]> Pileus Git - ~andy/linux/blob - fs/btrfs/ioctl.c
Merge git://git.jan-o-sch.net/btrfs-unstable into for-linus
[~andy/linux] / fs / btrfs / ioctl.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55
56 /* Mask out flags that are inappropriate for the given type of inode. */
57 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 {
59         if (S_ISDIR(mode))
60                 return flags;
61         else if (S_ISREG(mode))
62                 return flags & ~FS_DIRSYNC_FL;
63         else
64                 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
65 }
66
67 /*
68  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69  */
70 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
71 {
72         unsigned int iflags = 0;
73
74         if (flags & BTRFS_INODE_SYNC)
75                 iflags |= FS_SYNC_FL;
76         if (flags & BTRFS_INODE_IMMUTABLE)
77                 iflags |= FS_IMMUTABLE_FL;
78         if (flags & BTRFS_INODE_APPEND)
79                 iflags |= FS_APPEND_FL;
80         if (flags & BTRFS_INODE_NODUMP)
81                 iflags |= FS_NODUMP_FL;
82         if (flags & BTRFS_INODE_NOATIME)
83                 iflags |= FS_NOATIME_FL;
84         if (flags & BTRFS_INODE_DIRSYNC)
85                 iflags |= FS_DIRSYNC_FL;
86         if (flags & BTRFS_INODE_NODATACOW)
87                 iflags |= FS_NOCOW_FL;
88
89         if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
90                 iflags |= FS_COMPR_FL;
91         else if (flags & BTRFS_INODE_NOCOMPRESS)
92                 iflags |= FS_NOCOMP_FL;
93
94         return iflags;
95 }
96
97 /*
98  * Update inode->i_flags based on the btrfs internal flags.
99  */
100 void btrfs_update_iflags(struct inode *inode)
101 {
102         struct btrfs_inode *ip = BTRFS_I(inode);
103
104         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
105
106         if (ip->flags & BTRFS_INODE_SYNC)
107                 inode->i_flags |= S_SYNC;
108         if (ip->flags & BTRFS_INODE_IMMUTABLE)
109                 inode->i_flags |= S_IMMUTABLE;
110         if (ip->flags & BTRFS_INODE_APPEND)
111                 inode->i_flags |= S_APPEND;
112         if (ip->flags & BTRFS_INODE_NOATIME)
113                 inode->i_flags |= S_NOATIME;
114         if (ip->flags & BTRFS_INODE_DIRSYNC)
115                 inode->i_flags |= S_DIRSYNC;
116 }
117
118 /*
119  * Inherit flags from the parent inode.
120  *
121  * Currently only the compression flags and the cow flags are inherited.
122  */
123 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
124 {
125         unsigned int flags;
126
127         if (!dir)
128                 return;
129
130         flags = BTRFS_I(dir)->flags;
131
132         if (flags & BTRFS_INODE_NOCOMPRESS) {
133                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
134                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
135         } else if (flags & BTRFS_INODE_COMPRESS) {
136                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
137                 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
138         }
139
140         if (flags & BTRFS_INODE_NODATACOW)
141                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
142
143         btrfs_update_iflags(inode);
144 }
145
146 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
147 {
148         struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
149         unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
150
151         if (copy_to_user(arg, &flags, sizeof(flags)))
152                 return -EFAULT;
153         return 0;
154 }
155
156 static int check_flags(unsigned int flags)
157 {
158         if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
159                       FS_NOATIME_FL | FS_NODUMP_FL | \
160                       FS_SYNC_FL | FS_DIRSYNC_FL | \
161                       FS_NOCOMP_FL | FS_COMPR_FL |
162                       FS_NOCOW_FL))
163                 return -EOPNOTSUPP;
164
165         if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
166                 return -EINVAL;
167
168         return 0;
169 }
170
171 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
172 {
173         struct inode *inode = file->f_path.dentry->d_inode;
174         struct btrfs_inode *ip = BTRFS_I(inode);
175         struct btrfs_root *root = ip->root;
176         struct btrfs_trans_handle *trans;
177         unsigned int flags, oldflags;
178         int ret;
179         u64 ip_oldflags;
180         unsigned int i_oldflags;
181
182         if (btrfs_root_readonly(root))
183                 return -EROFS;
184
185         if (copy_from_user(&flags, arg, sizeof(flags)))
186                 return -EFAULT;
187
188         ret = check_flags(flags);
189         if (ret)
190                 return ret;
191
192         if (!inode_owner_or_capable(inode))
193                 return -EACCES;
194
195         mutex_lock(&inode->i_mutex);
196
197         ip_oldflags = ip->flags;
198         i_oldflags = inode->i_flags;
199
200         flags = btrfs_mask_flags(inode->i_mode, flags);
201         oldflags = btrfs_flags_to_ioctl(ip->flags);
202         if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
203                 if (!capable(CAP_LINUX_IMMUTABLE)) {
204                         ret = -EPERM;
205                         goto out_unlock;
206                 }
207         }
208
209         ret = mnt_want_write_file(file);
210         if (ret)
211                 goto out_unlock;
212
213         if (flags & FS_SYNC_FL)
214                 ip->flags |= BTRFS_INODE_SYNC;
215         else
216                 ip->flags &= ~BTRFS_INODE_SYNC;
217         if (flags & FS_IMMUTABLE_FL)
218                 ip->flags |= BTRFS_INODE_IMMUTABLE;
219         else
220                 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
221         if (flags & FS_APPEND_FL)
222                 ip->flags |= BTRFS_INODE_APPEND;
223         else
224                 ip->flags &= ~BTRFS_INODE_APPEND;
225         if (flags & FS_NODUMP_FL)
226                 ip->flags |= BTRFS_INODE_NODUMP;
227         else
228                 ip->flags &= ~BTRFS_INODE_NODUMP;
229         if (flags & FS_NOATIME_FL)
230                 ip->flags |= BTRFS_INODE_NOATIME;
231         else
232                 ip->flags &= ~BTRFS_INODE_NOATIME;
233         if (flags & FS_DIRSYNC_FL)
234                 ip->flags |= BTRFS_INODE_DIRSYNC;
235         else
236                 ip->flags &= ~BTRFS_INODE_DIRSYNC;
237         if (flags & FS_NOCOW_FL)
238                 ip->flags |= BTRFS_INODE_NODATACOW;
239         else
240                 ip->flags &= ~BTRFS_INODE_NODATACOW;
241
242         /*
243          * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
244          * flag may be changed automatically if compression code won't make
245          * things smaller.
246          */
247         if (flags & FS_NOCOMP_FL) {
248                 ip->flags &= ~BTRFS_INODE_COMPRESS;
249                 ip->flags |= BTRFS_INODE_NOCOMPRESS;
250         } else if (flags & FS_COMPR_FL) {
251                 ip->flags |= BTRFS_INODE_COMPRESS;
252                 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
253         } else {
254                 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
255         }
256
257         trans = btrfs_start_transaction(root, 1);
258         if (IS_ERR(trans)) {
259                 ret = PTR_ERR(trans);
260                 goto out_drop;
261         }
262
263         btrfs_update_iflags(inode);
264         inode->i_ctime = CURRENT_TIME;
265         ret = btrfs_update_inode(trans, root, inode);
266
267         btrfs_end_transaction(trans, root);
268  out_drop:
269         if (ret) {
270                 ip->flags = ip_oldflags;
271                 inode->i_flags = i_oldflags;
272         }
273
274         mnt_drop_write_file(file);
275  out_unlock:
276         mutex_unlock(&inode->i_mutex);
277         return ret;
278 }
279
280 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
281 {
282         struct inode *inode = file->f_path.dentry->d_inode;
283
284         return put_user(inode->i_generation, arg);
285 }
286
287 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
288 {
289         struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
290         struct btrfs_device *device;
291         struct request_queue *q;
292         struct fstrim_range range;
293         u64 minlen = ULLONG_MAX;
294         u64 num_devices = 0;
295         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
296         int ret;
297
298         if (!capable(CAP_SYS_ADMIN))
299                 return -EPERM;
300
301         rcu_read_lock();
302         list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
303                                 dev_list) {
304                 if (!device->bdev)
305                         continue;
306                 q = bdev_get_queue(device->bdev);
307                 if (blk_queue_discard(q)) {
308                         num_devices++;
309                         minlen = min((u64)q->limits.discard_granularity,
310                                      minlen);
311                 }
312         }
313         rcu_read_unlock();
314
315         if (!num_devices)
316                 return -EOPNOTSUPP;
317         if (copy_from_user(&range, arg, sizeof(range)))
318                 return -EFAULT;
319         if (range.start > total_bytes)
320                 return -EINVAL;
321
322         range.len = min(range.len, total_bytes - range.start);
323         range.minlen = max(range.minlen, minlen);
324         ret = btrfs_trim_fs(fs_info->tree_root, &range);
325         if (ret < 0)
326                 return ret;
327
328         if (copy_to_user(arg, &range, sizeof(range)))
329                 return -EFAULT;
330
331         return 0;
332 }
333
334 static noinline int create_subvol(struct btrfs_root *root,
335                                   struct dentry *dentry,
336                                   char *name, int namelen,
337                                   u64 *async_transid)
338 {
339         struct btrfs_trans_handle *trans;
340         struct btrfs_key key;
341         struct btrfs_root_item root_item;
342         struct btrfs_inode_item *inode_item;
343         struct extent_buffer *leaf;
344         struct btrfs_root *new_root;
345         struct dentry *parent = dentry->d_parent;
346         struct inode *dir;
347         int ret;
348         int err;
349         u64 objectid;
350         u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
351         u64 index = 0;
352
353         ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
354         if (ret)
355                 return ret;
356
357         dir = parent->d_inode;
358
359         /*
360          * 1 - inode item
361          * 2 - refs
362          * 1 - root item
363          * 2 - dir items
364          */
365         trans = btrfs_start_transaction(root, 6);
366         if (IS_ERR(trans))
367                 return PTR_ERR(trans);
368
369         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
370                                       0, objectid, NULL, 0, 0, 0, 0);
371         if (IS_ERR(leaf)) {
372                 ret = PTR_ERR(leaf);
373                 goto fail;
374         }
375
376         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
377         btrfs_set_header_bytenr(leaf, leaf->start);
378         btrfs_set_header_generation(leaf, trans->transid);
379         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
380         btrfs_set_header_owner(leaf, objectid);
381
382         write_extent_buffer(leaf, root->fs_info->fsid,
383                             (unsigned long)btrfs_header_fsid(leaf),
384                             BTRFS_FSID_SIZE);
385         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
386                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
387                             BTRFS_UUID_SIZE);
388         btrfs_mark_buffer_dirty(leaf);
389
390         inode_item = &root_item.inode;
391         memset(inode_item, 0, sizeof(*inode_item));
392         inode_item->generation = cpu_to_le64(1);
393         inode_item->size = cpu_to_le64(3);
394         inode_item->nlink = cpu_to_le32(1);
395         inode_item->nbytes = cpu_to_le64(root->leafsize);
396         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
397
398         root_item.flags = 0;
399         root_item.byte_limit = 0;
400         inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
401
402         btrfs_set_root_bytenr(&root_item, leaf->start);
403         btrfs_set_root_generation(&root_item, trans->transid);
404         btrfs_set_root_level(&root_item, 0);
405         btrfs_set_root_refs(&root_item, 1);
406         btrfs_set_root_used(&root_item, leaf->len);
407         btrfs_set_root_last_snapshot(&root_item, 0);
408
409         memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
410         root_item.drop_level = 0;
411
412         btrfs_tree_unlock(leaf);
413         free_extent_buffer(leaf);
414         leaf = NULL;
415
416         btrfs_set_root_dirid(&root_item, new_dirid);
417
418         key.objectid = objectid;
419         key.offset = 0;
420         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
421         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
422                                 &root_item);
423         if (ret)
424                 goto fail;
425
426         key.offset = (u64)-1;
427         new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
428         if (IS_ERR(new_root)) {
429                 btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
430                 ret = PTR_ERR(new_root);
431                 goto fail;
432         }
433
434         btrfs_record_root_in_trans(trans, new_root);
435
436         ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
437         if (ret) {
438                 /* We potentially lose an unused inode item here */
439                 btrfs_abort_transaction(trans, root, ret);
440                 goto fail;
441         }
442
443         /*
444          * insert the directory item
445          */
446         ret = btrfs_set_inode_index(dir, &index);
447         if (ret) {
448                 btrfs_abort_transaction(trans, root, ret);
449                 goto fail;
450         }
451
452         ret = btrfs_insert_dir_item(trans, root,
453                                     name, namelen, dir, &key,
454                                     BTRFS_FT_DIR, index);
455         if (ret) {
456                 btrfs_abort_transaction(trans, root, ret);
457                 goto fail;
458         }
459
460         btrfs_i_size_write(dir, dir->i_size + namelen * 2);
461         ret = btrfs_update_inode(trans, root, dir);
462         BUG_ON(ret);
463
464         ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
465                                  objectid, root->root_key.objectid,
466                                  btrfs_ino(dir), index, name, namelen);
467
468         BUG_ON(ret);
469
470         d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
471 fail:
472         if (async_transid) {
473                 *async_transid = trans->transid;
474                 err = btrfs_commit_transaction_async(trans, root, 1);
475         } else {
476                 err = btrfs_commit_transaction(trans, root);
477         }
478         if (err && !ret)
479                 ret = err;
480         return ret;
481 }
482
483 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
484                            char *name, int namelen, u64 *async_transid,
485                            bool readonly)
486 {
487         struct inode *inode;
488         struct btrfs_pending_snapshot *pending_snapshot;
489         struct btrfs_trans_handle *trans;
490         int ret;
491
492         if (!root->ref_cows)
493                 return -EINVAL;
494
495         pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
496         if (!pending_snapshot)
497                 return -ENOMEM;
498
499         btrfs_init_block_rsv(&pending_snapshot->block_rsv);
500         pending_snapshot->dentry = dentry;
501         pending_snapshot->root = root;
502         pending_snapshot->readonly = readonly;
503
504         trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
505         if (IS_ERR(trans)) {
506                 ret = PTR_ERR(trans);
507                 goto fail;
508         }
509
510         ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
511         BUG_ON(ret);
512
513         spin_lock(&root->fs_info->trans_lock);
514         list_add(&pending_snapshot->list,
515                  &trans->transaction->pending_snapshots);
516         spin_unlock(&root->fs_info->trans_lock);
517         if (async_transid) {
518                 *async_transid = trans->transid;
519                 ret = btrfs_commit_transaction_async(trans,
520                                      root->fs_info->extent_root, 1);
521         } else {
522                 ret = btrfs_commit_transaction(trans,
523                                                root->fs_info->extent_root);
524         }
525         BUG_ON(ret);
526
527         ret = pending_snapshot->error;
528         if (ret)
529                 goto fail;
530
531         ret = btrfs_orphan_cleanup(pending_snapshot->snap);
532         if (ret)
533                 goto fail;
534
535         inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
536         if (IS_ERR(inode)) {
537                 ret = PTR_ERR(inode);
538                 goto fail;
539         }
540         BUG_ON(!inode);
541         d_instantiate(dentry, inode);
542         ret = 0;
543 fail:
544         kfree(pending_snapshot);
545         return ret;
546 }
547
548 /*  copy of check_sticky in fs/namei.c()
549 * It's inline, so penalty for filesystems that don't use sticky bit is
550 * minimal.
551 */
552 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
553 {
554         uid_t fsuid = current_fsuid();
555
556         if (!(dir->i_mode & S_ISVTX))
557                 return 0;
558         if (inode->i_uid == fsuid)
559                 return 0;
560         if (dir->i_uid == fsuid)
561                 return 0;
562         return !capable(CAP_FOWNER);
563 }
564
565 /*  copy of may_delete in fs/namei.c()
566  *      Check whether we can remove a link victim from directory dir, check
567  *  whether the type of victim is right.
568  *  1. We can't do it if dir is read-only (done in permission())
569  *  2. We should have write and exec permissions on dir
570  *  3. We can't remove anything from append-only dir
571  *  4. We can't do anything with immutable dir (done in permission())
572  *  5. If the sticky bit on dir is set we should either
573  *      a. be owner of dir, or
574  *      b. be owner of victim, or
575  *      c. have CAP_FOWNER capability
576  *  6. If the victim is append-only or immutable we can't do antyhing with
577  *     links pointing to it.
578  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
579  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
580  *  9. We can't remove a root or mountpoint.
581  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
582  *     nfs_async_unlink().
583  */
584
585 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
586 {
587         int error;
588
589         if (!victim->d_inode)
590                 return -ENOENT;
591
592         BUG_ON(victim->d_parent->d_inode != dir);
593         audit_inode_child(victim, dir);
594
595         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
596         if (error)
597                 return error;
598         if (IS_APPEND(dir))
599                 return -EPERM;
600         if (btrfs_check_sticky(dir, victim->d_inode)||
601                 IS_APPEND(victim->d_inode)||
602             IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
603                 return -EPERM;
604         if (isdir) {
605                 if (!S_ISDIR(victim->d_inode->i_mode))
606                         return -ENOTDIR;
607                 if (IS_ROOT(victim))
608                         return -EBUSY;
609         } else if (S_ISDIR(victim->d_inode->i_mode))
610                 return -EISDIR;
611         if (IS_DEADDIR(dir))
612                 return -ENOENT;
613         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
614                 return -EBUSY;
615         return 0;
616 }
617
618 /* copy of may_create in fs/namei.c() */
619 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
620 {
621         if (child->d_inode)
622                 return -EEXIST;
623         if (IS_DEADDIR(dir))
624                 return -ENOENT;
625         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
626 }
627
628 /*
629  * Create a new subvolume below @parent.  This is largely modeled after
630  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
631  * inside this filesystem so it's quite a bit simpler.
632  */
633 static noinline int btrfs_mksubvol(struct path *parent,
634                                    char *name, int namelen,
635                                    struct btrfs_root *snap_src,
636                                    u64 *async_transid, bool readonly)
637 {
638         struct inode *dir  = parent->dentry->d_inode;
639         struct dentry *dentry;
640         int error;
641
642         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
643
644         dentry = lookup_one_len(name, parent->dentry, namelen);
645         error = PTR_ERR(dentry);
646         if (IS_ERR(dentry))
647                 goto out_unlock;
648
649         error = -EEXIST;
650         if (dentry->d_inode)
651                 goto out_dput;
652
653         error = mnt_want_write(parent->mnt);
654         if (error)
655                 goto out_dput;
656
657         error = btrfs_may_create(dir, dentry);
658         if (error)
659                 goto out_drop_write;
660
661         down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
662
663         if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
664                 goto out_up_read;
665
666         if (snap_src) {
667                 error = create_snapshot(snap_src, dentry,
668                                         name, namelen, async_transid, readonly);
669         } else {
670                 error = create_subvol(BTRFS_I(dir)->root, dentry,
671                                       name, namelen, async_transid);
672         }
673         if (!error)
674                 fsnotify_mkdir(dir, dentry);
675 out_up_read:
676         up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
677 out_drop_write:
678         mnt_drop_write(parent->mnt);
679 out_dput:
680         dput(dentry);
681 out_unlock:
682         mutex_unlock(&dir->i_mutex);
683         return error;
684 }
685
686 /*
687  * When we're defragging a range, we don't want to kick it off again
688  * if it is really just waiting for delalloc to send it down.
689  * If we find a nice big extent or delalloc range for the bytes in the
690  * file you want to defrag, we return 0 to let you know to skip this
691  * part of the file
692  */
693 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
694 {
695         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
696         struct extent_map *em = NULL;
697         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
698         u64 end;
699
700         read_lock(&em_tree->lock);
701         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
702         read_unlock(&em_tree->lock);
703
704         if (em) {
705                 end = extent_map_end(em);
706                 free_extent_map(em);
707                 if (end - offset > thresh)
708                         return 0;
709         }
710         /* if we already have a nice delalloc here, just stop */
711         thresh /= 2;
712         end = count_range_bits(io_tree, &offset, offset + thresh,
713                                thresh, EXTENT_DELALLOC, 1);
714         if (end >= thresh)
715                 return 0;
716         return 1;
717 }
718
719 /*
720  * helper function to walk through a file and find extents
721  * newer than a specific transid, and smaller than thresh.
722  *
723  * This is used by the defragging code to find new and small
724  * extents
725  */
726 static int find_new_extents(struct btrfs_root *root,
727                             struct inode *inode, u64 newer_than,
728                             u64 *off, int thresh)
729 {
730         struct btrfs_path *path;
731         struct btrfs_key min_key;
732         struct btrfs_key max_key;
733         struct extent_buffer *leaf;
734         struct btrfs_file_extent_item *extent;
735         int type;
736         int ret;
737         u64 ino = btrfs_ino(inode);
738
739         path = btrfs_alloc_path();
740         if (!path)
741                 return -ENOMEM;
742
743         min_key.objectid = ino;
744         min_key.type = BTRFS_EXTENT_DATA_KEY;
745         min_key.offset = *off;
746
747         max_key.objectid = ino;
748         max_key.type = (u8)-1;
749         max_key.offset = (u64)-1;
750
751         path->keep_locks = 1;
752
753         while(1) {
754                 ret = btrfs_search_forward(root, &min_key, &max_key,
755                                            path, 0, newer_than);
756                 if (ret != 0)
757                         goto none;
758                 if (min_key.objectid != ino)
759                         goto none;
760                 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
761                         goto none;
762
763                 leaf = path->nodes[0];
764                 extent = btrfs_item_ptr(leaf, path->slots[0],
765                                         struct btrfs_file_extent_item);
766
767                 type = btrfs_file_extent_type(leaf, extent);
768                 if (type == BTRFS_FILE_EXTENT_REG &&
769                     btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
770                     check_defrag_in_cache(inode, min_key.offset, thresh)) {
771                         *off = min_key.offset;
772                         btrfs_free_path(path);
773                         return 0;
774                 }
775
776                 if (min_key.offset == (u64)-1)
777                         goto none;
778
779                 min_key.offset++;
780                 btrfs_release_path(path);
781         }
782 none:
783         btrfs_free_path(path);
784         return -ENOENT;
785 }
786
787 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
788                                int thresh, u64 *last_len, u64 *skip,
789                                u64 *defrag_end)
790 {
791         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
792         struct extent_map *em = NULL;
793         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
794         int ret = 1;
795
796         /*
797          * make sure that once we start defragging an extent, we keep on
798          * defragging it
799          */
800         if (start < *defrag_end)
801                 return 1;
802
803         *skip = 0;
804
805         /*
806          * hopefully we have this extent in the tree already, try without
807          * the full extent lock
808          */
809         read_lock(&em_tree->lock);
810         em = lookup_extent_mapping(em_tree, start, len);
811         read_unlock(&em_tree->lock);
812
813         if (!em) {
814                 /* get the big lock and read metadata off disk */
815                 lock_extent(io_tree, start, start + len - 1);
816                 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
817                 unlock_extent(io_tree, start, start + len - 1);
818
819                 if (IS_ERR(em))
820                         return 0;
821         }
822
823         /* this will cover holes, and inline extents */
824         if (em->block_start >= EXTENT_MAP_LAST_BYTE)
825                 ret = 0;
826
827         /*
828          * we hit a real extent, if it is big don't bother defragging it again
829          */
830         if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
831                 ret = 0;
832
833         /*
834          * last_len ends up being a counter of how many bytes we've defragged.
835          * every time we choose not to defrag an extent, we reset *last_len
836          * so that the next tiny extent will force a defrag.
837          *
838          * The end result of this is that tiny extents before a single big
839          * extent will force at least part of that big extent to be defragged.
840          */
841         if (ret) {
842                 *defrag_end = extent_map_end(em);
843         } else {
844                 *last_len = 0;
845                 *skip = extent_map_end(em);
846                 *defrag_end = 0;
847         }
848
849         free_extent_map(em);
850         return ret;
851 }
852
853 /*
854  * it doesn't do much good to defrag one or two pages
855  * at a time.  This pulls in a nice chunk of pages
856  * to COW and defrag.
857  *
858  * It also makes sure the delalloc code has enough
859  * dirty data to avoid making new small extents as part
860  * of the defrag
861  *
862  * It's a good idea to start RA on this range
863  * before calling this.
864  */
865 static int cluster_pages_for_defrag(struct inode *inode,
866                                     struct page **pages,
867                                     unsigned long start_index,
868                                     int num_pages)
869 {
870         unsigned long file_end;
871         u64 isize = i_size_read(inode);
872         u64 page_start;
873         u64 page_end;
874         int ret;
875         int i;
876         int i_done;
877         struct btrfs_ordered_extent *ordered;
878         struct extent_state *cached_state = NULL;
879         struct extent_io_tree *tree;
880         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
881
882         if (isize == 0)
883                 return 0;
884         file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
885
886         ret = btrfs_delalloc_reserve_space(inode,
887                                            num_pages << PAGE_CACHE_SHIFT);
888         if (ret)
889                 return ret;
890         i_done = 0;
891         tree = &BTRFS_I(inode)->io_tree;
892
893         /* step one, lock all the pages */
894         for (i = 0; i < num_pages; i++) {
895                 struct page *page;
896 again:
897                 page = find_or_create_page(inode->i_mapping,
898                                            start_index + i, mask);
899                 if (!page)
900                         break;
901
902                 page_start = page_offset(page);
903                 page_end = page_start + PAGE_CACHE_SIZE - 1;
904                 while (1) {
905                         lock_extent(tree, page_start, page_end);
906                         ordered = btrfs_lookup_ordered_extent(inode,
907                                                               page_start);
908                         unlock_extent(tree, page_start, page_end);
909                         if (!ordered)
910                                 break;
911
912                         unlock_page(page);
913                         btrfs_start_ordered_extent(inode, ordered, 1);
914                         btrfs_put_ordered_extent(ordered);
915                         lock_page(page);
916                 }
917
918                 if (!PageUptodate(page)) {
919                         btrfs_readpage(NULL, page);
920                         lock_page(page);
921                         if (!PageUptodate(page)) {
922                                 unlock_page(page);
923                                 page_cache_release(page);
924                                 ret = -EIO;
925                                 break;
926                         }
927                 }
928
929                 isize = i_size_read(inode);
930                 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
931                 if (!isize || page->index > file_end) {
932                         /* whoops, we blew past eof, skip this page */
933                         unlock_page(page);
934                         page_cache_release(page);
935                         break;
936                 }
937
938                 if (page->mapping != inode->i_mapping) {
939                         unlock_page(page);
940                         page_cache_release(page);
941                         goto again;
942                 }
943
944                 pages[i] = page;
945                 i_done++;
946         }
947         if (!i_done || ret)
948                 goto out;
949
950         if (!(inode->i_sb->s_flags & MS_ACTIVE))
951                 goto out;
952
953         /*
954          * so now we have a nice long stream of locked
955          * and up to date pages, lets wait on them
956          */
957         for (i = 0; i < i_done; i++)
958                 wait_on_page_writeback(pages[i]);
959
960         page_start = page_offset(pages[0]);
961         page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
962
963         lock_extent_bits(&BTRFS_I(inode)->io_tree,
964                          page_start, page_end - 1, 0, &cached_state);
965         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
966                           page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
967                           EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
968                           GFP_NOFS);
969
970         if (i_done != num_pages) {
971                 spin_lock(&BTRFS_I(inode)->lock);
972                 BTRFS_I(inode)->outstanding_extents++;
973                 spin_unlock(&BTRFS_I(inode)->lock);
974                 btrfs_delalloc_release_space(inode,
975                                      (num_pages - i_done) << PAGE_CACHE_SHIFT);
976         }
977
978
979         btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
980                                   &cached_state);
981
982         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
983                              page_start, page_end - 1, &cached_state,
984                              GFP_NOFS);
985
986         for (i = 0; i < i_done; i++) {
987                 clear_page_dirty_for_io(pages[i]);
988                 ClearPageChecked(pages[i]);
989                 set_page_extent_mapped(pages[i]);
990                 set_page_dirty(pages[i]);
991                 unlock_page(pages[i]);
992                 page_cache_release(pages[i]);
993         }
994         return i_done;
995 out:
996         for (i = 0; i < i_done; i++) {
997                 unlock_page(pages[i]);
998                 page_cache_release(pages[i]);
999         }
1000         btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
1001         return ret;
1002
1003 }
1004
1005 int btrfs_defrag_file(struct inode *inode, struct file *file,
1006                       struct btrfs_ioctl_defrag_range_args *range,
1007                       u64 newer_than, unsigned long max_to_defrag)
1008 {
1009         struct btrfs_root *root = BTRFS_I(inode)->root;
1010         struct btrfs_super_block *disk_super;
1011         struct file_ra_state *ra = NULL;
1012         unsigned long last_index;
1013         u64 isize = i_size_read(inode);
1014         u64 features;
1015         u64 last_len = 0;
1016         u64 skip = 0;
1017         u64 defrag_end = 0;
1018         u64 newer_off = range->start;
1019         unsigned long i;
1020         unsigned long ra_index = 0;
1021         int ret;
1022         int defrag_count = 0;
1023         int compress_type = BTRFS_COMPRESS_ZLIB;
1024         int extent_thresh = range->extent_thresh;
1025         int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1026         int cluster = max_cluster;
1027         u64 new_align = ~((u64)128 * 1024 - 1);
1028         struct page **pages = NULL;
1029
1030         if (extent_thresh == 0)
1031                 extent_thresh = 256 * 1024;
1032
1033         if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1034                 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1035                         return -EINVAL;
1036                 if (range->compress_type)
1037                         compress_type = range->compress_type;
1038         }
1039
1040         if (isize == 0)
1041                 return 0;
1042
1043         /*
1044          * if we were not given a file, allocate a readahead
1045          * context
1046          */
1047         if (!file) {
1048                 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1049                 if (!ra)
1050                         return -ENOMEM;
1051                 file_ra_state_init(ra, inode->i_mapping);
1052         } else {
1053                 ra = &file->f_ra;
1054         }
1055
1056         pages = kmalloc(sizeof(struct page *) * max_cluster,
1057                         GFP_NOFS);
1058         if (!pages) {
1059                 ret = -ENOMEM;
1060                 goto out_ra;
1061         }
1062
1063         /* find the last page to defrag */
1064         if (range->start + range->len > range->start) {
1065                 last_index = min_t(u64, isize - 1,
1066                          range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1067         } else {
1068                 last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1069         }
1070
1071         if (newer_than) {
1072                 ret = find_new_extents(root, inode, newer_than,
1073                                        &newer_off, 64 * 1024);
1074                 if (!ret) {
1075                         range->start = newer_off;
1076                         /*
1077                          * we always align our defrag to help keep
1078                          * the extents in the file evenly spaced
1079                          */
1080                         i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1081                 } else
1082                         goto out_ra;
1083         } else {
1084                 i = range->start >> PAGE_CACHE_SHIFT;
1085         }
1086         if (!max_to_defrag)
1087                 max_to_defrag = last_index + 1;
1088
1089         /*
1090          * make writeback starts from i, so the defrag range can be
1091          * written sequentially.
1092          */
1093         if (i < inode->i_mapping->writeback_index)
1094                 inode->i_mapping->writeback_index = i;
1095
1096         while (i <= last_index && defrag_count < max_to_defrag &&
1097                (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1098                 PAGE_CACHE_SHIFT)) {
1099                 /*
1100                  * make sure we stop running if someone unmounts
1101                  * the FS
1102                  */
1103                 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1104                         break;
1105
1106                 if (!newer_than &&
1107                     !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1108                                         PAGE_CACHE_SIZE,
1109                                         extent_thresh,
1110                                         &last_len, &skip,
1111                                         &defrag_end)) {
1112                         unsigned long next;
1113                         /*
1114                          * the should_defrag function tells us how much to skip
1115                          * bump our counter by the suggested amount
1116                          */
1117                         next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1118                         i = max(i + 1, next);
1119                         continue;
1120                 }
1121
1122                 if (!newer_than) {
1123                         cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1124                                    PAGE_CACHE_SHIFT) - i;
1125                         cluster = min(cluster, max_cluster);
1126                 } else {
1127                         cluster = max_cluster;
1128                 }
1129
1130                 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1131                         BTRFS_I(inode)->force_compress = compress_type;
1132
1133                 if (i + cluster > ra_index) {
1134                         ra_index = max(i, ra_index);
1135                         btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1136                                        cluster);
1137                         ra_index += max_cluster;
1138                 }
1139
1140                 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1141                 if (ret < 0)
1142                         goto out_ra;
1143
1144                 defrag_count += ret;
1145                 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1146
1147                 if (newer_than) {
1148                         if (newer_off == (u64)-1)
1149                                 break;
1150
1151                         newer_off = max(newer_off + 1,
1152                                         (u64)i << PAGE_CACHE_SHIFT);
1153
1154                         ret = find_new_extents(root, inode,
1155                                                newer_than, &newer_off,
1156                                                64 * 1024);
1157                         if (!ret) {
1158                                 range->start = newer_off;
1159                                 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1160                         } else {
1161                                 break;
1162                         }
1163                 } else {
1164                         if (ret > 0) {
1165                                 i += ret;
1166                                 last_len += ret << PAGE_CACHE_SHIFT;
1167                         } else {
1168                                 i++;
1169                                 last_len = 0;
1170                         }
1171                 }
1172         }
1173
1174         if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1175                 filemap_flush(inode->i_mapping);
1176
1177         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1178                 /* the filemap_flush will queue IO into the worker threads, but
1179                  * we have to make sure the IO is actually started and that
1180                  * ordered extents get created before we return
1181                  */
1182                 atomic_inc(&root->fs_info->async_submit_draining);
1183                 while (atomic_read(&root->fs_info->nr_async_submits) ||
1184                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1185                         wait_event(root->fs_info->async_submit_wait,
1186                            (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1187                             atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1188                 }
1189                 atomic_dec(&root->fs_info->async_submit_draining);
1190
1191                 mutex_lock(&inode->i_mutex);
1192                 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1193                 mutex_unlock(&inode->i_mutex);
1194         }
1195
1196         disk_super = root->fs_info->super_copy;
1197         features = btrfs_super_incompat_flags(disk_super);
1198         if (range->compress_type == BTRFS_COMPRESS_LZO) {
1199                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1200                 btrfs_set_super_incompat_flags(disk_super, features);
1201         }
1202
1203         ret = defrag_count;
1204
1205 out_ra:
1206         if (!file)
1207                 kfree(ra);
1208         kfree(pages);
1209         return ret;
1210 }
1211
1212 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1213                                         void __user *arg)
1214 {
1215         u64 new_size;
1216         u64 old_size;
1217         u64 devid = 1;
1218         struct btrfs_ioctl_vol_args *vol_args;
1219         struct btrfs_trans_handle *trans;
1220         struct btrfs_device *device = NULL;
1221         char *sizestr;
1222         char *devstr = NULL;
1223         int ret = 0;
1224         int mod = 0;
1225
1226         if (root->fs_info->sb->s_flags & MS_RDONLY)
1227                 return -EROFS;
1228
1229         if (!capable(CAP_SYS_ADMIN))
1230                 return -EPERM;
1231
1232         mutex_lock(&root->fs_info->volume_mutex);
1233         if (root->fs_info->balance_ctl) {
1234                 printk(KERN_INFO "btrfs: balance in progress\n");
1235                 ret = -EINVAL;
1236                 goto out;
1237         }
1238
1239         vol_args = memdup_user(arg, sizeof(*vol_args));
1240         if (IS_ERR(vol_args)) {
1241                 ret = PTR_ERR(vol_args);
1242                 goto out;
1243         }
1244
1245         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1246
1247         sizestr = vol_args->name;
1248         devstr = strchr(sizestr, ':');
1249         if (devstr) {
1250                 char *end;
1251                 sizestr = devstr + 1;
1252                 *devstr = '\0';
1253                 devstr = vol_args->name;
1254                 devid = simple_strtoull(devstr, &end, 10);
1255                 printk(KERN_INFO "btrfs: resizing devid %llu\n",
1256                        (unsigned long long)devid);
1257         }
1258         device = btrfs_find_device(root, devid, NULL, NULL);
1259         if (!device) {
1260                 printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1261                        (unsigned long long)devid);
1262                 ret = -EINVAL;
1263                 goto out_free;
1264         }
1265         if (!strcmp(sizestr, "max"))
1266                 new_size = device->bdev->bd_inode->i_size;
1267         else {
1268                 if (sizestr[0] == '-') {
1269                         mod = -1;
1270                         sizestr++;
1271                 } else if (sizestr[0] == '+') {
1272                         mod = 1;
1273                         sizestr++;
1274                 }
1275                 new_size = memparse(sizestr, NULL);
1276                 if (new_size == 0) {
1277                         ret = -EINVAL;
1278                         goto out_free;
1279                 }
1280         }
1281
1282         old_size = device->total_bytes;
1283
1284         if (mod < 0) {
1285                 if (new_size > old_size) {
1286                         ret = -EINVAL;
1287                         goto out_free;
1288                 }
1289                 new_size = old_size - new_size;
1290         } else if (mod > 0) {
1291                 new_size = old_size + new_size;
1292         }
1293
1294         if (new_size < 256 * 1024 * 1024) {
1295                 ret = -EINVAL;
1296                 goto out_free;
1297         }
1298         if (new_size > device->bdev->bd_inode->i_size) {
1299                 ret = -EFBIG;
1300                 goto out_free;
1301         }
1302
1303         do_div(new_size, root->sectorsize);
1304         new_size *= root->sectorsize;
1305
1306         printk(KERN_INFO "btrfs: new size for %s is %llu\n",
1307                 device->name, (unsigned long long)new_size);
1308
1309         if (new_size > old_size) {
1310                 trans = btrfs_start_transaction(root, 0);
1311                 if (IS_ERR(trans)) {
1312                         ret = PTR_ERR(trans);
1313                         goto out_free;
1314                 }
1315                 ret = btrfs_grow_device(trans, device, new_size);
1316                 btrfs_commit_transaction(trans, root);
1317         } else if (new_size < old_size) {
1318                 ret = btrfs_shrink_device(device, new_size);
1319         }
1320
1321 out_free:
1322         kfree(vol_args);
1323 out:
1324         mutex_unlock(&root->fs_info->volume_mutex);
1325         return ret;
1326 }
1327
1328 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1329                                                     char *name,
1330                                                     unsigned long fd,
1331                                                     int subvol,
1332                                                     u64 *transid,
1333                                                     bool readonly)
1334 {
1335         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1336         struct file *src_file;
1337         int namelen;
1338         int ret = 0;
1339
1340         if (root->fs_info->sb->s_flags & MS_RDONLY)
1341                 return -EROFS;
1342
1343         namelen = strlen(name);
1344         if (strchr(name, '/')) {
1345                 ret = -EINVAL;
1346                 goto out;
1347         }
1348
1349         if (name[0] == '.' &&
1350            (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1351                 ret = -EEXIST;
1352                 goto out;
1353         }
1354
1355         if (subvol) {
1356                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1357                                      NULL, transid, readonly);
1358         } else {
1359                 struct inode *src_inode;
1360                 src_file = fget(fd);
1361                 if (!src_file) {
1362                         ret = -EINVAL;
1363                         goto out;
1364                 }
1365
1366                 src_inode = src_file->f_path.dentry->d_inode;
1367                 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1368                         printk(KERN_INFO "btrfs: Snapshot src from "
1369                                "another FS\n");
1370                         ret = -EINVAL;
1371                         fput(src_file);
1372                         goto out;
1373                 }
1374                 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1375                                      BTRFS_I(src_inode)->root,
1376                                      transid, readonly);
1377                 fput(src_file);
1378         }
1379 out:
1380         return ret;
1381 }
1382
1383 static noinline int btrfs_ioctl_snap_create(struct file *file,
1384                                             void __user *arg, int subvol)
1385 {
1386         struct btrfs_ioctl_vol_args *vol_args;
1387         int ret;
1388
1389         vol_args = memdup_user(arg, sizeof(*vol_args));
1390         if (IS_ERR(vol_args))
1391                 return PTR_ERR(vol_args);
1392         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1393
1394         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1395                                               vol_args->fd, subvol,
1396                                               NULL, false);
1397
1398         kfree(vol_args);
1399         return ret;
1400 }
1401
1402 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1403                                                void __user *arg, int subvol)
1404 {
1405         struct btrfs_ioctl_vol_args_v2 *vol_args;
1406         int ret;
1407         u64 transid = 0;
1408         u64 *ptr = NULL;
1409         bool readonly = false;
1410
1411         vol_args = memdup_user(arg, sizeof(*vol_args));
1412         if (IS_ERR(vol_args))
1413                 return PTR_ERR(vol_args);
1414         vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1415
1416         if (vol_args->flags &
1417             ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1418                 ret = -EOPNOTSUPP;
1419                 goto out;
1420         }
1421
1422         if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1423                 ptr = &transid;
1424         if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1425                 readonly = true;
1426
1427         ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1428                                               vol_args->fd, subvol,
1429                                               ptr, readonly);
1430
1431         if (ret == 0 && ptr &&
1432             copy_to_user(arg +
1433                          offsetof(struct btrfs_ioctl_vol_args_v2,
1434                                   transid), ptr, sizeof(*ptr)))
1435                 ret = -EFAULT;
1436 out:
1437         kfree(vol_args);
1438         return ret;
1439 }
1440
1441 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1442                                                 void __user *arg)
1443 {
1444         struct inode *inode = fdentry(file)->d_inode;
1445         struct btrfs_root *root = BTRFS_I(inode)->root;
1446         int ret = 0;
1447         u64 flags = 0;
1448
1449         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1450                 return -EINVAL;
1451
1452         down_read(&root->fs_info->subvol_sem);
1453         if (btrfs_root_readonly(root))
1454                 flags |= BTRFS_SUBVOL_RDONLY;
1455         up_read(&root->fs_info->subvol_sem);
1456
1457         if (copy_to_user(arg, &flags, sizeof(flags)))
1458                 ret = -EFAULT;
1459
1460         return ret;
1461 }
1462
1463 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1464                                               void __user *arg)
1465 {
1466         struct inode *inode = fdentry(file)->d_inode;
1467         struct btrfs_root *root = BTRFS_I(inode)->root;
1468         struct btrfs_trans_handle *trans;
1469         u64 root_flags;
1470         u64 flags;
1471         int ret = 0;
1472
1473         if (root->fs_info->sb->s_flags & MS_RDONLY)
1474                 return -EROFS;
1475
1476         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1477                 return -EINVAL;
1478
1479         if (copy_from_user(&flags, arg, sizeof(flags)))
1480                 return -EFAULT;
1481
1482         if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1483                 return -EINVAL;
1484
1485         if (flags & ~BTRFS_SUBVOL_RDONLY)
1486                 return -EOPNOTSUPP;
1487
1488         if (!inode_owner_or_capable(inode))
1489                 return -EACCES;
1490
1491         down_write(&root->fs_info->subvol_sem);
1492
1493         /* nothing to do */
1494         if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1495                 goto out;
1496
1497         root_flags = btrfs_root_flags(&root->root_item);
1498         if (flags & BTRFS_SUBVOL_RDONLY)
1499                 btrfs_set_root_flags(&root->root_item,
1500                                      root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1501         else
1502                 btrfs_set_root_flags(&root->root_item,
1503                                      root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1504
1505         trans = btrfs_start_transaction(root, 1);
1506         if (IS_ERR(trans)) {
1507                 ret = PTR_ERR(trans);
1508                 goto out_reset;
1509         }
1510
1511         ret = btrfs_update_root(trans, root->fs_info->tree_root,
1512                                 &root->root_key, &root->root_item);
1513
1514         btrfs_commit_transaction(trans, root);
1515 out_reset:
1516         if (ret)
1517                 btrfs_set_root_flags(&root->root_item, root_flags);
1518 out:
1519         up_write(&root->fs_info->subvol_sem);
1520         return ret;
1521 }
1522
1523 /*
1524  * helper to check if the subvolume references other subvolumes
1525  */
1526 static noinline int may_destroy_subvol(struct btrfs_root *root)
1527 {
1528         struct btrfs_path *path;
1529         struct btrfs_key key;
1530         int ret;
1531
1532         path = btrfs_alloc_path();
1533         if (!path)
1534                 return -ENOMEM;
1535
1536         key.objectid = root->root_key.objectid;
1537         key.type = BTRFS_ROOT_REF_KEY;
1538         key.offset = (u64)-1;
1539
1540         ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1541                                 &key, path, 0, 0);
1542         if (ret < 0)
1543                 goto out;
1544         BUG_ON(ret == 0);
1545
1546         ret = 0;
1547         if (path->slots[0] > 0) {
1548                 path->slots[0]--;
1549                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1550                 if (key.objectid == root->root_key.objectid &&
1551                     key.type == BTRFS_ROOT_REF_KEY)
1552                         ret = -ENOTEMPTY;
1553         }
1554 out:
1555         btrfs_free_path(path);
1556         return ret;
1557 }
1558
1559 static noinline int key_in_sk(struct btrfs_key *key,
1560                               struct btrfs_ioctl_search_key *sk)
1561 {
1562         struct btrfs_key test;
1563         int ret;
1564
1565         test.objectid = sk->min_objectid;
1566         test.type = sk->min_type;
1567         test.offset = sk->min_offset;
1568
1569         ret = btrfs_comp_cpu_keys(key, &test);
1570         if (ret < 0)
1571                 return 0;
1572
1573         test.objectid = sk->max_objectid;
1574         test.type = sk->max_type;
1575         test.offset = sk->max_offset;
1576
1577         ret = btrfs_comp_cpu_keys(key, &test);
1578         if (ret > 0)
1579                 return 0;
1580         return 1;
1581 }
1582
1583 static noinline int copy_to_sk(struct btrfs_root *root,
1584                                struct btrfs_path *path,
1585                                struct btrfs_key *key,
1586                                struct btrfs_ioctl_search_key *sk,
1587                                char *buf,
1588                                unsigned long *sk_offset,
1589                                int *num_found)
1590 {
1591         u64 found_transid;
1592         struct extent_buffer *leaf;
1593         struct btrfs_ioctl_search_header sh;
1594         unsigned long item_off;
1595         unsigned long item_len;
1596         int nritems;
1597         int i;
1598         int slot;
1599         int ret = 0;
1600
1601         leaf = path->nodes[0];
1602         slot = path->slots[0];
1603         nritems = btrfs_header_nritems(leaf);
1604
1605         if (btrfs_header_generation(leaf) > sk->max_transid) {
1606                 i = nritems;
1607                 goto advance_key;
1608         }
1609         found_transid = btrfs_header_generation(leaf);
1610
1611         for (i = slot; i < nritems; i++) {
1612                 item_off = btrfs_item_ptr_offset(leaf, i);
1613                 item_len = btrfs_item_size_nr(leaf, i);
1614
1615                 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1616                         item_len = 0;
1617
1618                 if (sizeof(sh) + item_len + *sk_offset >
1619                     BTRFS_SEARCH_ARGS_BUFSIZE) {
1620                         ret = 1;
1621                         goto overflow;
1622                 }
1623
1624                 btrfs_item_key_to_cpu(leaf, key, i);
1625                 if (!key_in_sk(key, sk))
1626                         continue;
1627
1628                 sh.objectid = key->objectid;
1629                 sh.offset = key->offset;
1630                 sh.type = key->type;
1631                 sh.len = item_len;
1632                 sh.transid = found_transid;
1633
1634                 /* copy search result header */
1635                 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1636                 *sk_offset += sizeof(sh);
1637
1638                 if (item_len) {
1639                         char *p = buf + *sk_offset;
1640                         /* copy the item */
1641                         read_extent_buffer(leaf, p,
1642                                            item_off, item_len);
1643                         *sk_offset += item_len;
1644                 }
1645                 (*num_found)++;
1646
1647                 if (*num_found >= sk->nr_items)
1648                         break;
1649         }
1650 advance_key:
1651         ret = 0;
1652         if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1653                 key->offset++;
1654         else if (key->type < (u8)-1 && key->type < sk->max_type) {
1655                 key->offset = 0;
1656                 key->type++;
1657         } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1658                 key->offset = 0;
1659                 key->type = 0;
1660                 key->objectid++;
1661         } else
1662                 ret = 1;
1663 overflow:
1664         return ret;
1665 }
1666
1667 static noinline int search_ioctl(struct inode *inode,
1668                                  struct btrfs_ioctl_search_args *args)
1669 {
1670         struct btrfs_root *root;
1671         struct btrfs_key key;
1672         struct btrfs_key max_key;
1673         struct btrfs_path *path;
1674         struct btrfs_ioctl_search_key *sk = &args->key;
1675         struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1676         int ret;
1677         int num_found = 0;
1678         unsigned long sk_offset = 0;
1679
1680         path = btrfs_alloc_path();
1681         if (!path)
1682                 return -ENOMEM;
1683
1684         if (sk->tree_id == 0) {
1685                 /* search the root of the inode that was passed */
1686                 root = BTRFS_I(inode)->root;
1687         } else {
1688                 key.objectid = sk->tree_id;
1689                 key.type = BTRFS_ROOT_ITEM_KEY;
1690                 key.offset = (u64)-1;
1691                 root = btrfs_read_fs_root_no_name(info, &key);
1692                 if (IS_ERR(root)) {
1693                         printk(KERN_ERR "could not find root %llu\n",
1694                                sk->tree_id);
1695                         btrfs_free_path(path);
1696                         return -ENOENT;
1697                 }
1698         }
1699
1700         key.objectid = sk->min_objectid;
1701         key.type = sk->min_type;
1702         key.offset = sk->min_offset;
1703
1704         max_key.objectid = sk->max_objectid;
1705         max_key.type = sk->max_type;
1706         max_key.offset = sk->max_offset;
1707
1708         path->keep_locks = 1;
1709
1710         while(1) {
1711                 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1712                                            sk->min_transid);
1713                 if (ret != 0) {
1714                         if (ret > 0)
1715                                 ret = 0;
1716                         goto err;
1717                 }
1718                 ret = copy_to_sk(root, path, &key, sk, args->buf,
1719                                  &sk_offset, &num_found);
1720                 btrfs_release_path(path);
1721                 if (ret || num_found >= sk->nr_items)
1722                         break;
1723
1724         }
1725         ret = 0;
1726 err:
1727         sk->nr_items = num_found;
1728         btrfs_free_path(path);
1729         return ret;
1730 }
1731
1732 static noinline int btrfs_ioctl_tree_search(struct file *file,
1733                                            void __user *argp)
1734 {
1735          struct btrfs_ioctl_search_args *args;
1736          struct inode *inode;
1737          int ret;
1738
1739         if (!capable(CAP_SYS_ADMIN))
1740                 return -EPERM;
1741
1742         args = memdup_user(argp, sizeof(*args));
1743         if (IS_ERR(args))
1744                 return PTR_ERR(args);
1745
1746         inode = fdentry(file)->d_inode;
1747         ret = search_ioctl(inode, args);
1748         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1749                 ret = -EFAULT;
1750         kfree(args);
1751         return ret;
1752 }
1753
1754 /*
1755  * Search INODE_REFs to identify path name of 'dirid' directory
1756  * in a 'tree_id' tree. and sets path name to 'name'.
1757  */
1758 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1759                                 u64 tree_id, u64 dirid, char *name)
1760 {
1761         struct btrfs_root *root;
1762         struct btrfs_key key;
1763         char *ptr;
1764         int ret = -1;
1765         int slot;
1766         int len;
1767         int total_len = 0;
1768         struct btrfs_inode_ref *iref;
1769         struct extent_buffer *l;
1770         struct btrfs_path *path;
1771
1772         if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1773                 name[0]='\0';
1774                 return 0;
1775         }
1776
1777         path = btrfs_alloc_path();
1778         if (!path)
1779                 return -ENOMEM;
1780
1781         ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1782
1783         key.objectid = tree_id;
1784         key.type = BTRFS_ROOT_ITEM_KEY;
1785         key.offset = (u64)-1;
1786         root = btrfs_read_fs_root_no_name(info, &key);
1787         if (IS_ERR(root)) {
1788                 printk(KERN_ERR "could not find root %llu\n", tree_id);
1789                 ret = -ENOENT;
1790                 goto out;
1791         }
1792
1793         key.objectid = dirid;
1794         key.type = BTRFS_INODE_REF_KEY;
1795         key.offset = (u64)-1;
1796
1797         while(1) {
1798                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1799                 if (ret < 0)
1800                         goto out;
1801
1802                 l = path->nodes[0];
1803                 slot = path->slots[0];
1804                 if (ret > 0 && slot > 0)
1805                         slot--;
1806                 btrfs_item_key_to_cpu(l, &key, slot);
1807
1808                 if (ret > 0 && (key.objectid != dirid ||
1809                                 key.type != BTRFS_INODE_REF_KEY)) {
1810                         ret = -ENOENT;
1811                         goto out;
1812                 }
1813
1814                 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1815                 len = btrfs_inode_ref_name_len(l, iref);
1816                 ptr -= len + 1;
1817                 total_len += len + 1;
1818                 if (ptr < name)
1819                         goto out;
1820
1821                 *(ptr + len) = '/';
1822                 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1823
1824                 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1825                         break;
1826
1827                 btrfs_release_path(path);
1828                 key.objectid = key.offset;
1829                 key.offset = (u64)-1;
1830                 dirid = key.objectid;
1831         }
1832         if (ptr < name)
1833                 goto out;
1834         memmove(name, ptr, total_len);
1835         name[total_len]='\0';
1836         ret = 0;
1837 out:
1838         btrfs_free_path(path);
1839         return ret;
1840 }
1841
1842 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1843                                            void __user *argp)
1844 {
1845          struct btrfs_ioctl_ino_lookup_args *args;
1846          struct inode *inode;
1847          int ret;
1848
1849         if (!capable(CAP_SYS_ADMIN))
1850                 return -EPERM;
1851
1852         args = memdup_user(argp, sizeof(*args));
1853         if (IS_ERR(args))
1854                 return PTR_ERR(args);
1855
1856         inode = fdentry(file)->d_inode;
1857
1858         if (args->treeid == 0)
1859                 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1860
1861         ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1862                                         args->treeid, args->objectid,
1863                                         args->name);
1864
1865         if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1866                 ret = -EFAULT;
1867
1868         kfree(args);
1869         return ret;
1870 }
1871
1872 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1873                                              void __user *arg)
1874 {
1875         struct dentry *parent = fdentry(file);
1876         struct dentry *dentry;
1877         struct inode *dir = parent->d_inode;
1878         struct inode *inode;
1879         struct btrfs_root *root = BTRFS_I(dir)->root;
1880         struct btrfs_root *dest = NULL;
1881         struct btrfs_ioctl_vol_args *vol_args;
1882         struct btrfs_trans_handle *trans;
1883         int namelen;
1884         int ret;
1885         int err = 0;
1886
1887         vol_args = memdup_user(arg, sizeof(*vol_args));
1888         if (IS_ERR(vol_args))
1889                 return PTR_ERR(vol_args);
1890
1891         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1892         namelen = strlen(vol_args->name);
1893         if (strchr(vol_args->name, '/') ||
1894             strncmp(vol_args->name, "..", namelen) == 0) {
1895                 err = -EINVAL;
1896                 goto out;
1897         }
1898
1899         err = mnt_want_write_file(file);
1900         if (err)
1901                 goto out;
1902
1903         mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1904         dentry = lookup_one_len(vol_args->name, parent, namelen);
1905         if (IS_ERR(dentry)) {
1906                 err = PTR_ERR(dentry);
1907                 goto out_unlock_dir;
1908         }
1909
1910         if (!dentry->d_inode) {
1911                 err = -ENOENT;
1912                 goto out_dput;
1913         }
1914
1915         inode = dentry->d_inode;
1916         dest = BTRFS_I(inode)->root;
1917         if (!capable(CAP_SYS_ADMIN)){
1918                 /*
1919                  * Regular user.  Only allow this with a special mount
1920                  * option, when the user has write+exec access to the
1921                  * subvol root, and when rmdir(2) would have been
1922                  * allowed.
1923                  *
1924                  * Note that this is _not_ check that the subvol is
1925                  * empty or doesn't contain data that we wouldn't
1926                  * otherwise be able to delete.
1927                  *
1928                  * Users who want to delete empty subvols should try
1929                  * rmdir(2).
1930                  */
1931                 err = -EPERM;
1932                 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1933                         goto out_dput;
1934
1935                 /*
1936                  * Do not allow deletion if the parent dir is the same
1937                  * as the dir to be deleted.  That means the ioctl
1938                  * must be called on the dentry referencing the root
1939                  * of the subvol, not a random directory contained
1940                  * within it.
1941                  */
1942                 err = -EINVAL;
1943                 if (root == dest)
1944                         goto out_dput;
1945
1946                 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1947                 if (err)
1948                         goto out_dput;
1949
1950                 /* check if subvolume may be deleted by a non-root user */
1951                 err = btrfs_may_delete(dir, dentry, 1);
1952                 if (err)
1953                         goto out_dput;
1954         }
1955
1956         if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1957                 err = -EINVAL;
1958                 goto out_dput;
1959         }
1960
1961         mutex_lock(&inode->i_mutex);
1962         err = d_invalidate(dentry);
1963         if (err)
1964                 goto out_unlock;
1965
1966         down_write(&root->fs_info->subvol_sem);
1967
1968         err = may_destroy_subvol(dest);
1969         if (err)
1970                 goto out_up_write;
1971
1972         trans = btrfs_start_transaction(root, 0);
1973         if (IS_ERR(trans)) {
1974                 err = PTR_ERR(trans);
1975                 goto out_up_write;
1976         }
1977         trans->block_rsv = &root->fs_info->global_block_rsv;
1978
1979         ret = btrfs_unlink_subvol(trans, root, dir,
1980                                 dest->root_key.objectid,
1981                                 dentry->d_name.name,
1982                                 dentry->d_name.len);
1983         if (ret) {
1984                 err = ret;
1985                 btrfs_abort_transaction(trans, root, ret);
1986                 goto out_end_trans;
1987         }
1988
1989         btrfs_record_root_in_trans(trans, dest);
1990
1991         memset(&dest->root_item.drop_progress, 0,
1992                 sizeof(dest->root_item.drop_progress));
1993         dest->root_item.drop_level = 0;
1994         btrfs_set_root_refs(&dest->root_item, 0);
1995
1996         if (!xchg(&dest->orphan_item_inserted, 1)) {
1997                 ret = btrfs_insert_orphan_item(trans,
1998                                         root->fs_info->tree_root,
1999                                         dest->root_key.objectid);
2000                 if (ret) {
2001                         btrfs_abort_transaction(trans, root, ret);
2002                         err = ret;
2003                         goto out_end_trans;
2004                 }
2005         }
2006 out_end_trans:
2007         ret = btrfs_end_transaction(trans, root);
2008         if (ret && !err)
2009                 err = ret;
2010         inode->i_flags |= S_DEAD;
2011 out_up_write:
2012         up_write(&root->fs_info->subvol_sem);
2013 out_unlock:
2014         mutex_unlock(&inode->i_mutex);
2015         if (!err) {
2016                 shrink_dcache_sb(root->fs_info->sb);
2017                 btrfs_invalidate_inodes(dest);
2018                 d_delete(dentry);
2019         }
2020 out_dput:
2021         dput(dentry);
2022 out_unlock_dir:
2023         mutex_unlock(&dir->i_mutex);
2024         mnt_drop_write_file(file);
2025 out:
2026         kfree(vol_args);
2027         return err;
2028 }
2029
2030 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2031 {
2032         struct inode *inode = fdentry(file)->d_inode;
2033         struct btrfs_root *root = BTRFS_I(inode)->root;
2034         struct btrfs_ioctl_defrag_range_args *range;
2035         int ret;
2036
2037         if (btrfs_root_readonly(root))
2038                 return -EROFS;
2039
2040         ret = mnt_want_write_file(file);
2041         if (ret)
2042                 return ret;
2043
2044         switch (inode->i_mode & S_IFMT) {
2045         case S_IFDIR:
2046                 if (!capable(CAP_SYS_ADMIN)) {
2047                         ret = -EPERM;
2048                         goto out;
2049                 }
2050                 ret = btrfs_defrag_root(root, 0);
2051                 if (ret)
2052                         goto out;
2053                 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2054                 break;
2055         case S_IFREG:
2056                 if (!(file->f_mode & FMODE_WRITE)) {
2057                         ret = -EINVAL;
2058                         goto out;
2059                 }
2060
2061                 range = kzalloc(sizeof(*range), GFP_KERNEL);
2062                 if (!range) {
2063                         ret = -ENOMEM;
2064                         goto out;
2065                 }
2066
2067                 if (argp) {
2068                         if (copy_from_user(range, argp,
2069                                            sizeof(*range))) {
2070                                 ret = -EFAULT;
2071                                 kfree(range);
2072                                 goto out;
2073                         }
2074                         /* compression requires us to start the IO */
2075                         if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2076                                 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2077                                 range->extent_thresh = (u32)-1;
2078                         }
2079                 } else {
2080                         /* the rest are all set to zero by kzalloc */
2081                         range->len = (u64)-1;
2082                 }
2083                 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2084                                         range, 0, 0);
2085                 if (ret > 0)
2086                         ret = 0;
2087                 kfree(range);
2088                 break;
2089         default:
2090                 ret = -EINVAL;
2091         }
2092 out:
2093         mnt_drop_write_file(file);
2094         return ret;
2095 }
2096
2097 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2098 {
2099         struct btrfs_ioctl_vol_args *vol_args;
2100         int ret;
2101
2102         if (!capable(CAP_SYS_ADMIN))
2103                 return -EPERM;
2104
2105         mutex_lock(&root->fs_info->volume_mutex);
2106         if (root->fs_info->balance_ctl) {
2107                 printk(KERN_INFO "btrfs: balance in progress\n");
2108                 ret = -EINVAL;
2109                 goto out;
2110         }
2111
2112         vol_args = memdup_user(arg, sizeof(*vol_args));
2113         if (IS_ERR(vol_args)) {
2114                 ret = PTR_ERR(vol_args);
2115                 goto out;
2116         }
2117
2118         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2119         ret = btrfs_init_new_device(root, vol_args->name);
2120
2121         kfree(vol_args);
2122 out:
2123         mutex_unlock(&root->fs_info->volume_mutex);
2124         return ret;
2125 }
2126
2127 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2128 {
2129         struct btrfs_ioctl_vol_args *vol_args;
2130         int ret;
2131
2132         if (!capable(CAP_SYS_ADMIN))
2133                 return -EPERM;
2134
2135         if (root->fs_info->sb->s_flags & MS_RDONLY)
2136                 return -EROFS;
2137
2138         mutex_lock(&root->fs_info->volume_mutex);
2139         if (root->fs_info->balance_ctl) {
2140                 printk(KERN_INFO "btrfs: balance in progress\n");
2141                 ret = -EINVAL;
2142                 goto out;
2143         }
2144
2145         vol_args = memdup_user(arg, sizeof(*vol_args));
2146         if (IS_ERR(vol_args)) {
2147                 ret = PTR_ERR(vol_args);
2148                 goto out;
2149         }
2150
2151         vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2152         ret = btrfs_rm_device(root, vol_args->name);
2153
2154         kfree(vol_args);
2155 out:
2156         mutex_unlock(&root->fs_info->volume_mutex);
2157         return ret;
2158 }
2159
2160 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2161 {
2162         struct btrfs_ioctl_fs_info_args *fi_args;
2163         struct btrfs_device *device;
2164         struct btrfs_device *next;
2165         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2166         int ret = 0;
2167
2168         if (!capable(CAP_SYS_ADMIN))
2169                 return -EPERM;
2170
2171         fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2172         if (!fi_args)
2173                 return -ENOMEM;
2174
2175         fi_args->num_devices = fs_devices->num_devices;
2176         memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2177
2178         mutex_lock(&fs_devices->device_list_mutex);
2179         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2180                 if (device->devid > fi_args->max_id)
2181                         fi_args->max_id = device->devid;
2182         }
2183         mutex_unlock(&fs_devices->device_list_mutex);
2184
2185         if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2186                 ret = -EFAULT;
2187
2188         kfree(fi_args);
2189         return ret;
2190 }
2191
2192 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2193 {
2194         struct btrfs_ioctl_dev_info_args *di_args;
2195         struct btrfs_device *dev;
2196         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2197         int ret = 0;
2198         char *s_uuid = NULL;
2199         char empty_uuid[BTRFS_UUID_SIZE] = {0};
2200
2201         if (!capable(CAP_SYS_ADMIN))
2202                 return -EPERM;
2203
2204         di_args = memdup_user(arg, sizeof(*di_args));
2205         if (IS_ERR(di_args))
2206                 return PTR_ERR(di_args);
2207
2208         if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2209                 s_uuid = di_args->uuid;
2210
2211         mutex_lock(&fs_devices->device_list_mutex);
2212         dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2213         mutex_unlock(&fs_devices->device_list_mutex);
2214
2215         if (!dev) {
2216                 ret = -ENODEV;
2217                 goto out;
2218         }
2219
2220         di_args->devid = dev->devid;
2221         di_args->bytes_used = dev->bytes_used;
2222         di_args->total_bytes = dev->total_bytes;
2223         memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2224         strncpy(di_args->path, dev->name, sizeof(di_args->path));
2225
2226 out:
2227         if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2228                 ret = -EFAULT;
2229
2230         kfree(di_args);
2231         return ret;
2232 }
2233
2234 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2235                                        u64 off, u64 olen, u64 destoff)
2236 {
2237         struct inode *inode = fdentry(file)->d_inode;
2238         struct btrfs_root *root = BTRFS_I(inode)->root;
2239         struct file *src_file;
2240         struct inode *src;
2241         struct btrfs_trans_handle *trans;
2242         struct btrfs_path *path;
2243         struct extent_buffer *leaf;
2244         char *buf;
2245         struct btrfs_key key;
2246         u32 nritems;
2247         int slot;
2248         int ret;
2249         u64 len = olen;
2250         u64 bs = root->fs_info->sb->s_blocksize;
2251         u64 hint_byte;
2252
2253         /*
2254          * TODO:
2255          * - split compressed inline extents.  annoying: we need to
2256          *   decompress into destination's address_space (the file offset
2257          *   may change, so source mapping won't do), then recompress (or
2258          *   otherwise reinsert) a subrange.
2259          * - allow ranges within the same file to be cloned (provided
2260          *   they don't overlap)?
2261          */
2262
2263         /* the destination must be opened for writing */
2264         if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2265                 return -EINVAL;
2266
2267         if (btrfs_root_readonly(root))
2268                 return -EROFS;
2269
2270         ret = mnt_want_write_file(file);
2271         if (ret)
2272                 return ret;
2273
2274         src_file = fget(srcfd);
2275         if (!src_file) {
2276                 ret = -EBADF;
2277                 goto out_drop_write;
2278         }
2279
2280         src = src_file->f_dentry->d_inode;
2281
2282         ret = -EINVAL;
2283         if (src == inode)
2284                 goto out_fput;
2285
2286         /* the src must be open for reading */
2287         if (!(src_file->f_mode & FMODE_READ))
2288                 goto out_fput;
2289
2290         /* don't make the dst file partly checksummed */
2291         if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2292             (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2293                 goto out_fput;
2294
2295         ret = -EISDIR;
2296         if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2297                 goto out_fput;
2298
2299         ret = -EXDEV;
2300         if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2301                 goto out_fput;
2302
2303         ret = -ENOMEM;
2304         buf = vmalloc(btrfs_level_size(root, 0));
2305         if (!buf)
2306                 goto out_fput;
2307
2308         path = btrfs_alloc_path();
2309         if (!path) {
2310                 vfree(buf);
2311                 goto out_fput;
2312         }
2313         path->reada = 2;
2314
2315         if (inode < src) {
2316                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2317                 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2318         } else {
2319                 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2320                 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2321         }
2322
2323         /* determine range to clone */
2324         ret = -EINVAL;
2325         if (off + len > src->i_size || off + len < off)
2326                 goto out_unlock;
2327         if (len == 0)
2328                 olen = len = src->i_size - off;
2329         /* if we extend to eof, continue to block boundary */
2330         if (off + len == src->i_size)
2331                 len = ALIGN(src->i_size, bs) - off;
2332
2333         /* verify the end result is block aligned */
2334         if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2335             !IS_ALIGNED(destoff, bs))
2336                 goto out_unlock;
2337
2338         if (destoff > inode->i_size) {
2339                 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2340                 if (ret)
2341                         goto out_unlock;
2342         }
2343
2344         /* truncate page cache pages from target inode range */
2345         truncate_inode_pages_range(&inode->i_data, destoff,
2346                                    PAGE_CACHE_ALIGN(destoff + len) - 1);
2347
2348         /* do any pending delalloc/csum calc on src, one way or
2349            another, and lock file content */
2350         while (1) {
2351                 struct btrfs_ordered_extent *ordered;
2352                 lock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2353                 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2354                 if (!ordered &&
2355                     !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2356                                    EXTENT_DELALLOC, 0, NULL))
2357                         break;
2358                 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2359                 if (ordered)
2360                         btrfs_put_ordered_extent(ordered);
2361                 btrfs_wait_ordered_range(src, off, len);
2362         }
2363
2364         /* clone data */
2365         key.objectid = btrfs_ino(src);
2366         key.type = BTRFS_EXTENT_DATA_KEY;
2367         key.offset = 0;
2368
2369         while (1) {
2370                 /*
2371                  * note the key will change type as we walk through the
2372                  * tree.
2373                  */
2374                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2375                 if (ret < 0)
2376                         goto out;
2377
2378                 nritems = btrfs_header_nritems(path->nodes[0]);
2379                 if (path->slots[0] >= nritems) {
2380                         ret = btrfs_next_leaf(root, path);
2381                         if (ret < 0)
2382                                 goto out;
2383                         if (ret > 0)
2384                                 break;
2385                         nritems = btrfs_header_nritems(path->nodes[0]);
2386                 }
2387                 leaf = path->nodes[0];
2388                 slot = path->slots[0];
2389
2390                 btrfs_item_key_to_cpu(leaf, &key, slot);
2391                 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2392                     key.objectid != btrfs_ino(src))
2393                         break;
2394
2395                 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2396                         struct btrfs_file_extent_item *extent;
2397                         int type;
2398                         u32 size;
2399                         struct btrfs_key new_key;
2400                         u64 disko = 0, diskl = 0;
2401                         u64 datao = 0, datal = 0;
2402                         u8 comp;
2403                         u64 endoff;
2404
2405                         size = btrfs_item_size_nr(leaf, slot);
2406                         read_extent_buffer(leaf, buf,
2407                                            btrfs_item_ptr_offset(leaf, slot),
2408                                            size);
2409
2410                         extent = btrfs_item_ptr(leaf, slot,
2411                                                 struct btrfs_file_extent_item);
2412                         comp = btrfs_file_extent_compression(leaf, extent);
2413                         type = btrfs_file_extent_type(leaf, extent);
2414                         if (type == BTRFS_FILE_EXTENT_REG ||
2415                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2416                                 disko = btrfs_file_extent_disk_bytenr(leaf,
2417                                                                       extent);
2418                                 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2419                                                                  extent);
2420                                 datao = btrfs_file_extent_offset(leaf, extent);
2421                                 datal = btrfs_file_extent_num_bytes(leaf,
2422                                                                     extent);
2423                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2424                                 /* take upper bound, may be compressed */
2425                                 datal = btrfs_file_extent_ram_bytes(leaf,
2426                                                                     extent);
2427                         }
2428                         btrfs_release_path(path);
2429
2430                         if (key.offset + datal <= off ||
2431                             key.offset >= off+len)
2432                                 goto next;
2433
2434                         memcpy(&new_key, &key, sizeof(new_key));
2435                         new_key.objectid = btrfs_ino(inode);
2436                         if (off <= key.offset)
2437                                 new_key.offset = key.offset + destoff - off;
2438                         else
2439                                 new_key.offset = destoff;
2440
2441                         /*
2442                          * 1 - adjusting old extent (we may have to split it)
2443                          * 1 - add new extent
2444                          * 1 - inode update
2445                          */
2446                         trans = btrfs_start_transaction(root, 3);
2447                         if (IS_ERR(trans)) {
2448                                 ret = PTR_ERR(trans);
2449                                 goto out;
2450                         }
2451
2452                         if (type == BTRFS_FILE_EXTENT_REG ||
2453                             type == BTRFS_FILE_EXTENT_PREALLOC) {
2454                                 /*
2455                                  *    a  | --- range to clone ---|  b
2456                                  * | ------------- extent ------------- |
2457                                  */
2458
2459                                 /* substract range b */
2460                                 if (key.offset + datal > off + len)
2461                                         datal = off + len - key.offset;
2462
2463                                 /* substract range a */
2464                                 if (off > key.offset) {
2465                                         datao += off - key.offset;
2466                                         datal -= off - key.offset;
2467                                 }
2468
2469                                 ret = btrfs_drop_extents(trans, inode,
2470                                                          new_key.offset,
2471                                                          new_key.offset + datal,
2472                                                          &hint_byte, 1);
2473                                 if (ret) {
2474                                         btrfs_abort_transaction(trans, root,
2475                                                                 ret);
2476                                         btrfs_end_transaction(trans, root);
2477                                         goto out;
2478                                 }
2479
2480                                 ret = btrfs_insert_empty_item(trans, root, path,
2481                                                               &new_key, size);
2482                                 if (ret) {
2483                                         btrfs_abort_transaction(trans, root,
2484                                                                 ret);
2485                                         btrfs_end_transaction(trans, root);
2486                                         goto out;
2487                                 }
2488
2489                                 leaf = path->nodes[0];
2490                                 slot = path->slots[0];
2491                                 write_extent_buffer(leaf, buf,
2492                                             btrfs_item_ptr_offset(leaf, slot),
2493                                             size);
2494
2495                                 extent = btrfs_item_ptr(leaf, slot,
2496                                                 struct btrfs_file_extent_item);
2497
2498                                 /* disko == 0 means it's a hole */
2499                                 if (!disko)
2500                                         datao = 0;
2501
2502                                 btrfs_set_file_extent_offset(leaf, extent,
2503                                                              datao);
2504                                 btrfs_set_file_extent_num_bytes(leaf, extent,
2505                                                                 datal);
2506                                 if (disko) {
2507                                         inode_add_bytes(inode, datal);
2508                                         ret = btrfs_inc_extent_ref(trans, root,
2509                                                         disko, diskl, 0,
2510                                                         root->root_key.objectid,
2511                                                         btrfs_ino(inode),
2512                                                         new_key.offset - datao,
2513                                                         0);
2514                                         if (ret) {
2515                                                 btrfs_abort_transaction(trans,
2516                                                                         root,
2517                                                                         ret);
2518                                                 btrfs_end_transaction(trans,
2519                                                                       root);
2520                                                 goto out;
2521
2522                                         }
2523                                 }
2524                         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2525                                 u64 skip = 0;
2526                                 u64 trim = 0;
2527                                 if (off > key.offset) {
2528                                         skip = off - key.offset;
2529                                         new_key.offset += skip;
2530                                 }
2531
2532                                 if (key.offset + datal > off+len)
2533                                         trim = key.offset + datal - (off+len);
2534
2535                                 if (comp && (skip || trim)) {
2536                                         ret = -EINVAL;
2537                                         btrfs_end_transaction(trans, root);
2538                                         goto out;
2539                                 }
2540                                 size -= skip + trim;
2541                                 datal -= skip + trim;
2542
2543                                 ret = btrfs_drop_extents(trans, inode,
2544                                                          new_key.offset,
2545                                                          new_key.offset + datal,
2546                                                          &hint_byte, 1);
2547                                 if (ret) {
2548                                         btrfs_abort_transaction(trans, root,
2549                                                                 ret);
2550                                         btrfs_end_transaction(trans, root);
2551                                         goto out;
2552                                 }
2553
2554                                 ret = btrfs_insert_empty_item(trans, root, path,
2555                                                               &new_key, size);
2556                                 if (ret) {
2557                                         btrfs_abort_transaction(trans, root,
2558                                                                 ret);
2559                                         btrfs_end_transaction(trans, root);
2560                                         goto out;
2561                                 }
2562
2563                                 if (skip) {
2564                                         u32 start =
2565                                           btrfs_file_extent_calc_inline_size(0);
2566                                         memmove(buf+start, buf+start+skip,
2567                                                 datal);
2568                                 }
2569
2570                                 leaf = path->nodes[0];
2571                                 slot = path->slots[0];
2572                                 write_extent_buffer(leaf, buf,
2573                                             btrfs_item_ptr_offset(leaf, slot),
2574                                             size);
2575                                 inode_add_bytes(inode, datal);
2576                         }
2577
2578                         btrfs_mark_buffer_dirty(leaf);
2579                         btrfs_release_path(path);
2580
2581                         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2582
2583                         /*
2584                          * we round up to the block size at eof when
2585                          * determining which extents to clone above,
2586                          * but shouldn't round up the file size
2587                          */
2588                         endoff = new_key.offset + datal;
2589                         if (endoff > destoff+olen)
2590                                 endoff = destoff+olen;
2591                         if (endoff > inode->i_size)
2592                                 btrfs_i_size_write(inode, endoff);
2593
2594                         ret = btrfs_update_inode(trans, root, inode);
2595                         if (ret) {
2596                                 btrfs_abort_transaction(trans, root, ret);
2597                                 btrfs_end_transaction(trans, root);
2598                                 goto out;
2599                         }
2600                         ret = btrfs_end_transaction(trans, root);
2601                 }
2602 next:
2603                 btrfs_release_path(path);
2604                 key.offset++;
2605         }
2606         ret = 0;
2607 out:
2608         btrfs_release_path(path);
2609         unlock_extent(&BTRFS_I(src)->io_tree, off, off+len);
2610 out_unlock:
2611         mutex_unlock(&src->i_mutex);
2612         mutex_unlock(&inode->i_mutex);
2613         vfree(buf);
2614         btrfs_free_path(path);
2615 out_fput:
2616         fput(src_file);
2617 out_drop_write:
2618         mnt_drop_write_file(file);
2619         return ret;
2620 }
2621
2622 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2623 {
2624         struct btrfs_ioctl_clone_range_args args;
2625
2626         if (copy_from_user(&args, argp, sizeof(args)))
2627                 return -EFAULT;
2628         return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2629                                  args.src_length, args.dest_offset);
2630 }
2631
2632 /*
2633  * there are many ways the trans_start and trans_end ioctls can lead
2634  * to deadlocks.  They should only be used by applications that
2635  * basically own the machine, and have a very in depth understanding
2636  * of all the possible deadlocks and enospc problems.
2637  */
2638 static long btrfs_ioctl_trans_start(struct file *file)
2639 {
2640         struct inode *inode = fdentry(file)->d_inode;
2641         struct btrfs_root *root = BTRFS_I(inode)->root;
2642         struct btrfs_trans_handle *trans;
2643         int ret;
2644
2645         ret = -EPERM;
2646         if (!capable(CAP_SYS_ADMIN))
2647                 goto out;
2648
2649         ret = -EINPROGRESS;
2650         if (file->private_data)
2651                 goto out;
2652
2653         ret = -EROFS;
2654         if (btrfs_root_readonly(root))
2655                 goto out;
2656
2657         ret = mnt_want_write_file(file);
2658         if (ret)
2659                 goto out;
2660
2661         atomic_inc(&root->fs_info->open_ioctl_trans);
2662
2663         ret = -ENOMEM;
2664         trans = btrfs_start_ioctl_transaction(root);
2665         if (IS_ERR(trans))
2666                 goto out_drop;
2667
2668         file->private_data = trans;
2669         return 0;
2670
2671 out_drop:
2672         atomic_dec(&root->fs_info->open_ioctl_trans);
2673         mnt_drop_write_file(file);
2674 out:
2675         return ret;
2676 }
2677
2678 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2679 {
2680         struct inode *inode = fdentry(file)->d_inode;
2681         struct btrfs_root *root = BTRFS_I(inode)->root;
2682         struct btrfs_root *new_root;
2683         struct btrfs_dir_item *di;
2684         struct btrfs_trans_handle *trans;
2685         struct btrfs_path *path;
2686         struct btrfs_key location;
2687         struct btrfs_disk_key disk_key;
2688         struct btrfs_super_block *disk_super;
2689         u64 features;
2690         u64 objectid = 0;
2691         u64 dir_id;
2692
2693         if (!capable(CAP_SYS_ADMIN))
2694                 return -EPERM;
2695
2696         if (copy_from_user(&objectid, argp, sizeof(objectid)))
2697                 return -EFAULT;
2698
2699         if (!objectid)
2700                 objectid = root->root_key.objectid;
2701
2702         location.objectid = objectid;
2703         location.type = BTRFS_ROOT_ITEM_KEY;
2704         location.offset = (u64)-1;
2705
2706         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2707         if (IS_ERR(new_root))
2708                 return PTR_ERR(new_root);
2709
2710         if (btrfs_root_refs(&new_root->root_item) == 0)
2711                 return -ENOENT;
2712
2713         path = btrfs_alloc_path();
2714         if (!path)
2715                 return -ENOMEM;
2716         path->leave_spinning = 1;
2717
2718         trans = btrfs_start_transaction(root, 1);
2719         if (IS_ERR(trans)) {
2720                 btrfs_free_path(path);
2721                 return PTR_ERR(trans);
2722         }
2723
2724         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2725         di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2726                                    dir_id, "default", 7, 1);
2727         if (IS_ERR_OR_NULL(di)) {
2728                 btrfs_free_path(path);
2729                 btrfs_end_transaction(trans, root);
2730                 printk(KERN_ERR "Umm, you don't have the default dir item, "
2731                        "this isn't going to work\n");
2732                 return -ENOENT;
2733         }
2734
2735         btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2736         btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2737         btrfs_mark_buffer_dirty(path->nodes[0]);
2738         btrfs_free_path(path);
2739
2740         disk_super = root->fs_info->super_copy;
2741         features = btrfs_super_incompat_flags(disk_super);
2742         if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2743                 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2744                 btrfs_set_super_incompat_flags(disk_super, features);
2745         }
2746         btrfs_end_transaction(trans, root);
2747
2748         return 0;
2749 }
2750
2751 static void get_block_group_info(struct list_head *groups_list,
2752                                  struct btrfs_ioctl_space_info *space)
2753 {
2754         struct btrfs_block_group_cache *block_group;
2755
2756         space->total_bytes = 0;
2757         space->used_bytes = 0;
2758         space->flags = 0;
2759         list_for_each_entry(block_group, groups_list, list) {
2760                 space->flags = block_group->flags;
2761                 space->total_bytes += block_group->key.offset;
2762                 space->used_bytes +=
2763                         btrfs_block_group_used(&block_group->item);
2764         }
2765 }
2766
2767 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2768 {
2769         struct btrfs_ioctl_space_args space_args;
2770         struct btrfs_ioctl_space_info space;
2771         struct btrfs_ioctl_space_info *dest;
2772         struct btrfs_ioctl_space_info *dest_orig;
2773         struct btrfs_ioctl_space_info __user *user_dest;
2774         struct btrfs_space_info *info;
2775         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2776                        BTRFS_BLOCK_GROUP_SYSTEM,
2777                        BTRFS_BLOCK_GROUP_METADATA,
2778                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2779         int num_types = 4;
2780         int alloc_size;
2781         int ret = 0;
2782         u64 slot_count = 0;
2783         int i, c;
2784
2785         if (copy_from_user(&space_args,
2786                            (struct btrfs_ioctl_space_args __user *)arg,
2787                            sizeof(space_args)))
2788                 return -EFAULT;
2789
2790         for (i = 0; i < num_types; i++) {
2791                 struct btrfs_space_info *tmp;
2792
2793                 info = NULL;
2794                 rcu_read_lock();
2795                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2796                                         list) {
2797                         if (tmp->flags == types[i]) {
2798                                 info = tmp;
2799                                 break;
2800                         }
2801                 }
2802                 rcu_read_unlock();
2803
2804                 if (!info)
2805                         continue;
2806
2807                 down_read(&info->groups_sem);
2808                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2809                         if (!list_empty(&info->block_groups[c]))
2810                                 slot_count++;
2811                 }
2812                 up_read(&info->groups_sem);
2813         }
2814
2815         /* space_slots == 0 means they are asking for a count */
2816         if (space_args.space_slots == 0) {
2817                 space_args.total_spaces = slot_count;
2818                 goto out;
2819         }
2820
2821         slot_count = min_t(u64, space_args.space_slots, slot_count);
2822
2823         alloc_size = sizeof(*dest) * slot_count;
2824
2825         /* we generally have at most 6 or so space infos, one for each raid
2826          * level.  So, a whole page should be more than enough for everyone
2827          */
2828         if (alloc_size > PAGE_CACHE_SIZE)
2829                 return -ENOMEM;
2830
2831         space_args.total_spaces = 0;
2832         dest = kmalloc(alloc_size, GFP_NOFS);
2833         if (!dest)
2834                 return -ENOMEM;
2835         dest_orig = dest;
2836
2837         /* now we have a buffer to copy into */
2838         for (i = 0; i < num_types; i++) {
2839                 struct btrfs_space_info *tmp;
2840
2841                 if (!slot_count)
2842                         break;
2843
2844                 info = NULL;
2845                 rcu_read_lock();
2846                 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2847                                         list) {
2848                         if (tmp->flags == types[i]) {
2849                                 info = tmp;
2850                                 break;
2851                         }
2852                 }
2853                 rcu_read_unlock();
2854
2855                 if (!info)
2856                         continue;
2857                 down_read(&info->groups_sem);
2858                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2859                         if (!list_empty(&info->block_groups[c])) {
2860                                 get_block_group_info(&info->block_groups[c],
2861                                                      &space);
2862                                 memcpy(dest, &space, sizeof(space));
2863                                 dest++;
2864                                 space_args.total_spaces++;
2865                                 slot_count--;
2866                         }
2867                         if (!slot_count)
2868                                 break;
2869                 }
2870                 up_read(&info->groups_sem);
2871         }
2872
2873         user_dest = (struct btrfs_ioctl_space_info *)
2874                 (arg + sizeof(struct btrfs_ioctl_space_args));
2875
2876         if (copy_to_user(user_dest, dest_orig, alloc_size))
2877                 ret = -EFAULT;
2878
2879         kfree(dest_orig);
2880 out:
2881         if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2882                 ret = -EFAULT;
2883
2884         return ret;
2885 }
2886
2887 /*
2888  * there are many ways the trans_start and trans_end ioctls can lead
2889  * to deadlocks.  They should only be used by applications that
2890  * basically own the machine, and have a very in depth understanding
2891  * of all the possible deadlocks and enospc problems.
2892  */
2893 long btrfs_ioctl_trans_end(struct file *file)
2894 {
2895         struct inode *inode = fdentry(file)->d_inode;
2896         struct btrfs_root *root = BTRFS_I(inode)->root;
2897         struct btrfs_trans_handle *trans;
2898
2899         trans = file->private_data;
2900         if (!trans)
2901                 return -EINVAL;
2902         file->private_data = NULL;
2903
2904         btrfs_end_transaction(trans, root);
2905
2906         atomic_dec(&root->fs_info->open_ioctl_trans);
2907
2908         mnt_drop_write_file(file);
2909         return 0;
2910 }
2911
2912 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2913 {
2914         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2915         struct btrfs_trans_handle *trans;
2916         u64 transid;
2917         int ret;
2918
2919         trans = btrfs_start_transaction(root, 0);
2920         if (IS_ERR(trans))
2921                 return PTR_ERR(trans);
2922         transid = trans->transid;
2923         ret = btrfs_commit_transaction_async(trans, root, 0);
2924         if (ret) {
2925                 btrfs_end_transaction(trans, root);
2926                 return ret;
2927         }
2928
2929         if (argp)
2930                 if (copy_to_user(argp, &transid, sizeof(transid)))
2931                         return -EFAULT;
2932         return 0;
2933 }
2934
2935 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2936 {
2937         struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2938         u64 transid;
2939
2940         if (argp) {
2941                 if (copy_from_user(&transid, argp, sizeof(transid)))
2942                         return -EFAULT;
2943         } else {
2944                 transid = 0;  /* current trans */
2945         }
2946         return btrfs_wait_for_commit(root, transid);
2947 }
2948
2949 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2950 {
2951         int ret;
2952         struct btrfs_ioctl_scrub_args *sa;
2953
2954         if (!capable(CAP_SYS_ADMIN))
2955                 return -EPERM;
2956
2957         sa = memdup_user(arg, sizeof(*sa));
2958         if (IS_ERR(sa))
2959                 return PTR_ERR(sa);
2960
2961         ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2962                               &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2963
2964         if (copy_to_user(arg, sa, sizeof(*sa)))
2965                 ret = -EFAULT;
2966
2967         kfree(sa);
2968         return ret;
2969 }
2970
2971 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2972 {
2973         if (!capable(CAP_SYS_ADMIN))
2974                 return -EPERM;
2975
2976         return btrfs_scrub_cancel(root);
2977 }
2978
2979 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2980                                        void __user *arg)
2981 {
2982         struct btrfs_ioctl_scrub_args *sa;
2983         int ret;
2984
2985         if (!capable(CAP_SYS_ADMIN))
2986                 return -EPERM;
2987
2988         sa = memdup_user(arg, sizeof(*sa));
2989         if (IS_ERR(sa))
2990                 return PTR_ERR(sa);
2991
2992         ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2993
2994         if (copy_to_user(arg, sa, sizeof(*sa)))
2995                 ret = -EFAULT;
2996
2997         kfree(sa);
2998         return ret;
2999 }
3000
3001 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3002 {
3003         int ret = 0;
3004         int i;
3005         u64 rel_ptr;
3006         int size;
3007         struct btrfs_ioctl_ino_path_args *ipa = NULL;
3008         struct inode_fs_paths *ipath = NULL;
3009         struct btrfs_path *path;
3010
3011         if (!capable(CAP_SYS_ADMIN))
3012                 return -EPERM;
3013
3014         path = btrfs_alloc_path();
3015         if (!path) {
3016                 ret = -ENOMEM;
3017                 goto out;
3018         }
3019
3020         ipa = memdup_user(arg, sizeof(*ipa));
3021         if (IS_ERR(ipa)) {
3022                 ret = PTR_ERR(ipa);
3023                 ipa = NULL;
3024                 goto out;
3025         }
3026
3027         size = min_t(u32, ipa->size, 4096);
3028         ipath = init_ipath(size, root, path);
3029         if (IS_ERR(ipath)) {
3030                 ret = PTR_ERR(ipath);
3031                 ipath = NULL;
3032                 goto out;
3033         }
3034
3035         ret = paths_from_inode(ipa->inum, ipath);
3036         if (ret < 0)
3037                 goto out;
3038
3039         for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3040                 rel_ptr = ipath->fspath->val[i] -
3041                           (u64)(unsigned long)ipath->fspath->val;
3042                 ipath->fspath->val[i] = rel_ptr;
3043         }
3044
3045         ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3046                            (void *)(unsigned long)ipath->fspath, size);
3047         if (ret) {
3048                 ret = -EFAULT;
3049                 goto out;
3050         }
3051
3052 out:
3053         btrfs_free_path(path);
3054         free_ipath(ipath);
3055         kfree(ipa);
3056
3057         return ret;
3058 }
3059
3060 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3061 {
3062         struct btrfs_data_container *inodes = ctx;
3063         const size_t c = 3 * sizeof(u64);
3064
3065         if (inodes->bytes_left >= c) {
3066                 inodes->bytes_left -= c;
3067                 inodes->val[inodes->elem_cnt] = inum;
3068                 inodes->val[inodes->elem_cnt + 1] = offset;
3069                 inodes->val[inodes->elem_cnt + 2] = root;
3070                 inodes->elem_cnt += 3;
3071         } else {
3072                 inodes->bytes_missing += c - inodes->bytes_left;
3073                 inodes->bytes_left = 0;
3074                 inodes->elem_missed += 3;
3075         }
3076
3077         return 0;
3078 }
3079
3080 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3081                                         void __user *arg)
3082 {
3083         int ret = 0;
3084         int size;
3085         u64 extent_item_pos;
3086         struct btrfs_ioctl_logical_ino_args *loi;
3087         struct btrfs_data_container *inodes = NULL;
3088         struct btrfs_path *path = NULL;
3089         struct btrfs_key key;
3090
3091         if (!capable(CAP_SYS_ADMIN))
3092                 return -EPERM;
3093
3094         loi = memdup_user(arg, sizeof(*loi));
3095         if (IS_ERR(loi)) {
3096                 ret = PTR_ERR(loi);
3097                 loi = NULL;
3098                 goto out;
3099         }
3100
3101         path = btrfs_alloc_path();
3102         if (!path) {
3103                 ret = -ENOMEM;
3104                 goto out;
3105         }
3106
3107         size = min_t(u32, loi->size, 4096);
3108         inodes = init_data_container(size);
3109         if (IS_ERR(inodes)) {
3110                 ret = PTR_ERR(inodes);
3111                 inodes = NULL;
3112                 goto out;
3113         }
3114
3115         ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3116         btrfs_release_path(path);
3117
3118         if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3119                 ret = -ENOENT;
3120         if (ret < 0)
3121                 goto out;
3122
3123         extent_item_pos = loi->logical - key.objectid;
3124         ret = iterate_extent_inodes(root->fs_info, key.objectid,
3125                                         extent_item_pos, 0, build_ino_list,
3126                                         inodes);
3127
3128         if (ret < 0)
3129                 goto out;
3130
3131         ret = copy_to_user((void *)(unsigned long)loi->inodes,
3132                            (void *)(unsigned long)inodes, size);
3133         if (ret)
3134                 ret = -EFAULT;
3135
3136 out:
3137         btrfs_free_path(path);
3138         kfree(inodes);
3139         kfree(loi);
3140
3141         return ret;
3142 }
3143
3144 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3145                                struct btrfs_ioctl_balance_args *bargs)
3146 {
3147         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3148
3149         bargs->flags = bctl->flags;
3150
3151         if (atomic_read(&fs_info->balance_running))
3152                 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3153         if (atomic_read(&fs_info->balance_pause_req))
3154                 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3155         if (atomic_read(&fs_info->balance_cancel_req))
3156                 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3157
3158         memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3159         memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3160         memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3161
3162         if (lock) {
3163                 spin_lock(&fs_info->balance_lock);
3164                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3165                 spin_unlock(&fs_info->balance_lock);
3166         } else {
3167                 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3168         }
3169 }
3170
3171 static long btrfs_ioctl_balance(struct btrfs_root *root, void __user *arg)
3172 {
3173         struct btrfs_fs_info *fs_info = root->fs_info;
3174         struct btrfs_ioctl_balance_args *bargs;
3175         struct btrfs_balance_control *bctl;
3176         int ret;
3177
3178         if (!capable(CAP_SYS_ADMIN))
3179                 return -EPERM;
3180
3181         if (fs_info->sb->s_flags & MS_RDONLY)
3182                 return -EROFS;
3183
3184         mutex_lock(&fs_info->volume_mutex);
3185         mutex_lock(&fs_info->balance_mutex);
3186
3187         if (arg) {
3188                 bargs = memdup_user(arg, sizeof(*bargs));
3189                 if (IS_ERR(bargs)) {
3190                         ret = PTR_ERR(bargs);
3191                         goto out;
3192                 }
3193
3194                 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3195                         if (!fs_info->balance_ctl) {
3196                                 ret = -ENOTCONN;
3197                                 goto out_bargs;
3198                         }
3199
3200                         bctl = fs_info->balance_ctl;
3201                         spin_lock(&fs_info->balance_lock);
3202                         bctl->flags |= BTRFS_BALANCE_RESUME;
3203                         spin_unlock(&fs_info->balance_lock);
3204
3205                         goto do_balance;
3206                 }
3207         } else {
3208                 bargs = NULL;
3209         }
3210
3211         if (fs_info->balance_ctl) {
3212                 ret = -EINPROGRESS;
3213                 goto out_bargs;
3214         }
3215
3216         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3217         if (!bctl) {
3218                 ret = -ENOMEM;
3219                 goto out_bargs;
3220         }
3221
3222         bctl->fs_info = fs_info;
3223         if (arg) {
3224                 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3225                 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3226                 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3227
3228                 bctl->flags = bargs->flags;
3229         } else {
3230                 /* balance everything - no filters */
3231                 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3232         }
3233
3234 do_balance:
3235         ret = btrfs_balance(bctl, bargs);
3236         /*
3237          * bctl is freed in __cancel_balance or in free_fs_info if
3238          * restriper was paused all the way until unmount
3239          */
3240         if (arg) {
3241                 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3242                         ret = -EFAULT;
3243         }
3244
3245 out_bargs:
3246         kfree(bargs);
3247 out:
3248         mutex_unlock(&fs_info->balance_mutex);
3249         mutex_unlock(&fs_info->volume_mutex);
3250         return ret;
3251 }
3252
3253 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3254 {
3255         if (!capable(CAP_SYS_ADMIN))
3256                 return -EPERM;
3257
3258         switch (cmd) {
3259         case BTRFS_BALANCE_CTL_PAUSE:
3260                 return btrfs_pause_balance(root->fs_info);
3261         case BTRFS_BALANCE_CTL_CANCEL:
3262                 return btrfs_cancel_balance(root->fs_info);
3263         }
3264
3265         return -EINVAL;
3266 }
3267
3268 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3269                                          void __user *arg)
3270 {
3271         struct btrfs_fs_info *fs_info = root->fs_info;
3272         struct btrfs_ioctl_balance_args *bargs;
3273         int ret = 0;
3274
3275         if (!capable(CAP_SYS_ADMIN))
3276                 return -EPERM;
3277
3278         mutex_lock(&fs_info->balance_mutex);
3279         if (!fs_info->balance_ctl) {
3280                 ret = -ENOTCONN;
3281                 goto out;
3282         }
3283
3284         bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3285         if (!bargs) {
3286                 ret = -ENOMEM;
3287                 goto out;
3288         }
3289
3290         update_ioctl_balance_args(fs_info, 1, bargs);
3291
3292         if (copy_to_user(arg, bargs, sizeof(*bargs)))
3293                 ret = -EFAULT;
3294
3295         kfree(bargs);
3296 out:
3297         mutex_unlock(&fs_info->balance_mutex);
3298         return ret;
3299 }
3300
3301 long btrfs_ioctl(struct file *file, unsigned int
3302                 cmd, unsigned long arg)
3303 {
3304         struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3305         void __user *argp = (void __user *)arg;
3306
3307         switch (cmd) {
3308         case FS_IOC_GETFLAGS:
3309                 return btrfs_ioctl_getflags(file, argp);
3310         case FS_IOC_SETFLAGS:
3311                 return btrfs_ioctl_setflags(file, argp);
3312         case FS_IOC_GETVERSION:
3313                 return btrfs_ioctl_getversion(file, argp);
3314         case FITRIM:
3315                 return btrfs_ioctl_fitrim(file, argp);
3316         case BTRFS_IOC_SNAP_CREATE:
3317                 return btrfs_ioctl_snap_create(file, argp, 0);
3318         case BTRFS_IOC_SNAP_CREATE_V2:
3319                 return btrfs_ioctl_snap_create_v2(file, argp, 0);
3320         case BTRFS_IOC_SUBVOL_CREATE:
3321                 return btrfs_ioctl_snap_create(file, argp, 1);
3322         case BTRFS_IOC_SNAP_DESTROY:
3323                 return btrfs_ioctl_snap_destroy(file, argp);
3324         case BTRFS_IOC_SUBVOL_GETFLAGS:
3325                 return btrfs_ioctl_subvol_getflags(file, argp);
3326         case BTRFS_IOC_SUBVOL_SETFLAGS:
3327                 return btrfs_ioctl_subvol_setflags(file, argp);
3328         case BTRFS_IOC_DEFAULT_SUBVOL:
3329                 return btrfs_ioctl_default_subvol(file, argp);
3330         case BTRFS_IOC_DEFRAG:
3331                 return btrfs_ioctl_defrag(file, NULL);
3332         case BTRFS_IOC_DEFRAG_RANGE:
3333                 return btrfs_ioctl_defrag(file, argp);
3334         case BTRFS_IOC_RESIZE:
3335                 return btrfs_ioctl_resize(root, argp);
3336         case BTRFS_IOC_ADD_DEV:
3337                 return btrfs_ioctl_add_dev(root, argp);
3338         case BTRFS_IOC_RM_DEV:
3339                 return btrfs_ioctl_rm_dev(root, argp);
3340         case BTRFS_IOC_FS_INFO:
3341                 return btrfs_ioctl_fs_info(root, argp);
3342         case BTRFS_IOC_DEV_INFO:
3343                 return btrfs_ioctl_dev_info(root, argp);
3344         case BTRFS_IOC_BALANCE:
3345                 return btrfs_ioctl_balance(root, NULL);
3346         case BTRFS_IOC_CLONE:
3347                 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3348         case BTRFS_IOC_CLONE_RANGE:
3349                 return btrfs_ioctl_clone_range(file, argp);
3350         case BTRFS_IOC_TRANS_START:
3351                 return btrfs_ioctl_trans_start(file);
3352         case BTRFS_IOC_TRANS_END:
3353                 return btrfs_ioctl_trans_end(file);
3354         case BTRFS_IOC_TREE_SEARCH:
3355                 return btrfs_ioctl_tree_search(file, argp);
3356         case BTRFS_IOC_INO_LOOKUP:
3357                 return btrfs_ioctl_ino_lookup(file, argp);
3358         case BTRFS_IOC_INO_PATHS:
3359                 return btrfs_ioctl_ino_to_path(root, argp);
3360         case BTRFS_IOC_LOGICAL_INO:
3361                 return btrfs_ioctl_logical_to_ino(root, argp);
3362         case BTRFS_IOC_SPACE_INFO:
3363                 return btrfs_ioctl_space_info(root, argp);
3364         case BTRFS_IOC_SYNC:
3365                 btrfs_sync_fs(file->f_dentry->d_sb, 1);
3366                 return 0;
3367         case BTRFS_IOC_START_SYNC:
3368                 return btrfs_ioctl_start_sync(file, argp);
3369         case BTRFS_IOC_WAIT_SYNC:
3370                 return btrfs_ioctl_wait_sync(file, argp);
3371         case BTRFS_IOC_SCRUB:
3372                 return btrfs_ioctl_scrub(root, argp);
3373         case BTRFS_IOC_SCRUB_CANCEL:
3374                 return btrfs_ioctl_scrub_cancel(root, argp);
3375         case BTRFS_IOC_SCRUB_PROGRESS:
3376                 return btrfs_ioctl_scrub_progress(root, argp);
3377         case BTRFS_IOC_BALANCE_V2:
3378                 return btrfs_ioctl_balance(root, argp);
3379         case BTRFS_IOC_BALANCE_CTL:
3380                 return btrfs_ioctl_balance_ctl(root, arg);
3381         case BTRFS_IOC_BALANCE_PROGRESS:
3382                 return btrfs_ioctl_balance_progress(root, argp);
3383         }
3384
3385         return -ENOTTY;
3386 }