]> Pileus Git - ~andy/linux/blob - fs/btrfs/transaction.c
Btrfs: update nodatacow code v2
[~andy/linux] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "locking.h"
27 #include "ref-cache.h"
28 #include "tree-log.h"
29
30 static int total_trans = 0;
31 extern struct kmem_cache *btrfs_trans_handle_cachep;
32 extern struct kmem_cache *btrfs_transaction_cachep;
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 static noinline void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(transaction->use_count == 0);
39         transaction->use_count--;
40         if (transaction->use_count == 0) {
41                 WARN_ON(total_trans == 0);
42                 total_trans--;
43                 list_del_init(&transaction->list);
44                 memset(transaction, 0, sizeof(*transaction));
45                 kmem_cache_free(btrfs_transaction_cachep, transaction);
46         }
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 total_trans++;
60                 BUG_ON(!cur_trans);
61                 root->fs_info->generation++;
62                 root->fs_info->last_alloc = 0;
63                 root->fs_info->last_data_alloc = 0;
64                 cur_trans->num_writers = 1;
65                 cur_trans->num_joined = 0;
66                 cur_trans->transid = root->fs_info->generation;
67                 init_waitqueue_head(&cur_trans->writer_wait);
68                 init_waitqueue_head(&cur_trans->commit_wait);
69                 cur_trans->in_commit = 0;
70                 cur_trans->blocked = 0;
71                 cur_trans->use_count = 1;
72                 cur_trans->commit_done = 0;
73                 cur_trans->start_time = get_seconds();
74                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
75                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
76                 extent_io_tree_init(&cur_trans->dirty_pages,
77                                      root->fs_info->btree_inode->i_mapping,
78                                      GFP_NOFS);
79                 spin_lock(&root->fs_info->new_trans_lock);
80                 root->fs_info->running_transaction = cur_trans;
81                 spin_unlock(&root->fs_info->new_trans_lock);
82         } else {
83                 cur_trans->num_writers++;
84                 cur_trans->num_joined++;
85         }
86
87         return 0;
88 }
89
90 /*
91  * this does all the record keeping required to make sure that a
92  * reference counted root is properly recorded in a given transaction.
93  * This is required to make sure the old root from before we joined the transaction
94  * is deleted when the transaction commits
95  */
96 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
97 {
98         struct btrfs_dirty_root *dirty;
99         u64 running_trans_id = root->fs_info->running_transaction->transid;
100         if (root->ref_cows && root->last_trans < running_trans_id) {
101                 WARN_ON(root == root->fs_info->extent_root);
102                 if (root->root_item.refs != 0) {
103                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
104                                    (unsigned long)root->root_key.objectid,
105                                    BTRFS_ROOT_TRANS_TAG);
106
107                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
108                         BUG_ON(!dirty);
109                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
110                         BUG_ON(!dirty->root);
111                         dirty->latest_root = root;
112                         INIT_LIST_HEAD(&dirty->list);
113
114                         root->commit_root = btrfs_root_node(root);
115
116                         memcpy(dirty->root, root, sizeof(*root));
117                         spin_lock_init(&dirty->root->node_lock);
118                         spin_lock_init(&dirty->root->list_lock);
119                         mutex_init(&dirty->root->objectid_mutex);
120                         mutex_init(&dirty->root->log_mutex);
121                         INIT_LIST_HEAD(&dirty->root->dead_list);
122                         dirty->root->node = root->commit_root;
123                         dirty->root->commit_root = NULL;
124
125                         spin_lock(&root->list_lock);
126                         list_add(&dirty->root->dead_list, &root->dead_list);
127                         spin_unlock(&root->list_lock);
128
129                         root->dirty_root = dirty;
130                 } else {
131                         WARN_ON(1);
132                 }
133                 root->last_trans = running_trans_id;
134         }
135         return 0;
136 }
137
138 /* wait for commit against the current transaction to become unblocked
139  * when this is done, it is safe to start a new transaction, but the current
140  * transaction might not be fully on disk.
141  */
142 static void wait_current_trans(struct btrfs_root *root)
143 {
144         struct btrfs_transaction *cur_trans;
145
146         cur_trans = root->fs_info->running_transaction;
147         if (cur_trans && cur_trans->blocked) {
148                 DEFINE_WAIT(wait);
149                 cur_trans->use_count++;
150                 while(1) {
151                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
152                                         TASK_UNINTERRUPTIBLE);
153                         if (cur_trans->blocked) {
154                                 mutex_unlock(&root->fs_info->trans_mutex);
155                                 schedule();
156                                 mutex_lock(&root->fs_info->trans_mutex);
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                         } else {
160                                 finish_wait(&root->fs_info->transaction_wait,
161                                             &wait);
162                                 break;
163                         }
164                 }
165                 put_transaction(cur_trans);
166         }
167 }
168
169 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
170                                              int num_blocks, int wait)
171 {
172         struct btrfs_trans_handle *h =
173                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
174         int ret;
175
176         mutex_lock(&root->fs_info->trans_mutex);
177         if (!root->fs_info->log_root_recovering &&
178             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
179                 wait_current_trans(root);
180         ret = join_transaction(root);
181         BUG_ON(ret);
182
183         btrfs_record_root_in_trans(root);
184         h->transid = root->fs_info->running_transaction->transid;
185         h->transaction = root->fs_info->running_transaction;
186         h->blocks_reserved = num_blocks;
187         h->blocks_used = 0;
188         h->block_group = NULL;
189         h->alloc_exclude_nr = 0;
190         h->alloc_exclude_start = 0;
191         root->fs_info->running_transaction->use_count++;
192         mutex_unlock(&root->fs_info->trans_mutex);
193         return h;
194 }
195
196 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
197                                                    int num_blocks)
198 {
199         return start_transaction(root, num_blocks, 1);
200 }
201 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
202                                                    int num_blocks)
203 {
204         return start_transaction(root, num_blocks, 0);
205 }
206
207 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
208                                                          int num_blocks)
209 {
210         return start_transaction(r, num_blocks, 2);
211 }
212
213 /* wait for a transaction commit to be fully complete */
214 static noinline int wait_for_commit(struct btrfs_root *root,
215                                     struct btrfs_transaction *commit)
216 {
217         DEFINE_WAIT(wait);
218         mutex_lock(&root->fs_info->trans_mutex);
219         while(!commit->commit_done) {
220                 prepare_to_wait(&commit->commit_wait, &wait,
221                                 TASK_UNINTERRUPTIBLE);
222                 if (commit->commit_done)
223                         break;
224                 mutex_unlock(&root->fs_info->trans_mutex);
225                 schedule();
226                 mutex_lock(&root->fs_info->trans_mutex);
227         }
228         mutex_unlock(&root->fs_info->trans_mutex);
229         finish_wait(&commit->commit_wait, &wait);
230         return 0;
231 }
232
233 /*
234  * rate limit against the drop_snapshot code.  This helps to slow down new operations
235  * if the drop_snapshot code isn't able to keep up.
236  */
237 static void throttle_on_drops(struct btrfs_root *root)
238 {
239         struct btrfs_fs_info *info = root->fs_info;
240         int harder_count = 0;
241
242 harder:
243         if (atomic_read(&info->throttles)) {
244                 DEFINE_WAIT(wait);
245                 int thr;
246                 thr = atomic_read(&info->throttle_gen);
247
248                 do {
249                         prepare_to_wait(&info->transaction_throttle,
250                                         &wait, TASK_UNINTERRUPTIBLE);
251                         if (!atomic_read(&info->throttles)) {
252                                 finish_wait(&info->transaction_throttle, &wait);
253                                 break;
254                         }
255                         schedule();
256                         finish_wait(&info->transaction_throttle, &wait);
257                 } while (thr == atomic_read(&info->throttle_gen));
258                 harder_count++;
259
260                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
261                     harder_count < 2)
262                         goto harder;
263
264                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
265                     harder_count < 10)
266                         goto harder;
267
268                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
269                     harder_count < 20)
270                         goto harder;
271         }
272 }
273
274 void btrfs_throttle(struct btrfs_root *root)
275 {
276         mutex_lock(&root->fs_info->trans_mutex);
277         if (!root->fs_info->open_ioctl_trans)
278                 wait_current_trans(root);
279         mutex_unlock(&root->fs_info->trans_mutex);
280
281         throttle_on_drops(root);
282 }
283
284 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
285                           struct btrfs_root *root, int throttle)
286 {
287         struct btrfs_transaction *cur_trans;
288         struct btrfs_fs_info *info = root->fs_info;
289
290         mutex_lock(&info->trans_mutex);
291         cur_trans = info->running_transaction;
292         WARN_ON(cur_trans != trans->transaction);
293         WARN_ON(cur_trans->num_writers < 1);
294         cur_trans->num_writers--;
295
296         if (waitqueue_active(&cur_trans->writer_wait))
297                 wake_up(&cur_trans->writer_wait);
298         put_transaction(cur_trans);
299         mutex_unlock(&info->trans_mutex);
300         memset(trans, 0, sizeof(*trans));
301         kmem_cache_free(btrfs_trans_handle_cachep, trans);
302
303         if (throttle)
304                 throttle_on_drops(root);
305
306         return 0;
307 }
308
309 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
310                           struct btrfs_root *root)
311 {
312         return __btrfs_end_transaction(trans, root, 0);
313 }
314
315 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
316                                    struct btrfs_root *root)
317 {
318         return __btrfs_end_transaction(trans, root, 1);
319 }
320
321 /*
322  * when btree blocks are allocated, they have some corresponding bits set for
323  * them in one of two extent_io trees.  This is used to make sure all of
324  * those extents are on disk for transaction or log commit
325  */
326 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
327                                         struct extent_io_tree *dirty_pages)
328 {
329         int ret;
330         int err = 0;
331         int werr = 0;
332         struct page *page;
333         struct inode *btree_inode = root->fs_info->btree_inode;
334         u64 start = 0;
335         u64 end;
336         unsigned long index;
337
338         while(1) {
339                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
340                                             EXTENT_DIRTY);
341                 if (ret)
342                         break;
343                 while(start <= end) {
344                         cond_resched();
345
346                         index = start >> PAGE_CACHE_SHIFT;
347                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
348                         page = find_get_page(btree_inode->i_mapping, index);
349                         if (!page)
350                                 continue;
351
352                         btree_lock_page_hook(page);
353                         if (!page->mapping) {
354                                 unlock_page(page);
355                                 page_cache_release(page);
356                                 continue;
357                         }
358
359                         if (PageWriteback(page)) {
360                                 if (PageDirty(page))
361                                         wait_on_page_writeback(page);
362                                 else {
363                                         unlock_page(page);
364                                         page_cache_release(page);
365                                         continue;
366                                 }
367                         }
368                         err = write_one_page(page, 0);
369                         if (err)
370                                 werr = err;
371                         page_cache_release(page);
372                 }
373         }
374         while(1) {
375                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
376                                             EXTENT_DIRTY);
377                 if (ret)
378                         break;
379
380                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
381                 while(start <= end) {
382                         index = start >> PAGE_CACHE_SHIFT;
383                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
384                         page = find_get_page(btree_inode->i_mapping, index);
385                         if (!page)
386                                 continue;
387                         if (PageDirty(page)) {
388                                 btree_lock_page_hook(page);
389                                 wait_on_page_writeback(page);
390                                 err = write_one_page(page, 0);
391                                 if (err)
392                                         werr = err;
393                         }
394                         wait_on_page_writeback(page);
395                         page_cache_release(page);
396                         cond_resched();
397                 }
398         }
399         if (err)
400                 werr = err;
401         return werr;
402 }
403
404 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
405                                      struct btrfs_root *root)
406 {
407         if (!trans || !trans->transaction) {
408                 struct inode *btree_inode;
409                 btree_inode = root->fs_info->btree_inode;
410                 return filemap_write_and_wait(btree_inode->i_mapping);
411         }
412         return btrfs_write_and_wait_marked_extents(root,
413                                            &trans->transaction->dirty_pages);
414 }
415
416 /*
417  * this is used to update the root pointer in the tree of tree roots.
418  *
419  * But, in the case of the extent allocation tree, updating the root
420  * pointer may allocate blocks which may change the root of the extent
421  * allocation tree.
422  *
423  * So, this loops and repeats and makes sure the cowonly root didn't
424  * change while the root pointer was being updated in the metadata.
425  */
426 static int update_cowonly_root(struct btrfs_trans_handle *trans,
427                                struct btrfs_root *root)
428 {
429         int ret;
430         u64 old_root_bytenr;
431         struct btrfs_root *tree_root = root->fs_info->tree_root;
432
433         btrfs_extent_post_op(trans, root);
434         btrfs_write_dirty_block_groups(trans, root);
435         btrfs_extent_post_op(trans, root);
436
437         while(1) {
438                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
439                 if (old_root_bytenr == root->node->start)
440                         break;
441                 btrfs_set_root_bytenr(&root->root_item,
442                                        root->node->start);
443                 btrfs_set_root_level(&root->root_item,
444                                      btrfs_header_level(root->node));
445                 btrfs_set_root_generation(&root->root_item, trans->transid);
446
447                 btrfs_extent_post_op(trans, root);
448
449                 ret = btrfs_update_root(trans, tree_root,
450                                         &root->root_key,
451                                         &root->root_item);
452                 BUG_ON(ret);
453                 btrfs_write_dirty_block_groups(trans, root);
454                 btrfs_extent_post_op(trans, root);
455         }
456         return 0;
457 }
458
459 /*
460  * update all the cowonly tree roots on disk
461  */
462 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
463                             struct btrfs_root *root)
464 {
465         struct btrfs_fs_info *fs_info = root->fs_info;
466         struct list_head *next;
467         struct extent_buffer *eb;
468
469         btrfs_extent_post_op(trans, fs_info->tree_root);
470
471         eb = btrfs_lock_root_node(fs_info->tree_root);
472         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0);
473         btrfs_tree_unlock(eb);
474         free_extent_buffer(eb);
475
476         btrfs_extent_post_op(trans, fs_info->tree_root);
477
478         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
479                 next = fs_info->dirty_cowonly_roots.next;
480                 list_del_init(next);
481                 root = list_entry(next, struct btrfs_root, dirty_list);
482
483                 update_cowonly_root(trans, root);
484         }
485         return 0;
486 }
487
488 /*
489  * dead roots are old snapshots that need to be deleted.  This allocates
490  * a dirty root struct and adds it into the list of dead roots that need to
491  * be deleted
492  */
493 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
494 {
495         struct btrfs_dirty_root *dirty;
496
497         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
498         if (!dirty)
499                 return -ENOMEM;
500         dirty->root = root;
501         dirty->latest_root = latest;
502
503         mutex_lock(&root->fs_info->trans_mutex);
504         list_add(&dirty->list, &latest->fs_info->dead_roots);
505         mutex_unlock(&root->fs_info->trans_mutex);
506         return 0;
507 }
508
509 /*
510  * at transaction commit time we need to schedule the old roots for
511  * deletion via btrfs_drop_snapshot.  This runs through all the
512  * reference counted roots that were modified in the current
513  * transaction and puts them into the drop list
514  */
515 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
516                                     struct radix_tree_root *radix,
517                                     struct list_head *list)
518 {
519         struct btrfs_dirty_root *dirty;
520         struct btrfs_root *gang[8];
521         struct btrfs_root *root;
522         int i;
523         int ret;
524         int err = 0;
525         u32 refs;
526
527         while(1) {
528                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
529                                                  ARRAY_SIZE(gang),
530                                                  BTRFS_ROOT_TRANS_TAG);
531                 if (ret == 0)
532                         break;
533                 for (i = 0; i < ret; i++) {
534                         root = gang[i];
535                         radix_tree_tag_clear(radix,
536                                      (unsigned long)root->root_key.objectid,
537                                      BTRFS_ROOT_TRANS_TAG);
538
539                         BUG_ON(!root->ref_tree);
540                         dirty = root->dirty_root;
541
542                         btrfs_free_log(trans, root);
543                         btrfs_free_reloc_root(trans, root);
544
545                         if (root->commit_root == root->node) {
546                                 WARN_ON(root->node->start !=
547                                         btrfs_root_bytenr(&root->root_item));
548
549                                 free_extent_buffer(root->commit_root);
550                                 root->commit_root = NULL;
551                                 root->dirty_root = NULL;
552
553                                 spin_lock(&root->list_lock);
554                                 list_del_init(&dirty->root->dead_list);
555                                 spin_unlock(&root->list_lock);
556
557                                 kfree(dirty->root);
558                                 kfree(dirty);
559
560                                 /* make sure to update the root on disk
561                                  * so we get any updates to the block used
562                                  * counts
563                                  */
564                                 err = btrfs_update_root(trans,
565                                                 root->fs_info->tree_root,
566                                                 &root->root_key,
567                                                 &root->root_item);
568                                 continue;
569                         }
570
571                         memset(&root->root_item.drop_progress, 0,
572                                sizeof(struct btrfs_disk_key));
573                         root->root_item.drop_level = 0;
574                         root->commit_root = NULL;
575                         root->dirty_root = NULL;
576                         root->root_key.offset = root->fs_info->generation;
577                         btrfs_set_root_bytenr(&root->root_item,
578                                               root->node->start);
579                         btrfs_set_root_level(&root->root_item,
580                                              btrfs_header_level(root->node));
581                         btrfs_set_root_generation(&root->root_item,
582                                                   root->root_key.offset);
583
584                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
585                                                 &root->root_key,
586                                                 &root->root_item);
587                         if (err)
588                                 break;
589
590                         refs = btrfs_root_refs(&dirty->root->root_item);
591                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
592                         err = btrfs_update_root(trans, root->fs_info->tree_root,
593                                                 &dirty->root->root_key,
594                                                 &dirty->root->root_item);
595
596                         BUG_ON(err);
597                         if (refs == 1) {
598                                 list_add(&dirty->list, list);
599                         } else {
600                                 WARN_ON(1);
601                                 free_extent_buffer(dirty->root->node);
602                                 kfree(dirty->root);
603                                 kfree(dirty);
604                         }
605                 }
606         }
607         return err;
608 }
609
610 /*
611  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
612  * otherwise every leaf in the btree is read and defragged.
613  */
614 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
615 {
616         struct btrfs_fs_info *info = root->fs_info;
617         int ret;
618         struct btrfs_trans_handle *trans;
619         unsigned long nr;
620
621         smp_mb();
622         if (root->defrag_running)
623                 return 0;
624         trans = btrfs_start_transaction(root, 1);
625         while (1) {
626                 root->defrag_running = 1;
627                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
628                 nr = trans->blocks_used;
629                 btrfs_end_transaction(trans, root);
630                 btrfs_btree_balance_dirty(info->tree_root, nr);
631                 cond_resched();
632
633                 trans = btrfs_start_transaction(root, 1);
634                 if (root->fs_info->closing || ret != -EAGAIN)
635                         break;
636         }
637         root->defrag_running = 0;
638         smp_mb();
639         btrfs_end_transaction(trans, root);
640         return 0;
641 }
642
643 /*
644  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
645  * all of them
646  */
647 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
648                                      struct list_head *list)
649 {
650         struct btrfs_dirty_root *dirty;
651         struct btrfs_trans_handle *trans;
652         unsigned long nr;
653         u64 num_bytes;
654         u64 bytes_used;
655         u64 max_useless;
656         int ret = 0;
657         int err;
658
659         while(!list_empty(list)) {
660                 struct btrfs_root *root;
661
662                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
663                 list_del_init(&dirty->list);
664
665                 num_bytes = btrfs_root_used(&dirty->root->root_item);
666                 root = dirty->latest_root;
667                 atomic_inc(&root->fs_info->throttles);
668
669                 while(1) {
670                         trans = btrfs_start_transaction(tree_root, 1);
671                         mutex_lock(&root->fs_info->drop_mutex);
672                         ret = btrfs_drop_snapshot(trans, dirty->root);
673                         if (ret != -EAGAIN) {
674                                 break;
675                         }
676                         mutex_unlock(&root->fs_info->drop_mutex);
677
678                         err = btrfs_update_root(trans,
679                                         tree_root,
680                                         &dirty->root->root_key,
681                                         &dirty->root->root_item);
682                         if (err)
683                                 ret = err;
684                         nr = trans->blocks_used;
685                         ret = btrfs_end_transaction(trans, tree_root);
686                         BUG_ON(ret);
687
688                         btrfs_btree_balance_dirty(tree_root, nr);
689                         cond_resched();
690                 }
691                 BUG_ON(ret);
692                 atomic_dec(&root->fs_info->throttles);
693                 wake_up(&root->fs_info->transaction_throttle);
694
695                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
696                 bytes_used = btrfs_root_used(&root->root_item);
697                 if (num_bytes) {
698                         btrfs_record_root_in_trans(root);
699                         btrfs_set_root_used(&root->root_item,
700                                             bytes_used - num_bytes);
701                 }
702
703                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
704                 if (ret) {
705                         BUG();
706                         break;
707                 }
708                 mutex_unlock(&root->fs_info->drop_mutex);
709
710                 spin_lock(&root->list_lock);
711                 list_del_init(&dirty->root->dead_list);
712                 if (!list_empty(&root->dead_list)) {
713                         struct btrfs_root *oldest;
714                         oldest = list_entry(root->dead_list.prev,
715                                             struct btrfs_root, dead_list);
716                         max_useless = oldest->root_key.offset - 1;
717                 } else {
718                         max_useless = root->root_key.offset - 1;
719                 }
720                 spin_unlock(&root->list_lock);
721
722                 nr = trans->blocks_used;
723                 ret = btrfs_end_transaction(trans, tree_root);
724                 BUG_ON(ret);
725
726                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
727                 BUG_ON(ret);
728
729                 free_extent_buffer(dirty->root->node);
730                 kfree(dirty->root);
731                 kfree(dirty);
732
733                 btrfs_btree_balance_dirty(tree_root, nr);
734                 cond_resched();
735         }
736         return ret;
737 }
738
739 /*
740  * new snapshots need to be created at a very specific time in the
741  * transaction commit.  This does the actual creation
742  */
743 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
744                                    struct btrfs_fs_info *fs_info,
745                                    struct btrfs_pending_snapshot *pending)
746 {
747         struct btrfs_key key;
748         struct btrfs_root_item *new_root_item;
749         struct btrfs_root *tree_root = fs_info->tree_root;
750         struct btrfs_root *root = pending->root;
751         struct extent_buffer *tmp;
752         struct extent_buffer *old;
753         int ret;
754         int namelen;
755         u64 objectid;
756
757         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
758         if (!new_root_item) {
759                 ret = -ENOMEM;
760                 goto fail;
761         }
762         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
763         if (ret)
764                 goto fail;
765
766         btrfs_record_root_in_trans(root);
767         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
768         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
769
770         key.objectid = objectid;
771         key.offset = trans->transid;
772         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
773
774         old = btrfs_lock_root_node(root);
775         btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
776
777         btrfs_copy_root(trans, root, old, &tmp, objectid);
778         btrfs_tree_unlock(old);
779         free_extent_buffer(old);
780
781         btrfs_set_root_bytenr(new_root_item, tmp->start);
782         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
783         btrfs_set_root_generation(new_root_item, trans->transid);
784         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
785                                 new_root_item);
786         btrfs_tree_unlock(tmp);
787         free_extent_buffer(tmp);
788         if (ret)
789                 goto fail;
790
791         /*
792          * insert the directory item
793          */
794         key.offset = (u64)-1;
795         namelen = strlen(pending->name);
796         ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
797                                     pending->name, namelen,
798                                     root->fs_info->sb->s_root->d_inode->i_ino,
799                                     &key, BTRFS_FT_DIR, 0);
800
801         if (ret)
802                 goto fail;
803
804         ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
805                              pending->name, strlen(pending->name), objectid,
806                              root->fs_info->sb->s_root->d_inode->i_ino, 0);
807
808         /* Invalidate existing dcache entry for new snapshot. */
809         btrfs_invalidate_dcache_root(root, pending->name, namelen);
810
811 fail:
812         kfree(new_root_item);
813         return ret;
814 }
815
816 /*
817  * create all the snapshots we've scheduled for creation
818  */
819 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
820                                              struct btrfs_fs_info *fs_info)
821 {
822         struct btrfs_pending_snapshot *pending;
823         struct list_head *head = &trans->transaction->pending_snapshots;
824         int ret;
825
826         while(!list_empty(head)) {
827                 pending = list_entry(head->next,
828                                      struct btrfs_pending_snapshot, list);
829                 ret = create_pending_snapshot(trans, fs_info, pending);
830                 BUG_ON(ret);
831                 list_del(&pending->list);
832                 kfree(pending->name);
833                 kfree(pending);
834         }
835         return 0;
836 }
837
838 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
839                              struct btrfs_root *root)
840 {
841         unsigned long joined = 0;
842         unsigned long timeout = 1;
843         struct btrfs_transaction *cur_trans;
844         struct btrfs_transaction *prev_trans = NULL;
845         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
846         struct list_head dirty_fs_roots;
847         struct extent_io_tree *pinned_copy;
848         DEFINE_WAIT(wait);
849         int ret;
850
851         INIT_LIST_HEAD(&dirty_fs_roots);
852         mutex_lock(&root->fs_info->trans_mutex);
853         if (trans->transaction->in_commit) {
854                 cur_trans = trans->transaction;
855                 trans->transaction->use_count++;
856                 mutex_unlock(&root->fs_info->trans_mutex);
857                 btrfs_end_transaction(trans, root);
858
859                 ret = wait_for_commit(root, cur_trans);
860                 BUG_ON(ret);
861
862                 mutex_lock(&root->fs_info->trans_mutex);
863                 put_transaction(cur_trans);
864                 mutex_unlock(&root->fs_info->trans_mutex);
865
866                 return 0;
867         }
868
869         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
870         if (!pinned_copy)
871                 return -ENOMEM;
872
873         extent_io_tree_init(pinned_copy,
874                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
875
876         trans->transaction->in_commit = 1;
877         trans->transaction->blocked = 1;
878         cur_trans = trans->transaction;
879         if (cur_trans->list.prev != &root->fs_info->trans_list) {
880                 prev_trans = list_entry(cur_trans->list.prev,
881                                         struct btrfs_transaction, list);
882                 if (!prev_trans->commit_done) {
883                         prev_trans->use_count++;
884                         mutex_unlock(&root->fs_info->trans_mutex);
885
886                         wait_for_commit(root, prev_trans);
887
888                         mutex_lock(&root->fs_info->trans_mutex);
889                         put_transaction(prev_trans);
890                 }
891         }
892
893         do {
894                 int snap_pending = 0;
895                 joined = cur_trans->num_joined;
896                 if (!list_empty(&trans->transaction->pending_snapshots))
897                         snap_pending = 1;
898
899                 WARN_ON(cur_trans != trans->transaction);
900                 prepare_to_wait(&cur_trans->writer_wait, &wait,
901                                 TASK_UNINTERRUPTIBLE);
902
903                 if (cur_trans->num_writers > 1)
904                         timeout = MAX_SCHEDULE_TIMEOUT;
905                 else
906                         timeout = 1;
907
908                 mutex_unlock(&root->fs_info->trans_mutex);
909
910                 if (snap_pending) {
911                         ret = btrfs_wait_ordered_extents(root, 1);
912                         BUG_ON(ret);
913                 }
914
915                 schedule_timeout(timeout);
916
917                 mutex_lock(&root->fs_info->trans_mutex);
918                 finish_wait(&cur_trans->writer_wait, &wait);
919         } while (cur_trans->num_writers > 1 ||
920                  (cur_trans->num_joined != joined));
921
922         ret = create_pending_snapshots(trans, root->fs_info);
923         BUG_ON(ret);
924
925         WARN_ON(cur_trans != trans->transaction);
926
927         /* btrfs_commit_tree_roots is responsible for getting the
928          * various roots consistent with each other.  Every pointer
929          * in the tree of tree roots has to point to the most up to date
930          * root for every subvolume and other tree.  So, we have to keep
931          * the tree logging code from jumping in and changing any
932          * of the trees.
933          *
934          * At this point in the commit, there can't be any tree-log
935          * writers, but a little lower down we drop the trans mutex
936          * and let new people in.  By holding the tree_log_mutex
937          * from now until after the super is written, we avoid races
938          * with the tree-log code.
939          */
940         mutex_lock(&root->fs_info->tree_log_mutex);
941         /*
942          * keep tree reloc code from adding new reloc trees
943          */
944         mutex_lock(&root->fs_info->tree_reloc_mutex);
945
946
947         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
948                               &dirty_fs_roots);
949         BUG_ON(ret);
950
951         /* add_dirty_roots gets rid of all the tree log roots, it is now
952          * safe to free the root of tree log roots
953          */
954         btrfs_free_log_root_tree(trans, root->fs_info);
955
956         ret = btrfs_commit_tree_roots(trans, root);
957         BUG_ON(ret);
958
959         cur_trans = root->fs_info->running_transaction;
960         spin_lock(&root->fs_info->new_trans_lock);
961         root->fs_info->running_transaction = NULL;
962         spin_unlock(&root->fs_info->new_trans_lock);
963         btrfs_set_super_generation(&root->fs_info->super_copy,
964                                    cur_trans->transid);
965         btrfs_set_super_root(&root->fs_info->super_copy,
966                              root->fs_info->tree_root->node->start);
967         btrfs_set_super_root_level(&root->fs_info->super_copy,
968                            btrfs_header_level(root->fs_info->tree_root->node));
969
970         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
971                                    chunk_root->node->start);
972         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
973                                          btrfs_header_level(chunk_root->node));
974         btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
975                                 btrfs_header_generation(chunk_root->node));
976
977         if (!root->fs_info->log_root_recovering) {
978                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
979                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
980         }
981
982         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
983                sizeof(root->fs_info->super_copy));
984
985         btrfs_copy_pinned(root, pinned_copy);
986
987         trans->transaction->blocked = 0;
988         wake_up(&root->fs_info->transaction_throttle);
989         wake_up(&root->fs_info->transaction_wait);
990
991         mutex_unlock(&root->fs_info->trans_mutex);
992         ret = btrfs_write_and_wait_transaction(trans, root);
993         BUG_ON(ret);
994         write_ctree_super(trans, root);
995
996         /*
997          * the super is written, we can safely allow the tree-loggers
998          * to go about their business
999          */
1000         mutex_unlock(&root->fs_info->tree_log_mutex);
1001
1002         btrfs_finish_extent_commit(trans, root, pinned_copy);
1003         kfree(pinned_copy);
1004
1005         btrfs_drop_dead_reloc_roots(root);
1006         mutex_unlock(&root->fs_info->tree_reloc_mutex);
1007
1008         mutex_lock(&root->fs_info->trans_mutex);
1009
1010         cur_trans->commit_done = 1;
1011         root->fs_info->last_trans_committed = cur_trans->transid;
1012         wake_up(&cur_trans->commit_wait);
1013         put_transaction(cur_trans);
1014         put_transaction(cur_trans);
1015
1016         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1017         if (root->fs_info->closing)
1018                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1019
1020         mutex_unlock(&root->fs_info->trans_mutex);
1021         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1022
1023         if (root->fs_info->closing) {
1024                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1025         }
1026         return ret;
1027 }
1028
1029 /*
1030  * interface function to delete all the snapshots we have scheduled for deletion
1031  */
1032 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1033 {
1034         struct list_head dirty_roots;
1035         INIT_LIST_HEAD(&dirty_roots);
1036 again:
1037         mutex_lock(&root->fs_info->trans_mutex);
1038         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1039         mutex_unlock(&root->fs_info->trans_mutex);
1040
1041         if (!list_empty(&dirty_roots)) {
1042                 drop_dirty_roots(root, &dirty_roots);
1043                 goto again;
1044         }
1045         return 0;
1046 }