]> Pileus Git - ~andy/linux/blob - fs/btrfs/transaction.c
026f1fea963e1952273cf6d16034755976e9b473
[~andy/linux] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38         [TRANS_STATE_RUNNING]           = 0U,
39         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
40                                            __TRANS_START),
41         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
42                                            __TRANS_START |
43                                            __TRANS_ATTACH),
44         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
45                                            __TRANS_START |
46                                            __TRANS_ATTACH |
47                                            __TRANS_JOIN),
48         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
49                                            __TRANS_START |
50                                            __TRANS_ATTACH |
51                                            __TRANS_JOIN |
52                                            __TRANS_JOIN_NOLOCK),
53         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
54                                            __TRANS_START |
55                                            __TRANS_ATTACH |
56                                            __TRANS_JOIN |
57                                            __TRANS_JOIN_NOLOCK),
58 };
59
60 void btrfs_put_transaction(struct btrfs_transaction *transaction)
61 {
62         WARN_ON(atomic_read(&transaction->use_count) == 0);
63         if (atomic_dec_and_test(&transaction->use_count)) {
64                 BUG_ON(!list_empty(&transaction->list));
65                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.root));
66                 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67                 while (!list_empty(&transaction->pending_chunks)) {
68                         struct extent_map *em;
69
70                         em = list_first_entry(&transaction->pending_chunks,
71                                               struct extent_map, list);
72                         list_del_init(&em->list);
73                         free_extent_map(em);
74                 }
75                 kmem_cache_free(btrfs_transaction_cachep, transaction);
76         }
77 }
78
79 static noinline void switch_commit_root(struct btrfs_root *root)
80 {
81         free_extent_buffer(root->commit_root);
82         root->commit_root = btrfs_root_node(root);
83 }
84
85 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
86                                          unsigned int type)
87 {
88         if (type & TRANS_EXTWRITERS)
89                 atomic_inc(&trans->num_extwriters);
90 }
91
92 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
93                                          unsigned int type)
94 {
95         if (type & TRANS_EXTWRITERS)
96                 atomic_dec(&trans->num_extwriters);
97 }
98
99 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
100                                           unsigned int type)
101 {
102         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
103 }
104
105 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
106 {
107         return atomic_read(&trans->num_extwriters);
108 }
109
110 /*
111  * either allocate a new transaction or hop into the existing one
112  */
113 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
114 {
115         struct btrfs_transaction *cur_trans;
116         struct btrfs_fs_info *fs_info = root->fs_info;
117
118         spin_lock(&fs_info->trans_lock);
119 loop:
120         /* The file system has been taken offline. No new transactions. */
121         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
122                 spin_unlock(&fs_info->trans_lock);
123                 return -EROFS;
124         }
125
126         cur_trans = fs_info->running_transaction;
127         if (cur_trans) {
128                 if (cur_trans->aborted) {
129                         spin_unlock(&fs_info->trans_lock);
130                         return cur_trans->aborted;
131                 }
132                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
133                         spin_unlock(&fs_info->trans_lock);
134                         return -EBUSY;
135                 }
136                 atomic_inc(&cur_trans->use_count);
137                 atomic_inc(&cur_trans->num_writers);
138                 extwriter_counter_inc(cur_trans, type);
139                 spin_unlock(&fs_info->trans_lock);
140                 return 0;
141         }
142         spin_unlock(&fs_info->trans_lock);
143
144         /*
145          * If we are ATTACH, we just want to catch the current transaction,
146          * and commit it. If there is no transaction, just return ENOENT.
147          */
148         if (type == TRANS_ATTACH)
149                 return -ENOENT;
150
151         /*
152          * JOIN_NOLOCK only happens during the transaction commit, so
153          * it is impossible that ->running_transaction is NULL
154          */
155         BUG_ON(type == TRANS_JOIN_NOLOCK);
156
157         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
158         if (!cur_trans)
159                 return -ENOMEM;
160
161         spin_lock(&fs_info->trans_lock);
162         if (fs_info->running_transaction) {
163                 /*
164                  * someone started a transaction after we unlocked.  Make sure
165                  * to redo the checks above
166                  */
167                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
168                 goto loop;
169         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
170                 spin_unlock(&fs_info->trans_lock);
171                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
172                 return -EROFS;
173         }
174
175         atomic_set(&cur_trans->num_writers, 1);
176         extwriter_counter_init(cur_trans, type);
177         init_waitqueue_head(&cur_trans->writer_wait);
178         init_waitqueue_head(&cur_trans->commit_wait);
179         cur_trans->state = TRANS_STATE_RUNNING;
180         /*
181          * One for this trans handle, one so it will live on until we
182          * commit the transaction.
183          */
184         atomic_set(&cur_trans->use_count, 2);
185         cur_trans->start_time = get_seconds();
186
187         cur_trans->delayed_refs.root = RB_ROOT;
188         cur_trans->delayed_refs.href_root = RB_ROOT;
189         cur_trans->delayed_refs.num_entries = 0;
190         cur_trans->delayed_refs.num_heads_ready = 0;
191         cur_trans->delayed_refs.num_heads = 0;
192         cur_trans->delayed_refs.flushing = 0;
193         cur_trans->delayed_refs.run_delayed_start = 0;
194
195         /*
196          * although the tree mod log is per file system and not per transaction,
197          * the log must never go across transaction boundaries.
198          */
199         smp_mb();
200         if (!list_empty(&fs_info->tree_mod_seq_list))
201                 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
202                         "creating a fresh transaction\n");
203         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
204                 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
205                         "creating a fresh transaction\n");
206         atomic64_set(&fs_info->tree_mod_seq, 0);
207
208         spin_lock_init(&cur_trans->delayed_refs.lock);
209         atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
210         atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
211         init_waitqueue_head(&cur_trans->delayed_refs.wait);
212
213         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
214         INIT_LIST_HEAD(&cur_trans->ordered_operations);
215         INIT_LIST_HEAD(&cur_trans->pending_chunks);
216         list_add_tail(&cur_trans->list, &fs_info->trans_list);
217         extent_io_tree_init(&cur_trans->dirty_pages,
218                              fs_info->btree_inode->i_mapping);
219         fs_info->generation++;
220         cur_trans->transid = fs_info->generation;
221         fs_info->running_transaction = cur_trans;
222         cur_trans->aborted = 0;
223         spin_unlock(&fs_info->trans_lock);
224
225         return 0;
226 }
227
228 /*
229  * this does all the record keeping required to make sure that a reference
230  * counted root is properly recorded in a given transaction.  This is required
231  * to make sure the old root from before we joined the transaction is deleted
232  * when the transaction commits
233  */
234 static int record_root_in_trans(struct btrfs_trans_handle *trans,
235                                struct btrfs_root *root)
236 {
237         if (root->ref_cows && root->last_trans < trans->transid) {
238                 WARN_ON(root == root->fs_info->extent_root);
239                 WARN_ON(root->commit_root != root->node);
240
241                 /*
242                  * see below for in_trans_setup usage rules
243                  * we have the reloc mutex held now, so there
244                  * is only one writer in this function
245                  */
246                 root->in_trans_setup = 1;
247
248                 /* make sure readers find in_trans_setup before
249                  * they find our root->last_trans update
250                  */
251                 smp_wmb();
252
253                 spin_lock(&root->fs_info->fs_roots_radix_lock);
254                 if (root->last_trans == trans->transid) {
255                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
256                         return 0;
257                 }
258                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
259                            (unsigned long)root->root_key.objectid,
260                            BTRFS_ROOT_TRANS_TAG);
261                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
262                 root->last_trans = trans->transid;
263
264                 /* this is pretty tricky.  We don't want to
265                  * take the relocation lock in btrfs_record_root_in_trans
266                  * unless we're really doing the first setup for this root in
267                  * this transaction.
268                  *
269                  * Normally we'd use root->last_trans as a flag to decide
270                  * if we want to take the expensive mutex.
271                  *
272                  * But, we have to set root->last_trans before we
273                  * init the relocation root, otherwise, we trip over warnings
274                  * in ctree.c.  The solution used here is to flag ourselves
275                  * with root->in_trans_setup.  When this is 1, we're still
276                  * fixing up the reloc trees and everyone must wait.
277                  *
278                  * When this is zero, they can trust root->last_trans and fly
279                  * through btrfs_record_root_in_trans without having to take the
280                  * lock.  smp_wmb() makes sure that all the writes above are
281                  * done before we pop in the zero below
282                  */
283                 btrfs_init_reloc_root(trans, root);
284                 smp_wmb();
285                 root->in_trans_setup = 0;
286         }
287         return 0;
288 }
289
290
291 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
292                                struct btrfs_root *root)
293 {
294         if (!root->ref_cows)
295                 return 0;
296
297         /*
298          * see record_root_in_trans for comments about in_trans_setup usage
299          * and barriers
300          */
301         smp_rmb();
302         if (root->last_trans == trans->transid &&
303             !root->in_trans_setup)
304                 return 0;
305
306         mutex_lock(&root->fs_info->reloc_mutex);
307         record_root_in_trans(trans, root);
308         mutex_unlock(&root->fs_info->reloc_mutex);
309
310         return 0;
311 }
312
313 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
314 {
315         return (trans->state >= TRANS_STATE_BLOCKED &&
316                 trans->state < TRANS_STATE_UNBLOCKED &&
317                 !trans->aborted);
318 }
319
320 /* wait for commit against the current transaction to become unblocked
321  * when this is done, it is safe to start a new transaction, but the current
322  * transaction might not be fully on disk.
323  */
324 static void wait_current_trans(struct btrfs_root *root)
325 {
326         struct btrfs_transaction *cur_trans;
327
328         spin_lock(&root->fs_info->trans_lock);
329         cur_trans = root->fs_info->running_transaction;
330         if (cur_trans && is_transaction_blocked(cur_trans)) {
331                 atomic_inc(&cur_trans->use_count);
332                 spin_unlock(&root->fs_info->trans_lock);
333
334                 wait_event(root->fs_info->transaction_wait,
335                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
336                            cur_trans->aborted);
337                 btrfs_put_transaction(cur_trans);
338         } else {
339                 spin_unlock(&root->fs_info->trans_lock);
340         }
341 }
342
343 static int may_wait_transaction(struct btrfs_root *root, int type)
344 {
345         if (root->fs_info->log_root_recovering)
346                 return 0;
347
348         if (type == TRANS_USERSPACE)
349                 return 1;
350
351         if (type == TRANS_START &&
352             !atomic_read(&root->fs_info->open_ioctl_trans))
353                 return 1;
354
355         return 0;
356 }
357
358 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
359 {
360         if (!root->fs_info->reloc_ctl ||
361             !root->ref_cows ||
362             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
363             root->reloc_root)
364                 return false;
365
366         return true;
367 }
368
369 static struct btrfs_trans_handle *
370 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
371                   enum btrfs_reserve_flush_enum flush)
372 {
373         struct btrfs_trans_handle *h;
374         struct btrfs_transaction *cur_trans;
375         u64 num_bytes = 0;
376         u64 qgroup_reserved = 0;
377         bool reloc_reserved = false;
378         int ret;
379
380         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
381                 return ERR_PTR(-EROFS);
382
383         if (current->journal_info) {
384                 WARN_ON(type & TRANS_EXTWRITERS);
385                 h = current->journal_info;
386                 h->use_count++;
387                 WARN_ON(h->use_count > 2);
388                 h->orig_rsv = h->block_rsv;
389                 h->block_rsv = NULL;
390                 goto got_it;
391         }
392
393         /*
394          * Do the reservation before we join the transaction so we can do all
395          * the appropriate flushing if need be.
396          */
397         if (num_items > 0 && root != root->fs_info->chunk_root) {
398                 if (root->fs_info->quota_enabled &&
399                     is_fstree(root->root_key.objectid)) {
400                         qgroup_reserved = num_items * root->leafsize;
401                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
402                         if (ret)
403                                 return ERR_PTR(ret);
404                 }
405
406                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
407                 /*
408                  * Do the reservation for the relocation root creation
409                  */
410                 if (unlikely(need_reserve_reloc_root(root))) {
411                         num_bytes += root->nodesize;
412                         reloc_reserved = true;
413                 }
414
415                 ret = btrfs_block_rsv_add(root,
416                                           &root->fs_info->trans_block_rsv,
417                                           num_bytes, flush);
418                 if (ret)
419                         goto reserve_fail;
420         }
421 again:
422         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
423         if (!h) {
424                 ret = -ENOMEM;
425                 goto alloc_fail;
426         }
427
428         /*
429          * If we are JOIN_NOLOCK we're already committing a transaction and
430          * waiting on this guy, so we don't need to do the sb_start_intwrite
431          * because we're already holding a ref.  We need this because we could
432          * have raced in and did an fsync() on a file which can kick a commit
433          * and then we deadlock with somebody doing a freeze.
434          *
435          * If we are ATTACH, it means we just want to catch the current
436          * transaction and commit it, so we needn't do sb_start_intwrite(). 
437          */
438         if (type & __TRANS_FREEZABLE)
439                 sb_start_intwrite(root->fs_info->sb);
440
441         if (may_wait_transaction(root, type))
442                 wait_current_trans(root);
443
444         do {
445                 ret = join_transaction(root, type);
446                 if (ret == -EBUSY) {
447                         wait_current_trans(root);
448                         if (unlikely(type == TRANS_ATTACH))
449                                 ret = -ENOENT;
450                 }
451         } while (ret == -EBUSY);
452
453         if (ret < 0) {
454                 /* We must get the transaction if we are JOIN_NOLOCK. */
455                 BUG_ON(type == TRANS_JOIN_NOLOCK);
456                 goto join_fail;
457         }
458
459         cur_trans = root->fs_info->running_transaction;
460
461         h->transid = cur_trans->transid;
462         h->transaction = cur_trans;
463         h->blocks_used = 0;
464         h->bytes_reserved = 0;
465         h->root = root;
466         h->delayed_ref_updates = 0;
467         h->use_count = 1;
468         h->adding_csums = 0;
469         h->block_rsv = NULL;
470         h->orig_rsv = NULL;
471         h->aborted = 0;
472         h->qgroup_reserved = 0;
473         h->delayed_ref_elem.seq = 0;
474         h->type = type;
475         h->allocating_chunk = false;
476         h->reloc_reserved = false;
477         INIT_LIST_HEAD(&h->qgroup_ref_list);
478         INIT_LIST_HEAD(&h->new_bgs);
479
480         smp_mb();
481         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
482             may_wait_transaction(root, type)) {
483                 btrfs_commit_transaction(h, root);
484                 goto again;
485         }
486
487         if (num_bytes) {
488                 trace_btrfs_space_reservation(root->fs_info, "transaction",
489                                               h->transid, num_bytes, 1);
490                 h->block_rsv = &root->fs_info->trans_block_rsv;
491                 h->bytes_reserved = num_bytes;
492                 h->reloc_reserved = reloc_reserved;
493         }
494         h->qgroup_reserved = qgroup_reserved;
495
496 got_it:
497         btrfs_record_root_in_trans(h, root);
498
499         if (!current->journal_info && type != TRANS_USERSPACE)
500                 current->journal_info = h;
501         return h;
502
503 join_fail:
504         if (type & __TRANS_FREEZABLE)
505                 sb_end_intwrite(root->fs_info->sb);
506         kmem_cache_free(btrfs_trans_handle_cachep, h);
507 alloc_fail:
508         if (num_bytes)
509                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
510                                         num_bytes);
511 reserve_fail:
512         if (qgroup_reserved)
513                 btrfs_qgroup_free(root, qgroup_reserved);
514         return ERR_PTR(ret);
515 }
516
517 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
518                                                    int num_items)
519 {
520         return start_transaction(root, num_items, TRANS_START,
521                                  BTRFS_RESERVE_FLUSH_ALL);
522 }
523
524 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
525                                         struct btrfs_root *root, int num_items)
526 {
527         return start_transaction(root, num_items, TRANS_START,
528                                  BTRFS_RESERVE_FLUSH_LIMIT);
529 }
530
531 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
532 {
533         return start_transaction(root, 0, TRANS_JOIN, 0);
534 }
535
536 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
537 {
538         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
539 }
540
541 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
542 {
543         return start_transaction(root, 0, TRANS_USERSPACE, 0);
544 }
545
546 /*
547  * btrfs_attach_transaction() - catch the running transaction
548  *
549  * It is used when we want to commit the current the transaction, but
550  * don't want to start a new one.
551  *
552  * Note: If this function return -ENOENT, it just means there is no
553  * running transaction. But it is possible that the inactive transaction
554  * is still in the memory, not fully on disk. If you hope there is no
555  * inactive transaction in the fs when -ENOENT is returned, you should
556  * invoke
557  *     btrfs_attach_transaction_barrier()
558  */
559 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
560 {
561         return start_transaction(root, 0, TRANS_ATTACH, 0);
562 }
563
564 /*
565  * btrfs_attach_transaction_barrier() - catch the running transaction
566  *
567  * It is similar to the above function, the differentia is this one
568  * will wait for all the inactive transactions until they fully
569  * complete.
570  */
571 struct btrfs_trans_handle *
572 btrfs_attach_transaction_barrier(struct btrfs_root *root)
573 {
574         struct btrfs_trans_handle *trans;
575
576         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
577         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
578                 btrfs_wait_for_commit(root, 0);
579
580         return trans;
581 }
582
583 /* wait for a transaction commit to be fully complete */
584 static noinline void wait_for_commit(struct btrfs_root *root,
585                                     struct btrfs_transaction *commit)
586 {
587         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
588 }
589
590 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
591 {
592         struct btrfs_transaction *cur_trans = NULL, *t;
593         int ret = 0;
594
595         if (transid) {
596                 if (transid <= root->fs_info->last_trans_committed)
597                         goto out;
598
599                 ret = -EINVAL;
600                 /* find specified transaction */
601                 spin_lock(&root->fs_info->trans_lock);
602                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
603                         if (t->transid == transid) {
604                                 cur_trans = t;
605                                 atomic_inc(&cur_trans->use_count);
606                                 ret = 0;
607                                 break;
608                         }
609                         if (t->transid > transid) {
610                                 ret = 0;
611                                 break;
612                         }
613                 }
614                 spin_unlock(&root->fs_info->trans_lock);
615                 /* The specified transaction doesn't exist */
616                 if (!cur_trans)
617                         goto out;
618         } else {
619                 /* find newest transaction that is committing | committed */
620                 spin_lock(&root->fs_info->trans_lock);
621                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
622                                             list) {
623                         if (t->state >= TRANS_STATE_COMMIT_START) {
624                                 if (t->state == TRANS_STATE_COMPLETED)
625                                         break;
626                                 cur_trans = t;
627                                 atomic_inc(&cur_trans->use_count);
628                                 break;
629                         }
630                 }
631                 spin_unlock(&root->fs_info->trans_lock);
632                 if (!cur_trans)
633                         goto out;  /* nothing committing|committed */
634         }
635
636         wait_for_commit(root, cur_trans);
637         btrfs_put_transaction(cur_trans);
638 out:
639         return ret;
640 }
641
642 void btrfs_throttle(struct btrfs_root *root)
643 {
644         if (!atomic_read(&root->fs_info->open_ioctl_trans))
645                 wait_current_trans(root);
646 }
647
648 static int should_end_transaction(struct btrfs_trans_handle *trans,
649                                   struct btrfs_root *root)
650 {
651         if (root->fs_info->global_block_rsv.space_info->full &&
652             btrfs_should_throttle_delayed_refs(trans, root))
653                 return 1;
654
655         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
656 }
657
658 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
659                                  struct btrfs_root *root)
660 {
661         struct btrfs_transaction *cur_trans = trans->transaction;
662         int updates;
663         int err;
664
665         smp_mb();
666         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
667             cur_trans->delayed_refs.flushing)
668                 return 1;
669
670         updates = trans->delayed_ref_updates;
671         trans->delayed_ref_updates = 0;
672         if (updates) {
673                 err = btrfs_run_delayed_refs(trans, root, updates);
674                 if (err) /* Error code will also eval true */
675                         return err;
676         }
677
678         return should_end_transaction(trans, root);
679 }
680
681 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
682                           struct btrfs_root *root, int throttle)
683 {
684         struct btrfs_transaction *cur_trans = trans->transaction;
685         struct btrfs_fs_info *info = root->fs_info;
686         unsigned long cur = trans->delayed_ref_updates;
687         int lock = (trans->type != TRANS_JOIN_NOLOCK);
688         int err = 0;
689
690         if (--trans->use_count) {
691                 trans->block_rsv = trans->orig_rsv;
692                 return 0;
693         }
694
695         /*
696          * do the qgroup accounting as early as possible
697          */
698         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
699
700         btrfs_trans_release_metadata(trans, root);
701         trans->block_rsv = NULL;
702
703         if (trans->qgroup_reserved) {
704                 /*
705                  * the same root has to be passed here between start_transaction
706                  * and end_transaction. Subvolume quota depends on this.
707                  */
708                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
709                 trans->qgroup_reserved = 0;
710         }
711
712         if (!list_empty(&trans->new_bgs))
713                 btrfs_create_pending_block_groups(trans, root);
714
715         trans->delayed_ref_updates = 0;
716         if (btrfs_should_throttle_delayed_refs(trans, root)) {
717                 cur = max_t(unsigned long, cur, 1);
718                 trans->delayed_ref_updates = 0;
719                 btrfs_run_delayed_refs(trans, root, cur);
720         }
721
722         btrfs_trans_release_metadata(trans, root);
723         trans->block_rsv = NULL;
724
725         if (!list_empty(&trans->new_bgs))
726                 btrfs_create_pending_block_groups(trans, root);
727
728         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
729             should_end_transaction(trans, root) &&
730             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
731                 spin_lock(&info->trans_lock);
732                 if (cur_trans->state == TRANS_STATE_RUNNING)
733                         cur_trans->state = TRANS_STATE_BLOCKED;
734                 spin_unlock(&info->trans_lock);
735         }
736
737         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
738                 if (throttle) {
739                         /*
740                          * We may race with somebody else here so end up having
741                          * to call end_transaction on ourselves again, so inc
742                          * our use_count.
743                          */
744                         trans->use_count++;
745                         return btrfs_commit_transaction(trans, root);
746                 } else {
747                         wake_up_process(info->transaction_kthread);
748                 }
749         }
750
751         if (trans->type & __TRANS_FREEZABLE)
752                 sb_end_intwrite(root->fs_info->sb);
753
754         WARN_ON(cur_trans != info->running_transaction);
755         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
756         atomic_dec(&cur_trans->num_writers);
757         extwriter_counter_dec(cur_trans, trans->type);
758
759         smp_mb();
760         if (waitqueue_active(&cur_trans->writer_wait))
761                 wake_up(&cur_trans->writer_wait);
762         btrfs_put_transaction(cur_trans);
763
764         if (current->journal_info == trans)
765                 current->journal_info = NULL;
766
767         if (throttle)
768                 btrfs_run_delayed_iputs(root);
769
770         if (trans->aborted ||
771             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
772                 wake_up_process(info->transaction_kthread);
773                 err = -EIO;
774         }
775         assert_qgroups_uptodate(trans);
776
777         kmem_cache_free(btrfs_trans_handle_cachep, trans);
778         return err;
779 }
780
781 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
782                           struct btrfs_root *root)
783 {
784         return __btrfs_end_transaction(trans, root, 0);
785 }
786
787 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
788                                    struct btrfs_root *root)
789 {
790         return __btrfs_end_transaction(trans, root, 1);
791 }
792
793 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
794                                 struct btrfs_root *root)
795 {
796         return __btrfs_end_transaction(trans, root, 1);
797 }
798
799 /*
800  * when btree blocks are allocated, they have some corresponding bits set for
801  * them in one of two extent_io trees.  This is used to make sure all of
802  * those extents are sent to disk but does not wait on them
803  */
804 int btrfs_write_marked_extents(struct btrfs_root *root,
805                                struct extent_io_tree *dirty_pages, int mark)
806 {
807         int err = 0;
808         int werr = 0;
809         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
810         struct extent_state *cached_state = NULL;
811         u64 start = 0;
812         u64 end;
813
814         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
815                                       mark, &cached_state)) {
816                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
817                                    mark, &cached_state, GFP_NOFS);
818                 cached_state = NULL;
819                 err = filemap_fdatawrite_range(mapping, start, end);
820                 if (err)
821                         werr = err;
822                 cond_resched();
823                 start = end + 1;
824         }
825         if (err)
826                 werr = err;
827         return werr;
828 }
829
830 /*
831  * when btree blocks are allocated, they have some corresponding bits set for
832  * them in one of two extent_io trees.  This is used to make sure all of
833  * those extents are on disk for transaction or log commit.  We wait
834  * on all the pages and clear them from the dirty pages state tree
835  */
836 int btrfs_wait_marked_extents(struct btrfs_root *root,
837                               struct extent_io_tree *dirty_pages, int mark)
838 {
839         int err = 0;
840         int werr = 0;
841         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
842         struct extent_state *cached_state = NULL;
843         u64 start = 0;
844         u64 end;
845
846         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
847                                       EXTENT_NEED_WAIT, &cached_state)) {
848                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
849                                  0, 0, &cached_state, GFP_NOFS);
850                 err = filemap_fdatawait_range(mapping, start, end);
851                 if (err)
852                         werr = err;
853                 cond_resched();
854                 start = end + 1;
855         }
856         if (err)
857                 werr = err;
858         return werr;
859 }
860
861 /*
862  * when btree blocks are allocated, they have some corresponding bits set for
863  * them in one of two extent_io trees.  This is used to make sure all of
864  * those extents are on disk for transaction or log commit
865  */
866 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
867                                 struct extent_io_tree *dirty_pages, int mark)
868 {
869         int ret;
870         int ret2;
871         struct blk_plug plug;
872
873         blk_start_plug(&plug);
874         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
875         blk_finish_plug(&plug);
876         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
877
878         if (ret)
879                 return ret;
880         if (ret2)
881                 return ret2;
882         return 0;
883 }
884
885 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
886                                      struct btrfs_root *root)
887 {
888         if (!trans || !trans->transaction) {
889                 struct inode *btree_inode;
890                 btree_inode = root->fs_info->btree_inode;
891                 return filemap_write_and_wait(btree_inode->i_mapping);
892         }
893         return btrfs_write_and_wait_marked_extents(root,
894                                            &trans->transaction->dirty_pages,
895                                            EXTENT_DIRTY);
896 }
897
898 /*
899  * this is used to update the root pointer in the tree of tree roots.
900  *
901  * But, in the case of the extent allocation tree, updating the root
902  * pointer may allocate blocks which may change the root of the extent
903  * allocation tree.
904  *
905  * So, this loops and repeats and makes sure the cowonly root didn't
906  * change while the root pointer was being updated in the metadata.
907  */
908 static int update_cowonly_root(struct btrfs_trans_handle *trans,
909                                struct btrfs_root *root)
910 {
911         int ret;
912         u64 old_root_bytenr;
913         u64 old_root_used;
914         struct btrfs_root *tree_root = root->fs_info->tree_root;
915
916         old_root_used = btrfs_root_used(&root->root_item);
917         btrfs_write_dirty_block_groups(trans, root);
918
919         while (1) {
920                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
921                 if (old_root_bytenr == root->node->start &&
922                     old_root_used == btrfs_root_used(&root->root_item))
923                         break;
924
925                 btrfs_set_root_node(&root->root_item, root->node);
926                 ret = btrfs_update_root(trans, tree_root,
927                                         &root->root_key,
928                                         &root->root_item);
929                 if (ret)
930                         return ret;
931
932                 old_root_used = btrfs_root_used(&root->root_item);
933                 ret = btrfs_write_dirty_block_groups(trans, root);
934                 if (ret)
935                         return ret;
936         }
937
938         if (root != root->fs_info->extent_root)
939                 switch_commit_root(root);
940
941         return 0;
942 }
943
944 /*
945  * update all the cowonly tree roots on disk
946  *
947  * The error handling in this function may not be obvious. Any of the
948  * failures will cause the file system to go offline. We still need
949  * to clean up the delayed refs.
950  */
951 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
952                                          struct btrfs_root *root)
953 {
954         struct btrfs_fs_info *fs_info = root->fs_info;
955         struct list_head *next;
956         struct extent_buffer *eb;
957         int ret;
958
959         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
960         if (ret)
961                 return ret;
962
963         eb = btrfs_lock_root_node(fs_info->tree_root);
964         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
965                               0, &eb);
966         btrfs_tree_unlock(eb);
967         free_extent_buffer(eb);
968
969         if (ret)
970                 return ret;
971
972         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
973         if (ret)
974                 return ret;
975
976         ret = btrfs_run_dev_stats(trans, root->fs_info);
977         if (ret)
978                 return ret;
979         ret = btrfs_run_dev_replace(trans, root->fs_info);
980         if (ret)
981                 return ret;
982         ret = btrfs_run_qgroups(trans, root->fs_info);
983         if (ret)
984                 return ret;
985
986         /* run_qgroups might have added some more refs */
987         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
988         if (ret)
989                 return ret;
990
991         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
992                 next = fs_info->dirty_cowonly_roots.next;
993                 list_del_init(next);
994                 root = list_entry(next, struct btrfs_root, dirty_list);
995
996                 ret = update_cowonly_root(trans, root);
997                 if (ret)
998                         return ret;
999         }
1000
1001         down_write(&fs_info->extent_commit_sem);
1002         switch_commit_root(fs_info->extent_root);
1003         up_write(&fs_info->extent_commit_sem);
1004
1005         btrfs_after_dev_replace_commit(fs_info);
1006
1007         return 0;
1008 }
1009
1010 /*
1011  * dead roots are old snapshots that need to be deleted.  This allocates
1012  * a dirty root struct and adds it into the list of dead roots that need to
1013  * be deleted
1014  */
1015 void btrfs_add_dead_root(struct btrfs_root *root)
1016 {
1017         spin_lock(&root->fs_info->trans_lock);
1018         if (list_empty(&root->root_list))
1019                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1020         spin_unlock(&root->fs_info->trans_lock);
1021 }
1022
1023 /*
1024  * update all the cowonly tree roots on disk
1025  */
1026 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1027                                     struct btrfs_root *root)
1028 {
1029         struct btrfs_root *gang[8];
1030         struct btrfs_fs_info *fs_info = root->fs_info;
1031         int i;
1032         int ret;
1033         int err = 0;
1034
1035         spin_lock(&fs_info->fs_roots_radix_lock);
1036         while (1) {
1037                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1038                                                  (void **)gang, 0,
1039                                                  ARRAY_SIZE(gang),
1040                                                  BTRFS_ROOT_TRANS_TAG);
1041                 if (ret == 0)
1042                         break;
1043                 for (i = 0; i < ret; i++) {
1044                         root = gang[i];
1045                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1046                                         (unsigned long)root->root_key.objectid,
1047                                         BTRFS_ROOT_TRANS_TAG);
1048                         spin_unlock(&fs_info->fs_roots_radix_lock);
1049
1050                         btrfs_free_log(trans, root);
1051                         btrfs_update_reloc_root(trans, root);
1052                         btrfs_orphan_commit_root(trans, root);
1053
1054                         btrfs_save_ino_cache(root, trans);
1055
1056                         /* see comments in should_cow_block() */
1057                         root->force_cow = 0;
1058                         smp_wmb();
1059
1060                         if (root->commit_root != root->node) {
1061                                 mutex_lock(&root->fs_commit_mutex);
1062                                 switch_commit_root(root);
1063                                 btrfs_unpin_free_ino(root);
1064                                 mutex_unlock(&root->fs_commit_mutex);
1065
1066                                 btrfs_set_root_node(&root->root_item,
1067                                                     root->node);
1068                         }
1069
1070                         err = btrfs_update_root(trans, fs_info->tree_root,
1071                                                 &root->root_key,
1072                                                 &root->root_item);
1073                         spin_lock(&fs_info->fs_roots_radix_lock);
1074                         if (err)
1075                                 break;
1076                 }
1077         }
1078         spin_unlock(&fs_info->fs_roots_radix_lock);
1079         return err;
1080 }
1081
1082 /*
1083  * defrag a given btree.
1084  * Every leaf in the btree is read and defragged.
1085  */
1086 int btrfs_defrag_root(struct btrfs_root *root)
1087 {
1088         struct btrfs_fs_info *info = root->fs_info;
1089         struct btrfs_trans_handle *trans;
1090         int ret;
1091
1092         if (xchg(&root->defrag_running, 1))
1093                 return 0;
1094
1095         while (1) {
1096                 trans = btrfs_start_transaction(root, 0);
1097                 if (IS_ERR(trans))
1098                         return PTR_ERR(trans);
1099
1100                 ret = btrfs_defrag_leaves(trans, root);
1101
1102                 btrfs_end_transaction(trans, root);
1103                 btrfs_btree_balance_dirty(info->tree_root);
1104                 cond_resched();
1105
1106                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1107                         break;
1108
1109                 if (btrfs_defrag_cancelled(root->fs_info)) {
1110                         printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1111                         ret = -EAGAIN;
1112                         break;
1113                 }
1114         }
1115         root->defrag_running = 0;
1116         return ret;
1117 }
1118
1119 /*
1120  * new snapshots need to be created at a very specific time in the
1121  * transaction commit.  This does the actual creation.
1122  *
1123  * Note:
1124  * If the error which may affect the commitment of the current transaction
1125  * happens, we should return the error number. If the error which just affect
1126  * the creation of the pending snapshots, just return 0.
1127  */
1128 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1129                                    struct btrfs_fs_info *fs_info,
1130                                    struct btrfs_pending_snapshot *pending)
1131 {
1132         struct btrfs_key key;
1133         struct btrfs_root_item *new_root_item;
1134         struct btrfs_root *tree_root = fs_info->tree_root;
1135         struct btrfs_root *root = pending->root;
1136         struct btrfs_root *parent_root;
1137         struct btrfs_block_rsv *rsv;
1138         struct inode *parent_inode;
1139         struct btrfs_path *path;
1140         struct btrfs_dir_item *dir_item;
1141         struct dentry *dentry;
1142         struct extent_buffer *tmp;
1143         struct extent_buffer *old;
1144         struct timespec cur_time = CURRENT_TIME;
1145         int ret = 0;
1146         u64 to_reserve = 0;
1147         u64 index = 0;
1148         u64 objectid;
1149         u64 root_flags;
1150         uuid_le new_uuid;
1151
1152         path = btrfs_alloc_path();
1153         if (!path) {
1154                 pending->error = -ENOMEM;
1155                 return 0;
1156         }
1157
1158         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1159         if (!new_root_item) {
1160                 pending->error = -ENOMEM;
1161                 goto root_item_alloc_fail;
1162         }
1163
1164         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1165         if (pending->error)
1166                 goto no_free_objectid;
1167
1168         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1169
1170         if (to_reserve > 0) {
1171                 pending->error = btrfs_block_rsv_add(root,
1172                                                      &pending->block_rsv,
1173                                                      to_reserve,
1174                                                      BTRFS_RESERVE_NO_FLUSH);
1175                 if (pending->error)
1176                         goto no_free_objectid;
1177         }
1178
1179         pending->error = btrfs_qgroup_inherit(trans, fs_info,
1180                                               root->root_key.objectid,
1181                                               objectid, pending->inherit);
1182         if (pending->error)
1183                 goto no_free_objectid;
1184
1185         key.objectid = objectid;
1186         key.offset = (u64)-1;
1187         key.type = BTRFS_ROOT_ITEM_KEY;
1188
1189         rsv = trans->block_rsv;
1190         trans->block_rsv = &pending->block_rsv;
1191         trans->bytes_reserved = trans->block_rsv->reserved;
1192
1193         dentry = pending->dentry;
1194         parent_inode = pending->dir;
1195         parent_root = BTRFS_I(parent_inode)->root;
1196         record_root_in_trans(trans, parent_root);
1197
1198         /*
1199          * insert the directory item
1200          */
1201         ret = btrfs_set_inode_index(parent_inode, &index);
1202         BUG_ON(ret); /* -ENOMEM */
1203
1204         /* check if there is a file/dir which has the same name. */
1205         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1206                                          btrfs_ino(parent_inode),
1207                                          dentry->d_name.name,
1208                                          dentry->d_name.len, 0);
1209         if (dir_item != NULL && !IS_ERR(dir_item)) {
1210                 pending->error = -EEXIST;
1211                 goto dir_item_existed;
1212         } else if (IS_ERR(dir_item)) {
1213                 ret = PTR_ERR(dir_item);
1214                 btrfs_abort_transaction(trans, root, ret);
1215                 goto fail;
1216         }
1217         btrfs_release_path(path);
1218
1219         /*
1220          * pull in the delayed directory update
1221          * and the delayed inode item
1222          * otherwise we corrupt the FS during
1223          * snapshot
1224          */
1225         ret = btrfs_run_delayed_items(trans, root);
1226         if (ret) {      /* Transaction aborted */
1227                 btrfs_abort_transaction(trans, root, ret);
1228                 goto fail;
1229         }
1230
1231         record_root_in_trans(trans, root);
1232         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1233         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1234         btrfs_check_and_init_root_item(new_root_item);
1235
1236         root_flags = btrfs_root_flags(new_root_item);
1237         if (pending->readonly)
1238                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1239         else
1240                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1241         btrfs_set_root_flags(new_root_item, root_flags);
1242
1243         btrfs_set_root_generation_v2(new_root_item,
1244                         trans->transid);
1245         uuid_le_gen(&new_uuid);
1246         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1247         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1248                         BTRFS_UUID_SIZE);
1249         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1250                 memset(new_root_item->received_uuid, 0,
1251                        sizeof(new_root_item->received_uuid));
1252                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1253                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1254                 btrfs_set_root_stransid(new_root_item, 0);
1255                 btrfs_set_root_rtransid(new_root_item, 0);
1256         }
1257         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1258         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1259         btrfs_set_root_otransid(new_root_item, trans->transid);
1260
1261         old = btrfs_lock_root_node(root);
1262         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1263         if (ret) {
1264                 btrfs_tree_unlock(old);
1265                 free_extent_buffer(old);
1266                 btrfs_abort_transaction(trans, root, ret);
1267                 goto fail;
1268         }
1269
1270         btrfs_set_lock_blocking(old);
1271
1272         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1273         /* clean up in any case */
1274         btrfs_tree_unlock(old);
1275         free_extent_buffer(old);
1276         if (ret) {
1277                 btrfs_abort_transaction(trans, root, ret);
1278                 goto fail;
1279         }
1280
1281         /* see comments in should_cow_block() */
1282         root->force_cow = 1;
1283         smp_wmb();
1284
1285         btrfs_set_root_node(new_root_item, tmp);
1286         /* record when the snapshot was created in key.offset */
1287         key.offset = trans->transid;
1288         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1289         btrfs_tree_unlock(tmp);
1290         free_extent_buffer(tmp);
1291         if (ret) {
1292                 btrfs_abort_transaction(trans, root, ret);
1293                 goto fail;
1294         }
1295
1296         /*
1297          * insert root back/forward references
1298          */
1299         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1300                                  parent_root->root_key.objectid,
1301                                  btrfs_ino(parent_inode), index,
1302                                  dentry->d_name.name, dentry->d_name.len);
1303         if (ret) {
1304                 btrfs_abort_transaction(trans, root, ret);
1305                 goto fail;
1306         }
1307
1308         key.offset = (u64)-1;
1309         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1310         if (IS_ERR(pending->snap)) {
1311                 ret = PTR_ERR(pending->snap);
1312                 btrfs_abort_transaction(trans, root, ret);
1313                 goto fail;
1314         }
1315
1316         ret = btrfs_reloc_post_snapshot(trans, pending);
1317         if (ret) {
1318                 btrfs_abort_transaction(trans, root, ret);
1319                 goto fail;
1320         }
1321
1322         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1323         if (ret) {
1324                 btrfs_abort_transaction(trans, root, ret);
1325                 goto fail;
1326         }
1327
1328         ret = btrfs_insert_dir_item(trans, parent_root,
1329                                     dentry->d_name.name, dentry->d_name.len,
1330                                     parent_inode, &key,
1331                                     BTRFS_FT_DIR, index);
1332         /* We have check then name at the beginning, so it is impossible. */
1333         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1334         if (ret) {
1335                 btrfs_abort_transaction(trans, root, ret);
1336                 goto fail;
1337         }
1338
1339         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1340                                          dentry->d_name.len * 2);
1341         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1342         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1343         if (ret) {
1344                 btrfs_abort_transaction(trans, root, ret);
1345                 goto fail;
1346         }
1347         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1348                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1349         if (ret) {
1350                 btrfs_abort_transaction(trans, root, ret);
1351                 goto fail;
1352         }
1353         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1354                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1355                                           new_root_item->received_uuid,
1356                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1357                                           objectid);
1358                 if (ret && ret != -EEXIST) {
1359                         btrfs_abort_transaction(trans, root, ret);
1360                         goto fail;
1361                 }
1362         }
1363 fail:
1364         pending->error = ret;
1365 dir_item_existed:
1366         trans->block_rsv = rsv;
1367         trans->bytes_reserved = 0;
1368 no_free_objectid:
1369         kfree(new_root_item);
1370 root_item_alloc_fail:
1371         btrfs_free_path(path);
1372         return ret;
1373 }
1374
1375 /*
1376  * create all the snapshots we've scheduled for creation
1377  */
1378 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1379                                              struct btrfs_fs_info *fs_info)
1380 {
1381         struct btrfs_pending_snapshot *pending, *next;
1382         struct list_head *head = &trans->transaction->pending_snapshots;
1383         int ret = 0;
1384
1385         list_for_each_entry_safe(pending, next, head, list) {
1386                 list_del(&pending->list);
1387                 ret = create_pending_snapshot(trans, fs_info, pending);
1388                 if (ret)
1389                         break;
1390         }
1391         return ret;
1392 }
1393
1394 static void update_super_roots(struct btrfs_root *root)
1395 {
1396         struct btrfs_root_item *root_item;
1397         struct btrfs_super_block *super;
1398
1399         super = root->fs_info->super_copy;
1400
1401         root_item = &root->fs_info->chunk_root->root_item;
1402         super->chunk_root = root_item->bytenr;
1403         super->chunk_root_generation = root_item->generation;
1404         super->chunk_root_level = root_item->level;
1405
1406         root_item = &root->fs_info->tree_root->root_item;
1407         super->root = root_item->bytenr;
1408         super->generation = root_item->generation;
1409         super->root_level = root_item->level;
1410         if (btrfs_test_opt(root, SPACE_CACHE))
1411                 super->cache_generation = root_item->generation;
1412         if (root->fs_info->update_uuid_tree_gen)
1413                 super->uuid_tree_generation = root_item->generation;
1414 }
1415
1416 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1417 {
1418         struct btrfs_transaction *trans;
1419         int ret = 0;
1420
1421         spin_lock(&info->trans_lock);
1422         trans = info->running_transaction;
1423         if (trans)
1424                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1425         spin_unlock(&info->trans_lock);
1426         return ret;
1427 }
1428
1429 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1430 {
1431         struct btrfs_transaction *trans;
1432         int ret = 0;
1433
1434         spin_lock(&info->trans_lock);
1435         trans = info->running_transaction;
1436         if (trans)
1437                 ret = is_transaction_blocked(trans);
1438         spin_unlock(&info->trans_lock);
1439         return ret;
1440 }
1441
1442 /*
1443  * wait for the current transaction commit to start and block subsequent
1444  * transaction joins
1445  */
1446 static void wait_current_trans_commit_start(struct btrfs_root *root,
1447                                             struct btrfs_transaction *trans)
1448 {
1449         wait_event(root->fs_info->transaction_blocked_wait,
1450                    trans->state >= TRANS_STATE_COMMIT_START ||
1451                    trans->aborted);
1452 }
1453
1454 /*
1455  * wait for the current transaction to start and then become unblocked.
1456  * caller holds ref.
1457  */
1458 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1459                                          struct btrfs_transaction *trans)
1460 {
1461         wait_event(root->fs_info->transaction_wait,
1462                    trans->state >= TRANS_STATE_UNBLOCKED ||
1463                    trans->aborted);
1464 }
1465
1466 /*
1467  * commit transactions asynchronously. once btrfs_commit_transaction_async
1468  * returns, any subsequent transaction will not be allowed to join.
1469  */
1470 struct btrfs_async_commit {
1471         struct btrfs_trans_handle *newtrans;
1472         struct btrfs_root *root;
1473         struct work_struct work;
1474 };
1475
1476 static void do_async_commit(struct work_struct *work)
1477 {
1478         struct btrfs_async_commit *ac =
1479                 container_of(work, struct btrfs_async_commit, work);
1480
1481         /*
1482          * We've got freeze protection passed with the transaction.
1483          * Tell lockdep about it.
1484          */
1485         if (ac->newtrans->type & __TRANS_FREEZABLE)
1486                 rwsem_acquire_read(
1487                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1488                      0, 1, _THIS_IP_);
1489
1490         current->journal_info = ac->newtrans;
1491
1492         btrfs_commit_transaction(ac->newtrans, ac->root);
1493         kfree(ac);
1494 }
1495
1496 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1497                                    struct btrfs_root *root,
1498                                    int wait_for_unblock)
1499 {
1500         struct btrfs_async_commit *ac;
1501         struct btrfs_transaction *cur_trans;
1502
1503         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1504         if (!ac)
1505                 return -ENOMEM;
1506
1507         INIT_WORK(&ac->work, do_async_commit);
1508         ac->root = root;
1509         ac->newtrans = btrfs_join_transaction(root);
1510         if (IS_ERR(ac->newtrans)) {
1511                 int err = PTR_ERR(ac->newtrans);
1512                 kfree(ac);
1513                 return err;
1514         }
1515
1516         /* take transaction reference */
1517         cur_trans = trans->transaction;
1518         atomic_inc(&cur_trans->use_count);
1519
1520         btrfs_end_transaction(trans, root);
1521
1522         /*
1523          * Tell lockdep we've released the freeze rwsem, since the
1524          * async commit thread will be the one to unlock it.
1525          */
1526         if (ac->newtrans->type & __TRANS_FREEZABLE)
1527                 rwsem_release(
1528                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1529                         1, _THIS_IP_);
1530
1531         schedule_work(&ac->work);
1532
1533         /* wait for transaction to start and unblock */
1534         if (wait_for_unblock)
1535                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1536         else
1537                 wait_current_trans_commit_start(root, cur_trans);
1538
1539         if (current->journal_info == trans)
1540                 current->journal_info = NULL;
1541
1542         btrfs_put_transaction(cur_trans);
1543         return 0;
1544 }
1545
1546
1547 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1548                                 struct btrfs_root *root, int err)
1549 {
1550         struct btrfs_transaction *cur_trans = trans->transaction;
1551         DEFINE_WAIT(wait);
1552
1553         WARN_ON(trans->use_count > 1);
1554
1555         btrfs_abort_transaction(trans, root, err);
1556
1557         spin_lock(&root->fs_info->trans_lock);
1558
1559         /*
1560          * If the transaction is removed from the list, it means this
1561          * transaction has been committed successfully, so it is impossible
1562          * to call the cleanup function.
1563          */
1564         BUG_ON(list_empty(&cur_trans->list));
1565
1566         list_del_init(&cur_trans->list);
1567         if (cur_trans == root->fs_info->running_transaction) {
1568                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1569                 spin_unlock(&root->fs_info->trans_lock);
1570                 wait_event(cur_trans->writer_wait,
1571                            atomic_read(&cur_trans->num_writers) == 1);
1572
1573                 spin_lock(&root->fs_info->trans_lock);
1574         }
1575         spin_unlock(&root->fs_info->trans_lock);
1576
1577         btrfs_cleanup_one_transaction(trans->transaction, root);
1578
1579         spin_lock(&root->fs_info->trans_lock);
1580         if (cur_trans == root->fs_info->running_transaction)
1581                 root->fs_info->running_transaction = NULL;
1582         spin_unlock(&root->fs_info->trans_lock);
1583
1584         if (trans->type & __TRANS_FREEZABLE)
1585                 sb_end_intwrite(root->fs_info->sb);
1586         btrfs_put_transaction(cur_trans);
1587         btrfs_put_transaction(cur_trans);
1588
1589         trace_btrfs_transaction_commit(root);
1590
1591         btrfs_scrub_continue(root);
1592
1593         if (current->journal_info == trans)
1594                 current->journal_info = NULL;
1595
1596         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1597 }
1598
1599 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1600                                           struct btrfs_root *root)
1601 {
1602         int ret;
1603
1604         ret = btrfs_run_delayed_items(trans, root);
1605         /*
1606          * running the delayed items may have added new refs. account
1607          * them now so that they hinder processing of more delayed refs
1608          * as little as possible.
1609          */
1610         if (ret) {
1611                 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1612                 return ret;
1613         }
1614
1615         ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1616         if (ret)
1617                 return ret;
1618
1619         /*
1620          * rename don't use btrfs_join_transaction, so, once we
1621          * set the transaction to blocked above, we aren't going
1622          * to get any new ordered operations.  We can safely run
1623          * it here and no for sure that nothing new will be added
1624          * to the list
1625          */
1626         ret = btrfs_run_ordered_operations(trans, root, 1);
1627
1628         return ret;
1629 }
1630
1631 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1632 {
1633         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1634                 return btrfs_start_delalloc_roots(fs_info, 1);
1635         return 0;
1636 }
1637
1638 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1639 {
1640         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1641                 btrfs_wait_ordered_roots(fs_info, -1);
1642 }
1643
1644 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1645                              struct btrfs_root *root)
1646 {
1647         struct btrfs_transaction *cur_trans = trans->transaction;
1648         struct btrfs_transaction *prev_trans = NULL;
1649         int ret;
1650
1651         ret = btrfs_run_ordered_operations(trans, root, 0);
1652         if (ret) {
1653                 btrfs_abort_transaction(trans, root, ret);
1654                 btrfs_end_transaction(trans, root);
1655                 return ret;
1656         }
1657
1658         /* Stop the commit early if ->aborted is set */
1659         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1660                 ret = cur_trans->aborted;
1661                 btrfs_end_transaction(trans, root);
1662                 return ret;
1663         }
1664
1665         /* make a pass through all the delayed refs we have so far
1666          * any runnings procs may add more while we are here
1667          */
1668         ret = btrfs_run_delayed_refs(trans, root, 0);
1669         if (ret) {
1670                 btrfs_end_transaction(trans, root);
1671                 return ret;
1672         }
1673
1674         btrfs_trans_release_metadata(trans, root);
1675         trans->block_rsv = NULL;
1676         if (trans->qgroup_reserved) {
1677                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1678                 trans->qgroup_reserved = 0;
1679         }
1680
1681         cur_trans = trans->transaction;
1682
1683         /*
1684          * set the flushing flag so procs in this transaction have to
1685          * start sending their work down.
1686          */
1687         cur_trans->delayed_refs.flushing = 1;
1688         smp_wmb();
1689
1690         if (!list_empty(&trans->new_bgs))
1691                 btrfs_create_pending_block_groups(trans, root);
1692
1693         ret = btrfs_run_delayed_refs(trans, root, 0);
1694         if (ret) {
1695                 btrfs_end_transaction(trans, root);
1696                 return ret;
1697         }
1698
1699         spin_lock(&root->fs_info->trans_lock);
1700         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1701                 spin_unlock(&root->fs_info->trans_lock);
1702                 atomic_inc(&cur_trans->use_count);
1703                 ret = btrfs_end_transaction(trans, root);
1704
1705                 wait_for_commit(root, cur_trans);
1706
1707                 btrfs_put_transaction(cur_trans);
1708
1709                 return ret;
1710         }
1711
1712         cur_trans->state = TRANS_STATE_COMMIT_START;
1713         wake_up(&root->fs_info->transaction_blocked_wait);
1714
1715         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1716                 prev_trans = list_entry(cur_trans->list.prev,
1717                                         struct btrfs_transaction, list);
1718                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1719                         atomic_inc(&prev_trans->use_count);
1720                         spin_unlock(&root->fs_info->trans_lock);
1721
1722                         wait_for_commit(root, prev_trans);
1723
1724                         btrfs_put_transaction(prev_trans);
1725                 } else {
1726                         spin_unlock(&root->fs_info->trans_lock);
1727                 }
1728         } else {
1729                 spin_unlock(&root->fs_info->trans_lock);
1730         }
1731
1732         extwriter_counter_dec(cur_trans, trans->type);
1733
1734         ret = btrfs_start_delalloc_flush(root->fs_info);
1735         if (ret)
1736                 goto cleanup_transaction;
1737
1738         ret = btrfs_flush_all_pending_stuffs(trans, root);
1739         if (ret)
1740                 goto cleanup_transaction;
1741
1742         wait_event(cur_trans->writer_wait,
1743                    extwriter_counter_read(cur_trans) == 0);
1744
1745         /* some pending stuffs might be added after the previous flush. */
1746         ret = btrfs_flush_all_pending_stuffs(trans, root);
1747         if (ret)
1748                 goto cleanup_transaction;
1749
1750         btrfs_wait_delalloc_flush(root->fs_info);
1751
1752         btrfs_scrub_pause(root);
1753         /*
1754          * Ok now we need to make sure to block out any other joins while we
1755          * commit the transaction.  We could have started a join before setting
1756          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1757          */
1758         spin_lock(&root->fs_info->trans_lock);
1759         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1760         spin_unlock(&root->fs_info->trans_lock);
1761         wait_event(cur_trans->writer_wait,
1762                    atomic_read(&cur_trans->num_writers) == 1);
1763
1764         /* ->aborted might be set after the previous check, so check it */
1765         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1766                 ret = cur_trans->aborted;
1767                 goto cleanup_transaction;
1768         }
1769         /*
1770          * the reloc mutex makes sure that we stop
1771          * the balancing code from coming in and moving
1772          * extents around in the middle of the commit
1773          */
1774         mutex_lock(&root->fs_info->reloc_mutex);
1775
1776         /*
1777          * We needn't worry about the delayed items because we will
1778          * deal with them in create_pending_snapshot(), which is the
1779          * core function of the snapshot creation.
1780          */
1781         ret = create_pending_snapshots(trans, root->fs_info);
1782         if (ret) {
1783                 mutex_unlock(&root->fs_info->reloc_mutex);
1784                 goto cleanup_transaction;
1785         }
1786
1787         /*
1788          * We insert the dir indexes of the snapshots and update the inode
1789          * of the snapshots' parents after the snapshot creation, so there
1790          * are some delayed items which are not dealt with. Now deal with
1791          * them.
1792          *
1793          * We needn't worry that this operation will corrupt the snapshots,
1794          * because all the tree which are snapshoted will be forced to COW
1795          * the nodes and leaves.
1796          */
1797         ret = btrfs_run_delayed_items(trans, root);
1798         if (ret) {
1799                 mutex_unlock(&root->fs_info->reloc_mutex);
1800                 goto cleanup_transaction;
1801         }
1802
1803         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1804         if (ret) {
1805                 mutex_unlock(&root->fs_info->reloc_mutex);
1806                 goto cleanup_transaction;
1807         }
1808
1809         /*
1810          * make sure none of the code above managed to slip in a
1811          * delayed item
1812          */
1813         btrfs_assert_delayed_root_empty(root);
1814
1815         WARN_ON(cur_trans != trans->transaction);
1816
1817         /* btrfs_commit_tree_roots is responsible for getting the
1818          * various roots consistent with each other.  Every pointer
1819          * in the tree of tree roots has to point to the most up to date
1820          * root for every subvolume and other tree.  So, we have to keep
1821          * the tree logging code from jumping in and changing any
1822          * of the trees.
1823          *
1824          * At this point in the commit, there can't be any tree-log
1825          * writers, but a little lower down we drop the trans mutex
1826          * and let new people in.  By holding the tree_log_mutex
1827          * from now until after the super is written, we avoid races
1828          * with the tree-log code.
1829          */
1830         mutex_lock(&root->fs_info->tree_log_mutex);
1831
1832         ret = commit_fs_roots(trans, root);
1833         if (ret) {
1834                 mutex_unlock(&root->fs_info->tree_log_mutex);
1835                 mutex_unlock(&root->fs_info->reloc_mutex);
1836                 goto cleanup_transaction;
1837         }
1838
1839         /* commit_fs_roots gets rid of all the tree log roots, it is now
1840          * safe to free the root of tree log roots
1841          */
1842         btrfs_free_log_root_tree(trans, root->fs_info);
1843
1844         ret = commit_cowonly_roots(trans, root);
1845         if (ret) {
1846                 mutex_unlock(&root->fs_info->tree_log_mutex);
1847                 mutex_unlock(&root->fs_info->reloc_mutex);
1848                 goto cleanup_transaction;
1849         }
1850
1851         /*
1852          * The tasks which save the space cache and inode cache may also
1853          * update ->aborted, check it.
1854          */
1855         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856                 ret = cur_trans->aborted;
1857                 mutex_unlock(&root->fs_info->tree_log_mutex);
1858                 mutex_unlock(&root->fs_info->reloc_mutex);
1859                 goto cleanup_transaction;
1860         }
1861
1862         btrfs_prepare_extent_commit(trans, root);
1863
1864         cur_trans = root->fs_info->running_transaction;
1865
1866         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867                             root->fs_info->tree_root->node);
1868         switch_commit_root(root->fs_info->tree_root);
1869
1870         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1871                             root->fs_info->chunk_root->node);
1872         switch_commit_root(root->fs_info->chunk_root);
1873
1874         assert_qgroups_uptodate(trans);
1875         update_super_roots(root);
1876
1877         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1878         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1879         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1880                sizeof(*root->fs_info->super_copy));
1881
1882         spin_lock(&root->fs_info->trans_lock);
1883         cur_trans->state = TRANS_STATE_UNBLOCKED;
1884         root->fs_info->running_transaction = NULL;
1885         spin_unlock(&root->fs_info->trans_lock);
1886         mutex_unlock(&root->fs_info->reloc_mutex);
1887
1888         wake_up(&root->fs_info->transaction_wait);
1889
1890         ret = btrfs_write_and_wait_transaction(trans, root);
1891         if (ret) {
1892                 btrfs_error(root->fs_info, ret,
1893                             "Error while writing out transaction");
1894                 mutex_unlock(&root->fs_info->tree_log_mutex);
1895                 goto cleanup_transaction;
1896         }
1897
1898         ret = write_ctree_super(trans, root, 0);
1899         if (ret) {
1900                 mutex_unlock(&root->fs_info->tree_log_mutex);
1901                 goto cleanup_transaction;
1902         }
1903
1904         /*
1905          * the super is written, we can safely allow the tree-loggers
1906          * to go about their business
1907          */
1908         mutex_unlock(&root->fs_info->tree_log_mutex);
1909
1910         btrfs_finish_extent_commit(trans, root);
1911
1912         root->fs_info->last_trans_committed = cur_trans->transid;
1913         /*
1914          * We needn't acquire the lock here because there is no other task
1915          * which can change it.
1916          */
1917         cur_trans->state = TRANS_STATE_COMPLETED;
1918         wake_up(&cur_trans->commit_wait);
1919
1920         spin_lock(&root->fs_info->trans_lock);
1921         list_del_init(&cur_trans->list);
1922         spin_unlock(&root->fs_info->trans_lock);
1923
1924         btrfs_put_transaction(cur_trans);
1925         btrfs_put_transaction(cur_trans);
1926
1927         if (trans->type & __TRANS_FREEZABLE)
1928                 sb_end_intwrite(root->fs_info->sb);
1929
1930         trace_btrfs_transaction_commit(root);
1931
1932         btrfs_scrub_continue(root);
1933
1934         if (current->journal_info == trans)
1935                 current->journal_info = NULL;
1936
1937         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1938
1939         if (current != root->fs_info->transaction_kthread)
1940                 btrfs_run_delayed_iputs(root);
1941
1942         return ret;
1943
1944 cleanup_transaction:
1945         btrfs_trans_release_metadata(trans, root);
1946         trans->block_rsv = NULL;
1947         if (trans->qgroup_reserved) {
1948                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1949                 trans->qgroup_reserved = 0;
1950         }
1951         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1952         if (current->journal_info == trans)
1953                 current->journal_info = NULL;
1954         cleanup_transaction(trans, root, ret);
1955
1956         return ret;
1957 }
1958
1959 /*
1960  * return < 0 if error
1961  * 0 if there are no more dead_roots at the time of call
1962  * 1 there are more to be processed, call me again
1963  *
1964  * The return value indicates there are certainly more snapshots to delete, but
1965  * if there comes a new one during processing, it may return 0. We don't mind,
1966  * because btrfs_commit_super will poke cleaner thread and it will process it a
1967  * few seconds later.
1968  */
1969 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1970 {
1971         int ret;
1972         struct btrfs_fs_info *fs_info = root->fs_info;
1973
1974         spin_lock(&fs_info->trans_lock);
1975         if (list_empty(&fs_info->dead_roots)) {
1976                 spin_unlock(&fs_info->trans_lock);
1977                 return 0;
1978         }
1979         root = list_first_entry(&fs_info->dead_roots,
1980                         struct btrfs_root, root_list);
1981         list_del_init(&root->root_list);
1982         spin_unlock(&fs_info->trans_lock);
1983
1984         pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
1985
1986         btrfs_kill_all_delayed_nodes(root);
1987
1988         if (btrfs_header_backref_rev(root->node) <
1989                         BTRFS_MIXED_BACKREF_REV)
1990                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1991         else
1992                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1993         /*
1994          * If we encounter a transaction abort during snapshot cleaning, we
1995          * don't want to crash here
1996          */
1997         return (ret < 0) ? 0 : 1;
1998 }