]> Pileus Git - ~andy/linux/blob - fs/ceph/mds_client.c
ceph: cleanup aborted requests when re-sending requests.
[~andy/linux] / fs / ceph / mds_client.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/fs.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
6 #include <linux/sched.h>
7 #include <linux/debugfs.h>
8 #include <linux/seq_file.h>
9
10 #include "super.h"
11 #include "mds_client.h"
12
13 #include <linux/ceph/ceph_features.h>
14 #include <linux/ceph/messenger.h>
15 #include <linux/ceph/decode.h>
16 #include <linux/ceph/pagelist.h>
17 #include <linux/ceph/auth.h>
18 #include <linux/ceph/debugfs.h>
19
20 /*
21  * A cluster of MDS (metadata server) daemons is responsible for
22  * managing the file system namespace (the directory hierarchy and
23  * inodes) and for coordinating shared access to storage.  Metadata is
24  * partitioning hierarchically across a number of servers, and that
25  * partition varies over time as the cluster adjusts the distribution
26  * in order to balance load.
27  *
28  * The MDS client is primarily responsible to managing synchronous
29  * metadata requests for operations like open, unlink, and so forth.
30  * If there is a MDS failure, we find out about it when we (possibly
31  * request and) receive a new MDS map, and can resubmit affected
32  * requests.
33  *
34  * For the most part, though, we take advantage of a lossless
35  * communications channel to the MDS, and do not need to worry about
36  * timing out or resubmitting requests.
37  *
38  * We maintain a stateful "session" with each MDS we interact with.
39  * Within each session, we sent periodic heartbeat messages to ensure
40  * any capabilities or leases we have been issues remain valid.  If
41  * the session times out and goes stale, our leases and capabilities
42  * are no longer valid.
43  */
44
45 struct ceph_reconnect_state {
46         int nr_caps;
47         struct ceph_pagelist *pagelist;
48         bool flock;
49 };
50
51 static void __wake_requests(struct ceph_mds_client *mdsc,
52                             struct list_head *head);
53
54 static const struct ceph_connection_operations mds_con_ops;
55
56
57 /*
58  * mds reply parsing
59  */
60
61 /*
62  * parse individual inode info
63  */
64 static int parse_reply_info_in(void **p, void *end,
65                                struct ceph_mds_reply_info_in *info,
66                                int features)
67 {
68         int err = -EIO;
69
70         info->in = *p;
71         *p += sizeof(struct ceph_mds_reply_inode) +
72                 sizeof(*info->in->fragtree.splits) *
73                 le32_to_cpu(info->in->fragtree.nsplits);
74
75         ceph_decode_32_safe(p, end, info->symlink_len, bad);
76         ceph_decode_need(p, end, info->symlink_len, bad);
77         info->symlink = *p;
78         *p += info->symlink_len;
79
80         if (features & CEPH_FEATURE_DIRLAYOUTHASH)
81                 ceph_decode_copy_safe(p, end, &info->dir_layout,
82                                       sizeof(info->dir_layout), bad);
83         else
84                 memset(&info->dir_layout, 0, sizeof(info->dir_layout));
85
86         ceph_decode_32_safe(p, end, info->xattr_len, bad);
87         ceph_decode_need(p, end, info->xattr_len, bad);
88         info->xattr_data = *p;
89         *p += info->xattr_len;
90         return 0;
91 bad:
92         return err;
93 }
94
95 /*
96  * parse a normal reply, which may contain a (dir+)dentry and/or a
97  * target inode.
98  */
99 static int parse_reply_info_trace(void **p, void *end,
100                                   struct ceph_mds_reply_info_parsed *info,
101                                   int features)
102 {
103         int err;
104
105         if (info->head->is_dentry) {
106                 err = parse_reply_info_in(p, end, &info->diri, features);
107                 if (err < 0)
108                         goto out_bad;
109
110                 if (unlikely(*p + sizeof(*info->dirfrag) > end))
111                         goto bad;
112                 info->dirfrag = *p;
113                 *p += sizeof(*info->dirfrag) +
114                         sizeof(u32)*le32_to_cpu(info->dirfrag->ndist);
115                 if (unlikely(*p > end))
116                         goto bad;
117
118                 ceph_decode_32_safe(p, end, info->dname_len, bad);
119                 ceph_decode_need(p, end, info->dname_len, bad);
120                 info->dname = *p;
121                 *p += info->dname_len;
122                 info->dlease = *p;
123                 *p += sizeof(*info->dlease);
124         }
125
126         if (info->head->is_target) {
127                 err = parse_reply_info_in(p, end, &info->targeti, features);
128                 if (err < 0)
129                         goto out_bad;
130         }
131
132         if (unlikely(*p != end))
133                 goto bad;
134         return 0;
135
136 bad:
137         err = -EIO;
138 out_bad:
139         pr_err("problem parsing mds trace %d\n", err);
140         return err;
141 }
142
143 /*
144  * parse readdir results
145  */
146 static int parse_reply_info_dir(void **p, void *end,
147                                 struct ceph_mds_reply_info_parsed *info,
148                                 int features)
149 {
150         u32 num, i = 0;
151         int err;
152
153         info->dir_dir = *p;
154         if (*p + sizeof(*info->dir_dir) > end)
155                 goto bad;
156         *p += sizeof(*info->dir_dir) +
157                 sizeof(u32)*le32_to_cpu(info->dir_dir->ndist);
158         if (*p > end)
159                 goto bad;
160
161         ceph_decode_need(p, end, sizeof(num) + 2, bad);
162         num = ceph_decode_32(p);
163         info->dir_end = ceph_decode_8(p);
164         info->dir_complete = ceph_decode_8(p);
165         if (num == 0)
166                 goto done;
167
168         /* alloc large array */
169         info->dir_nr = num;
170         info->dir_in = kcalloc(num, sizeof(*info->dir_in) +
171                                sizeof(*info->dir_dname) +
172                                sizeof(*info->dir_dname_len) +
173                                sizeof(*info->dir_dlease),
174                                GFP_NOFS);
175         if (info->dir_in == NULL) {
176                 err = -ENOMEM;
177                 goto out_bad;
178         }
179         info->dir_dname = (void *)(info->dir_in + num);
180         info->dir_dname_len = (void *)(info->dir_dname + num);
181         info->dir_dlease = (void *)(info->dir_dname_len + num);
182
183         while (num) {
184                 /* dentry */
185                 ceph_decode_need(p, end, sizeof(u32)*2, bad);
186                 info->dir_dname_len[i] = ceph_decode_32(p);
187                 ceph_decode_need(p, end, info->dir_dname_len[i], bad);
188                 info->dir_dname[i] = *p;
189                 *p += info->dir_dname_len[i];
190                 dout("parsed dir dname '%.*s'\n", info->dir_dname_len[i],
191                      info->dir_dname[i]);
192                 info->dir_dlease[i] = *p;
193                 *p += sizeof(struct ceph_mds_reply_lease);
194
195                 /* inode */
196                 err = parse_reply_info_in(p, end, &info->dir_in[i], features);
197                 if (err < 0)
198                         goto out_bad;
199                 i++;
200                 num--;
201         }
202
203 done:
204         if (*p != end)
205                 goto bad;
206         return 0;
207
208 bad:
209         err = -EIO;
210 out_bad:
211         pr_err("problem parsing dir contents %d\n", err);
212         return err;
213 }
214
215 /*
216  * parse fcntl F_GETLK results
217  */
218 static int parse_reply_info_filelock(void **p, void *end,
219                                      struct ceph_mds_reply_info_parsed *info,
220                                      int features)
221 {
222         if (*p + sizeof(*info->filelock_reply) > end)
223                 goto bad;
224
225         info->filelock_reply = *p;
226         *p += sizeof(*info->filelock_reply);
227
228         if (unlikely(*p != end))
229                 goto bad;
230         return 0;
231
232 bad:
233         return -EIO;
234 }
235
236 /*
237  * parse create results
238  */
239 static int parse_reply_info_create(void **p, void *end,
240                                   struct ceph_mds_reply_info_parsed *info,
241                                   int features)
242 {
243         if (features & CEPH_FEATURE_REPLY_CREATE_INODE) {
244                 if (*p == end) {
245                         info->has_create_ino = false;
246                 } else {
247                         info->has_create_ino = true;
248                         info->ino = ceph_decode_64(p);
249                 }
250         }
251
252         if (unlikely(*p != end))
253                 goto bad;
254         return 0;
255
256 bad:
257         return -EIO;
258 }
259
260 /*
261  * parse extra results
262  */
263 static int parse_reply_info_extra(void **p, void *end,
264                                   struct ceph_mds_reply_info_parsed *info,
265                                   int features)
266 {
267         if (info->head->op == CEPH_MDS_OP_GETFILELOCK)
268                 return parse_reply_info_filelock(p, end, info, features);
269         else if (info->head->op == CEPH_MDS_OP_READDIR ||
270                  info->head->op == CEPH_MDS_OP_LSSNAP)
271                 return parse_reply_info_dir(p, end, info, features);
272         else if (info->head->op == CEPH_MDS_OP_CREATE)
273                 return parse_reply_info_create(p, end, info, features);
274         else
275                 return -EIO;
276 }
277
278 /*
279  * parse entire mds reply
280  */
281 static int parse_reply_info(struct ceph_msg *msg,
282                             struct ceph_mds_reply_info_parsed *info,
283                             int features)
284 {
285         void *p, *end;
286         u32 len;
287         int err;
288
289         info->head = msg->front.iov_base;
290         p = msg->front.iov_base + sizeof(struct ceph_mds_reply_head);
291         end = p + msg->front.iov_len - sizeof(struct ceph_mds_reply_head);
292
293         /* trace */
294         ceph_decode_32_safe(&p, end, len, bad);
295         if (len > 0) {
296                 ceph_decode_need(&p, end, len, bad);
297                 err = parse_reply_info_trace(&p, p+len, info, features);
298                 if (err < 0)
299                         goto out_bad;
300         }
301
302         /* extra */
303         ceph_decode_32_safe(&p, end, len, bad);
304         if (len > 0) {
305                 ceph_decode_need(&p, end, len, bad);
306                 err = parse_reply_info_extra(&p, p+len, info, features);
307                 if (err < 0)
308                         goto out_bad;
309         }
310
311         /* snap blob */
312         ceph_decode_32_safe(&p, end, len, bad);
313         info->snapblob_len = len;
314         info->snapblob = p;
315         p += len;
316
317         if (p != end)
318                 goto bad;
319         return 0;
320
321 bad:
322         err = -EIO;
323 out_bad:
324         pr_err("mds parse_reply err %d\n", err);
325         return err;
326 }
327
328 static void destroy_reply_info(struct ceph_mds_reply_info_parsed *info)
329 {
330         kfree(info->dir_in);
331 }
332
333
334 /*
335  * sessions
336  */
337 static const char *session_state_name(int s)
338 {
339         switch (s) {
340         case CEPH_MDS_SESSION_NEW: return "new";
341         case CEPH_MDS_SESSION_OPENING: return "opening";
342         case CEPH_MDS_SESSION_OPEN: return "open";
343         case CEPH_MDS_SESSION_HUNG: return "hung";
344         case CEPH_MDS_SESSION_CLOSING: return "closing";
345         case CEPH_MDS_SESSION_RESTARTING: return "restarting";
346         case CEPH_MDS_SESSION_RECONNECTING: return "reconnecting";
347         default: return "???";
348         }
349 }
350
351 static struct ceph_mds_session *get_session(struct ceph_mds_session *s)
352 {
353         if (atomic_inc_not_zero(&s->s_ref)) {
354                 dout("mdsc get_session %p %d -> %d\n", s,
355                      atomic_read(&s->s_ref)-1, atomic_read(&s->s_ref));
356                 return s;
357         } else {
358                 dout("mdsc get_session %p 0 -- FAIL", s);
359                 return NULL;
360         }
361 }
362
363 void ceph_put_mds_session(struct ceph_mds_session *s)
364 {
365         dout("mdsc put_session %p %d -> %d\n", s,
366              atomic_read(&s->s_ref), atomic_read(&s->s_ref)-1);
367         if (atomic_dec_and_test(&s->s_ref)) {
368                 if (s->s_auth.authorizer)
369                         ceph_auth_destroy_authorizer(
370                                 s->s_mdsc->fsc->client->monc.auth,
371                                 s->s_auth.authorizer);
372                 kfree(s);
373         }
374 }
375
376 /*
377  * called under mdsc->mutex
378  */
379 struct ceph_mds_session *__ceph_lookup_mds_session(struct ceph_mds_client *mdsc,
380                                                    int mds)
381 {
382         struct ceph_mds_session *session;
383
384         if (mds >= mdsc->max_sessions || mdsc->sessions[mds] == NULL)
385                 return NULL;
386         session = mdsc->sessions[mds];
387         dout("lookup_mds_session %p %d\n", session,
388              atomic_read(&session->s_ref));
389         get_session(session);
390         return session;
391 }
392
393 static bool __have_session(struct ceph_mds_client *mdsc, int mds)
394 {
395         if (mds >= mdsc->max_sessions)
396                 return false;
397         return mdsc->sessions[mds];
398 }
399
400 static int __verify_registered_session(struct ceph_mds_client *mdsc,
401                                        struct ceph_mds_session *s)
402 {
403         if (s->s_mds >= mdsc->max_sessions ||
404             mdsc->sessions[s->s_mds] != s)
405                 return -ENOENT;
406         return 0;
407 }
408
409 /*
410  * create+register a new session for given mds.
411  * called under mdsc->mutex.
412  */
413 static struct ceph_mds_session *register_session(struct ceph_mds_client *mdsc,
414                                                  int mds)
415 {
416         struct ceph_mds_session *s;
417
418         if (mds >= mdsc->mdsmap->m_max_mds)
419                 return ERR_PTR(-EINVAL);
420
421         s = kzalloc(sizeof(*s), GFP_NOFS);
422         if (!s)
423                 return ERR_PTR(-ENOMEM);
424         s->s_mdsc = mdsc;
425         s->s_mds = mds;
426         s->s_state = CEPH_MDS_SESSION_NEW;
427         s->s_ttl = 0;
428         s->s_seq = 0;
429         mutex_init(&s->s_mutex);
430
431         ceph_con_init(&s->s_con, s, &mds_con_ops, &mdsc->fsc->client->msgr);
432
433         spin_lock_init(&s->s_gen_ttl_lock);
434         s->s_cap_gen = 0;
435         s->s_cap_ttl = jiffies - 1;
436
437         spin_lock_init(&s->s_cap_lock);
438         s->s_renew_requested = 0;
439         s->s_renew_seq = 0;
440         INIT_LIST_HEAD(&s->s_caps);
441         s->s_nr_caps = 0;
442         s->s_trim_caps = 0;
443         atomic_set(&s->s_ref, 1);
444         INIT_LIST_HEAD(&s->s_waiting);
445         INIT_LIST_HEAD(&s->s_unsafe);
446         s->s_num_cap_releases = 0;
447         s->s_cap_reconnect = 0;
448         s->s_cap_iterator = NULL;
449         INIT_LIST_HEAD(&s->s_cap_releases);
450         INIT_LIST_HEAD(&s->s_cap_releases_done);
451         INIT_LIST_HEAD(&s->s_cap_flushing);
452         INIT_LIST_HEAD(&s->s_cap_snaps_flushing);
453
454         dout("register_session mds%d\n", mds);
455         if (mds >= mdsc->max_sessions) {
456                 int newmax = 1 << get_count_order(mds+1);
457                 struct ceph_mds_session **sa;
458
459                 dout("register_session realloc to %d\n", newmax);
460                 sa = kcalloc(newmax, sizeof(void *), GFP_NOFS);
461                 if (sa == NULL)
462                         goto fail_realloc;
463                 if (mdsc->sessions) {
464                         memcpy(sa, mdsc->sessions,
465                                mdsc->max_sessions * sizeof(void *));
466                         kfree(mdsc->sessions);
467                 }
468                 mdsc->sessions = sa;
469                 mdsc->max_sessions = newmax;
470         }
471         mdsc->sessions[mds] = s;
472         atomic_inc(&s->s_ref);  /* one ref to sessions[], one to caller */
473
474         ceph_con_open(&s->s_con, CEPH_ENTITY_TYPE_MDS, mds,
475                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
476
477         return s;
478
479 fail_realloc:
480         kfree(s);
481         return ERR_PTR(-ENOMEM);
482 }
483
484 /*
485  * called under mdsc->mutex
486  */
487 static void __unregister_session(struct ceph_mds_client *mdsc,
488                                struct ceph_mds_session *s)
489 {
490         dout("__unregister_session mds%d %p\n", s->s_mds, s);
491         BUG_ON(mdsc->sessions[s->s_mds] != s);
492         mdsc->sessions[s->s_mds] = NULL;
493         ceph_con_close(&s->s_con);
494         ceph_put_mds_session(s);
495 }
496
497 /*
498  * drop session refs in request.
499  *
500  * should be last request ref, or hold mdsc->mutex
501  */
502 static void put_request_session(struct ceph_mds_request *req)
503 {
504         if (req->r_session) {
505                 ceph_put_mds_session(req->r_session);
506                 req->r_session = NULL;
507         }
508 }
509
510 void ceph_mdsc_release_request(struct kref *kref)
511 {
512         struct ceph_mds_request *req = container_of(kref,
513                                                     struct ceph_mds_request,
514                                                     r_kref);
515         if (req->r_request)
516                 ceph_msg_put(req->r_request);
517         if (req->r_reply) {
518                 ceph_msg_put(req->r_reply);
519                 destroy_reply_info(&req->r_reply_info);
520         }
521         if (req->r_inode) {
522                 ceph_put_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
523                 iput(req->r_inode);
524         }
525         if (req->r_locked_dir)
526                 ceph_put_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
527         if (req->r_target_inode)
528                 iput(req->r_target_inode);
529         if (req->r_dentry)
530                 dput(req->r_dentry);
531         if (req->r_old_dentry) {
532                 /*
533                  * track (and drop pins for) r_old_dentry_dir
534                  * separately, since r_old_dentry's d_parent may have
535                  * changed between the dir mutex being dropped and
536                  * this request being freed.
537                  */
538                 ceph_put_cap_refs(ceph_inode(req->r_old_dentry_dir),
539                                   CEPH_CAP_PIN);
540                 dput(req->r_old_dentry);
541                 iput(req->r_old_dentry_dir);
542         }
543         kfree(req->r_path1);
544         kfree(req->r_path2);
545         put_request_session(req);
546         ceph_unreserve_caps(req->r_mdsc, &req->r_caps_reservation);
547         kfree(req);
548 }
549
550 /*
551  * lookup session, bump ref if found.
552  *
553  * called under mdsc->mutex.
554  */
555 static struct ceph_mds_request *__lookup_request(struct ceph_mds_client *mdsc,
556                                              u64 tid)
557 {
558         struct ceph_mds_request *req;
559         struct rb_node *n = mdsc->request_tree.rb_node;
560
561         while (n) {
562                 req = rb_entry(n, struct ceph_mds_request, r_node);
563                 if (tid < req->r_tid)
564                         n = n->rb_left;
565                 else if (tid > req->r_tid)
566                         n = n->rb_right;
567                 else {
568                         ceph_mdsc_get_request(req);
569                         return req;
570                 }
571         }
572         return NULL;
573 }
574
575 static void __insert_request(struct ceph_mds_client *mdsc,
576                              struct ceph_mds_request *new)
577 {
578         struct rb_node **p = &mdsc->request_tree.rb_node;
579         struct rb_node *parent = NULL;
580         struct ceph_mds_request *req = NULL;
581
582         while (*p) {
583                 parent = *p;
584                 req = rb_entry(parent, struct ceph_mds_request, r_node);
585                 if (new->r_tid < req->r_tid)
586                         p = &(*p)->rb_left;
587                 else if (new->r_tid > req->r_tid)
588                         p = &(*p)->rb_right;
589                 else
590                         BUG();
591         }
592
593         rb_link_node(&new->r_node, parent, p);
594         rb_insert_color(&new->r_node, &mdsc->request_tree);
595 }
596
597 /*
598  * Register an in-flight request, and assign a tid.  Link to directory
599  * are modifying (if any).
600  *
601  * Called under mdsc->mutex.
602  */
603 static void __register_request(struct ceph_mds_client *mdsc,
604                                struct ceph_mds_request *req,
605                                struct inode *dir)
606 {
607         req->r_tid = ++mdsc->last_tid;
608         if (req->r_num_caps)
609                 ceph_reserve_caps(mdsc, &req->r_caps_reservation,
610                                   req->r_num_caps);
611         dout("__register_request %p tid %lld\n", req, req->r_tid);
612         ceph_mdsc_get_request(req);
613         __insert_request(mdsc, req);
614
615         req->r_uid = current_fsuid();
616         req->r_gid = current_fsgid();
617
618         if (dir) {
619                 struct ceph_inode_info *ci = ceph_inode(dir);
620
621                 ihold(dir);
622                 spin_lock(&ci->i_unsafe_lock);
623                 req->r_unsafe_dir = dir;
624                 list_add_tail(&req->r_unsafe_dir_item, &ci->i_unsafe_dirops);
625                 spin_unlock(&ci->i_unsafe_lock);
626         }
627 }
628
629 static void __unregister_request(struct ceph_mds_client *mdsc,
630                                  struct ceph_mds_request *req)
631 {
632         dout("__unregister_request %p tid %lld\n", req, req->r_tid);
633         rb_erase(&req->r_node, &mdsc->request_tree);
634         RB_CLEAR_NODE(&req->r_node);
635
636         if (req->r_unsafe_dir) {
637                 struct ceph_inode_info *ci = ceph_inode(req->r_unsafe_dir);
638
639                 spin_lock(&ci->i_unsafe_lock);
640                 list_del_init(&req->r_unsafe_dir_item);
641                 spin_unlock(&ci->i_unsafe_lock);
642
643                 iput(req->r_unsafe_dir);
644                 req->r_unsafe_dir = NULL;
645         }
646
647         ceph_mdsc_put_request(req);
648 }
649
650 /*
651  * Choose mds to send request to next.  If there is a hint set in the
652  * request (e.g., due to a prior forward hint from the mds), use that.
653  * Otherwise, consult frag tree and/or caps to identify the
654  * appropriate mds.  If all else fails, choose randomly.
655  *
656  * Called under mdsc->mutex.
657  */
658 static struct dentry *get_nonsnap_parent(struct dentry *dentry)
659 {
660         /*
661          * we don't need to worry about protecting the d_parent access
662          * here because we never renaming inside the snapped namespace
663          * except to resplice to another snapdir, and either the old or new
664          * result is a valid result.
665          */
666         while (!IS_ROOT(dentry) && ceph_snap(dentry->d_inode) != CEPH_NOSNAP)
667                 dentry = dentry->d_parent;
668         return dentry;
669 }
670
671 static int __choose_mds(struct ceph_mds_client *mdsc,
672                         struct ceph_mds_request *req)
673 {
674         struct inode *inode;
675         struct ceph_inode_info *ci;
676         struct ceph_cap *cap;
677         int mode = req->r_direct_mode;
678         int mds = -1;
679         u32 hash = req->r_direct_hash;
680         bool is_hash = req->r_direct_is_hash;
681
682         /*
683          * is there a specific mds we should try?  ignore hint if we have
684          * no session and the mds is not up (active or recovering).
685          */
686         if (req->r_resend_mds >= 0 &&
687             (__have_session(mdsc, req->r_resend_mds) ||
688              ceph_mdsmap_get_state(mdsc->mdsmap, req->r_resend_mds) > 0)) {
689                 dout("choose_mds using resend_mds mds%d\n",
690                      req->r_resend_mds);
691                 return req->r_resend_mds;
692         }
693
694         if (mode == USE_RANDOM_MDS)
695                 goto random;
696
697         inode = NULL;
698         if (req->r_inode) {
699                 inode = req->r_inode;
700         } else if (req->r_dentry) {
701                 /* ignore race with rename; old or new d_parent is okay */
702                 struct dentry *parent = req->r_dentry->d_parent;
703                 struct inode *dir = parent->d_inode;
704
705                 if (dir->i_sb != mdsc->fsc->sb) {
706                         /* not this fs! */
707                         inode = req->r_dentry->d_inode;
708                 } else if (ceph_snap(dir) != CEPH_NOSNAP) {
709                         /* direct snapped/virtual snapdir requests
710                          * based on parent dir inode */
711                         struct dentry *dn = get_nonsnap_parent(parent);
712                         inode = dn->d_inode;
713                         dout("__choose_mds using nonsnap parent %p\n", inode);
714                 } else if (req->r_dentry->d_inode) {
715                         /* dentry target */
716                         inode = req->r_dentry->d_inode;
717                 } else {
718                         /* dir + name */
719                         inode = dir;
720                         hash = ceph_dentry_hash(dir, req->r_dentry);
721                         is_hash = true;
722                 }
723         }
724
725         dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode, (int)is_hash,
726              (int)hash, mode);
727         if (!inode)
728                 goto random;
729         ci = ceph_inode(inode);
730
731         if (is_hash && S_ISDIR(inode->i_mode)) {
732                 struct ceph_inode_frag frag;
733                 int found;
734
735                 ceph_choose_frag(ci, hash, &frag, &found);
736                 if (found) {
737                         if (mode == USE_ANY_MDS && frag.ndist > 0) {
738                                 u8 r;
739
740                                 /* choose a random replica */
741                                 get_random_bytes(&r, 1);
742                                 r %= frag.ndist;
743                                 mds = frag.dist[r];
744                                 dout("choose_mds %p %llx.%llx "
745                                      "frag %u mds%d (%d/%d)\n",
746                                      inode, ceph_vinop(inode),
747                                      frag.frag, mds,
748                                      (int)r, frag.ndist);
749                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
750                                     CEPH_MDS_STATE_ACTIVE)
751                                         return mds;
752                         }
753
754                         /* since this file/dir wasn't known to be
755                          * replicated, then we want to look for the
756                          * authoritative mds. */
757                         mode = USE_AUTH_MDS;
758                         if (frag.mds >= 0) {
759                                 /* choose auth mds */
760                                 mds = frag.mds;
761                                 dout("choose_mds %p %llx.%llx "
762                                      "frag %u mds%d (auth)\n",
763                                      inode, ceph_vinop(inode), frag.frag, mds);
764                                 if (ceph_mdsmap_get_state(mdsc->mdsmap, mds) >=
765                                     CEPH_MDS_STATE_ACTIVE)
766                                         return mds;
767                         }
768                 }
769         }
770
771         spin_lock(&ci->i_ceph_lock);
772         cap = NULL;
773         if (mode == USE_AUTH_MDS)
774                 cap = ci->i_auth_cap;
775         if (!cap && !RB_EMPTY_ROOT(&ci->i_caps))
776                 cap = rb_entry(rb_first(&ci->i_caps), struct ceph_cap, ci_node);
777         if (!cap) {
778                 spin_unlock(&ci->i_ceph_lock);
779                 goto random;
780         }
781         mds = cap->session->s_mds;
782         dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
783              inode, ceph_vinop(inode), mds,
784              cap == ci->i_auth_cap ? "auth " : "", cap);
785         spin_unlock(&ci->i_ceph_lock);
786         return mds;
787
788 random:
789         mds = ceph_mdsmap_get_random_mds(mdsc->mdsmap);
790         dout("choose_mds chose random mds%d\n", mds);
791         return mds;
792 }
793
794
795 /*
796  * session messages
797  */
798 static struct ceph_msg *create_session_msg(u32 op, u64 seq)
799 {
800         struct ceph_msg *msg;
801         struct ceph_mds_session_head *h;
802
803         msg = ceph_msg_new(CEPH_MSG_CLIENT_SESSION, sizeof(*h), GFP_NOFS,
804                            false);
805         if (!msg) {
806                 pr_err("create_session_msg ENOMEM creating msg\n");
807                 return NULL;
808         }
809         h = msg->front.iov_base;
810         h->op = cpu_to_le32(op);
811         h->seq = cpu_to_le64(seq);
812         return msg;
813 }
814
815 /*
816  * send session open request.
817  *
818  * called under mdsc->mutex
819  */
820 static int __open_session(struct ceph_mds_client *mdsc,
821                           struct ceph_mds_session *session)
822 {
823         struct ceph_msg *msg;
824         int mstate;
825         int mds = session->s_mds;
826
827         /* wait for mds to go active? */
828         mstate = ceph_mdsmap_get_state(mdsc->mdsmap, mds);
829         dout("open_session to mds%d (%s)\n", mds,
830              ceph_mds_state_name(mstate));
831         session->s_state = CEPH_MDS_SESSION_OPENING;
832         session->s_renew_requested = jiffies;
833
834         /* send connect message */
835         msg = create_session_msg(CEPH_SESSION_REQUEST_OPEN, session->s_seq);
836         if (!msg)
837                 return -ENOMEM;
838         ceph_con_send(&session->s_con, msg);
839         return 0;
840 }
841
842 /*
843  * open sessions for any export targets for the given mds
844  *
845  * called under mdsc->mutex
846  */
847 static void __open_export_target_sessions(struct ceph_mds_client *mdsc,
848                                           struct ceph_mds_session *session)
849 {
850         struct ceph_mds_info *mi;
851         struct ceph_mds_session *ts;
852         int i, mds = session->s_mds;
853         int target;
854
855         if (mds >= mdsc->mdsmap->m_max_mds)
856                 return;
857         mi = &mdsc->mdsmap->m_info[mds];
858         dout("open_export_target_sessions for mds%d (%d targets)\n",
859              session->s_mds, mi->num_export_targets);
860
861         for (i = 0; i < mi->num_export_targets; i++) {
862                 target = mi->export_targets[i];
863                 ts = __ceph_lookup_mds_session(mdsc, target);
864                 if (!ts) {
865                         ts = register_session(mdsc, target);
866                         if (IS_ERR(ts))
867                                 return;
868                 }
869                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
870                     session->s_state == CEPH_MDS_SESSION_CLOSING)
871                         __open_session(mdsc, session);
872                 else
873                         dout(" mds%d target mds%d %p is %s\n", session->s_mds,
874                              i, ts, session_state_name(ts->s_state));
875                 ceph_put_mds_session(ts);
876         }
877 }
878
879 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client *mdsc,
880                                            struct ceph_mds_session *session)
881 {
882         mutex_lock(&mdsc->mutex);
883         __open_export_target_sessions(mdsc, session);
884         mutex_unlock(&mdsc->mutex);
885 }
886
887 /*
888  * session caps
889  */
890
891 /*
892  * Free preallocated cap messages assigned to this session
893  */
894 static void cleanup_cap_releases(struct ceph_mds_session *session)
895 {
896         struct ceph_msg *msg;
897
898         spin_lock(&session->s_cap_lock);
899         while (!list_empty(&session->s_cap_releases)) {
900                 msg = list_first_entry(&session->s_cap_releases,
901                                        struct ceph_msg, list_head);
902                 list_del_init(&msg->list_head);
903                 ceph_msg_put(msg);
904         }
905         while (!list_empty(&session->s_cap_releases_done)) {
906                 msg = list_first_entry(&session->s_cap_releases_done,
907                                        struct ceph_msg, list_head);
908                 list_del_init(&msg->list_head);
909                 ceph_msg_put(msg);
910         }
911         spin_unlock(&session->s_cap_lock);
912 }
913
914 /*
915  * Helper to safely iterate over all caps associated with a session, with
916  * special care taken to handle a racing __ceph_remove_cap().
917  *
918  * Caller must hold session s_mutex.
919  */
920 static int iterate_session_caps(struct ceph_mds_session *session,
921                                  int (*cb)(struct inode *, struct ceph_cap *,
922                                             void *), void *arg)
923 {
924         struct list_head *p;
925         struct ceph_cap *cap;
926         struct inode *inode, *last_inode = NULL;
927         struct ceph_cap *old_cap = NULL;
928         int ret;
929
930         dout("iterate_session_caps %p mds%d\n", session, session->s_mds);
931         spin_lock(&session->s_cap_lock);
932         p = session->s_caps.next;
933         while (p != &session->s_caps) {
934                 cap = list_entry(p, struct ceph_cap, session_caps);
935                 inode = igrab(&cap->ci->vfs_inode);
936                 if (!inode) {
937                         p = p->next;
938                         continue;
939                 }
940                 session->s_cap_iterator = cap;
941                 spin_unlock(&session->s_cap_lock);
942
943                 if (last_inode) {
944                         iput(last_inode);
945                         last_inode = NULL;
946                 }
947                 if (old_cap) {
948                         ceph_put_cap(session->s_mdsc, old_cap);
949                         old_cap = NULL;
950                 }
951
952                 ret = cb(inode, cap, arg);
953                 last_inode = inode;
954
955                 spin_lock(&session->s_cap_lock);
956                 p = p->next;
957                 if (cap->ci == NULL) {
958                         dout("iterate_session_caps  finishing cap %p removal\n",
959                              cap);
960                         BUG_ON(cap->session != session);
961                         list_del_init(&cap->session_caps);
962                         session->s_nr_caps--;
963                         cap->session = NULL;
964                         old_cap = cap;  /* put_cap it w/o locks held */
965                 }
966                 if (ret < 0)
967                         goto out;
968         }
969         ret = 0;
970 out:
971         session->s_cap_iterator = NULL;
972         spin_unlock(&session->s_cap_lock);
973
974         if (last_inode)
975                 iput(last_inode);
976         if (old_cap)
977                 ceph_put_cap(session->s_mdsc, old_cap);
978
979         return ret;
980 }
981
982 static int remove_session_caps_cb(struct inode *inode, struct ceph_cap *cap,
983                                   void *arg)
984 {
985         struct ceph_inode_info *ci = ceph_inode(inode);
986         int drop = 0;
987
988         dout("removing cap %p, ci is %p, inode is %p\n",
989              cap, ci, &ci->vfs_inode);
990         spin_lock(&ci->i_ceph_lock);
991         __ceph_remove_cap(cap, false);
992         if (!__ceph_is_any_real_caps(ci)) {
993                 struct ceph_mds_client *mdsc =
994                         ceph_sb_to_client(inode->i_sb)->mdsc;
995
996                 spin_lock(&mdsc->cap_dirty_lock);
997                 if (!list_empty(&ci->i_dirty_item)) {
998                         pr_info(" dropping dirty %s state for %p %lld\n",
999                                 ceph_cap_string(ci->i_dirty_caps),
1000                                 inode, ceph_ino(inode));
1001                         ci->i_dirty_caps = 0;
1002                         list_del_init(&ci->i_dirty_item);
1003                         drop = 1;
1004                 }
1005                 if (!list_empty(&ci->i_flushing_item)) {
1006                         pr_info(" dropping dirty+flushing %s state for %p %lld\n",
1007                                 ceph_cap_string(ci->i_flushing_caps),
1008                                 inode, ceph_ino(inode));
1009                         ci->i_flushing_caps = 0;
1010                         list_del_init(&ci->i_flushing_item);
1011                         mdsc->num_cap_flushing--;
1012                         drop = 1;
1013                 }
1014                 if (drop && ci->i_wrbuffer_ref) {
1015                         pr_info(" dropping dirty data for %p %lld\n",
1016                                 inode, ceph_ino(inode));
1017                         ci->i_wrbuffer_ref = 0;
1018                         ci->i_wrbuffer_ref_head = 0;
1019                         drop++;
1020                 }
1021                 spin_unlock(&mdsc->cap_dirty_lock);
1022         }
1023         spin_unlock(&ci->i_ceph_lock);
1024         while (drop--)
1025                 iput(inode);
1026         return 0;
1027 }
1028
1029 /*
1030  * caller must hold session s_mutex
1031  */
1032 static void remove_session_caps(struct ceph_mds_session *session)
1033 {
1034         dout("remove_session_caps on %p\n", session);
1035         iterate_session_caps(session, remove_session_caps_cb, NULL);
1036
1037         spin_lock(&session->s_cap_lock);
1038         if (session->s_nr_caps > 0) {
1039                 struct super_block *sb = session->s_mdsc->fsc->sb;
1040                 struct inode *inode;
1041                 struct ceph_cap *cap, *prev = NULL;
1042                 struct ceph_vino vino;
1043                 /*
1044                  * iterate_session_caps() skips inodes that are being
1045                  * deleted, we need to wait until deletions are complete.
1046                  * __wait_on_freeing_inode() is designed for the job,
1047                  * but it is not exported, so use lookup inode function
1048                  * to access it.
1049                  */
1050                 while (!list_empty(&session->s_caps)) {
1051                         cap = list_entry(session->s_caps.next,
1052                                          struct ceph_cap, session_caps);
1053                         if (cap == prev)
1054                                 break;
1055                         prev = cap;
1056                         vino = cap->ci->i_vino;
1057                         spin_unlock(&session->s_cap_lock);
1058
1059                         inode = ceph_find_inode(sb, vino);
1060                         iput(inode);
1061
1062                         spin_lock(&session->s_cap_lock);
1063                 }
1064         }
1065         spin_unlock(&session->s_cap_lock);
1066
1067         BUG_ON(session->s_nr_caps > 0);
1068         BUG_ON(!list_empty(&session->s_cap_flushing));
1069         cleanup_cap_releases(session);
1070 }
1071
1072 /*
1073  * wake up any threads waiting on this session's caps.  if the cap is
1074  * old (didn't get renewed on the client reconnect), remove it now.
1075  *
1076  * caller must hold s_mutex.
1077  */
1078 static int wake_up_session_cb(struct inode *inode, struct ceph_cap *cap,
1079                               void *arg)
1080 {
1081         struct ceph_inode_info *ci = ceph_inode(inode);
1082
1083         wake_up_all(&ci->i_cap_wq);
1084         if (arg) {
1085                 spin_lock(&ci->i_ceph_lock);
1086                 ci->i_wanted_max_size = 0;
1087                 ci->i_requested_max_size = 0;
1088                 spin_unlock(&ci->i_ceph_lock);
1089         }
1090         return 0;
1091 }
1092
1093 static void wake_up_session_caps(struct ceph_mds_session *session,
1094                                  int reconnect)
1095 {
1096         dout("wake_up_session_caps %p mds%d\n", session, session->s_mds);
1097         iterate_session_caps(session, wake_up_session_cb,
1098                              (void *)(unsigned long)reconnect);
1099 }
1100
1101 /*
1102  * Send periodic message to MDS renewing all currently held caps.  The
1103  * ack will reset the expiration for all caps from this session.
1104  *
1105  * caller holds s_mutex
1106  */
1107 static int send_renew_caps(struct ceph_mds_client *mdsc,
1108                            struct ceph_mds_session *session)
1109 {
1110         struct ceph_msg *msg;
1111         int state;
1112
1113         if (time_after_eq(jiffies, session->s_cap_ttl) &&
1114             time_after_eq(session->s_cap_ttl, session->s_renew_requested))
1115                 pr_info("mds%d caps stale\n", session->s_mds);
1116         session->s_renew_requested = jiffies;
1117
1118         /* do not try to renew caps until a recovering mds has reconnected
1119          * with its clients. */
1120         state = ceph_mdsmap_get_state(mdsc->mdsmap, session->s_mds);
1121         if (state < CEPH_MDS_STATE_RECONNECT) {
1122                 dout("send_renew_caps ignoring mds%d (%s)\n",
1123                      session->s_mds, ceph_mds_state_name(state));
1124                 return 0;
1125         }
1126
1127         dout("send_renew_caps to mds%d (%s)\n", session->s_mds,
1128                 ceph_mds_state_name(state));
1129         msg = create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS,
1130                                  ++session->s_renew_seq);
1131         if (!msg)
1132                 return -ENOMEM;
1133         ceph_con_send(&session->s_con, msg);
1134         return 0;
1135 }
1136
1137 /*
1138  * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1139  *
1140  * Called under session->s_mutex
1141  */
1142 static void renewed_caps(struct ceph_mds_client *mdsc,
1143                          struct ceph_mds_session *session, int is_renew)
1144 {
1145         int was_stale;
1146         int wake = 0;
1147
1148         spin_lock(&session->s_cap_lock);
1149         was_stale = is_renew && time_after_eq(jiffies, session->s_cap_ttl);
1150
1151         session->s_cap_ttl = session->s_renew_requested +
1152                 mdsc->mdsmap->m_session_timeout*HZ;
1153
1154         if (was_stale) {
1155                 if (time_before(jiffies, session->s_cap_ttl)) {
1156                         pr_info("mds%d caps renewed\n", session->s_mds);
1157                         wake = 1;
1158                 } else {
1159                         pr_info("mds%d caps still stale\n", session->s_mds);
1160                 }
1161         }
1162         dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1163              session->s_mds, session->s_cap_ttl, was_stale ? "stale" : "fresh",
1164              time_before(jiffies, session->s_cap_ttl) ? "stale" : "fresh");
1165         spin_unlock(&session->s_cap_lock);
1166
1167         if (wake)
1168                 wake_up_session_caps(session, 0);
1169 }
1170
1171 /*
1172  * send a session close request
1173  */
1174 static int request_close_session(struct ceph_mds_client *mdsc,
1175                                  struct ceph_mds_session *session)
1176 {
1177         struct ceph_msg *msg;
1178
1179         dout("request_close_session mds%d state %s seq %lld\n",
1180              session->s_mds, session_state_name(session->s_state),
1181              session->s_seq);
1182         msg = create_session_msg(CEPH_SESSION_REQUEST_CLOSE, session->s_seq);
1183         if (!msg)
1184                 return -ENOMEM;
1185         ceph_con_send(&session->s_con, msg);
1186         return 0;
1187 }
1188
1189 /*
1190  * Called with s_mutex held.
1191  */
1192 static int __close_session(struct ceph_mds_client *mdsc,
1193                          struct ceph_mds_session *session)
1194 {
1195         if (session->s_state >= CEPH_MDS_SESSION_CLOSING)
1196                 return 0;
1197         session->s_state = CEPH_MDS_SESSION_CLOSING;
1198         return request_close_session(mdsc, session);
1199 }
1200
1201 /*
1202  * Trim old(er) caps.
1203  *
1204  * Because we can't cache an inode without one or more caps, we do
1205  * this indirectly: if a cap is unused, we prune its aliases, at which
1206  * point the inode will hopefully get dropped to.
1207  *
1208  * Yes, this is a bit sloppy.  Our only real goal here is to respond to
1209  * memory pressure from the MDS, though, so it needn't be perfect.
1210  */
1211 static int trim_caps_cb(struct inode *inode, struct ceph_cap *cap, void *arg)
1212 {
1213         struct ceph_mds_session *session = arg;
1214         struct ceph_inode_info *ci = ceph_inode(inode);
1215         int used, oissued, mine;
1216
1217         if (session->s_trim_caps <= 0)
1218                 return -1;
1219
1220         spin_lock(&ci->i_ceph_lock);
1221         mine = cap->issued | cap->implemented;
1222         used = __ceph_caps_used(ci);
1223         oissued = __ceph_caps_issued_other(ci, cap);
1224
1225         dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1226              inode, cap, ceph_cap_string(mine), ceph_cap_string(oissued),
1227              ceph_cap_string(used));
1228         if (ci->i_dirty_caps)
1229                 goto out;   /* dirty caps */
1230         if ((used & ~oissued) & mine)
1231                 goto out;   /* we need these caps */
1232
1233         session->s_trim_caps--;
1234         if (oissued) {
1235                 /* we aren't the only cap.. just remove us */
1236                 __ceph_remove_cap(cap, true);
1237         } else {
1238                 /* try to drop referring dentries */
1239                 spin_unlock(&ci->i_ceph_lock);
1240                 d_prune_aliases(inode);
1241                 dout("trim_caps_cb %p cap %p  pruned, count now %d\n",
1242                      inode, cap, atomic_read(&inode->i_count));
1243                 return 0;
1244         }
1245
1246 out:
1247         spin_unlock(&ci->i_ceph_lock);
1248         return 0;
1249 }
1250
1251 /*
1252  * Trim session cap count down to some max number.
1253  */
1254 static int trim_caps(struct ceph_mds_client *mdsc,
1255                      struct ceph_mds_session *session,
1256                      int max_caps)
1257 {
1258         int trim_caps = session->s_nr_caps - max_caps;
1259
1260         dout("trim_caps mds%d start: %d / %d, trim %d\n",
1261              session->s_mds, session->s_nr_caps, max_caps, trim_caps);
1262         if (trim_caps > 0) {
1263                 session->s_trim_caps = trim_caps;
1264                 iterate_session_caps(session, trim_caps_cb, session);
1265                 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1266                      session->s_mds, session->s_nr_caps, max_caps,
1267                         trim_caps - session->s_trim_caps);
1268                 session->s_trim_caps = 0;
1269         }
1270         return 0;
1271 }
1272
1273 /*
1274  * Allocate cap_release messages.  If there is a partially full message
1275  * in the queue, try to allocate enough to cover it's remainder, so that
1276  * we can send it immediately.
1277  *
1278  * Called under s_mutex.
1279  */
1280 int ceph_add_cap_releases(struct ceph_mds_client *mdsc,
1281                           struct ceph_mds_session *session)
1282 {
1283         struct ceph_msg *msg, *partial = NULL;
1284         struct ceph_mds_cap_release *head;
1285         int err = -ENOMEM;
1286         int extra = mdsc->fsc->mount_options->cap_release_safety;
1287         int num;
1288
1289         dout("add_cap_releases %p mds%d extra %d\n", session, session->s_mds,
1290              extra);
1291
1292         spin_lock(&session->s_cap_lock);
1293
1294         if (!list_empty(&session->s_cap_releases)) {
1295                 msg = list_first_entry(&session->s_cap_releases,
1296                                        struct ceph_msg,
1297                                  list_head);
1298                 head = msg->front.iov_base;
1299                 num = le32_to_cpu(head->num);
1300                 if (num) {
1301                         dout(" partial %p with (%d/%d)\n", msg, num,
1302                              (int)CEPH_CAPS_PER_RELEASE);
1303                         extra += CEPH_CAPS_PER_RELEASE - num;
1304                         partial = msg;
1305                 }
1306         }
1307         while (session->s_num_cap_releases < session->s_nr_caps + extra) {
1308                 spin_unlock(&session->s_cap_lock);
1309                 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE, PAGE_CACHE_SIZE,
1310                                    GFP_NOFS, false);
1311                 if (!msg)
1312                         goto out_unlocked;
1313                 dout("add_cap_releases %p msg %p now %d\n", session, msg,
1314                      (int)msg->front.iov_len);
1315                 head = msg->front.iov_base;
1316                 head->num = cpu_to_le32(0);
1317                 msg->front.iov_len = sizeof(*head);
1318                 spin_lock(&session->s_cap_lock);
1319                 list_add(&msg->list_head, &session->s_cap_releases);
1320                 session->s_num_cap_releases += CEPH_CAPS_PER_RELEASE;
1321         }
1322
1323         if (partial) {
1324                 head = partial->front.iov_base;
1325                 num = le32_to_cpu(head->num);
1326                 dout(" queueing partial %p with %d/%d\n", partial, num,
1327                      (int)CEPH_CAPS_PER_RELEASE);
1328                 list_move_tail(&partial->list_head,
1329                                &session->s_cap_releases_done);
1330                 session->s_num_cap_releases -= CEPH_CAPS_PER_RELEASE - num;
1331         }
1332         err = 0;
1333         spin_unlock(&session->s_cap_lock);
1334 out_unlocked:
1335         return err;
1336 }
1337
1338 /*
1339  * flush all dirty inode data to disk.
1340  *
1341  * returns true if we've flushed through want_flush_seq
1342  */
1343 static int check_cap_flush(struct ceph_mds_client *mdsc, u64 want_flush_seq)
1344 {
1345         int mds, ret = 1;
1346
1347         dout("check_cap_flush want %lld\n", want_flush_seq);
1348         mutex_lock(&mdsc->mutex);
1349         for (mds = 0; ret && mds < mdsc->max_sessions; mds++) {
1350                 struct ceph_mds_session *session = mdsc->sessions[mds];
1351
1352                 if (!session)
1353                         continue;
1354                 get_session(session);
1355                 mutex_unlock(&mdsc->mutex);
1356
1357                 mutex_lock(&session->s_mutex);
1358                 if (!list_empty(&session->s_cap_flushing)) {
1359                         struct ceph_inode_info *ci =
1360                                 list_entry(session->s_cap_flushing.next,
1361                                            struct ceph_inode_info,
1362                                            i_flushing_item);
1363                         struct inode *inode = &ci->vfs_inode;
1364
1365                         spin_lock(&ci->i_ceph_lock);
1366                         if (ci->i_cap_flush_seq <= want_flush_seq) {
1367                                 dout("check_cap_flush still flushing %p "
1368                                      "seq %lld <= %lld to mds%d\n", inode,
1369                                      ci->i_cap_flush_seq, want_flush_seq,
1370                                      session->s_mds);
1371                                 ret = 0;
1372                         }
1373                         spin_unlock(&ci->i_ceph_lock);
1374                 }
1375                 mutex_unlock(&session->s_mutex);
1376                 ceph_put_mds_session(session);
1377
1378                 if (!ret)
1379                         return ret;
1380                 mutex_lock(&mdsc->mutex);
1381         }
1382
1383         mutex_unlock(&mdsc->mutex);
1384         dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq);
1385         return ret;
1386 }
1387
1388 /*
1389  * called under s_mutex
1390  */
1391 void ceph_send_cap_releases(struct ceph_mds_client *mdsc,
1392                             struct ceph_mds_session *session)
1393 {
1394         struct ceph_msg *msg;
1395
1396         dout("send_cap_releases mds%d\n", session->s_mds);
1397         spin_lock(&session->s_cap_lock);
1398         while (!list_empty(&session->s_cap_releases_done)) {
1399                 msg = list_first_entry(&session->s_cap_releases_done,
1400                                  struct ceph_msg, list_head);
1401                 list_del_init(&msg->list_head);
1402                 spin_unlock(&session->s_cap_lock);
1403                 msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1404                 dout("send_cap_releases mds%d %p\n", session->s_mds, msg);
1405                 ceph_con_send(&session->s_con, msg);
1406                 spin_lock(&session->s_cap_lock);
1407         }
1408         spin_unlock(&session->s_cap_lock);
1409 }
1410
1411 static void discard_cap_releases(struct ceph_mds_client *mdsc,
1412                                  struct ceph_mds_session *session)
1413 {
1414         struct ceph_msg *msg;
1415         struct ceph_mds_cap_release *head;
1416         unsigned num;
1417
1418         dout("discard_cap_releases mds%d\n", session->s_mds);
1419
1420         /* zero out the in-progress message */
1421         msg = list_first_entry(&session->s_cap_releases,
1422                                struct ceph_msg, list_head);
1423         head = msg->front.iov_base;
1424         num = le32_to_cpu(head->num);
1425         dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg, num);
1426         head->num = cpu_to_le32(0);
1427         msg->front.iov_len = sizeof(*head);
1428         session->s_num_cap_releases += num;
1429
1430         /* requeue completed messages */
1431         while (!list_empty(&session->s_cap_releases_done)) {
1432                 msg = list_first_entry(&session->s_cap_releases_done,
1433                                  struct ceph_msg, list_head);
1434                 list_del_init(&msg->list_head);
1435
1436                 head = msg->front.iov_base;
1437                 num = le32_to_cpu(head->num);
1438                 dout("discard_cap_releases mds%d %p %u\n", session->s_mds, msg,
1439                      num);
1440                 session->s_num_cap_releases += num;
1441                 head->num = cpu_to_le32(0);
1442                 msg->front.iov_len = sizeof(*head);
1443                 list_add(&msg->list_head, &session->s_cap_releases);
1444         }
1445 }
1446
1447 /*
1448  * requests
1449  */
1450
1451 /*
1452  * Create an mds request.
1453  */
1454 struct ceph_mds_request *
1455 ceph_mdsc_create_request(struct ceph_mds_client *mdsc, int op, int mode)
1456 {
1457         struct ceph_mds_request *req = kzalloc(sizeof(*req), GFP_NOFS);
1458
1459         if (!req)
1460                 return ERR_PTR(-ENOMEM);
1461
1462         mutex_init(&req->r_fill_mutex);
1463         req->r_mdsc = mdsc;
1464         req->r_started = jiffies;
1465         req->r_resend_mds = -1;
1466         INIT_LIST_HEAD(&req->r_unsafe_dir_item);
1467         req->r_fmode = -1;
1468         kref_init(&req->r_kref);
1469         INIT_LIST_HEAD(&req->r_wait);
1470         init_completion(&req->r_completion);
1471         init_completion(&req->r_safe_completion);
1472         INIT_LIST_HEAD(&req->r_unsafe_item);
1473
1474         req->r_op = op;
1475         req->r_direct_mode = mode;
1476         return req;
1477 }
1478
1479 /*
1480  * return oldest (lowest) request, tid in request tree, 0 if none.
1481  *
1482  * called under mdsc->mutex.
1483  */
1484 static struct ceph_mds_request *__get_oldest_req(struct ceph_mds_client *mdsc)
1485 {
1486         if (RB_EMPTY_ROOT(&mdsc->request_tree))
1487                 return NULL;
1488         return rb_entry(rb_first(&mdsc->request_tree),
1489                         struct ceph_mds_request, r_node);
1490 }
1491
1492 static u64 __get_oldest_tid(struct ceph_mds_client *mdsc)
1493 {
1494         struct ceph_mds_request *req = __get_oldest_req(mdsc);
1495
1496         if (req)
1497                 return req->r_tid;
1498         return 0;
1499 }
1500
1501 /*
1502  * Build a dentry's path.  Allocate on heap; caller must kfree.  Based
1503  * on build_path_from_dentry in fs/cifs/dir.c.
1504  *
1505  * If @stop_on_nosnap, generate path relative to the first non-snapped
1506  * inode.
1507  *
1508  * Encode hidden .snap dirs as a double /, i.e.
1509  *   foo/.snap/bar -> foo//bar
1510  */
1511 char *ceph_mdsc_build_path(struct dentry *dentry, int *plen, u64 *base,
1512                            int stop_on_nosnap)
1513 {
1514         struct dentry *temp;
1515         char *path;
1516         int len, pos;
1517         unsigned seq;
1518
1519         if (dentry == NULL)
1520                 return ERR_PTR(-EINVAL);
1521
1522 retry:
1523         len = 0;
1524         seq = read_seqbegin(&rename_lock);
1525         rcu_read_lock();
1526         for (temp = dentry; !IS_ROOT(temp);) {
1527                 struct inode *inode = temp->d_inode;
1528                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR)
1529                         len++;  /* slash only */
1530                 else if (stop_on_nosnap && inode &&
1531                          ceph_snap(inode) == CEPH_NOSNAP)
1532                         break;
1533                 else
1534                         len += 1 + temp->d_name.len;
1535                 temp = temp->d_parent;
1536         }
1537         rcu_read_unlock();
1538         if (len)
1539                 len--;  /* no leading '/' */
1540
1541         path = kmalloc(len+1, GFP_NOFS);
1542         if (path == NULL)
1543                 return ERR_PTR(-ENOMEM);
1544         pos = len;
1545         path[pos] = 0;  /* trailing null */
1546         rcu_read_lock();
1547         for (temp = dentry; !IS_ROOT(temp) && pos != 0; ) {
1548                 struct inode *inode;
1549
1550                 spin_lock(&temp->d_lock);
1551                 inode = temp->d_inode;
1552                 if (inode && ceph_snap(inode) == CEPH_SNAPDIR) {
1553                         dout("build_path path+%d: %p SNAPDIR\n",
1554                              pos, temp);
1555                 } else if (stop_on_nosnap && inode &&
1556                            ceph_snap(inode) == CEPH_NOSNAP) {
1557                         spin_unlock(&temp->d_lock);
1558                         break;
1559                 } else {
1560                         pos -= temp->d_name.len;
1561                         if (pos < 0) {
1562                                 spin_unlock(&temp->d_lock);
1563                                 break;
1564                         }
1565                         strncpy(path + pos, temp->d_name.name,
1566                                 temp->d_name.len);
1567                 }
1568                 spin_unlock(&temp->d_lock);
1569                 if (pos)
1570                         path[--pos] = '/';
1571                 temp = temp->d_parent;
1572         }
1573         rcu_read_unlock();
1574         if (pos != 0 || read_seqretry(&rename_lock, seq)) {
1575                 pr_err("build_path did not end path lookup where "
1576                        "expected, namelen is %d, pos is %d\n", len, pos);
1577                 /* presumably this is only possible if racing with a
1578                    rename of one of the parent directories (we can not
1579                    lock the dentries above us to prevent this, but
1580                    retrying should be harmless) */
1581                 kfree(path);
1582                 goto retry;
1583         }
1584
1585         *base = ceph_ino(temp->d_inode);
1586         *plen = len;
1587         dout("build_path on %p %d built %llx '%.*s'\n",
1588              dentry, d_count(dentry), *base, len, path);
1589         return path;
1590 }
1591
1592 static int build_dentry_path(struct dentry *dentry,
1593                              const char **ppath, int *ppathlen, u64 *pino,
1594                              int *pfreepath)
1595 {
1596         char *path;
1597
1598         if (ceph_snap(dentry->d_parent->d_inode) == CEPH_NOSNAP) {
1599                 *pino = ceph_ino(dentry->d_parent->d_inode);
1600                 *ppath = dentry->d_name.name;
1601                 *ppathlen = dentry->d_name.len;
1602                 return 0;
1603         }
1604         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1605         if (IS_ERR(path))
1606                 return PTR_ERR(path);
1607         *ppath = path;
1608         *pfreepath = 1;
1609         return 0;
1610 }
1611
1612 static int build_inode_path(struct inode *inode,
1613                             const char **ppath, int *ppathlen, u64 *pino,
1614                             int *pfreepath)
1615 {
1616         struct dentry *dentry;
1617         char *path;
1618
1619         if (ceph_snap(inode) == CEPH_NOSNAP) {
1620                 *pino = ceph_ino(inode);
1621                 *ppathlen = 0;
1622                 return 0;
1623         }
1624         dentry = d_find_alias(inode);
1625         path = ceph_mdsc_build_path(dentry, ppathlen, pino, 1);
1626         dput(dentry);
1627         if (IS_ERR(path))
1628                 return PTR_ERR(path);
1629         *ppath = path;
1630         *pfreepath = 1;
1631         return 0;
1632 }
1633
1634 /*
1635  * request arguments may be specified via an inode *, a dentry *, or
1636  * an explicit ino+path.
1637  */
1638 static int set_request_path_attr(struct inode *rinode, struct dentry *rdentry,
1639                                   const char *rpath, u64 rino,
1640                                   const char **ppath, int *pathlen,
1641                                   u64 *ino, int *freepath)
1642 {
1643         int r = 0;
1644
1645         if (rinode) {
1646                 r = build_inode_path(rinode, ppath, pathlen, ino, freepath);
1647                 dout(" inode %p %llx.%llx\n", rinode, ceph_ino(rinode),
1648                      ceph_snap(rinode));
1649         } else if (rdentry) {
1650                 r = build_dentry_path(rdentry, ppath, pathlen, ino, freepath);
1651                 dout(" dentry %p %llx/%.*s\n", rdentry, *ino, *pathlen,
1652                      *ppath);
1653         } else if (rpath || rino) {
1654                 *ino = rino;
1655                 *ppath = rpath;
1656                 *pathlen = rpath ? strlen(rpath) : 0;
1657                 dout(" path %.*s\n", *pathlen, rpath);
1658         }
1659
1660         return r;
1661 }
1662
1663 /*
1664  * called under mdsc->mutex
1665  */
1666 static struct ceph_msg *create_request_message(struct ceph_mds_client *mdsc,
1667                                                struct ceph_mds_request *req,
1668                                                int mds)
1669 {
1670         struct ceph_msg *msg;
1671         struct ceph_mds_request_head *head;
1672         const char *path1 = NULL;
1673         const char *path2 = NULL;
1674         u64 ino1 = 0, ino2 = 0;
1675         int pathlen1 = 0, pathlen2 = 0;
1676         int freepath1 = 0, freepath2 = 0;
1677         int len;
1678         u16 releases;
1679         void *p, *end;
1680         int ret;
1681
1682         ret = set_request_path_attr(req->r_inode, req->r_dentry,
1683                               req->r_path1, req->r_ino1.ino,
1684                               &path1, &pathlen1, &ino1, &freepath1);
1685         if (ret < 0) {
1686                 msg = ERR_PTR(ret);
1687                 goto out;
1688         }
1689
1690         ret = set_request_path_attr(NULL, req->r_old_dentry,
1691                               req->r_path2, req->r_ino2.ino,
1692                               &path2, &pathlen2, &ino2, &freepath2);
1693         if (ret < 0) {
1694                 msg = ERR_PTR(ret);
1695                 goto out_free1;
1696         }
1697
1698         len = sizeof(*head) +
1699                 pathlen1 + pathlen2 + 2*(1 + sizeof(u32) + sizeof(u64));
1700
1701         /* calculate (max) length for cap releases */
1702         len += sizeof(struct ceph_mds_request_release) *
1703                 (!!req->r_inode_drop + !!req->r_dentry_drop +
1704                  !!req->r_old_inode_drop + !!req->r_old_dentry_drop);
1705         if (req->r_dentry_drop)
1706                 len += req->r_dentry->d_name.len;
1707         if (req->r_old_dentry_drop)
1708                 len += req->r_old_dentry->d_name.len;
1709
1710         msg = ceph_msg_new(CEPH_MSG_CLIENT_REQUEST, len, GFP_NOFS, false);
1711         if (!msg) {
1712                 msg = ERR_PTR(-ENOMEM);
1713                 goto out_free2;
1714         }
1715
1716         msg->hdr.tid = cpu_to_le64(req->r_tid);
1717
1718         head = msg->front.iov_base;
1719         p = msg->front.iov_base + sizeof(*head);
1720         end = msg->front.iov_base + msg->front.iov_len;
1721
1722         head->mdsmap_epoch = cpu_to_le32(mdsc->mdsmap->m_epoch);
1723         head->op = cpu_to_le32(req->r_op);
1724         head->caller_uid = cpu_to_le32(from_kuid(&init_user_ns, req->r_uid));
1725         head->caller_gid = cpu_to_le32(from_kgid(&init_user_ns, req->r_gid));
1726         head->args = req->r_args;
1727
1728         ceph_encode_filepath(&p, end, ino1, path1);
1729         ceph_encode_filepath(&p, end, ino2, path2);
1730
1731         /* make note of release offset, in case we need to replay */
1732         req->r_request_release_offset = p - msg->front.iov_base;
1733
1734         /* cap releases */
1735         releases = 0;
1736         if (req->r_inode_drop)
1737                 releases += ceph_encode_inode_release(&p,
1738                       req->r_inode ? req->r_inode : req->r_dentry->d_inode,
1739                       mds, req->r_inode_drop, req->r_inode_unless, 0);
1740         if (req->r_dentry_drop)
1741                 releases += ceph_encode_dentry_release(&p, req->r_dentry,
1742                        mds, req->r_dentry_drop, req->r_dentry_unless);
1743         if (req->r_old_dentry_drop)
1744                 releases += ceph_encode_dentry_release(&p, req->r_old_dentry,
1745                        mds, req->r_old_dentry_drop, req->r_old_dentry_unless);
1746         if (req->r_old_inode_drop)
1747                 releases += ceph_encode_inode_release(&p,
1748                       req->r_old_dentry->d_inode,
1749                       mds, req->r_old_inode_drop, req->r_old_inode_unless, 0);
1750         head->num_releases = cpu_to_le16(releases);
1751
1752         BUG_ON(p > end);
1753         msg->front.iov_len = p - msg->front.iov_base;
1754         msg->hdr.front_len = cpu_to_le32(msg->front.iov_len);
1755
1756         if (req->r_data_len) {
1757                 /* outbound data set only by ceph_sync_setxattr() */
1758                 BUG_ON(!req->r_pages);
1759                 ceph_msg_data_add_pages(msg, req->r_pages, req->r_data_len, 0);
1760         }
1761
1762         msg->hdr.data_len = cpu_to_le32(req->r_data_len);
1763         msg->hdr.data_off = cpu_to_le16(0);
1764
1765 out_free2:
1766         if (freepath2)
1767                 kfree((char *)path2);
1768 out_free1:
1769         if (freepath1)
1770                 kfree((char *)path1);
1771 out:
1772         return msg;
1773 }
1774
1775 /*
1776  * called under mdsc->mutex if error, under no mutex if
1777  * success.
1778  */
1779 static void complete_request(struct ceph_mds_client *mdsc,
1780                              struct ceph_mds_request *req)
1781 {
1782         if (req->r_callback)
1783                 req->r_callback(mdsc, req);
1784         else
1785                 complete_all(&req->r_completion);
1786 }
1787
1788 /*
1789  * called under mdsc->mutex
1790  */
1791 static int __prepare_send_request(struct ceph_mds_client *mdsc,
1792                                   struct ceph_mds_request *req,
1793                                   int mds)
1794 {
1795         struct ceph_mds_request_head *rhead;
1796         struct ceph_msg *msg;
1797         int flags = 0;
1798
1799         req->r_attempts++;
1800         if (req->r_inode) {
1801                 struct ceph_cap *cap =
1802                         ceph_get_cap_for_mds(ceph_inode(req->r_inode), mds);
1803
1804                 if (cap)
1805                         req->r_sent_on_mseq = cap->mseq;
1806                 else
1807                         req->r_sent_on_mseq = -1;
1808         }
1809         dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req,
1810              req->r_tid, ceph_mds_op_name(req->r_op), req->r_attempts);
1811
1812         if (req->r_got_unsafe) {
1813                 /*
1814                  * Replay.  Do not regenerate message (and rebuild
1815                  * paths, etc.); just use the original message.
1816                  * Rebuilding paths will break for renames because
1817                  * d_move mangles the src name.
1818                  */
1819                 msg = req->r_request;
1820                 rhead = msg->front.iov_base;
1821
1822                 flags = le32_to_cpu(rhead->flags);
1823                 flags |= CEPH_MDS_FLAG_REPLAY;
1824                 rhead->flags = cpu_to_le32(flags);
1825
1826                 if (req->r_target_inode)
1827                         rhead->ino = cpu_to_le64(ceph_ino(req->r_target_inode));
1828
1829                 rhead->num_retry = req->r_attempts - 1;
1830
1831                 /* remove cap/dentry releases from message */
1832                 rhead->num_releases = 0;
1833                 msg->hdr.front_len = cpu_to_le32(req->r_request_release_offset);
1834                 msg->front.iov_len = req->r_request_release_offset;
1835                 return 0;
1836         }
1837
1838         if (req->r_request) {
1839                 ceph_msg_put(req->r_request);
1840                 req->r_request = NULL;
1841         }
1842         msg = create_request_message(mdsc, req, mds);
1843         if (IS_ERR(msg)) {
1844                 req->r_err = PTR_ERR(msg);
1845                 complete_request(mdsc, req);
1846                 return PTR_ERR(msg);
1847         }
1848         req->r_request = msg;
1849
1850         rhead = msg->front.iov_base;
1851         rhead->oldest_client_tid = cpu_to_le64(__get_oldest_tid(mdsc));
1852         if (req->r_got_unsafe)
1853                 flags |= CEPH_MDS_FLAG_REPLAY;
1854         if (req->r_locked_dir)
1855                 flags |= CEPH_MDS_FLAG_WANT_DENTRY;
1856         rhead->flags = cpu_to_le32(flags);
1857         rhead->num_fwd = req->r_num_fwd;
1858         rhead->num_retry = req->r_attempts - 1;
1859         rhead->ino = 0;
1860
1861         dout(" r_locked_dir = %p\n", req->r_locked_dir);
1862         return 0;
1863 }
1864
1865 /*
1866  * send request, or put it on the appropriate wait list.
1867  */
1868 static int __do_request(struct ceph_mds_client *mdsc,
1869                         struct ceph_mds_request *req)
1870 {
1871         struct ceph_mds_session *session = NULL;
1872         int mds = -1;
1873         int err = -EAGAIN;
1874
1875         if (req->r_err || req->r_got_result) {
1876                 if (req->r_aborted)
1877                         __unregister_request(mdsc, req);
1878                 goto out;
1879         }
1880
1881         if (req->r_timeout &&
1882             time_after_eq(jiffies, req->r_started + req->r_timeout)) {
1883                 dout("do_request timed out\n");
1884                 err = -EIO;
1885                 goto finish;
1886         }
1887
1888         put_request_session(req);
1889
1890         mds = __choose_mds(mdsc, req);
1891         if (mds < 0 ||
1892             ceph_mdsmap_get_state(mdsc->mdsmap, mds) < CEPH_MDS_STATE_ACTIVE) {
1893                 dout("do_request no mds or not active, waiting for map\n");
1894                 list_add(&req->r_wait, &mdsc->waiting_for_map);
1895                 goto out;
1896         }
1897
1898         /* get, open session */
1899         session = __ceph_lookup_mds_session(mdsc, mds);
1900         if (!session) {
1901                 session = register_session(mdsc, mds);
1902                 if (IS_ERR(session)) {
1903                         err = PTR_ERR(session);
1904                         goto finish;
1905                 }
1906         }
1907         req->r_session = get_session(session);
1908
1909         dout("do_request mds%d session %p state %s\n", mds, session,
1910              session_state_name(session->s_state));
1911         if (session->s_state != CEPH_MDS_SESSION_OPEN &&
1912             session->s_state != CEPH_MDS_SESSION_HUNG) {
1913                 if (session->s_state == CEPH_MDS_SESSION_NEW ||
1914                     session->s_state == CEPH_MDS_SESSION_CLOSING)
1915                         __open_session(mdsc, session);
1916                 list_add(&req->r_wait, &session->s_waiting);
1917                 goto out_session;
1918         }
1919
1920         /* send request */
1921         req->r_resend_mds = -1;   /* forget any previous mds hint */
1922
1923         if (req->r_request_started == 0)   /* note request start time */
1924                 req->r_request_started = jiffies;
1925
1926         err = __prepare_send_request(mdsc, req, mds);
1927         if (!err) {
1928                 ceph_msg_get(req->r_request);
1929                 ceph_con_send(&session->s_con, req->r_request);
1930         }
1931
1932 out_session:
1933         ceph_put_mds_session(session);
1934 out:
1935         return err;
1936
1937 finish:
1938         req->r_err = err;
1939         complete_request(mdsc, req);
1940         goto out;
1941 }
1942
1943 /*
1944  * called under mdsc->mutex
1945  */
1946 static void __wake_requests(struct ceph_mds_client *mdsc,
1947                             struct list_head *head)
1948 {
1949         struct ceph_mds_request *req;
1950         LIST_HEAD(tmp_list);
1951
1952         list_splice_init(head, &tmp_list);
1953
1954         while (!list_empty(&tmp_list)) {
1955                 req = list_entry(tmp_list.next,
1956                                  struct ceph_mds_request, r_wait);
1957                 list_del_init(&req->r_wait);
1958                 dout(" wake request %p tid %llu\n", req, req->r_tid);
1959                 __do_request(mdsc, req);
1960         }
1961 }
1962
1963 /*
1964  * Wake up threads with requests pending for @mds, so that they can
1965  * resubmit their requests to a possibly different mds.
1966  */
1967 static void kick_requests(struct ceph_mds_client *mdsc, int mds)
1968 {
1969         struct ceph_mds_request *req;
1970         struct rb_node *p;
1971
1972         dout("kick_requests mds%d\n", mds);
1973         for (p = rb_first(&mdsc->request_tree); p; p = rb_next(p)) {
1974                 req = rb_entry(p, struct ceph_mds_request, r_node);
1975                 if (req->r_got_unsafe)
1976                         continue;
1977                 if (req->r_session &&
1978                     req->r_session->s_mds == mds) {
1979                         dout(" kicking tid %llu\n", req->r_tid);
1980                         __do_request(mdsc, req);
1981                 }
1982         }
1983 }
1984
1985 void ceph_mdsc_submit_request(struct ceph_mds_client *mdsc,
1986                               struct ceph_mds_request *req)
1987 {
1988         dout("submit_request on %p\n", req);
1989         mutex_lock(&mdsc->mutex);
1990         __register_request(mdsc, req, NULL);
1991         __do_request(mdsc, req);
1992         mutex_unlock(&mdsc->mutex);
1993 }
1994
1995 /*
1996  * Synchrously perform an mds request.  Take care of all of the
1997  * session setup, forwarding, retry details.
1998  */
1999 int ceph_mdsc_do_request(struct ceph_mds_client *mdsc,
2000                          struct inode *dir,
2001                          struct ceph_mds_request *req)
2002 {
2003         int err;
2004
2005         dout("do_request on %p\n", req);
2006
2007         /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2008         if (req->r_inode)
2009                 ceph_get_cap_refs(ceph_inode(req->r_inode), CEPH_CAP_PIN);
2010         if (req->r_locked_dir)
2011                 ceph_get_cap_refs(ceph_inode(req->r_locked_dir), CEPH_CAP_PIN);
2012         if (req->r_old_dentry)
2013                 ceph_get_cap_refs(ceph_inode(req->r_old_dentry_dir),
2014                                   CEPH_CAP_PIN);
2015
2016         /* issue */
2017         mutex_lock(&mdsc->mutex);
2018         __register_request(mdsc, req, dir);
2019         __do_request(mdsc, req);
2020
2021         if (req->r_err) {
2022                 err = req->r_err;
2023                 __unregister_request(mdsc, req);
2024                 dout("do_request early error %d\n", err);
2025                 goto out;
2026         }
2027
2028         /* wait */
2029         mutex_unlock(&mdsc->mutex);
2030         dout("do_request waiting\n");
2031         if (req->r_timeout) {
2032                 err = (long)wait_for_completion_killable_timeout(
2033                         &req->r_completion, req->r_timeout);
2034                 if (err == 0)
2035                         err = -EIO;
2036         } else {
2037                 err = wait_for_completion_killable(&req->r_completion);
2038         }
2039         dout("do_request waited, got %d\n", err);
2040         mutex_lock(&mdsc->mutex);
2041
2042         /* only abort if we didn't race with a real reply */
2043         if (req->r_got_result) {
2044                 err = le32_to_cpu(req->r_reply_info.head->result);
2045         } else if (err < 0) {
2046                 dout("aborted request %lld with %d\n", req->r_tid, err);
2047
2048                 /*
2049                  * ensure we aren't running concurrently with
2050                  * ceph_fill_trace or ceph_readdir_prepopulate, which
2051                  * rely on locks (dir mutex) held by our caller.
2052                  */
2053                 mutex_lock(&req->r_fill_mutex);
2054                 req->r_err = err;
2055                 req->r_aborted = true;
2056                 mutex_unlock(&req->r_fill_mutex);
2057
2058                 if (req->r_locked_dir &&
2059                     (req->r_op & CEPH_MDS_OP_WRITE))
2060                         ceph_invalidate_dir_request(req);
2061         } else {
2062                 err = req->r_err;
2063         }
2064
2065 out:
2066         mutex_unlock(&mdsc->mutex);
2067         dout("do_request %p done, result %d\n", req, err);
2068         return err;
2069 }
2070
2071 /*
2072  * Invalidate dir's completeness, dentry lease state on an aborted MDS
2073  * namespace request.
2074  */
2075 void ceph_invalidate_dir_request(struct ceph_mds_request *req)
2076 {
2077         struct inode *inode = req->r_locked_dir;
2078
2079         dout("invalidate_dir_request %p (complete, lease(s))\n", inode);
2080
2081         ceph_dir_clear_complete(inode);
2082         if (req->r_dentry)
2083                 ceph_invalidate_dentry_lease(req->r_dentry);
2084         if (req->r_old_dentry)
2085                 ceph_invalidate_dentry_lease(req->r_old_dentry);
2086 }
2087
2088 /*
2089  * Handle mds reply.
2090  *
2091  * We take the session mutex and parse and process the reply immediately.
2092  * This preserves the logical ordering of replies, capabilities, etc., sent
2093  * by the MDS as they are applied to our local cache.
2094  */
2095 static void handle_reply(struct ceph_mds_session *session, struct ceph_msg *msg)
2096 {
2097         struct ceph_mds_client *mdsc = session->s_mdsc;
2098         struct ceph_mds_request *req;
2099         struct ceph_mds_reply_head *head = msg->front.iov_base;
2100         struct ceph_mds_reply_info_parsed *rinfo;  /* parsed reply info */
2101         u64 tid;
2102         int err, result;
2103         int mds = session->s_mds;
2104
2105         if (msg->front.iov_len < sizeof(*head)) {
2106                 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2107                 ceph_msg_dump(msg);
2108                 return;
2109         }
2110
2111         /* get request, session */
2112         tid = le64_to_cpu(msg->hdr.tid);
2113         mutex_lock(&mdsc->mutex);
2114         req = __lookup_request(mdsc, tid);
2115         if (!req) {
2116                 dout("handle_reply on unknown tid %llu\n", tid);
2117                 mutex_unlock(&mdsc->mutex);
2118                 return;
2119         }
2120         dout("handle_reply %p\n", req);
2121
2122         /* correct session? */
2123         if (req->r_session != session) {
2124                 pr_err("mdsc_handle_reply got %llu on session mds%d"
2125                        " not mds%d\n", tid, session->s_mds,
2126                        req->r_session ? req->r_session->s_mds : -1);
2127                 mutex_unlock(&mdsc->mutex);
2128                 goto out;
2129         }
2130
2131         /* dup? */
2132         if ((req->r_got_unsafe && !head->safe) ||
2133             (req->r_got_safe && head->safe)) {
2134                 pr_warning("got a dup %s reply on %llu from mds%d\n",
2135                            head->safe ? "safe" : "unsafe", tid, mds);
2136                 mutex_unlock(&mdsc->mutex);
2137                 goto out;
2138         }
2139         if (req->r_got_safe && !head->safe) {
2140                 pr_warning("got unsafe after safe on %llu from mds%d\n",
2141                            tid, mds);
2142                 mutex_unlock(&mdsc->mutex);
2143                 goto out;
2144         }
2145
2146         result = le32_to_cpu(head->result);
2147
2148         /*
2149          * Handle an ESTALE
2150          * if we're not talking to the authority, send to them
2151          * if the authority has changed while we weren't looking,
2152          * send to new authority
2153          * Otherwise we just have to return an ESTALE
2154          */
2155         if (result == -ESTALE) {
2156                 dout("got ESTALE on request %llu", req->r_tid);
2157                 if (!req->r_inode) {
2158                         /* do nothing; not an authority problem */
2159                 } else if (req->r_direct_mode != USE_AUTH_MDS) {
2160                         dout("not using auth, setting for that now");
2161                         req->r_direct_mode = USE_AUTH_MDS;
2162                         __do_request(mdsc, req);
2163                         mutex_unlock(&mdsc->mutex);
2164                         goto out;
2165                 } else  {
2166                         struct ceph_inode_info *ci = ceph_inode(req->r_inode);
2167                         struct ceph_cap *cap = NULL;
2168
2169                         if (req->r_session)
2170                                 cap = ceph_get_cap_for_mds(ci,
2171                                                    req->r_session->s_mds);
2172
2173                         dout("already using auth");
2174                         if ((!cap || cap != ci->i_auth_cap) ||
2175                             (cap->mseq != req->r_sent_on_mseq)) {
2176                                 dout("but cap changed, so resending");
2177                                 __do_request(mdsc, req);
2178                                 mutex_unlock(&mdsc->mutex);
2179                                 goto out;
2180                         }
2181                 }
2182                 dout("have to return ESTALE on request %llu", req->r_tid);
2183         }
2184
2185
2186         if (head->safe) {
2187                 req->r_got_safe = true;
2188                 __unregister_request(mdsc, req);
2189                 complete_all(&req->r_safe_completion);
2190
2191                 if (req->r_got_unsafe) {
2192                         /*
2193                          * We already handled the unsafe response, now do the
2194                          * cleanup.  No need to examine the response; the MDS
2195                          * doesn't include any result info in the safe
2196                          * response.  And even if it did, there is nothing
2197                          * useful we could do with a revised return value.
2198                          */
2199                         dout("got safe reply %llu, mds%d\n", tid, mds);
2200                         list_del_init(&req->r_unsafe_item);
2201
2202                         /* last unsafe request during umount? */
2203                         if (mdsc->stopping && !__get_oldest_req(mdsc))
2204                                 complete_all(&mdsc->safe_umount_waiters);
2205                         mutex_unlock(&mdsc->mutex);
2206                         goto out;
2207                 }
2208         } else {
2209                 req->r_got_unsafe = true;
2210                 list_add_tail(&req->r_unsafe_item, &req->r_session->s_unsafe);
2211         }
2212
2213         dout("handle_reply tid %lld result %d\n", tid, result);
2214         rinfo = &req->r_reply_info;
2215         err = parse_reply_info(msg, rinfo, session->s_con.peer_features);
2216         mutex_unlock(&mdsc->mutex);
2217
2218         mutex_lock(&session->s_mutex);
2219         if (err < 0) {
2220                 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds, tid);
2221                 ceph_msg_dump(msg);
2222                 goto out_err;
2223         }
2224
2225         /* snap trace */
2226         if (rinfo->snapblob_len) {
2227                 down_write(&mdsc->snap_rwsem);
2228                 ceph_update_snap_trace(mdsc, rinfo->snapblob,
2229                                rinfo->snapblob + rinfo->snapblob_len,
2230                                le32_to_cpu(head->op) == CEPH_MDS_OP_RMSNAP);
2231                 downgrade_write(&mdsc->snap_rwsem);
2232         } else {
2233                 down_read(&mdsc->snap_rwsem);
2234         }
2235
2236         /* insert trace into our cache */
2237         mutex_lock(&req->r_fill_mutex);
2238         err = ceph_fill_trace(mdsc->fsc->sb, req, req->r_session);
2239         if (err == 0) {
2240                 if (result == 0 && (req->r_op == CEPH_MDS_OP_READDIR ||
2241                                     req->r_op == CEPH_MDS_OP_LSSNAP))
2242                         ceph_readdir_prepopulate(req, req->r_session);
2243                 ceph_unreserve_caps(mdsc, &req->r_caps_reservation);
2244         }
2245         mutex_unlock(&req->r_fill_mutex);
2246
2247         up_read(&mdsc->snap_rwsem);
2248 out_err:
2249         mutex_lock(&mdsc->mutex);
2250         if (!req->r_aborted) {
2251                 if (err) {
2252                         req->r_err = err;
2253                 } else {
2254                         req->r_reply = msg;
2255                         ceph_msg_get(msg);
2256                         req->r_got_result = true;
2257                 }
2258         } else {
2259                 dout("reply arrived after request %lld was aborted\n", tid);
2260         }
2261         mutex_unlock(&mdsc->mutex);
2262
2263         ceph_add_cap_releases(mdsc, req->r_session);
2264         mutex_unlock(&session->s_mutex);
2265
2266         /* kick calling process */
2267         complete_request(mdsc, req);
2268 out:
2269         ceph_mdsc_put_request(req);
2270         return;
2271 }
2272
2273
2274
2275 /*
2276  * handle mds notification that our request has been forwarded.
2277  */
2278 static void handle_forward(struct ceph_mds_client *mdsc,
2279                            struct ceph_mds_session *session,
2280                            struct ceph_msg *msg)
2281 {
2282         struct ceph_mds_request *req;
2283         u64 tid = le64_to_cpu(msg->hdr.tid);
2284         u32 next_mds;
2285         u32 fwd_seq;
2286         int err = -EINVAL;
2287         void *p = msg->front.iov_base;
2288         void *end = p + msg->front.iov_len;
2289
2290         ceph_decode_need(&p, end, 2*sizeof(u32), bad);
2291         next_mds = ceph_decode_32(&p);
2292         fwd_seq = ceph_decode_32(&p);
2293
2294         mutex_lock(&mdsc->mutex);
2295         req = __lookup_request(mdsc, tid);
2296         if (!req) {
2297                 dout("forward tid %llu to mds%d - req dne\n", tid, next_mds);
2298                 goto out;  /* dup reply? */
2299         }
2300
2301         if (req->r_aborted) {
2302                 dout("forward tid %llu aborted, unregistering\n", tid);
2303                 __unregister_request(mdsc, req);
2304         } else if (fwd_seq <= req->r_num_fwd) {
2305                 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2306                      tid, next_mds, req->r_num_fwd, fwd_seq);
2307         } else {
2308                 /* resend. forward race not possible; mds would drop */
2309                 dout("forward tid %llu to mds%d (we resend)\n", tid, next_mds);
2310                 BUG_ON(req->r_err);
2311                 BUG_ON(req->r_got_result);
2312                 req->r_num_fwd = fwd_seq;
2313                 req->r_resend_mds = next_mds;
2314                 put_request_session(req);
2315                 __do_request(mdsc, req);
2316         }
2317         ceph_mdsc_put_request(req);
2318 out:
2319         mutex_unlock(&mdsc->mutex);
2320         return;
2321
2322 bad:
2323         pr_err("mdsc_handle_forward decode error err=%d\n", err);
2324 }
2325
2326 /*
2327  * handle a mds session control message
2328  */
2329 static void handle_session(struct ceph_mds_session *session,
2330                            struct ceph_msg *msg)
2331 {
2332         struct ceph_mds_client *mdsc = session->s_mdsc;
2333         u32 op;
2334         u64 seq;
2335         int mds = session->s_mds;
2336         struct ceph_mds_session_head *h = msg->front.iov_base;
2337         int wake = 0;
2338
2339         /* decode */
2340         if (msg->front.iov_len != sizeof(*h))
2341                 goto bad;
2342         op = le32_to_cpu(h->op);
2343         seq = le64_to_cpu(h->seq);
2344
2345         mutex_lock(&mdsc->mutex);
2346         if (op == CEPH_SESSION_CLOSE)
2347                 __unregister_session(mdsc, session);
2348         /* FIXME: this ttl calculation is generous */
2349         session->s_ttl = jiffies + HZ*mdsc->mdsmap->m_session_autoclose;
2350         mutex_unlock(&mdsc->mutex);
2351
2352         mutex_lock(&session->s_mutex);
2353
2354         dout("handle_session mds%d %s %p state %s seq %llu\n",
2355              mds, ceph_session_op_name(op), session,
2356              session_state_name(session->s_state), seq);
2357
2358         if (session->s_state == CEPH_MDS_SESSION_HUNG) {
2359                 session->s_state = CEPH_MDS_SESSION_OPEN;
2360                 pr_info("mds%d came back\n", session->s_mds);
2361         }
2362
2363         switch (op) {
2364         case CEPH_SESSION_OPEN:
2365                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2366                         pr_info("mds%d reconnect success\n", session->s_mds);
2367                 session->s_state = CEPH_MDS_SESSION_OPEN;
2368                 renewed_caps(mdsc, session, 0);
2369                 wake = 1;
2370                 if (mdsc->stopping)
2371                         __close_session(mdsc, session);
2372                 break;
2373
2374         case CEPH_SESSION_RENEWCAPS:
2375                 if (session->s_renew_seq == seq)
2376                         renewed_caps(mdsc, session, 1);
2377                 break;
2378
2379         case CEPH_SESSION_CLOSE:
2380                 if (session->s_state == CEPH_MDS_SESSION_RECONNECTING)
2381                         pr_info("mds%d reconnect denied\n", session->s_mds);
2382                 remove_session_caps(session);
2383                 wake = 1; /* for good measure */
2384                 wake_up_all(&mdsc->session_close_wq);
2385                 kick_requests(mdsc, mds);
2386                 break;
2387
2388         case CEPH_SESSION_STALE:
2389                 pr_info("mds%d caps went stale, renewing\n",
2390                         session->s_mds);
2391                 spin_lock(&session->s_gen_ttl_lock);
2392                 session->s_cap_gen++;
2393                 session->s_cap_ttl = jiffies - 1;
2394                 spin_unlock(&session->s_gen_ttl_lock);
2395                 send_renew_caps(mdsc, session);
2396                 break;
2397
2398         case CEPH_SESSION_RECALL_STATE:
2399                 trim_caps(mdsc, session, le32_to_cpu(h->max_caps));
2400                 break;
2401
2402         default:
2403                 pr_err("mdsc_handle_session bad op %d mds%d\n", op, mds);
2404                 WARN_ON(1);
2405         }
2406
2407         mutex_unlock(&session->s_mutex);
2408         if (wake) {
2409                 mutex_lock(&mdsc->mutex);
2410                 __wake_requests(mdsc, &session->s_waiting);
2411                 mutex_unlock(&mdsc->mutex);
2412         }
2413         return;
2414
2415 bad:
2416         pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds,
2417                (int)msg->front.iov_len);
2418         ceph_msg_dump(msg);
2419         return;
2420 }
2421
2422
2423 /*
2424  * called under session->mutex.
2425  */
2426 static void replay_unsafe_requests(struct ceph_mds_client *mdsc,
2427                                    struct ceph_mds_session *session)
2428 {
2429         struct ceph_mds_request *req, *nreq;
2430         int err;
2431
2432         dout("replay_unsafe_requests mds%d\n", session->s_mds);
2433
2434         mutex_lock(&mdsc->mutex);
2435         list_for_each_entry_safe(req, nreq, &session->s_unsafe, r_unsafe_item) {
2436                 err = __prepare_send_request(mdsc, req, session->s_mds);
2437                 if (!err) {
2438                         ceph_msg_get(req->r_request);
2439                         ceph_con_send(&session->s_con, req->r_request);
2440                 }
2441         }
2442         mutex_unlock(&mdsc->mutex);
2443 }
2444
2445 /*
2446  * Encode information about a cap for a reconnect with the MDS.
2447  */
2448 static int encode_caps_cb(struct inode *inode, struct ceph_cap *cap,
2449                           void *arg)
2450 {
2451         union {
2452                 struct ceph_mds_cap_reconnect v2;
2453                 struct ceph_mds_cap_reconnect_v1 v1;
2454         } rec;
2455         size_t reclen;
2456         struct ceph_inode_info *ci;
2457         struct ceph_reconnect_state *recon_state = arg;
2458         struct ceph_pagelist *pagelist = recon_state->pagelist;
2459         char *path;
2460         int pathlen, err;
2461         u64 pathbase;
2462         struct dentry *dentry;
2463
2464         ci = cap->ci;
2465
2466         dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2467              inode, ceph_vinop(inode), cap, cap->cap_id,
2468              ceph_cap_string(cap->issued));
2469         err = ceph_pagelist_encode_64(pagelist, ceph_ino(inode));
2470         if (err)
2471                 return err;
2472
2473         dentry = d_find_alias(inode);
2474         if (dentry) {
2475                 path = ceph_mdsc_build_path(dentry, &pathlen, &pathbase, 0);
2476                 if (IS_ERR(path)) {
2477                         err = PTR_ERR(path);
2478                         goto out_dput;
2479                 }
2480         } else {
2481                 path = NULL;
2482                 pathlen = 0;
2483         }
2484         err = ceph_pagelist_encode_string(pagelist, path, pathlen);
2485         if (err)
2486                 goto out_free;
2487
2488         spin_lock(&ci->i_ceph_lock);
2489         cap->seq = 0;        /* reset cap seq */
2490         cap->issue_seq = 0;  /* and issue_seq */
2491         cap->mseq = 0;       /* and migrate_seq */
2492         cap->cap_gen = cap->session->s_cap_gen;
2493
2494         if (recon_state->flock) {
2495                 rec.v2.cap_id = cpu_to_le64(cap->cap_id);
2496                 rec.v2.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2497                 rec.v2.issued = cpu_to_le32(cap->issued);
2498                 rec.v2.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2499                 rec.v2.pathbase = cpu_to_le64(pathbase);
2500                 rec.v2.flock_len = 0;
2501                 reclen = sizeof(rec.v2);
2502         } else {
2503                 rec.v1.cap_id = cpu_to_le64(cap->cap_id);
2504                 rec.v1.wanted = cpu_to_le32(__ceph_caps_wanted(ci));
2505                 rec.v1.issued = cpu_to_le32(cap->issued);
2506                 rec.v1.size = cpu_to_le64(inode->i_size);
2507                 ceph_encode_timespec(&rec.v1.mtime, &inode->i_mtime);
2508                 ceph_encode_timespec(&rec.v1.atime, &inode->i_atime);
2509                 rec.v1.snaprealm = cpu_to_le64(ci->i_snap_realm->ino);
2510                 rec.v1.pathbase = cpu_to_le64(pathbase);
2511                 reclen = sizeof(rec.v1);
2512         }
2513         spin_unlock(&ci->i_ceph_lock);
2514
2515         if (recon_state->flock) {
2516                 int num_fcntl_locks, num_flock_locks;
2517                 struct ceph_filelock *flocks;
2518
2519 encode_again:
2520                 spin_lock(&inode->i_lock);
2521                 ceph_count_locks(inode, &num_fcntl_locks, &num_flock_locks);
2522                 spin_unlock(&inode->i_lock);
2523                 flocks = kmalloc((num_fcntl_locks+num_flock_locks) *
2524                                  sizeof(struct ceph_filelock), GFP_NOFS);
2525                 if (!flocks) {
2526                         err = -ENOMEM;
2527                         goto out_free;
2528                 }
2529                 spin_lock(&inode->i_lock);
2530                 err = ceph_encode_locks_to_buffer(inode, flocks,
2531                                                   num_fcntl_locks,
2532                                                   num_flock_locks);
2533                 spin_unlock(&inode->i_lock);
2534                 if (err) {
2535                         kfree(flocks);
2536                         if (err == -ENOSPC)
2537                                 goto encode_again;
2538                         goto out_free;
2539                 }
2540                 /*
2541                  * number of encoded locks is stable, so copy to pagelist
2542                  */
2543                 rec.v2.flock_len = cpu_to_le32(2*sizeof(u32) +
2544                                     (num_fcntl_locks+num_flock_locks) *
2545                                     sizeof(struct ceph_filelock));
2546                 err = ceph_pagelist_append(pagelist, &rec, reclen);
2547                 if (!err)
2548                         err = ceph_locks_to_pagelist(flocks, pagelist,
2549                                                      num_fcntl_locks,
2550                                                      num_flock_locks);
2551                 kfree(flocks);
2552         } else {
2553                 err = ceph_pagelist_append(pagelist, &rec, reclen);
2554         }
2555
2556         recon_state->nr_caps++;
2557 out_free:
2558         kfree(path);
2559 out_dput:
2560         dput(dentry);
2561         return err;
2562 }
2563
2564
2565 /*
2566  * If an MDS fails and recovers, clients need to reconnect in order to
2567  * reestablish shared state.  This includes all caps issued through
2568  * this session _and_ the snap_realm hierarchy.  Because it's not
2569  * clear which snap realms the mds cares about, we send everything we
2570  * know about.. that ensures we'll then get any new info the
2571  * recovering MDS might have.
2572  *
2573  * This is a relatively heavyweight operation, but it's rare.
2574  *
2575  * called with mdsc->mutex held.
2576  */
2577 static void send_mds_reconnect(struct ceph_mds_client *mdsc,
2578                                struct ceph_mds_session *session)
2579 {
2580         struct ceph_msg *reply;
2581         struct rb_node *p;
2582         int mds = session->s_mds;
2583         int err = -ENOMEM;
2584         int s_nr_caps;
2585         struct ceph_pagelist *pagelist;
2586         struct ceph_reconnect_state recon_state;
2587
2588         pr_info("mds%d reconnect start\n", mds);
2589
2590         pagelist = kmalloc(sizeof(*pagelist), GFP_NOFS);
2591         if (!pagelist)
2592                 goto fail_nopagelist;
2593         ceph_pagelist_init(pagelist);
2594
2595         reply = ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT, 0, GFP_NOFS, false);
2596         if (!reply)
2597                 goto fail_nomsg;
2598
2599         mutex_lock(&session->s_mutex);
2600         session->s_state = CEPH_MDS_SESSION_RECONNECTING;
2601         session->s_seq = 0;
2602
2603         ceph_con_close(&session->s_con);
2604         ceph_con_open(&session->s_con,
2605                       CEPH_ENTITY_TYPE_MDS, mds,
2606                       ceph_mdsmap_get_addr(mdsc->mdsmap, mds));
2607
2608         /* replay unsafe requests */
2609         replay_unsafe_requests(mdsc, session);
2610
2611         down_read(&mdsc->snap_rwsem);
2612
2613         dout("session %p state %s\n", session,
2614              session_state_name(session->s_state));
2615
2616         spin_lock(&session->s_gen_ttl_lock);
2617         session->s_cap_gen++;
2618         spin_unlock(&session->s_gen_ttl_lock);
2619
2620         spin_lock(&session->s_cap_lock);
2621         /*
2622          * notify __ceph_remove_cap() that we are composing cap reconnect.
2623          * If a cap get released before being added to the cap reconnect,
2624          * __ceph_remove_cap() should skip queuing cap release.
2625          */
2626         session->s_cap_reconnect = 1;
2627         /* drop old cap expires; we're about to reestablish that state */
2628         discard_cap_releases(mdsc, session);
2629         spin_unlock(&session->s_cap_lock);
2630
2631         /* traverse this session's caps */
2632         s_nr_caps = session->s_nr_caps;
2633         err = ceph_pagelist_encode_32(pagelist, s_nr_caps);
2634         if (err)
2635                 goto fail;
2636
2637         recon_state.nr_caps = 0;
2638         recon_state.pagelist = pagelist;
2639         recon_state.flock = session->s_con.peer_features & CEPH_FEATURE_FLOCK;
2640         err = iterate_session_caps(session, encode_caps_cb, &recon_state);
2641         if (err < 0)
2642                 goto fail;
2643
2644         spin_lock(&session->s_cap_lock);
2645         session->s_cap_reconnect = 0;
2646         spin_unlock(&session->s_cap_lock);
2647
2648         /*
2649          * snaprealms.  we provide mds with the ino, seq (version), and
2650          * parent for all of our realms.  If the mds has any newer info,
2651          * it will tell us.
2652          */
2653         for (p = rb_first(&mdsc->snap_realms); p; p = rb_next(p)) {
2654                 struct ceph_snap_realm *realm =
2655                         rb_entry(p, struct ceph_snap_realm, node);
2656                 struct ceph_mds_snaprealm_reconnect sr_rec;
2657
2658                 dout(" adding snap realm %llx seq %lld parent %llx\n",
2659                      realm->ino, realm->seq, realm->parent_ino);
2660                 sr_rec.ino = cpu_to_le64(realm->ino);
2661                 sr_rec.seq = cpu_to_le64(realm->seq);
2662                 sr_rec.parent = cpu_to_le64(realm->parent_ino);
2663                 err = ceph_pagelist_append(pagelist, &sr_rec, sizeof(sr_rec));
2664                 if (err)
2665                         goto fail;
2666         }
2667
2668         if (recon_state.flock)
2669                 reply->hdr.version = cpu_to_le16(2);
2670
2671         /* raced with cap release? */
2672         if (s_nr_caps != recon_state.nr_caps) {
2673                 struct page *page = list_first_entry(&pagelist->head,
2674                                                      struct page, lru);
2675                 __le32 *addr = kmap_atomic(page);
2676                 *addr = cpu_to_le32(recon_state.nr_caps);
2677                 kunmap_atomic(addr);
2678         }
2679
2680         reply->hdr.data_len = cpu_to_le32(pagelist->length);
2681         ceph_msg_data_add_pagelist(reply, pagelist);
2682         ceph_con_send(&session->s_con, reply);
2683
2684         mutex_unlock(&session->s_mutex);
2685
2686         mutex_lock(&mdsc->mutex);
2687         __wake_requests(mdsc, &session->s_waiting);
2688         mutex_unlock(&mdsc->mutex);
2689
2690         up_read(&mdsc->snap_rwsem);
2691         return;
2692
2693 fail:
2694         ceph_msg_put(reply);
2695         up_read(&mdsc->snap_rwsem);
2696         mutex_unlock(&session->s_mutex);
2697 fail_nomsg:
2698         ceph_pagelist_release(pagelist);
2699         kfree(pagelist);
2700 fail_nopagelist:
2701         pr_err("error %d preparing reconnect for mds%d\n", err, mds);
2702         return;
2703 }
2704
2705
2706 /*
2707  * compare old and new mdsmaps, kicking requests
2708  * and closing out old connections as necessary
2709  *
2710  * called under mdsc->mutex.
2711  */
2712 static void check_new_map(struct ceph_mds_client *mdsc,
2713                           struct ceph_mdsmap *newmap,
2714                           struct ceph_mdsmap *oldmap)
2715 {
2716         int i;
2717         int oldstate, newstate;
2718         struct ceph_mds_session *s;
2719
2720         dout("check_new_map new %u old %u\n",
2721              newmap->m_epoch, oldmap->m_epoch);
2722
2723         for (i = 0; i < oldmap->m_max_mds && i < mdsc->max_sessions; i++) {
2724                 if (mdsc->sessions[i] == NULL)
2725                         continue;
2726                 s = mdsc->sessions[i];
2727                 oldstate = ceph_mdsmap_get_state(oldmap, i);
2728                 newstate = ceph_mdsmap_get_state(newmap, i);
2729
2730                 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
2731                      i, ceph_mds_state_name(oldstate),
2732                      ceph_mdsmap_is_laggy(oldmap, i) ? " (laggy)" : "",
2733                      ceph_mds_state_name(newstate),
2734                      ceph_mdsmap_is_laggy(newmap, i) ? " (laggy)" : "",
2735                      session_state_name(s->s_state));
2736
2737                 if (i >= newmap->m_max_mds ||
2738                     memcmp(ceph_mdsmap_get_addr(oldmap, i),
2739                            ceph_mdsmap_get_addr(newmap, i),
2740                            sizeof(struct ceph_entity_addr))) {
2741                         if (s->s_state == CEPH_MDS_SESSION_OPENING) {
2742                                 /* the session never opened, just close it
2743                                  * out now */
2744                                 __wake_requests(mdsc, &s->s_waiting);
2745                                 __unregister_session(mdsc, s);
2746                         } else {
2747                                 /* just close it */
2748                                 mutex_unlock(&mdsc->mutex);
2749                                 mutex_lock(&s->s_mutex);
2750                                 mutex_lock(&mdsc->mutex);
2751                                 ceph_con_close(&s->s_con);
2752                                 mutex_unlock(&s->s_mutex);
2753                                 s->s_state = CEPH_MDS_SESSION_RESTARTING;
2754                         }
2755
2756                         /* kick any requests waiting on the recovering mds */
2757                         kick_requests(mdsc, i);
2758                 } else if (oldstate == newstate) {
2759                         continue;  /* nothing new with this mds */
2760                 }
2761
2762                 /*
2763                  * send reconnect?
2764                  */
2765                 if (s->s_state == CEPH_MDS_SESSION_RESTARTING &&
2766                     newstate >= CEPH_MDS_STATE_RECONNECT) {
2767                         mutex_unlock(&mdsc->mutex);
2768                         send_mds_reconnect(mdsc, s);
2769                         mutex_lock(&mdsc->mutex);
2770                 }
2771
2772                 /*
2773                  * kick request on any mds that has gone active.
2774                  */
2775                 if (oldstate < CEPH_MDS_STATE_ACTIVE &&
2776                     newstate >= CEPH_MDS_STATE_ACTIVE) {
2777                         if (oldstate != CEPH_MDS_STATE_CREATING &&
2778                             oldstate != CEPH_MDS_STATE_STARTING)
2779                                 pr_info("mds%d recovery completed\n", s->s_mds);
2780                         kick_requests(mdsc, i);
2781                         ceph_kick_flushing_caps(mdsc, s);
2782                         wake_up_session_caps(s, 1);
2783                 }
2784         }
2785
2786         for (i = 0; i < newmap->m_max_mds && i < mdsc->max_sessions; i++) {
2787                 s = mdsc->sessions[i];
2788                 if (!s)
2789                         continue;
2790                 if (!ceph_mdsmap_is_laggy(newmap, i))
2791                         continue;
2792                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
2793                     s->s_state == CEPH_MDS_SESSION_HUNG ||
2794                     s->s_state == CEPH_MDS_SESSION_CLOSING) {
2795                         dout(" connecting to export targets of laggy mds%d\n",
2796                              i);
2797                         __open_export_target_sessions(mdsc, s);
2798                 }
2799         }
2800 }
2801
2802
2803
2804 /*
2805  * leases
2806  */
2807
2808 /*
2809  * caller must hold session s_mutex, dentry->d_lock
2810  */
2811 void __ceph_mdsc_drop_dentry_lease(struct dentry *dentry)
2812 {
2813         struct ceph_dentry_info *di = ceph_dentry(dentry);
2814
2815         ceph_put_mds_session(di->lease_session);
2816         di->lease_session = NULL;
2817 }
2818
2819 static void handle_lease(struct ceph_mds_client *mdsc,
2820                          struct ceph_mds_session *session,
2821                          struct ceph_msg *msg)
2822 {
2823         struct super_block *sb = mdsc->fsc->sb;
2824         struct inode *inode;
2825         struct dentry *parent, *dentry;
2826         struct ceph_dentry_info *di;
2827         int mds = session->s_mds;
2828         struct ceph_mds_lease *h = msg->front.iov_base;
2829         u32 seq;
2830         struct ceph_vino vino;
2831         struct qstr dname;
2832         int release = 0;
2833
2834         dout("handle_lease from mds%d\n", mds);
2835
2836         /* decode */
2837         if (msg->front.iov_len < sizeof(*h) + sizeof(u32))
2838                 goto bad;
2839         vino.ino = le64_to_cpu(h->ino);
2840         vino.snap = CEPH_NOSNAP;
2841         seq = le32_to_cpu(h->seq);
2842         dname.name = (void *)h + sizeof(*h) + sizeof(u32);
2843         dname.len = msg->front.iov_len - sizeof(*h) - sizeof(u32);
2844         if (dname.len != get_unaligned_le32(h+1))
2845                 goto bad;
2846
2847         mutex_lock(&session->s_mutex);
2848         session->s_seq++;
2849
2850         /* lookup inode */
2851         inode = ceph_find_inode(sb, vino);
2852         dout("handle_lease %s, ino %llx %p %.*s\n",
2853              ceph_lease_op_name(h->action), vino.ino, inode,
2854              dname.len, dname.name);
2855         if (inode == NULL) {
2856                 dout("handle_lease no inode %llx\n", vino.ino);
2857                 goto release;
2858         }
2859
2860         /* dentry */
2861         parent = d_find_alias(inode);
2862         if (!parent) {
2863                 dout("no parent dentry on inode %p\n", inode);
2864                 WARN_ON(1);
2865                 goto release;  /* hrm... */
2866         }
2867         dname.hash = full_name_hash(dname.name, dname.len);
2868         dentry = d_lookup(parent, &dname);
2869         dput(parent);
2870         if (!dentry)
2871                 goto release;
2872
2873         spin_lock(&dentry->d_lock);
2874         di = ceph_dentry(dentry);
2875         switch (h->action) {
2876         case CEPH_MDS_LEASE_REVOKE:
2877                 if (di->lease_session == session) {
2878                         if (ceph_seq_cmp(di->lease_seq, seq) > 0)
2879                                 h->seq = cpu_to_le32(di->lease_seq);
2880                         __ceph_mdsc_drop_dentry_lease(dentry);
2881                 }
2882                 release = 1;
2883                 break;
2884
2885         case CEPH_MDS_LEASE_RENEW:
2886                 if (di->lease_session == session &&
2887                     di->lease_gen == session->s_cap_gen &&
2888                     di->lease_renew_from &&
2889                     di->lease_renew_after == 0) {
2890                         unsigned long duration =
2891                                 le32_to_cpu(h->duration_ms) * HZ / 1000;
2892
2893                         di->lease_seq = seq;
2894                         dentry->d_time = di->lease_renew_from + duration;
2895                         di->lease_renew_after = di->lease_renew_from +
2896                                 (duration >> 1);
2897                         di->lease_renew_from = 0;
2898                 }
2899                 break;
2900         }
2901         spin_unlock(&dentry->d_lock);
2902         dput(dentry);
2903
2904         if (!release)
2905                 goto out;
2906
2907 release:
2908         /* let's just reuse the same message */
2909         h->action = CEPH_MDS_LEASE_REVOKE_ACK;
2910         ceph_msg_get(msg);
2911         ceph_con_send(&session->s_con, msg);
2912
2913 out:
2914         iput(inode);
2915         mutex_unlock(&session->s_mutex);
2916         return;
2917
2918 bad:
2919         pr_err("corrupt lease message\n");
2920         ceph_msg_dump(msg);
2921 }
2922
2923 void ceph_mdsc_lease_send_msg(struct ceph_mds_session *session,
2924                               struct inode *inode,
2925                               struct dentry *dentry, char action,
2926                               u32 seq)
2927 {
2928         struct ceph_msg *msg;
2929         struct ceph_mds_lease *lease;
2930         int len = sizeof(*lease) + sizeof(u32);
2931         int dnamelen = 0;
2932
2933         dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2934              inode, dentry, ceph_lease_op_name(action), session->s_mds);
2935         dnamelen = dentry->d_name.len;
2936         len += dnamelen;
2937
2938         msg = ceph_msg_new(CEPH_MSG_CLIENT_LEASE, len, GFP_NOFS, false);
2939         if (!msg)
2940                 return;
2941         lease = msg->front.iov_base;
2942         lease->action = action;
2943         lease->ino = cpu_to_le64(ceph_vino(inode).ino);
2944         lease->first = lease->last = cpu_to_le64(ceph_vino(inode).snap);
2945         lease->seq = cpu_to_le32(seq);
2946         put_unaligned_le32(dnamelen, lease + 1);
2947         memcpy((void *)(lease + 1) + 4, dentry->d_name.name, dnamelen);
2948
2949         /*
2950          * if this is a preemptive lease RELEASE, no need to
2951          * flush request stream, since the actual request will
2952          * soon follow.
2953          */
2954         msg->more_to_follow = (action == CEPH_MDS_LEASE_RELEASE);
2955
2956         ceph_con_send(&session->s_con, msg);
2957 }
2958
2959 /*
2960  * Preemptively release a lease we expect to invalidate anyway.
2961  * Pass @inode always, @dentry is optional.
2962  */
2963 void ceph_mdsc_lease_release(struct ceph_mds_client *mdsc, struct inode *inode,
2964                              struct dentry *dentry)
2965 {
2966         struct ceph_dentry_info *di;
2967         struct ceph_mds_session *session;
2968         u32 seq;
2969
2970         BUG_ON(inode == NULL);
2971         BUG_ON(dentry == NULL);
2972
2973         /* is dentry lease valid? */
2974         spin_lock(&dentry->d_lock);
2975         di = ceph_dentry(dentry);
2976         if (!di || !di->lease_session ||
2977             di->lease_session->s_mds < 0 ||
2978             di->lease_gen != di->lease_session->s_cap_gen ||
2979             !time_before(jiffies, dentry->d_time)) {
2980                 dout("lease_release inode %p dentry %p -- "
2981                      "no lease\n",
2982                      inode, dentry);
2983                 spin_unlock(&dentry->d_lock);
2984                 return;
2985         }
2986
2987         /* we do have a lease on this dentry; note mds and seq */
2988         session = ceph_get_mds_session(di->lease_session);
2989         seq = di->lease_seq;
2990         __ceph_mdsc_drop_dentry_lease(dentry);
2991         spin_unlock(&dentry->d_lock);
2992
2993         dout("lease_release inode %p dentry %p to mds%d\n",
2994              inode, dentry, session->s_mds);
2995         ceph_mdsc_lease_send_msg(session, inode, dentry,
2996                                  CEPH_MDS_LEASE_RELEASE, seq);
2997         ceph_put_mds_session(session);
2998 }
2999
3000 /*
3001  * drop all leases (and dentry refs) in preparation for umount
3002  */
3003 static void drop_leases(struct ceph_mds_client *mdsc)
3004 {
3005         int i;
3006
3007         dout("drop_leases\n");
3008         mutex_lock(&mdsc->mutex);
3009         for (i = 0; i < mdsc->max_sessions; i++) {
3010                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3011                 if (!s)
3012                         continue;
3013                 mutex_unlock(&mdsc->mutex);
3014                 mutex_lock(&s->s_mutex);
3015                 mutex_unlock(&s->s_mutex);
3016                 ceph_put_mds_session(s);
3017                 mutex_lock(&mdsc->mutex);
3018         }
3019         mutex_unlock(&mdsc->mutex);
3020 }
3021
3022
3023
3024 /*
3025  * delayed work -- periodically trim expired leases, renew caps with mds
3026  */
3027 static void schedule_delayed(struct ceph_mds_client *mdsc)
3028 {
3029         int delay = 5;
3030         unsigned hz = round_jiffies_relative(HZ * delay);
3031         schedule_delayed_work(&mdsc->delayed_work, hz);
3032 }
3033
3034 static void delayed_work(struct work_struct *work)
3035 {
3036         int i;
3037         struct ceph_mds_client *mdsc =
3038                 container_of(work, struct ceph_mds_client, delayed_work.work);
3039         int renew_interval;
3040         int renew_caps;
3041
3042         dout("mdsc delayed_work\n");
3043         ceph_check_delayed_caps(mdsc);
3044
3045         mutex_lock(&mdsc->mutex);
3046         renew_interval = mdsc->mdsmap->m_session_timeout >> 2;
3047         renew_caps = time_after_eq(jiffies, HZ*renew_interval +
3048                                    mdsc->last_renew_caps);
3049         if (renew_caps)
3050                 mdsc->last_renew_caps = jiffies;
3051
3052         for (i = 0; i < mdsc->max_sessions; i++) {
3053                 struct ceph_mds_session *s = __ceph_lookup_mds_session(mdsc, i);
3054                 if (s == NULL)
3055                         continue;
3056                 if (s->s_state == CEPH_MDS_SESSION_CLOSING) {
3057                         dout("resending session close request for mds%d\n",
3058                              s->s_mds);
3059                         request_close_session(mdsc, s);
3060                         ceph_put_mds_session(s);
3061                         continue;
3062                 }
3063                 if (s->s_ttl && time_after(jiffies, s->s_ttl)) {
3064                         if (s->s_state == CEPH_MDS_SESSION_OPEN) {
3065                                 s->s_state = CEPH_MDS_SESSION_HUNG;
3066                                 pr_info("mds%d hung\n", s->s_mds);
3067                         }
3068                 }
3069                 if (s->s_state < CEPH_MDS_SESSION_OPEN) {
3070                         /* this mds is failed or recovering, just wait */
3071                         ceph_put_mds_session(s);
3072                         continue;
3073                 }
3074                 mutex_unlock(&mdsc->mutex);
3075
3076                 mutex_lock(&s->s_mutex);
3077                 if (renew_caps)
3078                         send_renew_caps(mdsc, s);
3079                 else
3080                         ceph_con_keepalive(&s->s_con);
3081                 ceph_add_cap_releases(mdsc, s);
3082                 if (s->s_state == CEPH_MDS_SESSION_OPEN ||
3083                     s->s_state == CEPH_MDS_SESSION_HUNG)
3084                         ceph_send_cap_releases(mdsc, s);
3085                 mutex_unlock(&s->s_mutex);
3086                 ceph_put_mds_session(s);
3087
3088                 mutex_lock(&mdsc->mutex);
3089         }
3090         mutex_unlock(&mdsc->mutex);
3091
3092         schedule_delayed(mdsc);
3093 }
3094
3095 int ceph_mdsc_init(struct ceph_fs_client *fsc)
3096
3097 {
3098         struct ceph_mds_client *mdsc;
3099
3100         mdsc = kzalloc(sizeof(struct ceph_mds_client), GFP_NOFS);
3101         if (!mdsc)
3102                 return -ENOMEM;
3103         mdsc->fsc = fsc;
3104         fsc->mdsc = mdsc;
3105         mutex_init(&mdsc->mutex);
3106         mdsc->mdsmap = kzalloc(sizeof(*mdsc->mdsmap), GFP_NOFS);
3107         if (mdsc->mdsmap == NULL) {
3108                 kfree(mdsc);
3109                 return -ENOMEM;
3110         }
3111
3112         init_completion(&mdsc->safe_umount_waiters);
3113         init_waitqueue_head(&mdsc->session_close_wq);
3114         INIT_LIST_HEAD(&mdsc->waiting_for_map);
3115         mdsc->sessions = NULL;
3116         mdsc->max_sessions = 0;
3117         mdsc->stopping = 0;
3118         init_rwsem(&mdsc->snap_rwsem);
3119         mdsc->snap_realms = RB_ROOT;
3120         INIT_LIST_HEAD(&mdsc->snap_empty);
3121         spin_lock_init(&mdsc->snap_empty_lock);
3122         mdsc->last_tid = 0;
3123         mdsc->request_tree = RB_ROOT;
3124         INIT_DELAYED_WORK(&mdsc->delayed_work, delayed_work);
3125         mdsc->last_renew_caps = jiffies;
3126         INIT_LIST_HEAD(&mdsc->cap_delay_list);
3127         spin_lock_init(&mdsc->cap_delay_lock);
3128         INIT_LIST_HEAD(&mdsc->snap_flush_list);
3129         spin_lock_init(&mdsc->snap_flush_lock);
3130         mdsc->cap_flush_seq = 0;
3131         INIT_LIST_HEAD(&mdsc->cap_dirty);
3132         INIT_LIST_HEAD(&mdsc->cap_dirty_migrating);
3133         mdsc->num_cap_flushing = 0;
3134         spin_lock_init(&mdsc->cap_dirty_lock);
3135         init_waitqueue_head(&mdsc->cap_flushing_wq);
3136         spin_lock_init(&mdsc->dentry_lru_lock);
3137         INIT_LIST_HEAD(&mdsc->dentry_lru);
3138
3139         ceph_caps_init(mdsc);
3140         ceph_adjust_min_caps(mdsc, fsc->min_caps);
3141
3142         return 0;
3143 }
3144
3145 /*
3146  * Wait for safe replies on open mds requests.  If we time out, drop
3147  * all requests from the tree to avoid dangling dentry refs.
3148  */
3149 static void wait_requests(struct ceph_mds_client *mdsc)
3150 {
3151         struct ceph_mds_request *req;
3152         struct ceph_fs_client *fsc = mdsc->fsc;
3153
3154         mutex_lock(&mdsc->mutex);
3155         if (__get_oldest_req(mdsc)) {
3156                 mutex_unlock(&mdsc->mutex);
3157
3158                 dout("wait_requests waiting for requests\n");
3159                 wait_for_completion_timeout(&mdsc->safe_umount_waiters,
3160                                     fsc->client->options->mount_timeout * HZ);
3161
3162                 /* tear down remaining requests */
3163                 mutex_lock(&mdsc->mutex);
3164                 while ((req = __get_oldest_req(mdsc))) {
3165                         dout("wait_requests timed out on tid %llu\n",
3166                              req->r_tid);
3167                         __unregister_request(mdsc, req);
3168                 }
3169         }
3170         mutex_unlock(&mdsc->mutex);
3171         dout("wait_requests done\n");
3172 }
3173
3174 /*
3175  * called before mount is ro, and before dentries are torn down.
3176  * (hmm, does this still race with new lookups?)
3177  */
3178 void ceph_mdsc_pre_umount(struct ceph_mds_client *mdsc)
3179 {
3180         dout("pre_umount\n");
3181         mdsc->stopping = 1;
3182
3183         drop_leases(mdsc);
3184         ceph_flush_dirty_caps(mdsc);
3185         wait_requests(mdsc);
3186
3187         /*
3188          * wait for reply handlers to drop their request refs and
3189          * their inode/dcache refs
3190          */
3191         ceph_msgr_flush();
3192 }
3193
3194 /*
3195  * wait for all write mds requests to flush.
3196  */
3197 static void wait_unsafe_requests(struct ceph_mds_client *mdsc, u64 want_tid)
3198 {
3199         struct ceph_mds_request *req = NULL, *nextreq;
3200         struct rb_node *n;
3201
3202         mutex_lock(&mdsc->mutex);
3203         dout("wait_unsafe_requests want %lld\n", want_tid);
3204 restart:
3205         req = __get_oldest_req(mdsc);
3206         while (req && req->r_tid <= want_tid) {
3207                 /* find next request */
3208                 n = rb_next(&req->r_node);
3209                 if (n)
3210                         nextreq = rb_entry(n, struct ceph_mds_request, r_node);
3211                 else
3212                         nextreq = NULL;
3213                 if ((req->r_op & CEPH_MDS_OP_WRITE)) {
3214                         /* write op */
3215                         ceph_mdsc_get_request(req);
3216                         if (nextreq)
3217                                 ceph_mdsc_get_request(nextreq);
3218                         mutex_unlock(&mdsc->mutex);
3219                         dout("wait_unsafe_requests  wait on %llu (want %llu)\n",
3220                              req->r_tid, want_tid);
3221                         wait_for_completion(&req->r_safe_completion);
3222                         mutex_lock(&mdsc->mutex);
3223                         ceph_mdsc_put_request(req);
3224                         if (!nextreq)
3225                                 break;  /* next dne before, so we're done! */
3226                         if (RB_EMPTY_NODE(&nextreq->r_node)) {
3227                                 /* next request was removed from tree */
3228                                 ceph_mdsc_put_request(nextreq);
3229                                 goto restart;
3230                         }
3231                         ceph_mdsc_put_request(nextreq);  /* won't go away */
3232                 }
3233                 req = nextreq;
3234         }
3235         mutex_unlock(&mdsc->mutex);
3236         dout("wait_unsafe_requests done\n");
3237 }
3238
3239 void ceph_mdsc_sync(struct ceph_mds_client *mdsc)
3240 {
3241         u64 want_tid, want_flush;
3242
3243         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3244                 return;
3245
3246         dout("sync\n");
3247         mutex_lock(&mdsc->mutex);
3248         want_tid = mdsc->last_tid;
3249         want_flush = mdsc->cap_flush_seq;
3250         mutex_unlock(&mdsc->mutex);
3251         dout("sync want tid %lld flush_seq %lld\n", want_tid, want_flush);
3252
3253         ceph_flush_dirty_caps(mdsc);
3254
3255         wait_unsafe_requests(mdsc, want_tid);
3256         wait_event(mdsc->cap_flushing_wq, check_cap_flush(mdsc, want_flush));
3257 }
3258
3259 /*
3260  * true if all sessions are closed, or we force unmount
3261  */
3262 static bool done_closing_sessions(struct ceph_mds_client *mdsc)
3263 {
3264         int i, n = 0;
3265
3266         if (mdsc->fsc->mount_state == CEPH_MOUNT_SHUTDOWN)
3267                 return true;
3268
3269         mutex_lock(&mdsc->mutex);
3270         for (i = 0; i < mdsc->max_sessions; i++)
3271                 if (mdsc->sessions[i])
3272                         n++;
3273         mutex_unlock(&mdsc->mutex);
3274         return n == 0;
3275 }
3276
3277 /*
3278  * called after sb is ro.
3279  */
3280 void ceph_mdsc_close_sessions(struct ceph_mds_client *mdsc)
3281 {
3282         struct ceph_mds_session *session;
3283         int i;
3284         struct ceph_fs_client *fsc = mdsc->fsc;
3285         unsigned long timeout = fsc->client->options->mount_timeout * HZ;
3286
3287         dout("close_sessions\n");
3288
3289         /* close sessions */
3290         mutex_lock(&mdsc->mutex);
3291         for (i = 0; i < mdsc->max_sessions; i++) {
3292                 session = __ceph_lookup_mds_session(mdsc, i);
3293                 if (!session)
3294                         continue;
3295                 mutex_unlock(&mdsc->mutex);
3296                 mutex_lock(&session->s_mutex);
3297                 __close_session(mdsc, session);
3298                 mutex_unlock(&session->s_mutex);
3299                 ceph_put_mds_session(session);
3300                 mutex_lock(&mdsc->mutex);
3301         }
3302         mutex_unlock(&mdsc->mutex);
3303
3304         dout("waiting for sessions to close\n");
3305         wait_event_timeout(mdsc->session_close_wq, done_closing_sessions(mdsc),
3306                            timeout);
3307
3308         /* tear down remaining sessions */
3309         mutex_lock(&mdsc->mutex);
3310         for (i = 0; i < mdsc->max_sessions; i++) {
3311                 if (mdsc->sessions[i]) {
3312                         session = get_session(mdsc->sessions[i]);
3313                         __unregister_session(mdsc, session);
3314                         mutex_unlock(&mdsc->mutex);
3315                         mutex_lock(&session->s_mutex);
3316                         remove_session_caps(session);
3317                         mutex_unlock(&session->s_mutex);
3318                         ceph_put_mds_session(session);
3319                         mutex_lock(&mdsc->mutex);
3320                 }
3321         }
3322         WARN_ON(!list_empty(&mdsc->cap_delay_list));
3323         mutex_unlock(&mdsc->mutex);
3324
3325         ceph_cleanup_empty_realms(mdsc);
3326
3327         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3328
3329         dout("stopped\n");
3330 }
3331
3332 static void ceph_mdsc_stop(struct ceph_mds_client *mdsc)
3333 {
3334         dout("stop\n");
3335         cancel_delayed_work_sync(&mdsc->delayed_work); /* cancel timer */
3336         if (mdsc->mdsmap)
3337                 ceph_mdsmap_destroy(mdsc->mdsmap);
3338         kfree(mdsc->sessions);
3339         ceph_caps_finalize(mdsc);
3340 }
3341
3342 void ceph_mdsc_destroy(struct ceph_fs_client *fsc)
3343 {
3344         struct ceph_mds_client *mdsc = fsc->mdsc;
3345
3346         dout("mdsc_destroy %p\n", mdsc);
3347         ceph_mdsc_stop(mdsc);
3348
3349         /* flush out any connection work with references to us */
3350         ceph_msgr_flush();
3351
3352         fsc->mdsc = NULL;
3353         kfree(mdsc);
3354         dout("mdsc_destroy %p done\n", mdsc);
3355 }
3356
3357
3358 /*
3359  * handle mds map update.
3360  */
3361 void ceph_mdsc_handle_map(struct ceph_mds_client *mdsc, struct ceph_msg *msg)
3362 {
3363         u32 epoch;
3364         u32 maplen;
3365         void *p = msg->front.iov_base;
3366         void *end = p + msg->front.iov_len;
3367         struct ceph_mdsmap *newmap, *oldmap;
3368         struct ceph_fsid fsid;
3369         int err = -EINVAL;
3370
3371         ceph_decode_need(&p, end, sizeof(fsid)+2*sizeof(u32), bad);
3372         ceph_decode_copy(&p, &fsid, sizeof(fsid));
3373         if (ceph_check_fsid(mdsc->fsc->client, &fsid) < 0)
3374                 return;
3375         epoch = ceph_decode_32(&p);
3376         maplen = ceph_decode_32(&p);
3377         dout("handle_map epoch %u len %d\n", epoch, (int)maplen);
3378
3379         /* do we need it? */
3380         ceph_monc_got_mdsmap(&mdsc->fsc->client->monc, epoch);
3381         mutex_lock(&mdsc->mutex);
3382         if (mdsc->mdsmap && epoch <= mdsc->mdsmap->m_epoch) {
3383                 dout("handle_map epoch %u <= our %u\n",
3384                      epoch, mdsc->mdsmap->m_epoch);
3385                 mutex_unlock(&mdsc->mutex);
3386                 return;
3387         }
3388
3389         newmap = ceph_mdsmap_decode(&p, end);
3390         if (IS_ERR(newmap)) {
3391                 err = PTR_ERR(newmap);
3392                 goto bad_unlock;
3393         }
3394
3395         /* swap into place */
3396         if (mdsc->mdsmap) {
3397                 oldmap = mdsc->mdsmap;
3398                 mdsc->mdsmap = newmap;
3399                 check_new_map(mdsc, newmap, oldmap);
3400                 ceph_mdsmap_destroy(oldmap);
3401         } else {
3402                 mdsc->mdsmap = newmap;  /* first mds map */
3403         }
3404         mdsc->fsc->sb->s_maxbytes = mdsc->mdsmap->m_max_file_size;
3405
3406         __wake_requests(mdsc, &mdsc->waiting_for_map);
3407
3408         mutex_unlock(&mdsc->mutex);
3409         schedule_delayed(mdsc);
3410         return;
3411
3412 bad_unlock:
3413         mutex_unlock(&mdsc->mutex);
3414 bad:
3415         pr_err("error decoding mdsmap %d\n", err);
3416         return;
3417 }
3418
3419 static struct ceph_connection *con_get(struct ceph_connection *con)
3420 {
3421         struct ceph_mds_session *s = con->private;
3422
3423         if (get_session(s)) {
3424                 dout("mdsc con_get %p ok (%d)\n", s, atomic_read(&s->s_ref));
3425                 return con;
3426         }
3427         dout("mdsc con_get %p FAIL\n", s);
3428         return NULL;
3429 }
3430
3431 static void con_put(struct ceph_connection *con)
3432 {
3433         struct ceph_mds_session *s = con->private;
3434
3435         dout("mdsc con_put %p (%d)\n", s, atomic_read(&s->s_ref) - 1);
3436         ceph_put_mds_session(s);
3437 }
3438
3439 /*
3440  * if the client is unresponsive for long enough, the mds will kill
3441  * the session entirely.
3442  */
3443 static void peer_reset(struct ceph_connection *con)
3444 {
3445         struct ceph_mds_session *s = con->private;
3446         struct ceph_mds_client *mdsc = s->s_mdsc;
3447
3448         pr_warning("mds%d closed our session\n", s->s_mds);
3449         send_mds_reconnect(mdsc, s);
3450 }
3451
3452 static void dispatch(struct ceph_connection *con, struct ceph_msg *msg)
3453 {
3454         struct ceph_mds_session *s = con->private;
3455         struct ceph_mds_client *mdsc = s->s_mdsc;
3456         int type = le16_to_cpu(msg->hdr.type);
3457
3458         mutex_lock(&mdsc->mutex);
3459         if (__verify_registered_session(mdsc, s) < 0) {
3460                 mutex_unlock(&mdsc->mutex);
3461                 goto out;
3462         }
3463         mutex_unlock(&mdsc->mutex);
3464
3465         switch (type) {
3466         case CEPH_MSG_MDS_MAP:
3467                 ceph_mdsc_handle_map(mdsc, msg);
3468                 break;
3469         case CEPH_MSG_CLIENT_SESSION:
3470                 handle_session(s, msg);
3471                 break;
3472         case CEPH_MSG_CLIENT_REPLY:
3473                 handle_reply(s, msg);
3474                 break;
3475         case CEPH_MSG_CLIENT_REQUEST_FORWARD:
3476                 handle_forward(mdsc, s, msg);
3477                 break;
3478         case CEPH_MSG_CLIENT_CAPS:
3479                 ceph_handle_caps(s, msg);
3480                 break;
3481         case CEPH_MSG_CLIENT_SNAP:
3482                 ceph_handle_snap(mdsc, s, msg);
3483                 break;
3484         case CEPH_MSG_CLIENT_LEASE:
3485                 handle_lease(mdsc, s, msg);
3486                 break;
3487
3488         default:
3489                 pr_err("received unknown message type %d %s\n", type,
3490                        ceph_msg_type_name(type));
3491         }
3492 out:
3493         ceph_msg_put(msg);
3494 }
3495
3496 /*
3497  * authentication
3498  */
3499
3500 /*
3501  * Note: returned pointer is the address of a structure that's
3502  * managed separately.  Caller must *not* attempt to free it.
3503  */
3504 static struct ceph_auth_handshake *get_authorizer(struct ceph_connection *con,
3505                                         int *proto, int force_new)
3506 {
3507         struct ceph_mds_session *s = con->private;
3508         struct ceph_mds_client *mdsc = s->s_mdsc;
3509         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3510         struct ceph_auth_handshake *auth = &s->s_auth;
3511
3512         if (force_new && auth->authorizer) {
3513                 ceph_auth_destroy_authorizer(ac, auth->authorizer);
3514                 auth->authorizer = NULL;
3515         }
3516         if (!auth->authorizer) {
3517                 int ret = ceph_auth_create_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3518                                                       auth);
3519                 if (ret)
3520                         return ERR_PTR(ret);
3521         } else {
3522                 int ret = ceph_auth_update_authorizer(ac, CEPH_ENTITY_TYPE_MDS,
3523                                                       auth);
3524                 if (ret)
3525                         return ERR_PTR(ret);
3526         }
3527         *proto = ac->protocol;
3528
3529         return auth;
3530 }
3531
3532
3533 static int verify_authorizer_reply(struct ceph_connection *con, int len)
3534 {
3535         struct ceph_mds_session *s = con->private;
3536         struct ceph_mds_client *mdsc = s->s_mdsc;
3537         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3538
3539         return ceph_auth_verify_authorizer_reply(ac, s->s_auth.authorizer, len);
3540 }
3541
3542 static int invalidate_authorizer(struct ceph_connection *con)
3543 {
3544         struct ceph_mds_session *s = con->private;
3545         struct ceph_mds_client *mdsc = s->s_mdsc;
3546         struct ceph_auth_client *ac = mdsc->fsc->client->monc.auth;
3547
3548         ceph_auth_invalidate_authorizer(ac, CEPH_ENTITY_TYPE_MDS);
3549
3550         return ceph_monc_validate_auth(&mdsc->fsc->client->monc);
3551 }
3552
3553 static struct ceph_msg *mds_alloc_msg(struct ceph_connection *con,
3554                                 struct ceph_msg_header *hdr, int *skip)
3555 {
3556         struct ceph_msg *msg;
3557         int type = (int) le16_to_cpu(hdr->type);
3558         int front_len = (int) le32_to_cpu(hdr->front_len);
3559
3560         if (con->in_msg)
3561                 return con->in_msg;
3562
3563         *skip = 0;
3564         msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
3565         if (!msg) {
3566                 pr_err("unable to allocate msg type %d len %d\n",
3567                        type, front_len);
3568                 return NULL;
3569         }
3570
3571         return msg;
3572 }
3573
3574 static const struct ceph_connection_operations mds_con_ops = {
3575         .get = con_get,
3576         .put = con_put,
3577         .dispatch = dispatch,
3578         .get_authorizer = get_authorizer,
3579         .verify_authorizer_reply = verify_authorizer_reply,
3580         .invalidate_authorizer = invalidate_authorizer,
3581         .peer_reset = peer_reset,
3582         .alloc_msg = mds_alloc_msg,
3583 };
3584
3585 /* eof */