]> Pileus Git - ~andy/linux/blob - fs/btrfs/super.c
Btrfs: integrate integrity check module into btrfs
[~andy/linux] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/mnt_namespace.h>
44 #include <linux/ratelimit.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "ioctl.h"
52 #include "print-tree.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "version.h"
56 #include "export.h"
57 #include "compression.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66                                       char nbuf[16])
67 {
68         char *errstr = NULL;
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         default:
81                 if (nbuf) {
82                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
83                                 errstr = nbuf;
84                 }
85                 break;
86         }
87
88         return errstr;
89 }
90
91 static void __save_error_info(struct btrfs_fs_info *fs_info)
92 {
93         /*
94          * today we only save the error info into ram.  Long term we'll
95          * also send it down to the disk
96          */
97         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
98 }
99
100 /* NOTE:
101  *      We move write_super stuff at umount in order to avoid deadlock
102  *      for umount hold all lock.
103  */
104 static void save_error_info(struct btrfs_fs_info *fs_info)
105 {
106         __save_error_info(fs_info);
107 }
108
109 /* btrfs handle error by forcing the filesystem readonly */
110 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
111 {
112         struct super_block *sb = fs_info->sb;
113
114         if (sb->s_flags & MS_RDONLY)
115                 return;
116
117         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
118                 sb->s_flags |= MS_RDONLY;
119                 printk(KERN_INFO "btrfs is forced readonly\n");
120         }
121 }
122
123 /*
124  * __btrfs_std_error decodes expected errors from the caller and
125  * invokes the approciate error response.
126  */
127 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
128                      unsigned int line, int errno)
129 {
130         struct super_block *sb = fs_info->sb;
131         char nbuf[16];
132         const char *errstr;
133
134         /*
135          * Special case: if the error is EROFS, and we're already
136          * under MS_RDONLY, then it is safe here.
137          */
138         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
139                 return;
140
141         errstr = btrfs_decode_error(fs_info, errno, nbuf);
142         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
143                 sb->s_id, function, line, errstr);
144         save_error_info(fs_info);
145
146         btrfs_handle_error(fs_info);
147 }
148
149 static void btrfs_put_super(struct super_block *sb)
150 {
151         struct btrfs_root *root = btrfs_sb(sb);
152         int ret;
153
154         ret = close_ctree(root);
155         sb->s_fs_info = NULL;
156
157         (void)ret; /* FIXME: need to fix VFS to return error? */
158 }
159
160 enum {
161         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
162         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
163         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
164         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
165         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
166         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
167         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
168         Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
169         Opt_check_integrity, Opt_check_integrity_including_extent_data,
170         Opt_check_integrity_print_mask,
171         Opt_err,
172 };
173
174 static match_table_t tokens = {
175         {Opt_degraded, "degraded"},
176         {Opt_subvol, "subvol=%s"},
177         {Opt_subvolid, "subvolid=%d"},
178         {Opt_device, "device=%s"},
179         {Opt_nodatasum, "nodatasum"},
180         {Opt_nodatacow, "nodatacow"},
181         {Opt_nobarrier, "nobarrier"},
182         {Opt_max_inline, "max_inline=%s"},
183         {Opt_alloc_start, "alloc_start=%s"},
184         {Opt_thread_pool, "thread_pool=%d"},
185         {Opt_compress, "compress"},
186         {Opt_compress_type, "compress=%s"},
187         {Opt_compress_force, "compress-force"},
188         {Opt_compress_force_type, "compress-force=%s"},
189         {Opt_ssd, "ssd"},
190         {Opt_ssd_spread, "ssd_spread"},
191         {Opt_nossd, "nossd"},
192         {Opt_noacl, "noacl"},
193         {Opt_notreelog, "notreelog"},
194         {Opt_flushoncommit, "flushoncommit"},
195         {Opt_ratio, "metadata_ratio=%d"},
196         {Opt_discard, "discard"},
197         {Opt_space_cache, "space_cache"},
198         {Opt_clear_cache, "clear_cache"},
199         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
200         {Opt_enospc_debug, "enospc_debug"},
201         {Opt_subvolrootid, "subvolrootid=%d"},
202         {Opt_defrag, "autodefrag"},
203         {Opt_inode_cache, "inode_cache"},
204         {Opt_no_space_cache, "nospace_cache"},
205         {Opt_recovery, "recovery"},
206         {Opt_check_integrity, "check_int"},
207         {Opt_check_integrity_including_extent_data, "check_int_data"},
208         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
209         {Opt_err, NULL},
210 };
211
212 /*
213  * Regular mount options parser.  Everything that is needed only when
214  * reading in a new superblock is parsed here.
215  */
216 int btrfs_parse_options(struct btrfs_root *root, char *options)
217 {
218         struct btrfs_fs_info *info = root->fs_info;
219         substring_t args[MAX_OPT_ARGS];
220         char *p, *num, *orig = NULL;
221         u64 cache_gen;
222         int intarg;
223         int ret = 0;
224         char *compress_type;
225         bool compress_force = false;
226
227         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
228         if (cache_gen)
229                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
230
231         if (!options)
232                 goto out;
233
234         /*
235          * strsep changes the string, duplicate it because parse_options
236          * gets called twice
237          */
238         options = kstrdup(options, GFP_NOFS);
239         if (!options)
240                 return -ENOMEM;
241
242         orig = options;
243
244         while ((p = strsep(&options, ",")) != NULL) {
245                 int token;
246                 if (!*p)
247                         continue;
248
249                 token = match_token(p, tokens, args);
250                 switch (token) {
251                 case Opt_degraded:
252                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
253                         btrfs_set_opt(info->mount_opt, DEGRADED);
254                         break;
255                 case Opt_subvol:
256                 case Opt_subvolid:
257                 case Opt_subvolrootid:
258                 case Opt_device:
259                         /*
260                          * These are parsed by btrfs_parse_early_options
261                          * and can be happily ignored here.
262                          */
263                         break;
264                 case Opt_nodatasum:
265                         printk(KERN_INFO "btrfs: setting nodatasum\n");
266                         btrfs_set_opt(info->mount_opt, NODATASUM);
267                         break;
268                 case Opt_nodatacow:
269                         printk(KERN_INFO "btrfs: setting nodatacow\n");
270                         btrfs_set_opt(info->mount_opt, NODATACOW);
271                         btrfs_set_opt(info->mount_opt, NODATASUM);
272                         break;
273                 case Opt_compress_force:
274                 case Opt_compress_force_type:
275                         compress_force = true;
276                 case Opt_compress:
277                 case Opt_compress_type:
278                         if (token == Opt_compress ||
279                             token == Opt_compress_force ||
280                             strcmp(args[0].from, "zlib") == 0) {
281                                 compress_type = "zlib";
282                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
283                         } else if (strcmp(args[0].from, "lzo") == 0) {
284                                 compress_type = "lzo";
285                                 info->compress_type = BTRFS_COMPRESS_LZO;
286                         } else {
287                                 ret = -EINVAL;
288                                 goto out;
289                         }
290
291                         btrfs_set_opt(info->mount_opt, COMPRESS);
292                         if (compress_force) {
293                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
294                                 pr_info("btrfs: force %s compression\n",
295                                         compress_type);
296                         } else
297                                 pr_info("btrfs: use %s compression\n",
298                                         compress_type);
299                         break;
300                 case Opt_ssd:
301                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
302                         btrfs_set_opt(info->mount_opt, SSD);
303                         break;
304                 case Opt_ssd_spread:
305                         printk(KERN_INFO "btrfs: use spread ssd "
306                                "allocation scheme\n");
307                         btrfs_set_opt(info->mount_opt, SSD);
308                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
309                         break;
310                 case Opt_nossd:
311                         printk(KERN_INFO "btrfs: not using ssd allocation "
312                                "scheme\n");
313                         btrfs_set_opt(info->mount_opt, NOSSD);
314                         btrfs_clear_opt(info->mount_opt, SSD);
315                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
316                         break;
317                 case Opt_nobarrier:
318                         printk(KERN_INFO "btrfs: turning off barriers\n");
319                         btrfs_set_opt(info->mount_opt, NOBARRIER);
320                         break;
321                 case Opt_thread_pool:
322                         intarg = 0;
323                         match_int(&args[0], &intarg);
324                         if (intarg) {
325                                 info->thread_pool_size = intarg;
326                                 printk(KERN_INFO "btrfs: thread pool %d\n",
327                                        info->thread_pool_size);
328                         }
329                         break;
330                 case Opt_max_inline:
331                         num = match_strdup(&args[0]);
332                         if (num) {
333                                 info->max_inline = memparse(num, NULL);
334                                 kfree(num);
335
336                                 if (info->max_inline) {
337                                         info->max_inline = max_t(u64,
338                                                 info->max_inline,
339                                                 root->sectorsize);
340                                 }
341                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
342                                         (unsigned long long)info->max_inline);
343                         }
344                         break;
345                 case Opt_alloc_start:
346                         num = match_strdup(&args[0]);
347                         if (num) {
348                                 info->alloc_start = memparse(num, NULL);
349                                 kfree(num);
350                                 printk(KERN_INFO
351                                         "btrfs: allocations start at %llu\n",
352                                         (unsigned long long)info->alloc_start);
353                         }
354                         break;
355                 case Opt_noacl:
356                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
357                         break;
358                 case Opt_notreelog:
359                         printk(KERN_INFO "btrfs: disabling tree log\n");
360                         btrfs_set_opt(info->mount_opt, NOTREELOG);
361                         break;
362                 case Opt_flushoncommit:
363                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
364                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
365                         break;
366                 case Opt_ratio:
367                         intarg = 0;
368                         match_int(&args[0], &intarg);
369                         if (intarg) {
370                                 info->metadata_ratio = intarg;
371                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
372                                        info->metadata_ratio);
373                         }
374                         break;
375                 case Opt_discard:
376                         btrfs_set_opt(info->mount_opt, DISCARD);
377                         break;
378                 case Opt_space_cache:
379                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
380                         break;
381                 case Opt_no_space_cache:
382                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
383                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
384                         break;
385                 case Opt_inode_cache:
386                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
387                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
388                         break;
389                 case Opt_clear_cache:
390                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
391                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
392                         break;
393                 case Opt_user_subvol_rm_allowed:
394                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
395                         break;
396                 case Opt_enospc_debug:
397                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
398                         break;
399                 case Opt_defrag:
400                         printk(KERN_INFO "btrfs: enabling auto defrag");
401                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
402                         break;
403                 case Opt_recovery:
404                         printk(KERN_INFO "btrfs: enabling auto recovery");
405                         btrfs_set_opt(info->mount_opt, RECOVERY);
406                         break;
407 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
408                 case Opt_check_integrity_including_extent_data:
409                         printk(KERN_INFO "btrfs: enabling check integrity"
410                                " including extent data\n");
411                         btrfs_set_opt(info->mount_opt,
412                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
413                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
414                         break;
415                 case Opt_check_integrity:
416                         printk(KERN_INFO "btrfs: enabling check integrity\n");
417                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
418                         break;
419                 case Opt_check_integrity_print_mask:
420                         intarg = 0;
421                         match_int(&args[0], &intarg);
422                         if (intarg) {
423                                 info->check_integrity_print_mask = intarg;
424                                 printk(KERN_INFO "btrfs:"
425                                        " check_integrity_print_mask 0x%x\n",
426                                        info->check_integrity_print_mask);
427                         }
428                         break;
429 #else
430                 case Opt_check_integrity_including_extent_data:
431                 case Opt_check_integrity:
432                 case Opt_check_integrity_print_mask:
433                         printk(KERN_ERR "btrfs: support for check_integrity*"
434                                " not compiled in!\n");
435                         ret = -EINVAL;
436                         goto out;
437 #endif
438                 case Opt_err:
439                         printk(KERN_INFO "btrfs: unrecognized mount option "
440                                "'%s'\n", p);
441                         ret = -EINVAL;
442                         goto out;
443                 default:
444                         break;
445                 }
446         }
447 out:
448         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
449                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
450         kfree(orig);
451         return ret;
452 }
453
454 /*
455  * Parse mount options that are required early in the mount process.
456  *
457  * All other options will be parsed on much later in the mount process and
458  * only when we need to allocate a new super block.
459  */
460 static int btrfs_parse_early_options(const char *options, fmode_t flags,
461                 void *holder, char **subvol_name, u64 *subvol_objectid,
462                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
463 {
464         substring_t args[MAX_OPT_ARGS];
465         char *device_name, *opts, *orig, *p;
466         int error = 0;
467         int intarg;
468
469         if (!options)
470                 return 0;
471
472         /*
473          * strsep changes the string, duplicate it because parse_options
474          * gets called twice
475          */
476         opts = kstrdup(options, GFP_KERNEL);
477         if (!opts)
478                 return -ENOMEM;
479         orig = opts;
480
481         while ((p = strsep(&opts, ",")) != NULL) {
482                 int token;
483                 if (!*p)
484                         continue;
485
486                 token = match_token(p, tokens, args);
487                 switch (token) {
488                 case Opt_subvol:
489                         kfree(*subvol_name);
490                         *subvol_name = match_strdup(&args[0]);
491                         break;
492                 case Opt_subvolid:
493                         intarg = 0;
494                         error = match_int(&args[0], &intarg);
495                         if (!error) {
496                                 /* we want the original fs_tree */
497                                 if (!intarg)
498                                         *subvol_objectid =
499                                                 BTRFS_FS_TREE_OBJECTID;
500                                 else
501                                         *subvol_objectid = intarg;
502                         }
503                         break;
504                 case Opt_subvolrootid:
505                         intarg = 0;
506                         error = match_int(&args[0], &intarg);
507                         if (!error) {
508                                 /* we want the original fs_tree */
509                                 if (!intarg)
510                                         *subvol_rootid =
511                                                 BTRFS_FS_TREE_OBJECTID;
512                                 else
513                                         *subvol_rootid = intarg;
514                         }
515                         break;
516                 case Opt_device:
517                         device_name = match_strdup(&args[0]);
518                         if (!device_name) {
519                                 error = -ENOMEM;
520                                 goto out;
521                         }
522                         error = btrfs_scan_one_device(device_name,
523                                         flags, holder, fs_devices);
524                         kfree(device_name);
525                         if (error)
526                                 goto out;
527                         break;
528                 default:
529                         break;
530                 }
531         }
532
533 out:
534         kfree(orig);
535         return error;
536 }
537
538 static struct dentry *get_default_root(struct super_block *sb,
539                                        u64 subvol_objectid)
540 {
541         struct btrfs_root *root = sb->s_fs_info;
542         struct btrfs_root *new_root;
543         struct btrfs_dir_item *di;
544         struct btrfs_path *path;
545         struct btrfs_key location;
546         struct inode *inode;
547         u64 dir_id;
548         int new = 0;
549
550         /*
551          * We have a specific subvol we want to mount, just setup location and
552          * go look up the root.
553          */
554         if (subvol_objectid) {
555                 location.objectid = subvol_objectid;
556                 location.type = BTRFS_ROOT_ITEM_KEY;
557                 location.offset = (u64)-1;
558                 goto find_root;
559         }
560
561         path = btrfs_alloc_path();
562         if (!path)
563                 return ERR_PTR(-ENOMEM);
564         path->leave_spinning = 1;
565
566         /*
567          * Find the "default" dir item which points to the root item that we
568          * will mount by default if we haven't been given a specific subvolume
569          * to mount.
570          */
571         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
572         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
573         if (IS_ERR(di)) {
574                 btrfs_free_path(path);
575                 return ERR_CAST(di);
576         }
577         if (!di) {
578                 /*
579                  * Ok the default dir item isn't there.  This is weird since
580                  * it's always been there, but don't freak out, just try and
581                  * mount to root most subvolume.
582                  */
583                 btrfs_free_path(path);
584                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
585                 new_root = root->fs_info->fs_root;
586                 goto setup_root;
587         }
588
589         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
590         btrfs_free_path(path);
591
592 find_root:
593         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
594         if (IS_ERR(new_root))
595                 return ERR_CAST(new_root);
596
597         if (btrfs_root_refs(&new_root->root_item) == 0)
598                 return ERR_PTR(-ENOENT);
599
600         dir_id = btrfs_root_dirid(&new_root->root_item);
601 setup_root:
602         location.objectid = dir_id;
603         location.type = BTRFS_INODE_ITEM_KEY;
604         location.offset = 0;
605
606         inode = btrfs_iget(sb, &location, new_root, &new);
607         if (IS_ERR(inode))
608                 return ERR_CAST(inode);
609
610         /*
611          * If we're just mounting the root most subvol put the inode and return
612          * a reference to the dentry.  We will have already gotten a reference
613          * to the inode in btrfs_fill_super so we're good to go.
614          */
615         if (!new && sb->s_root->d_inode == inode) {
616                 iput(inode);
617                 return dget(sb->s_root);
618         }
619
620         return d_obtain_alias(inode);
621 }
622
623 static int btrfs_fill_super(struct super_block *sb,
624                             struct btrfs_fs_devices *fs_devices,
625                             void *data, int silent)
626 {
627         struct inode *inode;
628         struct dentry *root_dentry;
629         struct btrfs_root *tree_root;
630         struct btrfs_key key;
631         int err;
632
633         sb->s_maxbytes = MAX_LFS_FILESIZE;
634         sb->s_magic = BTRFS_SUPER_MAGIC;
635         sb->s_op = &btrfs_super_ops;
636         sb->s_d_op = &btrfs_dentry_operations;
637         sb->s_export_op = &btrfs_export_ops;
638         sb->s_xattr = btrfs_xattr_handlers;
639         sb->s_time_gran = 1;
640 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
641         sb->s_flags |= MS_POSIXACL;
642 #endif
643
644         tree_root = open_ctree(sb, fs_devices, (char *)data);
645
646         if (IS_ERR(tree_root)) {
647                 printk("btrfs: open_ctree failed\n");
648                 return PTR_ERR(tree_root);
649         }
650         sb->s_fs_info = tree_root;
651
652         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
653         key.type = BTRFS_INODE_ITEM_KEY;
654         key.offset = 0;
655         inode = btrfs_iget(sb, &key, tree_root->fs_info->fs_root, NULL);
656         if (IS_ERR(inode)) {
657                 err = PTR_ERR(inode);
658                 goto fail_close;
659         }
660
661         root_dentry = d_alloc_root(inode);
662         if (!root_dentry) {
663                 iput(inode);
664                 err = -ENOMEM;
665                 goto fail_close;
666         }
667
668         sb->s_root = root_dentry;
669
670         save_mount_options(sb, data);
671         cleancache_init_fs(sb);
672         return 0;
673
674 fail_close:
675         close_ctree(tree_root);
676         return err;
677 }
678
679 int btrfs_sync_fs(struct super_block *sb, int wait)
680 {
681         struct btrfs_trans_handle *trans;
682         struct btrfs_root *root = btrfs_sb(sb);
683         int ret;
684
685         trace_btrfs_sync_fs(wait);
686
687         if (!wait) {
688                 filemap_flush(root->fs_info->btree_inode->i_mapping);
689                 return 0;
690         }
691
692         btrfs_start_delalloc_inodes(root, 0);
693         btrfs_wait_ordered_extents(root, 0, 0);
694
695         trans = btrfs_start_transaction(root, 0);
696         if (IS_ERR(trans))
697                 return PTR_ERR(trans);
698         ret = btrfs_commit_transaction(trans, root);
699         return ret;
700 }
701
702 static int btrfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
703 {
704         struct btrfs_root *root = btrfs_sb(vfs->mnt_sb);
705         struct btrfs_fs_info *info = root->fs_info;
706         char *compress_type;
707
708         if (btrfs_test_opt(root, DEGRADED))
709                 seq_puts(seq, ",degraded");
710         if (btrfs_test_opt(root, NODATASUM))
711                 seq_puts(seq, ",nodatasum");
712         if (btrfs_test_opt(root, NODATACOW))
713                 seq_puts(seq, ",nodatacow");
714         if (btrfs_test_opt(root, NOBARRIER))
715                 seq_puts(seq, ",nobarrier");
716         if (info->max_inline != 8192 * 1024)
717                 seq_printf(seq, ",max_inline=%llu",
718                            (unsigned long long)info->max_inline);
719         if (info->alloc_start != 0)
720                 seq_printf(seq, ",alloc_start=%llu",
721                            (unsigned long long)info->alloc_start);
722         if (info->thread_pool_size !=  min_t(unsigned long,
723                                              num_online_cpus() + 2, 8))
724                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
725         if (btrfs_test_opt(root, COMPRESS)) {
726                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
727                         compress_type = "zlib";
728                 else
729                         compress_type = "lzo";
730                 if (btrfs_test_opt(root, FORCE_COMPRESS))
731                         seq_printf(seq, ",compress-force=%s", compress_type);
732                 else
733                         seq_printf(seq, ",compress=%s", compress_type);
734         }
735         if (btrfs_test_opt(root, NOSSD))
736                 seq_puts(seq, ",nossd");
737         if (btrfs_test_opt(root, SSD_SPREAD))
738                 seq_puts(seq, ",ssd_spread");
739         else if (btrfs_test_opt(root, SSD))
740                 seq_puts(seq, ",ssd");
741         if (btrfs_test_opt(root, NOTREELOG))
742                 seq_puts(seq, ",notreelog");
743         if (btrfs_test_opt(root, FLUSHONCOMMIT))
744                 seq_puts(seq, ",flushoncommit");
745         if (btrfs_test_opt(root, DISCARD))
746                 seq_puts(seq, ",discard");
747         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
748                 seq_puts(seq, ",noacl");
749         if (btrfs_test_opt(root, SPACE_CACHE))
750                 seq_puts(seq, ",space_cache");
751         else
752                 seq_puts(seq, ",nospace_cache");
753         if (btrfs_test_opt(root, CLEAR_CACHE))
754                 seq_puts(seq, ",clear_cache");
755         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
756                 seq_puts(seq, ",user_subvol_rm_allowed");
757         if (btrfs_test_opt(root, ENOSPC_DEBUG))
758                 seq_puts(seq, ",enospc_debug");
759         if (btrfs_test_opt(root, AUTO_DEFRAG))
760                 seq_puts(seq, ",autodefrag");
761         if (btrfs_test_opt(root, INODE_MAP_CACHE))
762                 seq_puts(seq, ",inode_cache");
763         return 0;
764 }
765
766 static int btrfs_test_super(struct super_block *s, void *data)
767 {
768         struct btrfs_root *test_root = data;
769         struct btrfs_root *root = btrfs_sb(s);
770
771         /*
772          * If this super block is going away, return false as it
773          * can't match as an existing super block.
774          */
775         if (!atomic_read(&s->s_active))
776                 return 0;
777         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
778 }
779
780 static int btrfs_set_super(struct super_block *s, void *data)
781 {
782         s->s_fs_info = data;
783
784         return set_anon_super(s, data);
785 }
786
787 /*
788  * subvolumes are identified by ino 256
789  */
790 static inline int is_subvolume_inode(struct inode *inode)
791 {
792         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
793                 return 1;
794         return 0;
795 }
796
797 /*
798  * This will strip out the subvol=%s argument for an argument string and add
799  * subvolid=0 to make sure we get the actual tree root for path walking to the
800  * subvol we want.
801  */
802 static char *setup_root_args(char *args)
803 {
804         unsigned copied = 0;
805         unsigned len = strlen(args) + 2;
806         char *pos;
807         char *ret;
808
809         /*
810          * We need the same args as before, but minus
811          *
812          * subvol=a
813          *
814          * and add
815          *
816          * subvolid=0
817          *
818          * which is a difference of 2 characters, so we allocate strlen(args) +
819          * 2 characters.
820          */
821         ret = kzalloc(len * sizeof(char), GFP_NOFS);
822         if (!ret)
823                 return NULL;
824         pos = strstr(args, "subvol=");
825
826         /* This shouldn't happen, but just in case.. */
827         if (!pos) {
828                 kfree(ret);
829                 return NULL;
830         }
831
832         /*
833          * The subvol=<> arg is not at the front of the string, copy everybody
834          * up to that into ret.
835          */
836         if (pos != args) {
837                 *pos = '\0';
838                 strcpy(ret, args);
839                 copied += strlen(args);
840                 pos++;
841         }
842
843         strncpy(ret + copied, "subvolid=0", len - copied);
844
845         /* Length of subvolid=0 */
846         copied += 10;
847
848         /*
849          * If there is no , after the subvol= option then we know there's no
850          * other options and we can just return.
851          */
852         pos = strchr(pos, ',');
853         if (!pos)
854                 return ret;
855
856         /* Copy the rest of the arguments into our buffer */
857         strncpy(ret + copied, pos, len - copied);
858         copied += strlen(pos);
859
860         return ret;
861 }
862
863 static struct dentry *mount_subvol(const char *subvol_name, int flags,
864                                    const char *device_name, char *data)
865 {
866         struct super_block *s;
867         struct dentry *root;
868         struct vfsmount *mnt;
869         struct mnt_namespace *ns_private;
870         char *newargs;
871         struct path path;
872         int error;
873
874         newargs = setup_root_args(data);
875         if (!newargs)
876                 return ERR_PTR(-ENOMEM);
877         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
878                              newargs);
879         kfree(newargs);
880         if (IS_ERR(mnt))
881                 return ERR_CAST(mnt);
882
883         ns_private = create_mnt_ns(mnt);
884         if (IS_ERR(ns_private)) {
885                 mntput(mnt);
886                 return ERR_CAST(ns_private);
887         }
888
889         /*
890          * This will trigger the automount of the subvol so we can just
891          * drop the mnt we have here and return the dentry that we
892          * found.
893          */
894         error = vfs_path_lookup(mnt->mnt_root, mnt, subvol_name,
895                                 LOOKUP_FOLLOW, &path);
896         put_mnt_ns(ns_private);
897         if (error)
898                 return ERR_PTR(error);
899
900         if (!is_subvolume_inode(path.dentry->d_inode)) {
901                 path_put(&path);
902                 mntput(mnt);
903                 error = -EINVAL;
904                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
905                                 subvol_name);
906                 return ERR_PTR(-EINVAL);
907         }
908
909         /* Get a ref to the sb and the dentry we found and return it */
910         s = path.mnt->mnt_sb;
911         atomic_inc(&s->s_active);
912         root = dget(path.dentry);
913         path_put(&path);
914         down_write(&s->s_umount);
915
916         return root;
917 }
918
919 /*
920  * Find a superblock for the given device / mount point.
921  *
922  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
923  *        for multiple device setup.  Make sure to keep it in sync.
924  */
925 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
926                 const char *device_name, void *data)
927 {
928         struct block_device *bdev = NULL;
929         struct super_block *s;
930         struct dentry *root;
931         struct btrfs_fs_devices *fs_devices = NULL;
932         struct btrfs_fs_info *fs_info = NULL;
933         fmode_t mode = FMODE_READ;
934         char *subvol_name = NULL;
935         u64 subvol_objectid = 0;
936         u64 subvol_rootid = 0;
937         int error = 0;
938
939         if (!(flags & MS_RDONLY))
940                 mode |= FMODE_WRITE;
941
942         error = btrfs_parse_early_options(data, mode, fs_type,
943                                           &subvol_name, &subvol_objectid,
944                                           &subvol_rootid, &fs_devices);
945         if (error) {
946                 kfree(subvol_name);
947                 return ERR_PTR(error);
948         }
949
950         if (subvol_name) {
951                 root = mount_subvol(subvol_name, flags, device_name, data);
952                 kfree(subvol_name);
953                 return root;
954         }
955
956         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
957         if (error)
958                 return ERR_PTR(error);
959
960         /*
961          * Setup a dummy root and fs_info for test/set super.  This is because
962          * we don't actually fill this stuff out until open_ctree, but we need
963          * it for searching for existing supers, so this lets us do that and
964          * then open_ctree will properly initialize everything later.
965          */
966         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
967         if (!fs_info)
968                 return ERR_PTR(-ENOMEM);
969
970         fs_info->tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
971         if (!fs_info->tree_root) {
972                 error = -ENOMEM;
973                 goto error_fs_info;
974         }
975         fs_info->tree_root->fs_info = fs_info;
976         fs_info->fs_devices = fs_devices;
977
978         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
979         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
980         if (!fs_info->super_copy || !fs_info->super_for_commit) {
981                 error = -ENOMEM;
982                 goto error_fs_info;
983         }
984
985         error = btrfs_open_devices(fs_devices, mode, fs_type);
986         if (error)
987                 goto error_fs_info;
988
989         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
990                 error = -EACCES;
991                 goto error_close_devices;
992         }
993
994         bdev = fs_devices->latest_bdev;
995         s = sget(fs_type, btrfs_test_super, btrfs_set_super,
996                  fs_info->tree_root);
997         if (IS_ERR(s)) {
998                 error = PTR_ERR(s);
999                 goto error_close_devices;
1000         }
1001
1002         if (s->s_root) {
1003                 if ((flags ^ s->s_flags) & MS_RDONLY) {
1004                         deactivate_locked_super(s);
1005                         error = -EBUSY;
1006                         goto error_close_devices;
1007                 }
1008
1009                 btrfs_close_devices(fs_devices);
1010                 free_fs_info(fs_info);
1011         } else {
1012                 char b[BDEVNAME_SIZE];
1013
1014                 s->s_flags = flags | MS_NOSEC;
1015                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1016                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
1017                 error = btrfs_fill_super(s, fs_devices, data,
1018                                          flags & MS_SILENT ? 1 : 0);
1019                 if (error) {
1020                         deactivate_locked_super(s);
1021                         return ERR_PTR(error);
1022                 }
1023
1024                 s->s_flags |= MS_ACTIVE;
1025         }
1026
1027         root = get_default_root(s, subvol_objectid);
1028         if (IS_ERR(root)) {
1029                 deactivate_locked_super(s);
1030                 return root;
1031         }
1032
1033         return root;
1034
1035 error_close_devices:
1036         btrfs_close_devices(fs_devices);
1037 error_fs_info:
1038         free_fs_info(fs_info);
1039         return ERR_PTR(error);
1040 }
1041
1042 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1043 {
1044         struct btrfs_root *root = btrfs_sb(sb);
1045         int ret;
1046
1047         ret = btrfs_parse_options(root, data);
1048         if (ret)
1049                 return -EINVAL;
1050
1051         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1052                 return 0;
1053
1054         if (*flags & MS_RDONLY) {
1055                 sb->s_flags |= MS_RDONLY;
1056
1057                 ret =  btrfs_commit_super(root);
1058                 WARN_ON(ret);
1059         } else {
1060                 if (root->fs_info->fs_devices->rw_devices == 0)
1061                         return -EACCES;
1062
1063                 if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1064                         return -EINVAL;
1065
1066                 ret = btrfs_cleanup_fs_roots(root->fs_info);
1067                 WARN_ON(ret);
1068
1069                 /* recover relocation */
1070                 ret = btrfs_recover_relocation(root);
1071                 WARN_ON(ret);
1072
1073                 sb->s_flags &= ~MS_RDONLY;
1074         }
1075
1076         return 0;
1077 }
1078
1079 /* Used to sort the devices by max_avail(descending sort) */
1080 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1081                                        const void *dev_info2)
1082 {
1083         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1084             ((struct btrfs_device_info *)dev_info2)->max_avail)
1085                 return -1;
1086         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1087                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1088                 return 1;
1089         else
1090         return 0;
1091 }
1092
1093 /*
1094  * sort the devices by max_avail, in which max free extent size of each device
1095  * is stored.(Descending Sort)
1096  */
1097 static inline void btrfs_descending_sort_devices(
1098                                         struct btrfs_device_info *devices,
1099                                         size_t nr_devices)
1100 {
1101         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1102              btrfs_cmp_device_free_bytes, NULL);
1103 }
1104
1105 /*
1106  * The helper to calc the free space on the devices that can be used to store
1107  * file data.
1108  */
1109 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1110 {
1111         struct btrfs_fs_info *fs_info = root->fs_info;
1112         struct btrfs_device_info *devices_info;
1113         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1114         struct btrfs_device *device;
1115         u64 skip_space;
1116         u64 type;
1117         u64 avail_space;
1118         u64 used_space;
1119         u64 min_stripe_size;
1120         int min_stripes = 1, num_stripes = 1;
1121         int i = 0, nr_devices;
1122         int ret;
1123
1124         nr_devices = fs_info->fs_devices->open_devices;
1125         BUG_ON(!nr_devices);
1126
1127         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1128                                GFP_NOFS);
1129         if (!devices_info)
1130                 return -ENOMEM;
1131
1132         /* calc min stripe number for data space alloction */
1133         type = btrfs_get_alloc_profile(root, 1);
1134         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1135                 min_stripes = 2;
1136                 num_stripes = nr_devices;
1137         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1138                 min_stripes = 2;
1139                 num_stripes = 2;
1140         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1141                 min_stripes = 4;
1142                 num_stripes = 4;
1143         }
1144
1145         if (type & BTRFS_BLOCK_GROUP_DUP)
1146                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1147         else
1148                 min_stripe_size = BTRFS_STRIPE_LEN;
1149
1150         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1151                 if (!device->in_fs_metadata || !device->bdev)
1152                         continue;
1153
1154                 avail_space = device->total_bytes - device->bytes_used;
1155
1156                 /* align with stripe_len */
1157                 do_div(avail_space, BTRFS_STRIPE_LEN);
1158                 avail_space *= BTRFS_STRIPE_LEN;
1159
1160                 /*
1161                  * In order to avoid overwritting the superblock on the drive,
1162                  * btrfs starts at an offset of at least 1MB when doing chunk
1163                  * allocation.
1164                  */
1165                 skip_space = 1024 * 1024;
1166
1167                 /* user can set the offset in fs_info->alloc_start. */
1168                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1169                     device->total_bytes)
1170                         skip_space = max(fs_info->alloc_start, skip_space);
1171
1172                 /*
1173                  * btrfs can not use the free space in [0, skip_space - 1],
1174                  * we must subtract it from the total. In order to implement
1175                  * it, we account the used space in this range first.
1176                  */
1177                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1178                                                      &used_space);
1179                 if (ret) {
1180                         kfree(devices_info);
1181                         return ret;
1182                 }
1183
1184                 /* calc the free space in [0, skip_space - 1] */
1185                 skip_space -= used_space;
1186
1187                 /*
1188                  * we can use the free space in [0, skip_space - 1], subtract
1189                  * it from the total.
1190                  */
1191                 if (avail_space && avail_space >= skip_space)
1192                         avail_space -= skip_space;
1193                 else
1194                         avail_space = 0;
1195
1196                 if (avail_space < min_stripe_size)
1197                         continue;
1198
1199                 devices_info[i].dev = device;
1200                 devices_info[i].max_avail = avail_space;
1201
1202                 i++;
1203         }
1204
1205         nr_devices = i;
1206
1207         btrfs_descending_sort_devices(devices_info, nr_devices);
1208
1209         i = nr_devices - 1;
1210         avail_space = 0;
1211         while (nr_devices >= min_stripes) {
1212                 if (num_stripes > nr_devices)
1213                         num_stripes = nr_devices;
1214
1215                 if (devices_info[i].max_avail >= min_stripe_size) {
1216                         int j;
1217                         u64 alloc_size;
1218
1219                         avail_space += devices_info[i].max_avail * num_stripes;
1220                         alloc_size = devices_info[i].max_avail;
1221                         for (j = i + 1 - num_stripes; j <= i; j++)
1222                                 devices_info[j].max_avail -= alloc_size;
1223                 }
1224                 i--;
1225                 nr_devices--;
1226         }
1227
1228         kfree(devices_info);
1229         *free_bytes = avail_space;
1230         return 0;
1231 }
1232
1233 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1234 {
1235         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1236         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1237         struct list_head *head = &root->fs_info->space_info;
1238         struct btrfs_space_info *found;
1239         u64 total_used = 0;
1240         u64 total_free_data = 0;
1241         int bits = dentry->d_sb->s_blocksize_bits;
1242         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1243         int ret;
1244
1245         /* holding chunk_muext to avoid allocating new chunks */
1246         mutex_lock(&root->fs_info->chunk_mutex);
1247         rcu_read_lock();
1248         list_for_each_entry_rcu(found, head, list) {
1249                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1250                         total_free_data += found->disk_total - found->disk_used;
1251                         total_free_data -=
1252                                 btrfs_account_ro_block_groups_free_space(found);
1253                 }
1254
1255                 total_used += found->disk_used;
1256         }
1257         rcu_read_unlock();
1258
1259         buf->f_namelen = BTRFS_NAME_LEN;
1260         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1261         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1262         buf->f_bsize = dentry->d_sb->s_blocksize;
1263         buf->f_type = BTRFS_SUPER_MAGIC;
1264         buf->f_bavail = total_free_data;
1265         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1266         if (ret) {
1267                 mutex_unlock(&root->fs_info->chunk_mutex);
1268                 return ret;
1269         }
1270         buf->f_bavail += total_free_data;
1271         buf->f_bavail = buf->f_bavail >> bits;
1272         mutex_unlock(&root->fs_info->chunk_mutex);
1273
1274         /* We treat it as constant endianness (it doesn't matter _which_)
1275            because we want the fsid to come out the same whether mounted
1276            on a big-endian or little-endian host */
1277         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1278         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1279         /* Mask in the root object ID too, to disambiguate subvols */
1280         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1281         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1282
1283         return 0;
1284 }
1285
1286 static struct file_system_type btrfs_fs_type = {
1287         .owner          = THIS_MODULE,
1288         .name           = "btrfs",
1289         .mount          = btrfs_mount,
1290         .kill_sb        = kill_anon_super,
1291         .fs_flags       = FS_REQUIRES_DEV,
1292 };
1293
1294 /*
1295  * used by btrfsctl to scan devices when no FS is mounted
1296  */
1297 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1298                                 unsigned long arg)
1299 {
1300         struct btrfs_ioctl_vol_args *vol;
1301         struct btrfs_fs_devices *fs_devices;
1302         int ret = -ENOTTY;
1303
1304         if (!capable(CAP_SYS_ADMIN))
1305                 return -EPERM;
1306
1307         vol = memdup_user((void __user *)arg, sizeof(*vol));
1308         if (IS_ERR(vol))
1309                 return PTR_ERR(vol);
1310
1311         switch (cmd) {
1312         case BTRFS_IOC_SCAN_DEV:
1313                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1314                                             &btrfs_fs_type, &fs_devices);
1315                 break;
1316         }
1317
1318         kfree(vol);
1319         return ret;
1320 }
1321
1322 static int btrfs_freeze(struct super_block *sb)
1323 {
1324         struct btrfs_root *root = btrfs_sb(sb);
1325         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1326         mutex_lock(&root->fs_info->cleaner_mutex);
1327         return 0;
1328 }
1329
1330 static int btrfs_unfreeze(struct super_block *sb)
1331 {
1332         struct btrfs_root *root = btrfs_sb(sb);
1333         mutex_unlock(&root->fs_info->cleaner_mutex);
1334         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1335         return 0;
1336 }
1337
1338 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1339 {
1340         int ret;
1341
1342         ret = btrfs_dirty_inode(inode);
1343         if (ret)
1344                 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1345                                    "error %d\n", btrfs_ino(inode), ret);
1346 }
1347
1348 static const struct super_operations btrfs_super_ops = {
1349         .drop_inode     = btrfs_drop_inode,
1350         .evict_inode    = btrfs_evict_inode,
1351         .put_super      = btrfs_put_super,
1352         .sync_fs        = btrfs_sync_fs,
1353         .show_options   = btrfs_show_options,
1354         .write_inode    = btrfs_write_inode,
1355         .dirty_inode    = btrfs_fs_dirty_inode,
1356         .alloc_inode    = btrfs_alloc_inode,
1357         .destroy_inode  = btrfs_destroy_inode,
1358         .statfs         = btrfs_statfs,
1359         .remount_fs     = btrfs_remount,
1360         .freeze_fs      = btrfs_freeze,
1361         .unfreeze_fs    = btrfs_unfreeze,
1362 };
1363
1364 static const struct file_operations btrfs_ctl_fops = {
1365         .unlocked_ioctl  = btrfs_control_ioctl,
1366         .compat_ioctl = btrfs_control_ioctl,
1367         .owner   = THIS_MODULE,
1368         .llseek = noop_llseek,
1369 };
1370
1371 static struct miscdevice btrfs_misc = {
1372         .minor          = BTRFS_MINOR,
1373         .name           = "btrfs-control",
1374         .fops           = &btrfs_ctl_fops
1375 };
1376
1377 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1378 MODULE_ALIAS("devname:btrfs-control");
1379
1380 static int btrfs_interface_init(void)
1381 {
1382         return misc_register(&btrfs_misc);
1383 }
1384
1385 static void btrfs_interface_exit(void)
1386 {
1387         if (misc_deregister(&btrfs_misc) < 0)
1388                 printk(KERN_INFO "misc_deregister failed for control device");
1389 }
1390
1391 static int __init init_btrfs_fs(void)
1392 {
1393         int err;
1394
1395         err = btrfs_init_sysfs();
1396         if (err)
1397                 return err;
1398
1399         err = btrfs_init_compress();
1400         if (err)
1401                 goto free_sysfs;
1402
1403         err = btrfs_init_cachep();
1404         if (err)
1405                 goto free_compress;
1406
1407         err = extent_io_init();
1408         if (err)
1409                 goto free_cachep;
1410
1411         err = extent_map_init();
1412         if (err)
1413                 goto free_extent_io;
1414
1415         err = btrfs_delayed_inode_init();
1416         if (err)
1417                 goto free_extent_map;
1418
1419         err = btrfs_interface_init();
1420         if (err)
1421                 goto free_delayed_inode;
1422
1423         err = register_filesystem(&btrfs_fs_type);
1424         if (err)
1425                 goto unregister_ioctl;
1426
1427         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1428         return 0;
1429
1430 unregister_ioctl:
1431         btrfs_interface_exit();
1432 free_delayed_inode:
1433         btrfs_delayed_inode_exit();
1434 free_extent_map:
1435         extent_map_exit();
1436 free_extent_io:
1437         extent_io_exit();
1438 free_cachep:
1439         btrfs_destroy_cachep();
1440 free_compress:
1441         btrfs_exit_compress();
1442 free_sysfs:
1443         btrfs_exit_sysfs();
1444         return err;
1445 }
1446
1447 static void __exit exit_btrfs_fs(void)
1448 {
1449         btrfs_destroy_cachep();
1450         btrfs_delayed_inode_exit();
1451         extent_map_exit();
1452         extent_io_exit();
1453         btrfs_interface_exit();
1454         unregister_filesystem(&btrfs_fs_type);
1455         btrfs_exit_sysfs();
1456         btrfs_cleanup_fs_uuids();
1457         btrfs_exit_compress();
1458 }
1459
1460 module_init(init_btrfs_fs)
1461 module_exit(exit_btrfs_fs)
1462
1463 MODULE_LICENSE("GPL");