]> Pileus Git - ~andy/linux/blob - fs/ext4/inode.c
ASoC: wm8962: Use IS_ENABLED() macro
[~andy/linux] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52                               struct ext4_inode_info *ei)
53 {
54         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55         __u16 csum_lo;
56         __u16 csum_hi = 0;
57         __u32 csum;
58
59         csum_lo = le16_to_cpu(raw->i_checksum_lo);
60         raw->i_checksum_lo = 0;
61         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63                 csum_hi = le16_to_cpu(raw->i_checksum_hi);
64                 raw->i_checksum_hi = 0;
65         }
66
67         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68                            EXT4_INODE_SIZE(inode->i_sb));
69
70         raw->i_checksum_lo = cpu_to_le16(csum_lo);
71         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73                 raw->i_checksum_hi = cpu_to_le16(csum_hi);
74
75         return csum;
76 }
77
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79                                   struct ext4_inode_info *ei)
80 {
81         __u32 provided, calculated;
82
83         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84             cpu_to_le32(EXT4_OS_LINUX) ||
85             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87                 return 1;
88
89         provided = le16_to_cpu(raw->i_checksum_lo);
90         calculated = ext4_inode_csum(inode, raw, ei);
91         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94         else
95                 calculated &= 0xFFFF;
96
97         return provided == calculated;
98 }
99
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101                                 struct ext4_inode_info *ei)
102 {
103         __u32 csum;
104
105         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106             cpu_to_le32(EXT4_OS_LINUX) ||
107             !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108                 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109                 return;
110
111         csum = ext4_inode_csum(inode, raw, ei);
112         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119                                               loff_t new_size)
120 {
121         trace_ext4_begin_ordered_truncate(inode, new_size);
122         /*
123          * If jinode is zero, then we never opened the file for
124          * writing, so there's no need to call
125          * jbd2_journal_begin_ordered_truncate() since there's no
126          * outstanding writes we need to flush.
127          */
128         if (!EXT4_I(inode)->jinode)
129                 return 0;
130         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131                                                    EXT4_I(inode)->jinode,
132                                                    new_size);
133 }
134
135 static void ext4_invalidatepage(struct page *page, unsigned int offset,
136                                 unsigned int length);
137 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140                                   int pextents);
141
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147         int ea_blocks = EXT4_I(inode)->i_file_acl ?
148                 (inode->i_sb->s_blocksize >> 9) : 0;
149
150         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159                                  int nblocks)
160 {
161         int ret;
162
163         /*
164          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165          * moment, get_block can be called only for blocks inside i_size since
166          * page cache has been already dropped and writes are blocked by
167          * i_mutex. So we can safely drop the i_data_sem here.
168          */
169         BUG_ON(EXT4_JOURNAL(inode) == NULL);
170         jbd_debug(2, "restarting handle %p\n", handle);
171         up_write(&EXT4_I(inode)->i_data_sem);
172         ret = ext4_journal_restart(handle, nblocks);
173         down_write(&EXT4_I(inode)->i_data_sem);
174         ext4_discard_preallocations(inode);
175
176         return ret;
177 }
178
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184         handle_t *handle;
185         int err;
186
187         trace_ext4_evict_inode(inode);
188
189         if (inode->i_nlink) {
190                 /*
191                  * When journalling data dirty buffers are tracked only in the
192                  * journal. So although mm thinks everything is clean and
193                  * ready for reaping the inode might still have some pages to
194                  * write in the running transaction or waiting to be
195                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
196                  * (via truncate_inode_pages()) to discard these buffers can
197                  * cause data loss. Also even if we did not discard these
198                  * buffers, we would have no way to find them after the inode
199                  * is reaped and thus user could see stale data if he tries to
200                  * read them before the transaction is checkpointed. So be
201                  * careful and force everything to disk here... We use
202                  * ei->i_datasync_tid to store the newest transaction
203                  * containing inode's data.
204                  *
205                  * Note that directories do not have this problem because they
206                  * don't use page cache.
207                  */
208                 if (ext4_should_journal_data(inode) &&
209                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210                     inode->i_ino != EXT4_JOURNAL_INO) {
211                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
214                         jbd2_complete_transaction(journal, commit_tid);
215                         filemap_write_and_wait(&inode->i_data);
216                 }
217                 truncate_inode_pages(&inode->i_data, 0);
218
219                 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
220                 goto no_delete;
221         }
222
223         if (!is_bad_inode(inode))
224                 dquot_initialize(inode);
225
226         if (ext4_should_order_data(inode))
227                 ext4_begin_ordered_truncate(inode, 0);
228         truncate_inode_pages(&inode->i_data, 0);
229
230         WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231         if (is_bad_inode(inode))
232                 goto no_delete;
233
234         /*
235          * Protect us against freezing - iput() caller didn't have to have any
236          * protection against it
237          */
238         sb_start_intwrite(inode->i_sb);
239         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240                                     ext4_blocks_for_truncate(inode)+3);
241         if (IS_ERR(handle)) {
242                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243                 /*
244                  * If we're going to skip the normal cleanup, we still need to
245                  * make sure that the in-core orphan linked list is properly
246                  * cleaned up.
247                  */
248                 ext4_orphan_del(NULL, inode);
249                 sb_end_intwrite(inode->i_sb);
250                 goto no_delete;
251         }
252
253         if (IS_SYNC(inode))
254                 ext4_handle_sync(handle);
255         inode->i_size = 0;
256         err = ext4_mark_inode_dirty(handle, inode);
257         if (err) {
258                 ext4_warning(inode->i_sb,
259                              "couldn't mark inode dirty (err %d)", err);
260                 goto stop_handle;
261         }
262         if (inode->i_blocks)
263                 ext4_truncate(inode);
264
265         /*
266          * ext4_ext_truncate() doesn't reserve any slop when it
267          * restarts journal transactions; therefore there may not be
268          * enough credits left in the handle to remove the inode from
269          * the orphan list and set the dtime field.
270          */
271         if (!ext4_handle_has_enough_credits(handle, 3)) {
272                 err = ext4_journal_extend(handle, 3);
273                 if (err > 0)
274                         err = ext4_journal_restart(handle, 3);
275                 if (err != 0) {
276                         ext4_warning(inode->i_sb,
277                                      "couldn't extend journal (err %d)", err);
278                 stop_handle:
279                         ext4_journal_stop(handle);
280                         ext4_orphan_del(NULL, inode);
281                         sb_end_intwrite(inode->i_sb);
282                         goto no_delete;
283                 }
284         }
285
286         /*
287          * Kill off the orphan record which ext4_truncate created.
288          * AKPM: I think this can be inside the above `if'.
289          * Note that ext4_orphan_del() has to be able to cope with the
290          * deletion of a non-existent orphan - this is because we don't
291          * know if ext4_truncate() actually created an orphan record.
292          * (Well, we could do this if we need to, but heck - it works)
293          */
294         ext4_orphan_del(handle, inode);
295         EXT4_I(inode)->i_dtime  = get_seconds();
296
297         /*
298          * One subtle ordering requirement: if anything has gone wrong
299          * (transaction abort, IO errors, whatever), then we can still
300          * do these next steps (the fs will already have been marked as
301          * having errors), but we can't free the inode if the mark_dirty
302          * fails.
303          */
304         if (ext4_mark_inode_dirty(handle, inode))
305                 /* If that failed, just do the required in-core inode clear. */
306                 ext4_clear_inode(inode);
307         else
308                 ext4_free_inode(handle, inode);
309         ext4_journal_stop(handle);
310         sb_end_intwrite(inode->i_sb);
311         return;
312 no_delete:
313         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
314 }
315
316 #ifdef CONFIG_QUOTA
317 qsize_t *ext4_get_reserved_space(struct inode *inode)
318 {
319         return &EXT4_I(inode)->i_reserved_quota;
320 }
321 #endif
322
323 /*
324  * Calculate the number of metadata blocks need to reserve
325  * to allocate a block located at @lblock
326  */
327 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
328 {
329         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
330                 return ext4_ext_calc_metadata_amount(inode, lblock);
331
332         return ext4_ind_calc_metadata_amount(inode, lblock);
333 }
334
335 /*
336  * Called with i_data_sem down, which is important since we can call
337  * ext4_discard_preallocations() from here.
338  */
339 void ext4_da_update_reserve_space(struct inode *inode,
340                                         int used, int quota_claim)
341 {
342         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
343         struct ext4_inode_info *ei = EXT4_I(inode);
344
345         spin_lock(&ei->i_block_reservation_lock);
346         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
347         if (unlikely(used > ei->i_reserved_data_blocks)) {
348                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
349                          "with only %d reserved data blocks",
350                          __func__, inode->i_ino, used,
351                          ei->i_reserved_data_blocks);
352                 WARN_ON(1);
353                 used = ei->i_reserved_data_blocks;
354         }
355
356         if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
357                 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358                         "with only %d reserved metadata blocks "
359                         "(releasing %d blocks with reserved %d data blocks)",
360                         inode->i_ino, ei->i_allocated_meta_blocks,
361                              ei->i_reserved_meta_blocks, used,
362                              ei->i_reserved_data_blocks);
363                 WARN_ON(1);
364                 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365         }
366
367         /* Update per-inode reservations */
368         ei->i_reserved_data_blocks -= used;
369         ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
370         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
371                            used + ei->i_allocated_meta_blocks);
372         ei->i_allocated_meta_blocks = 0;
373
374         if (ei->i_reserved_data_blocks == 0) {
375                 /*
376                  * We can release all of the reserved metadata blocks
377                  * only when we have written all of the delayed
378                  * allocation blocks.
379                  */
380                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
381                                    ei->i_reserved_meta_blocks);
382                 ei->i_reserved_meta_blocks = 0;
383                 ei->i_da_metadata_calc_len = 0;
384         }
385         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
386
387         /* Update quota subsystem for data blocks */
388         if (quota_claim)
389                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390         else {
391                 /*
392                  * We did fallocate with an offset that is already delayed
393                  * allocated. So on delayed allocated writeback we should
394                  * not re-claim the quota for fallocated blocks.
395                  */
396                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
397         }
398
399         /*
400          * If we have done all the pending block allocations and if
401          * there aren't any writers on the inode, we can discard the
402          * inode's preallocations.
403          */
404         if ((ei->i_reserved_data_blocks == 0) &&
405             (atomic_read(&inode->i_writecount) == 0))
406                 ext4_discard_preallocations(inode);
407 }
408
409 static int __check_block_validity(struct inode *inode, const char *func,
410                                 unsigned int line,
411                                 struct ext4_map_blocks *map)
412 {
413         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414                                    map->m_len)) {
415                 ext4_error_inode(inode, func, line, map->m_pblk,
416                                  "lblock %lu mapped to illegal pblock "
417                                  "(length %d)", (unsigned long) map->m_lblk,
418                                  map->m_len);
419                 return -EIO;
420         }
421         return 0;
422 }
423
424 #define check_block_validity(inode, map)        \
425         __check_block_validity((inode), __func__, __LINE__, (map))
426
427 #ifdef ES_AGGRESSIVE_TEST
428 static void ext4_map_blocks_es_recheck(handle_t *handle,
429                                        struct inode *inode,
430                                        struct ext4_map_blocks *es_map,
431                                        struct ext4_map_blocks *map,
432                                        int flags)
433 {
434         int retval;
435
436         map->m_flags = 0;
437         /*
438          * There is a race window that the result is not the same.
439          * e.g. xfstests #223 when dioread_nolock enables.  The reason
440          * is that we lookup a block mapping in extent status tree with
441          * out taking i_data_sem.  So at the time the unwritten extent
442          * could be converted.
443          */
444         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445                 down_read((&EXT4_I(inode)->i_data_sem));
446         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448                                              EXT4_GET_BLOCKS_KEEP_SIZE);
449         } else {
450                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451                                              EXT4_GET_BLOCKS_KEEP_SIZE);
452         }
453         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454                 up_read((&EXT4_I(inode)->i_data_sem));
455         /*
456          * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457          * because it shouldn't be marked in es_map->m_flags.
458          */
459         map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461         /*
462          * We don't check m_len because extent will be collpased in status
463          * tree.  So the m_len might not equal.
464          */
465         if (es_map->m_lblk != map->m_lblk ||
466             es_map->m_flags != map->m_flags ||
467             es_map->m_pblk != map->m_pblk) {
468                 printk("ES cache assertion failed for inode: %lu "
469                        "es_cached ex [%d/%d/%llu/%x] != "
470                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471                        inode->i_ino, es_map->m_lblk, es_map->m_len,
472                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
473                        map->m_len, map->m_pblk, map->m_flags,
474                        retval, flags);
475         }
476 }
477 #endif /* ES_AGGRESSIVE_TEST */
478
479 /*
480  * The ext4_map_blocks() function tries to look up the requested blocks,
481  * and returns if the blocks are already mapped.
482  *
483  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484  * and store the allocated blocks in the result buffer head and mark it
485  * mapped.
486  *
487  * If file type is extents based, it will call ext4_ext_map_blocks(),
488  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
489  * based files
490  *
491  * On success, it returns the number of blocks being mapped or allocate.
492  * if create==0 and the blocks are pre-allocated and uninitialized block,
493  * the result buffer head is unmapped. If the create ==1, it will make sure
494  * the buffer head is mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, buffer head is unmapped
498  *
499  * It returns the error in case of allocation failure.
500  */
501 int ext4_map_blocks(handle_t *handle, struct inode *inode,
502                     struct ext4_map_blocks *map, int flags)
503 {
504         struct extent_status es;
505         int retval;
506 #ifdef ES_AGGRESSIVE_TEST
507         struct ext4_map_blocks orig_map;
508
509         memcpy(&orig_map, map, sizeof(*map));
510 #endif
511
512         map->m_flags = 0;
513         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
515                   (unsigned long) map->m_lblk);
516
517         /* Lookup extent status tree firstly */
518         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
519                 ext4_es_lru_add(inode);
520                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
521                         map->m_pblk = ext4_es_pblock(&es) +
522                                         map->m_lblk - es.es_lblk;
523                         map->m_flags |= ext4_es_is_written(&es) ?
524                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
525                         retval = es.es_len - (map->m_lblk - es.es_lblk);
526                         if (retval > map->m_len)
527                                 retval = map->m_len;
528                         map->m_len = retval;
529                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
530                         retval = 0;
531                 } else {
532                         BUG_ON(1);
533                 }
534 #ifdef ES_AGGRESSIVE_TEST
535                 ext4_map_blocks_es_recheck(handle, inode, map,
536                                            &orig_map, flags);
537 #endif
538                 goto found;
539         }
540
541         /*
542          * Try to see if we can get the block without requesting a new
543          * file system block.
544          */
545         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
546                 down_read((&EXT4_I(inode)->i_data_sem));
547         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
548                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
549                                              EXT4_GET_BLOCKS_KEEP_SIZE);
550         } else {
551                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
552                                              EXT4_GET_BLOCKS_KEEP_SIZE);
553         }
554         if (retval > 0) {
555                 int ret;
556                 unsigned int status;
557
558                 if (unlikely(retval != map->m_len)) {
559                         ext4_warning(inode->i_sb,
560                                      "ES len assertion failed for inode "
561                                      "%lu: retval %d != map->m_len %d",
562                                      inode->i_ino, retval, map->m_len);
563                         WARN_ON(1);
564                 }
565
566                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
569                     ext4_find_delalloc_range(inode, map->m_lblk,
570                                              map->m_lblk + map->m_len - 1))
571                         status |= EXTENT_STATUS_DELAYED;
572                 ret = ext4_es_insert_extent(inode, map->m_lblk,
573                                             map->m_len, map->m_pblk, status);
574                 if (ret < 0)
575                         retval = ret;
576         }
577         if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
578                 up_read((&EXT4_I(inode)->i_data_sem));
579
580 found:
581         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
582                 int ret = check_block_validity(inode, map);
583                 if (ret != 0)
584                         return ret;
585         }
586
587         /* If it is only a block(s) look up */
588         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
589                 return retval;
590
591         /*
592          * Returns if the blocks have already allocated
593          *
594          * Note that if blocks have been preallocated
595          * ext4_ext_get_block() returns the create = 0
596          * with buffer head unmapped.
597          */
598         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
599                 return retval;
600
601         /*
602          * Here we clear m_flags because after allocating an new extent,
603          * it will be set again.
604          */
605         map->m_flags &= ~EXT4_MAP_FLAGS;
606
607         /*
608          * New blocks allocate and/or writing to uninitialized extent
609          * will possibly result in updating i_data, so we take
610          * the write lock of i_data_sem, and call get_blocks()
611          * with create == 1 flag.
612          */
613         down_write((&EXT4_I(inode)->i_data_sem));
614
615         /*
616          * if the caller is from delayed allocation writeout path
617          * we have already reserved fs blocks for allocation
618          * let the underlying get_block() function know to
619          * avoid double accounting
620          */
621         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
622                 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
623         /*
624          * We need to check for EXT4 here because migrate
625          * could have changed the inode type in between
626          */
627         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
628                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
629         } else {
630                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
631
632                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
633                         /*
634                          * We allocated new blocks which will result in
635                          * i_data's format changing.  Force the migrate
636                          * to fail by clearing migrate flags
637                          */
638                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
639                 }
640
641                 /*
642                  * Update reserved blocks/metadata blocks after successful
643                  * block allocation which had been deferred till now. We don't
644                  * support fallocate for non extent files. So we can update
645                  * reserve space here.
646                  */
647                 if ((retval > 0) &&
648                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
649                         ext4_da_update_reserve_space(inode, retval, 1);
650         }
651         if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
652                 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
653
654         if (retval > 0) {
655                 int ret;
656                 unsigned int status;
657
658                 if (unlikely(retval != map->m_len)) {
659                         ext4_warning(inode->i_sb,
660                                      "ES len assertion failed for inode "
661                                      "%lu: retval %d != map->m_len %d",
662                                      inode->i_ino, retval, map->m_len);
663                         WARN_ON(1);
664                 }
665
666                 /*
667                  * If the extent has been zeroed out, we don't need to update
668                  * extent status tree.
669                  */
670                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672                         if (ext4_es_is_written(&es))
673                                 goto has_zeroout;
674                 }
675                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678                     ext4_find_delalloc_range(inode, map->m_lblk,
679                                              map->m_lblk + map->m_len - 1))
680                         status |= EXTENT_STATUS_DELAYED;
681                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682                                             map->m_pblk, status);
683                 if (ret < 0)
684                         retval = ret;
685         }
686
687 has_zeroout:
688         up_write((&EXT4_I(inode)->i_data_sem));
689         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
690                 int ret = check_block_validity(inode, map);
691                 if (ret != 0)
692                         return ret;
693         }
694         return retval;
695 }
696
697 /* Maximum number of blocks we map for direct IO at once. */
698 #define DIO_MAX_BLOCKS 4096
699
700 static int _ext4_get_block(struct inode *inode, sector_t iblock,
701                            struct buffer_head *bh, int flags)
702 {
703         handle_t *handle = ext4_journal_current_handle();
704         struct ext4_map_blocks map;
705         int ret = 0, started = 0;
706         int dio_credits;
707
708         if (ext4_has_inline_data(inode))
709                 return -ERANGE;
710
711         map.m_lblk = iblock;
712         map.m_len = bh->b_size >> inode->i_blkbits;
713
714         if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
715                 /* Direct IO write... */
716                 if (map.m_len > DIO_MAX_BLOCKS)
717                         map.m_len = DIO_MAX_BLOCKS;
718                 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
719                 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720                                             dio_credits);
721                 if (IS_ERR(handle)) {
722                         ret = PTR_ERR(handle);
723                         return ret;
724                 }
725                 started = 1;
726         }
727
728         ret = ext4_map_blocks(handle, inode, &map, flags);
729         if (ret > 0) {
730                 ext4_io_end_t *io_end = ext4_inode_aio(inode);
731
732                 map_bh(bh, inode->i_sb, map.m_pblk);
733                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
734                 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735                         set_buffer_defer_completion(bh);
736                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737                 ret = 0;
738         }
739         if (started)
740                 ext4_journal_stop(handle);
741         return ret;
742 }
743
744 int ext4_get_block(struct inode *inode, sector_t iblock,
745                    struct buffer_head *bh, int create)
746 {
747         return _ext4_get_block(inode, iblock, bh,
748                                create ? EXT4_GET_BLOCKS_CREATE : 0);
749 }
750
751 /*
752  * `handle' can be NULL if create is zero
753  */
754 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755                                 ext4_lblk_t block, int create, int *errp)
756 {
757         struct ext4_map_blocks map;
758         struct buffer_head *bh;
759         int fatal = 0, err;
760
761         J_ASSERT(handle != NULL || create == 0);
762
763         map.m_lblk = block;
764         map.m_len = 1;
765         err = ext4_map_blocks(handle, inode, &map,
766                               create ? EXT4_GET_BLOCKS_CREATE : 0);
767
768         /* ensure we send some value back into *errp */
769         *errp = 0;
770
771         if (create && err == 0)
772                 err = -ENOSPC;  /* should never happen */
773         if (err < 0)
774                 *errp = err;
775         if (err <= 0)
776                 return NULL;
777
778         bh = sb_getblk(inode->i_sb, map.m_pblk);
779         if (unlikely(!bh)) {
780                 *errp = -ENOMEM;
781                 return NULL;
782         }
783         if (map.m_flags & EXT4_MAP_NEW) {
784                 J_ASSERT(create != 0);
785                 J_ASSERT(handle != NULL);
786
787                 /*
788                  * Now that we do not always journal data, we should
789                  * keep in mind whether this should always journal the
790                  * new buffer as metadata.  For now, regular file
791                  * writes use ext4_get_block instead, so it's not a
792                  * problem.
793                  */
794                 lock_buffer(bh);
795                 BUFFER_TRACE(bh, "call get_create_access");
796                 fatal = ext4_journal_get_create_access(handle, bh);
797                 if (!fatal && !buffer_uptodate(bh)) {
798                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
799                         set_buffer_uptodate(bh);
800                 }
801                 unlock_buffer(bh);
802                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
803                 err = ext4_handle_dirty_metadata(handle, inode, bh);
804                 if (!fatal)
805                         fatal = err;
806         } else {
807                 BUFFER_TRACE(bh, "not a new buffer");
808         }
809         if (fatal) {
810                 *errp = fatal;
811                 brelse(bh);
812                 bh = NULL;
813         }
814         return bh;
815 }
816
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818                                ext4_lblk_t block, int create, int *err)
819 {
820         struct buffer_head *bh;
821
822         bh = ext4_getblk(handle, inode, block, create, err);
823         if (!bh)
824                 return bh;
825         if (buffer_uptodate(bh))
826                 return bh;
827         ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828         wait_on_buffer(bh);
829         if (buffer_uptodate(bh))
830                 return bh;
831         put_bh(bh);
832         *err = -EIO;
833         return NULL;
834 }
835
836 int ext4_walk_page_buffers(handle_t *handle,
837                            struct buffer_head *head,
838                            unsigned from,
839                            unsigned to,
840                            int *partial,
841                            int (*fn)(handle_t *handle,
842                                      struct buffer_head *bh))
843 {
844         struct buffer_head *bh;
845         unsigned block_start, block_end;
846         unsigned blocksize = head->b_size;
847         int err, ret = 0;
848         struct buffer_head *next;
849
850         for (bh = head, block_start = 0;
851              ret == 0 && (bh != head || !block_start);
852              block_start = block_end, bh = next) {
853                 next = bh->b_this_page;
854                 block_end = block_start + blocksize;
855                 if (block_end <= from || block_start >= to) {
856                         if (partial && !buffer_uptodate(bh))
857                                 *partial = 1;
858                         continue;
859                 }
860                 err = (*fn)(handle, bh);
861                 if (!ret)
862                         ret = err;
863         }
864         return ret;
865 }
866
867 /*
868  * To preserve ordering, it is essential that the hole instantiation and
869  * the data write be encapsulated in a single transaction.  We cannot
870  * close off a transaction and start a new one between the ext4_get_block()
871  * and the commit_write().  So doing the jbd2_journal_start at the start of
872  * prepare_write() is the right place.
873  *
874  * Also, this function can nest inside ext4_writepage().  In that case, we
875  * *know* that ext4_writepage() has generated enough buffer credits to do the
876  * whole page.  So we won't block on the journal in that case, which is good,
877  * because the caller may be PF_MEMALLOC.
878  *
879  * By accident, ext4 can be reentered when a transaction is open via
880  * quota file writes.  If we were to commit the transaction while thus
881  * reentered, there can be a deadlock - we would be holding a quota
882  * lock, and the commit would never complete if another thread had a
883  * transaction open and was blocking on the quota lock - a ranking
884  * violation.
885  *
886  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
887  * will _not_ run commit under these circumstances because handle->h_ref
888  * is elevated.  We'll still have enough credits for the tiny quotafile
889  * write.
890  */
891 int do_journal_get_write_access(handle_t *handle,
892                                 struct buffer_head *bh)
893 {
894         int dirty = buffer_dirty(bh);
895         int ret;
896
897         if (!buffer_mapped(bh) || buffer_freed(bh))
898                 return 0;
899         /*
900          * __block_write_begin() could have dirtied some buffers. Clean
901          * the dirty bit as jbd2_journal_get_write_access() could complain
902          * otherwise about fs integrity issues. Setting of the dirty bit
903          * by __block_write_begin() isn't a real problem here as we clear
904          * the bit before releasing a page lock and thus writeback cannot
905          * ever write the buffer.
906          */
907         if (dirty)
908                 clear_buffer_dirty(bh);
909         ret = ext4_journal_get_write_access(handle, bh);
910         if (!ret && dirty)
911                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912         return ret;
913 }
914
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916                    struct buffer_head *bh_result, int create);
917 static int ext4_write_begin(struct file *file, struct address_space *mapping,
918                             loff_t pos, unsigned len, unsigned flags,
919                             struct page **pagep, void **fsdata)
920 {
921         struct inode *inode = mapping->host;
922         int ret, needed_blocks;
923         handle_t *handle;
924         int retries = 0;
925         struct page *page;
926         pgoff_t index;
927         unsigned from, to;
928
929         trace_ext4_write_begin(inode, pos, len, flags);
930         /*
931          * Reserve one block more for addition to orphan list in case
932          * we allocate blocks but write fails for some reason
933          */
934         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
935         index = pos >> PAGE_CACHE_SHIFT;
936         from = pos & (PAGE_CACHE_SIZE - 1);
937         to = from + len;
938
939         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
940                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
941                                                     flags, pagep);
942                 if (ret < 0)
943                         return ret;
944                 if (ret == 1)
945                         return 0;
946         }
947
948         /*
949          * grab_cache_page_write_begin() can take a long time if the
950          * system is thrashing due to memory pressure, or if the page
951          * is being written back.  So grab it first before we start
952          * the transaction handle.  This also allows us to allocate
953          * the page (if needed) without using GFP_NOFS.
954          */
955 retry_grab:
956         page = grab_cache_page_write_begin(mapping, index, flags);
957         if (!page)
958                 return -ENOMEM;
959         unlock_page(page);
960
961 retry_journal:
962         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
963         if (IS_ERR(handle)) {
964                 page_cache_release(page);
965                 return PTR_ERR(handle);
966         }
967
968         lock_page(page);
969         if (page->mapping != mapping) {
970                 /* The page got truncated from under us */
971                 unlock_page(page);
972                 page_cache_release(page);
973                 ext4_journal_stop(handle);
974                 goto retry_grab;
975         }
976         /* In case writeback began while the page was unlocked */
977         wait_for_stable_page(page);
978
979         if (ext4_should_dioread_nolock(inode))
980                 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
981         else
982                 ret = __block_write_begin(page, pos, len, ext4_get_block);
983
984         if (!ret && ext4_should_journal_data(inode)) {
985                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
986                                              from, to, NULL,
987                                              do_journal_get_write_access);
988         }
989
990         if (ret) {
991                 unlock_page(page);
992                 /*
993                  * __block_write_begin may have instantiated a few blocks
994                  * outside i_size.  Trim these off again. Don't need
995                  * i_size_read because we hold i_mutex.
996                  *
997                  * Add inode to orphan list in case we crash before
998                  * truncate finishes
999                  */
1000                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1001                         ext4_orphan_add(handle, inode);
1002
1003                 ext4_journal_stop(handle);
1004                 if (pos + len > inode->i_size) {
1005                         ext4_truncate_failed_write(inode);
1006                         /*
1007                          * If truncate failed early the inode might
1008                          * still be on the orphan list; we need to
1009                          * make sure the inode is removed from the
1010                          * orphan list in that case.
1011                          */
1012                         if (inode->i_nlink)
1013                                 ext4_orphan_del(NULL, inode);
1014                 }
1015
1016                 if (ret == -ENOSPC &&
1017                     ext4_should_retry_alloc(inode->i_sb, &retries))
1018                         goto retry_journal;
1019                 page_cache_release(page);
1020                 return ret;
1021         }
1022         *pagep = page;
1023         return ret;
1024 }
1025
1026 /* For write_end() in data=journal mode */
1027 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1028 {
1029         int ret;
1030         if (!buffer_mapped(bh) || buffer_freed(bh))
1031                 return 0;
1032         set_buffer_uptodate(bh);
1033         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1034         clear_buffer_meta(bh);
1035         clear_buffer_prio(bh);
1036         return ret;
1037 }
1038
1039 /*
1040  * We need to pick up the new inode size which generic_commit_write gave us
1041  * `file' can be NULL - eg, when called from page_symlink().
1042  *
1043  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1044  * buffers are managed internally.
1045  */
1046 static int ext4_write_end(struct file *file,
1047                           struct address_space *mapping,
1048                           loff_t pos, unsigned len, unsigned copied,
1049                           struct page *page, void *fsdata)
1050 {
1051         handle_t *handle = ext4_journal_current_handle();
1052         struct inode *inode = mapping->host;
1053         int ret = 0, ret2;
1054         int i_size_changed = 0;
1055
1056         trace_ext4_write_end(inode, pos, len, copied);
1057         if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1058                 ret = ext4_jbd2_file_inode(handle, inode);
1059                 if (ret) {
1060                         unlock_page(page);
1061                         page_cache_release(page);
1062                         goto errout;
1063                 }
1064         }
1065
1066         if (ext4_has_inline_data(inode)) {
1067                 ret = ext4_write_inline_data_end(inode, pos, len,
1068                                                  copied, page);
1069                 if (ret < 0)
1070                         goto errout;
1071                 copied = ret;
1072         } else
1073                 copied = block_write_end(file, mapping, pos,
1074                                          len, copied, page, fsdata);
1075
1076         /*
1077          * No need to use i_size_read() here, the i_size
1078          * cannot change under us because we hole i_mutex.
1079          *
1080          * But it's important to update i_size while still holding page lock:
1081          * page writeout could otherwise come in and zero beyond i_size.
1082          */
1083         if (pos + copied > inode->i_size) {
1084                 i_size_write(inode, pos + copied);
1085                 i_size_changed = 1;
1086         }
1087
1088         if (pos + copied > EXT4_I(inode)->i_disksize) {
1089                 /* We need to mark inode dirty even if
1090                  * new_i_size is less that inode->i_size
1091                  * but greater than i_disksize. (hint delalloc)
1092                  */
1093                 ext4_update_i_disksize(inode, (pos + copied));
1094                 i_size_changed = 1;
1095         }
1096         unlock_page(page);
1097         page_cache_release(page);
1098
1099         /*
1100          * Don't mark the inode dirty under page lock. First, it unnecessarily
1101          * makes the holding time of page lock longer. Second, it forces lock
1102          * ordering of page lock and transaction start for journaling
1103          * filesystems.
1104          */
1105         if (i_size_changed)
1106                 ext4_mark_inode_dirty(handle, inode);
1107
1108         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1109                 /* if we have allocated more blocks and copied
1110                  * less. We will have blocks allocated outside
1111                  * inode->i_size. So truncate them
1112                  */
1113                 ext4_orphan_add(handle, inode);
1114 errout:
1115         ret2 = ext4_journal_stop(handle);
1116         if (!ret)
1117                 ret = ret2;
1118
1119         if (pos + len > inode->i_size) {
1120                 ext4_truncate_failed_write(inode);
1121                 /*
1122                  * If truncate failed early the inode might still be
1123                  * on the orphan list; we need to make sure the inode
1124                  * is removed from the orphan list in that case.
1125                  */
1126                 if (inode->i_nlink)
1127                         ext4_orphan_del(NULL, inode);
1128         }
1129
1130         return ret ? ret : copied;
1131 }
1132
1133 static int ext4_journalled_write_end(struct file *file,
1134                                      struct address_space *mapping,
1135                                      loff_t pos, unsigned len, unsigned copied,
1136                                      struct page *page, void *fsdata)
1137 {
1138         handle_t *handle = ext4_journal_current_handle();
1139         struct inode *inode = mapping->host;
1140         int ret = 0, ret2;
1141         int partial = 0;
1142         unsigned from, to;
1143         loff_t new_i_size;
1144
1145         trace_ext4_journalled_write_end(inode, pos, len, copied);
1146         from = pos & (PAGE_CACHE_SIZE - 1);
1147         to = from + len;
1148
1149         BUG_ON(!ext4_handle_valid(handle));
1150
1151         if (ext4_has_inline_data(inode))
1152                 copied = ext4_write_inline_data_end(inode, pos, len,
1153                                                     copied, page);
1154         else {
1155                 if (copied < len) {
1156                         if (!PageUptodate(page))
1157                                 copied = 0;
1158                         page_zero_new_buffers(page, from+copied, to);
1159                 }
1160
1161                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1162                                              to, &partial, write_end_fn);
1163                 if (!partial)
1164                         SetPageUptodate(page);
1165         }
1166         new_i_size = pos + copied;
1167         if (new_i_size > inode->i_size)
1168                 i_size_write(inode, pos+copied);
1169         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1170         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1171         if (new_i_size > EXT4_I(inode)->i_disksize) {
1172                 ext4_update_i_disksize(inode, new_i_size);
1173                 ret2 = ext4_mark_inode_dirty(handle, inode);
1174                 if (!ret)
1175                         ret = ret2;
1176         }
1177
1178         unlock_page(page);
1179         page_cache_release(page);
1180         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1181                 /* if we have allocated more blocks and copied
1182                  * less. We will have blocks allocated outside
1183                  * inode->i_size. So truncate them
1184                  */
1185                 ext4_orphan_add(handle, inode);
1186
1187         ret2 = ext4_journal_stop(handle);
1188         if (!ret)
1189                 ret = ret2;
1190         if (pos + len > inode->i_size) {
1191                 ext4_truncate_failed_write(inode);
1192                 /*
1193                  * If truncate failed early the inode might still be
1194                  * on the orphan list; we need to make sure the inode
1195                  * is removed from the orphan list in that case.
1196                  */
1197                 if (inode->i_nlink)
1198                         ext4_orphan_del(NULL, inode);
1199         }
1200
1201         return ret ? ret : copied;
1202 }
1203
1204 /*
1205  * Reserve a metadata for a single block located at lblock
1206  */
1207 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1208 {
1209         int retries = 0;
1210         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1211         struct ext4_inode_info *ei = EXT4_I(inode);
1212         unsigned int md_needed;
1213         ext4_lblk_t save_last_lblock;
1214         int save_len;
1215
1216         /*
1217          * recalculate the amount of metadata blocks to reserve
1218          * in order to allocate nrblocks
1219          * worse case is one extent per block
1220          */
1221 repeat:
1222         spin_lock(&ei->i_block_reservation_lock);
1223         /*
1224          * ext4_calc_metadata_amount() has side effects, which we have
1225          * to be prepared undo if we fail to claim space.
1226          */
1227         save_len = ei->i_da_metadata_calc_len;
1228         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1229         md_needed = EXT4_NUM_B2C(sbi,
1230                                  ext4_calc_metadata_amount(inode, lblock));
1231         trace_ext4_da_reserve_space(inode, md_needed);
1232
1233         /*
1234          * We do still charge estimated metadata to the sb though;
1235          * we cannot afford to run out of free blocks.
1236          */
1237         if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1238                 ei->i_da_metadata_calc_len = save_len;
1239                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1240                 spin_unlock(&ei->i_block_reservation_lock);
1241                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1242                         cond_resched();
1243                         goto repeat;
1244                 }
1245                 return -ENOSPC;
1246         }
1247         ei->i_reserved_meta_blocks += md_needed;
1248         spin_unlock(&ei->i_block_reservation_lock);
1249
1250         return 0;       /* success */
1251 }
1252
1253 /*
1254  * Reserve a single cluster located at lblock
1255  */
1256 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1257 {
1258         int retries = 0;
1259         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260         struct ext4_inode_info *ei = EXT4_I(inode);
1261         unsigned int md_needed;
1262         int ret;
1263         ext4_lblk_t save_last_lblock;
1264         int save_len;
1265
1266         /*
1267          * We will charge metadata quota at writeout time; this saves
1268          * us from metadata over-estimation, though we may go over by
1269          * a small amount in the end.  Here we just reserve for data.
1270          */
1271         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1272         if (ret)
1273                 return ret;
1274
1275         /*
1276          * recalculate the amount of metadata blocks to reserve
1277          * in order to allocate nrblocks
1278          * worse case is one extent per block
1279          */
1280 repeat:
1281         spin_lock(&ei->i_block_reservation_lock);
1282         /*
1283          * ext4_calc_metadata_amount() has side effects, which we have
1284          * to be prepared undo if we fail to claim space.
1285          */
1286         save_len = ei->i_da_metadata_calc_len;
1287         save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1288         md_needed = EXT4_NUM_B2C(sbi,
1289                                  ext4_calc_metadata_amount(inode, lblock));
1290         trace_ext4_da_reserve_space(inode, md_needed);
1291
1292         /*
1293          * We do still charge estimated metadata to the sb though;
1294          * we cannot afford to run out of free blocks.
1295          */
1296         if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1297                 ei->i_da_metadata_calc_len = save_len;
1298                 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1299                 spin_unlock(&ei->i_block_reservation_lock);
1300                 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1301                         cond_resched();
1302                         goto repeat;
1303                 }
1304                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1305                 return -ENOSPC;
1306         }
1307         ei->i_reserved_data_blocks++;
1308         ei->i_reserved_meta_blocks += md_needed;
1309         spin_unlock(&ei->i_block_reservation_lock);
1310
1311         return 0;       /* success */
1312 }
1313
1314 static void ext4_da_release_space(struct inode *inode, int to_free)
1315 {
1316         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1317         struct ext4_inode_info *ei = EXT4_I(inode);
1318
1319         if (!to_free)
1320                 return;         /* Nothing to release, exit */
1321
1322         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1323
1324         trace_ext4_da_release_space(inode, to_free);
1325         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1326                 /*
1327                  * if there aren't enough reserved blocks, then the
1328                  * counter is messed up somewhere.  Since this
1329                  * function is called from invalidate page, it's
1330                  * harmless to return without any action.
1331                  */
1332                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1333                          "ino %lu, to_free %d with only %d reserved "
1334                          "data blocks", inode->i_ino, to_free,
1335                          ei->i_reserved_data_blocks);
1336                 WARN_ON(1);
1337                 to_free = ei->i_reserved_data_blocks;
1338         }
1339         ei->i_reserved_data_blocks -= to_free;
1340
1341         if (ei->i_reserved_data_blocks == 0) {
1342                 /*
1343                  * We can release all of the reserved metadata blocks
1344                  * only when we have written all of the delayed
1345                  * allocation blocks.
1346                  * Note that in case of bigalloc, i_reserved_meta_blocks,
1347                  * i_reserved_data_blocks, etc. refer to number of clusters.
1348                  */
1349                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1350                                    ei->i_reserved_meta_blocks);
1351                 ei->i_reserved_meta_blocks = 0;
1352                 ei->i_da_metadata_calc_len = 0;
1353         }
1354
1355         /* update fs dirty data blocks counter */
1356         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1357
1358         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1359
1360         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1361 }
1362
1363 static void ext4_da_page_release_reservation(struct page *page,
1364                                              unsigned int offset,
1365                                              unsigned int length)
1366 {
1367         int to_release = 0;
1368         struct buffer_head *head, *bh;
1369         unsigned int curr_off = 0;
1370         struct inode *inode = page->mapping->host;
1371         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1372         unsigned int stop = offset + length;
1373         int num_clusters;
1374         ext4_fsblk_t lblk;
1375
1376         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1377
1378         head = page_buffers(page);
1379         bh = head;
1380         do {
1381                 unsigned int next_off = curr_off + bh->b_size;
1382
1383                 if (next_off > stop)
1384                         break;
1385
1386                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1387                         to_release++;
1388                         clear_buffer_delay(bh);
1389                 }
1390                 curr_off = next_off;
1391         } while ((bh = bh->b_this_page) != head);
1392
1393         if (to_release) {
1394                 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1395                 ext4_es_remove_extent(inode, lblk, to_release);
1396         }
1397
1398         /* If we have released all the blocks belonging to a cluster, then we
1399          * need to release the reserved space for that cluster. */
1400         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1401         while (num_clusters > 0) {
1402                 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1403                         ((num_clusters - 1) << sbi->s_cluster_bits);
1404                 if (sbi->s_cluster_ratio == 1 ||
1405                     !ext4_find_delalloc_cluster(inode, lblk))
1406                         ext4_da_release_space(inode, 1);
1407
1408                 num_clusters--;
1409         }
1410 }
1411
1412 /*
1413  * Delayed allocation stuff
1414  */
1415
1416 struct mpage_da_data {
1417         struct inode *inode;
1418         struct writeback_control *wbc;
1419
1420         pgoff_t first_page;     /* The first page to write */
1421         pgoff_t next_page;      /* Current page to examine */
1422         pgoff_t last_page;      /* Last page to examine */
1423         /*
1424          * Extent to map - this can be after first_page because that can be
1425          * fully mapped. We somewhat abuse m_flags to store whether the extent
1426          * is delalloc or unwritten.
1427          */
1428         struct ext4_map_blocks map;
1429         struct ext4_io_submit io_submit;        /* IO submission data */
1430 };
1431
1432 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1433                                        bool invalidate)
1434 {
1435         int nr_pages, i;
1436         pgoff_t index, end;
1437         struct pagevec pvec;
1438         struct inode *inode = mpd->inode;
1439         struct address_space *mapping = inode->i_mapping;
1440
1441         /* This is necessary when next_page == 0. */
1442         if (mpd->first_page >= mpd->next_page)
1443                 return;
1444
1445         index = mpd->first_page;
1446         end   = mpd->next_page - 1;
1447         if (invalidate) {
1448                 ext4_lblk_t start, last;
1449                 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1450                 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1451                 ext4_es_remove_extent(inode, start, last - start + 1);
1452         }
1453
1454         pagevec_init(&pvec, 0);
1455         while (index <= end) {
1456                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1457                 if (nr_pages == 0)
1458                         break;
1459                 for (i = 0; i < nr_pages; i++) {
1460                         struct page *page = pvec.pages[i];
1461                         if (page->index > end)
1462                                 break;
1463                         BUG_ON(!PageLocked(page));
1464                         BUG_ON(PageWriteback(page));
1465                         if (invalidate) {
1466                                 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1467                                 ClearPageUptodate(page);
1468                         }
1469                         unlock_page(page);
1470                 }
1471                 index = pvec.pages[nr_pages - 1]->index + 1;
1472                 pagevec_release(&pvec);
1473         }
1474 }
1475
1476 static void ext4_print_free_blocks(struct inode *inode)
1477 {
1478         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1479         struct super_block *sb = inode->i_sb;
1480         struct ext4_inode_info *ei = EXT4_I(inode);
1481
1482         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1483                EXT4_C2B(EXT4_SB(inode->i_sb),
1484                         ext4_count_free_clusters(sb)));
1485         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1486         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1487                (long long) EXT4_C2B(EXT4_SB(sb),
1488                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1489         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1490                (long long) EXT4_C2B(EXT4_SB(sb),
1491                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1492         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1493         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1494                  ei->i_reserved_data_blocks);
1495         ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1496                ei->i_reserved_meta_blocks);
1497         ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1498                ei->i_allocated_meta_blocks);
1499         return;
1500 }
1501
1502 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1503 {
1504         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1505 }
1506
1507 /*
1508  * This function is grabs code from the very beginning of
1509  * ext4_map_blocks, but assumes that the caller is from delayed write
1510  * time. This function looks up the requested blocks and sets the
1511  * buffer delay bit under the protection of i_data_sem.
1512  */
1513 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1514                               struct ext4_map_blocks *map,
1515                               struct buffer_head *bh)
1516 {
1517         struct extent_status es;
1518         int retval;
1519         sector_t invalid_block = ~((sector_t) 0xffff);
1520 #ifdef ES_AGGRESSIVE_TEST
1521         struct ext4_map_blocks orig_map;
1522
1523         memcpy(&orig_map, map, sizeof(*map));
1524 #endif
1525
1526         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1527                 invalid_block = ~0;
1528
1529         map->m_flags = 0;
1530         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1531                   "logical block %lu\n", inode->i_ino, map->m_len,
1532                   (unsigned long) map->m_lblk);
1533
1534         /* Lookup extent status tree firstly */
1535         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1536                 ext4_es_lru_add(inode);
1537                 if (ext4_es_is_hole(&es)) {
1538                         retval = 0;
1539                         down_read((&EXT4_I(inode)->i_data_sem));
1540                         goto add_delayed;
1541                 }
1542
1543                 /*
1544                  * Delayed extent could be allocated by fallocate.
1545                  * So we need to check it.
1546                  */
1547                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1548                         map_bh(bh, inode->i_sb, invalid_block);
1549                         set_buffer_new(bh);
1550                         set_buffer_delay(bh);
1551                         return 0;
1552                 }
1553
1554                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1555                 retval = es.es_len - (iblock - es.es_lblk);
1556                 if (retval > map->m_len)
1557                         retval = map->m_len;
1558                 map->m_len = retval;
1559                 if (ext4_es_is_written(&es))
1560                         map->m_flags |= EXT4_MAP_MAPPED;
1561                 else if (ext4_es_is_unwritten(&es))
1562                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1563                 else
1564                         BUG_ON(1);
1565
1566 #ifdef ES_AGGRESSIVE_TEST
1567                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1568 #endif
1569                 return retval;
1570         }
1571
1572         /*
1573          * Try to see if we can get the block without requesting a new
1574          * file system block.
1575          */
1576         down_read((&EXT4_I(inode)->i_data_sem));
1577         if (ext4_has_inline_data(inode)) {
1578                 /*
1579                  * We will soon create blocks for this page, and let
1580                  * us pretend as if the blocks aren't allocated yet.
1581                  * In case of clusters, we have to handle the work
1582                  * of mapping from cluster so that the reserved space
1583                  * is calculated properly.
1584                  */
1585                 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1586                     ext4_find_delalloc_cluster(inode, map->m_lblk))
1587                         map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1588                 retval = 0;
1589         } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1590                 retval = ext4_ext_map_blocks(NULL, inode, map,
1591                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1592         else
1593                 retval = ext4_ind_map_blocks(NULL, inode, map,
1594                                              EXT4_GET_BLOCKS_NO_PUT_HOLE);
1595
1596 add_delayed:
1597         if (retval == 0) {
1598                 int ret;
1599                 /*
1600                  * XXX: __block_prepare_write() unmaps passed block,
1601                  * is it OK?
1602                  */
1603                 /*
1604                  * If the block was allocated from previously allocated cluster,
1605                  * then we don't need to reserve it again. However we still need
1606                  * to reserve metadata for every block we're going to write.
1607                  */
1608                 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1609                         ret = ext4_da_reserve_space(inode, iblock);
1610                         if (ret) {
1611                                 /* not enough space to reserve */
1612                                 retval = ret;
1613                                 goto out_unlock;
1614                         }
1615                 } else {
1616                         ret = ext4_da_reserve_metadata(inode, iblock);
1617                         if (ret) {
1618                                 /* not enough space to reserve */
1619                                 retval = ret;
1620                                 goto out_unlock;
1621                         }
1622                 }
1623
1624                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1625                                             ~0, EXTENT_STATUS_DELAYED);
1626                 if (ret) {
1627                         retval = ret;
1628                         goto out_unlock;
1629                 }
1630
1631                 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1632                  * and it should not appear on the bh->b_state.
1633                  */
1634                 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1635
1636                 map_bh(bh, inode->i_sb, invalid_block);
1637                 set_buffer_new(bh);
1638                 set_buffer_delay(bh);
1639         } else if (retval > 0) {
1640                 int ret;
1641                 unsigned int status;
1642
1643                 if (unlikely(retval != map->m_len)) {
1644                         ext4_warning(inode->i_sb,
1645                                      "ES len assertion failed for inode "
1646                                      "%lu: retval %d != map->m_len %d",
1647                                      inode->i_ino, retval, map->m_len);
1648                         WARN_ON(1);
1649                 }
1650
1651                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1652                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1653                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1654                                             map->m_pblk, status);
1655                 if (ret != 0)
1656                         retval = ret;
1657         }
1658
1659 out_unlock:
1660         up_read((&EXT4_I(inode)->i_data_sem));
1661
1662         return retval;
1663 }
1664
1665 /*
1666  * This is a special get_blocks_t callback which is used by
1667  * ext4_da_write_begin().  It will either return mapped block or
1668  * reserve space for a single block.
1669  *
1670  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1671  * We also have b_blocknr = -1 and b_bdev initialized properly
1672  *
1673  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1674  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1675  * initialized properly.
1676  */
1677 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1678                            struct buffer_head *bh, int create)
1679 {
1680         struct ext4_map_blocks map;
1681         int ret = 0;
1682
1683         BUG_ON(create == 0);
1684         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1685
1686         map.m_lblk = iblock;
1687         map.m_len = 1;
1688
1689         /*
1690          * first, we need to know whether the block is allocated already
1691          * preallocated blocks are unmapped but should treated
1692          * the same as allocated blocks.
1693          */
1694         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1695         if (ret <= 0)
1696                 return ret;
1697
1698         map_bh(bh, inode->i_sb, map.m_pblk);
1699         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1700
1701         if (buffer_unwritten(bh)) {
1702                 /* A delayed write to unwritten bh should be marked
1703                  * new and mapped.  Mapped ensures that we don't do
1704                  * get_block multiple times when we write to the same
1705                  * offset and new ensures that we do proper zero out
1706                  * for partial write.
1707                  */
1708                 set_buffer_new(bh);
1709                 set_buffer_mapped(bh);
1710         }
1711         return 0;
1712 }
1713
1714 static int bget_one(handle_t *handle, struct buffer_head *bh)
1715 {
1716         get_bh(bh);
1717         return 0;
1718 }
1719
1720 static int bput_one(handle_t *handle, struct buffer_head *bh)
1721 {
1722         put_bh(bh);
1723         return 0;
1724 }
1725
1726 static int __ext4_journalled_writepage(struct page *page,
1727                                        unsigned int len)
1728 {
1729         struct address_space *mapping = page->mapping;
1730         struct inode *inode = mapping->host;
1731         struct buffer_head *page_bufs = NULL;
1732         handle_t *handle = NULL;
1733         int ret = 0, err = 0;
1734         int inline_data = ext4_has_inline_data(inode);
1735         struct buffer_head *inode_bh = NULL;
1736
1737         ClearPageChecked(page);
1738
1739         if (inline_data) {
1740                 BUG_ON(page->index != 0);
1741                 BUG_ON(len > ext4_get_max_inline_size(inode));
1742                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1743                 if (inode_bh == NULL)
1744                         goto out;
1745         } else {
1746                 page_bufs = page_buffers(page);
1747                 if (!page_bufs) {
1748                         BUG();
1749                         goto out;
1750                 }
1751                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1752                                        NULL, bget_one);
1753         }
1754         /* As soon as we unlock the page, it can go away, but we have
1755          * references to buffers so we are safe */
1756         unlock_page(page);
1757
1758         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1759                                     ext4_writepage_trans_blocks(inode));
1760         if (IS_ERR(handle)) {
1761                 ret = PTR_ERR(handle);
1762                 goto out;
1763         }
1764
1765         BUG_ON(!ext4_handle_valid(handle));
1766
1767         if (inline_data) {
1768                 ret = ext4_journal_get_write_access(handle, inode_bh);
1769
1770                 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1771
1772         } else {
1773                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1774                                              do_journal_get_write_access);
1775
1776                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1777                                              write_end_fn);
1778         }
1779         if (ret == 0)
1780                 ret = err;
1781         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1782         err = ext4_journal_stop(handle);
1783         if (!ret)
1784                 ret = err;
1785
1786         if (!ext4_has_inline_data(inode))
1787                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1788                                        NULL, bput_one);
1789         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1790 out:
1791         brelse(inode_bh);
1792         return ret;
1793 }
1794
1795 /*
1796  * Note that we don't need to start a transaction unless we're journaling data
1797  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1798  * need to file the inode to the transaction's list in ordered mode because if
1799  * we are writing back data added by write(), the inode is already there and if
1800  * we are writing back data modified via mmap(), no one guarantees in which
1801  * transaction the data will hit the disk. In case we are journaling data, we
1802  * cannot start transaction directly because transaction start ranks above page
1803  * lock so we have to do some magic.
1804  *
1805  * This function can get called via...
1806  *   - ext4_writepages after taking page lock (have journal handle)
1807  *   - journal_submit_inode_data_buffers (no journal handle)
1808  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1809  *   - grab_page_cache when doing write_begin (have journal handle)
1810  *
1811  * We don't do any block allocation in this function. If we have page with
1812  * multiple blocks we need to write those buffer_heads that are mapped. This
1813  * is important for mmaped based write. So if we do with blocksize 1K
1814  * truncate(f, 1024);
1815  * a = mmap(f, 0, 4096);
1816  * a[0] = 'a';
1817  * truncate(f, 4096);
1818  * we have in the page first buffer_head mapped via page_mkwrite call back
1819  * but other buffer_heads would be unmapped but dirty (dirty done via the
1820  * do_wp_page). So writepage should write the first block. If we modify
1821  * the mmap area beyond 1024 we will again get a page_fault and the
1822  * page_mkwrite callback will do the block allocation and mark the
1823  * buffer_heads mapped.
1824  *
1825  * We redirty the page if we have any buffer_heads that is either delay or
1826  * unwritten in the page.
1827  *
1828  * We can get recursively called as show below.
1829  *
1830  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1831  *              ext4_writepage()
1832  *
1833  * But since we don't do any block allocation we should not deadlock.
1834  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1835  */
1836 static int ext4_writepage(struct page *page,
1837                           struct writeback_control *wbc)
1838 {
1839         int ret = 0;
1840         loff_t size;
1841         unsigned int len;
1842         struct buffer_head *page_bufs = NULL;
1843         struct inode *inode = page->mapping->host;
1844         struct ext4_io_submit io_submit;
1845
1846         trace_ext4_writepage(page);
1847         size = i_size_read(inode);
1848         if (page->index == size >> PAGE_CACHE_SHIFT)
1849                 len = size & ~PAGE_CACHE_MASK;
1850         else
1851                 len = PAGE_CACHE_SIZE;
1852
1853         page_bufs = page_buffers(page);
1854         /*
1855          * We cannot do block allocation or other extent handling in this
1856          * function. If there are buffers needing that, we have to redirty
1857          * the page. But we may reach here when we do a journal commit via
1858          * journal_submit_inode_data_buffers() and in that case we must write
1859          * allocated buffers to achieve data=ordered mode guarantees.
1860          */
1861         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1862                                    ext4_bh_delay_or_unwritten)) {
1863                 redirty_page_for_writepage(wbc, page);
1864                 if (current->flags & PF_MEMALLOC) {
1865                         /*
1866                          * For memory cleaning there's no point in writing only
1867                          * some buffers. So just bail out. Warn if we came here
1868                          * from direct reclaim.
1869                          */
1870                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1871                                                         == PF_MEMALLOC);
1872                         unlock_page(page);
1873                         return 0;
1874                 }
1875         }
1876
1877         if (PageChecked(page) && ext4_should_journal_data(inode))
1878                 /*
1879                  * It's mmapped pagecache.  Add buffers and journal it.  There
1880                  * doesn't seem much point in redirtying the page here.
1881                  */
1882                 return __ext4_journalled_writepage(page, len);
1883
1884         ext4_io_submit_init(&io_submit, wbc);
1885         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1886         if (!io_submit.io_end) {
1887                 redirty_page_for_writepage(wbc, page);
1888                 unlock_page(page);
1889                 return -ENOMEM;
1890         }
1891         ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1892         ext4_io_submit(&io_submit);
1893         /* Drop io_end reference we got from init */
1894         ext4_put_io_end_defer(io_submit.io_end);
1895         return ret;
1896 }
1897
1898 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1899 {
1900         int len;
1901         loff_t size = i_size_read(mpd->inode);
1902         int err;
1903
1904         BUG_ON(page->index != mpd->first_page);
1905         if (page->index == size >> PAGE_CACHE_SHIFT)
1906                 len = size & ~PAGE_CACHE_MASK;
1907         else
1908                 len = PAGE_CACHE_SIZE;
1909         clear_page_dirty_for_io(page);
1910         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1911         if (!err)
1912                 mpd->wbc->nr_to_write--;
1913         mpd->first_page++;
1914
1915         return err;
1916 }
1917
1918 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1919
1920 /*
1921  * mballoc gives us at most this number of blocks...
1922  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1923  * The rest of mballoc seems to handle chunks up to full group size.
1924  */
1925 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1926
1927 /*
1928  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1929  *
1930  * @mpd - extent of blocks
1931  * @lblk - logical number of the block in the file
1932  * @bh - buffer head we want to add to the extent
1933  *
1934  * The function is used to collect contig. blocks in the same state. If the
1935  * buffer doesn't require mapping for writeback and we haven't started the
1936  * extent of buffers to map yet, the function returns 'true' immediately - the
1937  * caller can write the buffer right away. Otherwise the function returns true
1938  * if the block has been added to the extent, false if the block couldn't be
1939  * added.
1940  */
1941 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1942                                    struct buffer_head *bh)
1943 {
1944         struct ext4_map_blocks *map = &mpd->map;
1945
1946         /* Buffer that doesn't need mapping for writeback? */
1947         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1948             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1949                 /* So far no extent to map => we write the buffer right away */
1950                 if (map->m_len == 0)
1951                         return true;
1952                 return false;
1953         }
1954
1955         /* First block in the extent? */
1956         if (map->m_len == 0) {
1957                 map->m_lblk = lblk;
1958                 map->m_len = 1;
1959                 map->m_flags = bh->b_state & BH_FLAGS;
1960                 return true;
1961         }
1962
1963         /* Don't go larger than mballoc is willing to allocate */
1964         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1965                 return false;
1966
1967         /* Can we merge the block to our big extent? */
1968         if (lblk == map->m_lblk + map->m_len &&
1969             (bh->b_state & BH_FLAGS) == map->m_flags) {
1970                 map->m_len++;
1971                 return true;
1972         }
1973         return false;
1974 }
1975
1976 /*
1977  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1978  *
1979  * @mpd - extent of blocks for mapping
1980  * @head - the first buffer in the page
1981  * @bh - buffer we should start processing from
1982  * @lblk - logical number of the block in the file corresponding to @bh
1983  *
1984  * Walk through page buffers from @bh upto @head (exclusive) and either submit
1985  * the page for IO if all buffers in this page were mapped and there's no
1986  * accumulated extent of buffers to map or add buffers in the page to the
1987  * extent of buffers to map. The function returns 1 if the caller can continue
1988  * by processing the next page, 0 if it should stop adding buffers to the
1989  * extent to map because we cannot extend it anymore. It can also return value
1990  * < 0 in case of error during IO submission.
1991  */
1992 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1993                                    struct buffer_head *head,
1994                                    struct buffer_head *bh,
1995                                    ext4_lblk_t lblk)
1996 {
1997         struct inode *inode = mpd->inode;
1998         int err;
1999         ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2000                                                         >> inode->i_blkbits;
2001
2002         do {
2003                 BUG_ON(buffer_locked(bh));
2004
2005                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2006                         /* Found extent to map? */
2007                         if (mpd->map.m_len)
2008                                 return 0;
2009                         /* Everything mapped so far and we hit EOF */
2010                         break;
2011                 }
2012         } while (lblk++, (bh = bh->b_this_page) != head);
2013         /* So far everything mapped? Submit the page for IO. */
2014         if (mpd->map.m_len == 0) {
2015                 err = mpage_submit_page(mpd, head->b_page);
2016                 if (err < 0)
2017                         return err;
2018         }
2019         return lblk < blocks;
2020 }
2021
2022 /*
2023  * mpage_map_buffers - update buffers corresponding to changed extent and
2024  *                     submit fully mapped pages for IO
2025  *
2026  * @mpd - description of extent to map, on return next extent to map
2027  *
2028  * Scan buffers corresponding to changed extent (we expect corresponding pages
2029  * to be already locked) and update buffer state according to new extent state.
2030  * We map delalloc buffers to their physical location, clear unwritten bits,
2031  * and mark buffers as uninit when we perform writes to uninitialized extents
2032  * and do extent conversion after IO is finished. If the last page is not fully
2033  * mapped, we update @map to the next extent in the last page that needs
2034  * mapping. Otherwise we submit the page for IO.
2035  */
2036 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2037 {
2038         struct pagevec pvec;
2039         int nr_pages, i;
2040         struct inode *inode = mpd->inode;
2041         struct buffer_head *head, *bh;
2042         int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2043         pgoff_t start, end;
2044         ext4_lblk_t lblk;
2045         sector_t pblock;
2046         int err;
2047
2048         start = mpd->map.m_lblk >> bpp_bits;
2049         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2050         lblk = start << bpp_bits;
2051         pblock = mpd->map.m_pblk;
2052
2053         pagevec_init(&pvec, 0);
2054         while (start <= end) {
2055                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2056                                           PAGEVEC_SIZE);
2057                 if (nr_pages == 0)
2058                         break;
2059                 for (i = 0; i < nr_pages; i++) {
2060                         struct page *page = pvec.pages[i];
2061
2062                         if (page->index > end)
2063                                 break;
2064                         /* Up to 'end' pages must be contiguous */
2065                         BUG_ON(page->index != start);
2066                         bh = head = page_buffers(page);
2067                         do {
2068                                 if (lblk < mpd->map.m_lblk)
2069                                         continue;
2070                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2071                                         /*
2072                                          * Buffer after end of mapped extent.
2073                                          * Find next buffer in the page to map.
2074                                          */
2075                                         mpd->map.m_len = 0;
2076                                         mpd->map.m_flags = 0;
2077                                         /*
2078                                          * FIXME: If dioread_nolock supports
2079                                          * blocksize < pagesize, we need to make
2080                                          * sure we add size mapped so far to
2081                                          * io_end->size as the following call
2082                                          * can submit the page for IO.
2083                                          */
2084                                         err = mpage_process_page_bufs(mpd, head,
2085                                                                       bh, lblk);
2086                                         pagevec_release(&pvec);
2087                                         if (err > 0)
2088                                                 err = 0;
2089                                         return err;
2090                                 }
2091                                 if (buffer_delay(bh)) {
2092                                         clear_buffer_delay(bh);
2093                                         bh->b_blocknr = pblock++;
2094                                 }
2095                                 clear_buffer_unwritten(bh);
2096                         } while (lblk++, (bh = bh->b_this_page) != head);
2097
2098                         /*
2099                          * FIXME: This is going to break if dioread_nolock
2100                          * supports blocksize < pagesize as we will try to
2101                          * convert potentially unmapped parts of inode.
2102                          */
2103                         mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2104                         /* Page fully mapped - let IO run! */
2105                         err = mpage_submit_page(mpd, page);
2106                         if (err < 0) {
2107                                 pagevec_release(&pvec);
2108                                 return err;
2109                         }
2110                         start++;
2111                 }
2112                 pagevec_release(&pvec);
2113         }
2114         /* Extent fully mapped and matches with page boundary. We are done. */
2115         mpd->map.m_len = 0;
2116         mpd->map.m_flags = 0;
2117         return 0;
2118 }
2119
2120 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2121 {
2122         struct inode *inode = mpd->inode;
2123         struct ext4_map_blocks *map = &mpd->map;
2124         int get_blocks_flags;
2125         int err;
2126
2127         trace_ext4_da_write_pages_extent(inode, map);
2128         /*
2129          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2130          * to convert an uninitialized extent to be initialized (in the case
2131          * where we have written into one or more preallocated blocks).  It is
2132          * possible that we're going to need more metadata blocks than
2133          * previously reserved. However we must not fail because we're in
2134          * writeback and there is nothing we can do about it so it might result
2135          * in data loss.  So use reserved blocks to allocate metadata if
2136          * possible.
2137          *
2138          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2139          * in question are delalloc blocks.  This affects functions in many
2140          * different parts of the allocation call path.  This flag exists
2141          * primarily because we don't want to change *many* call functions, so
2142          * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2143          * once the inode's allocation semaphore is taken.
2144          */
2145         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2146                            EXT4_GET_BLOCKS_METADATA_NOFAIL;
2147         if (ext4_should_dioread_nolock(inode))
2148                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2149         if (map->m_flags & (1 << BH_Delay))
2150                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2151
2152         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2153         if (err < 0)
2154                 return err;
2155         if (map->m_flags & EXT4_MAP_UNINIT) {
2156                 if (!mpd->io_submit.io_end->handle &&
2157                     ext4_handle_valid(handle)) {
2158                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2159                         handle->h_rsv_handle = NULL;
2160                 }
2161                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2162         }
2163
2164         BUG_ON(map->m_len == 0);
2165         if (map->m_flags & EXT4_MAP_NEW) {
2166                 struct block_device *bdev = inode->i_sb->s_bdev;
2167                 int i;
2168
2169                 for (i = 0; i < map->m_len; i++)
2170                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2171         }
2172         return 0;
2173 }
2174
2175 /*
2176  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2177  *                               mpd->len and submit pages underlying it for IO
2178  *
2179  * @handle - handle for journal operations
2180  * @mpd - extent to map
2181  * @give_up_on_write - we set this to true iff there is a fatal error and there
2182  *                     is no hope of writing the data. The caller should discard
2183  *                     dirty pages to avoid infinite loops.
2184  *
2185  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2186  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2187  * them to initialized or split the described range from larger unwritten
2188  * extent. Note that we need not map all the described range since allocation
2189  * can return less blocks or the range is covered by more unwritten extents. We
2190  * cannot map more because we are limited by reserved transaction credits. On
2191  * the other hand we always make sure that the last touched page is fully
2192  * mapped so that it can be written out (and thus forward progress is
2193  * guaranteed). After mapping we submit all mapped pages for IO.
2194  */
2195 static int mpage_map_and_submit_extent(handle_t *handle,
2196                                        struct mpage_da_data *mpd,
2197                                        bool *give_up_on_write)
2198 {
2199         struct inode *inode = mpd->inode;
2200         struct ext4_map_blocks *map = &mpd->map;
2201         int err;
2202         loff_t disksize;
2203
2204         mpd->io_submit.io_end->offset =
2205                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2206         do {
2207                 err = mpage_map_one_extent(handle, mpd);
2208                 if (err < 0) {
2209                         struct super_block *sb = inode->i_sb;
2210
2211                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2212                                 goto invalidate_dirty_pages;
2213                         /*
2214                          * Let the uper layers retry transient errors.
2215                          * In the case of ENOSPC, if ext4_count_free_blocks()
2216                          * is non-zero, a commit should free up blocks.
2217                          */
2218                         if ((err == -ENOMEM) ||
2219                             (err == -ENOSPC && ext4_count_free_clusters(sb)))
2220                                 return err;
2221                         ext4_msg(sb, KERN_CRIT,
2222                                  "Delayed block allocation failed for "
2223                                  "inode %lu at logical offset %llu with"
2224                                  " max blocks %u with error %d",
2225                                  inode->i_ino,
2226                                  (unsigned long long)map->m_lblk,
2227                                  (unsigned)map->m_len, -err);
2228                         ext4_msg(sb, KERN_CRIT,
2229                                  "This should not happen!! Data will "
2230                                  "be lost\n");
2231                         if (err == -ENOSPC)
2232                                 ext4_print_free_blocks(inode);
2233                 invalidate_dirty_pages:
2234                         *give_up_on_write = true;
2235                         return err;
2236                 }
2237                 /*
2238                  * Update buffer state, submit mapped pages, and get us new
2239                  * extent to map
2240                  */
2241                 err = mpage_map_and_submit_buffers(mpd);
2242                 if (err < 0)
2243                         return err;
2244         } while (map->m_len);
2245
2246         /* Update on-disk size after IO is submitted */
2247         disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2248         if (disksize > EXT4_I(inode)->i_disksize) {
2249                 int err2;
2250
2251                 ext4_wb_update_i_disksize(inode, disksize);
2252                 err2 = ext4_mark_inode_dirty(handle, inode);
2253                 if (err2)
2254                         ext4_error(inode->i_sb,
2255                                    "Failed to mark inode %lu dirty",
2256                                    inode->i_ino);
2257                 if (!err)
2258                         err = err2;
2259         }
2260         return err;
2261 }
2262
2263 /*
2264  * Calculate the total number of credits to reserve for one writepages
2265  * iteration. This is called from ext4_writepages(). We map an extent of
2266  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2267  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2268  * bpp - 1 blocks in bpp different extents.
2269  */
2270 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2271 {
2272         int bpp = ext4_journal_blocks_per_page(inode);
2273
2274         return ext4_meta_trans_blocks(inode,
2275                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2276 }
2277
2278 /*
2279  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2280  *                               and underlying extent to map
2281  *
2282  * @mpd - where to look for pages
2283  *
2284  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2285  * IO immediately. When we find a page which isn't mapped we start accumulating
2286  * extent of buffers underlying these pages that needs mapping (formed by
2287  * either delayed or unwritten buffers). We also lock the pages containing
2288  * these buffers. The extent found is returned in @mpd structure (starting at
2289  * mpd->lblk with length mpd->len blocks).
2290  *
2291  * Note that this function can attach bios to one io_end structure which are
2292  * neither logically nor physically contiguous. Although it may seem as an
2293  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2294  * case as we need to track IO to all buffers underlying a page in one io_end.
2295  */
2296 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2297 {
2298         struct address_space *mapping = mpd->inode->i_mapping;
2299         struct pagevec pvec;
2300         unsigned int nr_pages;
2301         long left = mpd->wbc->nr_to_write;
2302         pgoff_t index = mpd->first_page;
2303         pgoff_t end = mpd->last_page;
2304         int tag;
2305         int i, err = 0;
2306         int blkbits = mpd->inode->i_blkbits;
2307         ext4_lblk_t lblk;
2308         struct buffer_head *head;
2309
2310         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2311                 tag = PAGECACHE_TAG_TOWRITE;
2312         else
2313                 tag = PAGECACHE_TAG_DIRTY;
2314
2315         pagevec_init(&pvec, 0);
2316         mpd->map.m_len = 0;
2317         mpd->next_page = index;
2318         while (index <= end) {
2319                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2320                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2321                 if (nr_pages == 0)
2322                         goto out;
2323
2324                 for (i = 0; i < nr_pages; i++) {
2325                         struct page *page = pvec.pages[i];
2326
2327                         /*
2328                          * At this point, the page may be truncated or
2329                          * invalidated (changing page->mapping to NULL), or
2330                          * even swizzled back from swapper_space to tmpfs file
2331                          * mapping. However, page->index will not change
2332                          * because we have a reference on the page.
2333                          */
2334                         if (page->index > end)
2335                                 goto out;
2336
2337                         /*
2338                          * Accumulated enough dirty pages? This doesn't apply
2339                          * to WB_SYNC_ALL mode. For integrity sync we have to
2340                          * keep going because someone may be concurrently
2341                          * dirtying pages, and we might have synced a lot of
2342                          * newly appeared dirty pages, but have not synced all
2343                          * of the old dirty pages.
2344                          */
2345                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2346                                 goto out;
2347
2348                         /* If we can't merge this page, we are done. */
2349                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2350                                 goto out;
2351
2352                         lock_page(page);
2353                         /*
2354                          * If the page is no longer dirty, or its mapping no
2355                          * longer corresponds to inode we are writing (which
2356                          * means it has been truncated or invalidated), or the
2357                          * page is already under writeback and we are not doing
2358                          * a data integrity writeback, skip the page
2359                          */
2360                         if (!PageDirty(page) ||
2361                             (PageWriteback(page) &&
2362                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2363                             unlikely(page->mapping != mapping)) {
2364                                 unlock_page(page);
2365                                 continue;
2366                         }
2367
2368                         wait_on_page_writeback(page);
2369                         BUG_ON(PageWriteback(page));
2370
2371                         if (mpd->map.m_len == 0)
2372                                 mpd->first_page = page->index;
2373                         mpd->next_page = page->index + 1;
2374                         /* Add all dirty buffers to mpd */
2375                         lblk = ((ext4_lblk_t)page->index) <<
2376                                 (PAGE_CACHE_SHIFT - blkbits);
2377                         head = page_buffers(page);
2378                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2379                         if (err <= 0)
2380                                 goto out;
2381                         err = 0;
2382                         left--;
2383                 }
2384                 pagevec_release(&pvec);
2385                 cond_resched();
2386         }
2387         return 0;
2388 out:
2389         pagevec_release(&pvec);
2390         return err;
2391 }
2392
2393 static int __writepage(struct page *page, struct writeback_control *wbc,
2394                        void *data)
2395 {
2396         struct address_space *mapping = data;
2397         int ret = ext4_writepage(page, wbc);
2398         mapping_set_error(mapping, ret);
2399         return ret;
2400 }
2401
2402 static int ext4_writepages(struct address_space *mapping,
2403                            struct writeback_control *wbc)
2404 {
2405         pgoff_t writeback_index = 0;
2406         long nr_to_write = wbc->nr_to_write;
2407         int range_whole = 0;
2408         int cycled = 1;
2409         handle_t *handle = NULL;
2410         struct mpage_da_data mpd;
2411         struct inode *inode = mapping->host;
2412         int needed_blocks, rsv_blocks = 0, ret = 0;
2413         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2414         bool done;
2415         struct blk_plug plug;
2416         bool give_up_on_write = false;
2417
2418         trace_ext4_writepages(inode, wbc);
2419
2420         /*
2421          * No pages to write? This is mainly a kludge to avoid starting
2422          * a transaction for special inodes like journal inode on last iput()
2423          * because that could violate lock ordering on umount
2424          */
2425         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2426                 goto out_writepages;
2427
2428         if (ext4_should_journal_data(inode)) {
2429                 struct blk_plug plug;
2430
2431                 blk_start_plug(&plug);
2432                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2433                 blk_finish_plug(&plug);
2434                 goto out_writepages;
2435         }
2436
2437         /*
2438          * If the filesystem has aborted, it is read-only, so return
2439          * right away instead of dumping stack traces later on that
2440          * will obscure the real source of the problem.  We test
2441          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2442          * the latter could be true if the filesystem is mounted
2443          * read-only, and in that case, ext4_writepages should
2444          * *never* be called, so if that ever happens, we would want
2445          * the stack trace.
2446          */
2447         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2448                 ret = -EROFS;
2449                 goto out_writepages;
2450         }
2451
2452         if (ext4_should_dioread_nolock(inode)) {
2453                 /*
2454                  * We may need to convert up to one extent per block in
2455                  * the page and we may dirty the inode.
2456                  */
2457                 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2458         }
2459
2460         /*
2461          * If we have inline data and arrive here, it means that
2462          * we will soon create the block for the 1st page, so
2463          * we'd better clear the inline data here.
2464          */
2465         if (ext4_has_inline_data(inode)) {
2466                 /* Just inode will be modified... */
2467                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2468                 if (IS_ERR(handle)) {
2469                         ret = PTR_ERR(handle);
2470                         goto out_writepages;
2471                 }
2472                 BUG_ON(ext4_test_inode_state(inode,
2473                                 EXT4_STATE_MAY_INLINE_DATA));
2474                 ext4_destroy_inline_data(handle, inode);
2475                 ext4_journal_stop(handle);
2476         }
2477
2478         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2479                 range_whole = 1;
2480
2481         if (wbc->range_cyclic) {
2482                 writeback_index = mapping->writeback_index;
2483                 if (writeback_index)
2484                         cycled = 0;
2485                 mpd.first_page = writeback_index;
2486                 mpd.last_page = -1;
2487         } else {
2488                 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2489                 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2490         }
2491
2492         mpd.inode = inode;
2493         mpd.wbc = wbc;
2494         ext4_io_submit_init(&mpd.io_submit, wbc);
2495 retry:
2496         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2497                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2498         done = false;
2499         blk_start_plug(&plug);
2500         while (!done && mpd.first_page <= mpd.last_page) {
2501                 /* For each extent of pages we use new io_end */
2502                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2503                 if (!mpd.io_submit.io_end) {
2504                         ret = -ENOMEM;
2505                         break;
2506                 }
2507
2508                 /*
2509                  * We have two constraints: We find one extent to map and we
2510                  * must always write out whole page (makes a difference when
2511                  * blocksize < pagesize) so that we don't block on IO when we
2512                  * try to write out the rest of the page. Journalled mode is
2513                  * not supported by delalloc.
2514                  */
2515                 BUG_ON(ext4_should_journal_data(inode));
2516                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2517
2518                 /* start a new transaction */
2519                 handle = ext4_journal_start_with_reserve(inode,
2520                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2521                 if (IS_ERR(handle)) {
2522                         ret = PTR_ERR(handle);
2523                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2524                                "%ld pages, ino %lu; err %d", __func__,
2525                                 wbc->nr_to_write, inode->i_ino, ret);
2526                         /* Release allocated io_end */
2527                         ext4_put_io_end(mpd.io_submit.io_end);
2528                         break;
2529                 }
2530
2531                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2532                 ret = mpage_prepare_extent_to_map(&mpd);
2533                 if (!ret) {
2534                         if (mpd.map.m_len)
2535                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2536                                         &give_up_on_write);
2537                         else {
2538                                 /*
2539                                  * We scanned the whole range (or exhausted
2540                                  * nr_to_write), submitted what was mapped and
2541                                  * didn't find anything needing mapping. We are
2542                                  * done.
2543                                  */
2544                                 done = true;
2545                         }
2546                 }
2547                 ext4_journal_stop(handle);
2548                 /* Submit prepared bio */
2549                 ext4_io_submit(&mpd.io_submit);
2550                 /* Unlock pages we didn't use */
2551                 mpage_release_unused_pages(&mpd, give_up_on_write);
2552                 /* Drop our io_end reference we got from init */
2553                 ext4_put_io_end(mpd.io_submit.io_end);
2554
2555                 if (ret == -ENOSPC && sbi->s_journal) {
2556                         /*
2557                          * Commit the transaction which would
2558                          * free blocks released in the transaction
2559                          * and try again
2560                          */
2561                         jbd2_journal_force_commit_nested(sbi->s_journal);
2562                         ret = 0;
2563                         continue;
2564                 }
2565                 /* Fatal error - ENOMEM, EIO... */
2566                 if (ret)
2567                         break;
2568         }
2569         blk_finish_plug(&plug);
2570         if (!ret && !cycled && wbc->nr_to_write > 0) {
2571                 cycled = 1;
2572                 mpd.last_page = writeback_index - 1;
2573                 mpd.first_page = 0;
2574                 goto retry;
2575         }
2576
2577         /* Update index */
2578         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2579                 /*
2580                  * Set the writeback_index so that range_cyclic
2581                  * mode will write it back later
2582                  */
2583                 mapping->writeback_index = mpd.first_page;
2584
2585 out_writepages:
2586         trace_ext4_writepages_result(inode, wbc, ret,
2587                                      nr_to_write - wbc->nr_to_write);
2588         return ret;
2589 }
2590
2591 static int ext4_nonda_switch(struct super_block *sb)
2592 {
2593         s64 free_clusters, dirty_clusters;
2594         struct ext4_sb_info *sbi = EXT4_SB(sb);
2595
2596         /*
2597          * switch to non delalloc mode if we are running low
2598          * on free block. The free block accounting via percpu
2599          * counters can get slightly wrong with percpu_counter_batch getting
2600          * accumulated on each CPU without updating global counters
2601          * Delalloc need an accurate free block accounting. So switch
2602          * to non delalloc when we are near to error range.
2603          */
2604         free_clusters =
2605                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2606         dirty_clusters =
2607                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2608         /*
2609          * Start pushing delalloc when 1/2 of free blocks are dirty.
2610          */
2611         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2612                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2613
2614         if (2 * free_clusters < 3 * dirty_clusters ||
2615             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2616                 /*
2617                  * free block count is less than 150% of dirty blocks
2618                  * or free blocks is less than watermark
2619                  */
2620                 return 1;
2621         }
2622         return 0;
2623 }
2624
2625 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2626                                loff_t pos, unsigned len, unsigned flags,
2627                                struct page **pagep, void **fsdata)
2628 {
2629         int ret, retries = 0;
2630         struct page *page;
2631         pgoff_t index;
2632         struct inode *inode = mapping->host;
2633         handle_t *handle;
2634
2635         index = pos >> PAGE_CACHE_SHIFT;
2636
2637         if (ext4_nonda_switch(inode->i_sb)) {
2638                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2639                 return ext4_write_begin(file, mapping, pos,
2640                                         len, flags, pagep, fsdata);
2641         }
2642         *fsdata = (void *)0;
2643         trace_ext4_da_write_begin(inode, pos, len, flags);
2644
2645         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2646                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2647                                                       pos, len, flags,
2648                                                       pagep, fsdata);
2649                 if (ret < 0)
2650                         return ret;
2651                 if (ret == 1)
2652                         return 0;
2653         }
2654
2655         /*
2656          * grab_cache_page_write_begin() can take a long time if the
2657          * system is thrashing due to memory pressure, or if the page
2658          * is being written back.  So grab it first before we start
2659          * the transaction handle.  This also allows us to allocate
2660          * the page (if needed) without using GFP_NOFS.
2661          */
2662 retry_grab:
2663         page = grab_cache_page_write_begin(mapping, index, flags);
2664         if (!page)
2665                 return -ENOMEM;
2666         unlock_page(page);
2667
2668         /*
2669          * With delayed allocation, we don't log the i_disksize update
2670          * if there is delayed block allocation. But we still need
2671          * to journalling the i_disksize update if writes to the end
2672          * of file which has an already mapped buffer.
2673          */
2674 retry_journal:
2675         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2676         if (IS_ERR(handle)) {
2677                 page_cache_release(page);
2678                 return PTR_ERR(handle);
2679         }
2680
2681         lock_page(page);
2682         if (page->mapping != mapping) {
2683                 /* The page got truncated from under us */
2684                 unlock_page(page);
2685                 page_cache_release(page);
2686                 ext4_journal_stop(handle);
2687                 goto retry_grab;
2688         }
2689         /* In case writeback began while the page was unlocked */
2690         wait_for_stable_page(page);
2691
2692         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2693         if (ret < 0) {
2694                 unlock_page(page);
2695                 ext4_journal_stop(handle);
2696                 /*
2697                  * block_write_begin may have instantiated a few blocks
2698                  * outside i_size.  Trim these off again. Don't need
2699                  * i_size_read because we hold i_mutex.
2700                  */
2701                 if (pos + len > inode->i_size)
2702                         ext4_truncate_failed_write(inode);
2703
2704                 if (ret == -ENOSPC &&
2705                     ext4_should_retry_alloc(inode->i_sb, &retries))
2706                         goto retry_journal;
2707
2708                 page_cache_release(page);
2709                 return ret;
2710         }
2711
2712         *pagep = page;
2713         return ret;
2714 }
2715
2716 /*
2717  * Check if we should update i_disksize
2718  * when write to the end of file but not require block allocation
2719  */
2720 static int ext4_da_should_update_i_disksize(struct page *page,
2721                                             unsigned long offset)
2722 {
2723         struct buffer_head *bh;
2724         struct inode *inode = page->mapping->host;
2725         unsigned int idx;
2726         int i;
2727
2728         bh = page_buffers(page);
2729         idx = offset >> inode->i_blkbits;
2730
2731         for (i = 0; i < idx; i++)
2732                 bh = bh->b_this_page;
2733
2734         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2735                 return 0;
2736         return 1;
2737 }
2738
2739 static int ext4_da_write_end(struct file *file,
2740                              struct address_space *mapping,
2741                              loff_t pos, unsigned len, unsigned copied,
2742                              struct page *page, void *fsdata)
2743 {
2744         struct inode *inode = mapping->host;
2745         int ret = 0, ret2;
2746         handle_t *handle = ext4_journal_current_handle();
2747         loff_t new_i_size;
2748         unsigned long start, end;
2749         int write_mode = (int)(unsigned long)fsdata;
2750
2751         if (write_mode == FALL_BACK_TO_NONDELALLOC)
2752                 return ext4_write_end(file, mapping, pos,
2753                                       len, copied, page, fsdata);
2754
2755         trace_ext4_da_write_end(inode, pos, len, copied);
2756         start = pos & (PAGE_CACHE_SIZE - 1);
2757         end = start + copied - 1;
2758
2759         /*
2760          * generic_write_end() will run mark_inode_dirty() if i_size
2761          * changes.  So let's piggyback the i_disksize mark_inode_dirty
2762          * into that.
2763          */
2764         new_i_size = pos + copied;
2765         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2766                 if (ext4_has_inline_data(inode) ||
2767                     ext4_da_should_update_i_disksize(page, end)) {
2768                         down_write(&EXT4_I(inode)->i_data_sem);
2769                         if (new_i_size > EXT4_I(inode)->i_disksize)
2770                                 EXT4_I(inode)->i_disksize = new_i_size;
2771                         up_write(&EXT4_I(inode)->i_data_sem);
2772                         /* We need to mark inode dirty even if
2773                          * new_i_size is less that inode->i_size
2774                          * bu greater than i_disksize.(hint delalloc)
2775                          */
2776                         ext4_mark_inode_dirty(handle, inode);
2777                 }
2778         }
2779
2780         if (write_mode != CONVERT_INLINE_DATA &&
2781             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2782             ext4_has_inline_data(inode))
2783                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2784                                                      page);
2785         else
2786                 ret2 = generic_write_end(file, mapping, pos, len, copied,
2787                                                         page, fsdata);
2788
2789         copied = ret2;
2790         if (ret2 < 0)
2791                 ret = ret2;
2792         ret2 = ext4_journal_stop(handle);
2793         if (!ret)
2794                 ret = ret2;
2795
2796         return ret ? ret : copied;
2797 }
2798
2799 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2800                                    unsigned int length)
2801 {
2802         /*
2803          * Drop reserved blocks
2804          */
2805         BUG_ON(!PageLocked(page));
2806         if (!page_has_buffers(page))
2807                 goto out;
2808
2809         ext4_da_page_release_reservation(page, offset, length);
2810
2811 out:
2812         ext4_invalidatepage(page, offset, length);
2813
2814         return;
2815 }
2816
2817 /*
2818  * Force all delayed allocation blocks to be allocated for a given inode.
2819  */
2820 int ext4_alloc_da_blocks(struct inode *inode)
2821 {
2822         trace_ext4_alloc_da_blocks(inode);
2823
2824         if (!EXT4_I(inode)->i_reserved_data_blocks &&
2825             !EXT4_I(inode)->i_reserved_meta_blocks)
2826                 return 0;
2827
2828         /*
2829          * We do something simple for now.  The filemap_flush() will
2830          * also start triggering a write of the data blocks, which is
2831          * not strictly speaking necessary (and for users of
2832          * laptop_mode, not even desirable).  However, to do otherwise
2833          * would require replicating code paths in:
2834          *
2835          * ext4_writepages() ->
2836          *    write_cache_pages() ---> (via passed in callback function)
2837          *        __mpage_da_writepage() -->
2838          *           mpage_add_bh_to_extent()
2839          *           mpage_da_map_blocks()
2840          *
2841          * The problem is that write_cache_pages(), located in
2842          * mm/page-writeback.c, marks pages clean in preparation for
2843          * doing I/O, which is not desirable if we're not planning on
2844          * doing I/O at all.
2845          *
2846          * We could call write_cache_pages(), and then redirty all of
2847          * the pages by calling redirty_page_for_writepage() but that
2848          * would be ugly in the extreme.  So instead we would need to
2849          * replicate parts of the code in the above functions,
2850          * simplifying them because we wouldn't actually intend to
2851          * write out the pages, but rather only collect contiguous
2852          * logical block extents, call the multi-block allocator, and
2853          * then update the buffer heads with the block allocations.
2854          *
2855          * For now, though, we'll cheat by calling filemap_flush(),
2856          * which will map the blocks, and start the I/O, but not
2857          * actually wait for the I/O to complete.
2858          */
2859         return filemap_flush(inode->i_mapping);
2860 }
2861
2862 /*
2863  * bmap() is special.  It gets used by applications such as lilo and by
2864  * the swapper to find the on-disk block of a specific piece of data.
2865  *
2866  * Naturally, this is dangerous if the block concerned is still in the
2867  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2868  * filesystem and enables swap, then they may get a nasty shock when the
2869  * data getting swapped to that swapfile suddenly gets overwritten by
2870  * the original zero's written out previously to the journal and
2871  * awaiting writeback in the kernel's buffer cache.
2872  *
2873  * So, if we see any bmap calls here on a modified, data-journaled file,
2874  * take extra steps to flush any blocks which might be in the cache.
2875  */
2876 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2877 {
2878         struct inode *inode = mapping->host;
2879         journal_t *journal;
2880         int err;
2881
2882         /*
2883          * We can get here for an inline file via the FIBMAP ioctl
2884          */
2885         if (ext4_has_inline_data(inode))
2886                 return 0;
2887
2888         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2889                         test_opt(inode->i_sb, DELALLOC)) {
2890                 /*
2891                  * With delalloc we want to sync the file
2892                  * so that we can make sure we allocate
2893                  * blocks for file
2894                  */
2895                 filemap_write_and_wait(mapping);
2896         }
2897
2898         if (EXT4_JOURNAL(inode) &&
2899             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2900                 /*
2901                  * This is a REALLY heavyweight approach, but the use of
2902                  * bmap on dirty files is expected to be extremely rare:
2903                  * only if we run lilo or swapon on a freshly made file
2904                  * do we expect this to happen.
2905                  *
2906                  * (bmap requires CAP_SYS_RAWIO so this does not
2907                  * represent an unprivileged user DOS attack --- we'd be
2908                  * in trouble if mortal users could trigger this path at
2909                  * will.)
2910                  *
2911                  * NB. EXT4_STATE_JDATA is not set on files other than
2912                  * regular files.  If somebody wants to bmap a directory
2913                  * or symlink and gets confused because the buffer
2914                  * hasn't yet been flushed to disk, they deserve
2915                  * everything they get.
2916                  */
2917
2918                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2919                 journal = EXT4_JOURNAL(inode);
2920                 jbd2_journal_lock_updates(journal);
2921                 err = jbd2_journal_flush(journal);
2922                 jbd2_journal_unlock_updates(journal);
2923
2924                 if (err)
2925                         return 0;
2926         }
2927
2928         return generic_block_bmap(mapping, block, ext4_get_block);
2929 }
2930
2931 static int ext4_readpage(struct file *file, struct page *page)
2932 {
2933         int ret = -EAGAIN;
2934         struct inode *inode = page->mapping->host;
2935
2936         trace_ext4_readpage(page);
2937
2938         if (ext4_has_inline_data(inode))
2939                 ret = ext4_readpage_inline(inode, page);
2940
2941         if (ret == -EAGAIN)
2942                 return mpage_readpage(page, ext4_get_block);
2943
2944         return ret;
2945 }
2946
2947 static int
2948 ext4_readpages(struct file *file, struct address_space *mapping,
2949                 struct list_head *pages, unsigned nr_pages)
2950 {
2951         struct inode *inode = mapping->host;
2952
2953         /* If the file has inline data, no need to do readpages. */
2954         if (ext4_has_inline_data(inode))
2955                 return 0;
2956
2957         return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2958 }
2959
2960 static void ext4_invalidatepage(struct page *page, unsigned int offset,
2961                                 unsigned int length)
2962 {
2963         trace_ext4_invalidatepage(page, offset, length);
2964
2965         /* No journalling happens on data buffers when this function is used */
2966         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2967
2968         block_invalidatepage(page, offset, length);
2969 }
2970
2971 static int __ext4_journalled_invalidatepage(struct page *page,
2972                                             unsigned int offset,
2973                                             unsigned int length)
2974 {
2975         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2976
2977         trace_ext4_journalled_invalidatepage(page, offset, length);
2978
2979         /*
2980          * If it's a full truncate we just forget about the pending dirtying
2981          */
2982         if (offset == 0 && length == PAGE_CACHE_SIZE)
2983                 ClearPageChecked(page);
2984
2985         return jbd2_journal_invalidatepage(journal, page, offset, length);
2986 }
2987
2988 /* Wrapper for aops... */
2989 static void ext4_journalled_invalidatepage(struct page *page,
2990                                            unsigned int offset,
2991                                            unsigned int length)
2992 {
2993         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
2994 }
2995
2996 static int ext4_releasepage(struct page *page, gfp_t wait)
2997 {
2998         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2999
3000         trace_ext4_releasepage(page);
3001
3002         /* Page has dirty journalled data -> cannot release */
3003         if (PageChecked(page))
3004                 return 0;
3005         if (journal)
3006                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3007         else
3008                 return try_to_free_buffers(page);
3009 }
3010
3011 /*
3012  * ext4_get_block used when preparing for a DIO write or buffer write.
3013  * We allocate an uinitialized extent if blocks haven't been allocated.
3014  * The extent will be converted to initialized after the IO is complete.
3015  */
3016 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3017                    struct buffer_head *bh_result, int create)
3018 {
3019         ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3020                    inode->i_ino, create);
3021         return _ext4_get_block(inode, iblock, bh_result,
3022                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
3023 }
3024
3025 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3026                    struct buffer_head *bh_result, int create)
3027 {
3028         ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3029                    inode->i_ino, create);
3030         return _ext4_get_block(inode, iblock, bh_result,
3031                                EXT4_GET_BLOCKS_NO_LOCK);
3032 }
3033
3034 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3035                             ssize_t size, void *private)
3036 {
3037         ext4_io_end_t *io_end = iocb->private;
3038
3039         /* if not async direct IO just return */
3040         if (!io_end)
3041                 return;
3042
3043         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3044                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3045                   iocb->private, io_end->inode->i_ino, iocb, offset,
3046                   size);
3047
3048         iocb->private = NULL;
3049         io_end->offset = offset;
3050         io_end->size = size;
3051         ext4_put_io_end(io_end);
3052 }
3053
3054 /*
3055  * For ext4 extent files, ext4 will do direct-io write to holes,
3056  * preallocated extents, and those write extend the file, no need to
3057  * fall back to buffered IO.
3058  *
3059  * For holes, we fallocate those blocks, mark them as uninitialized
3060  * If those blocks were preallocated, we mark sure they are split, but
3061  * still keep the range to write as uninitialized.
3062  *
3063  * The unwritten extents will be converted to written when DIO is completed.
3064  * For async direct IO, since the IO may still pending when return, we
3065  * set up an end_io call back function, which will do the conversion
3066  * when async direct IO completed.
3067  *
3068  * If the O_DIRECT write will extend the file then add this inode to the
3069  * orphan list.  So recovery will truncate it back to the original size
3070  * if the machine crashes during the write.
3071  *
3072  */
3073 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3074                               const struct iovec *iov, loff_t offset,
3075                               unsigned long nr_segs)
3076 {
3077         struct file *file = iocb->ki_filp;
3078         struct inode *inode = file->f_mapping->host;
3079         ssize_t ret;
3080         size_t count = iov_length(iov, nr_segs);
3081         int overwrite = 0;
3082         get_block_t *get_block_func = NULL;
3083         int dio_flags = 0;
3084         loff_t final_size = offset + count;
3085         ext4_io_end_t *io_end = NULL;
3086
3087         /* Use the old path for reads and writes beyond i_size. */
3088         if (rw != WRITE || final_size > inode->i_size)
3089                 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3090
3091         BUG_ON(iocb->private == NULL);
3092
3093         /*
3094          * Make all waiters for direct IO properly wait also for extent
3095          * conversion. This also disallows race between truncate() and
3096          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3097          */
3098         if (rw == WRITE)
3099                 atomic_inc(&inode->i_dio_count);
3100
3101         /* If we do a overwrite dio, i_mutex locking can be released */
3102         overwrite = *((int *)iocb->private);
3103
3104         if (overwrite) {
3105                 down_read(&EXT4_I(inode)->i_data_sem);
3106                 mutex_unlock(&inode->i_mutex);
3107         }
3108
3109         /*
3110          * We could direct write to holes and fallocate.
3111          *
3112          * Allocated blocks to fill the hole are marked as
3113          * uninitialized to prevent parallel buffered read to expose
3114          * the stale data before DIO complete the data IO.
3115          *
3116          * As to previously fallocated extents, ext4 get_block will
3117          * just simply mark the buffer mapped but still keep the
3118          * extents uninitialized.
3119          *
3120          * For non AIO case, we will convert those unwritten extents
3121          * to written after return back from blockdev_direct_IO.
3122          *
3123          * For async DIO, the conversion needs to be deferred when the
3124          * IO is completed. The ext4 end_io callback function will be
3125          * called to take care of the conversion work.  Here for async
3126          * case, we allocate an io_end structure to hook to the iocb.
3127          */
3128         iocb->private = NULL;
3129         ext4_inode_aio_set(inode, NULL);
3130         if (!is_sync_kiocb(iocb)) {
3131                 io_end = ext4_init_io_end(inode, GFP_NOFS);
3132                 if (!io_end) {
3133                         ret = -ENOMEM;
3134                         goto retake_lock;
3135                 }
3136                 /*
3137                  * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3138                  */
3139                 iocb->private = ext4_get_io_end(io_end);
3140                 /*
3141                  * we save the io structure for current async direct
3142                  * IO, so that later ext4_map_blocks() could flag the
3143                  * io structure whether there is a unwritten extents
3144                  * needs to be converted when IO is completed.
3145                  */
3146                 ext4_inode_aio_set(inode, io_end);
3147         }
3148
3149         if (overwrite) {
3150                 get_block_func = ext4_get_block_write_nolock;
3151         } else {
3152                 get_block_func = ext4_get_block_write;
3153                 dio_flags = DIO_LOCKING;
3154         }
3155         ret = __blockdev_direct_IO(rw, iocb, inode,
3156                                    inode->i_sb->s_bdev, iov,
3157                                    offset, nr_segs,
3158                                    get_block_func,
3159                                    ext4_end_io_dio,
3160                                    NULL,
3161                                    dio_flags);
3162
3163         /*
3164          * Put our reference to io_end. This can free the io_end structure e.g.
3165          * in sync IO case or in case of error. It can even perform extent
3166          * conversion if all bios we submitted finished before we got here.
3167          * Note that in that case iocb->private can be already set to NULL
3168          * here.
3169          */
3170         if (io_end) {
3171                 ext4_inode_aio_set(inode, NULL);
3172                 ext4_put_io_end(io_end);
3173                 /*
3174                  * When no IO was submitted ext4_end_io_dio() was not
3175                  * called so we have to put iocb's reference.
3176                  */
3177                 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3178                         WARN_ON(iocb->private != io_end);
3179                         WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3180                         ext4_put_io_end(io_end);
3181                         iocb->private = NULL;
3182                 }
3183         }
3184         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3185                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3186                 int err;
3187                 /*
3188                  * for non AIO case, since the IO is already
3189                  * completed, we could do the conversion right here
3190                  */
3191                 err = ext4_convert_unwritten_extents(NULL, inode,
3192                                                      offset, ret);
3193                 if (err < 0)
3194                         ret = err;
3195                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3196         }
3197
3198 retake_lock:
3199         if (rw == WRITE)
3200                 inode_dio_done(inode);
3201         /* take i_mutex locking again if we do a ovewrite dio */
3202         if (overwrite) {
3203                 up_read(&EXT4_I(inode)->i_data_sem);
3204                 mutex_lock(&inode->i_mutex);
3205         }
3206
3207         return ret;
3208 }
3209
3210 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3211                               const struct iovec *iov, loff_t offset,
3212                               unsigned long nr_segs)
3213 {
3214         struct file *file = iocb->ki_filp;
3215         struct inode *inode = file->f_mapping->host;
3216         ssize_t ret;
3217
3218         /*
3219          * If we are doing data journalling we don't support O_DIRECT
3220          */
3221         if (ext4_should_journal_data(inode))
3222                 return 0;
3223
3224         /* Let buffer I/O handle the inline data case. */
3225         if (ext4_has_inline_data(inode))
3226                 return 0;
3227
3228         trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3229         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3230                 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3231         else
3232                 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3233         trace_ext4_direct_IO_exit(inode, offset,
3234                                 iov_length(iov, nr_segs), rw, ret);
3235         return ret;
3236 }
3237
3238 /*
3239  * Pages can be marked dirty completely asynchronously from ext4's journalling
3240  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3241  * much here because ->set_page_dirty is called under VFS locks.  The page is
3242  * not necessarily locked.
3243  *
3244  * We cannot just dirty the page and leave attached buffers clean, because the
3245  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3246  * or jbddirty because all the journalling code will explode.
3247  *
3248  * So what we do is to mark the page "pending dirty" and next time writepage
3249  * is called, propagate that into the buffers appropriately.
3250  */
3251 static int ext4_journalled_set_page_dirty(struct page *page)
3252 {
3253         SetPageChecked(page);
3254         return __set_page_dirty_nobuffers(page);
3255 }
3256
3257 static const struct address_space_operations ext4_aops = {
3258         .readpage               = ext4_readpage,
3259         .readpages              = ext4_readpages,
3260         .writepage              = ext4_writepage,
3261         .writepages             = ext4_writepages,
3262         .write_begin            = ext4_write_begin,
3263         .write_end              = ext4_write_end,
3264         .bmap                   = ext4_bmap,
3265         .invalidatepage         = ext4_invalidatepage,
3266         .releasepage            = ext4_releasepage,
3267         .direct_IO              = ext4_direct_IO,
3268         .migratepage            = buffer_migrate_page,
3269         .is_partially_uptodate  = block_is_partially_uptodate,
3270         .error_remove_page      = generic_error_remove_page,
3271 };
3272
3273 static const struct address_space_operations ext4_journalled_aops = {
3274         .readpage               = ext4_readpage,
3275         .readpages              = ext4_readpages,
3276         .writepage              = ext4_writepage,
3277         .writepages             = ext4_writepages,
3278         .write_begin            = ext4_write_begin,
3279         .write_end              = ext4_journalled_write_end,
3280         .set_page_dirty         = ext4_journalled_set_page_dirty,
3281         .bmap                   = ext4_bmap,
3282         .invalidatepage         = ext4_journalled_invalidatepage,
3283         .releasepage            = ext4_releasepage,
3284         .direct_IO              = ext4_direct_IO,
3285         .is_partially_uptodate  = block_is_partially_uptodate,
3286         .error_remove_page      = generic_error_remove_page,
3287 };
3288
3289 static const struct address_space_operations ext4_da_aops = {
3290         .readpage               = ext4_readpage,
3291         .readpages              = ext4_readpages,
3292         .writepage              = ext4_writepage,
3293         .writepages             = ext4_writepages,
3294         .write_begin            = ext4_da_write_begin,
3295         .write_end              = ext4_da_write_end,
3296         .bmap                   = ext4_bmap,
3297         .invalidatepage         = ext4_da_invalidatepage,
3298         .releasepage            = ext4_releasepage,
3299         .direct_IO              = ext4_direct_IO,
3300         .migratepage            = buffer_migrate_page,
3301         .is_partially_uptodate  = block_is_partially_uptodate,
3302         .error_remove_page      = generic_error_remove_page,
3303 };
3304
3305 void ext4_set_aops(struct inode *inode)
3306 {
3307         switch (ext4_inode_journal_mode(inode)) {
3308         case EXT4_INODE_ORDERED_DATA_MODE:
3309                 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3310                 break;
3311         case EXT4_INODE_WRITEBACK_DATA_MODE:
3312                 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3313                 break;
3314         case EXT4_INODE_JOURNAL_DATA_MODE:
3315                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3316                 return;
3317         default:
3318                 BUG();
3319         }
3320         if (test_opt(inode->i_sb, DELALLOC))
3321                 inode->i_mapping->a_ops = &ext4_da_aops;
3322         else
3323                 inode->i_mapping->a_ops = &ext4_aops;
3324 }
3325
3326 /*
3327  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3328  * up to the end of the block which corresponds to `from'.
3329  * This required during truncate. We need to physically zero the tail end
3330  * of that block so it doesn't yield old data if the file is later grown.
3331  */
3332 int ext4_block_truncate_page(handle_t *handle,
3333                 struct address_space *mapping, loff_t from)
3334 {
3335         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3336         unsigned length;
3337         unsigned blocksize;
3338         struct inode *inode = mapping->host;
3339
3340         blocksize = inode->i_sb->s_blocksize;
3341         length = blocksize - (offset & (blocksize - 1));
3342
3343         return ext4_block_zero_page_range(handle, mapping, from, length);
3344 }
3345
3346 /*
3347  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3348  * starting from file offset 'from'.  The range to be zero'd must
3349  * be contained with in one block.  If the specified range exceeds
3350  * the end of the block it will be shortened to end of the block
3351  * that cooresponds to 'from'
3352  */
3353 int ext4_block_zero_page_range(handle_t *handle,
3354                 struct address_space *mapping, loff_t from, loff_t length)
3355 {
3356         ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3357         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3358         unsigned blocksize, max, pos;
3359         ext4_lblk_t iblock;
3360         struct inode *inode = mapping->host;
3361         struct buffer_head *bh;
3362         struct page *page;
3363         int err = 0;
3364
3365         page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3366                                    mapping_gfp_mask(mapping) & ~__GFP_FS);
3367         if (!page)
3368                 return -ENOMEM;
3369
3370         blocksize = inode->i_sb->s_blocksize;
3371         max = blocksize - (offset & (blocksize - 1));
3372
3373         /*
3374          * correct length if it does not fall between
3375          * 'from' and the end of the block
3376          */
3377         if (length > max || length < 0)
3378                 length = max;
3379
3380         iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3381
3382         if (!page_has_buffers(page))
3383                 create_empty_buffers(page, blocksize, 0);
3384
3385         /* Find the buffer that contains "offset" */
3386         bh = page_buffers(page);
3387         pos = blocksize;
3388         while (offset >= pos) {
3389                 bh = bh->b_this_page;
3390                 iblock++;
3391                 pos += blocksize;
3392         }
3393         if (buffer_freed(bh)) {
3394                 BUFFER_TRACE(bh, "freed: skip");
3395                 goto unlock;
3396         }
3397         if (!buffer_mapped(bh)) {
3398                 BUFFER_TRACE(bh, "unmapped");
3399                 ext4_get_block(inode, iblock, bh, 0);
3400                 /* unmapped? It's a hole - nothing to do */
3401                 if (!buffer_mapped(bh)) {
3402                         BUFFER_TRACE(bh, "still unmapped");
3403                         goto unlock;
3404                 }
3405         }
3406
3407         /* Ok, it's mapped. Make sure it's up-to-date */
3408         if (PageUptodate(page))
3409                 set_buffer_uptodate(bh);
3410
3411         if (!buffer_uptodate(bh)) {
3412                 err = -EIO;
3413                 ll_rw_block(READ, 1, &bh);
3414                 wait_on_buffer(bh);
3415                 /* Uhhuh. Read error. Complain and punt. */
3416                 if (!buffer_uptodate(bh))
3417                         goto unlock;
3418         }
3419         if (ext4_should_journal_data(inode)) {
3420                 BUFFER_TRACE(bh, "get write access");
3421                 err = ext4_journal_get_write_access(handle, bh);
3422                 if (err)
3423                         goto unlock;
3424         }
3425         zero_user(page, offset, length);
3426         BUFFER_TRACE(bh, "zeroed end of block");
3427
3428         if (ext4_should_journal_data(inode)) {
3429                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3430         } else {
3431                 err = 0;
3432                 mark_buffer_dirty(bh);
3433                 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3434                         err = ext4_jbd2_file_inode(handle, inode);
3435         }
3436
3437 unlock:
3438         unlock_page(page);
3439         page_cache_release(page);
3440         return err;
3441 }
3442
3443 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3444                              loff_t lstart, loff_t length)
3445 {
3446         struct super_block *sb = inode->i_sb;
3447         struct address_space *mapping = inode->i_mapping;
3448         unsigned partial_start, partial_end;
3449         ext4_fsblk_t start, end;
3450         loff_t byte_end = (lstart + length - 1);
3451         int err = 0;
3452
3453         partial_start = lstart & (sb->s_blocksize - 1);
3454         partial_end = byte_end & (sb->s_blocksize - 1);
3455
3456         start = lstart >> sb->s_blocksize_bits;
3457         end = byte_end >> sb->s_blocksize_bits;
3458
3459         /* Handle partial zero within the single block */
3460         if (start == end &&
3461             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3462                 err = ext4_block_zero_page_range(handle, mapping,
3463                                                  lstart, length);
3464                 return err;
3465         }
3466         /* Handle partial zero out on the start of the range */
3467         if (partial_start) {
3468                 err = ext4_block_zero_page_range(handle, mapping,
3469                                                  lstart, sb->s_blocksize);
3470                 if (err)
3471                         return err;
3472         }
3473         /* Handle partial zero out on the end of the range */
3474         if (partial_end != sb->s_blocksize - 1)
3475                 err = ext4_block_zero_page_range(handle, mapping,
3476                                                  byte_end - partial_end,
3477                                                  partial_end + 1);
3478         return err;
3479 }
3480
3481 int ext4_can_truncate(struct inode *inode)
3482 {
3483         if (S_ISREG(inode->i_mode))
3484                 return 1;
3485         if (S_ISDIR(inode->i_mode))
3486                 return 1;
3487         if (S_ISLNK(inode->i_mode))
3488                 return !ext4_inode_is_fast_symlink(inode);
3489         return 0;
3490 }
3491
3492 /*
3493  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3494  * associated with the given offset and length
3495  *
3496  * @inode:  File inode
3497  * @offset: The offset where the hole will begin
3498  * @len:    The length of the hole
3499  *
3500  * Returns: 0 on success or negative on failure
3501  */
3502
3503 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3504 {
3505         struct super_block *sb = inode->i_sb;
3506         ext4_lblk_t first_block, stop_block;
3507         struct address_space *mapping = inode->i_mapping;
3508         loff_t first_block_offset, last_block_offset;
3509         handle_t *handle;
3510         unsigned int credits;
3511         int ret = 0;
3512
3513         if (!S_ISREG(inode->i_mode))
3514                 return -EOPNOTSUPP;
3515
3516         if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3517                 /* TODO: Add support for bigalloc file systems */
3518                 return -EOPNOTSUPP;
3519         }
3520
3521         trace_ext4_punch_hole(inode, offset, length);
3522
3523         /*
3524          * Write out all dirty pages to avoid race conditions
3525          * Then release them.
3526          */
3527         if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3528                 ret = filemap_write_and_wait_range(mapping, offset,
3529                                                    offset + length - 1);
3530                 if (ret)
3531                         return ret;
3532         }
3533
3534         mutex_lock(&inode->i_mutex);
3535         /* It's not possible punch hole on append only file */
3536         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3537                 ret = -EPERM;
3538                 goto out_mutex;
3539         }
3540         if (IS_SWAPFILE(inode)) {
3541                 ret = -ETXTBSY;
3542                 goto out_mutex;
3543         }
3544
3545         /* No need to punch hole beyond i_size */
3546         if (offset >= inode->i_size)
3547                 goto out_mutex;
3548
3549         /*
3550          * If the hole extends beyond i_size, set the hole
3551          * to end after the page that contains i_size
3552          */
3553         if (offset + length > inode->i_size) {
3554                 length = inode->i_size +
3555                    PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3556                    offset;
3557         }
3558
3559         if (offset & (sb->s_blocksize - 1) ||
3560             (offset + length) & (sb->s_blocksize - 1)) {
3561                 /*
3562                  * Attach jinode to inode for jbd2 if we do any zeroing of
3563                  * partial block
3564                  */
3565                 ret = ext4_inode_attach_jinode(inode);
3566                 if (ret < 0)
3567                         goto out_mutex;
3568
3569         }
3570
3571         first_block_offset = round_up(offset, sb->s_blocksize);
3572         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3573
3574         /* Now release the pages and zero block aligned part of pages*/
3575         if (last_block_offset > first_block_offset)
3576                 truncate_pagecache_range(inode, first_block_offset,
3577                                          last_block_offset);
3578
3579         /* Wait all existing dio workers, newcomers will block on i_mutex */
3580         ext4_inode_block_unlocked_dio(inode);
3581         inode_dio_wait(inode);
3582
3583         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584                 credits = ext4_writepage_trans_blocks(inode);
3585         else
3586                 credits = ext4_blocks_for_truncate(inode);
3587         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3588         if (IS_ERR(handle)) {
3589                 ret = PTR_ERR(handle);
3590                 ext4_std_error(sb, ret);
3591                 goto out_dio;
3592         }
3593
3594         ret = ext4_zero_partial_blocks(handle, inode, offset,
3595                                        length);
3596         if (ret)
3597                 goto out_stop;
3598
3599         first_block = (offset + sb->s_blocksize - 1) >>
3600                 EXT4_BLOCK_SIZE_BITS(sb);
3601         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3602
3603         /* If there are no blocks to remove, return now */
3604         if (first_block >= stop_block)
3605                 goto out_stop;
3606
3607         down_write(&EXT4_I(inode)->i_data_sem);
3608         ext4_discard_preallocations(inode);
3609
3610         ret = ext4_es_remove_extent(inode, first_block,
3611                                     stop_block - first_block);
3612         if (ret) {
3613                 up_write(&EXT4_I(inode)->i_data_sem);
3614                 goto out_stop;
3615         }
3616
3617         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3618                 ret = ext4_ext_remove_space(inode, first_block,
3619                                             stop_block - 1);
3620         else
3621                 ret = ext4_free_hole_blocks(handle, inode, first_block,
3622                                             stop_block);
3623
3624         ext4_discard_preallocations(inode);
3625         up_write(&EXT4_I(inode)->i_data_sem);
3626         if (IS_SYNC(inode))
3627                 ext4_handle_sync(handle);
3628         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3629         ext4_mark_inode_dirty(handle, inode);
3630 out_stop:
3631         ext4_journal_stop(handle);
3632 out_dio:
3633         ext4_inode_resume_unlocked_dio(inode);
3634 out_mutex:
3635         mutex_unlock(&inode->i_mutex);
3636         return ret;
3637 }
3638
3639 int ext4_inode_attach_jinode(struct inode *inode)
3640 {
3641         struct ext4_inode_info *ei = EXT4_I(inode);
3642         struct jbd2_inode *jinode;
3643
3644         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3645                 return 0;
3646
3647         jinode = jbd2_alloc_inode(GFP_KERNEL);
3648         spin_lock(&inode->i_lock);
3649         if (!ei->jinode) {
3650                 if (!jinode) {
3651                         spin_unlock(&inode->i_lock);
3652                         return -ENOMEM;
3653                 }
3654                 ei->jinode = jinode;
3655                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3656                 jinode = NULL;
3657         }
3658         spin_unlock(&inode->i_lock);
3659         if (unlikely(jinode != NULL))
3660                 jbd2_free_inode(jinode);
3661         return 0;
3662 }
3663
3664 /*
3665  * ext4_truncate()
3666  *
3667  * We block out ext4_get_block() block instantiations across the entire
3668  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3669  * simultaneously on behalf of the same inode.
3670  *
3671  * As we work through the truncate and commit bits of it to the journal there
3672  * is one core, guiding principle: the file's tree must always be consistent on
3673  * disk.  We must be able to restart the truncate after a crash.
3674  *
3675  * The file's tree may be transiently inconsistent in memory (although it
3676  * probably isn't), but whenever we close off and commit a journal transaction,
3677  * the contents of (the filesystem + the journal) must be consistent and
3678  * restartable.  It's pretty simple, really: bottom up, right to left (although
3679  * left-to-right works OK too).
3680  *
3681  * Note that at recovery time, journal replay occurs *before* the restart of
3682  * truncate against the orphan inode list.
3683  *
3684  * The committed inode has the new, desired i_size (which is the same as
3685  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3686  * that this inode's truncate did not complete and it will again call
3687  * ext4_truncate() to have another go.  So there will be instantiated blocks
3688  * to the right of the truncation point in a crashed ext4 filesystem.  But
3689  * that's fine - as long as they are linked from the inode, the post-crash
3690  * ext4_truncate() run will find them and release them.
3691  */
3692 void ext4_truncate(struct inode *inode)
3693 {
3694         struct ext4_inode_info *ei = EXT4_I(inode);
3695         unsigned int credits;
3696         handle_t *handle;
3697         struct address_space *mapping = inode->i_mapping;
3698
3699         /*
3700          * There is a possibility that we're either freeing the inode
3701          * or it completely new indode. In those cases we might not
3702          * have i_mutex locked because it's not necessary.
3703          */
3704         if (!(inode->i_state & (I_NEW|I_FREEING)))
3705                 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3706         trace_ext4_truncate_enter(inode);
3707
3708         if (!ext4_can_truncate(inode))
3709                 return;
3710
3711         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3712
3713         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3714                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3715
3716         if (ext4_has_inline_data(inode)) {
3717                 int has_inline = 1;
3718
3719                 ext4_inline_data_truncate(inode, &has_inline);
3720                 if (has_inline)
3721                         return;
3722         }
3723
3724         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3725         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3726                 if (ext4_inode_attach_jinode(inode) < 0)
3727                         return;
3728         }
3729
3730         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3731                 credits = ext4_writepage_trans_blocks(inode);
3732         else
3733                 credits = ext4_blocks_for_truncate(inode);
3734
3735         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3736         if (IS_ERR(handle)) {
3737                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3738                 return;
3739         }
3740
3741         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3742                 ext4_block_truncate_page(handle, mapping, inode->i_size);
3743
3744         /*
3745          * We add the inode to the orphan list, so that if this
3746          * truncate spans multiple transactions, and we crash, we will
3747          * resume the truncate when the filesystem recovers.  It also
3748          * marks the inode dirty, to catch the new size.
3749          *
3750          * Implication: the file must always be in a sane, consistent
3751          * truncatable state while each transaction commits.
3752          */
3753         if (ext4_orphan_add(handle, inode))
3754                 goto out_stop;
3755
3756         down_write(&EXT4_I(inode)->i_data_sem);
3757
3758         ext4_discard_preallocations(inode);
3759
3760         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3761                 ext4_ext_truncate(handle, inode);
3762         else
3763                 ext4_ind_truncate(handle, inode);
3764
3765         up_write(&ei->i_data_sem);
3766
3767         if (IS_SYNC(inode))
3768                 ext4_handle_sync(handle);
3769
3770 out_stop:
3771         /*
3772          * If this was a simple ftruncate() and the file will remain alive,
3773          * then we need to clear up the orphan record which we created above.
3774          * However, if this was a real unlink then we were called by
3775          * ext4_delete_inode(), and we allow that function to clean up the
3776          * orphan info for us.
3777          */
3778         if (inode->i_nlink)
3779                 ext4_orphan_del(handle, inode);
3780
3781         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3782         ext4_mark_inode_dirty(handle, inode);
3783         ext4_journal_stop(handle);
3784
3785         trace_ext4_truncate_exit(inode);
3786 }
3787
3788 /*
3789  * ext4_get_inode_loc returns with an extra refcount against the inode's
3790  * underlying buffer_head on success. If 'in_mem' is true, we have all
3791  * data in memory that is needed to recreate the on-disk version of this
3792  * inode.
3793  */
3794 static int __ext4_get_inode_loc(struct inode *inode,
3795                                 struct ext4_iloc *iloc, int in_mem)
3796 {
3797         struct ext4_group_desc  *gdp;
3798         struct buffer_head      *bh;
3799         struct super_block      *sb = inode->i_sb;
3800         ext4_fsblk_t            block;
3801         int                     inodes_per_block, inode_offset;
3802
3803         iloc->bh = NULL;
3804         if (!ext4_valid_inum(sb, inode->i_ino))
3805                 return -EIO;
3806
3807         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3808         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3809         if (!gdp)
3810                 return -EIO;
3811
3812         /*
3813          * Figure out the offset within the block group inode table
3814          */
3815         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3816         inode_offset = ((inode->i_ino - 1) %
3817                         EXT4_INODES_PER_GROUP(sb));
3818         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3819         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3820
3821         bh = sb_getblk(sb, block);
3822         if (unlikely(!bh))
3823                 return -ENOMEM;
3824         if (!buffer_uptodate(bh)) {
3825                 lock_buffer(bh);
3826
3827                 /*
3828                  * If the buffer has the write error flag, we have failed
3829                  * to write out another inode in the same block.  In this
3830                  * case, we don't have to read the block because we may
3831                  * read the old inode data successfully.
3832                  */
3833                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3834                         set_buffer_uptodate(bh);
3835
3836                 if (buffer_uptodate(bh)) {
3837                         /* someone brought it uptodate while we waited */
3838                         unlock_buffer(bh);
3839                         goto has_buffer;
3840                 }
3841
3842                 /*
3843                  * If we have all information of the inode in memory and this
3844                  * is the only valid inode in the block, we need not read the
3845                  * block.
3846                  */
3847                 if (in_mem) {
3848                         struct buffer_head *bitmap_bh;
3849                         int i, start;
3850
3851                         start = inode_offset & ~(inodes_per_block - 1);
3852
3853                         /* Is the inode bitmap in cache? */
3854                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3855                         if (unlikely(!bitmap_bh))
3856                                 goto make_io;
3857
3858                         /*
3859                          * If the inode bitmap isn't in cache then the
3860                          * optimisation may end up performing two reads instead
3861                          * of one, so skip it.
3862                          */
3863                         if (!buffer_uptodate(bitmap_bh)) {
3864                                 brelse(bitmap_bh);
3865                                 goto make_io;
3866                         }
3867                         for (i = start; i < start + inodes_per_block; i++) {
3868                                 if (i == inode_offset)
3869                                         continue;
3870                                 if (ext4_test_bit(i, bitmap_bh->b_data))
3871                                         break;
3872                         }
3873                         brelse(bitmap_bh);
3874                         if (i == start + inodes_per_block) {
3875                                 /* all other inodes are free, so skip I/O */
3876                                 memset(bh->b_data, 0, bh->b_size);
3877                                 set_buffer_uptodate(bh);
3878                                 unlock_buffer(bh);
3879                                 goto has_buffer;
3880                         }
3881                 }
3882
3883 make_io:
3884                 /*
3885                  * If we need to do any I/O, try to pre-readahead extra
3886                  * blocks from the inode table.
3887                  */
3888                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3889                         ext4_fsblk_t b, end, table;
3890                         unsigned num;
3891                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3892
3893                         table = ext4_inode_table(sb, gdp);
3894                         /* s_inode_readahead_blks is always a power of 2 */
3895                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
3896                         if (table > b)
3897                                 b = table;
3898                         end = b + ra_blks;
3899                         num = EXT4_INODES_PER_GROUP(sb);
3900                         if (ext4_has_group_desc_csum(sb))
3901                                 num -= ext4_itable_unused_count(sb, gdp);
3902                         table += num / inodes_per_block;
3903                         if (end > table)
3904                                 end = table;
3905                         while (b <= end)
3906                                 sb_breadahead(sb, b++);
3907                 }
3908
3909                 /*
3910                  * There are other valid inodes in the buffer, this inode
3911                  * has in-inode xattrs, or we don't have this inode in memory.
3912                  * Read the block from disk.
3913                  */
3914                 trace_ext4_load_inode(inode);
3915                 get_bh(bh);
3916                 bh->b_end_io = end_buffer_read_sync;
3917                 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3918                 wait_on_buffer(bh);
3919                 if (!buffer_uptodate(bh)) {
3920                         EXT4_ERROR_INODE_BLOCK(inode, block,
3921                                                "unable to read itable block");
3922                         brelse(bh);
3923                         return -EIO;
3924                 }
3925         }
3926 has_buffer:
3927         iloc->bh = bh;
3928         return 0;
3929 }
3930
3931 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3932 {
3933         /* We have all inode data except xattrs in memory here. */
3934         return __ext4_get_inode_loc(inode, iloc,
3935                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3936 }
3937
3938 void ext4_set_inode_flags(struct inode *inode)
3939 {
3940         unsigned int flags = EXT4_I(inode)->i_flags;
3941
3942         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3943         if (flags & EXT4_SYNC_FL)
3944                 inode->i_flags |= S_SYNC;
3945         if (flags & EXT4_APPEND_FL)
3946                 inode->i_flags |= S_APPEND;
3947         if (flags & EXT4_IMMUTABLE_FL)
3948                 inode->i_flags |= S_IMMUTABLE;
3949         if (flags & EXT4_NOATIME_FL)
3950                 inode->i_flags |= S_NOATIME;
3951         if (flags & EXT4_DIRSYNC_FL)
3952                 inode->i_flags |= S_DIRSYNC;
3953 }
3954
3955 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3956 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3957 {
3958         unsigned int vfs_fl;
3959         unsigned long old_fl, new_fl;
3960
3961         do {
3962                 vfs_fl = ei->vfs_inode.i_flags;
3963                 old_fl = ei->i_flags;
3964                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3965                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3966                                 EXT4_DIRSYNC_FL);
3967                 if (vfs_fl & S_SYNC)
3968                         new_fl |= EXT4_SYNC_FL;
3969                 if (vfs_fl & S_APPEND)
3970                         new_fl |= EXT4_APPEND_FL;
3971                 if (vfs_fl & S_IMMUTABLE)
3972                         new_fl |= EXT4_IMMUTABLE_FL;
3973                 if (vfs_fl & S_NOATIME)
3974                         new_fl |= EXT4_NOATIME_FL;
3975                 if (vfs_fl & S_DIRSYNC)
3976                         new_fl |= EXT4_DIRSYNC_FL;
3977         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3978 }
3979
3980 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3981                                   struct ext4_inode_info *ei)
3982 {
3983         blkcnt_t i_blocks ;
3984         struct inode *inode = &(ei->vfs_inode);
3985         struct super_block *sb = inode->i_sb;
3986
3987         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3988                                 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3989                 /* we are using combined 48 bit field */
3990                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3991                                         le32_to_cpu(raw_inode->i_blocks_lo);
3992                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3993                         /* i_blocks represent file system block size */
3994                         return i_blocks  << (inode->i_blkbits - 9);
3995                 } else {
3996                         return i_blocks;
3997                 }
3998         } else {
3999                 return le32_to_cpu(raw_inode->i_blocks_lo);
4000         }
4001 }
4002
4003 static inline void ext4_iget_extra_inode(struct inode *inode,
4004                                          struct ext4_inode *raw_inode,
4005                                          struct ext4_inode_info *ei)
4006 {
4007         __le32 *magic = (void *)raw_inode +
4008                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4009         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4010                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4011                 ext4_find_inline_data_nolock(inode);
4012         } else
4013                 EXT4_I(inode)->i_inline_off = 0;
4014 }
4015
4016 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4017 {
4018         struct ext4_iloc iloc;
4019         struct ext4_inode *raw_inode;
4020         struct ext4_inode_info *ei;
4021         struct inode *inode;
4022         journal_t *journal = EXT4_SB(sb)->s_journal;
4023         long ret;
4024         int block;
4025         uid_t i_uid;
4026         gid_t i_gid;
4027
4028         inode = iget_locked(sb, ino);
4029         if (!inode)
4030                 return ERR_PTR(-ENOMEM);
4031         if (!(inode->i_state & I_NEW))
4032                 return inode;
4033
4034         ei = EXT4_I(inode);
4035         iloc.bh = NULL;
4036
4037         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4038         if (ret < 0)
4039                 goto bad_inode;
4040         raw_inode = ext4_raw_inode(&iloc);
4041
4042         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4043                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4044                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4045                     EXT4_INODE_SIZE(inode->i_sb)) {
4046                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4047                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4048                                 EXT4_INODE_SIZE(inode->i_sb));
4049                         ret = -EIO;
4050                         goto bad_inode;
4051                 }
4052         } else
4053                 ei->i_extra_isize = 0;
4054
4055         /* Precompute checksum seed for inode metadata */
4056         if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4057                         EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4058                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4059                 __u32 csum;
4060                 __le32 inum = cpu_to_le32(inode->i_ino);
4061                 __le32 gen = raw_inode->i_generation;
4062                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4063                                    sizeof(inum));
4064                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4065                                               sizeof(gen));
4066         }
4067
4068         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4069                 EXT4_ERROR_INODE(inode, "checksum invalid");
4070                 ret = -EIO;
4071                 goto bad_inode;
4072         }
4073
4074         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4075         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4076         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4077         if (!(test_opt(inode->i_sb, NO_UID32))) {
4078                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4079                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4080         }
4081         i_uid_write(inode, i_uid);
4082         i_gid_write(inode, i_gid);
4083         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4084
4085         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4086         ei->i_inline_off = 0;
4087         ei->i_dir_start_lookup = 0;
4088         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4089         /* We now have enough fields to check if the inode was active or not.
4090          * This is needed because nfsd might try to access dead inodes
4091          * the test is that same one that e2fsck uses
4092          * NeilBrown 1999oct15
4093          */
4094         if (inode->i_nlink == 0) {
4095                 if ((inode->i_mode == 0 ||
4096                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4097                     ino != EXT4_BOOT_LOADER_INO) {
4098                         /* this inode is deleted */
4099                         ret = -ESTALE;
4100                         goto bad_inode;
4101                 }
4102                 /* The only unlinked inodes we let through here have
4103                  * valid i_mode and are being read by the orphan
4104                  * recovery code: that's fine, we're about to complete
4105                  * the process of deleting those.
4106                  * OR it is the EXT4_BOOT_LOADER_INO which is
4107                  * not initialized on a new filesystem. */
4108         }
4109         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4110         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4111         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4112         if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4113                 ei->i_file_acl |=
4114                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4115         inode->i_size = ext4_isize(raw_inode);
4116         ei->i_disksize = inode->i_size;
4117 #ifdef CONFIG_QUOTA
4118         ei->i_reserved_quota = 0;
4119 #endif
4120         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4121         ei->i_block_group = iloc.block_group;
4122         ei->i_last_alloc_group = ~0;
4123         /*
4124          * NOTE! The in-memory inode i_data array is in little-endian order
4125          * even on big-endian machines: we do NOT byteswap the block numbers!
4126          */
4127         for (block = 0; block < EXT4_N_BLOCKS; block++)
4128                 ei->i_data[block] = raw_inode->i_block[block];
4129         INIT_LIST_HEAD(&ei->i_orphan);
4130
4131         /*
4132          * Set transaction id's of transactions that have to be committed
4133          * to finish f[data]sync. We set them to currently running transaction
4134          * as we cannot be sure that the inode or some of its metadata isn't
4135          * part of the transaction - the inode could have been reclaimed and
4136          * now it is reread from disk.
4137          */
4138         if (journal) {
4139                 transaction_t *transaction;
4140                 tid_t tid;
4141
4142                 read_lock(&journal->j_state_lock);
4143                 if (journal->j_running_transaction)
4144                         transaction = journal->j_running_transaction;
4145                 else
4146                         transaction = journal->j_committing_transaction;
4147                 if (transaction)
4148                         tid = transaction->t_tid;
4149                 else
4150                         tid = journal->j_commit_sequence;
4151                 read_unlock(&journal->j_state_lock);
4152                 ei->i_sync_tid = tid;
4153                 ei->i_datasync_tid = tid;
4154         }
4155
4156         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4157                 if (ei->i_extra_isize == 0) {
4158                         /* The extra space is currently unused. Use it. */
4159                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4160                                             EXT4_GOOD_OLD_INODE_SIZE;
4161                 } else {
4162                         ext4_iget_extra_inode(inode, raw_inode, ei);
4163                 }
4164         }
4165
4166         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4167         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4168         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4169         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4170
4171         inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4172         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4173                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4174                         inode->i_version |=
4175                         (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4176         }
4177
4178         ret = 0;
4179         if (ei->i_file_acl &&
4180             !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4181                 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4182                                  ei->i_file_acl);
4183                 ret = -EIO;
4184                 goto bad_inode;
4185         } else if (!ext4_has_inline_data(inode)) {
4186                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4187                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4188                             (S_ISLNK(inode->i_mode) &&
4189                              !ext4_inode_is_fast_symlink(inode))))
4190                                 /* Validate extent which is part of inode */
4191                                 ret = ext4_ext_check_inode(inode);
4192                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4193                            (S_ISLNK(inode->i_mode) &&
4194                             !ext4_inode_is_fast_symlink(inode))) {
4195                         /* Validate block references which are part of inode */
4196                         ret = ext4_ind_check_inode(inode);
4197                 }
4198         }
4199         if (ret)
4200                 goto bad_inode;
4201
4202         if (S_ISREG(inode->i_mode)) {
4203                 inode->i_op = &ext4_file_inode_operations;
4204                 inode->i_fop = &ext4_file_operations;
4205                 ext4_set_aops(inode);
4206         } else if (S_ISDIR(inode->i_mode)) {
4207                 inode->i_op = &ext4_dir_inode_operations;
4208                 inode->i_fop = &ext4_dir_operations;
4209         } else if (S_ISLNK(inode->i_mode)) {
4210                 if (ext4_inode_is_fast_symlink(inode)) {
4211                         inode->i_op = &ext4_fast_symlink_inode_operations;
4212                         nd_terminate_link(ei->i_data, inode->i_size,
4213                                 sizeof(ei->i_data) - 1);
4214                 } else {
4215                         inode->i_op = &ext4_symlink_inode_operations;
4216                         ext4_set_aops(inode);
4217                 }
4218         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4219               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4220                 inode->i_op = &ext4_special_inode_operations;
4221                 if (raw_inode->i_block[0])
4222                         init_special_inode(inode, inode->i_mode,
4223                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4224                 else
4225                         init_special_inode(inode, inode->i_mode,
4226                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4227         } else if (ino == EXT4_BOOT_LOADER_INO) {
4228                 make_bad_inode(inode);
4229         } else {
4230                 ret = -EIO;
4231                 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4232                 goto bad_inode;
4233         }
4234         brelse(iloc.bh);
4235         ext4_set_inode_flags(inode);
4236         unlock_new_inode(inode);
4237         return inode;
4238
4239 bad_inode:
4240         brelse(iloc.bh);
4241         iget_failed(inode);
4242         return ERR_PTR(ret);
4243 }
4244
4245 static int ext4_inode_blocks_set(handle_t *handle,
4246                                 struct ext4_inode *raw_inode,
4247                                 struct ext4_inode_info *ei)
4248 {
4249         struct inode *inode = &(ei->vfs_inode);
4250         u64 i_blocks = inode->i_blocks;
4251         struct super_block *sb = inode->i_sb;
4252
4253         if (i_blocks <= ~0U) {
4254                 /*
4255                  * i_blocks can be represented in a 32 bit variable
4256                  * as multiple of 512 bytes
4257                  */
4258                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4259                 raw_inode->i_blocks_high = 0;
4260                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4261                 return 0;
4262         }
4263         if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4264                 return -EFBIG;
4265
4266         if (i_blocks <= 0xffffffffffffULL) {
4267                 /*
4268                  * i_blocks can be represented in a 48 bit variable
4269                  * as multiple of 512 bytes
4270                  */
4271                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4272                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4273                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4274         } else {
4275                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4276                 /* i_block is stored in file system block size */
4277                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4278                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4279                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4280         }
4281         return 0;
4282 }
4283
4284 /*
4285  * Post the struct inode info into an on-disk inode location in the
4286  * buffer-cache.  This gobbles the caller's reference to the
4287  * buffer_head in the inode location struct.
4288  *
4289  * The caller must have write access to iloc->bh.
4290  */
4291 static int ext4_do_update_inode(handle_t *handle,
4292                                 struct inode *inode,
4293                                 struct ext4_iloc *iloc)
4294 {
4295         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4296         struct ext4_inode_info *ei = EXT4_I(inode);
4297         struct buffer_head *bh = iloc->bh;
4298         int err = 0, rc, block;
4299         int need_datasync = 0;
4300         uid_t i_uid;
4301         gid_t i_gid;
4302
4303         /* For fields not not tracking in the in-memory inode,
4304          * initialise them to zero for new inodes. */
4305         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4306                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4307
4308         ext4_get_inode_flags(ei);
4309         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4310         i_uid = i_uid_read(inode);
4311         i_gid = i_gid_read(inode);
4312         if (!(test_opt(inode->i_sb, NO_UID32))) {
4313                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4314                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4315 /*
4316  * Fix up interoperability with old kernels. Otherwise, old inodes get
4317  * re-used with the upper 16 bits of the uid/gid intact
4318  */
4319                 if (!ei->i_dtime) {
4320                         raw_inode->i_uid_high =
4321                                 cpu_to_le16(high_16_bits(i_uid));
4322                         raw_inode->i_gid_high =
4323                                 cpu_to_le16(high_16_bits(i_gid));
4324                 } else {
4325                         raw_inode->i_uid_high = 0;
4326                         raw_inode->i_gid_high = 0;
4327                 }
4328         } else {
4329                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4330                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4331                 raw_inode->i_uid_high = 0;
4332                 raw_inode->i_gid_high = 0;
4333         }
4334         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4335
4336         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4337         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4338         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4339         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4340
4341         if (ext4_inode_blocks_set(handle, raw_inode, ei))
4342                 goto out_brelse;
4343         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4344         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4345         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4346             cpu_to_le32(EXT4_OS_HURD))
4347                 raw_inode->i_file_acl_high =
4348                         cpu_to_le16(ei->i_file_acl >> 32);
4349         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4350         if (ei->i_disksize != ext4_isize(raw_inode)) {
4351                 ext4_isize_set(raw_inode, ei->i_disksize);
4352                 need_datasync = 1;
4353         }
4354         if (ei->i_disksize > 0x7fffffffULL) {
4355                 struct super_block *sb = inode->i_sb;
4356                 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4357                                 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4358                                 EXT4_SB(sb)->s_es->s_rev_level ==
4359                                 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4360                         /* If this is the first large file
4361                          * created, add a flag to the superblock.
4362                          */
4363                         err = ext4_journal_get_write_access(handle,
4364                                         EXT4_SB(sb)->s_sbh);
4365                         if (err)
4366                                 goto out_brelse;
4367                         ext4_update_dynamic_rev(sb);
4368                         EXT4_SET_RO_COMPAT_FEATURE(sb,
4369                                         EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4370                         ext4_handle_sync(handle);
4371                         err = ext4_handle_dirty_super(handle, sb);
4372                 }
4373         }
4374         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4375         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4376                 if (old_valid_dev(inode->i_rdev)) {
4377                         raw_inode->i_block[0] =
4378                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4379                         raw_inode->i_block[1] = 0;
4380                 } else {
4381                         raw_inode->i_block[0] = 0;
4382                         raw_inode->i_block[1] =
4383                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4384                         raw_inode->i_block[2] = 0;
4385                 }
4386         } else if (!ext4_has_inline_data(inode)) {
4387                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4388                         raw_inode->i_block[block] = ei->i_data[block];
4389         }
4390
4391         raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4392         if (ei->i_extra_isize) {
4393                 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4394                         raw_inode->i_version_hi =
4395                         cpu_to_le32(inode->i_version >> 32);
4396                 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4397         }
4398
4399         ext4_inode_csum_set(inode, raw_inode, ei);
4400
4401         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4402         rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4403         if (!err)
4404                 err = rc;
4405         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4406
4407         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4408 out_brelse:
4409         brelse(bh);
4410         ext4_std_error(inode->i_sb, err);
4411         return err;
4412 }
4413
4414 /*
4415  * ext4_write_inode()
4416  *
4417  * We are called from a few places:
4418  *
4419  * - Within generic_file_write() for O_SYNC files.
4420  *   Here, there will be no transaction running. We wait for any running
4421  *   transaction to commit.
4422  *
4423  * - Within sys_sync(), kupdate and such.
4424  *   We wait on commit, if tol to.
4425  *
4426  * - Within prune_icache() (PF_MEMALLOC == true)
4427  *   Here we simply return.  We can't afford to block kswapd on the
4428  *   journal commit.
4429  *
4430  * In all cases it is actually safe for us to return without doing anything,
4431  * because the inode has been copied into a raw inode buffer in
4432  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4433  * knfsd.
4434  *
4435  * Note that we are absolutely dependent upon all inode dirtiers doing the
4436  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4437  * which we are interested.
4438  *
4439  * It would be a bug for them to not do this.  The code:
4440  *
4441  *      mark_inode_dirty(inode)
4442  *      stuff();
4443  *      inode->i_size = expr;
4444  *
4445  * is in error because a kswapd-driven write_inode() could occur while
4446  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4447  * will no longer be on the superblock's dirty inode list.
4448  */
4449 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4450 {
4451         int err;
4452
4453         if (current->flags & PF_MEMALLOC)
4454                 return 0;
4455
4456         if (EXT4_SB(inode->i_sb)->s_journal) {
4457                 if (ext4_journal_current_handle()) {
4458                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4459                         dump_stack();
4460                         return -EIO;
4461                 }
4462
4463                 if (wbc->sync_mode != WB_SYNC_ALL)
4464                         return 0;
4465
4466                 err = ext4_force_commit(inode->i_sb);
4467         } else {
4468                 struct ext4_iloc iloc;
4469
4470                 err = __ext4_get_inode_loc(inode, &iloc, 0);
4471                 if (err)
4472                         return err;
4473                 if (wbc->sync_mode == WB_SYNC_ALL)
4474                         sync_dirty_buffer(iloc.bh);
4475                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4476                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4477                                          "IO error syncing inode");
4478                         err = -EIO;
4479                 }
4480                 brelse(iloc.bh);
4481         }
4482         return err;
4483 }
4484
4485 /*
4486  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4487  * buffers that are attached to a page stradding i_size and are undergoing
4488  * commit. In that case we have to wait for commit to finish and try again.
4489  */
4490 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4491 {
4492         struct page *page;
4493         unsigned offset;
4494         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4495         tid_t commit_tid = 0;
4496         int ret;
4497
4498         offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4499         /*
4500          * All buffers in the last page remain valid? Then there's nothing to
4501          * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4502          * blocksize case
4503          */
4504         if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4505                 return;
4506         while (1) {
4507                 page = find_lock_page(inode->i_mapping,
4508                                       inode->i_size >> PAGE_CACHE_SHIFT);
4509                 if (!page)
4510                         return;
4511                 ret = __ext4_journalled_invalidatepage(page, offset,
4512                                                 PAGE_CACHE_SIZE - offset);
4513                 unlock_page(page);
4514                 page_cache_release(page);
4515                 if (ret != -EBUSY)
4516                         return;
4517                 commit_tid = 0;
4518                 read_lock(&journal->j_state_lock);
4519                 if (journal->j_committing_transaction)
4520                         commit_tid = journal->j_committing_transaction->t_tid;
4521                 read_unlock(&journal->j_state_lock);
4522                 if (commit_tid)
4523                         jbd2_log_wait_commit(journal, commit_tid);
4524         }
4525 }
4526
4527 /*
4528  * ext4_setattr()
4529  *
4530  * Called from notify_change.
4531  *
4532  * We want to trap VFS attempts to truncate the file as soon as
4533  * possible.  In particular, we want to make sure that when the VFS
4534  * shrinks i_size, we put the inode on the orphan list and modify
4535  * i_disksize immediately, so that during the subsequent flushing of
4536  * dirty pages and freeing of disk blocks, we can guarantee that any
4537  * commit will leave the blocks being flushed in an unused state on
4538  * disk.  (On recovery, the inode will get truncated and the blocks will
4539  * be freed, so we have a strong guarantee that no future commit will
4540  * leave these blocks visible to the user.)
4541  *
4542  * Another thing we have to assure is that if we are in ordered mode
4543  * and inode is still attached to the committing transaction, we must
4544  * we start writeout of all the dirty pages which are being truncated.
4545  * This way we are sure that all the data written in the previous
4546  * transaction are already on disk (truncate waits for pages under
4547  * writeback).
4548  *
4549  * Called with inode->i_mutex down.
4550  */
4551 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4552 {
4553         struct inode *inode = dentry->d_inode;
4554         int error, rc = 0;
4555         int orphan = 0;
4556         const unsigned int ia_valid = attr->ia_valid;
4557
4558         error = inode_change_ok(inode, attr);
4559         if (error)
4560                 return error;
4561
4562         if (is_quota_modification(inode, attr))
4563                 dquot_initialize(inode);
4564         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4565             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4566                 handle_t *handle;
4567
4568                 /* (user+group)*(old+new) structure, inode write (sb,
4569                  * inode block, ? - but truncate inode update has it) */
4570                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4571                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4572                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4573                 if (IS_ERR(handle)) {
4574                         error = PTR_ERR(handle);
4575                         goto err_out;
4576                 }
4577                 error = dquot_transfer(inode, attr);
4578                 if (error) {
4579                         ext4_journal_stop(handle);
4580                         return error;
4581                 }
4582                 /* Update corresponding info in inode so that everything is in
4583                  * one transaction */
4584                 if (attr->ia_valid & ATTR_UID)
4585                         inode->i_uid = attr->ia_uid;
4586                 if (attr->ia_valid & ATTR_GID)
4587                         inode->i_gid = attr->ia_gid;
4588                 error = ext4_mark_inode_dirty(handle, inode);
4589                 ext4_journal_stop(handle);
4590         }
4591
4592         if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4593                 handle_t *handle;
4594
4595                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4596                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4597
4598                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
4599                                 return -EFBIG;
4600                 }
4601                 if (S_ISREG(inode->i_mode) &&
4602                     (attr->ia_size < inode->i_size)) {
4603                         if (ext4_should_order_data(inode)) {
4604                                 error = ext4_begin_ordered_truncate(inode,
4605                                                             attr->ia_size);
4606                                 if (error)
4607                                         goto err_out;
4608                         }
4609                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4610                         if (IS_ERR(handle)) {
4611                                 error = PTR_ERR(handle);
4612                                 goto err_out;
4613                         }
4614                         if (ext4_handle_valid(handle)) {
4615                                 error = ext4_orphan_add(handle, inode);
4616                                 orphan = 1;
4617                         }
4618                         down_write(&EXT4_I(inode)->i_data_sem);
4619                         EXT4_I(inode)->i_disksize = attr->ia_size;
4620                         rc = ext4_mark_inode_dirty(handle, inode);
4621                         if (!error)
4622                                 error = rc;
4623                         /*
4624                          * We have to update i_size under i_data_sem together
4625                          * with i_disksize to avoid races with writeback code
4626                          * running ext4_wb_update_i_disksize().
4627                          */
4628                         if (!error)
4629                                 i_size_write(inode, attr->ia_size);
4630                         up_write(&EXT4_I(inode)->i_data_sem);
4631                         ext4_journal_stop(handle);
4632                         if (error) {
4633                                 ext4_orphan_del(NULL, inode);
4634                                 goto err_out;
4635                         }
4636                 } else
4637                         i_size_write(inode, attr->ia_size);
4638
4639                 /*
4640                  * Blocks are going to be removed from the inode. Wait
4641                  * for dio in flight.  Temporarily disable
4642                  * dioread_nolock to prevent livelock.
4643                  */
4644                 if (orphan) {
4645                         if (!ext4_should_journal_data(inode)) {
4646                                 ext4_inode_block_unlocked_dio(inode);
4647                                 inode_dio_wait(inode);
4648                                 ext4_inode_resume_unlocked_dio(inode);
4649                         } else
4650                                 ext4_wait_for_tail_page_commit(inode);
4651                 }
4652                 /*
4653                  * Truncate pagecache after we've waited for commit
4654                  * in data=journal mode to make pages freeable.
4655                  */
4656                         truncate_pagecache(inode, inode->i_size);
4657         }
4658         /*
4659          * We want to call ext4_truncate() even if attr->ia_size ==
4660          * inode->i_size for cases like truncation of fallocated space
4661          */
4662         if (attr->ia_valid & ATTR_SIZE)
4663                 ext4_truncate(inode);
4664
4665         if (!rc) {
4666                 setattr_copy(inode, attr);
4667                 mark_inode_dirty(inode);
4668         }
4669
4670         /*
4671          * If the call to ext4_truncate failed to get a transaction handle at
4672          * all, we need to clean up the in-core orphan list manually.
4673          */
4674         if (orphan && inode->i_nlink)
4675                 ext4_orphan_del(NULL, inode);
4676
4677         if (!rc && (ia_valid & ATTR_MODE))
4678                 rc = ext4_acl_chmod(inode);
4679
4680 err_out:
4681         ext4_std_error(inode->i_sb, error);
4682         if (!error)
4683                 error = rc;
4684         return error;
4685 }
4686
4687 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4688                  struct kstat *stat)
4689 {
4690         struct inode *inode;
4691         unsigned long long delalloc_blocks;
4692
4693         inode = dentry->d_inode;
4694         generic_fillattr(inode, stat);
4695
4696         /*
4697          * If there is inline data in the inode, the inode will normally not
4698          * have data blocks allocated (it may have an external xattr block).
4699          * Report at least one sector for such files, so tools like tar, rsync,
4700          * others doen't incorrectly think the file is completely sparse.
4701          */
4702         if (unlikely(ext4_has_inline_data(inode)))
4703                 stat->blocks += (stat->size + 511) >> 9;
4704
4705         /*
4706          * We can't update i_blocks if the block allocation is delayed
4707          * otherwise in the case of system crash before the real block
4708          * allocation is done, we will have i_blocks inconsistent with
4709          * on-disk file blocks.
4710          * We always keep i_blocks updated together with real
4711          * allocation. But to not confuse with user, stat
4712          * will return the blocks that include the delayed allocation
4713          * blocks for this file.
4714          */
4715         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4716                                    EXT4_I(inode)->i_reserved_data_blocks);
4717         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4718         return 0;
4719 }
4720
4721 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4722                                    int pextents)
4723 {
4724         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4725                 return ext4_ind_trans_blocks(inode, lblocks);
4726         return ext4_ext_index_trans_blocks(inode, pextents);
4727 }
4728
4729 /*
4730  * Account for index blocks, block groups bitmaps and block group
4731  * descriptor blocks if modify datablocks and index blocks
4732  * worse case, the indexs blocks spread over different block groups
4733  *
4734  * If datablocks are discontiguous, they are possible to spread over
4735  * different block groups too. If they are contiguous, with flexbg,
4736  * they could still across block group boundary.
4737  *
4738  * Also account for superblock, inode, quota and xattr blocks
4739  */
4740 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4741                                   int pextents)
4742 {
4743         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4744         int gdpblocks;
4745         int idxblocks;
4746         int ret = 0;
4747
4748         /*
4749          * How many index blocks need to touch to map @lblocks logical blocks
4750          * to @pextents physical extents?
4751          */
4752         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4753
4754         ret = idxblocks;
4755
4756         /*
4757          * Now let's see how many group bitmaps and group descriptors need
4758          * to account
4759          */
4760         groups = idxblocks + pextents;
4761         gdpblocks = groups;
4762         if (groups > ngroups)
4763                 groups = ngroups;
4764         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4765                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4766
4767         /* bitmaps and block group descriptor blocks */
4768         ret += groups + gdpblocks;
4769
4770         /* Blocks for super block, inode, quota and xattr blocks */
4771         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4772
4773         return ret;
4774 }
4775
4776 /*
4777  * Calculate the total number of credits to reserve to fit
4778  * the modification of a single pages into a single transaction,
4779  * which may include multiple chunks of block allocations.
4780  *
4781  * This could be called via ext4_write_begin()
4782  *
4783  * We need to consider the worse case, when
4784  * one new block per extent.
4785  */
4786 int ext4_writepage_trans_blocks(struct inode *inode)
4787 {
4788         int bpp = ext4_journal_blocks_per_page(inode);
4789         int ret;
4790
4791         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4792
4793         /* Account for data blocks for journalled mode */
4794         if (ext4_should_journal_data(inode))
4795                 ret += bpp;
4796         return ret;
4797 }
4798
4799 /*
4800  * Calculate the journal credits for a chunk of data modification.
4801  *
4802  * This is called from DIO, fallocate or whoever calling
4803  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4804  *
4805  * journal buffers for data blocks are not included here, as DIO
4806  * and fallocate do no need to journal data buffers.
4807  */
4808 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4809 {
4810         return ext4_meta_trans_blocks(inode, nrblocks, 1);
4811 }
4812
4813 /*
4814  * The caller must have previously called ext4_reserve_inode_write().
4815  * Give this, we know that the caller already has write access to iloc->bh.
4816  */
4817 int ext4_mark_iloc_dirty(handle_t *handle,
4818                          struct inode *inode, struct ext4_iloc *iloc)
4819 {
4820         int err = 0;
4821
4822         if (IS_I_VERSION(inode))
4823                 inode_inc_iversion(inode);
4824
4825         /* the do_update_inode consumes one bh->b_count */
4826         get_bh(iloc->bh);
4827
4828         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4829         err = ext4_do_update_inode(handle, inode, iloc);
4830         put_bh(iloc->bh);
4831         return err;
4832 }
4833
4834 /*
4835  * On success, We end up with an outstanding reference count against
4836  * iloc->bh.  This _must_ be cleaned up later.
4837  */
4838
4839 int
4840 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4841                          struct ext4_iloc *iloc)
4842 {
4843         int err;
4844
4845         err = ext4_get_inode_loc(inode, iloc);
4846         if (!err) {
4847                 BUFFER_TRACE(iloc->bh, "get_write_access");
4848                 err = ext4_journal_get_write_access(handle, iloc->bh);
4849                 if (err) {
4850                         brelse(iloc->bh);
4851                         iloc->bh = NULL;
4852                 }
4853         }
4854         ext4_std_error(inode->i_sb, err);
4855         return err;
4856 }
4857
4858 /*
4859  * Expand an inode by new_extra_isize bytes.
4860  * Returns 0 on success or negative error number on failure.
4861  */
4862 static int ext4_expand_extra_isize(struct inode *inode,
4863                                    unsigned int new_extra_isize,
4864                                    struct ext4_iloc iloc,
4865                                    handle_t *handle)
4866 {
4867         struct ext4_inode *raw_inode;
4868         struct ext4_xattr_ibody_header *header;
4869
4870         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4871                 return 0;
4872
4873         raw_inode = ext4_raw_inode(&iloc);
4874
4875         header = IHDR(inode, raw_inode);
4876
4877         /* No extended attributes present */
4878         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4879             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4880                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4881                         new_extra_isize);
4882                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4883                 return 0;
4884         }
4885
4886         /* try to expand with EAs present */
4887         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4888                                           raw_inode, handle);
4889 }
4890
4891 /*
4892  * What we do here is to mark the in-core inode as clean with respect to inode
4893  * dirtiness (it may still be data-dirty).
4894  * This means that the in-core inode may be reaped by prune_icache
4895  * without having to perform any I/O.  This is a very good thing,
4896  * because *any* task may call prune_icache - even ones which
4897  * have a transaction open against a different journal.
4898  *
4899  * Is this cheating?  Not really.  Sure, we haven't written the
4900  * inode out, but prune_icache isn't a user-visible syncing function.
4901  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4902  * we start and wait on commits.
4903  */
4904 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4905 {
4906         struct ext4_iloc iloc;
4907         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4908         static unsigned int mnt_count;
4909         int err, ret;
4910
4911         might_sleep();
4912         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4913         err = ext4_reserve_inode_write(handle, inode, &iloc);
4914         if (ext4_handle_valid(handle) &&
4915             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4916             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4917                 /*
4918                  * We need extra buffer credits since we may write into EA block
4919                  * with this same handle. If journal_extend fails, then it will
4920                  * only result in a minor loss of functionality for that inode.
4921                  * If this is felt to be critical, then e2fsck should be run to
4922                  * force a large enough s_min_extra_isize.
4923                  */
4924                 if ((jbd2_journal_extend(handle,
4925                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4926                         ret = ext4_expand_extra_isize(inode,
4927                                                       sbi->s_want_extra_isize,
4928                                                       iloc, handle);
4929                         if (ret) {
4930                                 ext4_set_inode_state(inode,
4931                                                      EXT4_STATE_NO_EXPAND);
4932                                 if (mnt_count !=
4933                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
4934                                         ext4_warning(inode->i_sb,
4935                                         "Unable to expand inode %lu. Delete"
4936                                         " some EAs or run e2fsck.",
4937                                         inode->i_ino);
4938                                         mnt_count =
4939                                           le16_to_cpu(sbi->s_es->s_mnt_count);
4940                                 }
4941                         }
4942                 }
4943         }
4944         if (!err)
4945                 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4946         return err;
4947 }
4948
4949 /*
4950  * ext4_dirty_inode() is called from __mark_inode_dirty()
4951  *
4952  * We're really interested in the case where a file is being extended.
4953  * i_size has been changed by generic_commit_write() and we thus need
4954  * to include the updated inode in the current transaction.
4955  *
4956  * Also, dquot_alloc_block() will always dirty the inode when blocks
4957  * are allocated to the file.
4958  *
4959  * If the inode is marked synchronous, we don't honour that here - doing
4960  * so would cause a commit on atime updates, which we don't bother doing.
4961  * We handle synchronous inodes at the highest possible level.
4962  */
4963 void ext4_dirty_inode(struct inode *inode, int flags)
4964 {
4965         handle_t *handle;
4966
4967         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4968         if (IS_ERR(handle))
4969                 goto out;
4970
4971         ext4_mark_inode_dirty(handle, inode);
4972
4973         ext4_journal_stop(handle);
4974 out:
4975         return;
4976 }
4977
4978 #if 0
4979 /*
4980  * Bind an inode's backing buffer_head into this transaction, to prevent
4981  * it from being flushed to disk early.  Unlike
4982  * ext4_reserve_inode_write, this leaves behind no bh reference and
4983  * returns no iloc structure, so the caller needs to repeat the iloc
4984  * lookup to mark the inode dirty later.
4985  */
4986 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4987 {
4988         struct ext4_iloc iloc;
4989
4990         int err = 0;
4991         if (handle) {
4992                 err = ext4_get_inode_loc(inode, &iloc);
4993                 if (!err) {
4994                         BUFFER_TRACE(iloc.bh, "get_write_access");
4995                         err = jbd2_journal_get_write_access(handle, iloc.bh);
4996                         if (!err)
4997                                 err = ext4_handle_dirty_metadata(handle,
4998                                                                  NULL,
4999                                                                  iloc.bh);
5000                         brelse(iloc.bh);
5001                 }
5002         }
5003         ext4_std_error(inode->i_sb, err);
5004         return err;
5005 }
5006 #endif
5007
5008 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5009 {
5010         journal_t *journal;
5011         handle_t *handle;
5012         int err;
5013
5014         /*
5015          * We have to be very careful here: changing a data block's
5016          * journaling status dynamically is dangerous.  If we write a
5017          * data block to the journal, change the status and then delete
5018          * that block, we risk forgetting to revoke the old log record
5019          * from the journal and so a subsequent replay can corrupt data.
5020          * So, first we make sure that the journal is empty and that
5021          * nobody is changing anything.
5022          */
5023
5024         journal = EXT4_JOURNAL(inode);
5025         if (!journal)
5026                 return 0;
5027         if (is_journal_aborted(journal))
5028                 return -EROFS;
5029         /* We have to allocate physical blocks for delalloc blocks
5030          * before flushing journal. otherwise delalloc blocks can not
5031          * be allocated any more. even more truncate on delalloc blocks
5032          * could trigger BUG by flushing delalloc blocks in journal.
5033          * There is no delalloc block in non-journal data mode.
5034          */
5035         if (val && test_opt(inode->i_sb, DELALLOC)) {
5036                 err = ext4_alloc_da_blocks(inode);
5037                 if (err < 0)
5038                         return err;
5039         }
5040
5041         /* Wait for all existing dio workers */
5042         ext4_inode_block_unlocked_dio(inode);
5043         inode_dio_wait(inode);
5044
5045         jbd2_journal_lock_updates(journal);
5046
5047         /*
5048          * OK, there are no updates running now, and all cached data is
5049          * synced to disk.  We are now in a completely consistent state
5050          * which doesn't have anything in the journal, and we know that
5051          * no filesystem updates are running, so it is safe to modify
5052          * the inode's in-core data-journaling state flag now.
5053          */
5054
5055         if (val)
5056                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5057         else {
5058                 jbd2_journal_flush(journal);
5059                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5060         }
5061         ext4_set_aops(inode);
5062
5063         jbd2_journal_unlock_updates(journal);
5064         ext4_inode_resume_unlocked_dio(inode);
5065
5066         /* Finally we can mark the inode as dirty. */
5067
5068         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5069         if (IS_ERR(handle))
5070                 return PTR_ERR(handle);
5071
5072         err = ext4_mark_inode_dirty(handle, inode);
5073         ext4_handle_sync(handle);
5074         ext4_journal_stop(handle);
5075         ext4_std_error(inode->i_sb, err);
5076
5077         return err;
5078 }
5079
5080 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5081 {
5082         return !buffer_mapped(bh);
5083 }
5084
5085 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5086 {
5087         struct page *page = vmf->page;
5088         loff_t size;
5089         unsigned long len;
5090         int ret;
5091         struct file *file = vma->vm_file;
5092         struct inode *inode = file_inode(file);
5093         struct address_space *mapping = inode->i_mapping;
5094         handle_t *handle;
5095         get_block_t *get_block;
5096         int retries = 0;
5097
5098         sb_start_pagefault(inode->i_sb);
5099         file_update_time(vma->vm_file);
5100         /* Delalloc case is easy... */
5101         if (test_opt(inode->i_sb, DELALLOC) &&
5102             !ext4_should_journal_data(inode) &&
5103             !ext4_nonda_switch(inode->i_sb)) {
5104                 do {
5105                         ret = __block_page_mkwrite(vma, vmf,
5106                                                    ext4_da_get_block_prep);
5107                 } while (ret == -ENOSPC &&
5108                        ext4_should_retry_alloc(inode->i_sb, &retries));
5109                 goto out_ret;
5110         }
5111
5112         lock_page(page);
5113         size = i_size_read(inode);
5114         /* Page got truncated from under us? */
5115         if (page->mapping != mapping || page_offset(page) > size) {
5116                 unlock_page(page);
5117                 ret = VM_FAULT_NOPAGE;
5118                 goto out;
5119         }
5120
5121         if (page->index == size >> PAGE_CACHE_SHIFT)
5122                 len = size & ~PAGE_CACHE_MASK;
5123         else
5124                 len = PAGE_CACHE_SIZE;
5125         /*
5126          * Return if we have all the buffers mapped. This avoids the need to do
5127          * journal_start/journal_stop which can block and take a long time
5128          */
5129         if (page_has_buffers(page)) {
5130                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5131                                             0, len, NULL,
5132                                             ext4_bh_unmapped)) {
5133                         /* Wait so that we don't change page under IO */
5134                         wait_for_stable_page(page);
5135                         ret = VM_FAULT_LOCKED;
5136                         goto out;
5137                 }
5138         }
5139         unlock_page(page);
5140         /* OK, we need to fill the hole... */
5141         if (ext4_should_dioread_nolock(inode))
5142                 get_block = ext4_get_block_write;
5143         else
5144                 get_block = ext4_get_block;
5145 retry_alloc:
5146         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5147                                     ext4_writepage_trans_blocks(inode));
5148         if (IS_ERR(handle)) {
5149                 ret = VM_FAULT_SIGBUS;
5150                 goto out;
5151         }
5152         ret = __block_page_mkwrite(vma, vmf, get_block);
5153         if (!ret && ext4_should_journal_data(inode)) {
5154                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5155                           PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5156                         unlock_page(page);
5157                         ret = VM_FAULT_SIGBUS;
5158                         ext4_journal_stop(handle);
5159                         goto out;
5160                 }
5161                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5162         }
5163         ext4_journal_stop(handle);
5164         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5165                 goto retry_alloc;
5166 out_ret:
5167         ret = block_page_mkwrite_return(ret);
5168 out:
5169         sb_end_pagefault(inode->i_sb);
5170         return ret;
5171 }