]> Pileus Git - ~andy/linux/blob - fs/ext2/inode.c
c3881e56662efac8c80ec409c5808771303ed24f
[~andy/linux] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/writeback.h>
30 #include <linux/buffer_head.h>
31 #include <linux/mpage.h>
32 #include <linux/fiemap.h>
33 #include <linux/namei.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
37
38 static int __ext2_write_inode(struct inode *inode, int do_sync);
39
40 /*
41  * Test whether an inode is a fast symlink.
42  */
43 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
44 {
45         int ea_blocks = EXT2_I(inode)->i_file_acl ?
46                 (inode->i_sb->s_blocksize >> 9) : 0;
47
48         return (S_ISLNK(inode->i_mode) &&
49                 inode->i_blocks - ea_blocks == 0);
50 }
51
52 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
53
54 static void ext2_write_failed(struct address_space *mapping, loff_t to)
55 {
56         struct inode *inode = mapping->host;
57
58         if (to > inode->i_size) {
59                 truncate_pagecache(inode, to, inode->i_size);
60                 ext2_truncate_blocks(inode, inode->i_size);
61         }
62 }
63
64 /*
65  * Called at the last iput() if i_nlink is zero.
66  */
67 void ext2_evict_inode(struct inode * inode)
68 {
69         struct ext2_block_alloc_info *rsv;
70         int want_delete = 0;
71
72         if (!inode->i_nlink && !is_bad_inode(inode)) {
73                 want_delete = 1;
74                 dquot_initialize(inode);
75         } else {
76                 dquot_drop(inode);
77         }
78
79         truncate_inode_pages(&inode->i_data, 0);
80
81         if (want_delete) {
82                 sb_start_intwrite(inode->i_sb);
83                 /* set dtime */
84                 EXT2_I(inode)->i_dtime  = get_seconds();
85                 mark_inode_dirty(inode);
86                 __ext2_write_inode(inode, inode_needs_sync(inode));
87                 /* truncate to 0 */
88                 inode->i_size = 0;
89                 if (inode->i_blocks)
90                         ext2_truncate_blocks(inode, 0);
91         }
92
93         invalidate_inode_buffers(inode);
94         clear_inode(inode);
95
96         ext2_discard_reservation(inode);
97         rsv = EXT2_I(inode)->i_block_alloc_info;
98         EXT2_I(inode)->i_block_alloc_info = NULL;
99         if (unlikely(rsv))
100                 kfree(rsv);
101
102         if (want_delete) {
103                 ext2_free_inode(inode);
104                 sb_end_intwrite(inode->i_sb);
105         }
106 }
107
108 typedef struct {
109         __le32  *p;
110         __le32  key;
111         struct buffer_head *bh;
112 } Indirect;
113
114 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
115 {
116         p->key = *(p->p = v);
117         p->bh = bh;
118 }
119
120 static inline int verify_chain(Indirect *from, Indirect *to)
121 {
122         while (from <= to && from->key == *from->p)
123                 from++;
124         return (from > to);
125 }
126
127 /**
128  *      ext2_block_to_path - parse the block number into array of offsets
129  *      @inode: inode in question (we are only interested in its superblock)
130  *      @i_block: block number to be parsed
131  *      @offsets: array to store the offsets in
132  *      @boundary: set this non-zero if the referred-to block is likely to be
133  *             followed (on disk) by an indirect block.
134  *      To store the locations of file's data ext2 uses a data structure common
135  *      for UNIX filesystems - tree of pointers anchored in the inode, with
136  *      data blocks at leaves and indirect blocks in intermediate nodes.
137  *      This function translates the block number into path in that tree -
138  *      return value is the path length and @offsets[n] is the offset of
139  *      pointer to (n+1)th node in the nth one. If @block is out of range
140  *      (negative or too large) warning is printed and zero returned.
141  *
142  *      Note: function doesn't find node addresses, so no IO is needed. All
143  *      we need to know is the capacity of indirect blocks (taken from the
144  *      inode->i_sb).
145  */
146
147 /*
148  * Portability note: the last comparison (check that we fit into triple
149  * indirect block) is spelled differently, because otherwise on an
150  * architecture with 32-bit longs and 8Kb pages we might get into trouble
151  * if our filesystem had 8Kb blocks. We might use long long, but that would
152  * kill us on x86. Oh, well, at least the sign propagation does not matter -
153  * i_block would have to be negative in the very beginning, so we would not
154  * get there at all.
155  */
156
157 static int ext2_block_to_path(struct inode *inode,
158                         long i_block, int offsets[4], int *boundary)
159 {
160         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
161         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
162         const long direct_blocks = EXT2_NDIR_BLOCKS,
163                 indirect_blocks = ptrs,
164                 double_blocks = (1 << (ptrs_bits * 2));
165         int n = 0;
166         int final = 0;
167
168         if (i_block < 0) {
169                 ext2_msg(inode->i_sb, KERN_WARNING,
170                         "warning: %s: block < 0", __func__);
171         } else if (i_block < direct_blocks) {
172                 offsets[n++] = i_block;
173                 final = direct_blocks;
174         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
175                 offsets[n++] = EXT2_IND_BLOCK;
176                 offsets[n++] = i_block;
177                 final = ptrs;
178         } else if ((i_block -= indirect_blocks) < double_blocks) {
179                 offsets[n++] = EXT2_DIND_BLOCK;
180                 offsets[n++] = i_block >> ptrs_bits;
181                 offsets[n++] = i_block & (ptrs - 1);
182                 final = ptrs;
183         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
184                 offsets[n++] = EXT2_TIND_BLOCK;
185                 offsets[n++] = i_block >> (ptrs_bits * 2);
186                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
187                 offsets[n++] = i_block & (ptrs - 1);
188                 final = ptrs;
189         } else {
190                 ext2_msg(inode->i_sb, KERN_WARNING,
191                         "warning: %s: block is too big", __func__);
192         }
193         if (boundary)
194                 *boundary = final - 1 - (i_block & (ptrs - 1));
195
196         return n;
197 }
198
199 /**
200  *      ext2_get_branch - read the chain of indirect blocks leading to data
201  *      @inode: inode in question
202  *      @depth: depth of the chain (1 - direct pointer, etc.)
203  *      @offsets: offsets of pointers in inode/indirect blocks
204  *      @chain: place to store the result
205  *      @err: here we store the error value
206  *
207  *      Function fills the array of triples <key, p, bh> and returns %NULL
208  *      if everything went OK or the pointer to the last filled triple
209  *      (incomplete one) otherwise. Upon the return chain[i].key contains
210  *      the number of (i+1)-th block in the chain (as it is stored in memory,
211  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
212  *      number (it points into struct inode for i==0 and into the bh->b_data
213  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
214  *      block for i>0 and NULL for i==0. In other words, it holds the block
215  *      numbers of the chain, addresses they were taken from (and where we can
216  *      verify that chain did not change) and buffer_heads hosting these
217  *      numbers.
218  *
219  *      Function stops when it stumbles upon zero pointer (absent block)
220  *              (pointer to last triple returned, *@err == 0)
221  *      or when it gets an IO error reading an indirect block
222  *              (ditto, *@err == -EIO)
223  *      or when it notices that chain had been changed while it was reading
224  *              (ditto, *@err == -EAGAIN)
225  *      or when it reads all @depth-1 indirect blocks successfully and finds
226  *      the whole chain, all way to the data (returns %NULL, *err == 0).
227  */
228 static Indirect *ext2_get_branch(struct inode *inode,
229                                  int depth,
230                                  int *offsets,
231                                  Indirect chain[4],
232                                  int *err)
233 {
234         struct super_block *sb = inode->i_sb;
235         Indirect *p = chain;
236         struct buffer_head *bh;
237
238         *err = 0;
239         /* i_data is not going away, no lock needed */
240         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
241         if (!p->key)
242                 goto no_block;
243         while (--depth) {
244                 bh = sb_bread(sb, le32_to_cpu(p->key));
245                 if (!bh)
246                         goto failure;
247                 read_lock(&EXT2_I(inode)->i_meta_lock);
248                 if (!verify_chain(chain, p))
249                         goto changed;
250                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
251                 read_unlock(&EXT2_I(inode)->i_meta_lock);
252                 if (!p->key)
253                         goto no_block;
254         }
255         return NULL;
256
257 changed:
258         read_unlock(&EXT2_I(inode)->i_meta_lock);
259         brelse(bh);
260         *err = -EAGAIN;
261         goto no_block;
262 failure:
263         *err = -EIO;
264 no_block:
265         return p;
266 }
267
268 /**
269  *      ext2_find_near - find a place for allocation with sufficient locality
270  *      @inode: owner
271  *      @ind: descriptor of indirect block.
272  *
273  *      This function returns the preferred place for block allocation.
274  *      It is used when heuristic for sequential allocation fails.
275  *      Rules are:
276  *        + if there is a block to the left of our position - allocate near it.
277  *        + if pointer will live in indirect block - allocate near that block.
278  *        + if pointer will live in inode - allocate in the same cylinder group.
279  *
280  * In the latter case we colour the starting block by the callers PID to
281  * prevent it from clashing with concurrent allocations for a different inode
282  * in the same block group.   The PID is used here so that functionally related
283  * files will be close-by on-disk.
284  *
285  *      Caller must make sure that @ind is valid and will stay that way.
286  */
287
288 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
289 {
290         struct ext2_inode_info *ei = EXT2_I(inode);
291         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
292         __le32 *p;
293         ext2_fsblk_t bg_start;
294         ext2_fsblk_t colour;
295
296         /* Try to find previous block */
297         for (p = ind->p - 1; p >= start; p--)
298                 if (*p)
299                         return le32_to_cpu(*p);
300
301         /* No such thing, so let's try location of indirect block */
302         if (ind->bh)
303                 return ind->bh->b_blocknr;
304
305         /*
306          * It is going to be referred from inode itself? OK, just put it into
307          * the same cylinder group then.
308          */
309         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
310         colour = (current->pid % 16) *
311                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
312         return bg_start + colour;
313 }
314
315 /**
316  *      ext2_find_goal - find a preferred place for allocation.
317  *      @inode: owner
318  *      @block:  block we want
319  *      @partial: pointer to the last triple within a chain
320  *
321  *      Returns preferred place for a block (the goal).
322  */
323
324 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
325                                           Indirect *partial)
326 {
327         struct ext2_block_alloc_info *block_i;
328
329         block_i = EXT2_I(inode)->i_block_alloc_info;
330
331         /*
332          * try the heuristic for sequential allocation,
333          * failing that at least try to get decent locality.
334          */
335         if (block_i && (block == block_i->last_alloc_logical_block + 1)
336                 && (block_i->last_alloc_physical_block != 0)) {
337                 return block_i->last_alloc_physical_block + 1;
338         }
339
340         return ext2_find_near(inode, partial);
341 }
342
343 /**
344  *      ext2_blks_to_allocate: Look up the block map and count the number
345  *      of direct blocks need to be allocated for the given branch.
346  *
347  *      @branch: chain of indirect blocks
348  *      @k: number of blocks need for indirect blocks
349  *      @blks: number of data blocks to be mapped.
350  *      @blocks_to_boundary:  the offset in the indirect block
351  *
352  *      return the total number of blocks to be allocate, including the
353  *      direct and indirect blocks.
354  */
355 static int
356 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
357                 int blocks_to_boundary)
358 {
359         unsigned long count = 0;
360
361         /*
362          * Simple case, [t,d]Indirect block(s) has not allocated yet
363          * then it's clear blocks on that path have not allocated
364          */
365         if (k > 0) {
366                 /* right now don't hanel cross boundary allocation */
367                 if (blks < blocks_to_boundary + 1)
368                         count += blks;
369                 else
370                         count += blocks_to_boundary + 1;
371                 return count;
372         }
373
374         count++;
375         while (count < blks && count <= blocks_to_boundary
376                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
377                 count++;
378         }
379         return count;
380 }
381
382 /**
383  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
384  *      @indirect_blks: the number of blocks need to allocate for indirect
385  *                      blocks
386  *
387  *      @new_blocks: on return it will store the new block numbers for
388  *      the indirect blocks(if needed) and the first direct block,
389  *      @blks:  on return it will store the total number of allocated
390  *              direct blocks
391  */
392 static int ext2_alloc_blocks(struct inode *inode,
393                         ext2_fsblk_t goal, int indirect_blks, int blks,
394                         ext2_fsblk_t new_blocks[4], int *err)
395 {
396         int target, i;
397         unsigned long count = 0;
398         int index = 0;
399         ext2_fsblk_t current_block = 0;
400         int ret = 0;
401
402         /*
403          * Here we try to allocate the requested multiple blocks at once,
404          * on a best-effort basis.
405          * To build a branch, we should allocate blocks for
406          * the indirect blocks(if not allocated yet), and at least
407          * the first direct block of this branch.  That's the
408          * minimum number of blocks need to allocate(required)
409          */
410         target = blks + indirect_blks;
411
412         while (1) {
413                 count = target;
414                 /* allocating blocks for indirect blocks and direct blocks */
415                 current_block = ext2_new_blocks(inode,goal,&count,err);
416                 if (*err)
417                         goto failed_out;
418
419                 target -= count;
420                 /* allocate blocks for indirect blocks */
421                 while (index < indirect_blks && count) {
422                         new_blocks[index++] = current_block++;
423                         count--;
424                 }
425
426                 if (count > 0)
427                         break;
428         }
429
430         /* save the new block number for the first direct block */
431         new_blocks[index] = current_block;
432
433         /* total number of blocks allocated for direct blocks */
434         ret = count;
435         *err = 0;
436         return ret;
437 failed_out:
438         for (i = 0; i <index; i++)
439                 ext2_free_blocks(inode, new_blocks[i], 1);
440         if (index)
441                 mark_inode_dirty(inode);
442         return ret;
443 }
444
445 /**
446  *      ext2_alloc_branch - allocate and set up a chain of blocks.
447  *      @inode: owner
448  *      @num: depth of the chain (number of blocks to allocate)
449  *      @offsets: offsets (in the blocks) to store the pointers to next.
450  *      @branch: place to store the chain in.
451  *
452  *      This function allocates @num blocks, zeroes out all but the last one,
453  *      links them into chain and (if we are synchronous) writes them to disk.
454  *      In other words, it prepares a branch that can be spliced onto the
455  *      inode. It stores the information about that chain in the branch[], in
456  *      the same format as ext2_get_branch() would do. We are calling it after
457  *      we had read the existing part of chain and partial points to the last
458  *      triple of that (one with zero ->key). Upon the exit we have the same
459  *      picture as after the successful ext2_get_block(), except that in one
460  *      place chain is disconnected - *branch->p is still zero (we did not
461  *      set the last link), but branch->key contains the number that should
462  *      be placed into *branch->p to fill that gap.
463  *
464  *      If allocation fails we free all blocks we've allocated (and forget
465  *      their buffer_heads) and return the error value the from failed
466  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
467  *      as described above and return 0.
468  */
469
470 static int ext2_alloc_branch(struct inode *inode,
471                         int indirect_blks, int *blks, ext2_fsblk_t goal,
472                         int *offsets, Indirect *branch)
473 {
474         int blocksize = inode->i_sb->s_blocksize;
475         int i, n = 0;
476         int err = 0;
477         struct buffer_head *bh;
478         int num;
479         ext2_fsblk_t new_blocks[4];
480         ext2_fsblk_t current_block;
481
482         num = ext2_alloc_blocks(inode, goal, indirect_blks,
483                                 *blks, new_blocks, &err);
484         if (err)
485                 return err;
486
487         branch[0].key = cpu_to_le32(new_blocks[0]);
488         /*
489          * metadata blocks and data blocks are allocated.
490          */
491         for (n = 1; n <= indirect_blks;  n++) {
492                 /*
493                  * Get buffer_head for parent block, zero it out
494                  * and set the pointer to new one, then send
495                  * parent to disk.
496                  */
497                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
498                 if (unlikely(!bh)) {
499                         err = -ENOMEM;
500                         goto failed;
501                 }
502                 branch[n].bh = bh;
503                 lock_buffer(bh);
504                 memset(bh->b_data, 0, blocksize);
505                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
506                 branch[n].key = cpu_to_le32(new_blocks[n]);
507                 *branch[n].p = branch[n].key;
508                 if ( n == indirect_blks) {
509                         current_block = new_blocks[n];
510                         /*
511                          * End of chain, update the last new metablock of
512                          * the chain to point to the new allocated
513                          * data blocks numbers
514                          */
515                         for (i=1; i < num; i++)
516                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
517                 }
518                 set_buffer_uptodate(bh);
519                 unlock_buffer(bh);
520                 mark_buffer_dirty_inode(bh, inode);
521                 /* We used to sync bh here if IS_SYNC(inode).
522                  * But we now rely upon generic_write_sync()
523                  * and b_inode_buffers.  But not for directories.
524                  */
525                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
526                         sync_dirty_buffer(bh);
527         }
528         *blks = num;
529         return err;
530
531 failed:
532         for (i = 1; i < n; i++)
533                 bforget(branch[i].bh);
534         for (i = 0; i < indirect_blks; i++)
535                 ext2_free_blocks(inode, new_blocks[i], 1);
536         ext2_free_blocks(inode, new_blocks[i], num);
537         return err;
538 }
539
540 /**
541  * ext2_splice_branch - splice the allocated branch onto inode.
542  * @inode: owner
543  * @block: (logical) number of block we are adding
544  * @where: location of missing link
545  * @num:   number of indirect blocks we are adding
546  * @blks:  number of direct blocks we are adding
547  *
548  * This function fills the missing link and does all housekeeping needed in
549  * inode (->i_blocks, etc.). In case of success we end up with the full
550  * chain to new block and return 0.
551  */
552 static void ext2_splice_branch(struct inode *inode,
553                         long block, Indirect *where, int num, int blks)
554 {
555         int i;
556         struct ext2_block_alloc_info *block_i;
557         ext2_fsblk_t current_block;
558
559         block_i = EXT2_I(inode)->i_block_alloc_info;
560
561         /* XXX LOCKING probably should have i_meta_lock ?*/
562         /* That's it */
563
564         *where->p = where->key;
565
566         /*
567          * Update the host buffer_head or inode to point to more just allocated
568          * direct blocks blocks
569          */
570         if (num == 0 && blks > 1) {
571                 current_block = le32_to_cpu(where->key) + 1;
572                 for (i = 1; i < blks; i++)
573                         *(where->p + i ) = cpu_to_le32(current_block++);
574         }
575
576         /*
577          * update the most recently allocated logical & physical block
578          * in i_block_alloc_info, to assist find the proper goal block for next
579          * allocation
580          */
581         if (block_i) {
582                 block_i->last_alloc_logical_block = block + blks - 1;
583                 block_i->last_alloc_physical_block =
584                                 le32_to_cpu(where[num].key) + blks - 1;
585         }
586
587         /* We are done with atomic stuff, now do the rest of housekeeping */
588
589         /* had we spliced it onto indirect block? */
590         if (where->bh)
591                 mark_buffer_dirty_inode(where->bh, inode);
592
593         inode->i_ctime = CURRENT_TIME_SEC;
594         mark_inode_dirty(inode);
595 }
596
597 /*
598  * Allocation strategy is simple: if we have to allocate something, we will
599  * have to go the whole way to leaf. So let's do it before attaching anything
600  * to tree, set linkage between the newborn blocks, write them if sync is
601  * required, recheck the path, free and repeat if check fails, otherwise
602  * set the last missing link (that will protect us from any truncate-generated
603  * removals - all blocks on the path are immune now) and possibly force the
604  * write on the parent block.
605  * That has a nice additional property: no special recovery from the failed
606  * allocations is needed - we simply release blocks and do not touch anything
607  * reachable from inode.
608  *
609  * `handle' can be NULL if create == 0.
610  *
611  * return > 0, # of blocks mapped or allocated.
612  * return = 0, if plain lookup failed.
613  * return < 0, error case.
614  */
615 static int ext2_get_blocks(struct inode *inode,
616                            sector_t iblock, unsigned long maxblocks,
617                            struct buffer_head *bh_result,
618                            int create)
619 {
620         int err = -EIO;
621         int offsets[4];
622         Indirect chain[4];
623         Indirect *partial;
624         ext2_fsblk_t goal;
625         int indirect_blks;
626         int blocks_to_boundary = 0;
627         int depth;
628         struct ext2_inode_info *ei = EXT2_I(inode);
629         int count = 0;
630         ext2_fsblk_t first_block = 0;
631
632         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
633
634         if (depth == 0)
635                 return (err);
636
637         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
638         /* Simplest case - block found, no allocation needed */
639         if (!partial) {
640                 first_block = le32_to_cpu(chain[depth - 1].key);
641                 clear_buffer_new(bh_result); /* What's this do? */
642                 count++;
643                 /*map more blocks*/
644                 while (count < maxblocks && count <= blocks_to_boundary) {
645                         ext2_fsblk_t blk;
646
647                         if (!verify_chain(chain, chain + depth - 1)) {
648                                 /*
649                                  * Indirect block might be removed by
650                                  * truncate while we were reading it.
651                                  * Handling of that case: forget what we've
652                                  * got now, go to reread.
653                                  */
654                                 err = -EAGAIN;
655                                 count = 0;
656                                 break;
657                         }
658                         blk = le32_to_cpu(*(chain[depth-1].p + count));
659                         if (blk == first_block + count)
660                                 count++;
661                         else
662                                 break;
663                 }
664                 if (err != -EAGAIN)
665                         goto got_it;
666         }
667
668         /* Next simple case - plain lookup or failed read of indirect block */
669         if (!create || err == -EIO)
670                 goto cleanup;
671
672         mutex_lock(&ei->truncate_mutex);
673         /*
674          * If the indirect block is missing while we are reading
675          * the chain(ext2_get_branch() returns -EAGAIN err), or
676          * if the chain has been changed after we grab the semaphore,
677          * (either because another process truncated this branch, or
678          * another get_block allocated this branch) re-grab the chain to see if
679          * the request block has been allocated or not.
680          *
681          * Since we already block the truncate/other get_block
682          * at this point, we will have the current copy of the chain when we
683          * splice the branch into the tree.
684          */
685         if (err == -EAGAIN || !verify_chain(chain, partial)) {
686                 while (partial > chain) {
687                         brelse(partial->bh);
688                         partial--;
689                 }
690                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
691                 if (!partial) {
692                         count++;
693                         mutex_unlock(&ei->truncate_mutex);
694                         if (err)
695                                 goto cleanup;
696                         clear_buffer_new(bh_result);
697                         goto got_it;
698                 }
699         }
700
701         /*
702          * Okay, we need to do block allocation.  Lazily initialize the block
703          * allocation info here if necessary
704         */
705         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
706                 ext2_init_block_alloc_info(inode);
707
708         goal = ext2_find_goal(inode, iblock, partial);
709
710         /* the number of blocks need to allocate for [d,t]indirect blocks */
711         indirect_blks = (chain + depth) - partial - 1;
712         /*
713          * Next look up the indirect map to count the totoal number of
714          * direct blocks to allocate for this branch.
715          */
716         count = ext2_blks_to_allocate(partial, indirect_blks,
717                                         maxblocks, blocks_to_boundary);
718         /*
719          * XXX ???? Block out ext2_truncate while we alter the tree
720          */
721         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
722                                 offsets + (partial - chain), partial);
723
724         if (err) {
725                 mutex_unlock(&ei->truncate_mutex);
726                 goto cleanup;
727         }
728
729         if (ext2_use_xip(inode->i_sb)) {
730                 /*
731                  * we need to clear the block
732                  */
733                 err = ext2_clear_xip_target (inode,
734                         le32_to_cpu(chain[depth-1].key));
735                 if (err) {
736                         mutex_unlock(&ei->truncate_mutex);
737                         goto cleanup;
738                 }
739         }
740
741         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
742         mutex_unlock(&ei->truncate_mutex);
743         set_buffer_new(bh_result);
744 got_it:
745         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
746         if (count > blocks_to_boundary)
747                 set_buffer_boundary(bh_result);
748         err = count;
749         /* Clean up and exit */
750         partial = chain + depth - 1;    /* the whole chain */
751 cleanup:
752         while (partial > chain) {
753                 brelse(partial->bh);
754                 partial--;
755         }
756         return err;
757 }
758
759 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
760 {
761         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
762         int ret = ext2_get_blocks(inode, iblock, max_blocks,
763                               bh_result, create);
764         if (ret > 0) {
765                 bh_result->b_size = (ret << inode->i_blkbits);
766                 ret = 0;
767         }
768         return ret;
769
770 }
771
772 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
773                 u64 start, u64 len)
774 {
775         return generic_block_fiemap(inode, fieinfo, start, len,
776                                     ext2_get_block);
777 }
778
779 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
780 {
781         return block_write_full_page(page, ext2_get_block, wbc);
782 }
783
784 static int ext2_readpage(struct file *file, struct page *page)
785 {
786         return mpage_readpage(page, ext2_get_block);
787 }
788
789 static int
790 ext2_readpages(struct file *file, struct address_space *mapping,
791                 struct list_head *pages, unsigned nr_pages)
792 {
793         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
794 }
795
796 static int
797 ext2_write_begin(struct file *file, struct address_space *mapping,
798                 loff_t pos, unsigned len, unsigned flags,
799                 struct page **pagep, void **fsdata)
800 {
801         int ret;
802
803         ret = block_write_begin(mapping, pos, len, flags, pagep,
804                                 ext2_get_block);
805         if (ret < 0)
806                 ext2_write_failed(mapping, pos + len);
807         return ret;
808 }
809
810 static int ext2_write_end(struct file *file, struct address_space *mapping,
811                         loff_t pos, unsigned len, unsigned copied,
812                         struct page *page, void *fsdata)
813 {
814         int ret;
815
816         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
817         if (ret < len)
818                 ext2_write_failed(mapping, pos + len);
819         return ret;
820 }
821
822 static int
823 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
824                 loff_t pos, unsigned len, unsigned flags,
825                 struct page **pagep, void **fsdata)
826 {
827         int ret;
828
829         ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
830                                ext2_get_block);
831         if (ret < 0)
832                 ext2_write_failed(mapping, pos + len);
833         return ret;
834 }
835
836 static int ext2_nobh_writepage(struct page *page,
837                         struct writeback_control *wbc)
838 {
839         return nobh_writepage(page, ext2_get_block, wbc);
840 }
841
842 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
843 {
844         return generic_block_bmap(mapping,block,ext2_get_block);
845 }
846
847 static ssize_t
848 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
849                         loff_t offset, unsigned long nr_segs)
850 {
851         struct file *file = iocb->ki_filp;
852         struct address_space *mapping = file->f_mapping;
853         struct inode *inode = mapping->host;
854         ssize_t ret;
855
856         ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
857                                  ext2_get_block);
858         if (ret < 0 && (rw & WRITE))
859                 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
860         return ret;
861 }
862
863 static int
864 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
865 {
866         return mpage_writepages(mapping, wbc, ext2_get_block);
867 }
868
869 const struct address_space_operations ext2_aops = {
870         .readpage               = ext2_readpage,
871         .readpages              = ext2_readpages,
872         .writepage              = ext2_writepage,
873         .write_begin            = ext2_write_begin,
874         .write_end              = ext2_write_end,
875         .bmap                   = ext2_bmap,
876         .direct_IO              = ext2_direct_IO,
877         .writepages             = ext2_writepages,
878         .migratepage            = buffer_migrate_page,
879         .is_partially_uptodate  = block_is_partially_uptodate,
880         .error_remove_page      = generic_error_remove_page,
881 };
882
883 const struct address_space_operations ext2_aops_xip = {
884         .bmap                   = ext2_bmap,
885         .get_xip_mem            = ext2_get_xip_mem,
886 };
887
888 const struct address_space_operations ext2_nobh_aops = {
889         .readpage               = ext2_readpage,
890         .readpages              = ext2_readpages,
891         .writepage              = ext2_nobh_writepage,
892         .write_begin            = ext2_nobh_write_begin,
893         .write_end              = nobh_write_end,
894         .bmap                   = ext2_bmap,
895         .direct_IO              = ext2_direct_IO,
896         .writepages             = ext2_writepages,
897         .migratepage            = buffer_migrate_page,
898         .error_remove_page      = generic_error_remove_page,
899 };
900
901 /*
902  * Probably it should be a library function... search for first non-zero word
903  * or memcmp with zero_page, whatever is better for particular architecture.
904  * Linus?
905  */
906 static inline int all_zeroes(__le32 *p, __le32 *q)
907 {
908         while (p < q)
909                 if (*p++)
910                         return 0;
911         return 1;
912 }
913
914 /**
915  *      ext2_find_shared - find the indirect blocks for partial truncation.
916  *      @inode:   inode in question
917  *      @depth:   depth of the affected branch
918  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
919  *      @chain:   place to store the pointers to partial indirect blocks
920  *      @top:     place to the (detached) top of branch
921  *
922  *      This is a helper function used by ext2_truncate().
923  *
924  *      When we do truncate() we may have to clean the ends of several indirect
925  *      blocks but leave the blocks themselves alive. Block is partially
926  *      truncated if some data below the new i_size is referred from it (and
927  *      it is on the path to the first completely truncated data block, indeed).
928  *      We have to free the top of that path along with everything to the right
929  *      of the path. Since no allocation past the truncation point is possible
930  *      until ext2_truncate() finishes, we may safely do the latter, but top
931  *      of branch may require special attention - pageout below the truncation
932  *      point might try to populate it.
933  *
934  *      We atomically detach the top of branch from the tree, store the block
935  *      number of its root in *@top, pointers to buffer_heads of partially
936  *      truncated blocks - in @chain[].bh and pointers to their last elements
937  *      that should not be removed - in @chain[].p. Return value is the pointer
938  *      to last filled element of @chain.
939  *
940  *      The work left to caller to do the actual freeing of subtrees:
941  *              a) free the subtree starting from *@top
942  *              b) free the subtrees whose roots are stored in
943  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
944  *              c) free the subtrees growing from the inode past the @chain[0].p
945  *                      (no partially truncated stuff there).
946  */
947
948 static Indirect *ext2_find_shared(struct inode *inode,
949                                 int depth,
950                                 int offsets[4],
951                                 Indirect chain[4],
952                                 __le32 *top)
953 {
954         Indirect *partial, *p;
955         int k, err;
956
957         *top = 0;
958         for (k = depth; k > 1 && !offsets[k-1]; k--)
959                 ;
960         partial = ext2_get_branch(inode, k, offsets, chain, &err);
961         if (!partial)
962                 partial = chain + k-1;
963         /*
964          * If the branch acquired continuation since we've looked at it -
965          * fine, it should all survive and (new) top doesn't belong to us.
966          */
967         write_lock(&EXT2_I(inode)->i_meta_lock);
968         if (!partial->key && *partial->p) {
969                 write_unlock(&EXT2_I(inode)->i_meta_lock);
970                 goto no_top;
971         }
972         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
973                 ;
974         /*
975          * OK, we've found the last block that must survive. The rest of our
976          * branch should be detached before unlocking. However, if that rest
977          * of branch is all ours and does not grow immediately from the inode
978          * it's easier to cheat and just decrement partial->p.
979          */
980         if (p == chain + k - 1 && p > chain) {
981                 p->p--;
982         } else {
983                 *top = *p->p;
984                 *p->p = 0;
985         }
986         write_unlock(&EXT2_I(inode)->i_meta_lock);
987
988         while(partial > p)
989         {
990                 brelse(partial->bh);
991                 partial--;
992         }
993 no_top:
994         return partial;
995 }
996
997 /**
998  *      ext2_free_data - free a list of data blocks
999  *      @inode: inode we are dealing with
1000  *      @p:     array of block numbers
1001  *      @q:     points immediately past the end of array
1002  *
1003  *      We are freeing all blocks referred from that array (numbers are
1004  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1005  *      appropriately.
1006  */
1007 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1008 {
1009         unsigned long block_to_free = 0, count = 0;
1010         unsigned long nr;
1011
1012         for ( ; p < q ; p++) {
1013                 nr = le32_to_cpu(*p);
1014                 if (nr) {
1015                         *p = 0;
1016                         /* accumulate blocks to free if they're contiguous */
1017                         if (count == 0)
1018                                 goto free_this;
1019                         else if (block_to_free == nr - count)
1020                                 count++;
1021                         else {
1022                                 ext2_free_blocks (inode, block_to_free, count);
1023                                 mark_inode_dirty(inode);
1024                         free_this:
1025                                 block_to_free = nr;
1026                                 count = 1;
1027                         }
1028                 }
1029         }
1030         if (count > 0) {
1031                 ext2_free_blocks (inode, block_to_free, count);
1032                 mark_inode_dirty(inode);
1033         }
1034 }
1035
1036 /**
1037  *      ext2_free_branches - free an array of branches
1038  *      @inode: inode we are dealing with
1039  *      @p:     array of block numbers
1040  *      @q:     pointer immediately past the end of array
1041  *      @depth: depth of the branches to free
1042  *
1043  *      We are freeing all blocks referred from these branches (numbers are
1044  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1045  *      appropriately.
1046  */
1047 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1048 {
1049         struct buffer_head * bh;
1050         unsigned long nr;
1051
1052         if (depth--) {
1053                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1054                 for ( ; p < q ; p++) {
1055                         nr = le32_to_cpu(*p);
1056                         if (!nr)
1057                                 continue;
1058                         *p = 0;
1059                         bh = sb_bread(inode->i_sb, nr);
1060                         /*
1061                          * A read failure? Report error and clear slot
1062                          * (should be rare).
1063                          */ 
1064                         if (!bh) {
1065                                 ext2_error(inode->i_sb, "ext2_free_branches",
1066                                         "Read failure, inode=%ld, block=%ld",
1067                                         inode->i_ino, nr);
1068                                 continue;
1069                         }
1070                         ext2_free_branches(inode,
1071                                            (__le32*)bh->b_data,
1072                                            (__le32*)bh->b_data + addr_per_block,
1073                                            depth);
1074                         bforget(bh);
1075                         ext2_free_blocks(inode, nr, 1);
1076                         mark_inode_dirty(inode);
1077                 }
1078         } else
1079                 ext2_free_data(inode, p, q);
1080 }
1081
1082 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1083 {
1084         __le32 *i_data = EXT2_I(inode)->i_data;
1085         struct ext2_inode_info *ei = EXT2_I(inode);
1086         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1087         int offsets[4];
1088         Indirect chain[4];
1089         Indirect *partial;
1090         __le32 nr = 0;
1091         int n;
1092         long iblock;
1093         unsigned blocksize;
1094         blocksize = inode->i_sb->s_blocksize;
1095         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1096
1097         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1098         if (n == 0)
1099                 return;
1100
1101         /*
1102          * From here we block out all ext2_get_block() callers who want to
1103          * modify the block allocation tree.
1104          */
1105         mutex_lock(&ei->truncate_mutex);
1106
1107         if (n == 1) {
1108                 ext2_free_data(inode, i_data+offsets[0],
1109                                         i_data + EXT2_NDIR_BLOCKS);
1110                 goto do_indirects;
1111         }
1112
1113         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1114         /* Kill the top of shared branch (already detached) */
1115         if (nr) {
1116                 if (partial == chain)
1117                         mark_inode_dirty(inode);
1118                 else
1119                         mark_buffer_dirty_inode(partial->bh, inode);
1120                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1121         }
1122         /* Clear the ends of indirect blocks on the shared branch */
1123         while (partial > chain) {
1124                 ext2_free_branches(inode,
1125                                    partial->p + 1,
1126                                    (__le32*)partial->bh->b_data+addr_per_block,
1127                                    (chain+n-1) - partial);
1128                 mark_buffer_dirty_inode(partial->bh, inode);
1129                 brelse (partial->bh);
1130                 partial--;
1131         }
1132 do_indirects:
1133         /* Kill the remaining (whole) subtrees */
1134         switch (offsets[0]) {
1135                 default:
1136                         nr = i_data[EXT2_IND_BLOCK];
1137                         if (nr) {
1138                                 i_data[EXT2_IND_BLOCK] = 0;
1139                                 mark_inode_dirty(inode);
1140                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1141                         }
1142                 case EXT2_IND_BLOCK:
1143                         nr = i_data[EXT2_DIND_BLOCK];
1144                         if (nr) {
1145                                 i_data[EXT2_DIND_BLOCK] = 0;
1146                                 mark_inode_dirty(inode);
1147                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1148                         }
1149                 case EXT2_DIND_BLOCK:
1150                         nr = i_data[EXT2_TIND_BLOCK];
1151                         if (nr) {
1152                                 i_data[EXT2_TIND_BLOCK] = 0;
1153                                 mark_inode_dirty(inode);
1154                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1155                         }
1156                 case EXT2_TIND_BLOCK:
1157                         ;
1158         }
1159
1160         ext2_discard_reservation(inode);
1161
1162         mutex_unlock(&ei->truncate_mutex);
1163 }
1164
1165 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1166 {
1167         /*
1168          * XXX: it seems like a bug here that we don't allow
1169          * IS_APPEND inode to have blocks-past-i_size trimmed off.
1170          * review and fix this.
1171          *
1172          * Also would be nice to be able to handle IO errors and such,
1173          * but that's probably too much to ask.
1174          */
1175         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1176             S_ISLNK(inode->i_mode)))
1177                 return;
1178         if (ext2_inode_is_fast_symlink(inode))
1179                 return;
1180         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1181                 return;
1182         __ext2_truncate_blocks(inode, offset);
1183 }
1184
1185 static int ext2_setsize(struct inode *inode, loff_t newsize)
1186 {
1187         int error;
1188
1189         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1190             S_ISLNK(inode->i_mode)))
1191                 return -EINVAL;
1192         if (ext2_inode_is_fast_symlink(inode))
1193                 return -EINVAL;
1194         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1195                 return -EPERM;
1196
1197         inode_dio_wait(inode);
1198
1199         if (mapping_is_xip(inode->i_mapping))
1200                 error = xip_truncate_page(inode->i_mapping, newsize);
1201         else if (test_opt(inode->i_sb, NOBH))
1202                 error = nobh_truncate_page(inode->i_mapping,
1203                                 newsize, ext2_get_block);
1204         else
1205                 error = block_truncate_page(inode->i_mapping,
1206                                 newsize, ext2_get_block);
1207         if (error)
1208                 return error;
1209
1210         truncate_setsize(inode, newsize);
1211         __ext2_truncate_blocks(inode, newsize);
1212
1213         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1214         if (inode_needs_sync(inode)) {
1215                 sync_mapping_buffers(inode->i_mapping);
1216                 sync_inode_metadata(inode, 1);
1217         } else {
1218                 mark_inode_dirty(inode);
1219         }
1220
1221         return 0;
1222 }
1223
1224 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1225                                         struct buffer_head **p)
1226 {
1227         struct buffer_head * bh;
1228         unsigned long block_group;
1229         unsigned long block;
1230         unsigned long offset;
1231         struct ext2_group_desc * gdp;
1232
1233         *p = NULL;
1234         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1235             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1236                 goto Einval;
1237
1238         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1239         gdp = ext2_get_group_desc(sb, block_group, NULL);
1240         if (!gdp)
1241                 goto Egdp;
1242         /*
1243          * Figure out the offset within the block group inode table
1244          */
1245         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1246         block = le32_to_cpu(gdp->bg_inode_table) +
1247                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1248         if (!(bh = sb_bread(sb, block)))
1249                 goto Eio;
1250
1251         *p = bh;
1252         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1253         return (struct ext2_inode *) (bh->b_data + offset);
1254
1255 Einval:
1256         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1257                    (unsigned long) ino);
1258         return ERR_PTR(-EINVAL);
1259 Eio:
1260         ext2_error(sb, "ext2_get_inode",
1261                    "unable to read inode block - inode=%lu, block=%lu",
1262                    (unsigned long) ino, block);
1263 Egdp:
1264         return ERR_PTR(-EIO);
1265 }
1266
1267 void ext2_set_inode_flags(struct inode *inode)
1268 {
1269         unsigned int flags = EXT2_I(inode)->i_flags;
1270
1271         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1272         if (flags & EXT2_SYNC_FL)
1273                 inode->i_flags |= S_SYNC;
1274         if (flags & EXT2_APPEND_FL)
1275                 inode->i_flags |= S_APPEND;
1276         if (flags & EXT2_IMMUTABLE_FL)
1277                 inode->i_flags |= S_IMMUTABLE;
1278         if (flags & EXT2_NOATIME_FL)
1279                 inode->i_flags |= S_NOATIME;
1280         if (flags & EXT2_DIRSYNC_FL)
1281                 inode->i_flags |= S_DIRSYNC;
1282 }
1283
1284 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1285 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1286 {
1287         unsigned int flags = ei->vfs_inode.i_flags;
1288
1289         ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1290                         EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1291         if (flags & S_SYNC)
1292                 ei->i_flags |= EXT2_SYNC_FL;
1293         if (flags & S_APPEND)
1294                 ei->i_flags |= EXT2_APPEND_FL;
1295         if (flags & S_IMMUTABLE)
1296                 ei->i_flags |= EXT2_IMMUTABLE_FL;
1297         if (flags & S_NOATIME)
1298                 ei->i_flags |= EXT2_NOATIME_FL;
1299         if (flags & S_DIRSYNC)
1300                 ei->i_flags |= EXT2_DIRSYNC_FL;
1301 }
1302
1303 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1304 {
1305         struct ext2_inode_info *ei;
1306         struct buffer_head * bh;
1307         struct ext2_inode *raw_inode;
1308         struct inode *inode;
1309         long ret = -EIO;
1310         int n;
1311         uid_t i_uid;
1312         gid_t i_gid;
1313
1314         inode = iget_locked(sb, ino);
1315         if (!inode)
1316                 return ERR_PTR(-ENOMEM);
1317         if (!(inode->i_state & I_NEW))
1318                 return inode;
1319
1320         ei = EXT2_I(inode);
1321         ei->i_block_alloc_info = NULL;
1322
1323         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1324         if (IS_ERR(raw_inode)) {
1325                 ret = PTR_ERR(raw_inode);
1326                 goto bad_inode;
1327         }
1328
1329         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1330         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1331         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1332         if (!(test_opt (inode->i_sb, NO_UID32))) {
1333                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1334                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1335         }
1336         i_uid_write(inode, i_uid);
1337         i_gid_write(inode, i_gid);
1338         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1339         inode->i_size = le32_to_cpu(raw_inode->i_size);
1340         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1341         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1342         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1343         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1344         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1345         /* We now have enough fields to check if the inode was active or not.
1346          * This is needed because nfsd might try to access dead inodes
1347          * the test is that same one that e2fsck uses
1348          * NeilBrown 1999oct15
1349          */
1350         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1351                 /* this inode is deleted */
1352                 brelse (bh);
1353                 ret = -ESTALE;
1354                 goto bad_inode;
1355         }
1356         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1357         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1358         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1359         ei->i_frag_no = raw_inode->i_frag;
1360         ei->i_frag_size = raw_inode->i_fsize;
1361         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1362         ei->i_dir_acl = 0;
1363         if (S_ISREG(inode->i_mode))
1364                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1365         else
1366                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1367         ei->i_dtime = 0;
1368         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1369         ei->i_state = 0;
1370         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1371         ei->i_dir_start_lookup = 0;
1372
1373         /*
1374          * NOTE! The in-memory inode i_data array is in little-endian order
1375          * even on big-endian machines: we do NOT byteswap the block numbers!
1376          */
1377         for (n = 0; n < EXT2_N_BLOCKS; n++)
1378                 ei->i_data[n] = raw_inode->i_block[n];
1379
1380         if (S_ISREG(inode->i_mode)) {
1381                 inode->i_op = &ext2_file_inode_operations;
1382                 if (ext2_use_xip(inode->i_sb)) {
1383                         inode->i_mapping->a_ops = &ext2_aops_xip;
1384                         inode->i_fop = &ext2_xip_file_operations;
1385                 } else if (test_opt(inode->i_sb, NOBH)) {
1386                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1387                         inode->i_fop = &ext2_file_operations;
1388                 } else {
1389                         inode->i_mapping->a_ops = &ext2_aops;
1390                         inode->i_fop = &ext2_file_operations;
1391                 }
1392         } else if (S_ISDIR(inode->i_mode)) {
1393                 inode->i_op = &ext2_dir_inode_operations;
1394                 inode->i_fop = &ext2_dir_operations;
1395                 if (test_opt(inode->i_sb, NOBH))
1396                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1397                 else
1398                         inode->i_mapping->a_ops = &ext2_aops;
1399         } else if (S_ISLNK(inode->i_mode)) {
1400                 if (ext2_inode_is_fast_symlink(inode)) {
1401                         inode->i_op = &ext2_fast_symlink_inode_operations;
1402                         nd_terminate_link(ei->i_data, inode->i_size,
1403                                 sizeof(ei->i_data) - 1);
1404                 } else {
1405                         inode->i_op = &ext2_symlink_inode_operations;
1406                         if (test_opt(inode->i_sb, NOBH))
1407                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1408                         else
1409                                 inode->i_mapping->a_ops = &ext2_aops;
1410                 }
1411         } else {
1412                 inode->i_op = &ext2_special_inode_operations;
1413                 if (raw_inode->i_block[0])
1414                         init_special_inode(inode, inode->i_mode,
1415                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1416                 else 
1417                         init_special_inode(inode, inode->i_mode,
1418                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1419         }
1420         brelse (bh);
1421         ext2_set_inode_flags(inode);
1422         unlock_new_inode(inode);
1423         return inode;
1424         
1425 bad_inode:
1426         iget_failed(inode);
1427         return ERR_PTR(ret);
1428 }
1429
1430 static int __ext2_write_inode(struct inode *inode, int do_sync)
1431 {
1432         struct ext2_inode_info *ei = EXT2_I(inode);
1433         struct super_block *sb = inode->i_sb;
1434         ino_t ino = inode->i_ino;
1435         uid_t uid = i_uid_read(inode);
1436         gid_t gid = i_gid_read(inode);
1437         struct buffer_head * bh;
1438         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1439         int n;
1440         int err = 0;
1441
1442         if (IS_ERR(raw_inode))
1443                 return -EIO;
1444
1445         /* For fields not not tracking in the in-memory inode,
1446          * initialise them to zero for new inodes. */
1447         if (ei->i_state & EXT2_STATE_NEW)
1448                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1449
1450         ext2_get_inode_flags(ei);
1451         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1452         if (!(test_opt(sb, NO_UID32))) {
1453                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1454                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1455 /*
1456  * Fix up interoperability with old kernels. Otherwise, old inodes get
1457  * re-used with the upper 16 bits of the uid/gid intact
1458  */
1459                 if (!ei->i_dtime) {
1460                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1461                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1462                 } else {
1463                         raw_inode->i_uid_high = 0;
1464                         raw_inode->i_gid_high = 0;
1465                 }
1466         } else {
1467                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1468                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1469                 raw_inode->i_uid_high = 0;
1470                 raw_inode->i_gid_high = 0;
1471         }
1472         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1473         raw_inode->i_size = cpu_to_le32(inode->i_size);
1474         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1475         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1476         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1477
1478         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1479         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1480         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1481         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1482         raw_inode->i_frag = ei->i_frag_no;
1483         raw_inode->i_fsize = ei->i_frag_size;
1484         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1485         if (!S_ISREG(inode->i_mode))
1486                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1487         else {
1488                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1489                 if (inode->i_size > 0x7fffffffULL) {
1490                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1491                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1492                             EXT2_SB(sb)->s_es->s_rev_level ==
1493                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1494                                /* If this is the first large file
1495                                 * created, add a flag to the superblock.
1496                                 */
1497                                 spin_lock(&EXT2_SB(sb)->s_lock);
1498                                 ext2_update_dynamic_rev(sb);
1499                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1500                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1501                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1502                                 ext2_write_super(sb);
1503                         }
1504                 }
1505         }
1506         
1507         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1508         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1509                 if (old_valid_dev(inode->i_rdev)) {
1510                         raw_inode->i_block[0] =
1511                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1512                         raw_inode->i_block[1] = 0;
1513                 } else {
1514                         raw_inode->i_block[0] = 0;
1515                         raw_inode->i_block[1] =
1516                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1517                         raw_inode->i_block[2] = 0;
1518                 }
1519         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1520                 raw_inode->i_block[n] = ei->i_data[n];
1521         mark_buffer_dirty(bh);
1522         if (do_sync) {
1523                 sync_dirty_buffer(bh);
1524                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1525                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1526                                 sb->s_id, (unsigned long) ino);
1527                         err = -EIO;
1528                 }
1529         }
1530         ei->i_state &= ~EXT2_STATE_NEW;
1531         brelse (bh);
1532         return err;
1533 }
1534
1535 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1536 {
1537         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1538 }
1539
1540 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1541 {
1542         struct inode *inode = dentry->d_inode;
1543         int error;
1544
1545         error = inode_change_ok(inode, iattr);
1546         if (error)
1547                 return error;
1548
1549         if (is_quota_modification(inode, iattr))
1550                 dquot_initialize(inode);
1551         if ((iattr->ia_valid & ATTR_UID && !uid_eq(iattr->ia_uid, inode->i_uid)) ||
1552             (iattr->ia_valid & ATTR_GID && !gid_eq(iattr->ia_gid, inode->i_gid))) {
1553                 error = dquot_transfer(inode, iattr);
1554                 if (error)
1555                         return error;
1556         }
1557         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1558                 error = ext2_setsize(inode, iattr->ia_size);
1559                 if (error)
1560                         return error;
1561         }
1562         setattr_copy(inode, iattr);
1563         if (iattr->ia_valid & ATTR_MODE)
1564                 error = ext2_acl_chmod(inode);
1565         mark_inode_dirty(inode);
1566
1567         return error;
1568 }