]> Pileus Git - ~andy/linux/blob - fs/ecryptfs/keystore.c
eCryptfs: Filename encryption only supports password auth tokens
[~andy/linux] / fs / ecryptfs / keystore.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  * In-kernel key management code.  Includes functions to parse and
4  * write authentication token-related packets with the underlying
5  * file.
6  *
7  * Copyright (C) 2004-2006 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  *              Trevor S. Highland <trevor.highland@gmail.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  * 02111-1307, USA.
26  */
27
28 #include <linux/string.h>
29 #include <linux/syscalls.h>
30 #include <linux/pagemap.h>
31 #include <linux/key.h>
32 #include <linux/random.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include "ecryptfs_kernel.h"
36
37 /**
38  * request_key returned an error instead of a valid key address;
39  * determine the type of error, make appropriate log entries, and
40  * return an error code.
41  */
42 static int process_request_key_err(long err_code)
43 {
44         int rc = 0;
45
46         switch (err_code) {
47         case -ENOKEY:
48                 ecryptfs_printk(KERN_WARNING, "No key\n");
49                 rc = -ENOENT;
50                 break;
51         case -EKEYEXPIRED:
52                 ecryptfs_printk(KERN_WARNING, "Key expired\n");
53                 rc = -ETIME;
54                 break;
55         case -EKEYREVOKED:
56                 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
57                 rc = -EINVAL;
58                 break;
59         default:
60                 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
61                                 "[0x%.16x]\n", err_code);
62                 rc = -EINVAL;
63         }
64         return rc;
65 }
66
67 /**
68  * ecryptfs_parse_packet_length
69  * @data: Pointer to memory containing length at offset
70  * @size: This function writes the decoded size to this memory
71  *        address; zero on error
72  * @length_size: The number of bytes occupied by the encoded length
73  *
74  * Returns zero on success; non-zero on error
75  */
76 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
77                                  size_t *length_size)
78 {
79         int rc = 0;
80
81         (*length_size) = 0;
82         (*size) = 0;
83         if (data[0] < 192) {
84                 /* One-byte length */
85                 (*size) = (unsigned char)data[0];
86                 (*length_size) = 1;
87         } else if (data[0] < 224) {
88                 /* Two-byte length */
89                 (*size) = (((unsigned char)(data[0]) - 192) * 256);
90                 (*size) += ((unsigned char)(data[1]) + 192);
91                 (*length_size) = 2;
92         } else if (data[0] == 255) {
93                 /* Five-byte length; we're not supposed to see this */
94                 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
95                                 "supported\n");
96                 rc = -EINVAL;
97                 goto out;
98         } else {
99                 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
100                 rc = -EINVAL;
101                 goto out;
102         }
103 out:
104         return rc;
105 }
106
107 /**
108  * ecryptfs_write_packet_length
109  * @dest: The byte array target into which to write the length. Must
110  *        have at least 5 bytes allocated.
111  * @size: The length to write.
112  * @packet_size_length: The number of bytes used to encode the packet
113  *                      length is written to this address.
114  *
115  * Returns zero on success; non-zero on error.
116  */
117 int ecryptfs_write_packet_length(char *dest, size_t size,
118                                  size_t *packet_size_length)
119 {
120         int rc = 0;
121
122         if (size < 192) {
123                 dest[0] = size;
124                 (*packet_size_length) = 1;
125         } else if (size < 65536) {
126                 dest[0] = (((size - 192) / 256) + 192);
127                 dest[1] = ((size - 192) % 256);
128                 (*packet_size_length) = 2;
129         } else {
130                 rc = -EINVAL;
131                 ecryptfs_printk(KERN_WARNING,
132                                 "Unsupported packet size: [%d]\n", size);
133         }
134         return rc;
135 }
136
137 static int
138 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
139                     char **packet, size_t *packet_len)
140 {
141         size_t i = 0;
142         size_t data_len;
143         size_t packet_size_len;
144         char *message;
145         int rc;
146
147         /*
148          *              ***** TAG 64 Packet Format *****
149          *    | Content Type                       | 1 byte       |
150          *    | Key Identifier Size                | 1 or 2 bytes |
151          *    | Key Identifier                     | arbitrary    |
152          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
153          *    | Encrypted File Encryption Key      | arbitrary    |
154          */
155         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
156                     + session_key->encrypted_key_size);
157         *packet = kmalloc(data_len, GFP_KERNEL);
158         message = *packet;
159         if (!message) {
160                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
161                 rc = -ENOMEM;
162                 goto out;
163         }
164         message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
165         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
166                                           &packet_size_len);
167         if (rc) {
168                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
169                                 "header; cannot generate packet length\n");
170                 goto out;
171         }
172         i += packet_size_len;
173         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
174         i += ECRYPTFS_SIG_SIZE_HEX;
175         rc = ecryptfs_write_packet_length(&message[i],
176                                           session_key->encrypted_key_size,
177                                           &packet_size_len);
178         if (rc) {
179                 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
180                                 "header; cannot generate packet length\n");
181                 goto out;
182         }
183         i += packet_size_len;
184         memcpy(&message[i], session_key->encrypted_key,
185                session_key->encrypted_key_size);
186         i += session_key->encrypted_key_size;
187         *packet_len = i;
188 out:
189         return rc;
190 }
191
192 static int
193 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
194                     struct ecryptfs_message *msg)
195 {
196         size_t i = 0;
197         char *data;
198         size_t data_len;
199         size_t m_size;
200         size_t message_len;
201         u16 checksum = 0;
202         u16 expected_checksum = 0;
203         int rc;
204
205         /*
206          *              ***** TAG 65 Packet Format *****
207          *         | Content Type             | 1 byte       |
208          *         | Status Indicator         | 1 byte       |
209          *         | File Encryption Key Size | 1 or 2 bytes |
210          *         | File Encryption Key      | arbitrary    |
211          */
212         message_len = msg->data_len;
213         data = msg->data;
214         if (message_len < 4) {
215                 rc = -EIO;
216                 goto out;
217         }
218         if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
219                 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
220                 rc = -EIO;
221                 goto out;
222         }
223         if (data[i++]) {
224                 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
225                                 "[%d]\n", data[i-1]);
226                 rc = -EIO;
227                 goto out;
228         }
229         rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
230         if (rc) {
231                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
232                                 "rc = [%d]\n", rc);
233                 goto out;
234         }
235         i += data_len;
236         if (message_len < (i + m_size)) {
237                 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
238                                 "is shorter than expected\n");
239                 rc = -EIO;
240                 goto out;
241         }
242         if (m_size < 3) {
243                 ecryptfs_printk(KERN_ERR,
244                                 "The decrypted key is not long enough to "
245                                 "include a cipher code and checksum\n");
246                 rc = -EIO;
247                 goto out;
248         }
249         *cipher_code = data[i++];
250         /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
251         session_key->decrypted_key_size = m_size - 3;
252         if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
253                 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
254                                 "the maximum key size [%d]\n",
255                                 session_key->decrypted_key_size,
256                                 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
257                 rc = -EIO;
258                 goto out;
259         }
260         memcpy(session_key->decrypted_key, &data[i],
261                session_key->decrypted_key_size);
262         i += session_key->decrypted_key_size;
263         expected_checksum += (unsigned char)(data[i++]) << 8;
264         expected_checksum += (unsigned char)(data[i++]);
265         for (i = 0; i < session_key->decrypted_key_size; i++)
266                 checksum += session_key->decrypted_key[i];
267         if (expected_checksum != checksum) {
268                 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
269                                 "encryption  key; expected [%x]; calculated "
270                                 "[%x]\n", expected_checksum, checksum);
271                 rc = -EIO;
272         }
273 out:
274         return rc;
275 }
276
277
278 static int
279 write_tag_66_packet(char *signature, u8 cipher_code,
280                     struct ecryptfs_crypt_stat *crypt_stat, char **packet,
281                     size_t *packet_len)
282 {
283         size_t i = 0;
284         size_t j;
285         size_t data_len;
286         size_t checksum = 0;
287         size_t packet_size_len;
288         char *message;
289         int rc;
290
291         /*
292          *              ***** TAG 66 Packet Format *****
293          *         | Content Type             | 1 byte       |
294          *         | Key Identifier Size      | 1 or 2 bytes |
295          *         | Key Identifier           | arbitrary    |
296          *         | File Encryption Key Size | 1 or 2 bytes |
297          *         | File Encryption Key      | arbitrary    |
298          */
299         data_len = (5 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
300         *packet = kmalloc(data_len, GFP_KERNEL);
301         message = *packet;
302         if (!message) {
303                 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
304                 rc = -ENOMEM;
305                 goto out;
306         }
307         message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
308         rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
309                                           &packet_size_len);
310         if (rc) {
311                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
312                                 "header; cannot generate packet length\n");
313                 goto out;
314         }
315         i += packet_size_len;
316         memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
317         i += ECRYPTFS_SIG_SIZE_HEX;
318         /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
319         rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
320                                           &packet_size_len);
321         if (rc) {
322                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
323                                 "header; cannot generate packet length\n");
324                 goto out;
325         }
326         i += packet_size_len;
327         message[i++] = cipher_code;
328         memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
329         i += crypt_stat->key_size;
330         for (j = 0; j < crypt_stat->key_size; j++)
331                 checksum += crypt_stat->key[j];
332         message[i++] = (checksum / 256) % 256;
333         message[i++] = (checksum % 256);
334         *packet_len = i;
335 out:
336         return rc;
337 }
338
339 static int
340 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
341                     struct ecryptfs_message *msg)
342 {
343         size_t i = 0;
344         char *data;
345         size_t data_len;
346         size_t message_len;
347         int rc;
348
349         /*
350          *              ***** TAG 65 Packet Format *****
351          *    | Content Type                       | 1 byte       |
352          *    | Status Indicator                   | 1 byte       |
353          *    | Encrypted File Encryption Key Size | 1 or 2 bytes |
354          *    | Encrypted File Encryption Key      | arbitrary    |
355          */
356         message_len = msg->data_len;
357         data = msg->data;
358         /* verify that everything through the encrypted FEK size is present */
359         if (message_len < 4) {
360                 rc = -EIO;
361                 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
362                        "message length is [%d]\n", __func__, message_len, 4);
363                 goto out;
364         }
365         if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
366                 rc = -EIO;
367                 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
368                        __func__);
369                 goto out;
370         }
371         if (data[i++]) {
372                 rc = -EIO;
373                 printk(KERN_ERR "%s: Status indicator has non zero "
374                        "value [%d]\n", __func__, data[i-1]);
375
376                 goto out;
377         }
378         rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
379                                           &data_len);
380         if (rc) {
381                 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
382                                 "rc = [%d]\n", rc);
383                 goto out;
384         }
385         i += data_len;
386         if (message_len < (i + key_rec->enc_key_size)) {
387                 rc = -EIO;
388                 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
389                        __func__, message_len, (i + key_rec->enc_key_size));
390                 goto out;
391         }
392         if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
393                 rc = -EIO;
394                 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
395                        "the maximum key size [%d]\n", __func__,
396                        key_rec->enc_key_size,
397                        ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
398                 goto out;
399         }
400         memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
401 out:
402         return rc;
403 }
404
405 static int
406 ecryptfs_find_global_auth_tok_for_sig(
407         struct ecryptfs_global_auth_tok **global_auth_tok,
408         struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
409 {
410         struct ecryptfs_global_auth_tok *walker;
411         int rc = 0;
412
413         (*global_auth_tok) = NULL;
414         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
415         list_for_each_entry(walker,
416                             &mount_crypt_stat->global_auth_tok_list,
417                             mount_crypt_stat_list) {
418                 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX) == 0) {
419                         (*global_auth_tok) = walker;
420                         goto out;
421                 }
422         }
423         rc = -EINVAL;
424 out:
425         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
426         return rc;
427 }
428
429 /**
430  * ecryptfs_find_auth_tok_for_sig
431  * @auth_tok: Set to the matching auth_tok; NULL if not found
432  * @crypt_stat: inode crypt_stat crypto context
433  * @sig: Sig of auth_tok to find
434  *
435  * For now, this function simply looks at the registered auth_tok's
436  * linked off the mount_crypt_stat, so all the auth_toks that can be
437  * used must be registered at mount time. This function could
438  * potentially try a lot harder to find auth_tok's (e.g., by calling
439  * out to ecryptfsd to dynamically retrieve an auth_tok object) so
440  * that static registration of auth_tok's will no longer be necessary.
441  *
442  * Returns zero on no error; non-zero on error
443  */
444 static int
445 ecryptfs_find_auth_tok_for_sig(
446         struct ecryptfs_auth_tok **auth_tok,
447         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
448         char *sig)
449 {
450         struct ecryptfs_global_auth_tok *global_auth_tok;
451         int rc = 0;
452
453         (*auth_tok) = NULL;
454         if (ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
455                                                   mount_crypt_stat, sig)) {
456                 struct key *auth_tok_key;
457
458                 rc = ecryptfs_keyring_auth_tok_for_sig(&auth_tok_key, auth_tok,
459                                                        sig);
460         } else
461                 (*auth_tok) = global_auth_tok->global_auth_tok;
462         return rc;
463 }
464
465 /**
466  * write_tag_70_packet can gobble a lot of stack space. We stuff most
467  * of the function's parameters in a kmalloc'd struct to help reduce
468  * eCryptfs' overall stack usage.
469  */
470 struct ecryptfs_write_tag_70_packet_silly_stack {
471         u8 cipher_code;
472         size_t max_packet_size;
473         size_t packet_size_len;
474         size_t block_aligned_filename_size;
475         size_t block_size;
476         size_t i;
477         size_t j;
478         size_t num_rand_bytes;
479         struct mutex *tfm_mutex;
480         char *block_aligned_filename;
481         struct ecryptfs_auth_tok *auth_tok;
482         struct scatterlist src_sg;
483         struct scatterlist dst_sg;
484         struct blkcipher_desc desc;
485         char iv[ECRYPTFS_MAX_IV_BYTES];
486         char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
487         char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
488         struct hash_desc hash_desc;
489         struct scatterlist hash_sg;
490 };
491
492 /**
493  * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
494  * @filename: NULL-terminated filename string
495  *
496  * This is the simplest mechanism for achieving filename encryption in
497  * eCryptfs. It encrypts the given filename with the mount-wide
498  * filename encryption key (FNEK) and stores it in a packet to @dest,
499  * which the callee will encode and write directly into the dentry
500  * name.
501  */
502 int
503 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
504                              size_t *packet_size,
505                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
506                              char *filename, size_t filename_size)
507 {
508         struct ecryptfs_write_tag_70_packet_silly_stack *s;
509         int rc = 0;
510
511         s = kmalloc(sizeof(*s), GFP_KERNEL);
512         if (!s) {
513                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
514                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
515                 goto out;
516         }
517         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
518         (*packet_size) = 0;
519         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
520                 &s->desc.tfm,
521                 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
522         if (unlikely(rc)) {
523                 printk(KERN_ERR "Internal error whilst attempting to get "
524                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
525                        mount_crypt_stat->global_default_fn_cipher_name, rc);
526                 goto out;
527         }
528         mutex_lock(s->tfm_mutex);
529         s->block_size = crypto_blkcipher_blocksize(s->desc.tfm);
530         /* Plus one for the \0 separator between the random prefix
531          * and the plaintext filename */
532         s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
533         s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
534         if ((s->block_aligned_filename_size % s->block_size) != 0) {
535                 s->num_rand_bytes += (s->block_size
536                                       - (s->block_aligned_filename_size
537                                          % s->block_size));
538                 s->block_aligned_filename_size = (s->num_rand_bytes
539                                                   + filename_size);
540         }
541         /* Octet 0: Tag 70 identifier
542          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
543          *              and block-aligned encrypted filename size)
544          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
545          * Octet N2-N3: Cipher identifier (1 octet)
546          * Octets N3-N4: Block-aligned encrypted filename
547          *  - Consists of a minimum number of random characters, a \0
548          *    separator, and then the filename */
549         s->max_packet_size = (1                   /* Tag 70 identifier */
550                               + 3                 /* Max Tag 70 packet size */
551                               + ECRYPTFS_SIG_SIZE /* FNEK sig */
552                               + 1                 /* Cipher identifier */
553                               + s->block_aligned_filename_size);
554         if (dest == NULL) {
555                 (*packet_size) = s->max_packet_size;
556                 goto out_unlock;
557         }
558         if (s->max_packet_size > (*remaining_bytes)) {
559                 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
560                        "[%zd] available\n", __func__, s->max_packet_size,
561                        (*remaining_bytes));
562                 rc = -EINVAL;
563                 goto out_unlock;
564         }
565         s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
566                                             GFP_KERNEL);
567         if (!s->block_aligned_filename) {
568                 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
569                        "kzalloc [%zd] bytes\n", __func__,
570                        s->block_aligned_filename_size);
571                 rc = -ENOMEM;
572                 goto out_unlock;
573         }
574         s->i = 0;
575         dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
576         rc = ecryptfs_write_packet_length(&dest[s->i],
577                                           (ECRYPTFS_SIG_SIZE
578                                            + 1 /* Cipher code */
579                                            + s->block_aligned_filename_size),
580                                           &s->packet_size_len);
581         if (rc) {
582                 printk(KERN_ERR "%s: Error generating tag 70 packet "
583                        "header; cannot generate packet length; rc = [%d]\n",
584                        __func__, rc);
585                 goto out_free_unlock;
586         }
587         s->i += s->packet_size_len;
588         ecryptfs_from_hex(&dest[s->i],
589                           mount_crypt_stat->global_default_fnek_sig,
590                           ECRYPTFS_SIG_SIZE);
591         s->i += ECRYPTFS_SIG_SIZE;
592         s->cipher_code = ecryptfs_code_for_cipher_string(
593                 mount_crypt_stat->global_default_fn_cipher_name,
594                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
595         if (s->cipher_code == 0) {
596                 printk(KERN_WARNING "%s: Unable to generate code for "
597                        "cipher [%s] with key bytes [%zd]\n", __func__,
598                        mount_crypt_stat->global_default_fn_cipher_name,
599                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
600                 rc = -EINVAL;
601                 goto out_free_unlock;
602         }
603         dest[s->i++] = s->cipher_code;
604         rc = ecryptfs_find_auth_tok_for_sig(
605                 &s->auth_tok, mount_crypt_stat,
606                 mount_crypt_stat->global_default_fnek_sig);
607         if (rc) {
608                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
609                        "fnek sig [%s]; rc = [%d]\n", __func__,
610                        mount_crypt_stat->global_default_fnek_sig, rc);
611                 goto out_free_unlock;
612         }
613         /* TODO: Support other key modules than passphrase for
614          * filename encryption */
615         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
616                 rc = -EOPNOTSUPP;
617                 printk(KERN_INFO "%s: Filename encryption only supports "
618                        "password tokens\n", __func__);
619                 goto out_free_unlock;
620         }
621         sg_init_one(
622                 &s->hash_sg,
623                 (u8 *)s->auth_tok->token.password.session_key_encryption_key,
624                 s->auth_tok->token.password.session_key_encryption_key_bytes);
625         s->hash_desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
626         s->hash_desc.tfm = crypto_alloc_hash(ECRYPTFS_TAG_70_DIGEST, 0,
627                                              CRYPTO_ALG_ASYNC);
628         if (IS_ERR(s->hash_desc.tfm)) {
629                         rc = PTR_ERR(s->hash_desc.tfm);
630                         printk(KERN_ERR "%s: Error attempting to "
631                                "allocate hash crypto context; rc = [%d]\n",
632                                __func__, rc);
633                         goto out_free_unlock;
634         }
635         rc = crypto_hash_init(&s->hash_desc);
636         if (rc) {
637                 printk(KERN_ERR
638                        "%s: Error initializing crypto hash; rc = [%d]\n",
639                        __func__, rc);
640                 goto out_release_free_unlock;
641         }
642         rc = crypto_hash_update(
643                 &s->hash_desc, &s->hash_sg,
644                 s->auth_tok->token.password.session_key_encryption_key_bytes);
645         if (rc) {
646                 printk(KERN_ERR
647                        "%s: Error updating crypto hash; rc = [%d]\n",
648                        __func__, rc);
649                 goto out_release_free_unlock;
650         }
651         rc = crypto_hash_final(&s->hash_desc, s->hash);
652         if (rc) {
653                 printk(KERN_ERR
654                        "%s: Error finalizing crypto hash; rc = [%d]\n",
655                        __func__, rc);
656                 goto out_release_free_unlock;
657         }
658         for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
659                 s->block_aligned_filename[s->j] =
660                         s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
661                 if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
662                     == (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
663                         sg_init_one(&s->hash_sg, (u8 *)s->hash,
664                                     ECRYPTFS_TAG_70_DIGEST_SIZE);
665                         rc = crypto_hash_init(&s->hash_desc);
666                         if (rc) {
667                                 printk(KERN_ERR
668                                        "%s: Error initializing crypto hash; "
669                                        "rc = [%d]\n", __func__, rc);
670                                 goto out_release_free_unlock;
671                         }
672                         rc = crypto_hash_update(&s->hash_desc, &s->hash_sg,
673                                                 ECRYPTFS_TAG_70_DIGEST_SIZE);
674                         if (rc) {
675                                 printk(KERN_ERR
676                                        "%s: Error updating crypto hash; "
677                                        "rc = [%d]\n", __func__, rc);
678                                 goto out_release_free_unlock;
679                         }
680                         rc = crypto_hash_final(&s->hash_desc, s->tmp_hash);
681                         if (rc) {
682                                 printk(KERN_ERR
683                                        "%s: Error finalizing crypto hash; "
684                                        "rc = [%d]\n", __func__, rc);
685                                 goto out_release_free_unlock;
686                         }
687                         memcpy(s->hash, s->tmp_hash,
688                                ECRYPTFS_TAG_70_DIGEST_SIZE);
689                 }
690                 if (s->block_aligned_filename[s->j] == '\0')
691                         s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
692         }
693         memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
694                filename_size);
695         rc = virt_to_scatterlist(s->block_aligned_filename,
696                                  s->block_aligned_filename_size, &s->src_sg, 1);
697         if (rc != 1) {
698                 printk(KERN_ERR "%s: Internal error whilst attempting to "
699                        "convert filename memory to scatterlist; "
700                        "expected rc = 1; got rc = [%d]. "
701                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
702                        s->block_aligned_filename_size);
703                 goto out_release_free_unlock;
704         }
705         rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
706                                  &s->dst_sg, 1);
707         if (rc != 1) {
708                 printk(KERN_ERR "%s: Internal error whilst attempting to "
709                        "convert encrypted filename memory to scatterlist; "
710                        "expected rc = 1; got rc = [%d]. "
711                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
712                        s->block_aligned_filename_size);
713                 goto out_release_free_unlock;
714         }
715         /* The characters in the first block effectively do the job
716          * of the IV here, so we just use 0's for the IV. Note the
717          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
718          * >= ECRYPTFS_MAX_IV_BYTES. */
719         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
720         s->desc.info = s->iv;
721         rc = crypto_blkcipher_setkey(
722                 s->desc.tfm,
723                 s->auth_tok->token.password.session_key_encryption_key,
724                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
725         if (rc < 0) {
726                 printk(KERN_ERR "%s: Error setting key for crypto context; "
727                        "rc = [%d]. s->auth_tok->token.password.session_key_"
728                        "encryption_key = [0x%p]; mount_crypt_stat->"
729                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
730                        rc,
731                        s->auth_tok->token.password.session_key_encryption_key,
732                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
733                 goto out_release_free_unlock;
734         }
735         rc = crypto_blkcipher_encrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
736                                          s->block_aligned_filename_size);
737         if (rc) {
738                 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
739                        "rc = [%d]\n", __func__, rc);
740                 goto out_release_free_unlock;
741         }
742         s->i += s->block_aligned_filename_size;
743         (*packet_size) = s->i;
744         (*remaining_bytes) -= (*packet_size);
745 out_release_free_unlock:
746         crypto_free_hash(s->hash_desc.tfm);
747 out_free_unlock:
748         kzfree(s->block_aligned_filename);
749 out_unlock:
750         mutex_unlock(s->tfm_mutex);
751 out:
752         kfree(s);
753         return rc;
754 }
755
756 struct ecryptfs_parse_tag_70_packet_silly_stack {
757         u8 cipher_code;
758         size_t max_packet_size;
759         size_t packet_size_len;
760         size_t parsed_tag_70_packet_size;
761         size_t block_aligned_filename_size;
762         size_t block_size;
763         size_t i;
764         struct mutex *tfm_mutex;
765         char *decrypted_filename;
766         struct ecryptfs_auth_tok *auth_tok;
767         struct scatterlist src_sg;
768         struct scatterlist dst_sg;
769         struct blkcipher_desc desc;
770         char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
771         char iv[ECRYPTFS_MAX_IV_BYTES];
772         char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE];
773 };
774
775 /**
776  * parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
777  * @filename: This function kmalloc's the memory for the filename
778  * @filename_size: This function sets this to the amount of memory
779  *                 kmalloc'd for the filename
780  * @packet_size: This function sets this to the the number of octets
781  *               in the packet parsed
782  * @mount_crypt_stat: The mount-wide cryptographic context
783  * @data: The memory location containing the start of the tag 70
784  *        packet
785  * @max_packet_size: The maximum legal size of the packet to be parsed
786  *                   from @data
787  *
788  * Returns zero on success; non-zero otherwise
789  */
790 int
791 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
792                              size_t *packet_size,
793                              struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
794                              char *data, size_t max_packet_size)
795 {
796         struct ecryptfs_parse_tag_70_packet_silly_stack *s;
797         int rc = 0;
798
799         (*packet_size) = 0;
800         (*filename_size) = 0;
801         (*filename) = NULL;
802         s = kmalloc(sizeof(*s), GFP_KERNEL);
803         if (!s) {
804                 printk(KERN_ERR "%s: Out of memory whilst trying to kmalloc "
805                        "[%zd] bytes of kernel memory\n", __func__, sizeof(*s));
806                 goto out;
807         }
808         s->desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
809         if (max_packet_size < (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1)) {
810                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
811                        "at least [%d]\n", __func__, max_packet_size,
812                         (1 + 1 + ECRYPTFS_SIG_SIZE + 1 + 1));
813                 rc = -EINVAL;
814                 goto out;
815         }
816         /* Octet 0: Tag 70 identifier
817          * Octets 1-N1: Tag 70 packet size (includes cipher identifier
818          *              and block-aligned encrypted filename size)
819          * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
820          * Octet N2-N3: Cipher identifier (1 octet)
821          * Octets N3-N4: Block-aligned encrypted filename
822          *  - Consists of a minimum number of random numbers, a \0
823          *    separator, and then the filename */
824         if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
825                 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
826                        "tag [0x%.2x]\n", __func__,
827                        data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
828                 rc = -EINVAL;
829                 goto out;
830         }
831         rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
832                                           &s->parsed_tag_70_packet_size,
833                                           &s->packet_size_len);
834         if (rc) {
835                 printk(KERN_WARNING "%s: Error parsing packet length; "
836                        "rc = [%d]\n", __func__, rc);
837                 goto out;
838         }
839         s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
840                                           - ECRYPTFS_SIG_SIZE - 1);
841         if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
842             > max_packet_size) {
843                 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
844                        "size is [%zd]\n", __func__, max_packet_size,
845                        (1 + s->packet_size_len + 1
846                         + s->block_aligned_filename_size));
847                 rc = -EINVAL;
848                 goto out;
849         }
850         (*packet_size) += s->packet_size_len;
851         ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
852                         ECRYPTFS_SIG_SIZE);
853         s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
854         (*packet_size) += ECRYPTFS_SIG_SIZE;
855         s->cipher_code = data[(*packet_size)++];
856         rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
857         if (rc) {
858                 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
859                        __func__, s->cipher_code);
860                 goto out;
861         }
862         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->desc.tfm,
863                                                         &s->tfm_mutex,
864                                                         s->cipher_string);
865         if (unlikely(rc)) {
866                 printk(KERN_ERR "Internal error whilst attempting to get "
867                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
868                        s->cipher_string, rc);
869                 goto out;
870         }
871         mutex_lock(s->tfm_mutex);
872         rc = virt_to_scatterlist(&data[(*packet_size)],
873                                  s->block_aligned_filename_size, &s->src_sg, 1);
874         if (rc != 1) {
875                 printk(KERN_ERR "%s: Internal error whilst attempting to "
876                        "convert encrypted filename memory to scatterlist; "
877                        "expected rc = 1; got rc = [%d]. "
878                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
879                        s->block_aligned_filename_size);
880                 goto out_unlock;
881         }
882         (*packet_size) += s->block_aligned_filename_size;
883         s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
884                                         GFP_KERNEL);
885         if (!s->decrypted_filename) {
886                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
887                        "kmalloc [%zd] bytes\n", __func__,
888                        s->block_aligned_filename_size);
889                 rc = -ENOMEM;
890                 goto out_unlock;
891         }
892         rc = virt_to_scatterlist(s->decrypted_filename,
893                                  s->block_aligned_filename_size, &s->dst_sg, 1);
894         if (rc != 1) {
895                 printk(KERN_ERR "%s: Internal error whilst attempting to "
896                        "convert decrypted filename memory to scatterlist; "
897                        "expected rc = 1; got rc = [%d]. "
898                        "block_aligned_filename_size = [%zd]\n", __func__, rc,
899                        s->block_aligned_filename_size);
900                 goto out_free_unlock;
901         }
902         /* The characters in the first block effectively do the job of
903          * the IV here, so we just use 0's for the IV. Note the
904          * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
905          * >= ECRYPTFS_MAX_IV_BYTES. */
906         memset(s->iv, 0, ECRYPTFS_MAX_IV_BYTES);
907         s->desc.info = s->iv;
908         rc = ecryptfs_find_auth_tok_for_sig(&s->auth_tok, mount_crypt_stat,
909                                             s->fnek_sig_hex);
910         if (rc) {
911                 printk(KERN_ERR "%s: Error attempting to find auth tok for "
912                        "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
913                        rc);
914                 goto out_free_unlock;
915         }
916         /* TODO: Support other key modules than passphrase for
917          * filename encryption */
918         if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
919                 rc = -EOPNOTSUPP;
920                 printk(KERN_INFO "%s: Filename encryption only supports "
921                        "password tokens\n", __func__);
922                 goto out_free_unlock;
923         }
924         rc = crypto_blkcipher_setkey(
925                 s->desc.tfm,
926                 s->auth_tok->token.password.session_key_encryption_key,
927                 mount_crypt_stat->global_default_fn_cipher_key_bytes);
928         if (rc < 0) {
929                 printk(KERN_ERR "%s: Error setting key for crypto context; "
930                        "rc = [%d]. s->auth_tok->token.password.session_key_"
931                        "encryption_key = [0x%p]; mount_crypt_stat->"
932                        "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
933                        rc,
934                        s->auth_tok->token.password.session_key_encryption_key,
935                        mount_crypt_stat->global_default_fn_cipher_key_bytes);
936                 goto out_free_unlock;
937         }
938         rc = crypto_blkcipher_decrypt_iv(&s->desc, &s->dst_sg, &s->src_sg,
939                                          s->block_aligned_filename_size);
940         if (rc) {
941                 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
942                        "rc = [%d]\n", __func__, rc);
943                 goto out_free_unlock;
944         }
945         s->i = 0;
946         while (s->decrypted_filename[s->i] != '\0'
947                && s->i < s->block_aligned_filename_size)
948                 s->i++;
949         if (s->i == s->block_aligned_filename_size) {
950                 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
951                        "find valid separator between random characters and "
952                        "the filename\n", __func__);
953                 rc = -EINVAL;
954                 goto out_free_unlock;
955         }
956         s->i++;
957         (*filename_size) = (s->block_aligned_filename_size - s->i);
958         if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
959                 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
960                        "invalid\n", __func__, (*filename_size));
961                 rc = -EINVAL;
962                 goto out_free_unlock;
963         }
964         (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
965         if (!(*filename)) {
966                 printk(KERN_ERR "%s: Out of memory whilst attempting to "
967                        "kmalloc [%zd] bytes\n", __func__,
968                        ((*filename_size) + 1));
969                 rc = -ENOMEM;
970                 goto out_free_unlock;
971         }
972         memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
973         (*filename)[(*filename_size)] = '\0';
974 out_free_unlock:
975         kfree(s->decrypted_filename);
976 out_unlock:
977         mutex_unlock(s->tfm_mutex);
978 out:
979         if (rc) {
980                 (*packet_size) = 0;
981                 (*filename_size) = 0;
982                 (*filename) = NULL;
983         }
984         kfree(s);
985         return rc;
986 }
987
988 static int
989 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
990 {
991         int rc = 0;
992
993         (*sig) = NULL;
994         switch (auth_tok->token_type) {
995         case ECRYPTFS_PASSWORD:
996                 (*sig) = auth_tok->token.password.signature;
997                 break;
998         case ECRYPTFS_PRIVATE_KEY:
999                 (*sig) = auth_tok->token.private_key.signature;
1000                 break;
1001         default:
1002                 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1003                        auth_tok->token_type);
1004                 rc = -EINVAL;
1005         }
1006         return rc;
1007 }
1008
1009 /**
1010  * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1011  * @auth_tok: The key authentication token used to decrypt the session key
1012  * @crypt_stat: The cryptographic context
1013  *
1014  * Returns zero on success; non-zero error otherwise.
1015  */
1016 static int
1017 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1018                                   struct ecryptfs_crypt_stat *crypt_stat)
1019 {
1020         u8 cipher_code = 0;
1021         struct ecryptfs_msg_ctx *msg_ctx;
1022         struct ecryptfs_message *msg = NULL;
1023         char *auth_tok_sig;
1024         char *payload;
1025         size_t payload_len;
1026         int rc;
1027
1028         rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1029         if (rc) {
1030                 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1031                        auth_tok->token_type);
1032                 goto out;
1033         }
1034         rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1035                                  &payload, &payload_len);
1036         if (rc) {
1037                 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1038                 goto out;
1039         }
1040         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1041         if (rc) {
1042                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1043                                 "ecryptfsd\n");
1044                 goto out;
1045         }
1046         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1047         if (rc) {
1048                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1049                                 "from the user space daemon\n");
1050                 rc = -EIO;
1051                 goto out;
1052         }
1053         rc = parse_tag_65_packet(&(auth_tok->session_key),
1054                                  &cipher_code, msg);
1055         if (rc) {
1056                 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1057                        rc);
1058                 goto out;
1059         }
1060         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1061         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1062                auth_tok->session_key.decrypted_key_size);
1063         crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1064         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1065         if (rc) {
1066                 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1067                                 cipher_code)
1068                 goto out;
1069         }
1070         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1071         if (ecryptfs_verbosity > 0) {
1072                 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1073                 ecryptfs_dump_hex(crypt_stat->key,
1074                                   crypt_stat->key_size);
1075         }
1076 out:
1077         if (msg)
1078                 kfree(msg);
1079         return rc;
1080 }
1081
1082 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1083 {
1084         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1085         struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1086
1087         list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1088                                  auth_tok_list_head, list) {
1089                 list_del(&auth_tok_list_item->list);
1090                 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1091                                 auth_tok_list_item);
1092         }
1093 }
1094
1095 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1096
1097 /**
1098  * parse_tag_1_packet
1099  * @crypt_stat: The cryptographic context to modify based on packet contents
1100  * @data: The raw bytes of the packet.
1101  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1102  *                 a new authentication token will be placed at the
1103  *                 end of this list for this packet.
1104  * @new_auth_tok: Pointer to a pointer to memory that this function
1105  *                allocates; sets the memory address of the pointer to
1106  *                NULL on error. This object is added to the
1107  *                auth_tok_list.
1108  * @packet_size: This function writes the size of the parsed packet
1109  *               into this memory location; zero on error.
1110  * @max_packet_size: The maximum allowable packet size
1111  *
1112  * Returns zero on success; non-zero on error.
1113  */
1114 static int
1115 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1116                    unsigned char *data, struct list_head *auth_tok_list,
1117                    struct ecryptfs_auth_tok **new_auth_tok,
1118                    size_t *packet_size, size_t max_packet_size)
1119 {
1120         size_t body_size;
1121         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1122         size_t length_size;
1123         int rc = 0;
1124
1125         (*packet_size) = 0;
1126         (*new_auth_tok) = NULL;
1127         /**
1128          * This format is inspired by OpenPGP; see RFC 2440
1129          * packet tag 1
1130          *
1131          * Tag 1 identifier (1 byte)
1132          * Max Tag 1 packet size (max 3 bytes)
1133          * Version (1 byte)
1134          * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1135          * Cipher identifier (1 byte)
1136          * Encrypted key size (arbitrary)
1137          *
1138          * 12 bytes minimum packet size
1139          */
1140         if (unlikely(max_packet_size < 12)) {
1141                 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1142                 rc = -EINVAL;
1143                 goto out;
1144         }
1145         if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1146                 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1147                        ECRYPTFS_TAG_1_PACKET_TYPE);
1148                 rc = -EINVAL;
1149                 goto out;
1150         }
1151         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1152          * at end of function upon failure */
1153         auth_tok_list_item =
1154                 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1155                                   GFP_KERNEL);
1156         if (!auth_tok_list_item) {
1157                 printk(KERN_ERR "Unable to allocate memory\n");
1158                 rc = -ENOMEM;
1159                 goto out;
1160         }
1161         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1162         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1163                                           &length_size);
1164         if (rc) {
1165                 printk(KERN_WARNING "Error parsing packet length; "
1166                        "rc = [%d]\n", rc);
1167                 goto out_free;
1168         }
1169         if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1170                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1171                 rc = -EINVAL;
1172                 goto out_free;
1173         }
1174         (*packet_size) += length_size;
1175         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1176                 printk(KERN_WARNING "Packet size exceeds max\n");
1177                 rc = -EINVAL;
1178                 goto out_free;
1179         }
1180         if (unlikely(data[(*packet_size)++] != 0x03)) {
1181                 printk(KERN_WARNING "Unknown version number [%d]\n",
1182                        data[(*packet_size) - 1]);
1183                 rc = -EINVAL;
1184                 goto out_free;
1185         }
1186         ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1187                         &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1188         *packet_size += ECRYPTFS_SIG_SIZE;
1189         /* This byte is skipped because the kernel does not need to
1190          * know which public key encryption algorithm was used */
1191         (*packet_size)++;
1192         (*new_auth_tok)->session_key.encrypted_key_size =
1193                 body_size - (ECRYPTFS_SIG_SIZE + 2);
1194         if ((*new_auth_tok)->session_key.encrypted_key_size
1195             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1196                 printk(KERN_WARNING "Tag 1 packet contains key larger "
1197                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES");
1198                 rc = -EINVAL;
1199                 goto out;
1200         }
1201         memcpy((*new_auth_tok)->session_key.encrypted_key,
1202                &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1203         (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1204         (*new_auth_tok)->session_key.flags &=
1205                 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1206         (*new_auth_tok)->session_key.flags |=
1207                 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1208         (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1209         (*new_auth_tok)->flags = 0;
1210         (*new_auth_tok)->session_key.flags &=
1211                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1212         (*new_auth_tok)->session_key.flags &=
1213                 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1214         list_add(&auth_tok_list_item->list, auth_tok_list);
1215         goto out;
1216 out_free:
1217         (*new_auth_tok) = NULL;
1218         memset(auth_tok_list_item, 0,
1219                sizeof(struct ecryptfs_auth_tok_list_item));
1220         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1221                         auth_tok_list_item);
1222 out:
1223         if (rc)
1224                 (*packet_size) = 0;
1225         return rc;
1226 }
1227
1228 /**
1229  * parse_tag_3_packet
1230  * @crypt_stat: The cryptographic context to modify based on packet
1231  *              contents.
1232  * @data: The raw bytes of the packet.
1233  * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1234  *                 a new authentication token will be placed at the end
1235  *                 of this list for this packet.
1236  * @new_auth_tok: Pointer to a pointer to memory that this function
1237  *                allocates; sets the memory address of the pointer to
1238  *                NULL on error. This object is added to the
1239  *                auth_tok_list.
1240  * @packet_size: This function writes the size of the parsed packet
1241  *               into this memory location; zero on error.
1242  * @max_packet_size: maximum number of bytes to parse
1243  *
1244  * Returns zero on success; non-zero on error.
1245  */
1246 static int
1247 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1248                    unsigned char *data, struct list_head *auth_tok_list,
1249                    struct ecryptfs_auth_tok **new_auth_tok,
1250                    size_t *packet_size, size_t max_packet_size)
1251 {
1252         size_t body_size;
1253         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1254         size_t length_size;
1255         int rc = 0;
1256
1257         (*packet_size) = 0;
1258         (*new_auth_tok) = NULL;
1259         /**
1260          *This format is inspired by OpenPGP; see RFC 2440
1261          * packet tag 3
1262          *
1263          * Tag 3 identifier (1 byte)
1264          * Max Tag 3 packet size (max 3 bytes)
1265          * Version (1 byte)
1266          * Cipher code (1 byte)
1267          * S2K specifier (1 byte)
1268          * Hash identifier (1 byte)
1269          * Salt (ECRYPTFS_SALT_SIZE)
1270          * Hash iterations (1 byte)
1271          * Encrypted key (arbitrary)
1272          *
1273          * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1274          */
1275         if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1276                 printk(KERN_ERR "Max packet size too large\n");
1277                 rc = -EINVAL;
1278                 goto out;
1279         }
1280         if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1281                 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1282                        ECRYPTFS_TAG_3_PACKET_TYPE);
1283                 rc = -EINVAL;
1284                 goto out;
1285         }
1286         /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1287          * at end of function upon failure */
1288         auth_tok_list_item =
1289             kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1290         if (!auth_tok_list_item) {
1291                 printk(KERN_ERR "Unable to allocate memory\n");
1292                 rc = -ENOMEM;
1293                 goto out;
1294         }
1295         (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1296         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1297                                           &length_size);
1298         if (rc) {
1299                 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1300                        rc);
1301                 goto out_free;
1302         }
1303         if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1304                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1305                 rc = -EINVAL;
1306                 goto out_free;
1307         }
1308         (*packet_size) += length_size;
1309         if (unlikely((*packet_size) + body_size > max_packet_size)) {
1310                 printk(KERN_ERR "Packet size exceeds max\n");
1311                 rc = -EINVAL;
1312                 goto out_free;
1313         }
1314         (*new_auth_tok)->session_key.encrypted_key_size =
1315                 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1316         if ((*new_auth_tok)->session_key.encrypted_key_size
1317             > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1318                 printk(KERN_WARNING "Tag 3 packet contains key larger "
1319                        "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1320                 rc = -EINVAL;
1321                 goto out_free;
1322         }
1323         if (unlikely(data[(*packet_size)++] != 0x04)) {
1324                 printk(KERN_WARNING "Unknown version number [%d]\n",
1325                        data[(*packet_size) - 1]);
1326                 rc = -EINVAL;
1327                 goto out_free;
1328         }
1329         rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1330                                             (u16)data[(*packet_size)]);
1331         if (rc)
1332                 goto out_free;
1333         /* A little extra work to differentiate among the AES key
1334          * sizes; see RFC2440 */
1335         switch(data[(*packet_size)++]) {
1336         case RFC2440_CIPHER_AES_192:
1337                 crypt_stat->key_size = 24;
1338                 break;
1339         default:
1340                 crypt_stat->key_size =
1341                         (*new_auth_tok)->session_key.encrypted_key_size;
1342         }
1343         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1344         if (rc)
1345                 goto out_free;
1346         if (unlikely(data[(*packet_size)++] != 0x03)) {
1347                 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1348                 rc = -ENOSYS;
1349                 goto out_free;
1350         }
1351         /* TODO: finish the hash mapping */
1352         switch (data[(*packet_size)++]) {
1353         case 0x01: /* See RFC2440 for these numbers and their mappings */
1354                 /* Choose MD5 */
1355                 memcpy((*new_auth_tok)->token.password.salt,
1356                        &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1357                 (*packet_size) += ECRYPTFS_SALT_SIZE;
1358                 /* This conversion was taken straight from RFC2440 */
1359                 (*new_auth_tok)->token.password.hash_iterations =
1360                         ((u32) 16 + (data[(*packet_size)] & 15))
1361                                 << ((data[(*packet_size)] >> 4) + 6);
1362                 (*packet_size)++;
1363                 /* Friendly reminder:
1364                  * (*new_auth_tok)->session_key.encrypted_key_size =
1365                  *         (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1366                 memcpy((*new_auth_tok)->session_key.encrypted_key,
1367                        &data[(*packet_size)],
1368                        (*new_auth_tok)->session_key.encrypted_key_size);
1369                 (*packet_size) +=
1370                         (*new_auth_tok)->session_key.encrypted_key_size;
1371                 (*new_auth_tok)->session_key.flags &=
1372                         ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1373                 (*new_auth_tok)->session_key.flags |=
1374                         ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1375                 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1376                 break;
1377         default:
1378                 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1379                                 "[%d]\n", data[(*packet_size) - 1]);
1380                 rc = -ENOSYS;
1381                 goto out_free;
1382         }
1383         (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1384         /* TODO: Parametarize; we might actually want userspace to
1385          * decrypt the session key. */
1386         (*new_auth_tok)->session_key.flags &=
1387                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1388         (*new_auth_tok)->session_key.flags &=
1389                             ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1390         list_add(&auth_tok_list_item->list, auth_tok_list);
1391         goto out;
1392 out_free:
1393         (*new_auth_tok) = NULL;
1394         memset(auth_tok_list_item, 0,
1395                sizeof(struct ecryptfs_auth_tok_list_item));
1396         kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1397                         auth_tok_list_item);
1398 out:
1399         if (rc)
1400                 (*packet_size) = 0;
1401         return rc;
1402 }
1403
1404 /**
1405  * parse_tag_11_packet
1406  * @data: The raw bytes of the packet
1407  * @contents: This function writes the data contents of the literal
1408  *            packet into this memory location
1409  * @max_contents_bytes: The maximum number of bytes that this function
1410  *                      is allowed to write into contents
1411  * @tag_11_contents_size: This function writes the size of the parsed
1412  *                        contents into this memory location; zero on
1413  *                        error
1414  * @packet_size: This function writes the size of the parsed packet
1415  *               into this memory location; zero on error
1416  * @max_packet_size: maximum number of bytes to parse
1417  *
1418  * Returns zero on success; non-zero on error.
1419  */
1420 static int
1421 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1422                     size_t max_contents_bytes, size_t *tag_11_contents_size,
1423                     size_t *packet_size, size_t max_packet_size)
1424 {
1425         size_t body_size;
1426         size_t length_size;
1427         int rc = 0;
1428
1429         (*packet_size) = 0;
1430         (*tag_11_contents_size) = 0;
1431         /* This format is inspired by OpenPGP; see RFC 2440
1432          * packet tag 11
1433          *
1434          * Tag 11 identifier (1 byte)
1435          * Max Tag 11 packet size (max 3 bytes)
1436          * Binary format specifier (1 byte)
1437          * Filename length (1 byte)
1438          * Filename ("_CONSOLE") (8 bytes)
1439          * Modification date (4 bytes)
1440          * Literal data (arbitrary)
1441          *
1442          * We need at least 16 bytes of data for the packet to even be
1443          * valid.
1444          */
1445         if (max_packet_size < 16) {
1446                 printk(KERN_ERR "Maximum packet size too small\n");
1447                 rc = -EINVAL;
1448                 goto out;
1449         }
1450         if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1451                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1452                 rc = -EINVAL;
1453                 goto out;
1454         }
1455         rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1456                                           &length_size);
1457         if (rc) {
1458                 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1459                 goto out;
1460         }
1461         if (body_size < 14) {
1462                 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1463                 rc = -EINVAL;
1464                 goto out;
1465         }
1466         (*packet_size) += length_size;
1467         (*tag_11_contents_size) = (body_size - 14);
1468         if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1469                 printk(KERN_ERR "Packet size exceeds max\n");
1470                 rc = -EINVAL;
1471                 goto out;
1472         }
1473         if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1474                 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1475                        "expected size\n");
1476                 rc = -EINVAL;
1477                 goto out;
1478         }
1479         if (data[(*packet_size)++] != 0x62) {
1480                 printk(KERN_WARNING "Unrecognizable packet\n");
1481                 rc = -EINVAL;
1482                 goto out;
1483         }
1484         if (data[(*packet_size)++] != 0x08) {
1485                 printk(KERN_WARNING "Unrecognizable packet\n");
1486                 rc = -EINVAL;
1487                 goto out;
1488         }
1489         (*packet_size) += 12; /* Ignore filename and modification date */
1490         memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1491         (*packet_size) += (*tag_11_contents_size);
1492 out:
1493         if (rc) {
1494                 (*packet_size) = 0;
1495                 (*tag_11_contents_size) = 0;
1496         }
1497         return rc;
1498 }
1499
1500 /**
1501  * ecryptfs_verify_version
1502  * @version: The version number to confirm
1503  *
1504  * Returns zero on good version; non-zero otherwise
1505  */
1506 static int ecryptfs_verify_version(u16 version)
1507 {
1508         int rc = 0;
1509         unsigned char major;
1510         unsigned char minor;
1511
1512         major = ((version >> 8) & 0xFF);
1513         minor = (version & 0xFF);
1514         if (major != ECRYPTFS_VERSION_MAJOR) {
1515                 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
1516                                 "Expected [%d]; got [%d]\n",
1517                                 ECRYPTFS_VERSION_MAJOR, major);
1518                 rc = -EINVAL;
1519                 goto out;
1520         }
1521         if (minor != ECRYPTFS_VERSION_MINOR) {
1522                 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
1523                                 "Expected [%d]; got [%d]\n",
1524                                 ECRYPTFS_VERSION_MINOR, minor);
1525                 rc = -EINVAL;
1526                 goto out;
1527         }
1528 out:
1529         return rc;
1530 }
1531
1532 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1533                                       struct ecryptfs_auth_tok **auth_tok,
1534                                       char *sig)
1535 {
1536         int rc = 0;
1537
1538         (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1539         if (!(*auth_tok_key) || IS_ERR(*auth_tok_key)) {
1540                 printk(KERN_ERR "Could not find key with description: [%s]\n",
1541                        sig);
1542                 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1543                 goto out;
1544         }
1545         (*auth_tok) = ecryptfs_get_key_payload_data(*auth_tok_key);
1546         if (ecryptfs_verify_version((*auth_tok)->version)) {
1547                 printk(KERN_ERR
1548                        "Data structure version mismatch. "
1549                        "Userspace tools must match eCryptfs "
1550                        "kernel module with major version [%d] "
1551                        "and minor version [%d]\n",
1552                        ECRYPTFS_VERSION_MAJOR,
1553                        ECRYPTFS_VERSION_MINOR);
1554                 rc = -EINVAL;
1555                 goto out;
1556         }
1557         if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
1558             && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
1559                 printk(KERN_ERR "Invalid auth_tok structure "
1560                        "returned from key query\n");
1561                 rc = -EINVAL;
1562                 goto out;
1563         }
1564 out:
1565         return rc;
1566 }
1567
1568 /**
1569  * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1570  * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1571  * @crypt_stat: The cryptographic context
1572  *
1573  * Returns zero on success; non-zero error otherwise
1574  */
1575 static int
1576 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1577                                          struct ecryptfs_crypt_stat *crypt_stat)
1578 {
1579         struct scatterlist dst_sg[2];
1580         struct scatterlist src_sg[2];
1581         struct mutex *tfm_mutex;
1582         struct blkcipher_desc desc = {
1583                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
1584         };
1585         int rc = 0;
1586
1587         if (unlikely(ecryptfs_verbosity > 0)) {
1588                 ecryptfs_printk(
1589                         KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1590                         auth_tok->token.password.session_key_encryption_key_bytes);
1591                 ecryptfs_dump_hex(
1592                         auth_tok->token.password.session_key_encryption_key,
1593                         auth_tok->token.password.session_key_encryption_key_bytes);
1594         }
1595         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
1596                                                         crypt_stat->cipher);
1597         if (unlikely(rc)) {
1598                 printk(KERN_ERR "Internal error whilst attempting to get "
1599                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1600                        crypt_stat->cipher, rc);
1601                 goto out;
1602         }
1603         rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1604                                  auth_tok->session_key.encrypted_key_size,
1605                                  src_sg, 2);
1606         if (rc < 1 || rc > 2) {
1607                 printk(KERN_ERR "Internal error whilst attempting to convert "
1608                         "auth_tok->session_key.encrypted_key to scatterlist; "
1609                         "expected rc = 1; got rc = [%d]. "
1610                        "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1611                         auth_tok->session_key.encrypted_key_size);
1612                 goto out;
1613         }
1614         auth_tok->session_key.decrypted_key_size =
1615                 auth_tok->session_key.encrypted_key_size;
1616         rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1617                                  auth_tok->session_key.decrypted_key_size,
1618                                  dst_sg, 2);
1619         if (rc < 1 || rc > 2) {
1620                 printk(KERN_ERR "Internal error whilst attempting to convert "
1621                         "auth_tok->session_key.decrypted_key to scatterlist; "
1622                         "expected rc = 1; got rc = [%d]\n", rc);
1623                 goto out;
1624         }
1625         mutex_lock(tfm_mutex);
1626         rc = crypto_blkcipher_setkey(
1627                 desc.tfm, auth_tok->token.password.session_key_encryption_key,
1628                 crypt_stat->key_size);
1629         if (unlikely(rc < 0)) {
1630                 mutex_unlock(tfm_mutex);
1631                 printk(KERN_ERR "Error setting key for crypto context\n");
1632                 rc = -EINVAL;
1633                 goto out;
1634         }
1635         rc = crypto_blkcipher_decrypt(&desc, dst_sg, src_sg,
1636                                       auth_tok->session_key.encrypted_key_size);
1637         mutex_unlock(tfm_mutex);
1638         if (unlikely(rc)) {
1639                 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1640                 goto out;
1641         }
1642         auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1643         memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1644                auth_tok->session_key.decrypted_key_size);
1645         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1646         if (unlikely(ecryptfs_verbosity > 0)) {
1647                 ecryptfs_printk(KERN_DEBUG, "FEK of size [%d]:\n",
1648                                 crypt_stat->key_size);
1649                 ecryptfs_dump_hex(crypt_stat->key,
1650                                   crypt_stat->key_size);
1651         }
1652 out:
1653         return rc;
1654 }
1655
1656 /**
1657  * ecryptfs_parse_packet_set
1658  * @crypt_stat: The cryptographic context
1659  * @src: Virtual address of region of memory containing the packets
1660  * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1661  *
1662  * Get crypt_stat to have the file's session key if the requisite key
1663  * is available to decrypt the session key.
1664  *
1665  * Returns Zero if a valid authentication token was retrieved and
1666  * processed; negative value for file not encrypted or for error
1667  * conditions.
1668  */
1669 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1670                               unsigned char *src,
1671                               struct dentry *ecryptfs_dentry)
1672 {
1673         size_t i = 0;
1674         size_t found_auth_tok;
1675         size_t next_packet_is_auth_tok_packet;
1676         struct list_head auth_tok_list;
1677         struct ecryptfs_auth_tok *matching_auth_tok;
1678         struct ecryptfs_auth_tok *candidate_auth_tok;
1679         char *candidate_auth_tok_sig;
1680         size_t packet_size;
1681         struct ecryptfs_auth_tok *new_auth_tok;
1682         unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1683         struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1684         size_t tag_11_contents_size;
1685         size_t tag_11_packet_size;
1686         int rc = 0;
1687
1688         INIT_LIST_HEAD(&auth_tok_list);
1689         /* Parse the header to find as many packets as we can; these will be
1690          * added the our &auth_tok_list */
1691         next_packet_is_auth_tok_packet = 1;
1692         while (next_packet_is_auth_tok_packet) {
1693                 size_t max_packet_size = ((PAGE_CACHE_SIZE - 8) - i);
1694
1695                 switch (src[i]) {
1696                 case ECRYPTFS_TAG_3_PACKET_TYPE:
1697                         rc = parse_tag_3_packet(crypt_stat,
1698                                                 (unsigned char *)&src[i],
1699                                                 &auth_tok_list, &new_auth_tok,
1700                                                 &packet_size, max_packet_size);
1701                         if (rc) {
1702                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1703                                                 "tag 3 packet\n");
1704                                 rc = -EIO;
1705                                 goto out_wipe_list;
1706                         }
1707                         i += packet_size;
1708                         rc = parse_tag_11_packet((unsigned char *)&src[i],
1709                                                  sig_tmp_space,
1710                                                  ECRYPTFS_SIG_SIZE,
1711                                                  &tag_11_contents_size,
1712                                                  &tag_11_packet_size,
1713                                                  max_packet_size);
1714                         if (rc) {
1715                                 ecryptfs_printk(KERN_ERR, "No valid "
1716                                                 "(ecryptfs-specific) literal "
1717                                                 "packet containing "
1718                                                 "authentication token "
1719                                                 "signature found after "
1720                                                 "tag 3 packet\n");
1721                                 rc = -EIO;
1722                                 goto out_wipe_list;
1723                         }
1724                         i += tag_11_packet_size;
1725                         if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1726                                 ecryptfs_printk(KERN_ERR, "Expected "
1727                                                 "signature of size [%d]; "
1728                                                 "read size [%d]\n",
1729                                                 ECRYPTFS_SIG_SIZE,
1730                                                 tag_11_contents_size);
1731                                 rc = -EIO;
1732                                 goto out_wipe_list;
1733                         }
1734                         ecryptfs_to_hex(new_auth_tok->token.password.signature,
1735                                         sig_tmp_space, tag_11_contents_size);
1736                         new_auth_tok->token.password.signature[
1737                                 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1738                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1739                         break;
1740                 case ECRYPTFS_TAG_1_PACKET_TYPE:
1741                         rc = parse_tag_1_packet(crypt_stat,
1742                                                 (unsigned char *)&src[i],
1743                                                 &auth_tok_list, &new_auth_tok,
1744                                                 &packet_size, max_packet_size);
1745                         if (rc) {
1746                                 ecryptfs_printk(KERN_ERR, "Error parsing "
1747                                                 "tag 1 packet\n");
1748                                 rc = -EIO;
1749                                 goto out_wipe_list;
1750                         }
1751                         i += packet_size;
1752                         crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1753                         break;
1754                 case ECRYPTFS_TAG_11_PACKET_TYPE:
1755                         ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1756                                         "(Tag 11 not allowed by itself)\n");
1757                         rc = -EIO;
1758                         goto out_wipe_list;
1759                         break;
1760                 default:
1761                         ecryptfs_printk(KERN_DEBUG, "No packet at offset "
1762                                         "[%d] of the file header; hex value of "
1763                                         "character is [0x%.2x]\n", i, src[i]);
1764                         next_packet_is_auth_tok_packet = 0;
1765                 }
1766         }
1767         if (list_empty(&auth_tok_list)) {
1768                 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1769                        "eCryptfs file; this is not supported in this version "
1770                        "of the eCryptfs kernel module\n");
1771                 rc = -EINVAL;
1772                 goto out;
1773         }
1774         /* auth_tok_list contains the set of authentication tokens
1775          * parsed from the metadata. We need to find a matching
1776          * authentication token that has the secret component(s)
1777          * necessary to decrypt the EFEK in the auth_tok parsed from
1778          * the metadata. There may be several potential matches, but
1779          * just one will be sufficient to decrypt to get the FEK. */
1780 find_next_matching_auth_tok:
1781         found_auth_tok = 0;
1782         list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1783                 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1784                 if (unlikely(ecryptfs_verbosity > 0)) {
1785                         ecryptfs_printk(KERN_DEBUG,
1786                                         "Considering cadidate auth tok:\n");
1787                         ecryptfs_dump_auth_tok(candidate_auth_tok);
1788                 }
1789                 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1790                                                candidate_auth_tok);
1791                 if (rc) {
1792                         printk(KERN_ERR
1793                                "Unrecognized candidate auth tok type: [%d]\n",
1794                                candidate_auth_tok->token_type);
1795                         rc = -EINVAL;
1796                         goto out_wipe_list;
1797                 }
1798                 ecryptfs_find_auth_tok_for_sig(&matching_auth_tok,
1799                                                crypt_stat->mount_crypt_stat,
1800                                                candidate_auth_tok_sig);
1801                 if (matching_auth_tok) {
1802                         found_auth_tok = 1;
1803                         goto found_matching_auth_tok;
1804                 }
1805         }
1806         if (!found_auth_tok) {
1807                 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1808                                 "authentication token\n");
1809                 rc = -EIO;
1810                 goto out_wipe_list;
1811         }
1812 found_matching_auth_tok:
1813         if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1814                 memcpy(&(candidate_auth_tok->token.private_key),
1815                        &(matching_auth_tok->token.private_key),
1816                        sizeof(struct ecryptfs_private_key));
1817                 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1818                                                        crypt_stat);
1819         } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1820                 memcpy(&(candidate_auth_tok->token.password),
1821                        &(matching_auth_tok->token.password),
1822                        sizeof(struct ecryptfs_password));
1823                 rc = decrypt_passphrase_encrypted_session_key(
1824                         candidate_auth_tok, crypt_stat);
1825         }
1826         if (rc) {
1827                 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1828
1829                 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1830                                 "session key for authentication token with sig "
1831                                 "[%.*s]; rc = [%d]. Removing auth tok "
1832                                 "candidate from the list and searching for "
1833                                 "the next match.\n", candidate_auth_tok_sig,
1834                                 ECRYPTFS_SIG_SIZE_HEX, rc);
1835                 list_for_each_entry_safe(auth_tok_list_item,
1836                                          auth_tok_list_item_tmp,
1837                                          &auth_tok_list, list) {
1838                         if (candidate_auth_tok
1839                             == &auth_tok_list_item->auth_tok) {
1840                                 list_del(&auth_tok_list_item->list);
1841                                 kmem_cache_free(
1842                                         ecryptfs_auth_tok_list_item_cache,
1843                                         auth_tok_list_item);
1844                                 goto find_next_matching_auth_tok;
1845                         }
1846                 }
1847                 BUG();
1848         }
1849         rc = ecryptfs_compute_root_iv(crypt_stat);
1850         if (rc) {
1851                 ecryptfs_printk(KERN_ERR, "Error computing "
1852                                 "the root IV\n");
1853                 goto out_wipe_list;
1854         }
1855         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1856         if (rc) {
1857                 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1858                                 "context for cipher [%s]; rc = [%d]\n",
1859                                 crypt_stat->cipher, rc);
1860         }
1861 out_wipe_list:
1862         wipe_auth_tok_list(&auth_tok_list);
1863 out:
1864         return rc;
1865 }
1866
1867 static int
1868 pki_encrypt_session_key(struct ecryptfs_auth_tok *auth_tok,
1869                         struct ecryptfs_crypt_stat *crypt_stat,
1870                         struct ecryptfs_key_record *key_rec)
1871 {
1872         struct ecryptfs_msg_ctx *msg_ctx = NULL;
1873         char *payload = NULL;
1874         size_t payload_len;
1875         struct ecryptfs_message *msg;
1876         int rc;
1877
1878         rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1879                                  ecryptfs_code_for_cipher_string(
1880                                          crypt_stat->cipher,
1881                                          crypt_stat->key_size),
1882                                  crypt_stat, &payload, &payload_len);
1883         if (rc) {
1884                 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1885                 goto out;
1886         }
1887         rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1888         if (rc) {
1889                 ecryptfs_printk(KERN_ERR, "Error sending message to "
1890                                 "ecryptfsd\n");
1891                 goto out;
1892         }
1893         rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1894         if (rc) {
1895                 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1896                                 "from the user space daemon\n");
1897                 rc = -EIO;
1898                 goto out;
1899         }
1900         rc = parse_tag_67_packet(key_rec, msg);
1901         if (rc)
1902                 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1903         kfree(msg);
1904 out:
1905         kfree(payload);
1906         return rc;
1907 }
1908 /**
1909  * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1910  * @dest: Buffer into which to write the packet
1911  * @remaining_bytes: Maximum number of bytes that can be writtn
1912  * @auth_tok: The authentication token used for generating the tag 1 packet
1913  * @crypt_stat: The cryptographic context
1914  * @key_rec: The key record struct for the tag 1 packet
1915  * @packet_size: This function will write the number of bytes that end
1916  *               up constituting the packet; set to zero on error
1917  *
1918  * Returns zero on success; non-zero on error.
1919  */
1920 static int
1921 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1922                    struct ecryptfs_auth_tok *auth_tok,
1923                    struct ecryptfs_crypt_stat *crypt_stat,
1924                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
1925 {
1926         size_t i;
1927         size_t encrypted_session_key_valid = 0;
1928         size_t packet_size_length;
1929         size_t max_packet_size;
1930         int rc = 0;
1931
1932         (*packet_size) = 0;
1933         ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1934                           ECRYPTFS_SIG_SIZE);
1935         encrypted_session_key_valid = 0;
1936         for (i = 0; i < crypt_stat->key_size; i++)
1937                 encrypted_session_key_valid |=
1938                         auth_tok->session_key.encrypted_key[i];
1939         if (encrypted_session_key_valid) {
1940                 memcpy(key_rec->enc_key,
1941                        auth_tok->session_key.encrypted_key,
1942                        auth_tok->session_key.encrypted_key_size);
1943                 goto encrypted_session_key_set;
1944         }
1945         if (auth_tok->session_key.encrypted_key_size == 0)
1946                 auth_tok->session_key.encrypted_key_size =
1947                         auth_tok->token.private_key.key_size;
1948         rc = pki_encrypt_session_key(auth_tok, crypt_stat, key_rec);
1949         if (rc) {
1950                 printk(KERN_ERR "Failed to encrypt session key via a key "
1951                        "module; rc = [%d]\n", rc);
1952                 goto out;
1953         }
1954         if (ecryptfs_verbosity > 0) {
1955                 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
1956                 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
1957         }
1958 encrypted_session_key_set:
1959         /* This format is inspired by OpenPGP; see RFC 2440
1960          * packet tag 1 */
1961         max_packet_size = (1                         /* Tag 1 identifier */
1962                            + 3                       /* Max Tag 1 packet size */
1963                            + 1                       /* Version */
1964                            + ECRYPTFS_SIG_SIZE       /* Key identifier */
1965                            + 1                       /* Cipher identifier */
1966                            + key_rec->enc_key_size); /* Encrypted key size */
1967         if (max_packet_size > (*remaining_bytes)) {
1968                 printk(KERN_ERR "Packet length larger than maximum allowable; "
1969                        "need up to [%td] bytes, but there are only [%td] "
1970                        "available\n", max_packet_size, (*remaining_bytes));
1971                 rc = -EINVAL;
1972                 goto out;
1973         }
1974         dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
1975         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
1976                                           (max_packet_size - 4),
1977                                           &packet_size_length);
1978         if (rc) {
1979                 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
1980                                 "header; cannot generate packet length\n");
1981                 goto out;
1982         }
1983         (*packet_size) += packet_size_length;
1984         dest[(*packet_size)++] = 0x03; /* version 3 */
1985         memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
1986         (*packet_size) += ECRYPTFS_SIG_SIZE;
1987         dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
1988         memcpy(&dest[(*packet_size)], key_rec->enc_key,
1989                key_rec->enc_key_size);
1990         (*packet_size) += key_rec->enc_key_size;
1991 out:
1992         if (rc)
1993                 (*packet_size) = 0;
1994         else
1995                 (*remaining_bytes) -= (*packet_size);
1996         return rc;
1997 }
1998
1999 /**
2000  * write_tag_11_packet
2001  * @dest: Target into which Tag 11 packet is to be written
2002  * @remaining_bytes: Maximum packet length
2003  * @contents: Byte array of contents to copy in
2004  * @contents_length: Number of bytes in contents
2005  * @packet_length: Length of the Tag 11 packet written; zero on error
2006  *
2007  * Returns zero on success; non-zero on error.
2008  */
2009 static int
2010 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2011                     size_t contents_length, size_t *packet_length)
2012 {
2013         size_t packet_size_length;
2014         size_t max_packet_size;
2015         int rc = 0;
2016
2017         (*packet_length) = 0;
2018         /* This format is inspired by OpenPGP; see RFC 2440
2019          * packet tag 11 */
2020         max_packet_size = (1                   /* Tag 11 identifier */
2021                            + 3                 /* Max Tag 11 packet size */
2022                            + 1                 /* Binary format specifier */
2023                            + 1                 /* Filename length */
2024                            + 8                 /* Filename ("_CONSOLE") */
2025                            + 4                 /* Modification date */
2026                            + contents_length); /* Literal data */
2027         if (max_packet_size > (*remaining_bytes)) {
2028                 printk(KERN_ERR "Packet length larger than maximum allowable; "
2029                        "need up to [%td] bytes, but there are only [%td] "
2030                        "available\n", max_packet_size, (*remaining_bytes));
2031                 rc = -EINVAL;
2032                 goto out;
2033         }
2034         dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2035         rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2036                                           (max_packet_size - 4),
2037                                           &packet_size_length);
2038         if (rc) {
2039                 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2040                        "generate packet length. rc = [%d]\n", rc);
2041                 goto out;
2042         }
2043         (*packet_length) += packet_size_length;
2044         dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2045         dest[(*packet_length)++] = 8;
2046         memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2047         (*packet_length) += 8;
2048         memset(&dest[(*packet_length)], 0x00, 4);
2049         (*packet_length) += 4;
2050         memcpy(&dest[(*packet_length)], contents, contents_length);
2051         (*packet_length) += contents_length;
2052  out:
2053         if (rc)
2054                 (*packet_length) = 0;
2055         else
2056                 (*remaining_bytes) -= (*packet_length);
2057         return rc;
2058 }
2059
2060 /**
2061  * write_tag_3_packet
2062  * @dest: Buffer into which to write the packet
2063  * @remaining_bytes: Maximum number of bytes that can be written
2064  * @auth_tok: Authentication token
2065  * @crypt_stat: The cryptographic context
2066  * @key_rec: encrypted key
2067  * @packet_size: This function will write the number of bytes that end
2068  *               up constituting the packet; set to zero on error
2069  *
2070  * Returns zero on success; non-zero on error.
2071  */
2072 static int
2073 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2074                    struct ecryptfs_auth_tok *auth_tok,
2075                    struct ecryptfs_crypt_stat *crypt_stat,
2076                    struct ecryptfs_key_record *key_rec, size_t *packet_size)
2077 {
2078         size_t i;
2079         size_t encrypted_session_key_valid = 0;
2080         char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2081         struct scatterlist dst_sg[2];
2082         struct scatterlist src_sg[2];
2083         struct mutex *tfm_mutex = NULL;
2084         u8 cipher_code;
2085         size_t packet_size_length;
2086         size_t max_packet_size;
2087         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2088                 crypt_stat->mount_crypt_stat;
2089         struct blkcipher_desc desc = {
2090                 .tfm = NULL,
2091                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
2092         };
2093         int rc = 0;
2094
2095         (*packet_size) = 0;
2096         ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2097                           ECRYPTFS_SIG_SIZE);
2098         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2099                                                         crypt_stat->cipher);
2100         if (unlikely(rc)) {
2101                 printk(KERN_ERR "Internal error whilst attempting to get "
2102                        "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2103                        crypt_stat->cipher, rc);
2104                 goto out;
2105         }
2106         if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2107                 struct blkcipher_alg *alg = crypto_blkcipher_alg(desc.tfm);
2108
2109                 printk(KERN_WARNING "No key size specified at mount; "
2110                        "defaulting to [%d]\n", alg->max_keysize);
2111                 mount_crypt_stat->global_default_cipher_key_size =
2112                         alg->max_keysize;
2113         }
2114         if (crypt_stat->key_size == 0)
2115                 crypt_stat->key_size =
2116                         mount_crypt_stat->global_default_cipher_key_size;
2117         if (auth_tok->session_key.encrypted_key_size == 0)
2118                 auth_tok->session_key.encrypted_key_size =
2119                         crypt_stat->key_size;
2120         if (crypt_stat->key_size == 24
2121             && strcmp("aes", crypt_stat->cipher) == 0) {
2122                 memset((crypt_stat->key + 24), 0, 8);
2123                 auth_tok->session_key.encrypted_key_size = 32;
2124         } else
2125                 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2126         key_rec->enc_key_size =
2127                 auth_tok->session_key.encrypted_key_size;
2128         encrypted_session_key_valid = 0;
2129         for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2130                 encrypted_session_key_valid |=
2131                         auth_tok->session_key.encrypted_key[i];
2132         if (encrypted_session_key_valid) {
2133                 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2134                                 "using auth_tok->session_key.encrypted_key, "
2135                                 "where key_rec->enc_key_size = [%d]\n",
2136                                 key_rec->enc_key_size);
2137                 memcpy(key_rec->enc_key,
2138                        auth_tok->session_key.encrypted_key,
2139                        key_rec->enc_key_size);
2140                 goto encrypted_session_key_set;
2141         }
2142         if (auth_tok->token.password.flags &
2143             ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2144                 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2145                                 "session key encryption key of size [%d]\n",
2146                                 auth_tok->token.password.
2147                                 session_key_encryption_key_bytes);
2148                 memcpy(session_key_encryption_key,
2149                        auth_tok->token.password.session_key_encryption_key,
2150                        crypt_stat->key_size);
2151                 ecryptfs_printk(KERN_DEBUG,
2152                                 "Cached session key " "encryption key: \n");
2153                 if (ecryptfs_verbosity > 0)
2154                         ecryptfs_dump_hex(session_key_encryption_key, 16);
2155         }
2156         if (unlikely(ecryptfs_verbosity > 0)) {
2157                 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2158                 ecryptfs_dump_hex(session_key_encryption_key, 16);
2159         }
2160         rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2161                                  src_sg, 2);
2162         if (rc < 1 || rc > 2) {
2163                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2164                                 "for crypt_stat session key; expected rc = 1; "
2165                                 "got rc = [%d]. key_rec->enc_key_size = [%d]\n",
2166                                 rc, key_rec->enc_key_size);
2167                 rc = -ENOMEM;
2168                 goto out;
2169         }
2170         rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2171                                  dst_sg, 2);
2172         if (rc < 1 || rc > 2) {
2173                 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2174                                 "for crypt_stat encrypted session key; "
2175                                 "expected rc = 1; got rc = [%d]. "
2176                                 "key_rec->enc_key_size = [%d]\n", rc,
2177                                 key_rec->enc_key_size);
2178                 rc = -ENOMEM;
2179                 goto out;
2180         }
2181         mutex_lock(tfm_mutex);
2182         rc = crypto_blkcipher_setkey(desc.tfm, session_key_encryption_key,
2183                                      crypt_stat->key_size);
2184         if (rc < 0) {
2185                 mutex_unlock(tfm_mutex);
2186                 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2187                                 "context; rc = [%d]\n", rc);
2188                 goto out;
2189         }
2190         rc = 0;
2191         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes of the key\n",
2192                         crypt_stat->key_size);
2193         rc = crypto_blkcipher_encrypt(&desc, dst_sg, src_sg,
2194                                       (*key_rec).enc_key_size);
2195         mutex_unlock(tfm_mutex);
2196         if (rc) {
2197                 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2198                 goto out;
2199         }
2200         ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2201         if (ecryptfs_verbosity > 0) {
2202                 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%d]:\n",
2203                                 key_rec->enc_key_size);
2204                 ecryptfs_dump_hex(key_rec->enc_key,
2205                                   key_rec->enc_key_size);
2206         }
2207 encrypted_session_key_set:
2208         /* This format is inspired by OpenPGP; see RFC 2440
2209          * packet tag 3 */
2210         max_packet_size = (1                         /* Tag 3 identifier */
2211                            + 3                       /* Max Tag 3 packet size */
2212                            + 1                       /* Version */
2213                            + 1                       /* Cipher code */
2214                            + 1                       /* S2K specifier */
2215                            + 1                       /* Hash identifier */
2216                            + ECRYPTFS_SALT_SIZE      /* Salt */
2217                            + 1                       /* Hash iterations */
2218                            + key_rec->enc_key_size); /* Encrypted key size */
2219         if (max_packet_size > (*remaining_bytes)) {
2220                 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2221                        "there are only [%td] available\n", max_packet_size,
2222                        (*remaining_bytes));
2223                 rc = -EINVAL;
2224                 goto out;
2225         }
2226         dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2227         /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2228          * to get the number of octets in the actual Tag 3 packet */
2229         rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2230                                           (max_packet_size - 4),
2231                                           &packet_size_length);
2232         if (rc) {
2233                 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2234                        "generate packet length. rc = [%d]\n", rc);
2235                 goto out;
2236         }
2237         (*packet_size) += packet_size_length;
2238         dest[(*packet_size)++] = 0x04; /* version 4 */
2239         /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2240          * specified with strings */
2241         cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2242                                                       crypt_stat->key_size);
2243         if (cipher_code == 0) {
2244                 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2245                                 "cipher [%s]\n", crypt_stat->cipher);
2246                 rc = -EINVAL;
2247                 goto out;
2248         }
2249         dest[(*packet_size)++] = cipher_code;
2250         dest[(*packet_size)++] = 0x03;  /* S2K */
2251         dest[(*packet_size)++] = 0x01;  /* MD5 (TODO: parameterize) */
2252         memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2253                ECRYPTFS_SALT_SIZE);
2254         (*packet_size) += ECRYPTFS_SALT_SIZE;   /* salt */
2255         dest[(*packet_size)++] = 0x60;  /* hash iterations (65536) */
2256         memcpy(&dest[(*packet_size)], key_rec->enc_key,
2257                key_rec->enc_key_size);
2258         (*packet_size) += key_rec->enc_key_size;
2259 out:
2260         if (rc)
2261                 (*packet_size) = 0;
2262         else
2263                 (*remaining_bytes) -= (*packet_size);
2264         return rc;
2265 }
2266
2267 struct kmem_cache *ecryptfs_key_record_cache;
2268
2269 /**
2270  * ecryptfs_generate_key_packet_set
2271  * @dest_base: Virtual address from which to write the key record set
2272  * @crypt_stat: The cryptographic context from which the
2273  *              authentication tokens will be retrieved
2274  * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2275  *                   for the global parameters
2276  * @len: The amount written
2277  * @max: The maximum amount of data allowed to be written
2278  *
2279  * Generates a key packet set and writes it to the virtual address
2280  * passed in.
2281  *
2282  * Returns zero on success; non-zero on error.
2283  */
2284 int
2285 ecryptfs_generate_key_packet_set(char *dest_base,
2286                                  struct ecryptfs_crypt_stat *crypt_stat,
2287                                  struct dentry *ecryptfs_dentry, size_t *len,
2288                                  size_t max)
2289 {
2290         struct ecryptfs_auth_tok *auth_tok;
2291         struct ecryptfs_global_auth_tok *global_auth_tok;
2292         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2293                 &ecryptfs_superblock_to_private(
2294                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
2295         size_t written;
2296         struct ecryptfs_key_record *key_rec;
2297         struct ecryptfs_key_sig *key_sig;
2298         int rc = 0;
2299
2300         (*len) = 0;
2301         mutex_lock(&crypt_stat->keysig_list_mutex);
2302         key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2303         if (!key_rec) {
2304                 rc = -ENOMEM;
2305                 goto out;
2306         }
2307         list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2308                             crypt_stat_list) {
2309                 memset(key_rec, 0, sizeof(*key_rec));
2310                 rc = ecryptfs_find_global_auth_tok_for_sig(&global_auth_tok,
2311                                                            mount_crypt_stat,
2312                                                            key_sig->keysig);
2313                 if (rc) {
2314                         printk(KERN_ERR "Error attempting to get the global "
2315                                "auth_tok; rc = [%d]\n", rc);
2316                         goto out_free;
2317                 }
2318                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID) {
2319                         printk(KERN_WARNING
2320                                "Skipping invalid auth tok with sig = [%s]\n",
2321                                global_auth_tok->sig);
2322                         continue;
2323                 }
2324                 auth_tok = global_auth_tok->global_auth_tok;
2325                 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2326                         rc = write_tag_3_packet((dest_base + (*len)),
2327                                                 &max, auth_tok,
2328                                                 crypt_stat, key_rec,
2329                                                 &written);
2330                         if (rc) {
2331                                 ecryptfs_printk(KERN_WARNING, "Error "
2332                                                 "writing tag 3 packet\n");
2333                                 goto out_free;
2334                         }
2335                         (*len) += written;
2336                         /* Write auth tok signature packet */
2337                         rc = write_tag_11_packet((dest_base + (*len)), &max,
2338                                                  key_rec->sig,
2339                                                  ECRYPTFS_SIG_SIZE, &written);
2340                         if (rc) {
2341                                 ecryptfs_printk(KERN_ERR, "Error writing "
2342                                                 "auth tok signature packet\n");
2343                                 goto out_free;
2344                         }
2345                         (*len) += written;
2346                 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2347                         rc = write_tag_1_packet(dest_base + (*len),
2348                                                 &max, auth_tok,
2349                                                 crypt_stat, key_rec, &written);
2350                         if (rc) {
2351                                 ecryptfs_printk(KERN_WARNING, "Error "
2352                                                 "writing tag 1 packet\n");
2353                                 goto out_free;
2354                         }
2355                         (*len) += written;
2356                 } else {
2357                         ecryptfs_printk(KERN_WARNING, "Unsupported "
2358                                         "authentication token type\n");
2359                         rc = -EINVAL;
2360                         goto out_free;
2361                 }
2362         }
2363         if (likely(max > 0)) {
2364                 dest_base[(*len)] = 0x00;
2365         } else {
2366                 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2367                 rc = -EIO;
2368         }
2369 out_free:
2370         kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2371 out:
2372         if (rc)
2373                 (*len) = 0;
2374         mutex_unlock(&crypt_stat->keysig_list_mutex);
2375         return rc;
2376 }
2377
2378 struct kmem_cache *ecryptfs_key_sig_cache;
2379
2380 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2381 {
2382         struct ecryptfs_key_sig *new_key_sig;
2383
2384         new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2385         if (!new_key_sig) {
2386                 printk(KERN_ERR
2387                        "Error allocating from ecryptfs_key_sig_cache\n");
2388                 return -ENOMEM;
2389         }
2390         memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2391         /* Caller must hold keysig_list_mutex */
2392         list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2393
2394         return 0;
2395 }
2396
2397 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2398
2399 int
2400 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2401                              char *sig, u32 global_auth_tok_flags)
2402 {
2403         struct ecryptfs_global_auth_tok *new_auth_tok;
2404         int rc = 0;
2405
2406         new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2407                                         GFP_KERNEL);
2408         if (!new_auth_tok) {
2409                 rc = -ENOMEM;
2410                 printk(KERN_ERR "Error allocating from "
2411                        "ecryptfs_global_auth_tok_cache\n");
2412                 goto out;
2413         }
2414         memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2415         new_auth_tok->flags = global_auth_tok_flags;
2416         new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2417         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2418         list_add(&new_auth_tok->mount_crypt_stat_list,
2419                  &mount_crypt_stat->global_auth_tok_list);
2420         mount_crypt_stat->num_global_auth_toks++;
2421         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2422 out:
2423         return rc;
2424 }
2425