]> Pileus Git - ~andy/linux/blob - fs/exec.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
[~andy/linux] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/security.h>
47 #include <linux/syscalls.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/audit.h>
51 #include <linux/tracehook.h>
52 #include <linux/kmod.h>
53 #include <linux/fsnotify.h>
54 #include <linux/fs_struct.h>
55 #include <linux/pipe_fs_i.h>
56 #include <linux/oom.h>
57 #include <linux/compat.h>
58
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/tlb.h>
62
63 #include <trace/events/task.h>
64 #include "internal.h"
65 #include "coredump.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76         BUG_ON(!fmt);
77         write_lock(&binfmt_lock);
78         insert ? list_add(&fmt->lh, &formats) :
79                  list_add_tail(&fmt->lh, &formats);
80         write_unlock(&binfmt_lock);
81 }
82
83 EXPORT_SYMBOL(__register_binfmt);
84
85 void unregister_binfmt(struct linux_binfmt * fmt)
86 {
87         write_lock(&binfmt_lock);
88         list_del(&fmt->lh);
89         write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(unregister_binfmt);
93
94 static inline void put_binfmt(struct linux_binfmt * fmt)
95 {
96         module_put(fmt->module);
97 }
98
99 /*
100  * Note that a shared library must be both readable and executable due to
101  * security reasons.
102  *
103  * Also note that we take the address to load from from the file itself.
104  */
105 SYSCALL_DEFINE1(uselib, const char __user *, library)
106 {
107         struct file *file;
108         char *tmp = getname(library);
109         int error = PTR_ERR(tmp);
110         static const struct open_flags uselib_flags = {
111                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
112                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
113                 .intent = LOOKUP_OPEN
114         };
115
116         if (IS_ERR(tmp))
117                 goto out;
118
119         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
120         putname(tmp);
121         error = PTR_ERR(file);
122         if (IS_ERR(file))
123                 goto out;
124
125         error = -EINVAL;
126         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
127                 goto exit;
128
129         error = -EACCES;
130         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
131                 goto exit;
132
133         fsnotify_open(file);
134
135         error = -ENOEXEC;
136         if(file->f_op) {
137                 struct linux_binfmt * fmt;
138
139                 read_lock(&binfmt_lock);
140                 list_for_each_entry(fmt, &formats, lh) {
141                         if (!fmt->load_shlib)
142                                 continue;
143                         if (!try_module_get(fmt->module))
144                                 continue;
145                         read_unlock(&binfmt_lock);
146                         error = fmt->load_shlib(file);
147                         read_lock(&binfmt_lock);
148                         put_binfmt(fmt);
149                         if (error != -ENOEXEC)
150                                 break;
151                 }
152                 read_unlock(&binfmt_lock);
153         }
154 exit:
155         fput(file);
156 out:
157         return error;
158 }
159
160 #ifdef CONFIG_MMU
161 /*
162  * The nascent bprm->mm is not visible until exec_mmap() but it can
163  * use a lot of memory, account these pages in current->mm temporary
164  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
165  * change the counter back via acct_arg_size(0).
166  */
167 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
168 {
169         struct mm_struct *mm = current->mm;
170         long diff = (long)(pages - bprm->vma_pages);
171
172         if (!mm || !diff)
173                 return;
174
175         bprm->vma_pages = pages;
176         add_mm_counter(mm, MM_ANONPAGES, diff);
177 }
178
179 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
180                 int write)
181 {
182         struct page *page;
183         int ret;
184
185 #ifdef CONFIG_STACK_GROWSUP
186         if (write) {
187                 ret = expand_downwards(bprm->vma, pos);
188                 if (ret < 0)
189                         return NULL;
190         }
191 #endif
192         ret = get_user_pages(current, bprm->mm, pos,
193                         1, write, 1, &page, NULL);
194         if (ret <= 0)
195                 return NULL;
196
197         if (write) {
198                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
199                 struct rlimit *rlim;
200
201                 acct_arg_size(bprm, size / PAGE_SIZE);
202
203                 /*
204                  * We've historically supported up to 32 pages (ARG_MAX)
205                  * of argument strings even with small stacks
206                  */
207                 if (size <= ARG_MAX)
208                         return page;
209
210                 /*
211                  * Limit to 1/4-th the stack size for the argv+env strings.
212                  * This ensures that:
213                  *  - the remaining binfmt code will not run out of stack space,
214                  *  - the program will have a reasonable amount of stack left
215                  *    to work from.
216                  */
217                 rlim = current->signal->rlim;
218                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
219                         put_page(page);
220                         return NULL;
221                 }
222         }
223
224         return page;
225 }
226
227 static void put_arg_page(struct page *page)
228 {
229         put_page(page);
230 }
231
232 static void free_arg_page(struct linux_binprm *bprm, int i)
233 {
234 }
235
236 static void free_arg_pages(struct linux_binprm *bprm)
237 {
238 }
239
240 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
241                 struct page *page)
242 {
243         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
244 }
245
246 static int __bprm_mm_init(struct linux_binprm *bprm)
247 {
248         int err;
249         struct vm_area_struct *vma = NULL;
250         struct mm_struct *mm = bprm->mm;
251
252         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
253         if (!vma)
254                 return -ENOMEM;
255
256         down_write(&mm->mmap_sem);
257         vma->vm_mm = mm;
258
259         /*
260          * Place the stack at the largest stack address the architecture
261          * supports. Later, we'll move this to an appropriate place. We don't
262          * use STACK_TOP because that can depend on attributes which aren't
263          * configured yet.
264          */
265         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
266         vma->vm_end = STACK_TOP_MAX;
267         vma->vm_start = vma->vm_end - PAGE_SIZE;
268         vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
269         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
270         INIT_LIST_HEAD(&vma->anon_vma_chain);
271
272         err = insert_vm_struct(mm, vma);
273         if (err)
274                 goto err;
275
276         mm->stack_vm = mm->total_vm = 1;
277         up_write(&mm->mmap_sem);
278         bprm->p = vma->vm_end - sizeof(void *);
279         return 0;
280 err:
281         up_write(&mm->mmap_sem);
282         bprm->vma = NULL;
283         kmem_cache_free(vm_area_cachep, vma);
284         return err;
285 }
286
287 static bool valid_arg_len(struct linux_binprm *bprm, long len)
288 {
289         return len <= MAX_ARG_STRLEN;
290 }
291
292 #else
293
294 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
295 {
296 }
297
298 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
299                 int write)
300 {
301         struct page *page;
302
303         page = bprm->page[pos / PAGE_SIZE];
304         if (!page && write) {
305                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
306                 if (!page)
307                         return NULL;
308                 bprm->page[pos / PAGE_SIZE] = page;
309         }
310
311         return page;
312 }
313
314 static void put_arg_page(struct page *page)
315 {
316 }
317
318 static void free_arg_page(struct linux_binprm *bprm, int i)
319 {
320         if (bprm->page[i]) {
321                 __free_page(bprm->page[i]);
322                 bprm->page[i] = NULL;
323         }
324 }
325
326 static void free_arg_pages(struct linux_binprm *bprm)
327 {
328         int i;
329
330         for (i = 0; i < MAX_ARG_PAGES; i++)
331                 free_arg_page(bprm, i);
332 }
333
334 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
335                 struct page *page)
336 {
337 }
338
339 static int __bprm_mm_init(struct linux_binprm *bprm)
340 {
341         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
342         return 0;
343 }
344
345 static bool valid_arg_len(struct linux_binprm *bprm, long len)
346 {
347         return len <= bprm->p;
348 }
349
350 #endif /* CONFIG_MMU */
351
352 /*
353  * Create a new mm_struct and populate it with a temporary stack
354  * vm_area_struct.  We don't have enough context at this point to set the stack
355  * flags, permissions, and offset, so we use temporary values.  We'll update
356  * them later in setup_arg_pages().
357  */
358 int bprm_mm_init(struct linux_binprm *bprm)
359 {
360         int err;
361         struct mm_struct *mm = NULL;
362
363         bprm->mm = mm = mm_alloc();
364         err = -ENOMEM;
365         if (!mm)
366                 goto err;
367
368         err = init_new_context(current, mm);
369         if (err)
370                 goto err;
371
372         err = __bprm_mm_init(bprm);
373         if (err)
374                 goto err;
375
376         return 0;
377
378 err:
379         if (mm) {
380                 bprm->mm = NULL;
381                 mmdrop(mm);
382         }
383
384         return err;
385 }
386
387 struct user_arg_ptr {
388 #ifdef CONFIG_COMPAT
389         bool is_compat;
390 #endif
391         union {
392                 const char __user *const __user *native;
393 #ifdef CONFIG_COMPAT
394                 const compat_uptr_t __user *compat;
395 #endif
396         } ptr;
397 };
398
399 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
400 {
401         const char __user *native;
402
403 #ifdef CONFIG_COMPAT
404         if (unlikely(argv.is_compat)) {
405                 compat_uptr_t compat;
406
407                 if (get_user(compat, argv.ptr.compat + nr))
408                         return ERR_PTR(-EFAULT);
409
410                 return compat_ptr(compat);
411         }
412 #endif
413
414         if (get_user(native, argv.ptr.native + nr))
415                 return ERR_PTR(-EFAULT);
416
417         return native;
418 }
419
420 /*
421  * count() counts the number of strings in array ARGV.
422  */
423 static int count(struct user_arg_ptr argv, int max)
424 {
425         int i = 0;
426
427         if (argv.ptr.native != NULL) {
428                 for (;;) {
429                         const char __user *p = get_user_arg_ptr(argv, i);
430
431                         if (!p)
432                                 break;
433
434                         if (IS_ERR(p))
435                                 return -EFAULT;
436
437                         if (i++ >= max)
438                                 return -E2BIG;
439
440                         if (fatal_signal_pending(current))
441                                 return -ERESTARTNOHAND;
442                         cond_resched();
443                 }
444         }
445         return i;
446 }
447
448 /*
449  * 'copy_strings()' copies argument/environment strings from the old
450  * processes's memory to the new process's stack.  The call to get_user_pages()
451  * ensures the destination page is created and not swapped out.
452  */
453 static int copy_strings(int argc, struct user_arg_ptr argv,
454                         struct linux_binprm *bprm)
455 {
456         struct page *kmapped_page = NULL;
457         char *kaddr = NULL;
458         unsigned long kpos = 0;
459         int ret;
460
461         while (argc-- > 0) {
462                 const char __user *str;
463                 int len;
464                 unsigned long pos;
465
466                 ret = -EFAULT;
467                 str = get_user_arg_ptr(argv, argc);
468                 if (IS_ERR(str))
469                         goto out;
470
471                 len = strnlen_user(str, MAX_ARG_STRLEN);
472                 if (!len)
473                         goto out;
474
475                 ret = -E2BIG;
476                 if (!valid_arg_len(bprm, len))
477                         goto out;
478
479                 /* We're going to work our way backwords. */
480                 pos = bprm->p;
481                 str += len;
482                 bprm->p -= len;
483
484                 while (len > 0) {
485                         int offset, bytes_to_copy;
486
487                         if (fatal_signal_pending(current)) {
488                                 ret = -ERESTARTNOHAND;
489                                 goto out;
490                         }
491                         cond_resched();
492
493                         offset = pos % PAGE_SIZE;
494                         if (offset == 0)
495                                 offset = PAGE_SIZE;
496
497                         bytes_to_copy = offset;
498                         if (bytes_to_copy > len)
499                                 bytes_to_copy = len;
500
501                         offset -= bytes_to_copy;
502                         pos -= bytes_to_copy;
503                         str -= bytes_to_copy;
504                         len -= bytes_to_copy;
505
506                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
507                                 struct page *page;
508
509                                 page = get_arg_page(bprm, pos, 1);
510                                 if (!page) {
511                                         ret = -E2BIG;
512                                         goto out;
513                                 }
514
515                                 if (kmapped_page) {
516                                         flush_kernel_dcache_page(kmapped_page);
517                                         kunmap(kmapped_page);
518                                         put_arg_page(kmapped_page);
519                                 }
520                                 kmapped_page = page;
521                                 kaddr = kmap(kmapped_page);
522                                 kpos = pos & PAGE_MASK;
523                                 flush_arg_page(bprm, kpos, kmapped_page);
524                         }
525                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
526                                 ret = -EFAULT;
527                                 goto out;
528                         }
529                 }
530         }
531         ret = 0;
532 out:
533         if (kmapped_page) {
534                 flush_kernel_dcache_page(kmapped_page);
535                 kunmap(kmapped_page);
536                 put_arg_page(kmapped_page);
537         }
538         return ret;
539 }
540
541 /*
542  * Like copy_strings, but get argv and its values from kernel memory.
543  */
544 int copy_strings_kernel(int argc, const char *const *__argv,
545                         struct linux_binprm *bprm)
546 {
547         int r;
548         mm_segment_t oldfs = get_fs();
549         struct user_arg_ptr argv = {
550                 .ptr.native = (const char __user *const  __user *)__argv,
551         };
552
553         set_fs(KERNEL_DS);
554         r = copy_strings(argc, argv, bprm);
555         set_fs(oldfs);
556
557         return r;
558 }
559 EXPORT_SYMBOL(copy_strings_kernel);
560
561 #ifdef CONFIG_MMU
562
563 /*
564  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
565  * the binfmt code determines where the new stack should reside, we shift it to
566  * its final location.  The process proceeds as follows:
567  *
568  * 1) Use shift to calculate the new vma endpoints.
569  * 2) Extend vma to cover both the old and new ranges.  This ensures the
570  *    arguments passed to subsequent functions are consistent.
571  * 3) Move vma's page tables to the new range.
572  * 4) Free up any cleared pgd range.
573  * 5) Shrink the vma to cover only the new range.
574  */
575 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
576 {
577         struct mm_struct *mm = vma->vm_mm;
578         unsigned long old_start = vma->vm_start;
579         unsigned long old_end = vma->vm_end;
580         unsigned long length = old_end - old_start;
581         unsigned long new_start = old_start - shift;
582         unsigned long new_end = old_end - shift;
583         struct mmu_gather tlb;
584
585         BUG_ON(new_start > new_end);
586
587         /*
588          * ensure there are no vmas between where we want to go
589          * and where we are
590          */
591         if (vma != find_vma(mm, new_start))
592                 return -EFAULT;
593
594         /*
595          * cover the whole range: [new_start, old_end)
596          */
597         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
598                 return -ENOMEM;
599
600         /*
601          * move the page tables downwards, on failure we rely on
602          * process cleanup to remove whatever mess we made.
603          */
604         if (length != move_page_tables(vma, old_start,
605                                        vma, new_start, length, false))
606                 return -ENOMEM;
607
608         lru_add_drain();
609         tlb_gather_mmu(&tlb, mm, 0);
610         if (new_end > old_start) {
611                 /*
612                  * when the old and new regions overlap clear from new_end.
613                  */
614                 free_pgd_range(&tlb, new_end, old_end, new_end,
615                         vma->vm_next ? vma->vm_next->vm_start : 0);
616         } else {
617                 /*
618                  * otherwise, clean from old_start; this is done to not touch
619                  * the address space in [new_end, old_start) some architectures
620                  * have constraints on va-space that make this illegal (IA64) -
621                  * for the others its just a little faster.
622                  */
623                 free_pgd_range(&tlb, old_start, old_end, new_end,
624                         vma->vm_next ? vma->vm_next->vm_start : 0);
625         }
626         tlb_finish_mmu(&tlb, new_end, old_end);
627
628         /*
629          * Shrink the vma to just the new range.  Always succeeds.
630          */
631         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
632
633         return 0;
634 }
635
636 /*
637  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
638  * the stack is optionally relocated, and some extra space is added.
639  */
640 int setup_arg_pages(struct linux_binprm *bprm,
641                     unsigned long stack_top,
642                     int executable_stack)
643 {
644         unsigned long ret;
645         unsigned long stack_shift;
646         struct mm_struct *mm = current->mm;
647         struct vm_area_struct *vma = bprm->vma;
648         struct vm_area_struct *prev = NULL;
649         unsigned long vm_flags;
650         unsigned long stack_base;
651         unsigned long stack_size;
652         unsigned long stack_expand;
653         unsigned long rlim_stack;
654
655 #ifdef CONFIG_STACK_GROWSUP
656         /* Limit stack size to 1GB */
657         stack_base = rlimit_max(RLIMIT_STACK);
658         if (stack_base > (1 << 30))
659                 stack_base = 1 << 30;
660
661         /* Make sure we didn't let the argument array grow too large. */
662         if (vma->vm_end - vma->vm_start > stack_base)
663                 return -ENOMEM;
664
665         stack_base = PAGE_ALIGN(stack_top - stack_base);
666
667         stack_shift = vma->vm_start - stack_base;
668         mm->arg_start = bprm->p - stack_shift;
669         bprm->p = vma->vm_end - stack_shift;
670 #else
671         stack_top = arch_align_stack(stack_top);
672         stack_top = PAGE_ALIGN(stack_top);
673
674         if (unlikely(stack_top < mmap_min_addr) ||
675             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
676                 return -ENOMEM;
677
678         stack_shift = vma->vm_end - stack_top;
679
680         bprm->p -= stack_shift;
681         mm->arg_start = bprm->p;
682 #endif
683
684         if (bprm->loader)
685                 bprm->loader -= stack_shift;
686         bprm->exec -= stack_shift;
687
688         down_write(&mm->mmap_sem);
689         vm_flags = VM_STACK_FLAGS;
690
691         /*
692          * Adjust stack execute permissions; explicitly enable for
693          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
694          * (arch default) otherwise.
695          */
696         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
697                 vm_flags |= VM_EXEC;
698         else if (executable_stack == EXSTACK_DISABLE_X)
699                 vm_flags &= ~VM_EXEC;
700         vm_flags |= mm->def_flags;
701         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
702
703         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
704                         vm_flags);
705         if (ret)
706                 goto out_unlock;
707         BUG_ON(prev != vma);
708
709         /* Move stack pages down in memory. */
710         if (stack_shift) {
711                 ret = shift_arg_pages(vma, stack_shift);
712                 if (ret)
713                         goto out_unlock;
714         }
715
716         /* mprotect_fixup is overkill to remove the temporary stack flags */
717         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
718
719         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
720         stack_size = vma->vm_end - vma->vm_start;
721         /*
722          * Align this down to a page boundary as expand_stack
723          * will align it up.
724          */
725         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
726 #ifdef CONFIG_STACK_GROWSUP
727         if (stack_size + stack_expand > rlim_stack)
728                 stack_base = vma->vm_start + rlim_stack;
729         else
730                 stack_base = vma->vm_end + stack_expand;
731 #else
732         if (stack_size + stack_expand > rlim_stack)
733                 stack_base = vma->vm_end - rlim_stack;
734         else
735                 stack_base = vma->vm_start - stack_expand;
736 #endif
737         current->mm->start_stack = bprm->p;
738         ret = expand_stack(vma, stack_base);
739         if (ret)
740                 ret = -EFAULT;
741
742 out_unlock:
743         up_write(&mm->mmap_sem);
744         return ret;
745 }
746 EXPORT_SYMBOL(setup_arg_pages);
747
748 #endif /* CONFIG_MMU */
749
750 struct file *open_exec(const char *name)
751 {
752         struct file *file;
753         int err;
754         static const struct open_flags open_exec_flags = {
755                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
756                 .acc_mode = MAY_EXEC | MAY_OPEN,
757                 .intent = LOOKUP_OPEN
758         };
759
760         file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
761         if (IS_ERR(file))
762                 goto out;
763
764         err = -EACCES;
765         if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
766                 goto exit;
767
768         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
769                 goto exit;
770
771         fsnotify_open(file);
772
773         err = deny_write_access(file);
774         if (err)
775                 goto exit;
776
777 out:
778         return file;
779
780 exit:
781         fput(file);
782         return ERR_PTR(err);
783 }
784 EXPORT_SYMBOL(open_exec);
785
786 int kernel_read(struct file *file, loff_t offset,
787                 char *addr, unsigned long count)
788 {
789         mm_segment_t old_fs;
790         loff_t pos = offset;
791         int result;
792
793         old_fs = get_fs();
794         set_fs(get_ds());
795         /* The cast to a user pointer is valid due to the set_fs() */
796         result = vfs_read(file, (void __user *)addr, count, &pos);
797         set_fs(old_fs);
798         return result;
799 }
800
801 EXPORT_SYMBOL(kernel_read);
802
803 static int exec_mmap(struct mm_struct *mm)
804 {
805         struct task_struct *tsk;
806         struct mm_struct * old_mm, *active_mm;
807
808         /* Notify parent that we're no longer interested in the old VM */
809         tsk = current;
810         old_mm = current->mm;
811         mm_release(tsk, old_mm);
812
813         if (old_mm) {
814                 sync_mm_rss(old_mm);
815                 /*
816                  * Make sure that if there is a core dump in progress
817                  * for the old mm, we get out and die instead of going
818                  * through with the exec.  We must hold mmap_sem around
819                  * checking core_state and changing tsk->mm.
820                  */
821                 down_read(&old_mm->mmap_sem);
822                 if (unlikely(old_mm->core_state)) {
823                         up_read(&old_mm->mmap_sem);
824                         return -EINTR;
825                 }
826         }
827         task_lock(tsk);
828         active_mm = tsk->active_mm;
829         tsk->mm = mm;
830         tsk->active_mm = mm;
831         activate_mm(active_mm, mm);
832         task_unlock(tsk);
833         arch_pick_mmap_layout(mm);
834         if (old_mm) {
835                 up_read(&old_mm->mmap_sem);
836                 BUG_ON(active_mm != old_mm);
837                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
838                 mm_update_next_owner(old_mm);
839                 mmput(old_mm);
840                 return 0;
841         }
842         mmdrop(active_mm);
843         return 0;
844 }
845
846 /*
847  * This function makes sure the current process has its own signal table,
848  * so that flush_signal_handlers can later reset the handlers without
849  * disturbing other processes.  (Other processes might share the signal
850  * table via the CLONE_SIGHAND option to clone().)
851  */
852 static int de_thread(struct task_struct *tsk)
853 {
854         struct signal_struct *sig = tsk->signal;
855         struct sighand_struct *oldsighand = tsk->sighand;
856         spinlock_t *lock = &oldsighand->siglock;
857
858         if (thread_group_empty(tsk))
859                 goto no_thread_group;
860
861         /*
862          * Kill all other threads in the thread group.
863          */
864         spin_lock_irq(lock);
865         if (signal_group_exit(sig)) {
866                 /*
867                  * Another group action in progress, just
868                  * return so that the signal is processed.
869                  */
870                 spin_unlock_irq(lock);
871                 return -EAGAIN;
872         }
873
874         sig->group_exit_task = tsk;
875         sig->notify_count = zap_other_threads(tsk);
876         if (!thread_group_leader(tsk))
877                 sig->notify_count--;
878
879         while (sig->notify_count) {
880                 __set_current_state(TASK_KILLABLE);
881                 spin_unlock_irq(lock);
882                 schedule();
883                 if (unlikely(__fatal_signal_pending(tsk)))
884                         goto killed;
885                 spin_lock_irq(lock);
886         }
887         spin_unlock_irq(lock);
888
889         /*
890          * At this point all other threads have exited, all we have to
891          * do is to wait for the thread group leader to become inactive,
892          * and to assume its PID:
893          */
894         if (!thread_group_leader(tsk)) {
895                 struct task_struct *leader = tsk->group_leader;
896
897                 sig->notify_count = -1; /* for exit_notify() */
898                 for (;;) {
899                         write_lock_irq(&tasklist_lock);
900                         if (likely(leader->exit_state))
901                                 break;
902                         __set_current_state(TASK_KILLABLE);
903                         write_unlock_irq(&tasklist_lock);
904                         schedule();
905                         if (unlikely(__fatal_signal_pending(tsk)))
906                                 goto killed;
907                 }
908
909                 /*
910                  * The only record we have of the real-time age of a
911                  * process, regardless of execs it's done, is start_time.
912                  * All the past CPU time is accumulated in signal_struct
913                  * from sister threads now dead.  But in this non-leader
914                  * exec, nothing survives from the original leader thread,
915                  * whose birth marks the true age of this process now.
916                  * When we take on its identity by switching to its PID, we
917                  * also take its birthdate (always earlier than our own).
918                  */
919                 tsk->start_time = leader->start_time;
920
921                 BUG_ON(!same_thread_group(leader, tsk));
922                 BUG_ON(has_group_leader_pid(tsk));
923                 /*
924                  * An exec() starts a new thread group with the
925                  * TGID of the previous thread group. Rehash the
926                  * two threads with a switched PID, and release
927                  * the former thread group leader:
928                  */
929
930                 /* Become a process group leader with the old leader's pid.
931                  * The old leader becomes a thread of the this thread group.
932                  * Note: The old leader also uses this pid until release_task
933                  *       is called.  Odd but simple and correct.
934                  */
935                 detach_pid(tsk, PIDTYPE_PID);
936                 tsk->pid = leader->pid;
937                 attach_pid(tsk, PIDTYPE_PID,  task_pid(leader));
938                 transfer_pid(leader, tsk, PIDTYPE_PGID);
939                 transfer_pid(leader, tsk, PIDTYPE_SID);
940
941                 list_replace_rcu(&leader->tasks, &tsk->tasks);
942                 list_replace_init(&leader->sibling, &tsk->sibling);
943
944                 tsk->group_leader = tsk;
945                 leader->group_leader = tsk;
946
947                 tsk->exit_signal = SIGCHLD;
948                 leader->exit_signal = -1;
949
950                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
951                 leader->exit_state = EXIT_DEAD;
952
953                 /*
954                  * We are going to release_task()->ptrace_unlink() silently,
955                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
956                  * the tracer wont't block again waiting for this thread.
957                  */
958                 if (unlikely(leader->ptrace))
959                         __wake_up_parent(leader, leader->parent);
960                 write_unlock_irq(&tasklist_lock);
961
962                 release_task(leader);
963         }
964
965         sig->group_exit_task = NULL;
966         sig->notify_count = 0;
967
968 no_thread_group:
969         /* we have changed execution domain */
970         tsk->exit_signal = SIGCHLD;
971
972         exit_itimers(sig);
973         flush_itimer_signals();
974
975         if (atomic_read(&oldsighand->count) != 1) {
976                 struct sighand_struct *newsighand;
977                 /*
978                  * This ->sighand is shared with the CLONE_SIGHAND
979                  * but not CLONE_THREAD task, switch to the new one.
980                  */
981                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
982                 if (!newsighand)
983                         return -ENOMEM;
984
985                 atomic_set(&newsighand->count, 1);
986                 memcpy(newsighand->action, oldsighand->action,
987                        sizeof(newsighand->action));
988
989                 write_lock_irq(&tasklist_lock);
990                 spin_lock(&oldsighand->siglock);
991                 rcu_assign_pointer(tsk->sighand, newsighand);
992                 spin_unlock(&oldsighand->siglock);
993                 write_unlock_irq(&tasklist_lock);
994
995                 __cleanup_sighand(oldsighand);
996         }
997
998         BUG_ON(!thread_group_leader(tsk));
999         return 0;
1000
1001 killed:
1002         /* protects against exit_notify() and __exit_signal() */
1003         read_lock(&tasklist_lock);
1004         sig->group_exit_task = NULL;
1005         sig->notify_count = 0;
1006         read_unlock(&tasklist_lock);
1007         return -EAGAIN;
1008 }
1009
1010 char *get_task_comm(char *buf, struct task_struct *tsk)
1011 {
1012         /* buf must be at least sizeof(tsk->comm) in size */
1013         task_lock(tsk);
1014         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1015         task_unlock(tsk);
1016         return buf;
1017 }
1018 EXPORT_SYMBOL_GPL(get_task_comm);
1019
1020 /*
1021  * These functions flushes out all traces of the currently running executable
1022  * so that a new one can be started
1023  */
1024
1025 void set_task_comm(struct task_struct *tsk, char *buf)
1026 {
1027         task_lock(tsk);
1028
1029         trace_task_rename(tsk, buf);
1030
1031         /*
1032          * Threads may access current->comm without holding
1033          * the task lock, so write the string carefully.
1034          * Readers without a lock may see incomplete new
1035          * names but are safe from non-terminating string reads.
1036          */
1037         memset(tsk->comm, 0, TASK_COMM_LEN);
1038         wmb();
1039         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1040         task_unlock(tsk);
1041         perf_event_comm(tsk);
1042 }
1043
1044 static void filename_to_taskname(char *tcomm, const char *fn, unsigned int len)
1045 {
1046         int i, ch;
1047
1048         /* Copies the binary name from after last slash */
1049         for (i = 0; (ch = *(fn++)) != '\0';) {
1050                 if (ch == '/')
1051                         i = 0; /* overwrite what we wrote */
1052                 else
1053                         if (i < len - 1)
1054                                 tcomm[i++] = ch;
1055         }
1056         tcomm[i] = '\0';
1057 }
1058
1059 int flush_old_exec(struct linux_binprm * bprm)
1060 {
1061         int retval;
1062
1063         /*
1064          * Make sure we have a private signal table and that
1065          * we are unassociated from the previous thread group.
1066          */
1067         retval = de_thread(current);
1068         if (retval)
1069                 goto out;
1070
1071         set_mm_exe_file(bprm->mm, bprm->file);
1072
1073         filename_to_taskname(bprm->tcomm, bprm->filename, sizeof(bprm->tcomm));
1074         /*
1075          * Release all of the old mmap stuff
1076          */
1077         acct_arg_size(bprm, 0);
1078         retval = exec_mmap(bprm->mm);
1079         if (retval)
1080                 goto out;
1081
1082         bprm->mm = NULL;                /* We're using it now */
1083
1084         set_fs(USER_DS);
1085         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD);
1086         flush_thread();
1087         current->personality &= ~bprm->per_clear;
1088
1089         return 0;
1090
1091 out:
1092         return retval;
1093 }
1094 EXPORT_SYMBOL(flush_old_exec);
1095
1096 void would_dump(struct linux_binprm *bprm, struct file *file)
1097 {
1098         if (inode_permission(file->f_path.dentry->d_inode, MAY_READ) < 0)
1099                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1100 }
1101 EXPORT_SYMBOL(would_dump);
1102
1103 void setup_new_exec(struct linux_binprm * bprm)
1104 {
1105         arch_pick_mmap_layout(current->mm);
1106
1107         /* This is the point of no return */
1108         current->sas_ss_sp = current->sas_ss_size = 0;
1109
1110         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1111                 set_dumpable(current->mm, SUID_DUMPABLE_ENABLED);
1112         else
1113                 set_dumpable(current->mm, suid_dumpable);
1114
1115         set_task_comm(current, bprm->tcomm);
1116
1117         /* Set the new mm task size. We have to do that late because it may
1118          * depend on TIF_32BIT which is only updated in flush_thread() on
1119          * some architectures like powerpc
1120          */
1121         current->mm->task_size = TASK_SIZE;
1122
1123         /* install the new credentials */
1124         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1125             !gid_eq(bprm->cred->gid, current_egid())) {
1126                 current->pdeath_signal = 0;
1127         } else {
1128                 would_dump(bprm, bprm->file);
1129                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1130                         set_dumpable(current->mm, suid_dumpable);
1131         }
1132
1133         /*
1134          * Flush performance counters when crossing a
1135          * security domain:
1136          */
1137         if (!get_dumpable(current->mm))
1138                 perf_event_exit_task(current);
1139
1140         /* An exec changes our domain. We are no longer part of the thread
1141            group */
1142
1143         current->self_exec_id++;
1144                         
1145         flush_signal_handlers(current, 0);
1146         do_close_on_exec(current->files);
1147 }
1148 EXPORT_SYMBOL(setup_new_exec);
1149
1150 /*
1151  * Prepare credentials and lock ->cred_guard_mutex.
1152  * install_exec_creds() commits the new creds and drops the lock.
1153  * Or, if exec fails before, free_bprm() should release ->cred and
1154  * and unlock.
1155  */
1156 int prepare_bprm_creds(struct linux_binprm *bprm)
1157 {
1158         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1159                 return -ERESTARTNOINTR;
1160
1161         bprm->cred = prepare_exec_creds();
1162         if (likely(bprm->cred))
1163                 return 0;
1164
1165         mutex_unlock(&current->signal->cred_guard_mutex);
1166         return -ENOMEM;
1167 }
1168
1169 void free_bprm(struct linux_binprm *bprm)
1170 {
1171         free_arg_pages(bprm);
1172         if (bprm->cred) {
1173                 mutex_unlock(&current->signal->cred_guard_mutex);
1174                 abort_creds(bprm->cred);
1175         }
1176         kfree(bprm);
1177 }
1178
1179 /*
1180  * install the new credentials for this executable
1181  */
1182 void install_exec_creds(struct linux_binprm *bprm)
1183 {
1184         security_bprm_committing_creds(bprm);
1185
1186         commit_creds(bprm->cred);
1187         bprm->cred = NULL;
1188         /*
1189          * cred_guard_mutex must be held at least to this point to prevent
1190          * ptrace_attach() from altering our determination of the task's
1191          * credentials; any time after this it may be unlocked.
1192          */
1193         security_bprm_committed_creds(bprm);
1194         mutex_unlock(&current->signal->cred_guard_mutex);
1195 }
1196 EXPORT_SYMBOL(install_exec_creds);
1197
1198 /*
1199  * determine how safe it is to execute the proposed program
1200  * - the caller must hold ->cred_guard_mutex to protect against
1201  *   PTRACE_ATTACH
1202  */
1203 static int check_unsafe_exec(struct linux_binprm *bprm)
1204 {
1205         struct task_struct *p = current, *t;
1206         unsigned n_fs;
1207         int res = 0;
1208
1209         if (p->ptrace) {
1210                 if (p->ptrace & PT_PTRACE_CAP)
1211                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1212                 else
1213                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1214         }
1215
1216         /*
1217          * This isn't strictly necessary, but it makes it harder for LSMs to
1218          * mess up.
1219          */
1220         if (current->no_new_privs)
1221                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1222
1223         n_fs = 1;
1224         spin_lock(&p->fs->lock);
1225         rcu_read_lock();
1226         for (t = next_thread(p); t != p; t = next_thread(t)) {
1227                 if (t->fs == p->fs)
1228                         n_fs++;
1229         }
1230         rcu_read_unlock();
1231
1232         if (p->fs->users > n_fs) {
1233                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1234         } else {
1235                 res = -EAGAIN;
1236                 if (!p->fs->in_exec) {
1237                         p->fs->in_exec = 1;
1238                         res = 1;
1239                 }
1240         }
1241         spin_unlock(&p->fs->lock);
1242
1243         return res;
1244 }
1245
1246 /* 
1247  * Fill the binprm structure from the inode. 
1248  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1249  *
1250  * This may be called multiple times for binary chains (scripts for example).
1251  */
1252 int prepare_binprm(struct linux_binprm *bprm)
1253 {
1254         umode_t mode;
1255         struct inode * inode = bprm->file->f_path.dentry->d_inode;
1256         int retval;
1257
1258         mode = inode->i_mode;
1259         if (bprm->file->f_op == NULL)
1260                 return -EACCES;
1261
1262         /* clear any previous set[ug]id data from a previous binary */
1263         bprm->cred->euid = current_euid();
1264         bprm->cred->egid = current_egid();
1265
1266         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1267             !current->no_new_privs) {
1268                 /* Set-uid? */
1269                 if (mode & S_ISUID) {
1270                         if (!kuid_has_mapping(bprm->cred->user_ns, inode->i_uid))
1271                                 return -EPERM;
1272                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1273                         bprm->cred->euid = inode->i_uid;
1274
1275                 }
1276
1277                 /* Set-gid? */
1278                 /*
1279                  * If setgid is set but no group execute bit then this
1280                  * is a candidate for mandatory locking, not a setgid
1281                  * executable.
1282                  */
1283                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1284                         if (!kgid_has_mapping(bprm->cred->user_ns, inode->i_gid))
1285                                 return -EPERM;
1286                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1287                         bprm->cred->egid = inode->i_gid;
1288                 }
1289         }
1290
1291         /* fill in binprm security blob */
1292         retval = security_bprm_set_creds(bprm);
1293         if (retval)
1294                 return retval;
1295         bprm->cred_prepared = 1;
1296
1297         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1298         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1299 }
1300
1301 EXPORT_SYMBOL(prepare_binprm);
1302
1303 /*
1304  * Arguments are '\0' separated strings found at the location bprm->p
1305  * points to; chop off the first by relocating brpm->p to right after
1306  * the first '\0' encountered.
1307  */
1308 int remove_arg_zero(struct linux_binprm *bprm)
1309 {
1310         int ret = 0;
1311         unsigned long offset;
1312         char *kaddr;
1313         struct page *page;
1314
1315         if (!bprm->argc)
1316                 return 0;
1317
1318         do {
1319                 offset = bprm->p & ~PAGE_MASK;
1320                 page = get_arg_page(bprm, bprm->p, 0);
1321                 if (!page) {
1322                         ret = -EFAULT;
1323                         goto out;
1324                 }
1325                 kaddr = kmap_atomic(page);
1326
1327                 for (; offset < PAGE_SIZE && kaddr[offset];
1328                                 offset++, bprm->p++)
1329                         ;
1330
1331                 kunmap_atomic(kaddr);
1332                 put_arg_page(page);
1333
1334                 if (offset == PAGE_SIZE)
1335                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1336         } while (offset == PAGE_SIZE);
1337
1338         bprm->p++;
1339         bprm->argc--;
1340         ret = 0;
1341
1342 out:
1343         return ret;
1344 }
1345 EXPORT_SYMBOL(remove_arg_zero);
1346
1347 /*
1348  * cycle the list of binary formats handler, until one recognizes the image
1349  */
1350 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1351 {
1352         unsigned int depth = bprm->recursion_depth;
1353         int try,retval;
1354         struct linux_binfmt *fmt;
1355         pid_t old_pid, old_vpid;
1356
1357         retval = security_bprm_check(bprm);
1358         if (retval)
1359                 return retval;
1360
1361         retval = audit_bprm(bprm);
1362         if (retval)
1363                 return retval;
1364
1365         /* Need to fetch pid before load_binary changes it */
1366         old_pid = current->pid;
1367         rcu_read_lock();
1368         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1369         rcu_read_unlock();
1370
1371         retval = -ENOENT;
1372         for (try=0; try<2; try++) {
1373                 read_lock(&binfmt_lock);
1374                 list_for_each_entry(fmt, &formats, lh) {
1375                         int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1376                         if (!fn)
1377                                 continue;
1378                         if (!try_module_get(fmt->module))
1379                                 continue;
1380                         read_unlock(&binfmt_lock);
1381                         retval = fn(bprm, regs);
1382                         /*
1383                          * Restore the depth counter to its starting value
1384                          * in this call, so we don't have to rely on every
1385                          * load_binary function to restore it on return.
1386                          */
1387                         bprm->recursion_depth = depth;
1388                         if (retval >= 0) {
1389                                 if (depth == 0) {
1390                                         trace_sched_process_exec(current, old_pid, bprm);
1391                                         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1392                                 }
1393                                 put_binfmt(fmt);
1394                                 allow_write_access(bprm->file);
1395                                 if (bprm->file)
1396                                         fput(bprm->file);
1397                                 bprm->file = NULL;
1398                                 current->did_exec = 1;
1399                                 proc_exec_connector(current);
1400                                 return retval;
1401                         }
1402                         read_lock(&binfmt_lock);
1403                         put_binfmt(fmt);
1404                         if (retval != -ENOEXEC || bprm->mm == NULL)
1405                                 break;
1406                         if (!bprm->file) {
1407                                 read_unlock(&binfmt_lock);
1408                                 return retval;
1409                         }
1410                 }
1411                 read_unlock(&binfmt_lock);
1412 #ifdef CONFIG_MODULES
1413                 if (retval != -ENOEXEC || bprm->mm == NULL) {
1414                         break;
1415                 } else {
1416 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1417                         if (printable(bprm->buf[0]) &&
1418                             printable(bprm->buf[1]) &&
1419                             printable(bprm->buf[2]) &&
1420                             printable(bprm->buf[3]))
1421                                 break; /* -ENOEXEC */
1422                         if (try)
1423                                 break; /* -ENOEXEC */
1424                         request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1425                 }
1426 #else
1427                 break;
1428 #endif
1429         }
1430         return retval;
1431 }
1432
1433 EXPORT_SYMBOL(search_binary_handler);
1434
1435 /*
1436  * sys_execve() executes a new program.
1437  */
1438 static int do_execve_common(const char *filename,
1439                                 struct user_arg_ptr argv,
1440                                 struct user_arg_ptr envp,
1441                                 struct pt_regs *regs)
1442 {
1443         struct linux_binprm *bprm;
1444         struct file *file;
1445         struct files_struct *displaced;
1446         bool clear_in_exec;
1447         int retval;
1448         const struct cred *cred = current_cred();
1449
1450         /*
1451          * We move the actual failure in case of RLIMIT_NPROC excess from
1452          * set*uid() to execve() because too many poorly written programs
1453          * don't check setuid() return code.  Here we additionally recheck
1454          * whether NPROC limit is still exceeded.
1455          */
1456         if ((current->flags & PF_NPROC_EXCEEDED) &&
1457             atomic_read(&cred->user->processes) > rlimit(RLIMIT_NPROC)) {
1458                 retval = -EAGAIN;
1459                 goto out_ret;
1460         }
1461
1462         /* We're below the limit (still or again), so we don't want to make
1463          * further execve() calls fail. */
1464         current->flags &= ~PF_NPROC_EXCEEDED;
1465
1466         retval = unshare_files(&displaced);
1467         if (retval)
1468                 goto out_ret;
1469
1470         retval = -ENOMEM;
1471         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1472         if (!bprm)
1473                 goto out_files;
1474
1475         retval = prepare_bprm_creds(bprm);
1476         if (retval)
1477                 goto out_free;
1478
1479         retval = check_unsafe_exec(bprm);
1480         if (retval < 0)
1481                 goto out_free;
1482         clear_in_exec = retval;
1483         current->in_execve = 1;
1484
1485         file = open_exec(filename);
1486         retval = PTR_ERR(file);
1487         if (IS_ERR(file))
1488                 goto out_unmark;
1489
1490         sched_exec();
1491
1492         bprm->file = file;
1493         bprm->filename = filename;
1494         bprm->interp = filename;
1495
1496         retval = bprm_mm_init(bprm);
1497         if (retval)
1498                 goto out_file;
1499
1500         bprm->argc = count(argv, MAX_ARG_STRINGS);
1501         if ((retval = bprm->argc) < 0)
1502                 goto out;
1503
1504         bprm->envc = count(envp, MAX_ARG_STRINGS);
1505         if ((retval = bprm->envc) < 0)
1506                 goto out;
1507
1508         retval = prepare_binprm(bprm);
1509         if (retval < 0)
1510                 goto out;
1511
1512         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1513         if (retval < 0)
1514                 goto out;
1515
1516         bprm->exec = bprm->p;
1517         retval = copy_strings(bprm->envc, envp, bprm);
1518         if (retval < 0)
1519                 goto out;
1520
1521         retval = copy_strings(bprm->argc, argv, bprm);
1522         if (retval < 0)
1523                 goto out;
1524
1525         retval = search_binary_handler(bprm,regs);
1526         if (retval < 0)
1527                 goto out;
1528
1529         /* execve succeeded */
1530         current->fs->in_exec = 0;
1531         current->in_execve = 0;
1532         acct_update_integrals(current);
1533         free_bprm(bprm);
1534         if (displaced)
1535                 put_files_struct(displaced);
1536         return retval;
1537
1538 out:
1539         if (bprm->mm) {
1540                 acct_arg_size(bprm, 0);
1541                 mmput(bprm->mm);
1542         }
1543
1544 out_file:
1545         if (bprm->file) {
1546                 allow_write_access(bprm->file);
1547                 fput(bprm->file);
1548         }
1549
1550 out_unmark:
1551         if (clear_in_exec)
1552                 current->fs->in_exec = 0;
1553         current->in_execve = 0;
1554
1555 out_free:
1556         free_bprm(bprm);
1557
1558 out_files:
1559         if (displaced)
1560                 reset_files_struct(displaced);
1561 out_ret:
1562         return retval;
1563 }
1564
1565 int do_execve(const char *filename,
1566         const char __user *const __user *__argv,
1567         const char __user *const __user *__envp,
1568         struct pt_regs *regs)
1569 {
1570         struct user_arg_ptr argv = { .ptr.native = __argv };
1571         struct user_arg_ptr envp = { .ptr.native = __envp };
1572         return do_execve_common(filename, argv, envp, regs);
1573 }
1574
1575 #ifdef CONFIG_COMPAT
1576 int compat_do_execve(const char *filename,
1577         const compat_uptr_t __user *__argv,
1578         const compat_uptr_t __user *__envp,
1579         struct pt_regs *regs)
1580 {
1581         struct user_arg_ptr argv = {
1582                 .is_compat = true,
1583                 .ptr.compat = __argv,
1584         };
1585         struct user_arg_ptr envp = {
1586                 .is_compat = true,
1587                 .ptr.compat = __envp,
1588         };
1589         return do_execve_common(filename, argv, envp, regs);
1590 }
1591 #endif
1592
1593 void set_binfmt(struct linux_binfmt *new)
1594 {
1595         struct mm_struct *mm = current->mm;
1596
1597         if (mm->binfmt)
1598                 module_put(mm->binfmt->module);
1599
1600         mm->binfmt = new;
1601         if (new)
1602                 __module_get(new->module);
1603 }
1604
1605 EXPORT_SYMBOL(set_binfmt);
1606
1607 /*
1608  * set_dumpable converts traditional three-value dumpable to two flags and
1609  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but
1610  * these bits are not changed atomically.  So get_dumpable can observe the
1611  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable
1612  * return either old dumpable or new one by paying attention to the order of
1613  * modifying the bits.
1614  *
1615  * dumpable |   mm->flags (binary)
1616  * old  new | initial interim  final
1617  * ---------+-----------------------
1618  *  0    1  |   00      01      01
1619  *  0    2  |   00      10(*)   11
1620  *  1    0  |   01      00      00
1621  *  1    2  |   01      11      11
1622  *  2    0  |   11      10(*)   00
1623  *  2    1  |   11      11      01
1624  *
1625  * (*) get_dumpable regards interim value of 10 as 11.
1626  */
1627 void set_dumpable(struct mm_struct *mm, int value)
1628 {
1629         switch (value) {
1630         case SUID_DUMPABLE_DISABLED:
1631                 clear_bit(MMF_DUMPABLE, &mm->flags);
1632                 smp_wmb();
1633                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1634                 break;
1635         case SUID_DUMPABLE_ENABLED:
1636                 set_bit(MMF_DUMPABLE, &mm->flags);
1637                 smp_wmb();
1638                 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1639                 break;
1640         case SUID_DUMPABLE_SAFE:
1641                 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1642                 smp_wmb();
1643                 set_bit(MMF_DUMPABLE, &mm->flags);
1644                 break;
1645         }
1646 }
1647
1648 int __get_dumpable(unsigned long mm_flags)
1649 {
1650         int ret;
1651
1652         ret = mm_flags & MMF_DUMPABLE_MASK;
1653         return (ret > SUID_DUMPABLE_ENABLED) ? SUID_DUMPABLE_SAFE : ret;
1654 }
1655
1656 int get_dumpable(struct mm_struct *mm)
1657 {
1658         return __get_dumpable(mm->flags);
1659 }
1660
1661 #ifdef __ARCH_WANT_SYS_EXECVE
1662 SYSCALL_DEFINE3(execve,
1663                 const char __user *, filename,
1664                 const char __user *const __user *, argv,
1665                 const char __user *const __user *, envp)
1666 {
1667         const char *path = getname(filename);
1668         int error = PTR_ERR(path);
1669         if (!IS_ERR(path)) {
1670                 error = do_execve(path, argv, envp, current_pt_regs());
1671                 putname(path);
1672         }
1673         return error;
1674 }
1675 #ifdef CONFIG_COMPAT
1676 asmlinkage long compat_sys_execve(const char __user * filename,
1677         const compat_uptr_t __user * argv,
1678         const compat_uptr_t __user * envp)
1679 {
1680         const char *path = getname(filename);
1681         int error = PTR_ERR(path);
1682         if (!IS_ERR(path)) {
1683                 error = compat_do_execve(path, argv, envp, current_pt_regs());
1684                 putname(path);
1685         }
1686         return error;
1687 }
1688 #endif
1689 #endif
1690
1691 #ifdef __ARCH_WANT_KERNEL_EXECVE
1692 int kernel_execve(const char *filename,
1693                   const char *const argv[],
1694                   const char *const envp[])
1695 {
1696         struct pt_regs *p = current_pt_regs();
1697         int ret;
1698
1699         ret = do_execve(filename,
1700                         (const char __user *const __user *)argv,
1701                         (const char __user *const __user *)envp, p);
1702         if (ret < 0)
1703                 return ret;
1704
1705         /*
1706          * We were successful.  We won't be returning to our caller, but
1707          * instead to user space by manipulating the kernel stack.
1708          */
1709         ret_from_kernel_execve(p);
1710 }
1711 #endif