocated, we mark sure they are split, but
2870  * still keep the range to write as uninitialized.
2871  *
2872  * The unwritten extents will be converted to written when DIO is completed.
2873  * For async direct IO, since the IO may still pending when return, we
2874  * set up an end_io call back function, which will do the conversion
2875  * when async direct IO completed.
2876  *
2877  * If the O_DIRECT write will extend the file then add this inode to the
2878  * orphan list.  So recovery will truncate it back to the original size
2879  * if the machine crashes during the write.
2880  *
2881  */
2882 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2883                               const struct iovec *iov, loff_t offset,
2884                               unsigned long nr_segs)
2885 {
2886         struct file *file = iocb->ki_filp;
2887         struct inode *inode = file->f_mapping->host;
2888         ssize_t ret;
2889         size_t count = iov_length(iov, nr_segs);
2890         int overwrite = 0;
2891         get_block_t *get_block_func = NULL;
2892         int dio_flags = 0;
2893         loff_t final_size = offset + count;
2894
2895         /* Use the old path for reads and writes beyond i_size. */
2896         if (rw != WRITE || final_size > inode->i_size)
2897                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2898
2899         BUG_ON(iocb->private == NULL);
2900
2901         /* If we do a overwrite dio, i_mutex locking can be released */
2902         overwrite = *((int *)iocb->private);
2903
2904         if (overwrite) {
2905                 atomic_inc(&inode->i_dio_count);
2906                 down_read(&EXT4_I(inode)->i_data_sem);
2907                 mutex_unlock(&inode->i_mutex);
2908         }
2909
2910         /*
2911          * We could direct write to holes and fallocate.
2912          *
2913          * Allocated blocks to fill the hole are marked as
2914          * uninitialized to prevent parallel buffered read to expose
2915          * the stale data before DIO complete the data IO.
2916          *
2917          * As to previously fallocated extents, ext4 get_block will
2918          * just simply mark the buffer mapped but still keep the
2919          * extents uninitialized.
2920          *
2921          * For non AIO case, we will convert those unwritten extents
2922          * to written after return back from blockdev_direct_IO.
2923          *
2924          * For async DIO, the conversion needs to be deferred when the
2925          * IO is completed. The ext4 end_io callback function will be
2926          * called to take care of the conversion work.  Here for async
2927          * case, we allocate an io_end structure to hook to the iocb.
2928          */
2929         iocb->private = NULL;
2930         ext4_inode_aio_set(inode, NULL);
2931         if (!is_sync_kiocb(iocb)) {
2932                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
2933                 if (!io_end) {
2934                         ret = -ENOMEM;
2935                         goto retake_lock;
2936                 }
2937                 io_end->flag |= EXT4_IO_END_DIRECT;
2938                 iocb->private = io_end;
2939                 /*
2940                  * we save the io structure for current async direct
2941                  * IO, so that later ext4_map_blocks() could flag the
2942                  * io structure whether there is a unwritten extents
2943                  * needs to be converted when IO is completed.
2944                  */
2945                 ext4_inode_aio_set(inode, io_end);
2946         }
2947
2948         if (overwrite) {
2949                 get_block_func = ext4_get_block_write_nolock;
2950         } else {
2951                 get_block_func = ext4_get_block_write;
2952                 dio_flags = DIO_LOCKING;
2953         }
2954         ret = __blockdev_direct_IO(rw, iocb, inode,
2955                                    inode->i_sb->s_bdev, iov,
2956                                    offset, nr_segs,
2957                                    get_block_func,
2958                                    ext4_end_io_dio,
2959                                    NULL,
2960                                    dio_flags);
2961
2962         if (iocb->private)
2963                 ext4_inode_aio_set(inode, NULL);
2964         /*
2965          * The io_end structure takes a reference to the inode, that
2966          * structure needs to be destroyed and the reference to the
2967          * inode need to be dropped, when IO is complete, even with 0
2968          * byte write, or failed.
2969          *
2970          * In the successful AIO DIO case, the io_end structure will
2971          * be destroyed and the reference to the inode will be dropped
2972          * after the end_io call back function is called.
2973          *
2974          * In the case there is 0 byte write, or error case, since VFS
2975          * direct IO won't invoke the end_io call back function, we
2976          * need to free the end_io structure here.
2977          */
2978         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2979                 ext4_free_io_end(iocb->private);
2980                 iocb->private = NULL;
2981         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
2982                                                 EXT4_STATE_DIO_UNWRITTEN)) {
2983                 int err;
2984                 /*
2985                  * for non AIO case, since the IO is already
2986                  * completed, we could do the conversion right here
2987                  */
2988                 err = ext4_convert_unwritten_extents(inode,
2989                                                      offset, ret);
2990                 if (err < 0)
2991                         ret = err;
2992                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2993         }
2994
2995 retake_lock:
2996         /* take i_mutex locking again if we do a ovewrite dio */
2997         if (overwrite) {
2998                 inode_dio_done(inode);
2999                 up_read(&EXT4_I(inode)->i_data_sem);
3000                 mutex_lock(&inode->i_mutex);
3001         }
3002
3003         return ret;
3004 }
3005
3006 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3007                               const struct iovec *iov, loff_t offset,
3008                               unsigned long nr_segs)
3009 {
3010         struct file *file = iocb->ki_filp;
3011         struct inode *inode = file->f_mapping->host;
3012         ssize_t ret;
3013
3014         /*
3015          * If we are doing data journalling we don't support O_DIRECT
3016          */
3017         if (ext4_should_journal_data(inode))
3018                 return 0;
3019
3020         /* Let buffer I/O handle the inline data case. */
3021         if (ext4_has_inline_data(inode))
3022                 return 0;
3023
3024         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3025         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3026                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3027         else
3028                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3029         trace_ext4_direct_IO_exit(inode, offset,
3030                                 iov_length(iov, nr_segs), rw, ret);
3031         return ret;
3032 }
3033
3034 /*
3035  * Pages can be marked dirty completely asynchronously from ext4's journalling
3036  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3037  * much here because ->set_page_dirty is called under VFS locks.  The page is
3038  * not necessarily locked.
3039  *
3040  * We cannot just dirty the page and leave attached buffers clean, because the
3041  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3042  * or jbddirty because all the journalling code will explode.
3043  *
3044  * So what we do is to mark the page "pending dirty" and next time writepage
3045  * is called, propagate that into the buffers appropriately.
3046  */
3047 static int ext4_journalled_set_page_dirty(struct page *page)
3048 {
3049         SetPageChecked(page);
3050         return __set_page_dirty_nobuffers(page);
3051 }
3052
3053 static const struct address_space_operations ext4_ordered_aops = {
3054         .readpage               = ext4_readpage,
3055         .readpages              = ext4_readpages,
3056         .writepage              = ext4_writepage,
3057         .write_begin            = ext4_write_begin,
3058         .write_end              = ext4_ordered_write_end,
3059         .bmap                   = ext4_bmap,
3060         .invalidatepage         = ext4_invalidatepage,
3061         .releasepage            = ext4_releasepage,
3062         .direct_IO              = ext4_direct_IO,
3063         .migratepage            = buffer_migrate_page,
3064         .is_partially_uptodate  = block_is_partially_uptodate,
3065         .error_remove_page      = generic_error_remove_page,
3066 };
3067
3068 static const struct address_space_operations ext4_writeback_aops = {
3069         .readpage               = ext4_readpage,
3070         .readpages              = ext4_readpages,
3071         .writepage              = ext4_writepage,
3072         .write_begin            = ext4_write_begin,
3073         .write_end              = ext4_writeback_write_end,
3074         .bmap                   = ext4_bmap,
3075         .invalidatepage         = ext4_invalidatepage,
3076         .releasepage            = ext4_releasepage,
3077         .direct_IO              = ext4_direct_IO,
3078         .migratepage            = buffer_migrate_page,
3079         .is_partially_uptodate  = block_is_partially_uptodate,
3080         .error_remove_page      = generic_error_remove_page,
3081 };
3082
3083 static const struct address_space_operations ext4_journalled_aops = {
3084         .readpage               = ext4_readpage,
3085         .readpages              = ext4_readpages,
3086         .writepage              = ext4_writepage,
3087         .write_begin            = ext4_write_begin,
3088         .write_end              = ext4_journalled_write_end,
3089         .set_page_dirty         = ext4_journalled_set_page_dirty,
3090         .bmap                   = ext4_bmap,
3091         .invalidatepage         = ext4_journalled_invalidatepage,
3092         .releasepage            = ext4_releasepage,
3093         .direct_IO              = ext4_direct_IO,
3094         .is_partially_uptodate  = block_is_partially_uptodate,
3095         .error_remove_page      = generic_error_remove_page,
3096 };
3097
3098 static const struct address_space_operations ext4_da_aops = {
3099         .readpage               = ext4_readpage,
3100         .readpages              = ext4_readpages,
3101         .writepage              = ext4_writepage,
3102         .writepages             = ext4_da_writepages,
3103         .write_begin            = ext4_da_write_begin,
3104         .write_end              = ext4_da_write_end,
3105         .bmap                   = ext4_bmap,
3106         .invalidatepage         = ext4_da_invalidatepage,
3107         .releasepage            = ext4_releasepage,
3108         .direct_IO              = ext4_direct_IO,
3109         .migratepage            = buffer_migrate_page,
3110         .is_partially_uptodate  = block_is_partially_uptodate,
3111         .error_remove_page      = generic_error_remove_page,
3112 };
3113
3114 void ext4_set_aops(struct inode *inode)
3115 {
3116         switch (ext4_inode_journal_mode(inode)) {
3117         case EXT4_INODE_ORDERED_DATA_MODE:
3118                 if (test_opt(inode->i_sb, DELALLOC))
3119                         inode->i_mapping->a_ops = &ext4_da_aops;
3120                 else
3121                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3122                 break;
3123         case EXT4_INODE_WRITEBACK_DATA_MODE:
3124                 if (test_opt(inode->i_sb, DELALLOC))
3125                         inode->i_mapping->a_ops = &ext4_da_aops;
3126                 else
3127                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3128                 break;
3129         case EXT4_INODE_JOURNAL_DATA_MODE:
3130                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3131                 break;
3132         default:
3133                 BUG();
3134         }
3135 }
3136
3137
3138 /*
3139  * ext4_discard_partial_page_buffers()
3140  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3141  * This function finds and locks the page containing the offset
3142  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3143  * Calling functions that already have the page locked should call
3144  * ext4_discard_partial_page_buffers_no_lock directly.
3145  */
3146 int ext4_discard_partial_page_buffers(handle_t *handle,
3147                 struct address_space *mapping, loff_t from,
3148                 loff_t length, int flags)
3149 {
3150         struct inode *inode = mapping->host;
3151         struct page *page;
3152         int err = 0;
3153
3154         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3155                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3156         if (!page)
3157                 return -ENOMEM;
3158
3159         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3160                 from, length, flags);
3161
3162         unlock_page(page);
3163         page_cache_release(page);
3164         return err;
3165 }
3166
3167 /*
3168  * ext4_discard_partial_page_buffers_no_lock()
3169  * Zeros a page range of length 'length' starting from offset 'from'.
3170  * Buffer heads that correspond to the block aligned regions of the
3171  * zeroed range will be unmapped.  Unblock aligned regions
3172  * will have the corresponding buffer head mapped if needed so that
3173  * that region of the page can be updated with the partial zero out.
3174  *
3175  * This function assumes that the page has already been  locked.  The
3176  * The range to be discarded must be contained with in the given page.
3177  * If the specified range exceeds the end of the page it will be shortened
3178  * to the end of the page that corresponds to 'from'.  This function is
3179  * appropriate for updating a page and it buffer heads to be unmapped and
3180  * zeroed for blocks that have been either released, or are going to be
3181  * released.
3182  *
3183  * handle: The journal handle
3184  * inode:  The files inode
3185  * page:   A locked page that contains the offset "from"
3186  * from:   The starting byte offset (from the beginning of the file)
3187  *         to begin discarding
3188  * len:    The length of bytes to discard
3189  * flags:  Optional flags that may be used:
3190  *
3191  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3192  *         Only zero the regions of the page whose buffer heads
3193  *         have already been unmapped.  This flag is appropriate
3194  *         for updating the contents of a page whose blocks may
3195  *         have already been released, and we only want to zero
3196  *         out the regions that correspond to those released blocks.
3197  *
3198  * Returns zero on success or negative on failure.
3199  */
3200 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3201                 struct inode *inode, struct page *page, loff_t from,
3202                 loff_t length, int flags)
3203 {
3204         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3205         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3206         unsigned int blocksize, max, pos;
3207         ext4_lblk_t iblock;
3208         struct buffer_head *bh;
3209         int err = 0;
3210
3211         blocksize = inode->i_sb->s_blocksize;
3212         max = PAGE_CACHE_SIZE - offset;
3213
3214         if (index != page->index)
3215                 return -EINVAL;
3216
3217         /*
3218          * correct length if it does not fall between
3219          * 'from' and the end of the page
3220          */
3221         if (length > max || length < 0)
3222                 length = max;
3223
3224         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3225
3226         if (!page_has_buffers(page))
3227                 create_empty_buffers(page, blocksize, 0);
3228
3229         /* Find the buffer that contains "offset" */
3230         bh = page_buffers(page);
3231         pos = blocksize;
3232         while (offset >= pos) {
3233                 bh = bh->b_this_page;
3234                 iblock++;
3235                 pos += blocksize;
3236         }
3237
3238         pos = offset;
3239         while (pos < offset + length) {
3240                 unsigned int end_of_block, range_to_discard;
3241
3242                 err = 0;
3243
3244                 /* The length of space left to zero and unmap */
3245                 range_to_discard = offset + length - pos;
3246
3247                 /* The length of space until the end of the block */
3248                 end_of_block = blocksize - (pos & (blocksize-1));
3249
3250                 /*
3251                  * Do not unmap or zero past end of block
3252                  * for this buffer head
3253                  */
3254                 if (range_to_discard > end_of_block)
3255                         range_to_discard = end_of_block;
3256
3257
3258                 /*
3259                  * Skip this buffer head if we are only zeroing unampped
3260                  * regions of the page
3261                  */
3262                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3263                         buffer_mapped(bh))
3264                                 goto next;
3265
3266                 /* If the range is block aligned, unmap */
3267                 if (range_to_discard == blocksize) {
3268                         clear_buffer_dirty(bh);
3269                         bh->b_bdev = NULL;
3270                         clear_buffer_mapped(bh);
3271                         clear_buffer_req(bh);
3272                         clear_buffer_new(bh);
3273                         clear_buffer_delay(bh);
3274                         clear_buffer_unwritten(bh);
3275                         clear_buffer_uptodate(bh);
3276                         zero_user(page, pos, range_to_discard);
3277                         BUFFER_TRACE(bh, "Buffer discarded");
3278                         goto next;
3279                 }
3280
3281                 /*
3282                  * If this block is not completely contained in the range
3283                  * to be discarded, then it is not going to be released. Because
3284                  * we need to keep this block, we need to make sure this part
3285                  * of the page is uptodate before we modify it by writeing
3286                  * partial zeros on it.
3287                  */
3288                 if (!buffer_mapped(bh)) {
3289                         /*
3290                          * Buffer head must be mapped before we can read
3291                          * from the block
3292                          */
3293                         BUFFER_TRACE(bh, "unmapped");
3294                         ext4_get_block(inode, iblock, bh, 0);
3295                         /* unmapped? It's a hole - nothing to do */
3296                         if (!buffer_mapped(bh)) {
3297                                 BUFFER_TRACE(bh, "still unmapped");
3298                                 goto next;
3299                         }
3300                 }
3301
3302                 /* Ok, it's mapped. Make sure it's up-to-date */
3303                 if (PageUptodate(page))
3304                         set_buffer_uptodate(bh);
3305
3306                 if (!buffer_uptodate(bh)) {
3307                         err = -EIO;
3308                         ll_rw_block(READ, 1, &bh);
3309                         wait_on_buffer(bh);
3310                         /* Uhhuh. Read error. Complain and punt.*/
3311                         if (!buffer_uptodate(bh))
3312                                 goto next;
3313                 }
3314
3315                 if (ext4_should_journal_data(inode)) {
3316                         BUFFER_TRACE(bh, "get write access");
3317                         err = ext4_journal_get_write_access(handle, bh);
3318                         if (err)
3319                                 goto next;
3320                 }
3321
3322                 zero_user(page, pos, range_to_discard);
3323
3324                 err = 0;
3325                 if (ext4_should_journal_data(inode)) {
3326                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3327                 } else
3328                         mark_buffer_dirty(bh);
3329
3330                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3331 next:
3332                 bh = bh->b_this_page;
3333                 iblock++;
3334                 pos += range_to_discard;
3335         }
3336
3337         return err;
3338 }
3339
3340 int ext4_can_truncate(struct inode *inode)
3341 {
3342         if (S_ISREG(inode->i_mode))
3343                 return 1;
3344         if (S_ISDIR(inode->i_mode))
3345                 return 1;
3346         if (S_ISLNK(inode->i_mode))
3347                 return !ext4_inode_is_fast_symlink(inode);
3348         return 0;
3349 }
3350
3351 /*
3352  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3353  * associated with the given offset and length
3354  *
3355  * @inode:  File inode
3356  * @offset: The offset where the hole will begin
3357  * @len:    The length of the hole
3358  *
3359  * Returns: 0 on success or negative on failure
3360  */
3361
3362 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3363 {
3364         struct inode *inode = file->f_path.dentry->d_inode;
3365         if (!S_ISREG(inode->i_mode))
3366                 return -EOPNOTSUPP;
3367
3368         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3369                 return ext4_ind_punch_hole(file, offset, length);
3370
3371         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3372                 /* TODO: Add support for bigalloc file systems */
3373                 return -EOPNOTSUPP;
3374         }
3375
3376         trace_ext4_punch_hole(inode, offset, length);
3377
3378         return ext4_ext_punch_hole(file, offset, length);
3379 }
3380
3381 /*
3382  * ext4_truncate()
3383  *
3384  * We block out ext4_get_block() block instantiations across the entire
3385  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3386  * simultaneously on behalf of the same inode.
3387  *
3388  * As we work through the truncate and commit bits of it to the journal there
3389  * is one core, guiding principle: the file's tree must always be consistent on
3390  * disk.  We must be able to restart the truncate after a crash.
3391  *
3392  * The file's tree may be transiently inconsistent in memory (although it
3393  * probably isn't), but whenever we close off and commit a journal transaction,
3394  * the contents of (the filesystem + the journal) must be consistent and
3395  * restartable.  It's pretty simple, really: bottom up, right to left (although
3396  * left-to-right works OK too).
3397  *
3398  * Note that at recovery time, journal replay occurs *before* the restart of
3399  * truncate against the orphan inode list.
3400  *
3401  * The committed inode has the new, desired i_size (which is the same as
3402  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3403  * that this inode's truncate did not complete and it will again call
3404  * ext4_truncate() to have another go.  So there will be instantiated blocks
3405  * to the right of the truncation point in a crashed ext4 filesystem.  But
3406  * that's fine - as long as they are linked from the inode, the post-crash
3407  * ext4_truncate() run will find them and release them.
3408  */
3409 void ext4_truncate(struct inode *inode)
3410 {
3411         trace_ext4_truncate_enter(inode);
3412
3413         if (!ext4_can_truncate(inode))
3414                 return;
3415
3416         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3417
3418         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3419                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3420
3421         if (ext4_has_inline_data(inode)) {
3422                 int has_inline = 1;
3423
3424                 ext4_inline_data_truncate(inode, &has_inline);
3425                 if (has_inline)
3426                         return;
3427         }
3428
3429         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3430                 ext4_ext_truncate(inode);
3431         else
3432                 ext4_ind_truncate(inode);
3433
3434         trace_ext4_truncate_exit(inode);
3435 }
3436
3437 /*
3438  * ext4_get_inode_loc returns with an extra refcount against the inode's
3439  * underlying buffer_head on success. If 'in_mem' is true, we have all
3440  * data in memory that is needed to recreate the on-disk version of this
3441  * inode.
3442  */
3443 static int __ext4_get_inode_loc(struct inode *inode,
3444                                 struct ext4_iloc *iloc, int in_mem)
3445 {
3446         struct ext4_group_desc  *gdp;
3447         struct buffer_head      *bh;
3448         struct super_block      *sb = inode->i_sb;
3449         ext4_fsblk_t            block;
3450         int                     inodes_per_block, inode_offset;
3451
3452         iloc->bh = NULL;
3453         if (!ext4_valid_inum(sb, inode->i_ino))
3454                 return -EIO;
3455
3456         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3457         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3458         if (!gdp)
3459                 return -EIO;
3460
3461         /*
3462          * Figure out the offset within the block group inode table
3463          */
3464         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3465         inode_offset = ((inode->i_ino - 1) %
3466                         EXT4_INODES_PER_GROUP(sb));
3467         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3468         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3469
3470         bh = sb_getblk(sb, block);
3471         if (unlikely(!bh))
3472                 return -ENOMEM;
3473         if (!buffer_uptodate(bh)) {
3474                 lock_buffer(bh);
3475
3476                 /*
3477                  * If the buffer has the write error flag, we have failed
3478                  * to write out another inode in the same block.  In this
3479                  * case, we don't have to read the block because we may
3480                  * read the old inode data successfully.
3481                  */
3482                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3483                         set_buffer_uptodate(bh);
3484
3485                 if (buffer_uptodate(bh)) {
3486                         /* someone brought it uptodate while we waited */
3487                         unlock_buffer(bh);
3488                         goto has_buffer;
3489                 }
3490
3491                 /*
3492                  * If we have all information of the inode in memory and this
3493                  * is the only valid inode in the block, we need not read the
3494                  * block.
3495                  */
3496                 if (in_mem) {
3497                         struct buffer_head *bitmap_bh;
3498                         int i, start;
3499
3500                         start = inode_offset & ~(inodes_per_block - 1);
3501
3502                         /* Is the inode bitmap in cache? */
3503                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3504                         if (unlikely(!bitmap_bh))
3505                                 goto make_io;
3506
3507                         /*
3508                          * If the inode bitmap isn't in cache then the
3509                          * optimisation may end up performing two reads instead
3510                          * of one, so skip it.
3511                          */
3512                         if (!buffer_uptodate(bitmap_bh)) {
3513                                 brelse(bitmap_bh);
3514                                 goto make_io;
3515                         }
3516                         for (i = start; i < start + inodes_per_block; i++) {
3517                                 if (i == inode_offset)
3518                                         continue;
3519                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3520                                         break;
3521                         }
3522                         brelse(bitmap_bh);
3523                         if (i == start + inodes_per_block) {
3524                                 /* all other inodes are free, so skip I/O */
3525                                 memset(bh->b_data, 0, bh->b_size);
3526                                 set_buffer_uptodate(bh);
3527                                 unlock_buffer(bh);
3528                                 goto has_buffer;
3529                         }
3530                 }
3531
3532 make_io:
3533                 /*
3534                  * If we need to do any I/O, try to pre-readahead extra
3535                  * blocks from the inode table.
3536                  */
3537                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3538                         ext4_fsblk_t b, end, table;
3539                         unsigned num;
3540
3541                         table = ext4_inode_table(sb, gdp);
3542                         /* s_inode_readahead_blks is always a power of 2 */
3543                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3544                         if (table > b)
3545                                 b = table;
3546                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3547                         num = EXT4_INODES_PER_GROUP(sb);
3548                         if (ext4_has_group_desc_csum(sb))
3549                                 num -= ext4_itable_unused_count(sb, gdp);
3550                         table += num / inodes_per_block;
3551                         if (end > table)
3552                                 end = table;
3553                         while (b <= end)
3554                                 sb_breadahead(sb, b++);
3555                 }
3556
3557                 /*
3558                  * There are other valid inodes in the buffer, this inode
3559                  * has in-inode xattrs, or we don't have this inode in memory.
3560                  * Read the block from disk.
3561                  */
3562                 trace_ext4_load_inode(inode);
3563                 get_bh(bh);
3564                 bh->b_end_io = end_buffer_read_sync;
3565                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3566                 wait_on_buffer(bh);
3567                 if (!buffer_uptodate(bh)) {
3568                         EXT4_ERROR_INODE_BLOCK(inode, block,
3569                                                "unable to read itable block");
3570                         brelse(bh);
3571                         return -EIO;
3572                 }
3573         }
3574 has_buffer:
3575         iloc->bh = bh;
3576         return 0;
3577 }
3578
3579 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3580 {
3581         /* We have all inode data except xattrs in memory here. */
3582         return __ext4_get_inode_loc(inode, iloc,
3583                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3584 }
3585
3586 void ext4_set_inode_flags(struct inode *inode)
3587 {
3588         unsigned int flags = EXT4_I(inode)->i_flags;
3589
3590         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3591         if (flags & EXT4_SYNC_FL)
3592                 inode->i_flags |= S_SYNC;
3593         if (flags & EXT4_APPEND_FL)
3594                 inode->i_flags |= S_APPEND;
3595         if (flags & EXT4_IMMUTABLE_FL)
3596                 inode->i_flags |= S_IMMUTABLE;
3597         if (flags & EXT4_NOATIME_FL)
3598                 inode->i_flags |= S_NOATIME;
3599         if (flags & EXT4_DIRSYNC_FL)
3600                 inode->i_flags |= S_DIRSYNC;
3601 }
3602
3603 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3604 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3605 {
3606         unsigned int vfs_fl;
3607         unsigned long old_fl, new_fl;
3608
3609         do {
3610                 vfs_fl = ei->vfs_inode.i_flags;
3611                 old_fl = ei->i_flags;
3612                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3613                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3614                                 EXT4_DIRSYNC_FL);
3615                 if (vfs_fl & S_SYNC)
3616                         new_fl |= EXT4_SYNC_FL;
3617                 if (vfs_fl & S_APPEND)
3618                         new_fl |= EXT4_APPEND_FL;
3619                 if (vfs_fl & S_IMMUTABLE)
3620                         new_fl |= EXT4_IMMUTABLE_FL;
3621                 if (vfs_fl & S_NOATIME)
3622                         new_fl |= EXT4_NOATIME_FL;
3623                 if (vfs_fl & S_DIRSYNC)
3624                         new_fl |= EXT4_DIRSYNC_FL;
3625         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3626 }
3627
3628 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3629                                   struct ext4_inode_info *ei)
3630 {
3631         blkcnt_t i_blocks ;
3632         struct inode *inode = &(ei->vfs_inode);
3633         struct super_block *sb = inode->i_sb;
3634
3635         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3636                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3637                 /* we are using combined 48 bit field */
3638                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3639                                         le32_to_cpu(raw_inode->i_blocks_lo);
3640                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3641                         /* i_blocks represent file system block size */
3642                         return i_blocks  << (inode->i_blkbits - 9);
3643                 } else {
3644                         return i_blocks;
3645                 }
3646         } else {
3647                 return le32_to_cpu(raw_inode->i_blocks_lo);
3648         }
3649 }
3650
3651 static inline void ext4_iget_extra_inode(struct inode *inode,
3652                                          struct ext4_inode *raw_inode,
3653                                          struct ext4_inode_info *ei)
3654 {
3655         __le32 *magic = (void *)raw_inode +
3656                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3657         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3658                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3659                 ext4_find_inline_data_nolock(inode);
3660         } else
3661                 EXT4_I(inode)->i_inline_off = 0;
3662 }
3663
3664 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3665 {
3666         struct ext4_iloc iloc;
3667         struct ext4_inode *raw_inode;
3668         struct ext4_inode_info *ei;
3669         struct inode *inode;
3670         journal_t *journal = EXT4_SB(sb)->s_journal;
3671         long ret;
3672         int block;
3673         uid_t i_uid;
3674         gid_t i_gid;
3675
3676         inode = iget_locked(sb, ino);
3677         if (!inode)
3678                 return ERR_PTR(-ENOMEM);
3679         if (!(inode->i_state & I_NEW))
3680                 return inode;
3681
3682         ei = EXT4_I(inode);
3683         iloc.bh = NULL;
3684
3685         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3686         if (ret < 0)
3687                 goto bad_inode;
3688         raw_inode = ext4_raw_inode(&iloc);
3689
3690         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3691                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3692                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3693                     EXT4_INODE_SIZE(inode->i_sb)) {
3694                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3695                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3696                                 EXT4_INODE_SIZE(inode->i_sb));
3697                         ret = -EIO;
3698                         goto bad_inode;
3699                 }
3700         } else
3701                 ei->i_extra_isize = 0;
3702
3703         /* Precompute checksum seed for inode metadata */
3704         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3705                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3706                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3707                 __u32 csum;
3708                 __le32 inum = cpu_to_le32(inode->i_ino);
3709                 __le32 gen = raw_inode->i_generation;
3710                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3711                                    sizeof(inum));
3712                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3713                                               sizeof(gen));
3714         }
3715
3716         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3717                 EXT4_ERROR_INODE(inode, "checksum invalid");
3718                 ret = -EIO;
3719                 goto bad_inode;
3720         }
3721
3722         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3723         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3724         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3725         if (!(test_opt(inode->i_sb, NO_UID32))) {
3726                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3727                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3728         }
3729         i_uid_write(inode, i_uid);
3730         i_gid_write(inode, i_gid);
3731         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3732
3733         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3734         ei->i_inline_off = 0;
3735         ei->i_dir_start_lookup = 0;
3736         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3737         /* We now have enough fields to check if the inode was active or not.
3738          * This is needed because nfsd might try to access dead inodes
3739          * the test is that same one that e2fsck uses
3740          * NeilBrown 1999oct15
3741          */
3742         if (inode->i_nlink == 0) {
3743                 if (inode->i_mode == 0 ||
3744                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3745                         /* this inode is deleted */
3746                         ret = -ESTALE;
3747                         goto bad_inode;
3748                 }
3749                 /* The only unlinked inodes we let through here have
3750                  * valid i_mode and are being read by the orphan
3751                  * recovery code: that's fine, we're about to complete
3752                  * the process of deleting those. */
3753         }
3754         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3755         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3756         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3757         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3758                 ei->i_file_acl |=
3759                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3760         inode->i_size = ext4_isize(raw_inode);
3761         ei->i_disksize = inode->i_size;
3762 #ifdef CONFIG_QUOTA
3763         ei->i_reserved_quota = 0;
3764 #endif
3765         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3766         ei->i_block_group = iloc.block_group;
3767         ei->i_last_alloc_group = ~0;
3768         /*
3769          * NOTE! The in-memory inode i_data array is in little-endian order
3770          * even on big-endian machines: we do NOT byteswap the block numbers!
3771          */
3772         for (block = 0; block < EXT4_N_BLOCKS; block++)
3773                 ei->i_data[block] = raw_inode->i_block[block];
3774         INIT_LIST_HEAD(&ei->i_orphan);
3775
3776         /*
3777          * Set transaction id's of transactions that have to be committed
3778          * to finish f[data]sync. We set them to currently running transaction
3779          * as we cannot be sure that the inode or some of its metadata isn't
3780          * part of the transaction - the inode could have been reclaimed and
3781          * now it is reread from disk.
3782          */
3783         if (journal) {
3784                 transaction_t *transaction;
3785                 tid_t tid;
3786
3787                 read_lock(&journal->j_state_lock);
3788                 if (journal->j_running_transaction)
3789                         transaction = journal->j_running_transaction;
3790                 else
3791                         transaction = journal->j_committing_transaction;
3792                 if (transaction)
3793                         tid = transaction->t_tid;
3794                 else
3795                         tid = journal->j_commit_sequence;
3796                 read_unlock(&journal->j_state_lock);
3797                 ei->i_sync_tid = tid;
3798                 ei->i_datasync_tid = tid;
3799         }
3800
3801         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3802                 if (ei->i_extra_isize == 0) {
3803                         /* The extra space is currently unused. Use it. */
3804                         ei->i_extra_isize = sizeof(struct ext4_inode) -
3805                                             EXT4_GOOD_OLD_INODE_SIZE;
3806                 } else {
3807                         ext4_iget_extra_inode(inode, raw_inode, ei);
3808                 }
3809         }
3810
3811         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3812         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3813         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3814         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3815
3816         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3817         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3818                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3819                         inode->i_version |=
3820                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3821         }
3822
3823         ret = 0;
3824         if (ei->i_file_acl &&
3825             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3826                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3827                                  ei->i_file_acl);
3828                 ret = -EIO;
3829                 goto bad_inode;
3830         } else if (!ext4_has_inline_data(inode)) {
3831                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3832                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3833                             (S_ISLNK(inode->i_mode) &&
3834                              !ext4_inode_is_fast_symlink(inode))))
3835                                 /* Validate extent which is part of inode */
3836                                 ret = ext4_ext_check_inode(inode);
3837                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3838                            (S_ISLNK(inode->i_mode) &&
3839                             !ext4_inode_is_fast_symlink(inode))) {
3840                         /* Validate block references which are part of inode */
3841                         ret = ext4_ind_check_inode(inode);
3842                 }
3843         }
3844         if (ret)
3845                 goto bad_inode;
3846
3847         if (S_ISREG(inode->i_mode)) {
3848                 inode->i_op = &ext4_file_inode_operations;
3849                 inode->i_fop = &ext4_file_operations;
3850                 ext4_set_aops(inode);
3851         } else if (S_ISDIR(inode->i_mode)) {
3852                 inode->i_op = &ext4_dir_inode_operations;
3853                 inode->i_fop = &ext4_dir_operations;
3854         } else if (S_ISLNK(inode->i_mode)) {
3855                 if (ext4_inode_is_fast_symlink(inode)) {
3856                         inode->i_op = &ext4_fast_symlink_inode_operations;
3857                         nd_terminate_link(ei->i_data, inode->i_size,
3858                                 sizeof(ei->i_data) - 1);
3859                 } else {
3860                         inode->i_op = &ext4_symlink_inode_operations;
3861                         ext4_set_aops(inode);
3862                 }
3863         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3864               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3865                 inode->i_op = &ext4_special_inode_operations;
3866                 if (raw_inode->i_block[0])
3867                         init_special_inode(inode, inode->i_mode,
3868                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3869                 else
3870                         init_special_inode(inode, inode->i_mode,
3871                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3872         } else {
3873                 ret = -EIO;
3874                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3875                 goto bad_inode;
3876         }
3877         brelse(iloc.bh);
3878         ext4_set_inode_flags(inode);
3879         unlock_new_inode(inode);
3880         return inode;
3881
3882 bad_inode:
3883         brelse(iloc.bh);
3884         iget_failed(inode);
3885         return ERR_PTR(ret);
3886 }
3887
3888 static int ext4_inode_blocks_set(handle_t *handle,
3889                                 struct ext4_inode *raw_inode,
3890                                 struct ext4_inode_info *ei)
3891 {
3892         struct inode *inode = &(ei->vfs_inode);
3893         u64 i_blocks = inode->i_blocks;
3894         struct super_block *sb = inode->i_sb;
3895
3896         if (i_blocks <= ~0U) {
3897                 /*
3898                  * i_blocks can be represented in a 32 bit variable
3899                  * as multiple of 512 bytes
3900                  */
3901                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3902                 raw_inode->i_blocks_high = 0;
3903                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3904                 return 0;
3905         }
3906         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3907                 return -EFBIG;
3908
3909         if (i_blocks <= 0xffffffffffffULL) {
3910                 /*
3911                  * i_blocks can be represented in a 48 bit variable
3912                  * as multiple of 512 bytes
3913                  */
3914                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3915                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3916                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3917         } else {
3918                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3919                 /* i_block is stored in file system block size */
3920                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3921                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
3922                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3923         }
3924         return 0;
3925 }
3926
3927 /*
3928  * Post the struct inode info into an on-disk inode location in the
3929  * buffer-cache.  This gobbles the caller's reference to the
3930  * buffer_head in the inode location struct.
3931  *
3932  * The caller must have write access to iloc->bh.
3933  */
3934 static int ext4_do_update_inode(handle_t *handle,
3935                                 struct inode *inode,
3936                                 struct ext4_iloc *iloc)
3937 {
3938         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3939         struct ext4_inode_info *ei = EXT4_I(inode);
3940         struct buffer_head *bh = iloc->bh;
3941         int err = 0, rc, block;
3942         int need_datasync = 0;
3943         uid_t i_uid;
3944         gid_t i_gid;
3945
3946         /* For fields not not tracking in the in-memory inode,
3947          * initialise them to zero for new inodes. */
3948         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3949                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3950
3951         ext4_get_inode_flags(ei);
3952         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3953         i_uid = i_uid_read(inode);
3954         i_gid = i_gid_read(inode);
3955         if (!(test_opt(inode->i_sb, NO_UID32))) {
3956                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3957                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3958 /*
3959  * Fix up interoperability with old kernels. Otherwise, old inodes get
3960  * re-used with the upper 16 bits of the uid/gid intact
3961  */
3962                 if (!ei->i_dtime) {
3963                         raw_inode->i_uid_high =
3964                                 cpu_to_le16(high_16_bits(i_uid));
3965                         raw_inode->i_gid_high =
3966                                 cpu_to_le16(high_16_bits(i_gid));
3967                 } else {
3968                         raw_inode->i_uid_high = 0;
3969                         raw_inode->i_gid_high = 0;
3970                 }
3971         } else {
3972                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
3973                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
3974                 raw_inode->i_uid_high = 0;
3975                 raw_inode->i_gid_high = 0;
3976         }
3977         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3978
3979         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3980         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3981         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3982         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3983
3984         if (ext4_inode_blocks_set(handle, raw_inode, ei))
3985                 goto out_brelse;
3986         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3987         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
3988         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3989             cpu_to_le32(EXT4_OS_HURD))
3990                 raw_inode->i_file_acl_high =
3991                         cpu_to_le16(ei->i_file_acl >> 32);
3992         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
3993         if (ei->i_disksize != ext4_isize(raw_inode)) {
3994                 ext4_isize_set(raw_inode, ei->i_disksize);
3995                 need_datasync = 1;
3996         }
3997         if (ei->i_disksize > 0x7fffffffULL) {
3998                 struct super_block *sb = inode->i_sb;
3999                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4000                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4001                                 EXT4_SB(sb)->s_es->s_rev_level ==
4002                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4003                         /* If this is the first large file
4004                          * created, add a flag to the superblock.
4005                          */
4006                         err = ext4_journal_get_write_access(handle,
4007                                         EXT4_SB(sb)->s_sbh);
4008                         if (err)
4009                                 goto out_brelse;
4010                         ext4_update_dynamic_rev(sb);
4011                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4012                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4013                         ext4_handle_sync(handle);
4014                         err = ext4_handle_dirty_super(handle, sb);
4015                 }
4016         }
4017         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4018         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4019                 if (old_valid_dev(inode->i_rdev)) {
4020                         raw_inode->i_block[0] =
4021                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4022                         raw_inode->i_block[1] = 0;
4023                 } else {
4024                         raw_inode->i_block[0] = 0;
4025                         raw_inode->i_block[1] =
4026                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4027                         raw_inode->i_block[2] = 0;
4028                 }
4029         } else if (!ext4_has_inline_data(inode)) {
4030                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4031                         raw_inode->i_block[block] = ei->i_data[block];
4032         }
4033
4034         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4035         if (ei->i_extra_isize) {
4036                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4037                         raw_inode->i_version_hi =
4038                         cpu_to_le32(inode->i_version >> 32);
4039                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4040         }
4041
4042         ext4_inode_csum_set(inode, raw_inode, ei);
4043
4044         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4045         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4046         if (!err)
4047                 err = rc;
4048         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4049
4050         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4051 out_brelse:
4052         brelse(bh);
4053         ext4_std_error(inode->i_sb, err);
4054         return err;
4055 }
4056
4057 /*
4058  * ext4_write_inode()
4059  *
4060  * We are called from a few places:
4061  *
4062  * - Within generic_file_write() for O_SYNC files.
4063  *   Here, there will be no transaction running. We wait for any running
4064  *   transaction to commit.
4065  *
4066  * - Within sys_sync(), kupdate and such.
4067  *   We wait on commit, if tol to.
4068  *
4069  * - Within prune_icache() (PF_MEMALLOC == true)
4070  *   Here we simply return.  We can't afford to block kswapd on the
4071  *   journal commit.
4072  *
4073  * In all cases it is actually safe for us to return without doing anything,
4074  * because the inode has been copied into a raw inode buffer in
4075  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4076  * knfsd.
4077  *
4078  * Note that we are absolutely dependent upon all inode dirtiers doing the
4079  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4080  * which we are interested.
4081  *
4082  * It would be a bug for them to not do this.  The code:
4083  *
4084  *      mark_inode_dirty(inode)
4085  *      stuff();
4086  *      inode->i_size = expr;
4087  *
4088  * is in error because a kswapd-driven write_inode() could occur while
4089  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4090  * will no longer be on the superblock's dirty inode list.
4091  */
4092 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4093 {
4094         int err;
4095
4096         if (current->flags & PF_MEMALLOC)
4097                 return 0;
4098
4099         if (EXT4_SB(inode->i_sb)->s_journal) {
4100                 if (ext4_journal_current_handle()) {
4101                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4102                         dump_stack();
4103                         return -EIO;
4104                 }
4105
4106                 if (wbc->sync_mode != WB_SYNC_ALL)
4107                         return 0;
4108
4109                 err = ext4_force_commit(inode->i_sb);
4110         } else {
4111                 struct ext4_iloc iloc;
4112
4113                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4114                 if (err)
4115                         return err;
4116                 if (wbc->sync_mode == WB_SYNC_ALL)
4117                         sync_dirty_buffer(iloc.bh);
4118                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4119                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4120                                          "IO error syncing inode");
4121                         err = -EIO;
4122                 }
4123                 brelse(iloc.bh);
4124         }
4125         return err;
4126 }
4127
4128 /*
4129  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4130  * buffers that are attached to a page stradding i_size and are undergoing
4131  * commit. In that case we have to wait for commit to finish and try again.
4132  */
4133 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4134 {
4135         struct page *page;
4136         unsigned offset;
4137         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4138         tid_t commit_tid = 0;
4139         int ret;
4140
4141         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4142         /*
4143          * All buffers in the last page remain valid? Then there's nothing to
4144          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4145          * blocksize case
4146          */
4147         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4148                 return;
4149         while (1) {
4150                 page = find_lock_page(inode->i_mapping,
4151                                       inode->i_size >> PAGE_CACHE_SHIFT);
4152                 if (!page)
4153                         return;
4154                 ret = __ext4_journalled_invalidatepage(page, offset);
4155                 unlock_page(page);
4156                 page_cache_release(page);
4157                 if (ret != -EBUSY)
4158                         return;
4159                 commit_tid = 0;
4160                 read_lock(&journal->j_state_lock);
4161                 if (journal->j_committing_transaction)
4162                         commit_tid = journal->j_committing_transaction->t_tid;
4163                 read_unlock(&journal->j_state_lock);
4164                 if (commit_tid)
4165                         jbd2_log_wait_commit(journal, commit_tid);
4166         }
4167 }
4168
4169 /*
4170  * ext4_setattr()
4171  *
4172  * Called from notify_change.
4173  *
4174  * We want to trap VFS attempts to truncate the file as soon as
4175  * possible.  In particular, we want to make sure that when the VFS
4176  * shrinks i_size, we put the inode on the orphan list and modify
4177  * i_disksize immediately, so that during the subsequent flushing of
4178  * dirty pages and freeing of disk blocks, we can guarantee that any
4179  * commit will leave the blocks being flushed in an unused state on
4180  * disk.  (On recovery, the inode will get truncated and the blocks will
4181  * be freed, so we have a strong guarantee that no future commit will
4182  * leave these blocks visible to the user.)
4183  *
4184  * Another thing we have to assure is that if we are in ordered mode
4185  * and inode is still attached to the committing transaction, we must
4186  * we start writeout of all the dirty pages which are being truncated.
4187  * This way we are sure that all the data written in the previous
4188  * transaction are already on disk (truncate waits for pages under
4189  * writeback).
4190  *
4191  * Called with inode->i_mutex down.
4192  */
4193 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4194 {
4195         struct inode *inode = dentry->d_inode;
4196         int error, rc = 0;
4197         int orphan = 0;
4198         const unsigned int ia_valid = attr->ia_valid;
4199
4200         error = inode_change_ok(inode, attr);
4201         if (error)
4202                 return error;
4203
4204         if (is_quota_modification(inode, attr))
4205                 dquot_initialize(inode);
4206         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4207             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4208                 handle_t *handle;
4209
4210                 /* (user+group)*(old+new) structure, inode write (sb,
4211                  * inode block, ? - but truncate inode update has it) */
4212                 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4213                                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4214                 if (IS_ERR(handle)) {
4215                         error = PTR_ERR(handle);
4216                         goto err_out;
4217                 }
4218                 error = dquot_transfer(inode, attr);
4219                 if (error) {
4220                         ext4_journal_stop(handle);
4221                         return error;
4222                 }
4223                 /* Update corresponding info in inode so that everything is in
4224                  * one transaction */
4225                 if (attr->ia_valid & ATTR_UID)
4226                         inode->i_uid = attr->ia_uid;
4227                 if (attr->ia_valid & ATTR_GID)
4228                         inode->i_gid = attr->ia_gid;
4229                 error = ext4_mark_inode_dirty(handle, inode);
4230                 ext4_journal_stop(handle);
4231         }
4232
4233         if (attr->ia_valid & ATTR_SIZE) {
4234
4235                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4236                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4237
4238                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4239                                 return -EFBIG;
4240                 }
4241         }
4242
4243         if (S_ISREG(inode->i_mode) &&
4244             attr->ia_valid & ATTR_SIZE &&
4245             (attr->ia_size < inode->i_size)) {
4246                 handle_t *handle;
4247
4248                 handle = ext4_journal_start(inode, 3);
4249                 if (IS_ERR(handle)) {
4250                         error = PTR_ERR(handle);
4251                         goto err_out;
4252                 }
4253                 if (ext4_handle_valid(handle)) {
4254                         error = ext4_orphan_add(handle, inode);
4255                         orphan = 1;
4256                 }
4257                 EXT4_I(inode)->i_disksize = attr->ia_size;
4258                 rc = ext4_mark_inode_dirty(handle, inode);
4259                 if (!error)
4260                         error = rc;
4261                 ext4_journal_stop(handle);
4262
4263                 if (ext4_should_order_data(inode)) {
4264                         error = ext4_begin_ordered_truncate(inode,
4265                                                             attr->ia_size);
4266                         if (error) {
4267                                 /* Do as much error cleanup as possible */
4268                                 handle = ext4_journal_start(inode, 3);
4269                                 if (IS_ERR(handle)) {
4270                                         ext4_orphan_del(NULL, inode);
4271                                         goto err_out;
4272                                 }
4273                                 ext4_orphan_del(handle, inode);
4274                                 orphan = 0;
4275                                 ext4_journal_stop(handle);
4276                                 goto err_out;
4277                         }
4278                 }
4279         }
4280
4281         if (attr->ia_valid & ATTR_SIZE) {
4282                 if (attr->ia_size != inode->i_size) {
4283                         loff_t oldsize = inode->i_size;
4284
4285                         i_size_write(inode, attr->ia_size);
4286                         /*
4287                          * Blocks are going to be removed from the inode. Wait
4288                          * for dio in flight.  Temporarily disable
4289                          * dioread_nolock to prevent livelock.
4290                          */
4291                         if (orphan) {
4292                                 if (!ext4_should_journal_data(inode)) {
4293                                         ext4_inode_block_unlocked_dio(inode);
4294                                         inode_dio_wait(inode);
4295                                         ext4_inode_resume_unlocked_dio(inode);
4296                                 } else
4297                                         ext4_wait_for_tail_page_commit(inode);
4298                         }
4299                         /*
4300                          * Truncate pagecache after we've waited for commit
4301                          * in data=journal mode to make pages freeable.
4302                          */
4303                         truncate_pagecache(inode, oldsize, inode->i_size);
4304                 }
4305                 ext4_truncate(inode);
4306         }
4307
4308         if (!rc) {
4309                 setattr_copy(inode, attr);
4310                 mark_inode_dirty(inode);
4311         }
4312
4313         /*
4314          * If the call to ext4_truncate failed to get a transaction handle at
4315          * all, we need to clean up the in-core orphan list manually.
4316          */
4317         if (orphan && inode->i_nlink)
4318                 ext4_orphan_del(NULL, inode);
4319
4320         if (!rc && (ia_valid & ATTR_MODE))
4321                 rc = ext4_acl_chmod(inode);
4322
4323 err_out:
4324         ext4_std_error(inode->i_sb, error);
4325         if (!error)
4326                 error = rc;
4327         return error;
4328 }
4329
4330 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4331                  struct kstat *stat)
4332 {
4333         struct inode *inode;
4334         unsigned long delalloc_blocks;
4335
4336         inode = dentry->d_inode;
4337         generic_fillattr(inode, stat);
4338
4339         /*
4340          * We can't update i_blocks if the block allocation is delayed
4341          * otherwise in the case of system crash before the real block
4342          * allocation is done, we will have i_blocks inconsistent with
4343          * on-disk file blocks.
4344          * We always keep i_blocks updated together with real
4345          * allocation. But to not confuse with user, stat
4346          * will return the blocks that include the delayed allocation
4347          * blocks for this file.
4348          */
4349         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4350                                 EXT4_I(inode)->i_reserved_data_blocks);
4351
4352         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4353         return 0;
4354 }
4355
4356 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4357 {
4358         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4359                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4360         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4361 }
4362
4363 /*
4364  * Account for index blocks, block groups bitmaps and block group
4365  * descriptor blocks if modify datablocks and index blocks
4366  * worse case, the indexs blocks spread over different block groups
4367  *
4368  * If datablocks are discontiguous, they are possible to spread over
4369  * different block groups too. If they are contiguous, with flexbg,
4370  * they could still across block group boundary.
4371  *
4372  * Also account for superblock, inode, quota and xattr blocks
4373  */
4374 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4375 {
4376         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4377         int gdpblocks;
4378         int idxblocks;
4379         int ret = 0;
4380
4381         /*
4382          * How many index blocks need to touch to modify nrblocks?
4383          * The "Chunk" flag indicating whether the nrblocks is
4384          * physically contiguous on disk
4385          *
4386          * For Direct IO and fallocate, they calls get_block to allocate
4387          * one single extent at a time, so they could set the "Chunk" flag
4388          */
4389         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4390
4391         ret = idxblocks;
4392
4393         /*
4394          * Now let's see how many group bitmaps and group descriptors need
4395          * to account
4396          */
4397         groups = idxblocks;
4398         if (chunk)
4399                 groups += 1;
4400         else
4401                 groups += nrblocks;
4402
4403         gdpblocks = groups;
4404         if (groups > ngroups)
4405                 groups = ngroups;
4406         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4407                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4408
4409         /* bitmaps and block group descriptor blocks */
4410         ret += groups + gdpblocks;
4411
4412         /* Blocks for super block, inode, quota and xattr blocks */
4413         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4414
4415         return ret;
4416 }
4417
4418 /*
4419  * Calculate the total number of credits to reserve to fit
4420  * the modification of a single pages into a single transaction,
4421  * which may include multiple chunks of block allocations.
4422  *
4423  * This could be called via ext4_write_begin()
4424  *
4425  * We need to consider the worse case, when
4426  * one new block per extent.
4427  */
4428 int ext4_writepage_trans_blocks(struct inode *inode)
4429 {
4430         int bpp = ext4_journal_blocks_per_page(inode);
4431         int ret;
4432
4433         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4434
4435         /* Account for data blocks for journalled mode */
4436         if (ext4_should_journal_data(inode))
4437                 ret += bpp;
4438         return ret;
4439 }
4440
4441 /*
4442  * Calculate the journal credits for a chunk of data modification.
4443  *
4444  * This is called from DIO, fallocate or whoever calling
4445  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4446  *
4447  * journal buffers for data blocks are not included here, as DIO
4448  * and fallocate do no need to journal data buffers.
4449  */
4450 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4451 {
4452         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4453 }
4454
4455 /*
4456  * The caller must have previously called ext4_reserve_inode_write().
4457  * Give this, we know that the caller already has write access to iloc->bh.
4458  */
4459 int ext4_mark_iloc_dirty(handle_t *handle,
4460                          struct inode *inode, struct ext4_iloc *iloc)
4461 {
4462         int err = 0;
4463
4464         if (IS_I_VERSION(inode))
4465                 inode_inc_iversion(inode);
4466
4467         /* the do_update_inode consumes one bh->b_count */
4468         get_bh(iloc->bh);
4469
4470         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4471         err = ext4_do_update_inode(handle, inode, iloc);
4472         put_bh(iloc->bh);
4473         return err;
4474 }
4475
4476 /*
4477  * On success, We end up with an outstanding reference count against
4478  * iloc->bh.  This _must_ be cleaned up later.
4479  */
4480
4481 int
4482 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4483                          struct ext4_iloc *iloc)
4484 {
4485         int err;
4486
4487         err = ext4_get_inode_loc(inode, iloc);
4488         if (!err) {
4489                 BUFFER_TRACE(iloc->bh, "get_write_access");
4490                 err = ext4_journal_get_write_access(handle, iloc->bh);
4491                 if (err) {
4492                         brelse(iloc->bh);
4493                         iloc->bh = NULL;
4494                 }
4495         }
4496         ext4_std_error(inode->i_sb, err);
4497         return err;
4498 }
4499
4500 /*
4501  * Expand an inode by new_extra_isize bytes.
4502  * Returns 0 on success or negative error number on failure.
4503  */
4504 static int ext4_expand_extra_isize(struct inode *inode,
4505                                    unsigned int new_extra_isize,
4506                                    struct ext4_iloc iloc,
4507                                    handle_t *handle)
4508 {
4509         struct ext4_inode *raw_inode;
4510         struct ext4_xattr_ibody_header *header;
4511
4512         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4513                 return 0;
4514
4515         raw_inode = ext4_raw_inode(&iloc);
4516
4517         header = IHDR(inode, raw_inode);
4518
4519         /* No extended attributes present */
4520         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4521             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4522                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4523                         new_extra_isize);
4524                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4525                 return 0;
4526         }
4527
4528         /* try to expand with EAs present */
4529         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4530                                           raw_inode, handle);
4531 }
4532
4533 /*
4534  * What we do here is to mark the in-core inode as clean with respect to inode
4535  * dirtiness (it may still be data-dirty).
4536  * This means that the in-core inode may be reaped by prune_icache
4537  * without having to perform any I/O.  This is a very good thing,
4538  * because *any* task may call prune_icache - even ones which
4539  * have a transaction open against a different journal.
4540  *
4541  * Is this cheating?  Not really.  Sure, we haven't written the
4542  * inode out, but prune_icache isn't a user-visible syncing function.
4543  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4544  * we start and wait on commits.
4545  */
4546 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4547 {
4548         struct ext4_iloc iloc;
4549         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4550         static unsigned int mnt_count;
4551         int err, ret;
4552
4553         might_sleep();
4554         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4555         err = ext4_reserve_inode_write(handle, inode, &iloc);
4556         if (ext4_handle_valid(handle) &&
4557             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4558             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4559                 /*
4560                  * We need extra buffer credits since we may write into EA block
4561                  * with this same handle. If journal_extend fails, then it will
4562                  * only result in a minor loss of functionality for that inode.
4563                  * If this is felt to be critical, then e2fsck should be run to
4564                  * force a large enough s_min_extra_isize.
4565                  */
4566                 if ((jbd2_journal_extend(handle,
4567                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4568                         ret = ext4_expand_extra_isize(inode,
4569                                                       sbi->s_want_extra_isize,
4570                                                       iloc, handle);
4571                         if (ret) {
4572                                 ext4_set_inode_state(inode,
4573                                                      EXT4_STATE_NO_EXPAND);
4574                                 if (mnt_count !=
4575                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4576                                         ext4_warning(inode->i_sb,
4577                                         "Unable to expand inode %lu. Delete"
4578                                         " some EAs or run e2fsck.",
4579                                         inode->i_ino);
4580                                         mnt_count =
4581                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4582                                 }
4583                         }
4584                 }
4585         }
4586         if (!err)
4587                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4588         return err;
4589 }
4590
4591 /*
4592  * ext4_dirty_inode() is called from __mark_inode_dirty()
4593  *
4594  * We're really interested in the case where a file is being extended.
4595  * i_size has been changed by generic_commit_write() and we thus need
4596  * to include the updated inode in the current transaction.
4597  *
4598  * Also, dquot_alloc_block() will always dirty the inode when blocks
4599  * are allocated to the file.
4600  *
4601  * If the inode is marked synchronous, we don't honour that here - doing
4602  * so would cause a commit on atime updates, which we don't bother doing.
4603  * We handle synchronous inodes at the highest possible level.
4604  */
4605 void ext4_dirty_inode(struct inode *inode, int flags)
4606 {
4607         handle_t *handle;
4608
4609         handle = ext4_journal_start(inode, 2);
4610         if (IS_ERR(handle))
4611                 goto out;
4612
4613         ext4_mark_inode_dirty(handle, inode);
4614
4615         ext4_journal_stop(handle);
4616 out:
4617         return;
4618 }
4619
4620 #if 0
4621 /*
4622  * Bind an inode's backing buffer_head into this transaction, to prevent
4623  * it from being flushed to disk early.  Unlike
4624  * ext4_reserve_inode_write, this leaves behind no bh reference and
4625  * returns no iloc structure, so the caller needs to repeat the iloc
4626  * lookup to mark the inode dirty later.
4627  */
4628 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4629 {
4630         struct ext4_iloc iloc;
4631
4632         int err = 0;
4633         if (handle) {
4634                 err = ext4_get_inode_loc(inode, &iloc);
4635                 if (!err) {
4636                         BUFFER_TRACE(iloc.bh, "get_write_access");
4637                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4638                         if (!err)
4639                                 err = ext4_handle_dirty_metadata(handle,
4640                                                                  NULL,
4641                                                                  iloc.bh);
4642                         brelse(iloc.bh);
4643                 }
4644         }
4645         ext4_std_error(inode->i_sb, err);
4646         return err;
4647 }
4648 #endif
4649
4650 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4651 {
4652         journal_t *journal;
4653         handle_t *handle;
4654         int err;
4655
4656         /*
4657          * We have to be very careful here: changing a data block's
4658          * journaling status dynamically is dangerous.  If we write a
4659          * data block to the journal, change the status and then delete
4660          * that block, we risk forgetting to revoke the old log record
4661          * from the journal and so a subsequent replay can corrupt data.
4662          * So, first we make sure that the journal is empty and that
4663          * nobody is changing anything.
4664          */
4665
4666         journal = EXT4_JOURNAL(inode);
4667         if (!journal)
4668                 return 0;
4669         if (is_journal_aborted(journal))
4670                 return -EROFS;
4671         /* We have to allocate physical blocks for delalloc blocks
4672          * before flushing journal. otherwise delalloc blocks can not
4673          * be allocated any more. even more truncate on delalloc blocks
4674          * could trigger BUG by flushing delalloc blocks in journal.
4675          * There is no delalloc block in non-journal data mode.
4676          */
4677         if (val && test_opt(inode->i_sb, DELALLOC)) {
4678                 err = ext4_alloc_da_blocks(inode);
4679                 if (err < 0)
4680                         return err;
4681         }
4682
4683         /* Wait for all existing dio workers */
4684         ext4_inode_block_unlocked_dio(inode);
4685         inode_dio_wait(inode);
4686
4687         jbd2_journal_lock_updates(journal);
4688
4689         /*
4690          * OK, there are no updates running now, and all cached data is
4691          * synced to disk.  We are now in a completely consistent state
4692          * which doesn't have anything in the journal, and we know that
4693          * no filesystem updates are running, so it is safe to modify
4694          * the inode's in-core data-journaling state flag now.
4695          */
4696
4697         if (val)
4698                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4699         else {
4700                 jbd2_journal_flush(journal);
4701                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4702         }
4703         ext4_set_aops(inode);
4704
4705         jbd2_journal_unlock_updates(journal);
4706         ext4_inode_resume_unlocked_dio(inode);
4707
4708         /* Finally we can mark the inode as dirty. */
4709
4710         handle = ext4_journal_start(inode, 1);
4711         if (IS_ERR(handle))
4712                 return PTR_ERR(handle);
4713
4714         err = ext4_mark_inode_dirty(handle, inode);
4715         ext4_handle_sync(handle);
4716         ext4_journal_stop(handle);
4717         ext4_std_error(inode->i_sb, err);
4718
4719         return err;
4720 }
4721
4722 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4723 {
4724         return !buffer_mapped(bh);
4725 }
4726
4727 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4728 {
4729         struct page *page = vmf->page;
4730         loff_t size;
4731         unsigned long len;
4732         int ret;
4733         struct file *file = vma->vm_file;
4734         struct inode *inode = file->f_path.dentry->d_inode;
4735         struct address_space *mapping = inode->i_mapping;
4736         handle_t *handle;
4737         get_block_t *get_block;
4738         int retries = 0;
4739
4740         sb_start_pagefault(inode->i_sb);
4741         file_update_time(vma->vm_file);
4742         /* Delalloc case is easy... */
4743         if (test_opt(inode->i_sb, DELALLOC) &&
4744             !ext4_should_journal_data(inode) &&
4745             !ext4_nonda_switch(inode->i_sb)) {
4746                 do {
4747                         ret = __block_page_mkwrite(vma, vmf,
4748                                                    ext4_da_get_block_prep);
4749                 } while (ret == -ENOSPC &&
4750                        ext4_should_retry_alloc(inode->i_sb, &retries));
4751                 goto out_ret;
4752         }
4753
4754         lock_page(page);
4755         size = i_size_read(inode);
4756         /* Page got truncated from under us? */
4757         if (page->mapping != mapping || page_offset(page) > size) {
4758                 unlock_page(page);
4759                 ret = VM_FAULT_NOPAGE;
4760                 goto out;
4761         }
4762
4763         if (page->index == size >> PAGE_CACHE_SHIFT)
4764                 len = size & ~PAGE_CACHE_MASK;
4765         else
4766                 len = PAGE_CACHE_SIZE;
4767         /*
4768          * Return if we have all the buffers mapped. This avoids the need to do
4769          * journal_start/journal_stop which can block and take a long time
4770          */
4771         if (page_has_buffers(page)) {
4772                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4773                                             0, len, NULL,
4774                                             ext4_bh_unmapped)) {
4775                         /* Wait so that we don't change page under IO */
4776                         wait_on_page_writeback(page);
4777                         ret = VM_FAULT_LOCKED;
4778                         goto out;
4779                 }
4780         }
4781         unlock_page(page);
4782         /* OK, we need to fill the hole... */
4783         if (ext4_should_dioread_nolock(inode))
4784                 get_block = ext4_get_block_write;
4785         else
4786                 get_block = ext4_get_block;
4787 retry_alloc:
4788         handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4789         if (IS_ERR(handle)) {
4790                 ret = VM_FAULT_SIGBUS;
4791                 goto out;
4792         }
4793         ret = __block_page_mkwrite(vma, vmf, get_block);
4794         if (!ret && ext4_should_journal_data(inode)) {
4795                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4796                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4797                         unlock_page(page);
4798                         ret = VM_FAULT_SIGBUS;
4799                         ext4_journal_stop(handle);
4800                         goto out;
4801                 }
4802                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4803         }
4804         ext4_journal_stop(handle);
4805         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4806                 goto retry_alloc;
4807 out_ret:
4808         ret = block_page_mkwrite_return(ret);
4809 out:
4810         sb_end_pagefault(inode->i_sb);
4811         return ret;
4812 }