]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ext4: fix WARN_ON from ext4_releasepage()
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u16 csum_lo;
55         __u16 csum_hi = 0;
56         __u32 csum;
57
58         csum_lo = raw->i_checksum_lo;
59         raw->i_checksum_lo = 0;
60         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62                 csum_hi = raw->i_checksum_hi;
63                 raw->i_checksum_hi = 0;
64         }
65
66         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67                            EXT4_INODE_SIZE(inode->i_sb));
68
69         raw->i_checksum_lo = csum_lo;
70         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72                 raw->i_checksum_hi = csum_hi;
73
74         return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78                                   struct ext4_inode_info *ei)
79 {
80         __u32 provided, calculated;
81
82         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83             cpu_to_le32(EXT4_OS_LINUX) ||
84             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86                 return 1;
87
88         provided = le16_to_cpu(raw->i_checksum_lo);
89         calculated = ext4_inode_csum(inode, raw, ei);
90         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93         else
94                 calculated &= 0xFFFF;
95
96         return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100                                 struct ext4_inode_info *ei)
101 {
102         __u32 csum;
103
104         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105             cpu_to_le32(EXT4_OS_LINUX) ||
106             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108                 return;
109
110         csum = ext4_inode_csum(inode, raw, ei);
111         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118                                               loff_t new_size)
119 {
120         trace_ext4_begin_ordered_truncate(inode, new_size);
121         /*
122          * If jinode is zero, then we never opened the file for
123          * writing, so there's no need to call
124          * jbd2_journal_begin_ordered_truncate() since there's no
125          * outstanding writes we need to flush.
126          */
127         if (!EXT4_I(inode)->jinode)
128                 return 0;
129         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130                                                    EXT4_I(inode)->jinode,
131                                                    new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138                 struct inode *inode, struct page *page, loff_t from,
139                 loff_t length, int flags);
140
141 /*
142  * Test whether an inode is a fast symlink.
143  */
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
145 {
146         int ea_blocks = EXT4_I(inode)->i_file_acl ?
147                 (inode->i_sb->s_blocksize >> 9) : 0;
148
149         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150 }
151
152 /*
153  * Restart the transaction associated with *handle.  This does a commit,
154  * so before we call here everything must be consistently dirtied against
155  * this transaction.
156  */
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158                                  int nblocks)
159 {
160         int ret;
161
162         /*
163          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164          * moment, get_block can be called only for blocks inside i_size since
165          * page cache has been already dropped and writes are blocked by
166          * i_mutex. So we can safely drop the i_data_sem here.
167          */
168         BUG_ON(EXT4_JOURNAL(inode) == NULL);
169         jbd_debug(2, "restarting handle %p\n", handle);
170         up_write(&EXT4_I(inode)->i_data_sem);
171         ret = ext4_journal_restart(handle, nblocks);
172         down_write(&EXT4_I(inode)->i_data_sem);
173         ext4_discard_preallocations(inode);
174
175         return ret;
176 }
177
178 /*
179  * Called at the last iput() if i_nlink is zero.
180  */
181 void ext4_evict_inode(struct inode *inode)
182 {
183         handle_t *handle;
184         int err;
185
186         trace_ext4_evict_inode(inode);
187
188         ext4_ioend_wait(inode);
189
190         if (inode->i_nlink) {
191                 /*
192                  * When journalling data dirty buffers are tracked only in the
193                  * journal. So although mm thinks everything is clean and
194                  * ready for reaping the inode might still have some pages to
195                  * write in the running transaction or waiting to be
196                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
197                  * (via truncate_inode_pages()) to discard these buffers can
198                  * cause data loss. Also even if we did not discard these
199                  * buffers, we would have no way to find them after the inode
200                  * is reaped and thus user could see stale data if he tries to
201                  * read them before the transaction is checkpointed. So be
202                  * careful and force everything to disk here... We use
203                  * ei->i_datasync_tid to store the newest transaction
204                  * containing inode's data.
205                  *
206                  * Note that directories do not have this problem because they
207                  * don't use page cache.
208                  */
209                 if (ext4_should_journal_data(inode) &&
210                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_log_start_commit(journal, commit_tid);
215                         jbd2_log_wait_commit(journal, commit_tid);
216                         filemap_write_and_wait(&inode->i_data);
217                 }
218                 truncate_inode_pages(&inode->i_data, 0);
219                 goto no_delete;
220         }
221
222         if (!is_bad_inode(inode))
223                 dquot_initialize(inode);
224
225         if (ext4_should_order_data(inode))
226                 ext4_begin_ordered_truncate(inode, 0);
227         truncate_inode_pages(&inode->i_data, 0);
228
229         if (is_bad_inode(inode))
230                 goto no_delete;
231
232         /*
233          * Protect us against freezing - iput() caller didn't have to have any
234          * protection against it
235          */
236         sb_start_intwrite(inode->i_sb);
237         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238                                     ext4_blocks_for_truncate(inode)+3);
239         if (IS_ERR(handle)) {
240                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
241                 /*
242                  * If we're going to skip the normal cleanup, we still need to
243                  * make sure that the in-core orphan linked list is properly
244                  * cleaned up.
245                  */
246                 ext4_orphan_del(NULL, inode);
247                 sb_end_intwrite(inode->i_sb);
248                 goto no_delete;
249         }
250
251         if (IS_SYNC(inode))
252                 ext4_handle_sync(handle);
253         inode->i_size = 0;
254         err = ext4_mark_inode_dirty(handle, inode);
255         if (err) {
256                 ext4_warning(inode->i_sb,
257                              "couldn't mark inode dirty (err %d)", err);
258                 goto stop_handle;
259         }
260         if (inode->i_blocks)
261                 ext4_truncate(inode);
262
263         /*
264          * ext4_ext_truncate() doesn't reserve any slop when it
265          * restarts journal transactions; therefore there may not be
266          * enough credits left in the handle to remove the inode from
267          * the orphan list and set the dtime field.
268          */
269         if (!ext4_handle_has_enough_credits(handle, 3)) {
270                 err = ext4_journal_extend(handle, 3);
271                 if (err > 0)
272                         err = ext4_journal_restart(handle, 3);
273                 if (err != 0) {
274                         ext4_warning(inode->i_sb,
275                                      "couldn't extend journal (err %d)", err);
276                 stop_handle:
277                         ext4_journal_stop(handle);
278                         ext4_orphan_del(NULL, inode);
279                         sb_end_intwrite(inode->i_sb);
280                         goto no_delete;
281                 }
282         }
283
284         /*
285          * Kill off the orphan record which ext4_truncate created.
286          * AKPM: I think this can be inside the above `if'.
287          * Note that ext4_orphan_del() has to be able to cope with the
288          * deletion of a non-existent orphan - this is because we don't
289          * know if ext4_truncate() actually created an orphan record.
290          * (Well, we could do this if we need to, but heck - it works)
291          */
292         ext4_orphan_del(handle, inode);
293         EXT4_I(inode)->i_dtime  = get_seconds();
294
295         /*
296          * One subtle ordering requirement: if anything has gone wrong
297          * (transaction abort, IO errors, whatever), then we can still
298          * do these next steps (the fs will already have been marked as
299          * having errors), but we can't free the inode if the mark_dirty
300          * fails.
301          */
302         if (ext4_mark_inode_dirty(handle, inode))
303                 /* If that failed, just do the required in-core inode clear. */
304                 ext4_clear_inode(inode);
305         else
306                 ext4_free_inode(handle, inode);
307         ext4_journal_stop(handle);
308         sb_end_intwrite(inode->i_sb);
309         return;
310 no_delete:
311         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
312 }
313
314 #ifdef CONFIG_QUOTA
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
316 {
317         return &EXT4_I(inode)->i_reserved_quota;
318 }
319 #endif
320
321 /*
322  * Calculate the number of metadata blocks need to reserve
323  * to allocate a block located at @lblock
324  */
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
326 {
327         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328                 return ext4_ext_calc_metadata_amount(inode, lblock);
329
330         return ext4_ind_calc_metadata_amount(inode, lblock);
331 }
332
333 /*
334  * Called with i_data_sem down, which is important since we can call
335  * ext4_discard_preallocations() from here.
336  */
337 void ext4_da_update_reserve_space(struct inode *inode,
338                                         int used, int quota_claim)
339 {
340         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341         struct ext4_inode_info *ei = EXT4_I(inode);
342
343         spin_lock(&ei->i_block_reservation_lock);
344         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345         if (unlikely(used > ei->i_reserved_data_blocks)) {
346                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347                          "with only %d reserved data blocks",
348                          __func__, inode->i_ino, used,
349                          ei->i_reserved_data_blocks);
350                 WARN_ON(1);
351                 used = ei->i_reserved_data_blocks;
352         }
353
354         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356                         "with only %d reserved metadata blocks "
357                         "(releasing %d blocks with reserved %d data blocks)",
358                         inode->i_ino, ei->i_allocated_meta_blocks,
359                              ei->i_reserved_meta_blocks, used,
360                              ei->i_reserved_data_blocks);
361                 WARN_ON(1);
362                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363         }
364
365         /* Update per-inode reservations */
366         ei->i_reserved_data_blocks -= used;
367         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369                            used + ei->i_allocated_meta_blocks);
370         ei->i_allocated_meta_blocks = 0;
371
372         if (ei->i_reserved_data_blocks == 0) {
373                 /*
374                  * We can release all of the reserved metadata blocks
375                  * only when we have written all of the delayed
376                  * allocation blocks.
377                  */
378                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379                                    ei->i_reserved_meta_blocks);
380                 ei->i_reserved_meta_blocks = 0;
381                 ei->i_da_metadata_calc_len = 0;
382         }
383         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
384
385         /* Update quota subsystem for data blocks */
386         if (quota_claim)
387                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
388         else {
389                 /*
390                  * We did fallocate with an offset that is already delayed
391                  * allocated. So on delayed allocated writeback we should
392                  * not re-claim the quota for fallocated blocks.
393                  */
394                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
395         }
396
397         /*
398          * If we have done all the pending block allocations and if
399          * there aren't any writers on the inode, we can discard the
400          * inode's preallocations.
401          */
402         if ((ei->i_reserved_data_blocks == 0) &&
403             (atomic_read(&inode->i_writecount) == 0))
404                 ext4_discard_preallocations(inode);
405 }
406
407 static int __check_block_validity(struct inode *inode, const char *func,
408                                 unsigned int line,
409                                 struct ext4_map_blocks *map)
410 {
411         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412                                    map->m_len)) {
413                 ext4_error_inode(inode, func, line, map->m_pblk,
414                                  "lblock %lu mapped to illegal pblock "
415                                  "(length %d)", (unsigned long) map->m_lblk,
416                                  map->m_len);
417                 return -EIO;
418         }
419         return 0;
420 }
421
422 #define check_block_validity(inode, map)        \
423         __check_block_validity((inode), __func__, __LINE__, (map))
424
425 /*
426  * Return the number of contiguous dirty pages in a given inode
427  * starting at page frame idx.
428  */
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430                                     unsigned int max_pages)
431 {
432         struct address_space *mapping = inode->i_mapping;
433         pgoff_t index;
434         struct pagevec pvec;
435         pgoff_t num = 0;
436         int i, nr_pages, done = 0;
437
438         if (max_pages == 0)
439                 return 0;
440         pagevec_init(&pvec, 0);
441         while (!done) {
442                 index = idx;
443                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444                                               PAGECACHE_TAG_DIRTY,
445                                               (pgoff_t)PAGEVEC_SIZE);
446                 if (nr_pages == 0)
447                         break;
448                 for (i = 0; i < nr_pages; i++) {
449                         struct page *page = pvec.pages[i];
450                         struct buffer_head *bh, *head;
451
452                         lock_page(page);
453                         if (unlikely(page->mapping != mapping) ||
454                             !PageDirty(page) ||
455                             PageWriteback(page) ||
456                             page->index != idx) {
457                                 done = 1;
458                                 unlock_page(page);
459                                 break;
460                         }
461                         if (page_has_buffers(page)) {
462                                 bh = head = page_buffers(page);
463                                 do {
464                                         if (!buffer_delay(bh) &&
465                                             !buffer_unwritten(bh))
466                                                 done = 1;
467                                         bh = bh->b_this_page;
468                                 } while (!done && (bh != head));
469                         }
470                         unlock_page(page);
471                         if (done)
472                                 break;
473                         idx++;
474                         num++;
475                         if (num >= max_pages) {
476                                 done = 1;
477                                 break;
478                         }
479                 }
480                 pagevec_release(&pvec);
481         }
482         return num;
483 }
484
485 #ifdef ES_AGGRESSIVE_TEST
486 static void ext4_map_blocks_es_recheck(handle_t *handle,
487                                        struct inode *inode,
488                                        struct ext4_map_blocks *es_map,
489                                        struct ext4_map_blocks *map,
490                                        int flags)
491 {
492         int retval;
493
494         map->m_flags = 0;
495         /*
496          * There is a race window that the result is not the same.
497          * e.g. xfstests #223 when dioread_nolock enables.  The reason
498          * is that we lookup a block mapping in extent status tree with
499          * out taking i_data_sem.  So at the time the unwritten extent
500          * could be converted.
501          */
502         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503                 down_read((&EXT4_I(inode)->i_data_sem));
504         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506                                              EXT4_GET_BLOCKS_KEEP_SIZE);
507         } else {
508                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509                                              EXT4_GET_BLOCKS_KEEP_SIZE);
510         }
511         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512                 up_read((&EXT4_I(inode)->i_data_sem));
513         /*
514          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515          * because it shouldn't be marked in es_map->m_flags.
516          */
517         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519         /*
520          * We don't check m_len because extent will be collpased in status
521          * tree.  So the m_len might not equal.
522          */
523         if (es_map->m_lblk != map->m_lblk ||
524             es_map->m_flags != map->m_flags ||
525             es_map->m_pblk != map->m_pblk) {
526                 printk("ES cache assertation failed for inode: %lu "
527                        "es_cached ex [%d/%d/%llu/%x] != "
528                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529                        inode->i_ino, es_map->m_lblk, es_map->m_len,
530                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
531                        map->m_len, map->m_pblk, map->m_flags,
532                        retval, flags);
533         }
534 }
535 #endif /* ES_AGGRESSIVE_TEST */
536
537 /*
538  * The ext4_map_blocks() function tries to look up the requested blocks,
539  * and returns if the blocks are already mapped.
540  *
541  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542  * and store the allocated blocks in the result buffer head and mark it
543  * mapped.
544  *
545  * If file type is extents based, it will call ext4_ext_map_blocks(),
546  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
547  * based files
548  *
549  * On success, it returns the number of blocks being mapped or allocate.
550  * if create==0 and the blocks are pre-allocated and uninitialized block,
551  * the result buffer head is unmapped. If the create ==1, it will make sure
552  * the buffer head is mapped.
553  *
554  * It returns 0 if plain look up failed (blocks have not been allocated), in
555  * that case, buffer head is unmapped
556  *
557  * It returns the error in case of allocation failure.
558  */
559 int ext4_map_blocks(handle_t *handle, struct inode *inode,
560                     struct ext4_map_blocks *map, int flags)
561 {
562         struct extent_status es;
563         int retval;
564 #ifdef ES_AGGRESSIVE_TEST
565         struct ext4_map_blocks orig_map;
566
567         memcpy(&orig_map, map, sizeof(*map));
568 #endif
569
570         map->m_flags = 0;
571         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
573                   (unsigned long) map->m_lblk);
574
575         /* Lookup extent status tree firstly */
576         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578                         map->m_pblk = ext4_es_pblock(&es) +
579                                         map->m_lblk - es.es_lblk;
580                         map->m_flags |= ext4_es_is_written(&es) ?
581                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582                         retval = es.es_len - (map->m_lblk - es.es_lblk);
583                         if (retval > map->m_len)
584                                 retval = map->m_len;
585                         map->m_len = retval;
586                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587                         retval = 0;
588                 } else {
589                         BUG_ON(1);
590                 }
591 #ifdef ES_AGGRESSIVE_TEST
592                 ext4_map_blocks_es_recheck(handle, inode, map,
593                                            &orig_map, flags);
594 #endif
595                 goto found;
596         }
597
598         /*
599          * Try to see if we can get the block without requesting a new
600          * file system block.
601          */
602         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603                 down_read((&EXT4_I(inode)->i_data_sem));
604         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
605                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606                                              EXT4_GET_BLOCKS_KEEP_SIZE);
607         } else {
608                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609                                              EXT4_GET_BLOCKS_KEEP_SIZE);
610         }
611         if (retval > 0) {
612                 int ret;
613                 unsigned long long status;
614
615 #ifdef ES_AGGRESSIVE_TEST
616                 if (retval != map->m_len) {
617                         printk("ES len assertation failed for inode: %lu "
618                                "retval %d != map->m_len %d "
619                                "in %s (lookup)\n", inode->i_ino, retval,
620                                map->m_len, __func__);
621                 }
622 #endif
623
624                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627                     ext4_find_delalloc_range(inode, map->m_lblk,
628                                              map->m_lblk + map->m_len - 1))
629                         status |= EXTENT_STATUS_DELAYED;
630                 ret = ext4_es_insert_extent(inode, map->m_lblk,
631                                             map->m_len, map->m_pblk, status);
632                 if (ret < 0)
633                         retval = ret;
634         }
635         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636                 up_read((&EXT4_I(inode)->i_data_sem));
637
638 found:
639         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
640                 int ret = check_block_validity(inode, map);
641                 if (ret != 0)
642                         return ret;
643         }
644
645         /* If it is only a block(s) look up */
646         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
647                 return retval;
648
649         /*
650          * Returns if the blocks have already allocated
651          *
652          * Note that if blocks have been preallocated
653          * ext4_ext_get_block() returns the create = 0
654          * with buffer head unmapped.
655          */
656         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
657                 return retval;
658
659         /*
660          * Here we clear m_flags because after allocating an new extent,
661          * it will be set again.
662          */
663         map->m_flags &= ~EXT4_MAP_FLAGS;
664
665         /*
666          * New blocks allocate and/or writing to uninitialized extent
667          * will possibly result in updating i_data, so we take
668          * the write lock of i_data_sem, and call get_blocks()
669          * with create == 1 flag.
670          */
671         down_write((&EXT4_I(inode)->i_data_sem));
672
673         /*
674          * if the caller is from delayed allocation writeout path
675          * we have already reserved fs blocks for allocation
676          * let the underlying get_block() function know to
677          * avoid double accounting
678          */
679         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
680                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
681         /*
682          * We need to check for EXT4 here because migrate
683          * could have changed the inode type in between
684          */
685         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
686                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
687         } else {
688                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
689
690                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
691                         /*
692                          * We allocated new blocks which will result in
693                          * i_data's format changing.  Force the migrate
694                          * to fail by clearing migrate flags
695                          */
696                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
697                 }
698
699                 /*
700                  * Update reserved blocks/metadata blocks after successful
701                  * block allocation which had been deferred till now. We don't
702                  * support fallocate for non extent files. So we can update
703                  * reserve space here.
704                  */
705                 if ((retval > 0) &&
706                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
707                         ext4_da_update_reserve_space(inode, retval, 1);
708         }
709         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
710                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
711
712         if (retval > 0) {
713                 int ret;
714                 unsigned long long status;
715
716 #ifdef ES_AGGRESSIVE_TEST
717                 if (retval != map->m_len) {
718                         printk("ES len assertation failed for inode: %lu "
719                                "retval %d != map->m_len %d "
720                                "in %s (allocation)\n", inode->i_ino, retval,
721                                map->m_len, __func__);
722                 }
723 #endif
724
725                 /*
726                  * If the extent has been zeroed out, we don't need to update
727                  * extent status tree.
728                  */
729                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731                         if (ext4_es_is_written(&es))
732                                 goto has_zeroout;
733                 }
734                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737                     ext4_find_delalloc_range(inode, map->m_lblk,
738                                              map->m_lblk + map->m_len - 1))
739                         status |= EXTENT_STATUS_DELAYED;
740                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741                                             map->m_pblk, status);
742                 if (ret < 0)
743                         retval = ret;
744         }
745
746 has_zeroout:
747         up_write((&EXT4_I(inode)->i_data_sem));
748         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
749                 int ret = check_block_validity(inode, map);
750                 if (ret != 0)
751                         return ret;
752         }
753         return retval;
754 }
755
756 /* Maximum number of blocks we map for direct IO at once. */
757 #define DIO_MAX_BLOCKS 4096
758
759 static int _ext4_get_block(struct inode *inode, sector_t iblock,
760                            struct buffer_head *bh, int flags)
761 {
762         handle_t *handle = ext4_journal_current_handle();
763         struct ext4_map_blocks map;
764         int ret = 0, started = 0;
765         int dio_credits;
766
767         if (ext4_has_inline_data(inode))
768                 return -ERANGE;
769
770         map.m_lblk = iblock;
771         map.m_len = bh->b_size >> inode->i_blkbits;
772
773         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
774                 /* Direct IO write... */
775                 if (map.m_len > DIO_MAX_BLOCKS)
776                         map.m_len = DIO_MAX_BLOCKS;
777                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
778                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779                                             dio_credits);
780                 if (IS_ERR(handle)) {
781                         ret = PTR_ERR(handle);
782                         return ret;
783                 }
784                 started = 1;
785         }
786
787         ret = ext4_map_blocks(handle, inode, &map, flags);
788         if (ret > 0) {
789                 map_bh(bh, inode->i_sb, map.m_pblk);
790                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
792                 ret = 0;
793         }
794         if (started)
795                 ext4_journal_stop(handle);
796         return ret;
797 }
798
799 int ext4_get_block(struct inode *inode, sector_t iblock,
800                    struct buffer_head *bh, int create)
801 {
802         return _ext4_get_block(inode, iblock, bh,
803                                create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805
806 /*
807  * `handle' can be NULL if create is zero
808  */
809 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
810                                 ext4_lblk_t block, int create, int *errp)
811 {
812         struct ext4_map_blocks map;
813         struct buffer_head *bh;
814         int fatal = 0, err;
815
816         J_ASSERT(handle != NULL || create == 0);
817
818         map.m_lblk = block;
819         map.m_len = 1;
820         err = ext4_map_blocks(handle, inode, &map,
821                               create ? EXT4_GET_BLOCKS_CREATE : 0);
822
823         /* ensure we send some value back into *errp */
824         *errp = 0;
825
826         if (create && err == 0)
827                 err = -ENOSPC;  /* should never happen */
828         if (err < 0)
829                 *errp = err;
830         if (err <= 0)
831                 return NULL;
832
833         bh = sb_getblk(inode->i_sb, map.m_pblk);
834         if (unlikely(!bh)) {
835                 *errp = -ENOMEM;
836                 return NULL;
837         }
838         if (map.m_flags & EXT4_MAP_NEW) {
839                 J_ASSERT(create != 0);
840                 J_ASSERT(handle != NULL);
841
842                 /*
843                  * Now that we do not always journal data, we should
844                  * keep in mind whether this should always journal the
845                  * new buffer as metadata.  For now, regular file
846                  * writes use ext4_get_block instead, so it's not a
847                  * problem.
848                  */
849                 lock_buffer(bh);
850                 BUFFER_TRACE(bh, "call get_create_access");
851                 fatal = ext4_journal_get_create_access(handle, bh);
852                 if (!fatal && !buffer_uptodate(bh)) {
853                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854                         set_buffer_uptodate(bh);
855                 }
856                 unlock_buffer(bh);
857                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858                 err = ext4_handle_dirty_metadata(handle, inode, bh);
859                 if (!fatal)
860                         fatal = err;
861         } else {
862                 BUFFER_TRACE(bh, "not a new buffer");
863         }
864         if (fatal) {
865                 *errp = fatal;
866                 brelse(bh);
867                 bh = NULL;
868         }
869         return bh;
870 }
871
872 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
873                                ext4_lblk_t block, int create, int *err)
874 {
875         struct buffer_head *bh;
876
877         bh = ext4_getblk(handle, inode, block, create, err);
878         if (!bh)
879                 return bh;
880         if (buffer_uptodate(bh))
881                 return bh;
882         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
883         wait_on_buffer(bh);
884         if (buffer_uptodate(bh))
885                 return bh;
886         put_bh(bh);
887         *err = -EIO;
888         return NULL;
889 }
890
891 int ext4_walk_page_buffers(handle_t *handle,
892                            struct buffer_head *head,
893                            unsigned from,
894                            unsigned to,
895                            int *partial,
896                            int (*fn)(handle_t *handle,
897                                      struct buffer_head *bh))
898 {
899         struct buffer_head *bh;
900         unsigned block_start, block_end;
901         unsigned blocksize = head->b_size;
902         int err, ret = 0;
903         struct buffer_head *next;
904
905         for (bh = head, block_start = 0;
906              ret == 0 && (bh != head || !block_start);
907              block_start = block_end, bh = next) {
908                 next = bh->b_this_page;
909                 block_end = block_start + blocksize;
910                 if (block_end <= from || block_start >= to) {
911                         if (partial && !buffer_uptodate(bh))
912                                 *partial = 1;
913                         continue;
914                 }
915                 err = (*fn)(handle, bh);
916                 if (!ret)
917                         ret = err;
918         }
919         return ret;
920 }
921
922 /*
923  * To preserve ordering, it is essential that the hole instantiation and
924  * the data write be encapsulated in a single transaction.  We cannot
925  * close off a transaction and start a new one between the ext4_get_block()
926  * and the commit_write().  So doing the jbd2_journal_start at the start of
927  * prepare_write() is the right place.
928  *
929  * Also, this function can nest inside ext4_writepage().  In that case, we
930  * *know* that ext4_writepage() has generated enough buffer credits to do the
931  * whole page.  So we won't block on the journal in that case, which is good,
932  * because the caller may be PF_MEMALLOC.
933  *
934  * By accident, ext4 can be reentered when a transaction is open via
935  * quota file writes.  If we were to commit the transaction while thus
936  * reentered, there can be a deadlock - we would be holding a quota
937  * lock, and the commit would never complete if another thread had a
938  * transaction open and was blocking on the quota lock - a ranking
939  * violation.
940  *
941  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
942  * will _not_ run commit under these circumstances because handle->h_ref
943  * is elevated.  We'll still have enough credits for the tiny quotafile
944  * write.
945  */
946 int do_journal_get_write_access(handle_t *handle,
947                                 struct buffer_head *bh)
948 {
949         int dirty = buffer_dirty(bh);
950         int ret;
951
952         if (!buffer_mapped(bh) || buffer_freed(bh))
953                 return 0;
954         /*
955          * __block_write_begin() could have dirtied some buffers. Clean
956          * the dirty bit as jbd2_journal_get_write_access() could complain
957          * otherwise about fs integrity issues. Setting of the dirty bit
958          * by __block_write_begin() isn't a real problem here as we clear
959          * the bit before releasing a page lock and thus writeback cannot
960          * ever write the buffer.
961          */
962         if (dirty)
963                 clear_buffer_dirty(bh);
964         ret = ext4_journal_get_write_access(handle, bh);
965         if (!ret && dirty)
966                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967         return ret;
968 }
969
970 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971                    struct buffer_head *bh_result, int create);
972 static int ext4_write_begin(struct file *file, struct address_space *mapping,
973                             loff_t pos, unsigned len, unsigned flags,
974                             struct page **pagep, void **fsdata)
975 {
976         struct inode *inode = mapping->host;
977         int ret, needed_blocks;
978         handle_t *handle;
979         int retries = 0;
980         struct page *page;
981         pgoff_t index;
982         unsigned from, to;
983
984         trace_ext4_write_begin(inode, pos, len, flags);
985         /*
986          * Reserve one block more for addition to orphan list in case
987          * we allocate blocks but write fails for some reason
988          */
989         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
990         index = pos >> PAGE_CACHE_SHIFT;
991         from = pos & (PAGE_CACHE_SIZE - 1);
992         to = from + len;
993
994         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996                                                     flags, pagep);
997                 if (ret < 0)
998                         return ret;
999                 if (ret == 1)
1000                         return 0;
1001         }
1002
1003         /*
1004          * grab_cache_page_write_begin() can take a long time if the
1005          * system is thrashing due to memory pressure, or if the page
1006          * is being written back.  So grab it first before we start
1007          * the transaction handle.  This also allows us to allocate
1008          * the page (if needed) without using GFP_NOFS.
1009          */
1010 retry_grab:
1011         page = grab_cache_page_write_begin(mapping, index, flags);
1012         if (!page)
1013                 return -ENOMEM;
1014         unlock_page(page);
1015
1016 retry_journal:
1017         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1018         if (IS_ERR(handle)) {
1019                 page_cache_release(page);
1020                 return PTR_ERR(handle);
1021         }
1022
1023         lock_page(page);
1024         if (page->mapping != mapping) {
1025                 /* The page got truncated from under us */
1026                 unlock_page(page);
1027                 page_cache_release(page);
1028                 ext4_journal_stop(handle);
1029                 goto retry_grab;
1030         }
1031         wait_on_page_writeback(page);
1032
1033         if (ext4_should_dioread_nolock(inode))
1034                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1035         else
1036                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1037
1038         if (!ret && ext4_should_journal_data(inode)) {
1039                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040                                              from, to, NULL,
1041                                              do_journal_get_write_access);
1042         }
1043
1044         if (ret) {
1045                 unlock_page(page);
1046                 /*
1047                  * __block_write_begin may have instantiated a few blocks
1048                  * outside i_size.  Trim these off again. Don't need
1049                  * i_size_read because we hold i_mutex.
1050                  *
1051                  * Add inode to orphan list in case we crash before
1052                  * truncate finishes
1053                  */
1054                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1055                         ext4_orphan_add(handle, inode);
1056
1057                 ext4_journal_stop(handle);
1058                 if (pos + len > inode->i_size) {
1059                         ext4_truncate_failed_write(inode);
1060                         /*
1061                          * If truncate failed early the inode might
1062                          * still be on the orphan list; we need to
1063                          * make sure the inode is removed from the
1064                          * orphan list in that case.
1065                          */
1066                         if (inode->i_nlink)
1067                                 ext4_orphan_del(NULL, inode);
1068                 }
1069
1070                 if (ret == -ENOSPC &&
1071                     ext4_should_retry_alloc(inode->i_sb, &retries))
1072                         goto retry_journal;
1073                 page_cache_release(page);
1074                 return ret;
1075         }
1076         *pagep = page;
1077         return ret;
1078 }
1079
1080 /* For write_end() in data=journal mode */
1081 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1082 {
1083         if (!buffer_mapped(bh) || buffer_freed(bh))
1084                 return 0;
1085         set_buffer_uptodate(bh);
1086         return ext4_handle_dirty_metadata(handle, NULL, bh);
1087 }
1088
1089 static int ext4_generic_write_end(struct file *file,
1090                                   struct address_space *mapping,
1091                                   loff_t pos, unsigned len, unsigned copied,
1092                                   struct page *page, void *fsdata)
1093 {
1094         int i_size_changed = 0;
1095         struct inode *inode = mapping->host;
1096         handle_t *handle = ext4_journal_current_handle();
1097
1098         if (ext4_has_inline_data(inode))
1099                 copied = ext4_write_inline_data_end(inode, pos, len,
1100                                                     copied, page);
1101         else
1102                 copied = block_write_end(file, mapping, pos,
1103                                          len, copied, page, fsdata);
1104
1105         /*
1106          * No need to use i_size_read() here, the i_size
1107          * cannot change under us because we hold i_mutex.
1108          *
1109          * But it's important to update i_size while still holding page lock:
1110          * page writeout could otherwise come in and zero beyond i_size.
1111          */
1112         if (pos + copied > inode->i_size) {
1113                 i_size_write(inode, pos + copied);
1114                 i_size_changed = 1;
1115         }
1116
1117         if (pos + copied >  EXT4_I(inode)->i_disksize) {
1118                 /* We need to mark inode dirty even if
1119                  * new_i_size is less that inode->i_size
1120                  * bu greater than i_disksize.(hint delalloc)
1121                  */
1122                 ext4_update_i_disksize(inode, (pos + copied));
1123                 i_size_changed = 1;
1124         }
1125         unlock_page(page);
1126         page_cache_release(page);
1127
1128         /*
1129          * Don't mark the inode dirty under page lock. First, it unnecessarily
1130          * makes the holding time of page lock longer. Second, it forces lock
1131          * ordering of page lock and transaction start for journaling
1132          * filesystems.
1133          */
1134         if (i_size_changed)
1135                 ext4_mark_inode_dirty(handle, inode);
1136
1137         return copied;
1138 }
1139
1140 /*
1141  * We need to pick up the new inode size which generic_commit_write gave us
1142  * `file' can be NULL - eg, when called from page_symlink().
1143  *
1144  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1145  * buffers are managed internally.
1146  */
1147 static int ext4_ordered_write_end(struct file *file,
1148                                   struct address_space *mapping,
1149                                   loff_t pos, unsigned len, unsigned copied,
1150                                   struct page *page, void *fsdata)
1151 {
1152         handle_t *handle = ext4_journal_current_handle();
1153         struct inode *inode = mapping->host;
1154         int ret = 0, ret2;
1155
1156         trace_ext4_ordered_write_end(inode, pos, len, copied);
1157         ret = ext4_jbd2_file_inode(handle, inode);
1158
1159         if (ret == 0) {
1160                 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1161                                                         page, fsdata);
1162                 copied = ret2;
1163                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1164                         /* if we have allocated more blocks and copied
1165                          * less. We will have blocks allocated outside
1166                          * inode->i_size. So truncate them
1167                          */
1168                         ext4_orphan_add(handle, inode);
1169                 if (ret2 < 0)
1170                         ret = ret2;
1171         } else {
1172                 unlock_page(page);
1173                 page_cache_release(page);
1174         }
1175
1176         ret2 = ext4_journal_stop(handle);
1177         if (!ret)
1178                 ret = ret2;
1179
1180         if (pos + len > inode->i_size) {
1181                 ext4_truncate_failed_write(inode);
1182                 /*
1183                  * If truncate failed early the inode might still be
1184                  * on the orphan list; we need to make sure the inode
1185                  * is removed from the orphan list in that case.
1186                  */
1187                 if (inode->i_nlink)
1188                         ext4_orphan_del(NULL, inode);
1189         }
1190
1191
1192         return ret ? ret : copied;
1193 }
1194
1195 static int ext4_writeback_write_end(struct file *file,
1196                                     struct address_space *mapping,
1197                                     loff_t pos, unsigned len, unsigned copied,
1198                                     struct page *page, void *fsdata)
1199 {
1200         handle_t *handle = ext4_journal_current_handle();
1201         struct inode *inode = mapping->host;
1202         int ret = 0, ret2;
1203
1204         trace_ext4_writeback_write_end(inode, pos, len, copied);
1205         ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1206                                                         page, fsdata);
1207         copied = ret2;
1208         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1209                 /* if we have allocated more blocks and copied
1210                  * less. We will have blocks allocated outside
1211                  * inode->i_size. So truncate them
1212                  */
1213                 ext4_orphan_add(handle, inode);
1214
1215         if (ret2 < 0)
1216                 ret = ret2;
1217
1218         ret2 = ext4_journal_stop(handle);
1219         if (!ret)
1220                 ret = ret2;
1221
1222         if (pos + len > inode->i_size) {
1223                 ext4_truncate_failed_write(inode);
1224                 /*
1225                  * If truncate failed early the inode might still be
1226                  * on the orphan list; we need to make sure the inode
1227                  * is removed from the orphan list in that case.
1228                  */
1229                 if (inode->i_nlink)
1230                         ext4_orphan_del(NULL, inode);
1231         }
1232
1233         return ret ? ret : copied;
1234 }
1235
1236 static int ext4_journalled_write_end(struct file *file,
1237                                      struct address_space *mapping,
1238                                      loff_t pos, unsigned len, unsigned copied,
1239                                      struct page *page, void *fsdata)
1240 {
1241         handle_t *handle = ext4_journal_current_handle();
1242         struct inode *inode = mapping->host;
1243         int ret = 0, ret2;
1244         int partial = 0;
1245         unsigned from, to;
1246         loff_t new_i_size;
1247
1248         trace_ext4_journalled_write_end(inode, pos, len, copied);
1249         from = pos & (PAGE_CACHE_SIZE - 1);
1250         to = from + len;
1251
1252         BUG_ON(!ext4_handle_valid(handle));
1253
1254         if (ext4_has_inline_data(inode))
1255                 copied = ext4_write_inline_data_end(inode, pos, len,
1256                                                     copied, page);
1257         else {
1258                 if (copied < len) {
1259                         if (!PageUptodate(page))
1260                                 copied = 0;
1261                         page_zero_new_buffers(page, from+copied, to);
1262                 }
1263
1264                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1265                                              to, &partial, write_end_fn);
1266                 if (!partial)
1267                         SetPageUptodate(page);
1268         }
1269         new_i_size = pos + copied;
1270         if (new_i_size > inode->i_size)
1271                 i_size_write(inode, pos+copied);
1272         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1273         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1274         if (new_i_size > EXT4_I(inode)->i_disksize) {
1275                 ext4_update_i_disksize(inode, new_i_size);
1276                 ret2 = ext4_mark_inode_dirty(handle, inode);
1277                 if (!ret)
1278                         ret = ret2;
1279         }
1280
1281         unlock_page(page);
1282         page_cache_release(page);
1283         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1284                 /* if we have allocated more blocks and copied
1285                  * less. We will have blocks allocated outside
1286                  * inode->i_size. So truncate them
1287                  */
1288                 ext4_orphan_add(handle, inode);
1289
1290         ret2 = ext4_journal_stop(handle);
1291         if (!ret)
1292                 ret = ret2;
1293         if (pos + len > inode->i_size) {
1294                 ext4_truncate_failed_write(inode);
1295                 /*
1296                  * If truncate failed early the inode might still be
1297                  * on the orphan list; we need to make sure the inode
1298                  * is removed from the orphan list in that case.
1299                  */
1300                 if (inode->i_nlink)
1301                         ext4_orphan_del(NULL, inode);
1302         }
1303
1304         return ret ? ret : copied;
1305 }
1306
1307 /*
1308  * Reserve a single cluster located at lblock
1309  */
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312         int retries = 0;
1313         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314         struct ext4_inode_info *ei = EXT4_I(inode);
1315         unsigned int md_needed;
1316         int ret;
1317         ext4_lblk_t save_last_lblock;
1318         int save_len;
1319
1320         /*
1321          * We will charge metadata quota at writeout time; this saves
1322          * us from metadata over-estimation, though we may go over by
1323          * a small amount in the end.  Here we just reserve for data.
1324          */
1325         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326         if (ret)
1327                 return ret;
1328
1329         /*
1330          * recalculate the amount of metadata blocks to reserve
1331          * in order to allocate nrblocks
1332          * worse case is one extent per block
1333          */
1334 repeat:
1335         spin_lock(&ei->i_block_reservation_lock);
1336         /*
1337          * ext4_calc_metadata_amount() has side effects, which we have
1338          * to be prepared undo if we fail to claim space.
1339          */
1340         save_len = ei->i_da_metadata_calc_len;
1341         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342         md_needed = EXT4_NUM_B2C(sbi,
1343                                  ext4_calc_metadata_amount(inode, lblock));
1344         trace_ext4_da_reserve_space(inode, md_needed);
1345
1346         /*
1347          * We do still charge estimated metadata to the sb though;
1348          * we cannot afford to run out of free blocks.
1349          */
1350         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351                 ei->i_da_metadata_calc_len = save_len;
1352                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353                 spin_unlock(&ei->i_block_reservation_lock);
1354                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1355                         yield();
1356                         goto repeat;
1357                 }
1358                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359                 return -ENOSPC;
1360         }
1361         ei->i_reserved_data_blocks++;
1362         ei->i_reserved_meta_blocks += md_needed;
1363         spin_unlock(&ei->i_block_reservation_lock);
1364
1365         return 0;       /* success */
1366 }
1367
1368 static void ext4_da_release_space(struct inode *inode, int to_free)
1369 {
1370         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371         struct ext4_inode_info *ei = EXT4_I(inode);
1372
1373         if (!to_free)
1374                 return;         /* Nothing to release, exit */
1375
1376         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1377
1378         trace_ext4_da_release_space(inode, to_free);
1379         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1380                 /*
1381                  * if there aren't enough reserved blocks, then the
1382                  * counter is messed up somewhere.  Since this
1383                  * function is called from invalidate page, it's
1384                  * harmless to return without any action.
1385                  */
1386                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387                          "ino %lu, to_free %d with only %d reserved "
1388                          "data blocks", inode->i_ino, to_free,
1389                          ei->i_reserved_data_blocks);
1390                 WARN_ON(1);
1391                 to_free = ei->i_reserved_data_blocks;
1392         }
1393         ei->i_reserved_data_blocks -= to_free;
1394
1395         if (ei->i_reserved_data_blocks == 0) {
1396                 /*
1397                  * We can release all of the reserved metadata blocks
1398                  * only when we have written all of the delayed
1399                  * allocation blocks.
1400                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1401                  * i_reserved_data_blocks, etc. refer to number of clusters.
1402                  */
1403                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404                                    ei->i_reserved_meta_blocks);
1405                 ei->i_reserved_meta_blocks = 0;
1406                 ei->i_da_metadata_calc_len = 0;
1407         }
1408
1409         /* update fs dirty data blocks counter */
1410         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1411
1412         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1413
1414         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1415 }
1416
1417 static void ext4_da_page_release_reservation(struct page *page,
1418                                              unsigned long offset)
1419 {
1420         int to_release = 0;
1421         struct buffer_head *head, *bh;
1422         unsigned int curr_off = 0;
1423         struct inode *inode = page->mapping->host;
1424         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425         int num_clusters;
1426         ext4_fsblk_t lblk;
1427
1428         head = page_buffers(page);
1429         bh = head;
1430         do {
1431                 unsigned int next_off = curr_off + bh->b_size;
1432
1433                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1434                         to_release++;
1435                         clear_buffer_delay(bh);
1436                 }
1437                 curr_off = next_off;
1438         } while ((bh = bh->b_this_page) != head);
1439
1440         if (to_release) {
1441                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442                 ext4_es_remove_extent(inode, lblk, to_release);
1443         }
1444
1445         /* If we have released all the blocks belonging to a cluster, then we
1446          * need to release the reserved space for that cluster. */
1447         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448         while (num_clusters > 0) {
1449                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450                         ((num_clusters - 1) << sbi->s_cluster_bits);
1451                 if (sbi->s_cluster_ratio == 1 ||
1452                     !ext4_find_delalloc_cluster(inode, lblk))
1453                         ext4_da_release_space(inode, 1);
1454
1455                 num_clusters--;
1456         }
1457 }
1458
1459 /*
1460  * Delayed allocation stuff
1461  */
1462
1463 /*
1464  * mpage_da_submit_io - walks through extent of pages and try to write
1465  * them with writepage() call back
1466  *
1467  * @mpd->inode: inode
1468  * @mpd->first_page: first page of the extent
1469  * @mpd->next_page: page after the last page of the extent
1470  *
1471  * By the time mpage_da_submit_io() is called we expect all blocks
1472  * to be allocated. this may be wrong if allocation failed.
1473  *
1474  * As pages are already locked by write_cache_pages(), we can't use it
1475  */
1476 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477                               struct ext4_map_blocks *map)
1478 {
1479         struct pagevec pvec;
1480         unsigned long index, end;
1481         int ret = 0, err, nr_pages, i;
1482         struct inode *inode = mpd->inode;
1483         struct address_space *mapping = inode->i_mapping;
1484         loff_t size = i_size_read(inode);
1485         unsigned int len, block_start;
1486         struct buffer_head *bh, *page_bufs = NULL;
1487         sector_t pblock = 0, cur_logical = 0;
1488         struct ext4_io_submit io_submit;
1489
1490         BUG_ON(mpd->next_page <= mpd->first_page);
1491         memset(&io_submit, 0, sizeof(io_submit));
1492         /*
1493          * We need to start from the first_page to the next_page - 1
1494          * to make sure we also write the mapped dirty buffer_heads.
1495          * If we look at mpd->b_blocknr we would only be looking
1496          * at the currently mapped buffer_heads.
1497          */
1498         index = mpd->first_page;
1499         end = mpd->next_page - 1;
1500
1501         pagevec_init(&pvec, 0);
1502         while (index <= end) {
1503                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1504                 if (nr_pages == 0)
1505                         break;
1506                 for (i = 0; i < nr_pages; i++) {
1507                         int skip_page = 0;
1508                         struct page *page = pvec.pages[i];
1509
1510                         index = page->index;
1511                         if (index > end)
1512                                 break;
1513
1514                         if (index == size >> PAGE_CACHE_SHIFT)
1515                                 len = size & ~PAGE_CACHE_MASK;
1516                         else
1517                                 len = PAGE_CACHE_SIZE;
1518                         if (map) {
1519                                 cur_logical = index << (PAGE_CACHE_SHIFT -
1520                                                         inode->i_blkbits);
1521                                 pblock = map->m_pblk + (cur_logical -
1522                                                         map->m_lblk);
1523                         }
1524                         index++;
1525
1526                         BUG_ON(!PageLocked(page));
1527                         BUG_ON(PageWriteback(page));
1528
1529                         bh = page_bufs = page_buffers(page);
1530                         block_start = 0;
1531                         do {
1532                                 if (map && (cur_logical >= map->m_lblk) &&
1533                                     (cur_logical <= (map->m_lblk +
1534                                                      (map->m_len - 1)))) {
1535                                         if (buffer_delay(bh)) {
1536                                                 clear_buffer_delay(bh);
1537                                                 bh->b_blocknr = pblock;
1538                                         }
1539                                         if (buffer_unwritten(bh) ||
1540                                             buffer_mapped(bh))
1541                                                 BUG_ON(bh->b_blocknr != pblock);
1542                                         if (map->m_flags & EXT4_MAP_UNINIT)
1543                                                 set_buffer_uninit(bh);
1544                                         clear_buffer_unwritten(bh);
1545                                 }
1546
1547                                 /*
1548                                  * skip page if block allocation undone and
1549                                  * block is dirty
1550                                  */
1551                                 if (ext4_bh_delay_or_unwritten(NULL, bh))
1552                                         skip_page = 1;
1553                                 bh = bh->b_this_page;
1554                                 block_start += bh->b_size;
1555                                 cur_logical++;
1556                                 pblock++;
1557                         } while (bh != page_bufs);
1558
1559                         if (skip_page) {
1560                                 unlock_page(page);
1561                                 continue;
1562                         }
1563
1564                         clear_page_dirty_for_io(page);
1565                         err = ext4_bio_write_page(&io_submit, page, len,
1566                                                   mpd->wbc);
1567                         if (!err)
1568                                 mpd->pages_written++;
1569                         /*
1570                          * In error case, we have to continue because
1571                          * remaining pages are still locked
1572                          */
1573                         if (ret == 0)
1574                                 ret = err;
1575                 }
1576                 pagevec_release(&pvec);
1577         }
1578         ext4_io_submit(&io_submit);
1579         return ret;
1580 }
1581
1582 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1583 {
1584         int nr_pages, i;
1585         pgoff_t index, end;
1586         struct pagevec pvec;
1587         struct inode *inode = mpd->inode;
1588         struct address_space *mapping = inode->i_mapping;
1589         ext4_lblk_t start, last;
1590
1591         index = mpd->first_page;
1592         end   = mpd->next_page - 1;
1593
1594         start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1595         last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1596         ext4_es_remove_extent(inode, start, last - start + 1);
1597
1598         pagevec_init(&pvec, 0);
1599         while (index <= end) {
1600                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1601                 if (nr_pages == 0)
1602                         break;
1603                 for (i = 0; i < nr_pages; i++) {
1604                         struct page *page = pvec.pages[i];
1605                         if (page->index > end)
1606                                 break;
1607                         BUG_ON(!PageLocked(page));
1608                         BUG_ON(PageWriteback(page));
1609                         block_invalidatepage(page, 0);
1610                         ClearPageUptodate(page);
1611                         unlock_page(page);
1612                 }
1613                 index = pvec.pages[nr_pages - 1]->index + 1;
1614                 pagevec_release(&pvec);
1615         }
1616         return;
1617 }
1618
1619 static void ext4_print_free_blocks(struct inode *inode)
1620 {
1621         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622         struct super_block *sb = inode->i_sb;
1623
1624         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1625                EXT4_C2B(EXT4_SB(inode->i_sb),
1626                         ext4_count_free_clusters(inode->i_sb)));
1627         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1628         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1629                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1630                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1631         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1632                (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1633                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1634         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1635         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1636                  EXT4_I(inode)->i_reserved_data_blocks);
1637         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1638                EXT4_I(inode)->i_reserved_meta_blocks);
1639         return;
1640 }
1641
1642 /*
1643  * mpage_da_map_and_submit - go through given space, map them
1644  *       if necessary, and then submit them for I/O
1645  *
1646  * @mpd - bh describing space
1647  *
1648  * The function skips space we know is already mapped to disk blocks.
1649  *
1650  */
1651 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1652 {
1653         int err, blks, get_blocks_flags;
1654         struct ext4_map_blocks map, *mapp = NULL;
1655         sector_t next = mpd->b_blocknr;
1656         unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1657         loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1658         handle_t *handle = NULL;
1659
1660         /*
1661          * If the blocks are mapped already, or we couldn't accumulate
1662          * any blocks, then proceed immediately to the submission stage.
1663          */
1664         if ((mpd->b_size == 0) ||
1665             ((mpd->b_state  & (1 << BH_Mapped)) &&
1666              !(mpd->b_state & (1 << BH_Delay)) &&
1667              !(mpd->b_state & (1 << BH_Unwritten))))
1668                 goto submit_io;
1669
1670         handle = ext4_journal_current_handle();
1671         BUG_ON(!handle);
1672
1673         /*
1674          * Call ext4_map_blocks() to allocate any delayed allocation
1675          * blocks, or to convert an uninitialized extent to be
1676          * initialized (in the case where we have written into
1677          * one or more preallocated blocks).
1678          *
1679          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1680          * indicate that we are on the delayed allocation path.  This
1681          * affects functions in many different parts of the allocation
1682          * call path.  This flag exists primarily because we don't
1683          * want to change *many* call functions, so ext4_map_blocks()
1684          * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1685          * inode's allocation semaphore is taken.
1686          *
1687          * If the blocks in questions were delalloc blocks, set
1688          * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1689          * variables are updated after the blocks have been allocated.
1690          */
1691         map.m_lblk = next;
1692         map.m_len = max_blocks;
1693         get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1694         if (ext4_should_dioread_nolock(mpd->inode))
1695                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1696         if (mpd->b_state & (1 << BH_Delay))
1697                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1698
1699         blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1700         if (blks < 0) {
1701                 struct super_block *sb = mpd->inode->i_sb;
1702
1703                 err = blks;
1704                 /*
1705                  * If get block returns EAGAIN or ENOSPC and there
1706                  * appears to be free blocks we will just let
1707                  * mpage_da_submit_io() unlock all of the pages.
1708                  */
1709                 if (err == -EAGAIN)
1710                         goto submit_io;
1711
1712                 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1713                         mpd->retval = err;
1714                         goto submit_io;
1715                 }
1716
1717                 /*
1718                  * get block failure will cause us to loop in
1719                  * writepages, because a_ops->writepage won't be able
1720                  * to make progress. The page will be redirtied by
1721                  * writepage and writepages will again try to write
1722                  * the same.
1723                  */
1724                 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1725                         ext4_msg(sb, KERN_CRIT,
1726                                  "delayed block allocation failed for inode %lu "
1727                                  "at logical offset %llu with max blocks %zd "
1728                                  "with error %d", mpd->inode->i_ino,
1729                                  (unsigned long long) next,
1730                                  mpd->b_size >> mpd->inode->i_blkbits, err);
1731                         ext4_msg(sb, KERN_CRIT,
1732                                 "This should not happen!! Data will be lost");
1733                         if (err == -ENOSPC)
1734                                 ext4_print_free_blocks(mpd->inode);
1735                 }
1736                 /* invalidate all the pages */
1737                 ext4_da_block_invalidatepages(mpd);
1738
1739                 /* Mark this page range as having been completed */
1740                 mpd->io_done = 1;
1741                 return;
1742         }
1743         BUG_ON(blks == 0);
1744
1745         mapp = &map;
1746         if (map.m_flags & EXT4_MAP_NEW) {
1747                 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1748                 int i;
1749
1750                 for (i = 0; i < map.m_len; i++)
1751                         unmap_underlying_metadata(bdev, map.m_pblk + i);
1752         }
1753
1754         /*
1755          * Update on-disk size along with block allocation.
1756          */
1757         disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1758         if (disksize > i_size_read(mpd->inode))
1759                 disksize = i_size_read(mpd->inode);
1760         if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1761                 ext4_update_i_disksize(mpd->inode, disksize);
1762                 err = ext4_mark_inode_dirty(handle, mpd->inode);
1763                 if (err)
1764                         ext4_error(mpd->inode->i_sb,
1765                                    "Failed to mark inode %lu dirty",
1766                                    mpd->inode->i_ino);
1767         }
1768
1769 submit_io:
1770         mpage_da_submit_io(mpd, mapp);
1771         mpd->io_done = 1;
1772 }
1773
1774 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1775                 (1 << BH_Delay) | (1 << BH_Unwritten))
1776
1777 /*
1778  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1779  *
1780  * @mpd->lbh - extent of blocks
1781  * @logical - logical number of the block in the file
1782  * @b_state - b_state of the buffer head added
1783  *
1784  * the function is used to collect contig. blocks in same state
1785  */
1786 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1787                                    unsigned long b_state)
1788 {
1789         sector_t next;
1790         int blkbits = mpd->inode->i_blkbits;
1791         int nrblocks = mpd->b_size >> blkbits;
1792
1793         /*
1794          * XXX Don't go larger than mballoc is willing to allocate
1795          * This is a stopgap solution.  We eventually need to fold
1796          * mpage_da_submit_io() into this function and then call
1797          * ext4_map_blocks() multiple times in a loop
1798          */
1799         if (nrblocks >= (8*1024*1024 >> blkbits))
1800                 goto flush_it;
1801
1802         /* check if the reserved journal credits might overflow */
1803         if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1804                 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1805                         /*
1806                          * With non-extent format we are limited by the journal
1807                          * credit available.  Total credit needed to insert
1808                          * nrblocks contiguous blocks is dependent on the
1809                          * nrblocks.  So limit nrblocks.
1810                          */
1811                         goto flush_it;
1812                 }
1813         }
1814         /*
1815          * First block in the extent
1816          */
1817         if (mpd->b_size == 0) {
1818                 mpd->b_blocknr = logical;
1819                 mpd->b_size = 1 << blkbits;
1820                 mpd->b_state = b_state & BH_FLAGS;
1821                 return;
1822         }
1823
1824         next = mpd->b_blocknr + nrblocks;
1825         /*
1826          * Can we merge the block to our big extent?
1827          */
1828         if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1829                 mpd->b_size += 1 << blkbits;
1830                 return;
1831         }
1832
1833 flush_it:
1834         /*
1835          * We couldn't merge the block to our extent, so we
1836          * need to flush current  extent and start new one
1837          */
1838         mpage_da_map_and_submit(mpd);
1839         return;
1840 }
1841
1842 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1843 {
1844         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1845 }
1846
1847 /*
1848  * This function is grabs code from the very beginning of
1849  * ext4_map_blocks, but assumes that the caller is from delayed write
1850  * time. This function looks up the requested blocks and sets the
1851  * buffer delay bit under the protection of i_data_sem.
1852  */
1853 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1854                               struct ext4_map_blocks *map,
1855                               struct buffer_head *bh)
1856 {
1857         struct extent_status es;
1858         int retval;
1859         sector_t invalid_block = ~((sector_t) 0xffff);
1860 #ifdef ES_AGGRESSIVE_TEST
1861         struct ext4_map_blocks orig_map;
1862
1863         memcpy(&orig_map, map, sizeof(*map));
1864 #endif
1865
1866         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1867                 invalid_block = ~0;
1868
1869         map->m_flags = 0;
1870         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1871                   "logical block %lu\n", inode->i_ino, map->m_len,
1872                   (unsigned long) map->m_lblk);
1873
1874         /* Lookup extent status tree firstly */
1875         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1876
1877                 if (ext4_es_is_hole(&es)) {
1878                         retval = 0;
1879                         down_read((&EXT4_I(inode)->i_data_sem));
1880                         goto add_delayed;
1881                 }
1882
1883                 /*
1884                  * Delayed extent could be allocated by fallocate.
1885                  * So we need to check it.
1886                  */
1887                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1888                         map_bh(bh, inode->i_sb, invalid_block);
1889                         set_buffer_new(bh);
1890                         set_buffer_delay(bh);
1891                         return 0;
1892                 }
1893
1894                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1895                 retval = es.es_len - (iblock - es.es_lblk);
1896                 if (retval > map->m_len)
1897                         retval = map->m_len;
1898                 map->m_len = retval;
1899                 if (ext4_es_is_written(&es))
1900                         map->m_flags |= EXT4_MAP_MAPPED;
1901                 else if (ext4_es_is_unwritten(&es))
1902                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1903                 else
1904                         BUG_ON(1);
1905
1906 #ifdef ES_AGGRESSIVE_TEST
1907                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1908 #endif
1909                 return retval;
1910         }
1911
1912         /*
1913          * Try to see if we can get the block without requesting a new
1914          * file system block.
1915          */
1916         down_read((&EXT4_I(inode)->i_data_sem));
1917         if (ext4_has_inline_data(inode)) {
1918                 /*
1919                  * We will soon create blocks for this page, and let
1920                  * us pretend as if the blocks aren't allocated yet.
1921                  * In case of clusters, we have to handle the work
1922                  * of mapping from cluster so that the reserved space
1923                  * is calculated properly.
1924                  */
1925                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1926                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1927                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1928                 retval = 0;
1929         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1930                 retval = ext4_ext_map_blocks(NULL, inode, map,
1931                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1932         else
1933                 retval = ext4_ind_map_blocks(NULL, inode, map,
1934                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1935
1936 add_delayed:
1937         if (retval == 0) {
1938                 int ret;
1939                 /*
1940                  * XXX: __block_prepare_write() unmaps passed block,
1941                  * is it OK?
1942                  */
1943                 /* If the block was allocated from previously allocated cluster,
1944                  * then we dont need to reserve it again. */
1945                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1946                         ret = ext4_da_reserve_space(inode, iblock);
1947                         if (ret) {
1948                                 /* not enough space to reserve */
1949                                 retval = ret;
1950                                 goto out_unlock;
1951                         }
1952                 }
1953
1954                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1955                                             ~0, EXTENT_STATUS_DELAYED);
1956                 if (ret) {
1957                         retval = ret;
1958                         goto out_unlock;
1959                 }
1960
1961                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1962                  * and it should not appear on the bh->b_state.
1963                  */
1964                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1965
1966                 map_bh(bh, inode->i_sb, invalid_block);
1967                 set_buffer_new(bh);
1968                 set_buffer_delay(bh);
1969         } else if (retval > 0) {
1970                 int ret;
1971                 unsigned long long status;
1972
1973 #ifdef ES_AGGRESSIVE_TEST
1974                 if (retval != map->m_len) {
1975                         printk("ES len assertation failed for inode: %lu "
1976                                "retval %d != map->m_len %d "
1977                                "in %s (lookup)\n", inode->i_ino, retval,
1978                                map->m_len, __func__);
1979                 }
1980 #endif
1981
1982                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1983                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1984                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1985                                             map->m_pblk, status);
1986                 if (ret != 0)
1987                         retval = ret;
1988         }
1989
1990 out_unlock:
1991         up_read((&EXT4_I(inode)->i_data_sem));
1992
1993         return retval;
1994 }
1995
1996 /*
1997  * This is a special get_blocks_t callback which is used by
1998  * ext4_da_write_begin().  It will either return mapped block or
1999  * reserve space for a single block.
2000  *
2001  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2002  * We also have b_blocknr = -1 and b_bdev initialized properly
2003  *
2004  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2005  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2006  * initialized properly.
2007  */
2008 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2009                            struct buffer_head *bh, int create)
2010 {
2011         struct ext4_map_blocks map;
2012         int ret = 0;
2013
2014         BUG_ON(create == 0);
2015         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2016
2017         map.m_lblk = iblock;
2018         map.m_len = 1;
2019
2020         /*
2021          * first, we need to know whether the block is allocated already
2022          * preallocated blocks are unmapped but should treated
2023          * the same as allocated blocks.
2024          */
2025         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2026         if (ret <= 0)
2027                 return ret;
2028
2029         map_bh(bh, inode->i_sb, map.m_pblk);
2030         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2031
2032         if (buffer_unwritten(bh)) {
2033                 /* A delayed write to unwritten bh should be marked
2034                  * new and mapped.  Mapped ensures that we don't do
2035                  * get_block multiple times when we write to the same
2036                  * offset and new ensures that we do proper zero out
2037                  * for partial write.
2038                  */
2039                 set_buffer_new(bh);
2040                 set_buffer_mapped(bh);
2041         }
2042         return 0;
2043 }
2044
2045 static int bget_one(handle_t *handle, struct buffer_head *bh)
2046 {
2047         get_bh(bh);
2048         return 0;
2049 }
2050
2051 static int bput_one(handle_t *handle, struct buffer_head *bh)
2052 {
2053         put_bh(bh);
2054         return 0;
2055 }
2056
2057 static int __ext4_journalled_writepage(struct page *page,
2058                                        unsigned int len)
2059 {
2060         struct address_space *mapping = page->mapping;
2061         struct inode *inode = mapping->host;
2062         struct buffer_head *page_bufs = NULL;
2063         handle_t *handle = NULL;
2064         int ret = 0, err = 0;
2065         int inline_data = ext4_has_inline_data(inode);
2066         struct buffer_head *inode_bh = NULL;
2067
2068         ClearPageChecked(page);
2069
2070         if (inline_data) {
2071                 BUG_ON(page->index != 0);
2072                 BUG_ON(len > ext4_get_max_inline_size(inode));
2073                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2074                 if (inode_bh == NULL)
2075                         goto out;
2076         } else {
2077                 page_bufs = page_buffers(page);
2078                 if (!page_bufs) {
2079                         BUG();
2080                         goto out;
2081                 }
2082                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2083                                        NULL, bget_one);
2084         }
2085         /* As soon as we unlock the page, it can go away, but we have
2086          * references to buffers so we are safe */
2087         unlock_page(page);
2088
2089         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2090                                     ext4_writepage_trans_blocks(inode));
2091         if (IS_ERR(handle)) {
2092                 ret = PTR_ERR(handle);
2093                 goto out;
2094         }
2095
2096         BUG_ON(!ext4_handle_valid(handle));
2097
2098         if (inline_data) {
2099                 ret = ext4_journal_get_write_access(handle, inode_bh);
2100
2101                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2102
2103         } else {
2104                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2105                                              do_journal_get_write_access);
2106
2107                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2108                                              write_end_fn);
2109         }
2110         if (ret == 0)
2111                 ret = err;
2112         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2113         err = ext4_journal_stop(handle);
2114         if (!ret)
2115                 ret = err;
2116
2117         if (!ext4_has_inline_data(inode))
2118                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2119                                        NULL, bput_one);
2120         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2121 out:
2122         brelse(inode_bh);
2123         return ret;
2124 }
2125
2126 /*
2127  * Note that we don't need to start a transaction unless we're journaling data
2128  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2129  * need to file the inode to the transaction's list in ordered mode because if
2130  * we are writing back data added by write(), the inode is already there and if
2131  * we are writing back data modified via mmap(), no one guarantees in which
2132  * transaction the data will hit the disk. In case we are journaling data, we
2133  * cannot start transaction directly because transaction start ranks above page
2134  * lock so we have to do some magic.
2135  *
2136  * This function can get called via...
2137  *   - ext4_da_writepages after taking page lock (have journal handle)
2138  *   - journal_submit_inode_data_buffers (no journal handle)
2139  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2140  *   - grab_page_cache when doing write_begin (have journal handle)
2141  *
2142  * We don't do any block allocation in this function. If we have page with
2143  * multiple blocks we need to write those buffer_heads that are mapped. This
2144  * is important for mmaped based write. So if we do with blocksize 1K
2145  * truncate(f, 1024);
2146  * a = mmap(f, 0, 4096);
2147  * a[0] = 'a';
2148  * truncate(f, 4096);
2149  * we have in the page first buffer_head mapped via page_mkwrite call back
2150  * but other buffer_heads would be unmapped but dirty (dirty done via the
2151  * do_wp_page). So writepage should write the first block. If we modify
2152  * the mmap area beyond 1024 we will again get a page_fault and the
2153  * page_mkwrite callback will do the block allocation and mark the
2154  * buffer_heads mapped.
2155  *
2156  * We redirty the page if we have any buffer_heads that is either delay or
2157  * unwritten in the page.
2158  *
2159  * We can get recursively called as show below.
2160  *
2161  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2162  *              ext4_writepage()
2163  *
2164  * But since we don't do any block allocation we should not deadlock.
2165  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2166  */
2167 static int ext4_writepage(struct page *page,
2168                           struct writeback_control *wbc)
2169 {
2170         int ret = 0;
2171         loff_t size;
2172         unsigned int len;
2173         struct buffer_head *page_bufs = NULL;
2174         struct inode *inode = page->mapping->host;
2175         struct ext4_io_submit io_submit;
2176
2177         trace_ext4_writepage(page);
2178         size = i_size_read(inode);
2179         if (page->index == size >> PAGE_CACHE_SHIFT)
2180                 len = size & ~PAGE_CACHE_MASK;
2181         else
2182                 len = PAGE_CACHE_SIZE;
2183
2184         page_bufs = page_buffers(page);
2185         /*
2186          * We cannot do block allocation or other extent handling in this
2187          * function. If there are buffers needing that, we have to redirty
2188          * the page. But we may reach here when we do a journal commit via
2189          * journal_submit_inode_data_buffers() and in that case we must write
2190          * allocated buffers to achieve data=ordered mode guarantees.
2191          */
2192         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2193                                    ext4_bh_delay_or_unwritten)) {
2194                 redirty_page_for_writepage(wbc, page);
2195                 if (current->flags & PF_MEMALLOC) {
2196                         /*
2197                          * For memory cleaning there's no point in writing only
2198                          * some buffers. So just bail out. Warn if we came here
2199                          * from direct reclaim.
2200                          */
2201                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2202                                                         == PF_MEMALLOC);
2203                         unlock_page(page);
2204                         return 0;
2205                 }
2206         }
2207
2208         if (PageChecked(page) && ext4_should_journal_data(inode))
2209                 /*
2210                  * It's mmapped pagecache.  Add buffers and journal it.  There
2211                  * doesn't seem much point in redirtying the page here.
2212                  */
2213                 return __ext4_journalled_writepage(page, len);
2214
2215         memset(&io_submit, 0, sizeof(io_submit));
2216         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2217         ext4_io_submit(&io_submit);
2218         return ret;
2219 }
2220
2221 /*
2222  * This is called via ext4_da_writepages() to
2223  * calculate the total number of credits to reserve to fit
2224  * a single extent allocation into a single transaction,
2225  * ext4_da_writpeages() will loop calling this before
2226  * the block allocation.
2227  */
2228
2229 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2230 {
2231         int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2232
2233         /*
2234          * With non-extent format the journal credit needed to
2235          * insert nrblocks contiguous block is dependent on
2236          * number of contiguous block. So we will limit
2237          * number of contiguous block to a sane value
2238          */
2239         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2240             (max_blocks > EXT4_MAX_TRANS_DATA))
2241                 max_blocks = EXT4_MAX_TRANS_DATA;
2242
2243         return ext4_chunk_trans_blocks(inode, max_blocks);
2244 }
2245
2246 /*
2247  * write_cache_pages_da - walk the list of dirty pages of the given
2248  * address space and accumulate pages that need writing, and call
2249  * mpage_da_map_and_submit to map a single contiguous memory region
2250  * and then write them.
2251  */
2252 static int write_cache_pages_da(handle_t *handle,
2253                                 struct address_space *mapping,
2254                                 struct writeback_control *wbc,
2255                                 struct mpage_da_data *mpd,
2256                                 pgoff_t *done_index)
2257 {
2258         struct buffer_head      *bh, *head;
2259         struct inode            *inode = mapping->host;
2260         struct pagevec          pvec;
2261         unsigned int            nr_pages;
2262         sector_t                logical;
2263         pgoff_t                 index, end;
2264         long                    nr_to_write = wbc->nr_to_write;
2265         int                     i, tag, ret = 0;
2266
2267         memset(mpd, 0, sizeof(struct mpage_da_data));
2268         mpd->wbc = wbc;
2269         mpd->inode = inode;
2270         pagevec_init(&pvec, 0);
2271         index = wbc->range_start >> PAGE_CACHE_SHIFT;
2272         end = wbc->range_end >> PAGE_CACHE_SHIFT;
2273
2274         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2275                 tag = PAGECACHE_TAG_TOWRITE;
2276         else
2277                 tag = PAGECACHE_TAG_DIRTY;
2278
2279         *done_index = index;
2280         while (index <= end) {
2281                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2282                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2283                 if (nr_pages == 0)
2284                         return 0;
2285
2286                 for (i = 0; i < nr_pages; i++) {
2287                         struct page *page = pvec.pages[i];
2288
2289                         /*
2290                          * At this point, the page may be truncated or
2291                          * invalidated (changing page->mapping to NULL), or
2292                          * even swizzled back from swapper_space to tmpfs file
2293                          * mapping. However, page->index will not change
2294                          * because we have a reference on the page.
2295                          */
2296                         if (page->index > end)
2297                                 goto out;
2298
2299                         *done_index = page->index + 1;
2300
2301                         /*
2302                          * If we can't merge this page, and we have
2303                          * accumulated an contiguous region, write it
2304                          */
2305                         if ((mpd->next_page != page->index) &&
2306                             (mpd->next_page != mpd->first_page)) {
2307                                 mpage_da_map_and_submit(mpd);
2308                                 goto ret_extent_tail;
2309                         }
2310
2311                         lock_page(page);
2312
2313                         /*
2314                          * If the page is no longer dirty, or its
2315                          * mapping no longer corresponds to inode we
2316                          * are writing (which means it has been
2317                          * truncated or invalidated), or the page is
2318                          * already under writeback and we are not
2319                          * doing a data integrity writeback, skip the page
2320                          */
2321                         if (!PageDirty(page) ||
2322                             (PageWriteback(page) &&
2323                              (wbc->sync_mode == WB_SYNC_NONE)) ||
2324                             unlikely(page->mapping != mapping)) {
2325                                 unlock_page(page);
2326                                 continue;
2327                         }
2328
2329                         wait_on_page_writeback(page);
2330                         BUG_ON(PageWriteback(page));
2331
2332                         /*
2333                          * If we have inline data and arrive here, it means that
2334                          * we will soon create the block for the 1st page, so
2335                          * we'd better clear the inline data here.
2336                          */
2337                         if (ext4_has_inline_data(inode)) {
2338                                 BUG_ON(ext4_test_inode_state(inode,
2339                                                 EXT4_STATE_MAY_INLINE_DATA));
2340                                 ext4_destroy_inline_data(handle, inode);
2341                         }
2342
2343                         if (mpd->next_page != page->index)
2344                                 mpd->first_page = page->index;
2345                         mpd->next_page = page->index + 1;
2346                         logical = (sector_t) page->index <<
2347                                 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2348
2349                         /* Add all dirty buffers to mpd */
2350                         head = page_buffers(page);
2351                         bh = head;
2352                         do {
2353                                 BUG_ON(buffer_locked(bh));
2354                                 /*
2355                                  * We need to try to allocate unmapped blocks
2356                                  * in the same page.  Otherwise we won't make
2357                                  * progress with the page in ext4_writepage
2358                                  */
2359                                 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2360                                         mpage_add_bh_to_extent(mpd, logical,
2361                                                                bh->b_state);
2362                                         if (mpd->io_done)
2363                                                 goto ret_extent_tail;
2364                                 } else if (buffer_dirty(bh) &&
2365                                            buffer_mapped(bh)) {
2366                                         /*
2367                                          * mapped dirty buffer. We need to
2368                                          * update the b_state because we look
2369                                          * at b_state in mpage_da_map_blocks.
2370                                          * We don't update b_size because if we
2371                                          * find an unmapped buffer_head later
2372                                          * we need to use the b_state flag of
2373                                          * that buffer_head.
2374                                          */
2375                                         if (mpd->b_size == 0)
2376                                                 mpd->b_state =
2377                                                         bh->b_state & BH_FLAGS;
2378                                 }
2379                                 logical++;
2380                         } while ((bh = bh->b_this_page) != head);
2381
2382                         if (nr_to_write > 0) {
2383                                 nr_to_write--;
2384                                 if (nr_to_write == 0 &&
2385                                     wbc->sync_mode == WB_SYNC_NONE)
2386                                         /*
2387                                          * We stop writing back only if we are
2388                                          * not doing integrity sync. In case of
2389                                          * integrity sync we have to keep going
2390                                          * because someone may be concurrently
2391                                          * dirtying pages, and we might have
2392                                          * synced a lot of newly appeared dirty
2393                                          * pages, but have not synced all of the
2394                                          * old dirty pages.
2395                                          */
2396                                         goto out;
2397                         }
2398                 }
2399                 pagevec_release(&pvec);
2400                 cond_resched();
2401         }
2402         return 0;
2403 ret_extent_tail:
2404         ret = MPAGE_DA_EXTENT_TAIL;
2405 out:
2406         pagevec_release(&pvec);
2407         cond_resched();
2408         return ret;
2409 }
2410
2411
2412 static int ext4_da_writepages(struct address_space *mapping,
2413                               struct writeback_control *wbc)
2414 {
2415         pgoff_t index;
2416         int range_whole = 0;
2417         handle_t *handle = NULL;
2418         struct mpage_da_data mpd;
2419         struct inode *inode = mapping->host;
2420         int pages_written = 0;
2421         unsigned int max_pages;
2422         int range_cyclic, cycled = 1, io_done = 0;
2423         int needed_blocks, ret = 0;
2424         long desired_nr_to_write, nr_to_writebump = 0;
2425         loff_t range_start = wbc->range_start;
2426         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2427         pgoff_t done_index = 0;
2428         pgoff_t end;
2429         struct blk_plug plug;
2430
2431         trace_ext4_da_writepages(inode, wbc);
2432
2433         /*
2434          * No pages to write? This is mainly a kludge to avoid starting
2435          * a transaction for special inodes like journal inode on last iput()
2436          * because that could violate lock ordering on umount
2437          */
2438         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2439                 return 0;
2440
2441         /*
2442          * If the filesystem has aborted, it is read-only, so return
2443          * right away instead of dumping stack traces later on that
2444          * will obscure the real source of the problem.  We test
2445          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2446          * the latter could be true if the filesystem is mounted
2447          * read-only, and in that case, ext4_da_writepages should
2448          * *never* be called, so if that ever happens, we would want
2449          * the stack trace.
2450          */
2451         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2452                 return -EROFS;
2453
2454         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2455                 range_whole = 1;
2456
2457         range_cyclic = wbc->range_cyclic;
2458         if (wbc->range_cyclic) {
2459                 index = mapping->writeback_index;
2460                 if (index)
2461                         cycled = 0;
2462                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2463                 wbc->range_end  = LLONG_MAX;
2464                 wbc->range_cyclic = 0;
2465                 end = -1;
2466         } else {
2467                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2468                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2469         }
2470
2471         /*
2472          * This works around two forms of stupidity.  The first is in
2473          * the writeback code, which caps the maximum number of pages
2474          * written to be 1024 pages.  This is wrong on multiple
2475          * levels; different architectues have a different page size,
2476          * which changes the maximum amount of data which gets
2477          * written.  Secondly, 4 megabytes is way too small.  XFS
2478          * forces this value to be 16 megabytes by multiplying
2479          * nr_to_write parameter by four, and then relies on its
2480          * allocator to allocate larger extents to make them
2481          * contiguous.  Unfortunately this brings us to the second
2482          * stupidity, which is that ext4's mballoc code only allocates
2483          * at most 2048 blocks.  So we force contiguous writes up to
2484          * the number of dirty blocks in the inode, or
2485          * sbi->max_writeback_mb_bump whichever is smaller.
2486          */
2487         max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2488         if (!range_cyclic && range_whole) {
2489                 if (wbc->nr_to_write == LONG_MAX)
2490                         desired_nr_to_write = wbc->nr_to_write;
2491                 else
2492                         desired_nr_to_write = wbc->nr_to_write * 8;
2493         } else
2494                 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2495                                                            max_pages);
2496         if (desired_nr_to_write > max_pages)
2497                 desired_nr_to_write = max_pages;
2498
2499         if (wbc->nr_to_write < desired_nr_to_write) {
2500                 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2501                 wbc->nr_to_write = desired_nr_to_write;
2502         }
2503
2504 retry:
2505         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2506                 tag_pages_for_writeback(mapping, index, end);
2507
2508         blk_start_plug(&plug);
2509         while (!ret && wbc->nr_to_write > 0) {
2510
2511                 /*
2512                  * we  insert one extent at a time. So we need
2513                  * credit needed for single extent allocation.
2514                  * journalled mode is currently not supported
2515                  * by delalloc
2516                  */
2517                 BUG_ON(ext4_should_journal_data(inode));
2518                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2519
2520                 /* start a new transaction*/
2521                 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2522                                             needed_blocks);
2523                 if (IS_ERR(handle)) {
2524                         ret = PTR_ERR(handle);
2525                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2526                                "%ld pages, ino %lu; err %d", __func__,
2527                                 wbc->nr_to_write, inode->i_ino, ret);
2528                         blk_finish_plug(&plug);
2529                         goto out_writepages;
2530                 }
2531
2532                 /*
2533                  * Now call write_cache_pages_da() to find the next
2534                  * contiguous region of logical blocks that need
2535                  * blocks to be allocated by ext4 and submit them.
2536                  */
2537                 ret = write_cache_pages_da(handle, mapping,
2538                                            wbc, &mpd, &done_index);
2539                 /*
2540                  * If we have a contiguous extent of pages and we
2541                  * haven't done the I/O yet, map the blocks and submit
2542                  * them for I/O.
2543                  */
2544                 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2545                         mpage_da_map_and_submit(&mpd);
2546                         ret = MPAGE_DA_EXTENT_TAIL;
2547                 }
2548                 trace_ext4_da_write_pages(inode, &mpd);
2549                 wbc->nr_to_write -= mpd.pages_written;
2550
2551                 ext4_journal_stop(handle);
2552
2553                 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2554                         /* commit the transaction which would
2555                          * free blocks released in the transaction
2556                          * and try again
2557                          */
2558                         jbd2_journal_force_commit_nested(sbi->s_journal);
2559                         ret = 0;
2560                 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2561                         /*
2562                          * Got one extent now try with rest of the pages.
2563                          * If mpd.retval is set -EIO, journal is aborted.
2564                          * So we don't need to write any more.
2565                          */
2566                         pages_written += mpd.pages_written;
2567                         ret = mpd.retval;
2568                         io_done = 1;
2569                 } else if (wbc->nr_to_write)
2570                         /*
2571                          * There is no more writeout needed
2572                          * or we requested for a noblocking writeout
2573                          * and we found the device congested
2574                          */
2575                         break;
2576         }
2577         blk_finish_plug(&plug);
2578         if (!io_done && !cycled) {
2579                 cycled = 1;
2580                 index = 0;
2581                 wbc->range_start = index << PAGE_CACHE_SHIFT;
2582                 wbc->range_end  = mapping->writeback_index - 1;
2583                 goto retry;
2584         }
2585
2586         /* Update index */
2587         wbc->range_cyclic = range_cyclic;
2588         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2589                 /*
2590                  * set the writeback_index so that range_cyclic
2591                  * mode will write it back later
2592                  */
2593                 mapping->writeback_index = done_index;
2594
2595 out_writepages:
2596         wbc->nr_to_write -= nr_to_writebump;
2597         wbc->range_start = range_start;
2598         trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2599         return ret;
2600 }
2601
2602 static int ext4_nonda_switch(struct super_block *sb)
2603 {
2604         s64 free_blocks, dirty_blocks;
2605         struct ext4_sb_info *sbi = EXT4_SB(sb);
2606
2607         /*
2608          * switch to non delalloc mode if we are running low
2609          * on free block. The free block accounting via percpu
2610          * counters can get slightly wrong with percpu_counter_batch getting
2611          * accumulated on each CPU without updating global counters
2612          * Delalloc need an accurate free block accounting. So switch
2613          * to non delalloc when we are near to error range.
2614          */
2615         free_blocks  = EXT4_C2B(sbi,
2616                 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2617         dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2618         /*
2619          * Start pushing delalloc when 1/2 of free blocks are dirty.
2620          */
2621         if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2622             !writeback_in_progress(sb->s_bdi) &&
2623             down_read_trylock(&sb->s_umount)) {
2624                 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2625                 up_read(&sb->s_umount);
2626         }
2627
2628         if (2 * free_blocks < 3 * dirty_blocks ||
2629                 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2630                 /*
2631                  * free block count is less than 150% of dirty blocks
2632                  * or free blocks is less than watermark
2633                  */
2634                 return 1;
2635         }
2636         return 0;
2637 }
2638
2639 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2640                                loff_t pos, unsigned len, unsigned flags,
2641                                struct page **pagep, void **fsdata)
2642 {
2643         int ret, retries = 0;
2644         struct page *page;
2645         pgoff_t index;
2646         struct inode *inode = mapping->host;
2647         handle_t *handle;
2648
2649         index = pos >> PAGE_CACHE_SHIFT;
2650
2651         if (ext4_nonda_switch(inode->i_sb)) {
2652                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653                 return ext4_write_begin(file, mapping, pos,
2654                                         len, flags, pagep, fsdata);
2655         }
2656         *fsdata = (void *)0;
2657         trace_ext4_da_write_begin(inode, pos, len, flags);
2658
2659         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2661                                                       pos, len, flags,
2662                                                       pagep, fsdata);
2663                 if (ret < 0)
2664                         return ret;
2665                 if (ret == 1)
2666                         return 0;
2667         }
2668
2669         /*
2670          * grab_cache_page_write_begin() can take a long time if the
2671          * system is thrashing due to memory pressure, or if the page
2672          * is being written back.  So grab it first before we start
2673          * the transaction handle.  This also allows us to allocate
2674          * the page (if needed) without using GFP_NOFS.
2675          */
2676 retry_grab:
2677         page = grab_cache_page_write_begin(mapping, index, flags);
2678         if (!page)
2679                 return -ENOMEM;
2680         unlock_page(page);
2681
2682         /*
2683          * With delayed allocation, we don't log the i_disksize update
2684          * if there is delayed block allocation. But we still need
2685          * to journalling the i_disksize update if writes to the end
2686          * of file which has an already mapped buffer.
2687          */
2688 retry_journal:
2689         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2690         if (IS_ERR(handle)) {
2691                 page_cache_release(page);
2692                 return PTR_ERR(handle);
2693         }
2694
2695         lock_page(page);
2696         if (page->mapping != mapping) {
2697                 /* The page got truncated from under us */
2698                 unlock_page(page);
2699                 page_cache_release(page);
2700                 ext4_journal_stop(handle);
2701                 goto retry_grab;
2702         }
2703         /* In case writeback began while the page was unlocked */
2704         wait_on_page_writeback(page);
2705
2706         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2707         if (ret < 0) {
2708                 unlock_page(page);
2709                 ext4_journal_stop(handle);
2710                 /*
2711                  * block_write_begin may have instantiated a few blocks
2712                  * outside i_size.  Trim these off again. Don't need
2713                  * i_size_read because we hold i_mutex.
2714                  */
2715                 if (pos + len > inode->i_size)
2716                         ext4_truncate_failed_write(inode);
2717
2718                 if (ret == -ENOSPC &&
2719                     ext4_should_retry_alloc(inode->i_sb, &retries))
2720                         goto retry_journal;
2721
2722                 page_cache_release(page);
2723                 return ret;
2724         }
2725
2726         *pagep = page;
2727         return ret;
2728 }
2729
2730 /*
2731  * Check if we should update i_disksize
2732  * when write to the end of file but not require block allocation
2733  */
2734 static int ext4_da_should_update_i_disksize(struct page *page,
2735                                             unsigned long offset)
2736 {
2737         struct buffer_head *bh;
2738         struct inode *inode = page->mapping->host;
2739         unsigned int idx;
2740         int i;
2741
2742         bh = page_buffers(page);
2743         idx = offset >> inode->i_blkbits;
2744
2745         for (i = 0; i < idx; i++)
2746                 bh = bh->b_this_page;
2747
2748         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2749                 return 0;
2750         return 1;
2751 }
2752
2753 static int ext4_da_write_end(struct file *file,
2754                              struct address_space *mapping,
2755                              loff_t pos, unsigned len, unsigned copied,
2756                              struct page *page, void *fsdata)
2757 {
2758         struct inode *inode = mapping->host;
2759         int ret = 0, ret2;
2760         handle_t *handle = ext4_journal_current_handle();
2761         loff_t new_i_size;
2762         unsigned long start, end;
2763         int write_mode = (int)(unsigned long)fsdata;
2764
2765         if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2766                 switch (ext4_inode_journal_mode(inode)) {
2767                 case EXT4_INODE_ORDERED_DATA_MODE:
2768                         return ext4_ordered_write_end(file, mapping, pos,
2769                                         len, copied, page, fsdata);
2770                 case EXT4_INODE_WRITEBACK_DATA_MODE:
2771                         return ext4_writeback_write_end(file, mapping, pos,
2772                                         len, copied, page, fsdata);
2773                 default:
2774                         BUG();
2775                 }
2776         }
2777
2778         trace_ext4_da_write_end(inode, pos, len, copied);
2779         start = pos & (PAGE_CACHE_SIZE - 1);
2780         end = start + copied - 1;
2781
2782         /*
2783          * generic_write_end() will run mark_inode_dirty() if i_size
2784          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2785          * into that.
2786          */
2787         new_i_size = pos + copied;
2788         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2789                 if (ext4_has_inline_data(inode) ||
2790                     ext4_da_should_update_i_disksize(page, end)) {
2791                         down_write(&EXT4_I(inode)->i_data_sem);
2792                         if (new_i_size > EXT4_I(inode)->i_disksize)
2793                                 EXT4_I(inode)->i_disksize = new_i_size;
2794                         up_write(&EXT4_I(inode)->i_data_sem);
2795                         /* We need to mark inode dirty even if
2796                          * new_i_size is less that inode->i_size
2797                          * bu greater than i_disksize.(hint delalloc)
2798                          */
2799                         ext4_mark_inode_dirty(handle, inode);
2800                 }
2801         }
2802
2803         if (write_mode != CONVERT_INLINE_DATA &&
2804             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2805             ext4_has_inline_data(inode))
2806                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2807                                                      page);
2808         else
2809                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2810                                                         page, fsdata);
2811
2812         copied = ret2;
2813         if (ret2 < 0)
2814                 ret = ret2;
2815         ret2 = ext4_journal_stop(handle);
2816         if (!ret)
2817                 ret = ret2;
2818
2819         return ret ? ret : copied;
2820 }
2821
2822 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2823 {
2824         /*
2825          * Drop reserved blocks
2826          */
2827         BUG_ON(!PageLocked(page));
2828         if (!page_has_buffers(page))
2829                 goto out;
2830
2831         ext4_da_page_release_reservation(page, offset);
2832
2833 out:
2834         ext4_invalidatepage(page, offset);
2835
2836         return;
2837 }
2838
2839 /*
2840  * Force all delayed allocation blocks to be allocated for a given inode.
2841  */
2842 int ext4_alloc_da_blocks(struct inode *inode)
2843 {
2844         trace_ext4_alloc_da_blocks(inode);
2845
2846         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2847             !EXT4_I(inode)->i_reserved_meta_blocks)
2848                 return 0;
2849
2850         /*
2851          * We do something simple for now.  The filemap_flush() will
2852          * also start triggering a write of the data blocks, which is
2853          * not strictly speaking necessary (and for users of
2854          * laptop_mode, not even desirable).  However, to do otherwise
2855          * would require replicating code paths in:
2856          *
2857          * ext4_da_writepages() ->
2858          *    write_cache_pages() ---> (via passed in callback function)
2859          *        __mpage_da_writepage() -->
2860          *           mpage_add_bh_to_extent()
2861          *           mpage_da_map_blocks()
2862          *
2863          * The problem is that write_cache_pages(), located in
2864          * mm/page-writeback.c, marks pages clean in preparation for
2865          * doing I/O, which is not desirable if we're not planning on
2866          * doing I/O at all.
2867          *
2868          * We could call write_cache_pages(), and then redirty all of
2869          * the pages by calling redirty_page_for_writepage() but that
2870          * would be ugly in the extreme.  So instead we would need to
2871          * replicate parts of the code in the above functions,
2872          * simplifying them because we wouldn't actually intend to
2873          * write out the pages, but rather only collect contiguous
2874          * logical block extents, call the multi-block allocator, and
2875          * then update the buffer heads with the block allocations.
2876          *
2877          * For now, though, we'll cheat by calling filemap_flush(),
2878          * which will map the blocks, and start the I/O, but not
2879          * actually wait for the I/O to complete.
2880          */
2881         return filemap_flush(inode->i_mapping);
2882 }
2883
2884 /*
2885  * bmap() is special.  It gets used by applications such as lilo and by
2886  * the swapper to find the on-disk block of a specific piece of data.
2887  *
2888  * Naturally, this is dangerous if the block concerned is still in the
2889  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2890  * filesystem and enables swap, then they may get a nasty shock when the
2891  * data getting swapped to that swapfile suddenly gets overwritten by
2892  * the original zero's written out previously to the journal and
2893  * awaiting writeback in the kernel's buffer cache.
2894  *
2895  * So, if we see any bmap calls here on a modified, data-journaled file,
2896  * take extra steps to flush any blocks which might be in the cache.
2897  */
2898 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2899 {
2900         struct inode *inode = mapping->host;
2901         journal_t *journal;
2902         int err;
2903
2904         /*
2905          * We can get here for an inline file via the FIBMAP ioctl
2906          */
2907         if (ext4_has_inline_data(inode))
2908                 return 0;
2909
2910         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2911                         test_opt(inode->i_sb, DELALLOC)) {
2912                 /*
2913                  * With delalloc we want to sync the file
2914                  * so that we can make sure we allocate
2915                  * blocks for file
2916                  */
2917                 filemap_write_and_wait(mapping);
2918         }
2919
2920         if (EXT4_JOURNAL(inode) &&
2921             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2922                 /*
2923                  * This is a REALLY heavyweight approach, but the use of
2924                  * bmap on dirty files is expected to be extremely rare:
2925                  * only if we run lilo or swapon on a freshly made file
2926                  * do we expect this to happen.
2927                  *
2928                  * (bmap requires CAP_SYS_RAWIO so this does not
2929                  * represent an unprivileged user DOS attack --- we'd be
2930                  * in trouble if mortal users could trigger this path at
2931                  * will.)
2932                  *
2933                  * NB. EXT4_STATE_JDATA is not set on files other than
2934                  * regular files.  If somebody wants to bmap a directory
2935                  * or symlink and gets confused because the buffer
2936                  * hasn't yet been flushed to disk, they deserve
2937                  * everything they get.
2938                  */
2939
2940                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2941                 journal = EXT4_JOURNAL(inode);
2942                 jbd2_journal_lock_updates(journal);
2943                 err = jbd2_journal_flush(journal);
2944                 jbd2_journal_unlock_updates(journal);
2945
2946                 if (err)
2947                         return 0;
2948         }
2949
2950         return generic_block_bmap(mapping, block, ext4_get_block);
2951 }
2952
2953 static int ext4_readpage(struct file *file, struct page *page)
2954 {
2955         int ret = -EAGAIN;
2956         struct inode *inode = page->mapping->host;
2957
2958         trace_ext4_readpage(page);
2959
2960         if (ext4_has_inline_data(inode))
2961                 ret = ext4_readpage_inline(inode, page);
2962
2963         if (ret == -EAGAIN)
2964                 return mpage_readpage(page, ext4_get_block);
2965
2966         return ret;
2967 }
2968
2969 static int
2970 ext4_readpages(struct file *file, struct address_space *mapping,
2971                 struct list_head *pages, unsigned nr_pages)
2972 {
2973         struct inode *inode = mapping->host;
2974
2975         /* If the file has inline data, no need to do readpages. */
2976         if (ext4_has_inline_data(inode))
2977                 return 0;
2978
2979         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2980 }
2981
2982 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2983 {
2984         trace_ext4_invalidatepage(page, offset);
2985
2986         /* No journalling happens on data buffers when this function is used */
2987         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2988
2989         block_invalidatepage(page, offset);
2990 }
2991
2992 static int __ext4_journalled_invalidatepage(struct page *page,
2993                                             unsigned long offset)
2994 {
2995         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2996
2997         trace_ext4_journalled_invalidatepage(page, offset);
2998
2999         /*
3000          * If it's a full truncate we just forget about the pending dirtying
3001          */
3002         if (offset == 0)
3003                 ClearPageChecked(page);
3004
3005         return jbd2_journal_invalidatepage(journal, page, offset);
3006 }
3007
3008 /* Wrapper for aops... */
3009 static void ext4_journalled_invalidatepage(struct page *page,
3010                                            unsigned long offset)
3011 {
3012         WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3013 }
3014
3015 static int ext4_releasepage(struct page *page, gfp_t wait)
3016 {
3017         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3018
3019         trace_ext4_releasepage(page);
3020
3021         /* Page has dirty journalled data -> cannot release */
3022         if (PageChecked(page))
3023                 return 0;
3024         if (journal)
3025                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3026         else
3027                 return try_to_free_buffers(page);
3028 }
3029
3030 /*
3031  * ext4_get_block used when preparing for a DIO write or buffer write.
3032  * We allocate an uinitialized extent if blocks haven't been allocated.
3033  * The extent will be converted to initialized after the IO is complete.
3034  */
3035 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3036                    struct buffer_head *bh_result, int create)
3037 {
3038         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3039                    inode->i_ino, create);
3040         return _ext4_get_block(inode, iblock, bh_result,
3041                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3042 }
3043
3044 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3045                    struct buffer_head *bh_result, int create)
3046 {
3047         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3048                    inode->i_ino, create);
3049         return _ext4_get_block(inode, iblock, bh_result,
3050                                EXT4_GET_BLOCKS_NO_LOCK);
3051 }
3052
3053 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3054                             ssize_t size, void *private, int ret,
3055                             bool is_async)
3056 {
3057         struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
3058         ext4_io_end_t *io_end = iocb->private;
3059
3060         /* if not async direct IO or dio with 0 bytes write, just return */
3061         if (!io_end || !size)
3062                 goto out;
3063
3064         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3065                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3066                   iocb->private, io_end->inode->i_ino, iocb, offset,
3067                   size);
3068
3069         iocb->private = NULL;
3070
3071         /* if not aio dio with unwritten extents, just free io and return */
3072         if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3073                 ext4_free_io_end(io_end);
3074 out:
3075                 inode_dio_done(inode);
3076                 if (is_async)
3077                         aio_complete(iocb, ret, 0);
3078                 return;
3079         }
3080
3081         io_end->offset = offset;
3082         io_end->size = size;
3083         if (is_async) {
3084                 io_end->iocb = iocb;
3085                 io_end->result = ret;
3086         }
3087
3088         ext4_add_complete_io(io_end);
3089 }
3090
3091 /*
3092  * For ext4 extent files, ext4 will do direct-io write to holes,
3093  * preallocated extents, and those write extend the file, no need to
3094  * fall back to buffered IO.
3095  *
3096  * For holes, we fallocate those blocks, mark them as uninitialized
3097  * If those blocks were preallocated, we mark sure they are split, but
3098  * still keep the range to write as uninitialized.
3099  *
3100  * The unwritten extents will be converted to written when DIO is completed.
3101  * For async direct IO, since the IO may still pending when return, we
3102  * set up an end_io call back function, which will do the conversion
3103  * when async direct IO completed.
3104  *
3105  * If the O_DIRECT write will extend the file then add this inode to the
3106  * orphan list.  So recovery will truncate it back to the original size
3107  * if the machine crashes during the write.
3108  *
3109  */
3110 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3111                               const struct iovec *iov, loff_t offset,
3112                               unsigned long nr_segs)
3113 {
3114         struct file *file = iocb->ki_filp;
3115         struct inode *inode = file->f_mapping->host;
3116         ssize_t ret;
3117         size_t count = iov_length(iov, nr_segs);
3118         int overwrite = 0;
3119         get_block_t *get_block_func = NULL;
3120         int dio_flags = 0;
3121         loff_t final_size = offset + count;
3122
3123         /* Use the old path for reads and writes beyond i_size. */
3124         if (rw != WRITE || final_size > inode->i_size)
3125                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3126
3127         BUG_ON(iocb->private == NULL);
3128
3129         /* If we do a overwrite dio, i_mutex locking can be released */
3130         overwrite = *((int *)iocb->private);
3131
3132         if (overwrite) {
3133                 atomic_inc(&inode->i_dio_count);
3134                 down_read(&EXT4_I(inode)->i_data_sem);
3135                 mutex_unlock(&inode->i_mutex);
3136         }
3137
3138         /*
3139          * We could direct write to holes and fallocate.
3140          *
3141          * Allocated blocks to fill the hole are marked as
3142          * uninitialized to prevent parallel buffered read to expose
3143          * the stale data before DIO complete the data IO.
3144          *
3145          * As to previously fallocated extents, ext4 get_block will
3146          * just simply mark the buffer mapped but still keep the
3147          * extents uninitialized.
3148          *
3149          * For non AIO case, we will convert those unwritten extents
3150          * to written after return back from blockdev_direct_IO.
3151          *
3152          * For async DIO, the conversion needs to be deferred when the
3153          * IO is completed. The ext4 end_io callback function will be
3154          * called to take care of the conversion work.  Here for async
3155          * case, we allocate an io_end structure to hook to the iocb.
3156          */
3157         iocb->private = NULL;
3158         ext4_inode_aio_set(inode, NULL);
3159         if (!is_sync_kiocb(iocb)) {
3160                 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3161                 if (!io_end) {
3162                         ret = -ENOMEM;
3163                         goto retake_lock;
3164                 }
3165                 io_end->flag |= EXT4_IO_END_DIRECT;
3166                 iocb->private = io_end;
3167                 /*
3168                  * we save the io structure for current async direct
3169                  * IO, so that later ext4_map_blocks() could flag the
3170                  * io structure whether there is a unwritten extents
3171                  * needs to be converted when IO is completed.
3172                  */
3173                 ext4_inode_aio_set(inode, io_end);
3174         }
3175
3176         if (overwrite) {
3177                 get_block_func = ext4_get_block_write_nolock;
3178         } else {
3179                 get_block_func = ext4_get_block_write;
3180                 dio_flags = DIO_LOCKING;
3181         }
3182         ret = __blockdev_direct_IO(rw, iocb, inode,
3183                                    inode->i_sb->s_bdev, iov,
3184                                    offset, nr_segs,
3185                                    get_block_func,
3186                                    ext4_end_io_dio,
3187                                    NULL,
3188                                    dio_flags);
3189
3190         if (iocb->private)
3191                 ext4_inode_aio_set(inode, NULL);
3192         /*
3193          * The io_end structure takes a reference to the inode, that
3194          * structure needs to be destroyed and the reference to the
3195          * inode need to be dropped, when IO is complete, even with 0
3196          * byte write, or failed.
3197          *
3198          * In the successful AIO DIO case, the io_end structure will
3199          * be destroyed and the reference to the inode will be dropped
3200          * after the end_io call back function is called.
3201          *
3202          * In the case there is 0 byte write, or error case, since VFS
3203          * direct IO won't invoke the end_io call back function, we
3204          * need to free the end_io structure here.
3205          */
3206         if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3207                 ext4_free_io_end(iocb->private);
3208                 iocb->private = NULL;
3209         } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3210                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3211                 int err;
3212                 /*
3213                  * for non AIO case, since the IO is already
3214                  * completed, we could do the conversion right here
3215                  */
3216                 err = ext4_convert_unwritten_extents(inode,
3217                                                      offset, ret);
3218                 if (err < 0)
3219                         ret = err;
3220                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3221         }
3222
3223 retake_lock:
3224         /* take i_mutex locking again if we do a ovewrite dio */
3225         if (overwrite) {
3226                 inode_dio_done(inode);
3227                 up_read(&EXT4_I(inode)->i_data_sem);
3228                 mutex_lock(&inode->i_mutex);
3229         }
3230
3231         return ret;
3232 }
3233
3234 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3235                               const struct iovec *iov, loff_t offset,
3236                               unsigned long nr_segs)
3237 {
3238         struct file *file = iocb->ki_filp;
3239         struct inode *inode = file->f_mapping->host;
3240         ssize_t ret;
3241
3242         /*
3243          * If we are doing data journalling we don't support O_DIRECT
3244          */
3245         if (ext4_should_journal_data(inode))
3246                 return 0;
3247
3248         /* Let buffer I/O handle the inline data case. */
3249         if (ext4_has_inline_data(inode))
3250                 return 0;
3251
3252         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3253         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3254                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3255         else
3256                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3257         trace_ext4_direct_IO_exit(inode, offset,
3258                                 iov_length(iov, nr_segs), rw, ret);
3259         return ret;
3260 }
3261
3262 /*
3263  * Pages can be marked dirty completely asynchronously from ext4's journalling
3264  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3265  * much here because ->set_page_dirty is called under VFS locks.  The page is
3266  * not necessarily locked.
3267  *
3268  * We cannot just dirty the page and leave attached buffers clean, because the
3269  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3270  * or jbddirty because all the journalling code will explode.
3271  *
3272  * So what we do is to mark the page "pending dirty" and next time writepage
3273  * is called, propagate that into the buffers appropriately.
3274  */
3275 static int ext4_journalled_set_page_dirty(struct page *page)
3276 {
3277         SetPageChecked(page);
3278         return __set_page_dirty_nobuffers(page);
3279 }
3280
3281 static const struct address_space_operations ext4_ordered_aops = {
3282         .readpage               = ext4_readpage,
3283         .readpages              = ext4_readpages,
3284         .writepage              = ext4_writepage,
3285         .write_begin            = ext4_write_begin,
3286         .write_end              = ext4_ordered_write_end,
3287         .bmap                   = ext4_bmap,
3288         .invalidatepage         = ext4_invalidatepage,
3289         .releasepage            = ext4_releasepage,
3290         .direct_IO              = ext4_direct_IO,
3291         .migratepage            = buffer_migrate_page,
3292         .is_partially_uptodate  = block_is_partially_uptodate,
3293         .error_remove_page      = generic_error_remove_page,
3294 };
3295
3296 static const struct address_space_operations ext4_writeback_aops = {
3297         .readpage               = ext4_readpage,
3298         .readpages              = ext4_readpages,
3299         .writepage              = ext4_writepage,
3300         .write_begin            = ext4_write_begin,
3301         .write_end              = ext4_writeback_write_end,
3302         .bmap                   = ext4_bmap,
3303         .invalidatepage         = ext4_invalidatepage,
3304         .releasepage            = ext4_releasepage,
3305         .direct_IO              = ext4_direct_IO,
3306         .migratepage            = buffer_migrate_page,
3307         .is_partially_uptodate  = block_is_partially_uptodate,
3308         .error_remove_page      = generic_error_remove_page,
3309 };
3310
3311 static const struct address_space_operations ext4_journalled_aops = {
3312         .readpage               = ext4_readpage,
3313         .readpages              = ext4_readpages,
3314         .writepage              = ext4_writepage,
3315         .write_begin            = ext4_write_begin,
3316         .write_end              = ext4_journalled_write_end,
3317         .set_page_dirty         = ext4_journalled_set_page_dirty,
3318         .bmap                   = ext4_bmap,
3319         .invalidatepage         = ext4_journalled_invalidatepage,
3320         .releasepage            = ext4_releasepage,
3321         .direct_IO              = ext4_direct_IO,
3322         .is_partially_uptodate  = block_is_partially_uptodate,
3323         .error_remove_page      = generic_error_remove_page,
3324 };
3325
3326 static const struct address_space_operations ext4_da_aops = {
3327         .readpage               = ext4_readpage,
3328         .readpages              = ext4_readpages,
3329         .writepage              = ext4_writepage,
3330         .writepages             = ext4_da_writepages,
3331         .write_begin            = ext4_da_write_begin,
3332         .write_end              = ext4_da_write_end,
3333         .bmap                   = ext4_bmap,
3334         .invalidatepage         = ext4_da_invalidatepage,
3335         .releasepage            = ext4_releasepage,
3336         .direct_IO              = ext4_direct_IO,
3337         .migratepage            = buffer_migrate_page,
3338         .is_partially_uptodate  = block_is_partially_uptodate,
3339         .error_remove_page      = generic_error_remove_page,
3340 };
3341
3342 void ext4_set_aops(struct inode *inode)
3343 {
3344         switch (ext4_inode_journal_mode(inode)) {
3345         case EXT4_INODE_ORDERED_DATA_MODE:
3346                 if (test_opt(inode->i_sb, DELALLOC))
3347                         inode->i_mapping->a_ops = &ext4_da_aops;
3348                 else
3349                         inode->i_mapping->a_ops = &ext4_ordered_aops;
3350                 break;
3351         case EXT4_INODE_WRITEBACK_DATA_MODE:
3352                 if (test_opt(inode->i_sb, DELALLOC))
3353                         inode->i_mapping->a_ops = &ext4_da_aops;
3354                 else
3355                         inode->i_mapping->a_ops = &ext4_writeback_aops;
3356                 break;
3357         case EXT4_INODE_JOURNAL_DATA_MODE:
3358                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3359                 break;
3360         default:
3361                 BUG();
3362         }
3363 }
3364
3365
3366 /*
3367  * ext4_discard_partial_page_buffers()
3368  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3369  * This function finds and locks the page containing the offset
3370  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3371  * Calling functions that already have the page locked should call
3372  * ext4_discard_partial_page_buffers_no_lock directly.
3373  */
3374 int ext4_discard_partial_page_buffers(handle_t *handle,
3375                 struct address_space *mapping, loff_t from,
3376                 loff_t length, int flags)
3377 {
3378         struct inode *inode = mapping->host;
3379         struct page *page;
3380         int err = 0;
3381
3382         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3383                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3384         if (!page)
3385                 return -ENOMEM;
3386
3387         err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3388                 from, length, flags);
3389
3390         unlock_page(page);
3391         page_cache_release(page);
3392         return err;
3393 }
3394
3395 /*
3396  * ext4_discard_partial_page_buffers_no_lock()
3397  * Zeros a page range of length 'length' starting from offset 'from'.
3398  * Buffer heads that correspond to the block aligned regions of the
3399  * zeroed range will be unmapped.  Unblock aligned regions
3400  * will have the corresponding buffer head mapped if needed so that
3401  * that region of the page can be updated with the partial zero out.
3402  *
3403  * This function assumes that the page has already been  locked.  The
3404  * The range to be discarded must be contained with in the given page.
3405  * If the specified range exceeds the end of the page it will be shortened
3406  * to the end of the page that corresponds to 'from'.  This function is
3407  * appropriate for updating a page and it buffer heads to be unmapped and
3408  * zeroed for blocks that have been either released, or are going to be
3409  * released.
3410  *
3411  * handle: The journal handle
3412  * inode:  The files inode
3413  * page:   A locked page that contains the offset "from"
3414  * from:   The starting byte offset (from the beginning of the file)
3415  *         to begin discarding
3416  * len:    The length of bytes to discard
3417  * flags:  Optional flags that may be used:
3418  *
3419  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3420  *         Only zero the regions of the page whose buffer heads
3421  *         have already been unmapped.  This flag is appropriate
3422  *         for updating the contents of a page whose blocks may
3423  *         have already been released, and we only want to zero
3424  *         out the regions that correspond to those released blocks.
3425  *
3426  * Returns zero on success or negative on failure.
3427  */
3428 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3429                 struct inode *inode, struct page *page, loff_t from,
3430                 loff_t length, int flags)
3431 {
3432         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3433         unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3434         unsigned int blocksize, max, pos;
3435         ext4_lblk_t iblock;
3436         struct buffer_head *bh;
3437         int err = 0;
3438
3439         blocksize = inode->i_sb->s_blocksize;
3440         max = PAGE_CACHE_SIZE - offset;
3441
3442         if (index != page->index)
3443                 return -EINVAL;
3444
3445         /*
3446          * correct length if it does not fall between
3447          * 'from' and the end of the page
3448          */
3449         if (length > max || length < 0)
3450                 length = max;
3451
3452         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3453
3454         if (!page_has_buffers(page))
3455                 create_empty_buffers(page, blocksize, 0);
3456
3457         /* Find the buffer that contains "offset" */
3458         bh = page_buffers(page);
3459         pos = blocksize;
3460         while (offset >= pos) {
3461                 bh = bh->b_this_page;
3462                 iblock++;
3463                 pos += blocksize;
3464         }
3465
3466         pos = offset;
3467         while (pos < offset + length) {
3468                 unsigned int end_of_block, range_to_discard;
3469
3470                 err = 0;
3471
3472                 /* The length of space left to zero and unmap */
3473                 range_to_discard = offset + length - pos;
3474
3475                 /* The length of space until the end of the block */
3476                 end_of_block = blocksize - (pos & (blocksize-1));
3477
3478                 /*
3479                  * Do not unmap or zero past end of block
3480                  * for this buffer head
3481                  */
3482                 if (range_to_discard > end_of_block)
3483                         range_to_discard = end_of_block;
3484
3485
3486                 /*
3487                  * Skip this buffer head if we are only zeroing unampped
3488                  * regions of the page
3489                  */
3490                 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3491                         buffer_mapped(bh))
3492                                 goto next;
3493
3494                 /* If the range is block aligned, unmap */
3495                 if (range_to_discard == blocksize) {
3496                         clear_buffer_dirty(bh);
3497                         bh->b_bdev = NULL;
3498                         clear_buffer_mapped(bh);
3499                         clear_buffer_req(bh);
3500                         clear_buffer_new(bh);
3501                         clear_buffer_delay(bh);
3502                         clear_buffer_unwritten(bh);
3503                         clear_buffer_uptodate(bh);
3504                         zero_user(page, pos, range_to_discard);
3505                         BUFFER_TRACE(bh, "Buffer discarded");
3506                         goto next;
3507                 }
3508
3509                 /*
3510                  * If this block is not completely contained in the range
3511                  * to be discarded, then it is not going to be released. Because
3512                  * we need to keep this block, we need to make sure this part
3513                  * of the page is uptodate before we modify it by writeing
3514                  * partial zeros on it.
3515                  */
3516                 if (!buffer_mapped(bh)) {
3517                         /*
3518                          * Buffer head must be mapped before we can read
3519                          * from the block
3520                          */
3521                         BUFFER_TRACE(bh, "unmapped");
3522                         ext4_get_block(inode, iblock, bh, 0);
3523                         /* unmapped? It's a hole - nothing to do */
3524                         if (!buffer_mapped(bh)) {
3525                                 BUFFER_TRACE(bh, "still unmapped");
3526                                 goto next;
3527                         }
3528                 }
3529
3530                 /* Ok, it's mapped. Make sure it's up-to-date */
3531                 if (PageUptodate(page))
3532                         set_buffer_uptodate(bh);
3533
3534                 if (!buffer_uptodate(bh)) {
3535                         err = -EIO;
3536                         ll_rw_block(READ, 1, &bh);
3537                         wait_on_buffer(bh);
3538                         /* Uhhuh. Read error. Complain and punt.*/
3539                         if (!buffer_uptodate(bh))
3540                                 goto next;
3541                 }
3542
3543                 if (ext4_should_journal_data(inode)) {
3544                         BUFFER_TRACE(bh, "get write access");
3545                         err = ext4_journal_get_write_access(handle, bh);
3546                         if (err)
3547                                 goto next;
3548                 }
3549
3550                 zero_user(page, pos, range_to_discard);
3551
3552                 err = 0;
3553                 if (ext4_should_journal_data(inode)) {
3554                         err = ext4_handle_dirty_metadata(handle, inode, bh);
3555                 } else
3556                         mark_buffer_dirty(bh);
3557
3558                 BUFFER_TRACE(bh, "Partial buffer zeroed");
3559 next:
3560                 bh = bh->b_this_page;
3561                 iblock++;
3562                 pos += range_to_discard;
3563         }
3564
3565         return err;
3566 }
3567
3568 int ext4_can_truncate(struct inode *inode)
3569 {
3570         if (S_ISREG(inode->i_mode))
3571                 return 1;
3572         if (S_ISDIR(inode->i_mode))
3573                 return 1;
3574         if (S_ISLNK(inode->i_mode))
3575                 return !ext4_inode_is_fast_symlink(inode);
3576         return 0;
3577 }
3578
3579 /*
3580  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3581  * associated with the given offset and length
3582  *
3583  * @inode:  File inode
3584  * @offset: The offset where the hole will begin
3585  * @len:    The length of the hole
3586  *
3587  * Returns: 0 on success or negative on failure
3588  */
3589
3590 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3591 {
3592         struct inode *inode = file->f_path.dentry->d_inode;
3593         if (!S_ISREG(inode->i_mode))
3594                 return -EOPNOTSUPP;
3595
3596         if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3597                 return ext4_ind_punch_hole(file, offset, length);
3598
3599         if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3600                 /* TODO: Add support for bigalloc file systems */
3601                 return -EOPNOTSUPP;
3602         }
3603
3604         trace_ext4_punch_hole(inode, offset, length);
3605
3606         return ext4_ext_punch_hole(file, offset, length);
3607 }
3608
3609 /*
3610  * ext4_truncate()
3611  *
3612  * We block out ext4_get_block() block instantiations across the entire
3613  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3614  * simultaneously on behalf of the same inode.
3615  *
3616  * As we work through the truncate and commit bits of it to the journal there
3617  * is one core, guiding principle: the file's tree must always be consistent on
3618  * disk.  We must be able to restart the truncate after a crash.
3619  *
3620  * The file's tree may be transiently inconsistent in memory (although it
3621  * probably isn't), but whenever we close off and commit a journal transaction,
3622  * the contents of (the filesystem + the journal) must be consistent and
3623  * restartable.  It's pretty simple, really: bottom up, right to left (although
3624  * left-to-right works OK too).
3625  *
3626  * Note that at recovery time, journal replay occurs *before* the restart of
3627  * truncate against the orphan inode list.
3628  *
3629  * The committed inode has the new, desired i_size (which is the same as
3630  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3631  * that this inode's truncate did not complete and it will again call
3632  * ext4_truncate() to have another go.  So there will be instantiated blocks
3633  * to the right of the truncation point in a crashed ext4 filesystem.  But
3634  * that's fine - as long as they are linked from the inode, the post-crash
3635  * ext4_truncate() run will find them and release them.
3636  */
3637 void ext4_truncate(struct inode *inode)
3638 {
3639         trace_ext4_truncate_enter(inode);
3640
3641         if (!ext4_can_truncate(inode))
3642                 return;
3643
3644         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3645
3646         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3647                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3648
3649         if (ext4_has_inline_data(inode)) {
3650                 int has_inline = 1;
3651
3652                 ext4_inline_data_truncate(inode, &has_inline);
3653                 if (has_inline)
3654                         return;
3655         }
3656
3657         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3658                 ext4_ext_truncate(inode);
3659         else
3660                 ext4_ind_truncate(inode);
3661
3662         trace_ext4_truncate_exit(inode);
3663 }
3664
3665 /*
3666  * ext4_get_inode_loc returns with an extra refcount against the inode's
3667  * underlying buffer_head on success. If 'in_mem' is true, we have all
3668  * data in memory that is needed to recreate the on-disk version of this
3669  * inode.
3670  */
3671 static int __ext4_get_inode_loc(struct inode *inode,
3672                                 struct ext4_iloc *iloc, int in_mem)
3673 {
3674         struct ext4_group_desc  *gdp;
3675         struct buffer_head      *bh;
3676         struct super_block      *sb = inode->i_sb;
3677         ext4_fsblk_t            block;
3678         int                     inodes_per_block, inode_offset;
3679
3680         iloc->bh = NULL;
3681         if (!ext4_valid_inum(sb, inode->i_ino))
3682                 return -EIO;
3683
3684         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3685         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3686         if (!gdp)
3687                 return -EIO;
3688
3689         /*
3690          * Figure out the offset within the block group inode table
3691          */
3692         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3693         inode_offset = ((inode->i_ino - 1) %
3694                         EXT4_INODES_PER_GROUP(sb));
3695         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3696         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3697
3698         bh = sb_getblk(sb, block);
3699         if (unlikely(!bh))
3700                 return -ENOMEM;
3701         if (!buffer_uptodate(bh)) {
3702                 lock_buffer(bh);
3703
3704                 /*
3705                  * If the buffer has the write error flag, we have failed
3706                  * to write out another inode in the same block.  In this
3707                  * case, we don't have to read the block because we may
3708                  * read the old inode data successfully.
3709                  */
3710                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3711                         set_buffer_uptodate(bh);
3712
3713                 if (buffer_uptodate(bh)) {
3714                         /* someone brought it uptodate while we waited */
3715                         unlock_buffer(bh);
3716                         goto has_buffer;
3717                 }
3718
3719                 /*
3720                  * If we have all information of the inode in memory and this
3721                  * is the only valid inode in the block, we need not read the
3722                  * block.
3723                  */
3724                 if (in_mem) {
3725                         struct buffer_head *bitmap_bh;
3726                         int i, start;
3727
3728                         start = inode_offset & ~(inodes_per_block - 1);
3729
3730                         /* Is the inode bitmap in cache? */
3731                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3732                         if (unlikely(!bitmap_bh))
3733                                 goto make_io;
3734
3735                         /*
3736                          * If the inode bitmap isn't in cache then the
3737                          * optimisation may end up performing two reads instead
3738                          * of one, so skip it.
3739                          */
3740                         if (!buffer_uptodate(bitmap_bh)) {
3741                                 brelse(bitmap_bh);
3742                                 goto make_io;
3743                         }
3744                         for (i = start; i < start + inodes_per_block; i++) {
3745                                 if (i == inode_offset)
3746                                         continue;
3747                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3748                                         break;
3749                         }
3750                         brelse(bitmap_bh);
3751                         if (i == start + inodes_per_block) {
3752                                 /* all other inodes are free, so skip I/O */
3753                                 memset(bh->b_data, 0, bh->b_size);
3754                                 set_buffer_uptodate(bh);
3755                                 unlock_buffer(bh);
3756                                 goto has_buffer;
3757                         }
3758                 }
3759
3760 make_io:
3761                 /*
3762                  * If we need to do any I/O, try to pre-readahead extra
3763                  * blocks from the inode table.
3764                  */
3765                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3766                         ext4_fsblk_t b, end, table;
3767                         unsigned num;
3768
3769                         table = ext4_inode_table(sb, gdp);
3770                         /* s_inode_readahead_blks is always a power of 2 */
3771                         b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3772                         if (table > b)
3773                                 b = table;
3774                         end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3775                         num = EXT4_INODES_PER_GROUP(sb);
3776                         if (ext4_has_group_desc_csum(sb))
3777                                 num -= ext4_itable_unused_count(sb, gdp);
3778                         table += num / inodes_per_block;
3779                         if (end > table)
3780                                 end = table;
3781                         while (b <= end)
3782                                 sb_breadahead(sb, b++);
3783                 }
3784
3785                 /*
3786                  * There are other valid inodes in the buffer, this inode
3787                  * has in-inode xattrs, or we don't have this inode in memory.
3788                  * Read the block from disk.
3789                  */
3790                 trace_ext4_load_inode(inode);
3791                 get_bh(bh);
3792                 bh->b_end_io = end_buffer_read_sync;
3793                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3794                 wait_on_buffer(bh);
3795                 if (!buffer_uptodate(bh)) {
3796                         EXT4_ERROR_INODE_BLOCK(inode, block,
3797                                                "unable to read itable block");
3798                         brelse(bh);
3799                         return -EIO;
3800                 }
3801         }
3802 has_buffer:
3803         iloc->bh = bh;
3804         return 0;
3805 }
3806
3807 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3808 {
3809         /* We have all inode data except xattrs in memory here. */
3810         return __ext4_get_inode_loc(inode, iloc,
3811                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3812 }
3813
3814 void ext4_set_inode_flags(struct inode *inode)
3815 {
3816         unsigned int flags = EXT4_I(inode)->i_flags;
3817
3818         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3819         if (flags & EXT4_SYNC_FL)
3820                 inode->i_flags |= S_SYNC;
3821         if (flags & EXT4_APPEND_FL)
3822                 inode->i_flags |= S_APPEND;
3823         if (flags & EXT4_IMMUTABLE_FL)
3824                 inode->i_flags |= S_IMMUTABLE;
3825         if (flags & EXT4_NOATIME_FL)
3826                 inode->i_flags |= S_NOATIME;
3827         if (flags & EXT4_DIRSYNC_FL)
3828                 inode->i_flags |= S_DIRSYNC;
3829 }
3830
3831 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3832 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3833 {
3834         unsigned int vfs_fl;
3835         unsigned long old_fl, new_fl;
3836
3837         do {
3838                 vfs_fl = ei->vfs_inode.i_flags;
3839                 old_fl = ei->i_flags;
3840                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3841                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3842                                 EXT4_DIRSYNC_FL);
3843                 if (vfs_fl & S_SYNC)
3844                         new_fl |= EXT4_SYNC_FL;
3845                 if (vfs_fl & S_APPEND)
3846                         new_fl |= EXT4_APPEND_FL;
3847                 if (vfs_fl & S_IMMUTABLE)
3848                         new_fl |= EXT4_IMMUTABLE_FL;
3849                 if (vfs_fl & S_NOATIME)
3850                         new_fl |= EXT4_NOATIME_FL;
3851                 if (vfs_fl & S_DIRSYNC)
3852                         new_fl |= EXT4_DIRSYNC_FL;
3853         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3854 }
3855
3856 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3857                                   struct ext4_inode_info *ei)
3858 {
3859         blkcnt_t i_blocks ;
3860         struct inode *inode = &(ei->vfs_inode);
3861         struct super_block *sb = inode->i_sb;
3862
3863         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3864                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3865                 /* we are using combined 48 bit field */
3866                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3867                                         le32_to_cpu(raw_inode->i_blocks_lo);
3868                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3869                         /* i_blocks represent file system block size */
3870                         return i_blocks  << (inode->i_blkbits - 9);
3871                 } else {
3872                         return i_blocks;
3873                 }
3874         } else {
3875                 return le32_to_cpu(raw_inode->i_blocks_lo);
3876         }
3877 }
3878
3879 static inline void ext4_iget_extra_inode(struct inode *inode,
3880                                          struct ext4_inode *raw_inode,
3881                                          struct ext4_inode_info *ei)
3882 {
3883         __le32 *magic = (void *)raw_inode +
3884                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3885         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3886                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3887                 ext4_find_inline_data_nolock(inode);
3888         } else
3889                 EXT4_I(inode)->i_inline_off = 0;
3890 }
3891
3892 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3893 {
3894         struct ext4_iloc iloc;
3895         struct ext4_inode *raw_inode;
3896         struct ext4_inode_info *ei;
3897         struct inode *inode;
3898         journal_t *journal = EXT4_SB(sb)->s_journal;
3899         long ret;
3900         int block;
3901         uid_t i_uid;
3902         gid_t i_gid;
3903
3904         inode = iget_locked(sb, ino);
3905         if (!inode)
3906                 return ERR_PTR(-ENOMEM);
3907         if (!(inode->i_state & I_NEW))
3908                 return inode;
3909
3910         ei = EXT4_I(inode);
3911         iloc.bh = NULL;
3912
3913         ret = __ext4_get_inode_loc(inode, &iloc, 0);
3914         if (ret < 0)
3915                 goto bad_inode;
3916         raw_inode = ext4_raw_inode(&iloc);
3917
3918         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3919                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3920                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3921                     EXT4_INODE_SIZE(inode->i_sb)) {
3922                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3923                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3924                                 EXT4_INODE_SIZE(inode->i_sb));
3925                         ret = -EIO;
3926                         goto bad_inode;
3927                 }
3928         } else
3929                 ei->i_extra_isize = 0;
3930
3931         /* Precompute checksum seed for inode metadata */
3932         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3933                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3934                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3935                 __u32 csum;
3936                 __le32 inum = cpu_to_le32(inode->i_ino);
3937                 __le32 gen = raw_inode->i_generation;
3938                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3939                                    sizeof(inum));
3940                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3941                                               sizeof(gen));
3942         }
3943
3944         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3945                 EXT4_ERROR_INODE(inode, "checksum invalid");
3946                 ret = -EIO;
3947                 goto bad_inode;
3948         }
3949
3950         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3951         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3952         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3953         if (!(test_opt(inode->i_sb, NO_UID32))) {
3954                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3955                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3956         }
3957         i_uid_write(inode, i_uid);
3958         i_gid_write(inode, i_gid);
3959         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3960
3961         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
3962         ei->i_inline_off = 0;
3963         ei->i_dir_start_lookup = 0;
3964         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3965         /* We now have enough fields to check if the inode was active or not.
3966          * This is needed because nfsd might try to access dead inodes
3967          * the test is that same one that e2fsck uses
3968          * NeilBrown 1999oct15
3969          */
3970         if (inode->i_nlink == 0) {
3971                 if (inode->i_mode == 0 ||
3972                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3973                         /* this inode is deleted */
3974                         ret = -ESTALE;
3975                         goto bad_inode;
3976                 }
3977                 /* The only unlinked inodes we let through here have
3978                  * valid i_mode and are being read by the orphan
3979                  * recovery code: that's fine, we're about to complete
3980                  * the process of deleting those. */
3981         }
3982         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3983         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3984         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3985         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3986                 ei->i_file_acl |=
3987                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3988         inode->i_size = ext4_isize(raw_inode);
3989         ei->i_disksize = inode->i_size;
3990 #ifdef CONFIG_QUOTA
3991         ei->i_reserved_quota = 0;
3992 #endif
3993         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3994         ei->i_block_group = iloc.block_group;
3995         ei->i_last_alloc_group = ~0;
3996         /*
3997          * NOTE! The in-memory inode i_data array is in little-endian order
3998          * even on big-endian machines: we do NOT byteswap the block numbers!
3999          */
4000         for (block = 0; block < EXT4_N_BLOCKS; block++)
4001                 ei->i_data[block] = raw_inode->i_block[block];
4002         INIT_LIST_HEAD(&ei->i_orphan);
4003
4004         /*
4005          * Set transaction id's of transactions that have to be committed
4006          * to finish f[data]sync. We set them to currently running transaction
4007          * as we cannot be sure that the inode or some of its metadata isn't
4008          * part of the transaction - the inode could have been reclaimed and
4009          * now it is reread from disk.
4010          */
4011         if (journal) {
4012                 transaction_t *transaction;
4013                 tid_t tid;
4014
4015                 read_lock(&journal->j_state_lock);
4016                 if (journal->j_running_transaction)
4017                         transaction = journal->j_running_transaction;
4018                 else
4019                         transaction = journal->j_committing_transaction;
4020                 if (transaction)
4021                         tid = transaction->t_tid;
4022                 else
4023                         tid = journal->j_commit_sequence;
4024                 read_unlock(&journal->j_state_lock);
4025                 ei->i_sync_tid = tid;
4026                 ei->i_datasync_tid = tid;
4027         }
4028
4029         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4030                 if (ei->i_extra_isize == 0) {
4031                         /* The extra space is currently unused. Use it. */
4032                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4033                                             EXT4_GOOD_OLD_INODE_SIZE;
4034                 } else {
4035                         ext4_iget_extra_inode(inode, raw_inode, ei);
4036                 }
4037         }
4038
4039         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4040         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4041         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4042         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4043
4044         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4045         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4046                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4047                         inode->i_version |=
4048                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4049         }
4050
4051         ret = 0;
4052         if (ei->i_file_acl &&
4053             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4054                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4055                                  ei->i_file_acl);
4056                 ret = -EIO;
4057                 goto bad_inode;
4058         } else if (!ext4_has_inline_data(inode)) {
4059                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4060                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4061                             (S_ISLNK(inode->i_mode) &&
4062                              !ext4_inode_is_fast_symlink(inode))))
4063                                 /* Validate extent which is part of inode */
4064                                 ret = ext4_ext_check_inode(inode);
4065                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4066                            (S_ISLNK(inode->i_mode) &&
4067                             !ext4_inode_is_fast_symlink(inode))) {
4068                         /* Validate block references which are part of inode */
4069                         ret = ext4_ind_check_inode(inode);
4070                 }
4071         }
4072         if (ret)
4073                 goto bad_inode;
4074
4075         if (S_ISREG(inode->i_mode)) {
4076                 inode->i_op = &ext4_file_inode_operations;
4077                 inode->i_fop = &ext4_file_operations;
4078                 ext4_set_aops(inode);
4079         } else if (S_ISDIR(inode->i_mode)) {
4080                 inode->i_op = &ext4_dir_inode_operations;
4081                 inode->i_fop = &ext4_dir_operations;
4082         } else if (S_ISLNK(inode->i_mode)) {
4083                 if (ext4_inode_is_fast_symlink(inode)) {
4084                         inode->i_op = &ext4_fast_symlink_inode_operations;
4085                         nd_terminate_link(ei->i_data, inode->i_size,
4086                                 sizeof(ei->i_data) - 1);
4087                 } else {
4088                         inode->i_op = &ext4_symlink_inode_operations;
4089                         ext4_set_aops(inode);
4090                 }
4091         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4092               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4093                 inode->i_op = &ext4_special_inode_operations;
4094                 if (raw_inode->i_block[0])
4095                         init_special_inode(inode, inode->i_mode,
4096                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4097                 else
4098                         init_special_inode(inode, inode->i_mode,
4099                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4100         } else {
4101                 ret = -EIO;
4102                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4103                 goto bad_inode;
4104         }
4105         brelse(iloc.bh);
4106         ext4_set_inode_flags(inode);
4107         unlock_new_inode(inode);
4108         return inode;
4109
4110 bad_inode:
4111         brelse(iloc.bh);
4112         iget_failed(inode);
4113         return ERR_PTR(ret);
4114 }
4115
4116 static int ext4_inode_blocks_set(handle_t *handle,
4117                                 struct ext4_inode *raw_inode,
4118                                 struct ext4_inode_info *ei)
4119 {
4120         struct inode *inode = &(ei->vfs_inode);
4121         u64 i_blocks = inode->i_blocks;
4122         struct super_block *sb = inode->i_sb;
4123
4124         if (i_blocks <= ~0U) {
4125                 /*
4126                  * i_blocks can be represented in a 32 bit variable
4127                  * as multiple of 512 bytes
4128                  */
4129                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4130                 raw_inode->i_blocks_high = 0;
4131                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4132                 return 0;
4133         }
4134         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4135                 return -EFBIG;
4136
4137         if (i_blocks <= 0xffffffffffffULL) {
4138                 /*
4139                  * i_blocks can be represented in a 48 bit variable
4140                  * as multiple of 512 bytes
4141                  */
4142                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4143                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4144                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4145         } else {
4146                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4147                 /* i_block is stored in file system block size */
4148                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4149                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4150                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4151         }
4152         return 0;
4153 }
4154
4155 /*
4156  * Post the struct inode info into an on-disk inode location in the
4157  * buffer-cache.  This gobbles the caller's reference to the
4158  * buffer_head in the inode location struct.
4159  *
4160  * The caller must have write access to iloc->bh.
4161  */
4162 static int ext4_do_update_inode(handle_t *handle,
4163                                 struct inode *inode,
4164                                 struct ext4_iloc *iloc)
4165 {
4166         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4167         struct ext4_inode_info *ei = EXT4_I(inode);
4168         struct buffer_head *bh = iloc->bh;
4169         int err = 0, rc, block;
4170         int need_datasync = 0;
4171         uid_t i_uid;
4172         gid_t i_gid;
4173
4174         /* For fields not not tracking in the in-memory inode,
4175          * initialise them to zero for new inodes. */
4176         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4177                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4178
4179         ext4_get_inode_flags(ei);
4180         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4181         i_uid = i_uid_read(inode);
4182         i_gid = i_gid_read(inode);
4183         if (!(test_opt(inode->i_sb, NO_UID32))) {
4184                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4185                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4186 /*
4187  * Fix up interoperability with old kernels. Otherwise, old inodes get
4188  * re-used with the upper 16 bits of the uid/gid intact
4189  */
4190                 if (!ei->i_dtime) {
4191                         raw_inode->i_uid_high =
4192                                 cpu_to_le16(high_16_bits(i_uid));
4193                         raw_inode->i_gid_high =
4194                                 cpu_to_le16(high_16_bits(i_gid));
4195                 } else {
4196                         raw_inode->i_uid_high = 0;
4197                         raw_inode->i_gid_high = 0;
4198                 }
4199         } else {
4200                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4201                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4202                 raw_inode->i_uid_high = 0;
4203                 raw_inode->i_gid_high = 0;
4204         }
4205         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4206
4207         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4208         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4209         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4210         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4211
4212         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4213                 goto out_brelse;
4214         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4215         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4216         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4217             cpu_to_le32(EXT4_OS_HURD))
4218                 raw_inode->i_file_acl_high =
4219                         cpu_to_le16(ei->i_file_acl >> 32);
4220         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4221         if (ei->i_disksize != ext4_isize(raw_inode)) {
4222                 ext4_isize_set(raw_inode, ei->i_disksize);
4223                 need_datasync = 1;
4224         }
4225         if (ei->i_disksize > 0x7fffffffULL) {
4226                 struct super_block *sb = inode->i_sb;
4227                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4228                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4229                                 EXT4_SB(sb)->s_es->s_rev_level ==
4230                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4231                         /* If this is the first large file
4232                          * created, add a flag to the superblock.
4233                          */
4234                         err = ext4_journal_get_write_access(handle,
4235                                         EXT4_SB(sb)->s_sbh);
4236                         if (err)
4237                                 goto out_brelse;
4238                         ext4_update_dynamic_rev(sb);
4239                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4240                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4241                         ext4_handle_sync(handle);
4242                         err = ext4_handle_dirty_super(handle, sb);
4243                 }
4244         }
4245         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4246         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4247                 if (old_valid_dev(inode->i_rdev)) {
4248                         raw_inode->i_block[0] =
4249                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4250                         raw_inode->i_block[1] = 0;
4251                 } else {
4252                         raw_inode->i_block[0] = 0;
4253                         raw_inode->i_block[1] =
4254                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4255                         raw_inode->i_block[2] = 0;
4256                 }
4257         } else if (!ext4_has_inline_data(inode)) {
4258                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4259                         raw_inode->i_block[block] = ei->i_data[block];
4260         }
4261
4262         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4263         if (ei->i_extra_isize) {
4264                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4265                         raw_inode->i_version_hi =
4266                         cpu_to_le32(inode->i_version >> 32);
4267                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4268         }
4269
4270         ext4_inode_csum_set(inode, raw_inode, ei);
4271
4272         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4273         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4274         if (!err)
4275                 err = rc;
4276         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4277
4278         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4279 out_brelse:
4280         brelse(bh);
4281         ext4_std_error(inode->i_sb, err);
4282         return err;
4283 }
4284
4285 /*
4286  * ext4_write_inode()
4287  *
4288  * We are called from a few places:
4289  *
4290  * - Within generic_file_write() for O_SYNC files.
4291  *   Here, there will be no transaction running. We wait for any running
4292  *   transaction to commit.
4293  *
4294  * - Within sys_sync(), kupdate and such.
4295  *   We wait on commit, if tol to.
4296  *
4297  * - Within prune_icache() (PF_MEMALLOC == true)
4298  *   Here we simply return.  We can't afford to block kswapd on the
4299  *   journal commit.
4300  *
4301  * In all cases it is actually safe for us to return without doing anything,
4302  * because the inode has been copied into a raw inode buffer in
4303  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4304  * knfsd.
4305  *
4306  * Note that we are absolutely dependent upon all inode dirtiers doing the
4307  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4308  * which we are interested.
4309  *
4310  * It would be a bug for them to not do this.  The code:
4311  *
4312  *      mark_inode_dirty(inode)
4313  *      stuff();
4314  *      inode->i_size = expr;
4315  *
4316  * is in error because a kswapd-driven write_inode() could occur while
4317  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4318  * will no longer be on the superblock's dirty inode list.
4319  */
4320 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4321 {
4322         int err;
4323
4324         if (current->flags & PF_MEMALLOC)
4325                 return 0;
4326
4327         if (EXT4_SB(inode->i_sb)->s_journal) {
4328                 if (ext4_journal_current_handle()) {
4329                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4330                         dump_stack();
4331                         return -EIO;
4332                 }
4333
4334                 if (wbc->sync_mode != WB_SYNC_ALL)
4335                         return 0;
4336
4337                 err = ext4_force_commit(inode->i_sb);
4338         } else {
4339                 struct ext4_iloc iloc;
4340
4341                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4342                 if (err)
4343                         return err;
4344                 if (wbc->sync_mode == WB_SYNC_ALL)
4345                         sync_dirty_buffer(iloc.bh);
4346                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4347                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4348                                          "IO error syncing inode");
4349                         err = -EIO;
4350                 }
4351                 brelse(iloc.bh);
4352         }
4353         return err;
4354 }
4355
4356 /*
4357  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4358  * buffers that are attached to a page stradding i_size and are undergoing
4359  * commit. In that case we have to wait for commit to finish and try again.
4360  */
4361 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4362 {
4363         struct page *page;
4364         unsigned offset;
4365         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4366         tid_t commit_tid = 0;
4367         int ret;
4368
4369         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4370         /*
4371          * All buffers in the last page remain valid? Then there's nothing to
4372          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4373          * blocksize case
4374          */
4375         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4376                 return;
4377         while (1) {
4378                 page = find_lock_page(inode->i_mapping,
4379                                       inode->i_size >> PAGE_CACHE_SHIFT);
4380                 if (!page)
4381                         return;
4382                 ret = __ext4_journalled_invalidatepage(page, offset);
4383                 unlock_page(page);
4384                 page_cache_release(page);
4385                 if (ret != -EBUSY)
4386                         return;
4387                 commit_tid = 0;
4388                 read_lock(&journal->j_state_lock);
4389                 if (journal->j_committing_transaction)
4390                         commit_tid = journal->j_committing_transaction->t_tid;
4391                 read_unlock(&journal->j_state_lock);
4392                 if (commit_tid)
4393                         jbd2_log_wait_commit(journal, commit_tid);
4394         }
4395 }
4396
4397 /*
4398  * ext4_setattr()
4399  *
4400  * Called from notify_change.
4401  *
4402  * We want to trap VFS attempts to truncate the file as soon as
4403  * possible.  In particular, we want to make sure that when the VFS
4404  * shrinks i_size, we put the inode on the orphan list and modify
4405  * i_disksize immediately, so that during the subsequent flushing of
4406  * dirty pages and freeing of disk blocks, we can guarantee that any
4407  * commit will leave the blocks being flushed in an unused state on
4408  * disk.  (On recovery, the inode will get truncated and the blocks will
4409  * be freed, so we have a strong guarantee that no future commit will
4410  * leave these blocks visible to the user.)
4411  *
4412  * Another thing we have to assure is that if we are in ordered mode
4413  * and inode is still attached to the committing transaction, we must
4414  * we start writeout of all the dirty pages which are being truncated.
4415  * This way we are sure that all the data written in the previous
4416  * transaction are already on disk (truncate waits for pages under
4417  * writeback).
4418  *
4419  * Called with inode->i_mutex down.
4420  */
4421 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4422 {
4423         struct inode *inode = dentry->d_inode;
4424         int error, rc = 0;
4425         int orphan = 0;
4426         const unsigned int ia_valid = attr->ia_valid;
4427
4428         error = inode_change_ok(inode, attr);
4429         if (error)
4430                 return error;
4431
4432         if (is_quota_modification(inode, attr))
4433                 dquot_initialize(inode);
4434         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4435             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4436                 handle_t *handle;
4437
4438                 /* (user+group)*(old+new) structure, inode write (sb,
4439                  * inode block, ? - but truncate inode update has it) */
4440                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4441                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4442                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4443                 if (IS_ERR(handle)) {
4444                         error = PTR_ERR(handle);
4445                         goto err_out;
4446                 }
4447                 error = dquot_transfer(inode, attr);
4448                 if (error) {
4449                         ext4_journal_stop(handle);
4450                         return error;
4451                 }
4452                 /* Update corresponding info in inode so that everything is in
4453                  * one transaction */
4454                 if (attr->ia_valid & ATTR_UID)
4455                         inode->i_uid = attr->ia_uid;
4456                 if (attr->ia_valid & ATTR_GID)
4457                         inode->i_gid = attr->ia_gid;
4458                 error = ext4_mark_inode_dirty(handle, inode);
4459                 ext4_journal_stop(handle);
4460         }
4461
4462         if (attr->ia_valid & ATTR_SIZE) {
4463
4464                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4465                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4466
4467                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4468                                 return -EFBIG;
4469                 }
4470         }
4471
4472         if (S_ISREG(inode->i_mode) &&
4473             attr->ia_valid & ATTR_SIZE &&
4474             (attr->ia_size < inode->i_size)) {
4475                 handle_t *handle;
4476
4477                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4478                 if (IS_ERR(handle)) {
4479                         error = PTR_ERR(handle);
4480                         goto err_out;
4481                 }
4482                 if (ext4_handle_valid(handle)) {
4483                         error = ext4_orphan_add(handle, inode);
4484                         orphan = 1;
4485                 }
4486                 EXT4_I(inode)->i_disksize = attr->ia_size;
4487                 rc = ext4_mark_inode_dirty(handle, inode);
4488                 if (!error)
4489                         error = rc;
4490                 ext4_journal_stop(handle);
4491
4492                 if (ext4_should_order_data(inode)) {
4493                         error = ext4_begin_ordered_truncate(inode,
4494                                                             attr->ia_size);
4495                         if (error) {
4496                                 /* Do as much error cleanup as possible */
4497                                 handle = ext4_journal_start(inode,
4498                                                             EXT4_HT_INODE, 3);
4499                                 if (IS_ERR(handle)) {
4500                                         ext4_orphan_del(NULL, inode);
4501                                         goto err_out;
4502                                 }
4503                                 ext4_orphan_del(handle, inode);
4504                                 orphan = 0;
4505                                 ext4_journal_stop(handle);
4506                                 goto err_out;
4507                         }
4508                 }
4509         }
4510
4511         if (attr->ia_valid & ATTR_SIZE) {
4512                 if (attr->ia_size != inode->i_size) {
4513                         loff_t oldsize = inode->i_size;
4514
4515                         i_size_write(inode, attr->ia_size);
4516                         /*
4517                          * Blocks are going to be removed from the inode. Wait
4518                          * for dio in flight.  Temporarily disable
4519                          * dioread_nolock to prevent livelock.
4520                          */
4521                         if (orphan) {
4522                                 if (!ext4_should_journal_data(inode)) {
4523                                         ext4_inode_block_unlocked_dio(inode);
4524                                         inode_dio_wait(inode);
4525                                         ext4_inode_resume_unlocked_dio(inode);
4526                                 } else
4527                                         ext4_wait_for_tail_page_commit(inode);
4528                         }
4529                         /*
4530                          * Truncate pagecache after we've waited for commit
4531                          * in data=journal mode to make pages freeable.
4532                          */
4533                         truncate_pagecache(inode, oldsize, inode->i_size);
4534                 }
4535                 ext4_truncate(inode);
4536         }
4537
4538         if (!rc) {
4539                 setattr_copy(inode, attr);
4540                 mark_inode_dirty(inode);
4541         }
4542
4543         /*
4544          * If the call to ext4_truncate failed to get a transaction handle at
4545          * all, we need to clean up the in-core orphan list manually.
4546          */
4547         if (orphan && inode->i_nlink)
4548                 ext4_orphan_del(NULL, inode);
4549
4550         if (!rc && (ia_valid & ATTR_MODE))
4551                 rc = ext4_acl_chmod(inode);
4552
4553 err_out:
4554         ext4_std_error(inode->i_sb, error);
4555         if (!error)
4556                 error = rc;
4557         return error;
4558 }
4559
4560 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4561                  struct kstat *stat)
4562 {
4563         struct inode *inode;
4564         unsigned long delalloc_blocks;
4565
4566         inode = dentry->d_inode;
4567         generic_fillattr(inode, stat);
4568
4569         /*
4570          * We can't update i_blocks if the block allocation is delayed
4571          * otherwise in the case of system crash before the real block
4572          * allocation is done, we will have i_blocks inconsistent with
4573          * on-disk file blocks.
4574          * We always keep i_blocks updated together with real
4575          * allocation. But to not confuse with user, stat
4576          * will return the blocks that include the delayed allocation
4577          * blocks for this file.
4578          */
4579         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4580                                 EXT4_I(inode)->i_reserved_data_blocks);
4581
4582         stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4583         return 0;
4584 }
4585
4586 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4587 {
4588         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4589                 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4590         return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4591 }
4592
4593 /*
4594  * Account for index blocks, block groups bitmaps and block group
4595  * descriptor blocks if modify datablocks and index blocks
4596  * worse case, the indexs blocks spread over different block groups
4597  *
4598  * If datablocks are discontiguous, they are possible to spread over
4599  * different block groups too. If they are contiguous, with flexbg,
4600  * they could still across block group boundary.
4601  *
4602  * Also account for superblock, inode, quota and xattr blocks
4603  */
4604 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4605 {
4606         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4607         int gdpblocks;
4608         int idxblocks;
4609         int ret = 0;
4610
4611         /*
4612          * How many index blocks need to touch to modify nrblocks?
4613          * The "Chunk" flag indicating whether the nrblocks is
4614          * physically contiguous on disk
4615          *
4616          * For Direct IO and fallocate, they calls get_block to allocate
4617          * one single extent at a time, so they could set the "Chunk" flag
4618          */
4619         idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4620
4621         ret = idxblocks;
4622
4623         /*
4624          * Now let's see how many group bitmaps and group descriptors need
4625          * to account
4626          */
4627         groups = idxblocks;
4628         if (chunk)
4629                 groups += 1;
4630         else
4631                 groups += nrblocks;
4632
4633         gdpblocks = groups;
4634         if (groups > ngroups)
4635                 groups = ngroups;
4636         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4637                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4638
4639         /* bitmaps and block group descriptor blocks */
4640         ret += groups + gdpblocks;
4641
4642         /* Blocks for super block, inode, quota and xattr blocks */
4643         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4644
4645         return ret;
4646 }
4647
4648 /*
4649  * Calculate the total number of credits to reserve to fit
4650  * the modification of a single pages into a single transaction,
4651  * which may include multiple chunks of block allocations.
4652  *
4653  * This could be called via ext4_write_begin()
4654  *
4655  * We need to consider the worse case, when
4656  * one new block per extent.
4657  */
4658 int ext4_writepage_trans_blocks(struct inode *inode)
4659 {
4660         int bpp = ext4_journal_blocks_per_page(inode);
4661         int ret;
4662
4663         ret = ext4_meta_trans_blocks(inode, bpp, 0);
4664
4665         /* Account for data blocks for journalled mode */
4666         if (ext4_should_journal_data(inode))
4667                 ret += bpp;
4668         return ret;
4669 }
4670
4671 /*
4672  * Calculate the journal credits for a chunk of data modification.
4673  *
4674  * This is called from DIO, fallocate or whoever calling
4675  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4676  *
4677  * journal buffers for data blocks are not included here, as DIO
4678  * and fallocate do no need to journal data buffers.
4679  */
4680 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4681 {
4682         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4683 }
4684
4685 /*
4686  * The caller must have previously called ext4_reserve_inode_write().
4687  * Give this, we know that the caller already has write access to iloc->bh.
4688  */
4689 int ext4_mark_iloc_dirty(handle_t *handle,
4690                          struct inode *inode, struct ext4_iloc *iloc)
4691 {
4692         int err = 0;
4693
4694         if (IS_I_VERSION(inode))
4695                 inode_inc_iversion(inode);
4696
4697         /* the do_update_inode consumes one bh->b_count */
4698         get_bh(iloc->bh);
4699
4700         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4701         err = ext4_do_update_inode(handle, inode, iloc);
4702         put_bh(iloc->bh);
4703         return err;
4704 }
4705
4706 /*
4707  * On success, We end up with an outstanding reference count against
4708  * iloc->bh.  This _must_ be cleaned up later.
4709  */
4710
4711 int
4712 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4713                          struct ext4_iloc *iloc)
4714 {
4715         int err;
4716
4717         err = ext4_get_inode_loc(inode, iloc);
4718         if (!err) {
4719                 BUFFER_TRACE(iloc->bh, "get_write_access");
4720                 err = ext4_journal_get_write_access(handle, iloc->bh);
4721                 if (err) {
4722                         brelse(iloc->bh);
4723                         iloc->bh = NULL;
4724                 }
4725         }
4726         ext4_std_error(inode->i_sb, err);
4727         return err;
4728 }
4729
4730 /*
4731  * Expand an inode by new_extra_isize bytes.
4732  * Returns 0 on success or negative error number on failure.
4733  */
4734 static int ext4_expand_extra_isize(struct inode *inode,
4735                                    unsigned int new_extra_isize,
4736                                    struct ext4_iloc iloc,
4737                                    handle_t *handle)
4738 {
4739         struct ext4_inode *raw_inode;
4740         struct ext4_xattr_ibody_header *header;
4741
4742         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4743                 return 0;
4744
4745         raw_inode = ext4_raw_inode(&iloc);
4746
4747         header = IHDR(inode, raw_inode);
4748
4749         /* No extended attributes present */
4750         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4751             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4752                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4753                         new_extra_isize);
4754                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4755                 return 0;
4756         }
4757
4758         /* try to expand with EAs present */
4759         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4760                                           raw_inode, handle);
4761 }
4762
4763 /*
4764  * What we do here is to mark the in-core inode as clean with respect to inode
4765  * dirtiness (it may still be data-dirty).
4766  * This means that the in-core inode may be reaped by prune_icache
4767  * without having to perform any I/O.  This is a very good thing,
4768  * because *any* task may call prune_icache - even ones which
4769  * have a transaction open against a different journal.
4770  *
4771  * Is this cheating?  Not really.  Sure, we haven't written the
4772  * inode out, but prune_icache isn't a user-visible syncing function.
4773  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4774  * we start and wait on commits.
4775  */
4776 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4777 {
4778         struct ext4_iloc iloc;
4779         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4780         static unsigned int mnt_count;
4781         int err, ret;
4782
4783         might_sleep();
4784         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4785         err = ext4_reserve_inode_write(handle, inode, &iloc);
4786         if (ext4_handle_valid(handle) &&
4787             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4788             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4789                 /*
4790                  * We need extra buffer credits since we may write into EA block
4791                  * with this same handle. If journal_extend fails, then it will
4792                  * only result in a minor loss of functionality for that inode.
4793                  * If this is felt to be critical, then e2fsck should be run to
4794                  * force a large enough s_min_extra_isize.
4795                  */
4796                 if ((jbd2_journal_extend(handle,
4797                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4798                         ret = ext4_expand_extra_isize(inode,
4799                                                       sbi->s_want_extra_isize,
4800                                                       iloc, handle);
4801                         if (ret) {
4802                                 ext4_set_inode_state(inode,
4803                                                      EXT4_STATE_NO_EXPAND);
4804                                 if (mnt_count !=
4805                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4806                                         ext4_warning(inode->i_sb,
4807                                         "Unable to expand inode %lu. Delete"
4808                                         " some EAs or run e2fsck.",
4809                                         inode->i_ino);
4810                                         mnt_count =
4811                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4812                                 }
4813                         }
4814                 }
4815         }
4816         if (!err)
4817                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4818         return err;
4819 }
4820
4821 /*
4822  * ext4_dirty_inode() is called from __mark_inode_dirty()
4823  *
4824  * We're really interested in the case where a file is being extended.
4825  * i_size has been changed by generic_commit_write() and we thus need
4826  * to include the updated inode in the current transaction.
4827  *
4828  * Also, dquot_alloc_block() will always dirty the inode when blocks
4829  * are allocated to the file.
4830  *
4831  * If the inode is marked synchronous, we don't honour that here - doing
4832  * so would cause a commit on atime updates, which we don't bother doing.
4833  * We handle synchronous inodes at the highest possible level.
4834  */
4835 void ext4_dirty_inode(struct inode *inode, int flags)
4836 {
4837         handle_t *handle;
4838
4839         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4840         if (IS_ERR(handle))
4841                 goto out;
4842
4843         ext4_mark_inode_dirty(handle, inode);
4844
4845         ext4_journal_stop(handle);
4846 out:
4847         return;
4848 }
4849
4850 #if 0
4851 /*
4852  * Bind an inode's backing buffer_head into this transaction, to prevent
4853  * it from being flushed to disk early.  Unlike
4854  * ext4_reserve_inode_write, this leaves behind no bh reference and
4855  * returns no iloc structure, so the caller needs to repeat the iloc
4856  * lookup to mark the inode dirty later.
4857  */
4858 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4859 {
4860         struct ext4_iloc iloc;
4861
4862         int err = 0;
4863         if (handle) {
4864                 err = ext4_get_inode_loc(inode, &iloc);
4865                 if (!err) {
4866                         BUFFER_TRACE(iloc.bh, "get_write_access");
4867                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4868                         if (!err)
4869                                 err = ext4_handle_dirty_metadata(handle,
4870                                                                  NULL,
4871                                                                  iloc.bh);
4872                         brelse(iloc.bh);
4873                 }
4874         }
4875         ext4_std_error(inode->i_sb, err);
4876         return err;
4877 }
4878 #endif
4879
4880 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4881 {
4882         journal_t *journal;
4883         handle_t *handle;
4884         int err;
4885
4886         /*
4887          * We have to be very careful here: changing a data block's
4888          * journaling status dynamically is dangerous.  If we write a
4889          * data block to the journal, change the status and then delete
4890          * that block, we risk forgetting to revoke the old log record
4891          * from the journal and so a subsequent replay can corrupt data.
4892          * So, first we make sure that the journal is empty and that
4893          * nobody is changing anything.
4894          */
4895
4896         journal = EXT4_JOURNAL(inode);
4897         if (!journal)
4898                 return 0;
4899         if (is_journal_aborted(journal))
4900                 return -EROFS;
4901         /* We have to allocate physical blocks for delalloc blocks
4902          * before flushing journal. otherwise delalloc blocks can not
4903          * be allocated any more. even more truncate on delalloc blocks
4904          * could trigger BUG by flushing delalloc blocks in journal.
4905          * There is no delalloc block in non-journal data mode.
4906          */
4907         if (val && test_opt(inode->i_sb, DELALLOC)) {
4908                 err = ext4_alloc_da_blocks(inode);
4909                 if (err < 0)
4910                         return err;
4911         }
4912
4913         /* Wait for all existing dio workers */
4914         ext4_inode_block_unlocked_dio(inode);
4915         inode_dio_wait(inode);
4916
4917         jbd2_journal_lock_updates(journal);
4918
4919         /*
4920          * OK, there are no updates running now, and all cached data is
4921          * synced to disk.  We are now in a completely consistent state
4922          * which doesn't have anything in the journal, and we know that
4923          * no filesystem updates are running, so it is safe to modify
4924          * the inode's in-core data-journaling state flag now.
4925          */
4926
4927         if (val)
4928                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4929         else {
4930                 jbd2_journal_flush(journal);
4931                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4932         }
4933         ext4_set_aops(inode);
4934
4935         jbd2_journal_unlock_updates(journal);
4936         ext4_inode_resume_unlocked_dio(inode);
4937
4938         /* Finally we can mark the inode as dirty. */
4939
4940         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4941         if (IS_ERR(handle))
4942                 return PTR_ERR(handle);
4943
4944         err = ext4_mark_inode_dirty(handle, inode);
4945         ext4_handle_sync(handle);
4946         ext4_journal_stop(handle);
4947         ext4_std_error(inode->i_sb, err);
4948
4949         return err;
4950 }
4951
4952 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4953 {
4954         return !buffer_mapped(bh);
4955 }
4956
4957 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4958 {
4959         struct page *page = vmf->page;
4960         loff_t size;
4961         unsigned long len;
4962         int ret;
4963         struct file *file = vma->vm_file;
4964         struct inode *inode = file->f_path.dentry->d_inode;
4965         struct address_space *mapping = inode->i_mapping;
4966         handle_t *handle;
4967         get_block_t *get_block;
4968         int retries = 0;
4969
4970         sb_start_pagefault(inode->i_sb);
4971         file_update_time(vma->vm_file);
4972         /* Delalloc case is easy... */
4973         if (test_opt(inode->i_sb, DELALLOC) &&
4974             !ext4_should_journal_data(inode) &&
4975             !ext4_nonda_switch(inode->i_sb)) {
4976                 do {
4977                         ret = __block_page_mkwrite(vma, vmf,
4978                                                    ext4_da_get_block_prep);
4979                 } while (ret == -ENOSPC &&
4980                        ext4_should_retry_alloc(inode->i_sb, &retries));
4981                 goto out_ret;
4982         }
4983
4984         lock_page(page);
4985         size = i_size_read(inode);
4986         /* Page got truncated from under us? */
4987         if (page->mapping != mapping || page_offset(page) > size) {
4988                 unlock_page(page);
4989                 ret = VM_FAULT_NOPAGE;
4990                 goto out;
4991         }
4992
4993         if (page->index == size >> PAGE_CACHE_SHIFT)
4994                 len = size & ~PAGE_CACHE_MASK;
4995         else
4996                 len = PAGE_CACHE_SIZE;
4997         /*
4998          * Return if we have all the buffers mapped. This avoids the need to do
4999          * journal_start/journal_stop which can block and take a long time
5000          */
5001         if (page_has_buffers(page)) {
5002                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5003                                             0, len, NULL,
5004                                             ext4_bh_unmapped)) {
5005                         /* Wait so that we don't change page under IO */
5006                         wait_on_page_writeback(page);
5007                         ret = VM_FAULT_LOCKED;
5008                         goto out;
5009                 }
5010         }
5011         unlock_page(page);
5012         /* OK, we need to fill the hole... */
5013         if (ext4_should_dioread_nolock(inode))
5014                 get_block = ext4_get_block_write;
5015         else
5016                 get_block = ext4_get_block;
5017 retry_alloc:
5018         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5019                                     ext4_writepage_trans_blocks(inode));
5020         if (IS_ERR(handle)) {
5021                 ret = VM_FAULT_SIGBUS;
5022                 goto out;
5023         }
5024         ret = __block_page_mkwrite(vma, vmf, get_block);
5025         if (!ret && ext4_should_journal_data(inode)) {
5026                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5027                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5028                         unlock_page(page);
5029                         ret = VM_FAULT_SIGBUS;
5030                         ext4_journal_stop(handle);
5031                         goto out;
5032                 }
5033                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5034         }
5035         ext4_journal_stop(handle);
5036         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5037                 goto retry_alloc;
5038 out_ret:
5039         ret = block_page_mkwrite_return(ret);
5040 out:
5041         sb_end_pagefault(inode->i_sb);
5042         return ret;
5043 }