]> Pileus Git - ~andy/linux/blob - fs/ext4/indirect.c
Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penber...
[~andy/linux] / fs / ext4 / indirect.c
1 /*
2  *  linux/fs/ext4/indirect.c
3  *
4  *  from
5  *
6  *  linux/fs/ext4/inode.c
7  *
8  * Copyright (C) 1992, 1993, 1994, 1995
9  * Remy Card (card@masi.ibp.fr)
10  * Laboratoire MASI - Institut Blaise Pascal
11  * Universite Pierre et Marie Curie (Paris VI)
12  *
13  *  from
14  *
15  *  linux/fs/minix/inode.c
16  *
17  *  Copyright (C) 1991, 1992  Linus Torvalds
18  *
19  *  Goal-directed block allocation by Stephen Tweedie
20  *      (sct@redhat.com), 1993, 1998
21  */
22
23 #include "ext4_jbd2.h"
24 #include "truncate.h"
25 #include "ext4_extents.h"       /* Needed for EXT_MAX_BLOCKS */
26
27 #include <trace/events/ext4.h>
28
29 typedef struct {
30         __le32  *p;
31         __le32  key;
32         struct buffer_head *bh;
33 } Indirect;
34
35 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
36 {
37         p->key = *(p->p = v);
38         p->bh = bh;
39 }
40
41 /**
42  *      ext4_block_to_path - parse the block number into array of offsets
43  *      @inode: inode in question (we are only interested in its superblock)
44  *      @i_block: block number to be parsed
45  *      @offsets: array to store the offsets in
46  *      @boundary: set this non-zero if the referred-to block is likely to be
47  *             followed (on disk) by an indirect block.
48  *
49  *      To store the locations of file's data ext4 uses a data structure common
50  *      for UNIX filesystems - tree of pointers anchored in the inode, with
51  *      data blocks at leaves and indirect blocks in intermediate nodes.
52  *      This function translates the block number into path in that tree -
53  *      return value is the path length and @offsets[n] is the offset of
54  *      pointer to (n+1)th node in the nth one. If @block is out of range
55  *      (negative or too large) warning is printed and zero returned.
56  *
57  *      Note: function doesn't find node addresses, so no IO is needed. All
58  *      we need to know is the capacity of indirect blocks (taken from the
59  *      inode->i_sb).
60  */
61
62 /*
63  * Portability note: the last comparison (check that we fit into triple
64  * indirect block) is spelled differently, because otherwise on an
65  * architecture with 32-bit longs and 8Kb pages we might get into trouble
66  * if our filesystem had 8Kb blocks. We might use long long, but that would
67  * kill us on x86. Oh, well, at least the sign propagation does not matter -
68  * i_block would have to be negative in the very beginning, so we would not
69  * get there at all.
70  */
71
72 static int ext4_block_to_path(struct inode *inode,
73                               ext4_lblk_t i_block,
74                               ext4_lblk_t offsets[4], int *boundary)
75 {
76         int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
77         int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
78         const long direct_blocks = EXT4_NDIR_BLOCKS,
79                 indirect_blocks = ptrs,
80                 double_blocks = (1 << (ptrs_bits * 2));
81         int n = 0;
82         int final = 0;
83
84         if (i_block < direct_blocks) {
85                 offsets[n++] = i_block;
86                 final = direct_blocks;
87         } else if ((i_block -= direct_blocks) < indirect_blocks) {
88                 offsets[n++] = EXT4_IND_BLOCK;
89                 offsets[n++] = i_block;
90                 final = ptrs;
91         } else if ((i_block -= indirect_blocks) < double_blocks) {
92                 offsets[n++] = EXT4_DIND_BLOCK;
93                 offsets[n++] = i_block >> ptrs_bits;
94                 offsets[n++] = i_block & (ptrs - 1);
95                 final = ptrs;
96         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
97                 offsets[n++] = EXT4_TIND_BLOCK;
98                 offsets[n++] = i_block >> (ptrs_bits * 2);
99                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
100                 offsets[n++] = i_block & (ptrs - 1);
101                 final = ptrs;
102         } else {
103                 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
104                              i_block + direct_blocks +
105                              indirect_blocks + double_blocks, inode->i_ino);
106         }
107         if (boundary)
108                 *boundary = final - 1 - (i_block & (ptrs - 1));
109         return n;
110 }
111
112 /**
113  *      ext4_get_branch - read the chain of indirect blocks leading to data
114  *      @inode: inode in question
115  *      @depth: depth of the chain (1 - direct pointer, etc.)
116  *      @offsets: offsets of pointers in inode/indirect blocks
117  *      @chain: place to store the result
118  *      @err: here we store the error value
119  *
120  *      Function fills the array of triples <key, p, bh> and returns %NULL
121  *      if everything went OK or the pointer to the last filled triple
122  *      (incomplete one) otherwise. Upon the return chain[i].key contains
123  *      the number of (i+1)-th block in the chain (as it is stored in memory,
124  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
125  *      number (it points into struct inode for i==0 and into the bh->b_data
126  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
127  *      block for i>0 and NULL for i==0. In other words, it holds the block
128  *      numbers of the chain, addresses they were taken from (and where we can
129  *      verify that chain did not change) and buffer_heads hosting these
130  *      numbers.
131  *
132  *      Function stops when it stumbles upon zero pointer (absent block)
133  *              (pointer to last triple returned, *@err == 0)
134  *      or when it gets an IO error reading an indirect block
135  *              (ditto, *@err == -EIO)
136  *      or when it reads all @depth-1 indirect blocks successfully and finds
137  *      the whole chain, all way to the data (returns %NULL, *err == 0).
138  *
139  *      Need to be called with
140  *      down_read(&EXT4_I(inode)->i_data_sem)
141  */
142 static Indirect *ext4_get_branch(struct inode *inode, int depth,
143                                  ext4_lblk_t  *offsets,
144                                  Indirect chain[4], int *err)
145 {
146         struct super_block *sb = inode->i_sb;
147         Indirect *p = chain;
148         struct buffer_head *bh;
149         int ret = -EIO;
150
151         *err = 0;
152         /* i_data is not going away, no lock needed */
153         add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
154         if (!p->key)
155                 goto no_block;
156         while (--depth) {
157                 bh = sb_getblk(sb, le32_to_cpu(p->key));
158                 if (unlikely(!bh)) {
159                         ret = -ENOMEM;
160                         goto failure;
161                 }
162
163                 if (!bh_uptodate_or_lock(bh)) {
164                         if (bh_submit_read(bh) < 0) {
165                                 put_bh(bh);
166                                 goto failure;
167                         }
168                         /* validate block references */
169                         if (ext4_check_indirect_blockref(inode, bh)) {
170                                 put_bh(bh);
171                                 goto failure;
172                         }
173                 }
174
175                 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
176                 /* Reader: end */
177                 if (!p->key)
178                         goto no_block;
179         }
180         return NULL;
181
182 failure:
183         *err = ret;
184 no_block:
185         return p;
186 }
187
188 /**
189  *      ext4_find_near - find a place for allocation with sufficient locality
190  *      @inode: owner
191  *      @ind: descriptor of indirect block.
192  *
193  *      This function returns the preferred place for block allocation.
194  *      It is used when heuristic for sequential allocation fails.
195  *      Rules are:
196  *        + if there is a block to the left of our position - allocate near it.
197  *        + if pointer will live in indirect block - allocate near that block.
198  *        + if pointer will live in inode - allocate in the same
199  *          cylinder group.
200  *
201  * In the latter case we colour the starting block by the callers PID to
202  * prevent it from clashing with concurrent allocations for a different inode
203  * in the same block group.   The PID is used here so that functionally related
204  * files will be close-by on-disk.
205  *
206  *      Caller must make sure that @ind is valid and will stay that way.
207  */
208 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
209 {
210         struct ext4_inode_info *ei = EXT4_I(inode);
211         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
212         __le32 *p;
213
214         /* Try to find previous block */
215         for (p = ind->p - 1; p >= start; p--) {
216                 if (*p)
217                         return le32_to_cpu(*p);
218         }
219
220         /* No such thing, so let's try location of indirect block */
221         if (ind->bh)
222                 return ind->bh->b_blocknr;
223
224         /*
225          * It is going to be referred to from the inode itself? OK, just put it
226          * into the same cylinder group then.
227          */
228         return ext4_inode_to_goal_block(inode);
229 }
230
231 /**
232  *      ext4_find_goal - find a preferred place for allocation.
233  *      @inode: owner
234  *      @block:  block we want
235  *      @partial: pointer to the last triple within a chain
236  *
237  *      Normally this function find the preferred place for block allocation,
238  *      returns it.
239  *      Because this is only used for non-extent files, we limit the block nr
240  *      to 32 bits.
241  */
242 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
243                                    Indirect *partial)
244 {
245         ext4_fsblk_t goal;
246
247         /*
248          * XXX need to get goal block from mballoc's data structures
249          */
250
251         goal = ext4_find_near(inode, partial);
252         goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
253         return goal;
254 }
255
256 /**
257  *      ext4_blks_to_allocate - Look up the block map and count the number
258  *      of direct blocks need to be allocated for the given branch.
259  *
260  *      @branch: chain of indirect blocks
261  *      @k: number of blocks need for indirect blocks
262  *      @blks: number of data blocks to be mapped.
263  *      @blocks_to_boundary:  the offset in the indirect block
264  *
265  *      return the total number of blocks to be allocate, including the
266  *      direct and indirect blocks.
267  */
268 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
269                                  int blocks_to_boundary)
270 {
271         unsigned int count = 0;
272
273         /*
274          * Simple case, [t,d]Indirect block(s) has not allocated yet
275          * then it's clear blocks on that path have not allocated
276          */
277         if (k > 0) {
278                 /* right now we don't handle cross boundary allocation */
279                 if (blks < blocks_to_boundary + 1)
280                         count += blks;
281                 else
282                         count += blocks_to_boundary + 1;
283                 return count;
284         }
285
286         count++;
287         while (count < blks && count <= blocks_to_boundary &&
288                 le32_to_cpu(*(branch[0].p + count)) == 0) {
289                 count++;
290         }
291         return count;
292 }
293
294 /**
295  *      ext4_alloc_branch - allocate and set up a chain of blocks.
296  *      @handle: handle for this transaction
297  *      @inode: owner
298  *      @indirect_blks: number of allocated indirect blocks
299  *      @blks: number of allocated direct blocks
300  *      @goal: preferred place for allocation
301  *      @offsets: offsets (in the blocks) to store the pointers to next.
302  *      @branch: place to store the chain in.
303  *
304  *      This function allocates blocks, zeroes out all but the last one,
305  *      links them into chain and (if we are synchronous) writes them to disk.
306  *      In other words, it prepares a branch that can be spliced onto the
307  *      inode. It stores the information about that chain in the branch[], in
308  *      the same format as ext4_get_branch() would do. We are calling it after
309  *      we had read the existing part of chain and partial points to the last
310  *      triple of that (one with zero ->key). Upon the exit we have the same
311  *      picture as after the successful ext4_get_block(), except that in one
312  *      place chain is disconnected - *branch->p is still zero (we did not
313  *      set the last link), but branch->key contains the number that should
314  *      be placed into *branch->p to fill that gap.
315  *
316  *      If allocation fails we free all blocks we've allocated (and forget
317  *      their buffer_heads) and return the error value the from failed
318  *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
319  *      as described above and return 0.
320  */
321 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
322                              ext4_lblk_t iblock, int indirect_blks,
323                              int *blks, ext4_fsblk_t goal,
324                              ext4_lblk_t *offsets, Indirect *branch)
325 {
326         struct ext4_allocation_request  ar;
327         struct buffer_head *            bh;
328         ext4_fsblk_t                    b, new_blocks[4];
329         __le32                          *p;
330         int                             i, j, err, len = 1;
331
332         /*
333          * Set up for the direct block allocation
334          */
335         memset(&ar, 0, sizeof(ar));
336         ar.inode = inode;
337         ar.len = *blks;
338         ar.logical = iblock;
339         if (S_ISREG(inode->i_mode))
340                 ar.flags = EXT4_MB_HINT_DATA;
341
342         for (i = 0; i <= indirect_blks; i++) {
343                 if (i == indirect_blks) {
344                         ar.goal = goal;
345                         new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
346                 } else
347                         goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
348                                                         goal, 0, NULL, &err);
349                 if (err) {
350                         i--;
351                         goto failed;
352                 }
353                 branch[i].key = cpu_to_le32(new_blocks[i]);
354                 if (i == 0)
355                         continue;
356
357                 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
358                 if (unlikely(!bh)) {
359                         err = -ENOMEM;
360                         goto failed;
361                 }
362                 lock_buffer(bh);
363                 BUFFER_TRACE(bh, "call get_create_access");
364                 err = ext4_journal_get_create_access(handle, bh);
365                 if (err) {
366                         unlock_buffer(bh);
367                         goto failed;
368                 }
369
370                 memset(bh->b_data, 0, bh->b_size);
371                 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
372                 b = new_blocks[i];
373
374                 if (i == indirect_blks)
375                         len = ar.len;
376                 for (j = 0; j < len; j++)
377                         *p++ = cpu_to_le32(b++);
378
379                 BUFFER_TRACE(bh, "marking uptodate");
380                 set_buffer_uptodate(bh);
381                 unlock_buffer(bh);
382
383                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
384                 err = ext4_handle_dirty_metadata(handle, inode, bh);
385                 if (err)
386                         goto failed;
387         }
388         *blks = ar.len;
389         return 0;
390 failed:
391         for (; i >= 0; i--) {
392                 if (i != indirect_blks && branch[i].bh)
393                         ext4_forget(handle, 1, inode, branch[i].bh,
394                                     branch[i].bh->b_blocknr);
395                 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
396                                  (i == indirect_blks) ? ar.len : 1, 0);
397         }
398         return err;
399 }
400
401 /**
402  * ext4_splice_branch - splice the allocated branch onto inode.
403  * @handle: handle for this transaction
404  * @inode: owner
405  * @block: (logical) number of block we are adding
406  * @chain: chain of indirect blocks (with a missing link - see
407  *      ext4_alloc_branch)
408  * @where: location of missing link
409  * @num:   number of indirect blocks we are adding
410  * @blks:  number of direct blocks we are adding
411  *
412  * This function fills the missing link and does all housekeeping needed in
413  * inode (->i_blocks, etc.). In case of success we end up with the full
414  * chain to new block and return 0.
415  */
416 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
417                               ext4_lblk_t block, Indirect *where, int num,
418                               int blks)
419 {
420         int i;
421         int err = 0;
422         ext4_fsblk_t current_block;
423
424         /*
425          * If we're splicing into a [td]indirect block (as opposed to the
426          * inode) then we need to get write access to the [td]indirect block
427          * before the splice.
428          */
429         if (where->bh) {
430                 BUFFER_TRACE(where->bh, "get_write_access");
431                 err = ext4_journal_get_write_access(handle, where->bh);
432                 if (err)
433                         goto err_out;
434         }
435         /* That's it */
436
437         *where->p = where->key;
438
439         /*
440          * Update the host buffer_head or inode to point to more just allocated
441          * direct blocks blocks
442          */
443         if (num == 0 && blks > 1) {
444                 current_block = le32_to_cpu(where->key) + 1;
445                 for (i = 1; i < blks; i++)
446                         *(where->p + i) = cpu_to_le32(current_block++);
447         }
448
449         /* We are done with atomic stuff, now do the rest of housekeeping */
450         /* had we spliced it onto indirect block? */
451         if (where->bh) {
452                 /*
453                  * If we spliced it onto an indirect block, we haven't
454                  * altered the inode.  Note however that if it is being spliced
455                  * onto an indirect block at the very end of the file (the
456                  * file is growing) then we *will* alter the inode to reflect
457                  * the new i_size.  But that is not done here - it is done in
458                  * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
459                  */
460                 jbd_debug(5, "splicing indirect only\n");
461                 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
462                 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
463                 if (err)
464                         goto err_out;
465         } else {
466                 /*
467                  * OK, we spliced it into the inode itself on a direct block.
468                  */
469                 ext4_mark_inode_dirty(handle, inode);
470                 jbd_debug(5, "splicing direct\n");
471         }
472         return err;
473
474 err_out:
475         for (i = 1; i <= num; i++) {
476                 /*
477                  * branch[i].bh is newly allocated, so there is no
478                  * need to revoke the block, which is why we don't
479                  * need to set EXT4_FREE_BLOCKS_METADATA.
480                  */
481                 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
482                                  EXT4_FREE_BLOCKS_FORGET);
483         }
484         ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
485                          blks, 0);
486
487         return err;
488 }
489
490 /*
491  * The ext4_ind_map_blocks() function handles non-extents inodes
492  * (i.e., using the traditional indirect/double-indirect i_blocks
493  * scheme) for ext4_map_blocks().
494  *
495  * Allocation strategy is simple: if we have to allocate something, we will
496  * have to go the whole way to leaf. So let's do it before attaching anything
497  * to tree, set linkage between the newborn blocks, write them if sync is
498  * required, recheck the path, free and repeat if check fails, otherwise
499  * set the last missing link (that will protect us from any truncate-generated
500  * removals - all blocks on the path are immune now) and possibly force the
501  * write on the parent block.
502  * That has a nice additional property: no special recovery from the failed
503  * allocations is needed - we simply release blocks and do not touch anything
504  * reachable from inode.
505  *
506  * `handle' can be NULL if create == 0.
507  *
508  * return > 0, # of blocks mapped or allocated.
509  * return = 0, if plain lookup failed.
510  * return < 0, error case.
511  *
512  * The ext4_ind_get_blocks() function should be called with
513  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
514  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
515  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
516  * blocks.
517  */
518 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
519                         struct ext4_map_blocks *map,
520                         int flags)
521 {
522         int err = -EIO;
523         ext4_lblk_t offsets[4];
524         Indirect chain[4];
525         Indirect *partial;
526         ext4_fsblk_t goal;
527         int indirect_blks;
528         int blocks_to_boundary = 0;
529         int depth;
530         int count = 0;
531         ext4_fsblk_t first_block = 0;
532
533         trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
534         J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
535         J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
536         depth = ext4_block_to_path(inode, map->m_lblk, offsets,
537                                    &blocks_to_boundary);
538
539         if (depth == 0)
540                 goto out;
541
542         partial = ext4_get_branch(inode, depth, offsets, chain, &err);
543
544         /* Simplest case - block found, no allocation needed */
545         if (!partial) {
546                 first_block = le32_to_cpu(chain[depth - 1].key);
547                 count++;
548                 /*map more blocks*/
549                 while (count < map->m_len && count <= blocks_to_boundary) {
550                         ext4_fsblk_t blk;
551
552                         blk = le32_to_cpu(*(chain[depth-1].p + count));
553
554                         if (blk == first_block + count)
555                                 count++;
556                         else
557                                 break;
558                 }
559                 goto got_it;
560         }
561
562         /* Next simple case - plain lookup or failed read of indirect block */
563         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
564                 goto cleanup;
565
566         /*
567          * Okay, we need to do block allocation.
568         */
569         if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
570                                        EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
571                 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
572                                  "non-extent mapped inodes with bigalloc");
573                 return -ENOSPC;
574         }
575
576         goal = ext4_find_goal(inode, map->m_lblk, partial);
577
578         /* the number of blocks need to allocate for [d,t]indirect blocks */
579         indirect_blks = (chain + depth) - partial - 1;
580
581         /*
582          * Next look up the indirect map to count the totoal number of
583          * direct blocks to allocate for this branch.
584          */
585         count = ext4_blks_to_allocate(partial, indirect_blks,
586                                       map->m_len, blocks_to_boundary);
587         /*
588          * Block out ext4_truncate while we alter the tree
589          */
590         err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
591                                 &count, goal,
592                                 offsets + (partial - chain), partial);
593
594         /*
595          * The ext4_splice_branch call will free and forget any buffers
596          * on the new chain if there is a failure, but that risks using
597          * up transaction credits, especially for bitmaps where the
598          * credits cannot be returned.  Can we handle this somehow?  We
599          * may need to return -EAGAIN upwards in the worst case.  --sct
600          */
601         if (!err)
602                 err = ext4_splice_branch(handle, inode, map->m_lblk,
603                                          partial, indirect_blks, count);
604         if (err)
605                 goto cleanup;
606
607         map->m_flags |= EXT4_MAP_NEW;
608
609         ext4_update_inode_fsync_trans(handle, inode, 1);
610 got_it:
611         map->m_flags |= EXT4_MAP_MAPPED;
612         map->m_pblk = le32_to_cpu(chain[depth-1].key);
613         map->m_len = count;
614         if (count > blocks_to_boundary)
615                 map->m_flags |= EXT4_MAP_BOUNDARY;
616         err = count;
617         /* Clean up and exit */
618         partial = chain + depth - 1;    /* the whole chain */
619 cleanup:
620         while (partial > chain) {
621                 BUFFER_TRACE(partial->bh, "call brelse");
622                 brelse(partial->bh);
623                 partial--;
624         }
625 out:
626         trace_ext4_ind_map_blocks_exit(inode, map, err);
627         return err;
628 }
629
630 /*
631  * O_DIRECT for ext3 (or indirect map) based files
632  *
633  * If the O_DIRECT write will extend the file then add this inode to the
634  * orphan list.  So recovery will truncate it back to the original size
635  * if the machine crashes during the write.
636  *
637  * If the O_DIRECT write is intantiating holes inside i_size and the machine
638  * crashes then stale disk data _may_ be exposed inside the file. But current
639  * VFS code falls back into buffered path in that case so we are safe.
640  */
641 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
642                            const struct iovec *iov, loff_t offset,
643                            unsigned long nr_segs)
644 {
645         struct file *file = iocb->ki_filp;
646         struct inode *inode = file->f_mapping->host;
647         struct ext4_inode_info *ei = EXT4_I(inode);
648         handle_t *handle;
649         ssize_t ret;
650         int orphan = 0;
651         size_t count = iov_length(iov, nr_segs);
652         int retries = 0;
653
654         if (rw == WRITE) {
655                 loff_t final_size = offset + count;
656
657                 if (final_size > inode->i_size) {
658                         /* Credits for sb + inode write */
659                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
660                         if (IS_ERR(handle)) {
661                                 ret = PTR_ERR(handle);
662                                 goto out;
663                         }
664                         ret = ext4_orphan_add(handle, inode);
665                         if (ret) {
666                                 ext4_journal_stop(handle);
667                                 goto out;
668                         }
669                         orphan = 1;
670                         ei->i_disksize = inode->i_size;
671                         ext4_journal_stop(handle);
672                 }
673         }
674
675 retry:
676         if (rw == READ && ext4_should_dioread_nolock(inode)) {
677                 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
678                         mutex_lock(&inode->i_mutex);
679                         ext4_flush_unwritten_io(inode);
680                         mutex_unlock(&inode->i_mutex);
681                 }
682                 /*
683                  * Nolock dioread optimization may be dynamically disabled
684                  * via ext4_inode_block_unlocked_dio(). Check inode's state
685                  * while holding extra i_dio_count ref.
686                  */
687                 atomic_inc(&inode->i_dio_count);
688                 smp_mb();
689                 if (unlikely(ext4_test_inode_state(inode,
690                                                     EXT4_STATE_DIOREAD_LOCK))) {
691                         inode_dio_done(inode);
692                         goto locked;
693                 }
694                 ret = __blockdev_direct_IO(rw, iocb, inode,
695                                  inode->i_sb->s_bdev, iov,
696                                  offset, nr_segs,
697                                  ext4_get_block, NULL, NULL, 0);
698                 inode_dio_done(inode);
699         } else {
700 locked:
701                 ret = blockdev_direct_IO(rw, iocb, inode, iov,
702                                  offset, nr_segs, ext4_get_block);
703
704                 if (unlikely((rw & WRITE) && ret < 0)) {
705                         loff_t isize = i_size_read(inode);
706                         loff_t end = offset + iov_length(iov, nr_segs);
707
708                         if (end > isize)
709                                 ext4_truncate_failed_write(inode);
710                 }
711         }
712         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
713                 goto retry;
714
715         if (orphan) {
716                 int err;
717
718                 /* Credits for sb + inode write */
719                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
720                 if (IS_ERR(handle)) {
721                         /* This is really bad luck. We've written the data
722                          * but cannot extend i_size. Bail out and pretend
723                          * the write failed... */
724                         ret = PTR_ERR(handle);
725                         if (inode->i_nlink)
726                                 ext4_orphan_del(NULL, inode);
727
728                         goto out;
729                 }
730                 if (inode->i_nlink)
731                         ext4_orphan_del(handle, inode);
732                 if (ret > 0) {
733                         loff_t end = offset + ret;
734                         if (end > inode->i_size) {
735                                 ei->i_disksize = end;
736                                 i_size_write(inode, end);
737                                 /*
738                                  * We're going to return a positive `ret'
739                                  * here due to non-zero-length I/O, so there's
740                                  * no way of reporting error returns from
741                                  * ext4_mark_inode_dirty() to userspace.  So
742                                  * ignore it.
743                                  */
744                                 ext4_mark_inode_dirty(handle, inode);
745                         }
746                 }
747                 err = ext4_journal_stop(handle);
748                 if (ret == 0)
749                         ret = err;
750         }
751 out:
752         return ret;
753 }
754
755 /*
756  * Calculate the number of metadata blocks need to reserve
757  * to allocate a new block at @lblocks for non extent file based file
758  */
759 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
760 {
761         struct ext4_inode_info *ei = EXT4_I(inode);
762         sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
763         int blk_bits;
764
765         if (lblock < EXT4_NDIR_BLOCKS)
766                 return 0;
767
768         lblock -= EXT4_NDIR_BLOCKS;
769
770         if (ei->i_da_metadata_calc_len &&
771             (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
772                 ei->i_da_metadata_calc_len++;
773                 return 0;
774         }
775         ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
776         ei->i_da_metadata_calc_len = 1;
777         blk_bits = order_base_2(lblock);
778         return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
779 }
780
781 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
782 {
783         int indirects;
784
785         /* if nrblocks are contiguous */
786         if (chunk) {
787                 /*
788                  * With N contiguous data blocks, we need at most
789                  * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
790                  * 2 dindirect blocks, and 1 tindirect block
791                  */
792                 return DIV_ROUND_UP(nrblocks,
793                                     EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
794         }
795         /*
796          * if nrblocks are not contiguous, worse case, each block touch
797          * a indirect block, and each indirect block touch a double indirect
798          * block, plus a triple indirect block
799          */
800         indirects = nrblocks * 2 + 1;
801         return indirects;
802 }
803
804 /*
805  * Truncate transactions can be complex and absolutely huge.  So we need to
806  * be able to restart the transaction at a conventient checkpoint to make
807  * sure we don't overflow the journal.
808  *
809  * Try to extend this transaction for the purposes of truncation.  If
810  * extend fails, we need to propagate the failure up and restart the
811  * transaction in the top-level truncate loop. --sct
812  *
813  * Returns 0 if we managed to create more room.  If we can't create more
814  * room, and the transaction must be restarted we return 1.
815  */
816 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
817 {
818         if (!ext4_handle_valid(handle))
819                 return 0;
820         if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
821                 return 0;
822         if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
823                 return 0;
824         return 1;
825 }
826
827 /*
828  * Probably it should be a library function... search for first non-zero word
829  * or memcmp with zero_page, whatever is better for particular architecture.
830  * Linus?
831  */
832 static inline int all_zeroes(__le32 *p, __le32 *q)
833 {
834         while (p < q)
835                 if (*p++)
836                         return 0;
837         return 1;
838 }
839
840 /**
841  *      ext4_find_shared - find the indirect blocks for partial truncation.
842  *      @inode:   inode in question
843  *      @depth:   depth of the affected branch
844  *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
845  *      @chain:   place to store the pointers to partial indirect blocks
846  *      @top:     place to the (detached) top of branch
847  *
848  *      This is a helper function used by ext4_truncate().
849  *
850  *      When we do truncate() we may have to clean the ends of several
851  *      indirect blocks but leave the blocks themselves alive. Block is
852  *      partially truncated if some data below the new i_size is referred
853  *      from it (and it is on the path to the first completely truncated
854  *      data block, indeed).  We have to free the top of that path along
855  *      with everything to the right of the path. Since no allocation
856  *      past the truncation point is possible until ext4_truncate()
857  *      finishes, we may safely do the latter, but top of branch may
858  *      require special attention - pageout below the truncation point
859  *      might try to populate it.
860  *
861  *      We atomically detach the top of branch from the tree, store the
862  *      block number of its root in *@top, pointers to buffer_heads of
863  *      partially truncated blocks - in @chain[].bh and pointers to
864  *      their last elements that should not be removed - in
865  *      @chain[].p. Return value is the pointer to last filled element
866  *      of @chain.
867  *
868  *      The work left to caller to do the actual freeing of subtrees:
869  *              a) free the subtree starting from *@top
870  *              b) free the subtrees whose roots are stored in
871  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
872  *              c) free the subtrees growing from the inode past the @chain[0].
873  *                      (no partially truncated stuff there).  */
874
875 static Indirect *ext4_find_shared(struct inode *inode, int depth,
876                                   ext4_lblk_t offsets[4], Indirect chain[4],
877                                   __le32 *top)
878 {
879         Indirect *partial, *p;
880         int k, err;
881
882         *top = 0;
883         /* Make k index the deepest non-null offset + 1 */
884         for (k = depth; k > 1 && !offsets[k-1]; k--)
885                 ;
886         partial = ext4_get_branch(inode, k, offsets, chain, &err);
887         /* Writer: pointers */
888         if (!partial)
889                 partial = chain + k-1;
890         /*
891          * If the branch acquired continuation since we've looked at it -
892          * fine, it should all survive and (new) top doesn't belong to us.
893          */
894         if (!partial->key && *partial->p)
895                 /* Writer: end */
896                 goto no_top;
897         for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
898                 ;
899         /*
900          * OK, we've found the last block that must survive. The rest of our
901          * branch should be detached before unlocking. However, if that rest
902          * of branch is all ours and does not grow immediately from the inode
903          * it's easier to cheat and just decrement partial->p.
904          */
905         if (p == chain + k - 1 && p > chain) {
906                 p->p--;
907         } else {
908                 *top = *p->p;
909                 /* Nope, don't do this in ext4.  Must leave the tree intact */
910 #if 0
911                 *p->p = 0;
912 #endif
913         }
914         /* Writer: end */
915
916         while (partial > p) {
917                 brelse(partial->bh);
918                 partial--;
919         }
920 no_top:
921         return partial;
922 }
923
924 /*
925  * Zero a number of block pointers in either an inode or an indirect block.
926  * If we restart the transaction we must again get write access to the
927  * indirect block for further modification.
928  *
929  * We release `count' blocks on disk, but (last - first) may be greater
930  * than `count' because there can be holes in there.
931  *
932  * Return 0 on success, 1 on invalid block range
933  * and < 0 on fatal error.
934  */
935 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
936                              struct buffer_head *bh,
937                              ext4_fsblk_t block_to_free,
938                              unsigned long count, __le32 *first,
939                              __le32 *last)
940 {
941         __le32 *p;
942         int     flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
943         int     err;
944
945         if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
946                 flags |= EXT4_FREE_BLOCKS_METADATA;
947
948         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
949                                    count)) {
950                 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
951                                  "blocks %llu len %lu",
952                                  (unsigned long long) block_to_free, count);
953                 return 1;
954         }
955
956         if (try_to_extend_transaction(handle, inode)) {
957                 if (bh) {
958                         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
959                         err = ext4_handle_dirty_metadata(handle, inode, bh);
960                         if (unlikely(err))
961                                 goto out_err;
962                 }
963                 err = ext4_mark_inode_dirty(handle, inode);
964                 if (unlikely(err))
965                         goto out_err;
966                 err = ext4_truncate_restart_trans(handle, inode,
967                                         ext4_blocks_for_truncate(inode));
968                 if (unlikely(err))
969                         goto out_err;
970                 if (bh) {
971                         BUFFER_TRACE(bh, "retaking write access");
972                         err = ext4_journal_get_write_access(handle, bh);
973                         if (unlikely(err))
974                                 goto out_err;
975                 }
976         }
977
978         for (p = first; p < last; p++)
979                 *p = 0;
980
981         ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
982         return 0;
983 out_err:
984         ext4_std_error(inode->i_sb, err);
985         return err;
986 }
987
988 /**
989  * ext4_free_data - free a list of data blocks
990  * @handle:     handle for this transaction
991  * @inode:      inode we are dealing with
992  * @this_bh:    indirect buffer_head which contains *@first and *@last
993  * @first:      array of block numbers
994  * @last:       points immediately past the end of array
995  *
996  * We are freeing all blocks referred from that array (numbers are stored as
997  * little-endian 32-bit) and updating @inode->i_blocks appropriately.
998  *
999  * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1000  * blocks are contiguous then releasing them at one time will only affect one
1001  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1002  * actually use a lot of journal space.
1003  *
1004  * @this_bh will be %NULL if @first and @last point into the inode's direct
1005  * block pointers.
1006  */
1007 static void ext4_free_data(handle_t *handle, struct inode *inode,
1008                            struct buffer_head *this_bh,
1009                            __le32 *first, __le32 *last)
1010 {
1011         ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1012         unsigned long count = 0;            /* Number of blocks in the run */
1013         __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
1014                                                corresponding to
1015                                                block_to_free */
1016         ext4_fsblk_t nr;                    /* Current block # */
1017         __le32 *p;                          /* Pointer into inode/ind
1018                                                for current block */
1019         int err = 0;
1020
1021         if (this_bh) {                          /* For indirect block */
1022                 BUFFER_TRACE(this_bh, "get_write_access");
1023                 err = ext4_journal_get_write_access(handle, this_bh);
1024                 /* Important: if we can't update the indirect pointers
1025                  * to the blocks, we can't free them. */
1026                 if (err)
1027                         return;
1028         }
1029
1030         for (p = first; p < last; p++) {
1031                 nr = le32_to_cpu(*p);
1032                 if (nr) {
1033                         /* accumulate blocks to free if they're contiguous */
1034                         if (count == 0) {
1035                                 block_to_free = nr;
1036                                 block_to_free_p = p;
1037                                 count = 1;
1038                         } else if (nr == block_to_free + count) {
1039                                 count++;
1040                         } else {
1041                                 err = ext4_clear_blocks(handle, inode, this_bh,
1042                                                         block_to_free, count,
1043                                                         block_to_free_p, p);
1044                                 if (err)
1045                                         break;
1046                                 block_to_free = nr;
1047                                 block_to_free_p = p;
1048                                 count = 1;
1049                         }
1050                 }
1051         }
1052
1053         if (!err && count > 0)
1054                 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1055                                         count, block_to_free_p, p);
1056         if (err < 0)
1057                 /* fatal error */
1058                 return;
1059
1060         if (this_bh) {
1061                 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1062
1063                 /*
1064                  * The buffer head should have an attached journal head at this
1065                  * point. However, if the data is corrupted and an indirect
1066                  * block pointed to itself, it would have been detached when
1067                  * the block was cleared. Check for this instead of OOPSing.
1068                  */
1069                 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1070                         ext4_handle_dirty_metadata(handle, inode, this_bh);
1071                 else
1072                         EXT4_ERROR_INODE(inode,
1073                                          "circular indirect block detected at "
1074                                          "block %llu",
1075                                 (unsigned long long) this_bh->b_blocknr);
1076         }
1077 }
1078
1079 /**
1080  *      ext4_free_branches - free an array of branches
1081  *      @handle: JBD handle for this transaction
1082  *      @inode: inode we are dealing with
1083  *      @parent_bh: the buffer_head which contains *@first and *@last
1084  *      @first: array of block numbers
1085  *      @last:  pointer immediately past the end of array
1086  *      @depth: depth of the branches to free
1087  *
1088  *      We are freeing all blocks referred from these branches (numbers are
1089  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1090  *      appropriately.
1091  */
1092 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1093                                struct buffer_head *parent_bh,
1094                                __le32 *first, __le32 *last, int depth)
1095 {
1096         ext4_fsblk_t nr;
1097         __le32 *p;
1098
1099         if (ext4_handle_is_aborted(handle))
1100                 return;
1101
1102         if (depth--) {
1103                 struct buffer_head *bh;
1104                 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1105                 p = last;
1106                 while (--p >= first) {
1107                         nr = le32_to_cpu(*p);
1108                         if (!nr)
1109                                 continue;               /* A hole */
1110
1111                         if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1112                                                    nr, 1)) {
1113                                 EXT4_ERROR_INODE(inode,
1114                                                  "invalid indirect mapped "
1115                                                  "block %lu (level %d)",
1116                                                  (unsigned long) nr, depth);
1117                                 break;
1118                         }
1119
1120                         /* Go read the buffer for the next level down */
1121                         bh = sb_bread(inode->i_sb, nr);
1122
1123                         /*
1124                          * A read failure? Report error and clear slot
1125                          * (should be rare).
1126                          */
1127                         if (!bh) {
1128                                 EXT4_ERROR_INODE_BLOCK(inode, nr,
1129                                                        "Read failure");
1130                                 continue;
1131                         }
1132
1133                         /* This zaps the entire block.  Bottom up. */
1134                         BUFFER_TRACE(bh, "free child branches");
1135                         ext4_free_branches(handle, inode, bh,
1136                                         (__le32 *) bh->b_data,
1137                                         (__le32 *) bh->b_data + addr_per_block,
1138                                         depth);
1139                         brelse(bh);
1140
1141                         /*
1142                          * Everything below this this pointer has been
1143                          * released.  Now let this top-of-subtree go.
1144                          *
1145                          * We want the freeing of this indirect block to be
1146                          * atomic in the journal with the updating of the
1147                          * bitmap block which owns it.  So make some room in
1148                          * the journal.
1149                          *
1150                          * We zero the parent pointer *after* freeing its
1151                          * pointee in the bitmaps, so if extend_transaction()
1152                          * for some reason fails to put the bitmap changes and
1153                          * the release into the same transaction, recovery
1154                          * will merely complain about releasing a free block,
1155                          * rather than leaking blocks.
1156                          */
1157                         if (ext4_handle_is_aborted(handle))
1158                                 return;
1159                         if (try_to_extend_transaction(handle, inode)) {
1160                                 ext4_mark_inode_dirty(handle, inode);
1161                                 ext4_truncate_restart_trans(handle, inode,
1162                                             ext4_blocks_for_truncate(inode));
1163                         }
1164
1165                         /*
1166                          * The forget flag here is critical because if
1167                          * we are journaling (and not doing data
1168                          * journaling), we have to make sure a revoke
1169                          * record is written to prevent the journal
1170                          * replay from overwriting the (former)
1171                          * indirect block if it gets reallocated as a
1172                          * data block.  This must happen in the same
1173                          * transaction where the data blocks are
1174                          * actually freed.
1175                          */
1176                         ext4_free_blocks(handle, inode, NULL, nr, 1,
1177                                          EXT4_FREE_BLOCKS_METADATA|
1178                                          EXT4_FREE_BLOCKS_FORGET);
1179
1180                         if (parent_bh) {
1181                                 /*
1182                                  * The block which we have just freed is
1183                                  * pointed to by an indirect block: journal it
1184                                  */
1185                                 BUFFER_TRACE(parent_bh, "get_write_access");
1186                                 if (!ext4_journal_get_write_access(handle,
1187                                                                    parent_bh)){
1188                                         *p = 0;
1189                                         BUFFER_TRACE(parent_bh,
1190                                         "call ext4_handle_dirty_metadata");
1191                                         ext4_handle_dirty_metadata(handle,
1192                                                                    inode,
1193                                                                    parent_bh);
1194                                 }
1195                         }
1196                 }
1197         } else {
1198                 /* We have reached the bottom of the tree. */
1199                 BUFFER_TRACE(parent_bh, "free data blocks");
1200                 ext4_free_data(handle, inode, parent_bh, first, last);
1201         }
1202 }
1203
1204 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1205 {
1206         struct ext4_inode_info *ei = EXT4_I(inode);
1207         __le32 *i_data = ei->i_data;
1208         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1209         ext4_lblk_t offsets[4];
1210         Indirect chain[4];
1211         Indirect *partial;
1212         __le32 nr = 0;
1213         int n = 0;
1214         ext4_lblk_t last_block, max_block;
1215         unsigned blocksize = inode->i_sb->s_blocksize;
1216
1217         last_block = (inode->i_size + blocksize-1)
1218                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1219         max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1220                                         >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1221
1222         if (last_block != max_block) {
1223                 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1224                 if (n == 0)
1225                         return;
1226         }
1227
1228         ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1229
1230         /*
1231          * The orphan list entry will now protect us from any crash which
1232          * occurs before the truncate completes, so it is now safe to propagate
1233          * the new, shorter inode size (held for now in i_size) into the
1234          * on-disk inode. We do this via i_disksize, which is the value which
1235          * ext4 *really* writes onto the disk inode.
1236          */
1237         ei->i_disksize = inode->i_size;
1238
1239         if (last_block == max_block) {
1240                 /*
1241                  * It is unnecessary to free any data blocks if last_block is
1242                  * equal to the indirect block limit.
1243                  */
1244                 return;
1245         } else if (n == 1) {            /* direct blocks */
1246                 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1247                                i_data + EXT4_NDIR_BLOCKS);
1248                 goto do_indirects;
1249         }
1250
1251         partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1252         /* Kill the top of shared branch (not detached) */
1253         if (nr) {
1254                 if (partial == chain) {
1255                         /* Shared branch grows from the inode */
1256                         ext4_free_branches(handle, inode, NULL,
1257                                            &nr, &nr+1, (chain+n-1) - partial);
1258                         *partial->p = 0;
1259                         /*
1260                          * We mark the inode dirty prior to restart,
1261                          * and prior to stop.  No need for it here.
1262                          */
1263                 } else {
1264                         /* Shared branch grows from an indirect block */
1265                         BUFFER_TRACE(partial->bh, "get_write_access");
1266                         ext4_free_branches(handle, inode, partial->bh,
1267                                         partial->p,
1268                                         partial->p+1, (chain+n-1) - partial);
1269                 }
1270         }
1271         /* Clear the ends of indirect blocks on the shared branch */
1272         while (partial > chain) {
1273                 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1274                                    (__le32*)partial->bh->b_data+addr_per_block,
1275                                    (chain+n-1) - partial);
1276                 BUFFER_TRACE(partial->bh, "call brelse");
1277                 brelse(partial->bh);
1278                 partial--;
1279         }
1280 do_indirects:
1281         /* Kill the remaining (whole) subtrees */
1282         switch (offsets[0]) {
1283         default:
1284                 nr = i_data[EXT4_IND_BLOCK];
1285                 if (nr) {
1286                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1287                         i_data[EXT4_IND_BLOCK] = 0;
1288                 }
1289         case EXT4_IND_BLOCK:
1290                 nr = i_data[EXT4_DIND_BLOCK];
1291                 if (nr) {
1292                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1293                         i_data[EXT4_DIND_BLOCK] = 0;
1294                 }
1295         case EXT4_DIND_BLOCK:
1296                 nr = i_data[EXT4_TIND_BLOCK];
1297                 if (nr) {
1298                         ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1299                         i_data[EXT4_TIND_BLOCK] = 0;
1300                 }
1301         case EXT4_TIND_BLOCK:
1302                 ;
1303         }
1304 }
1305
1306 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1307                             struct buffer_head *parent_bh, __le32 *i_data,
1308                             int level, ext4_lblk_t first,
1309                             ext4_lblk_t count, int max)
1310 {
1311         struct buffer_head *bh = NULL;
1312         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1313         int ret = 0;
1314         int i, inc;
1315         ext4_lblk_t offset;
1316         __le32 blk;
1317
1318         inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1319         for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1320                 if (offset >= count + first)
1321                         break;
1322                 if (*i_data == 0 || (offset + inc) <= first)
1323                         continue;
1324                 blk = *i_data;
1325                 if (level > 0) {
1326                         ext4_lblk_t first2;
1327                         bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1328                         if (!bh) {
1329                                 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1330                                                        "Read failure");
1331                                 return -EIO;
1332                         }
1333                         first2 = (first > offset) ? first - offset : 0;
1334                         ret = free_hole_blocks(handle, inode, bh,
1335                                                (__le32 *)bh->b_data, level - 1,
1336                                                first2, count - offset,
1337                                                inode->i_sb->s_blocksize >> 2);
1338                         if (ret) {
1339                                 brelse(bh);
1340                                 goto err;
1341                         }
1342                 }
1343                 if (level == 0 ||
1344                     (bh && all_zeroes((__le32 *)bh->b_data,
1345                                       (__le32 *)bh->b_data + addr_per_block))) {
1346                         ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1347                         *i_data = 0;
1348                 }
1349                 brelse(bh);
1350                 bh = NULL;
1351         }
1352
1353 err:
1354         return ret;
1355 }
1356
1357 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1358                           ext4_lblk_t first, ext4_lblk_t stop)
1359 {
1360         int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1361         int level, ret = 0;
1362         int num = EXT4_NDIR_BLOCKS;
1363         ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1364         __le32 *i_data = EXT4_I(inode)->i_data;
1365
1366         count = stop - first;
1367         for (level = 0; level < 4; level++, max *= addr_per_block) {
1368                 if (first < max) {
1369                         ret = free_hole_blocks(handle, inode, NULL, i_data,
1370                                                level, first, count, num);
1371                         if (ret)
1372                                 goto err;
1373                         if (count > max - first)
1374                                 count -= max - first;
1375                         else
1376                                 break;
1377                         first = 0;
1378                 } else {
1379                         first -= max;
1380                 }
1381                 i_data += num;
1382                 if (level == 0) {
1383                         num = 1;
1384                         max = 1;
1385                 }
1386         }
1387
1388 err:
1389         return ret;
1390 }
1391