]> Pileus Git - ~andy/linux/blob - fs/btrfs/inode.c
Merge branch 'alloc_path' of git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh...
[~andy/linux] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56
57 struct btrfs_iget_args {
58         u64 ino;
59         struct btrfs_root *root;
60 };
61
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
81         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
82         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
83         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
84         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
85         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
86         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
87 };
88
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93                                    struct page *locked_page,
94                                    u64 start, u64 end, int *page_started,
95                                    unsigned long *nr_written, int unlock);
96
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98                                      struct inode *inode,  struct inode *dir,
99                                      const struct qstr *qstr)
100 {
101         int err;
102
103         err = btrfs_init_acl(trans, inode, dir);
104         if (!err)
105                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106         return err;
107 }
108
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115                                 struct btrfs_root *root, struct inode *inode,
116                                 u64 start, size_t size, size_t compressed_size,
117                                 int compress_type,
118                                 struct page **compressed_pages)
119 {
120         struct btrfs_key key;
121         struct btrfs_path *path;
122         struct extent_buffer *leaf;
123         struct page *page = NULL;
124         char *kaddr;
125         unsigned long ptr;
126         struct btrfs_file_extent_item *ei;
127         int err = 0;
128         int ret;
129         size_t cur_size = size;
130         size_t datasize;
131         unsigned long offset;
132
133         if (compressed_size && compressed_pages)
134                 cur_size = compressed_size;
135
136         path = btrfs_alloc_path();
137         if (!path)
138                 return -ENOMEM;
139
140         path->leave_spinning = 1;
141
142         key.objectid = btrfs_ino(inode);
143         key.offset = start;
144         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145         datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147         inode_add_bytes(inode, size);
148         ret = btrfs_insert_empty_item(trans, root, path, &key,
149                                       datasize);
150         BUG_ON(ret);
151         if (ret) {
152                 err = ret;
153                 goto fail;
154         }
155         leaf = path->nodes[0];
156         ei = btrfs_item_ptr(leaf, path->slots[0],
157                             struct btrfs_file_extent_item);
158         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160         btrfs_set_file_extent_encryption(leaf, ei, 0);
161         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163         ptr = btrfs_file_extent_inline_start(ei);
164
165         if (compress_type != BTRFS_COMPRESS_NONE) {
166                 struct page *cpage;
167                 int i = 0;
168                 while (compressed_size > 0) {
169                         cpage = compressed_pages[i];
170                         cur_size = min_t(unsigned long, compressed_size,
171                                        PAGE_CACHE_SIZE);
172
173                         kaddr = kmap_atomic(cpage, KM_USER0);
174                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
175                         kunmap_atomic(kaddr, KM_USER0);
176
177                         i++;
178                         ptr += cur_size;
179                         compressed_size -= cur_size;
180                 }
181                 btrfs_set_file_extent_compression(leaf, ei,
182                                                   compress_type);
183         } else {
184                 page = find_get_page(inode->i_mapping,
185                                      start >> PAGE_CACHE_SHIFT);
186                 btrfs_set_file_extent_compression(leaf, ei, 0);
187                 kaddr = kmap_atomic(page, KM_USER0);
188                 offset = start & (PAGE_CACHE_SIZE - 1);
189                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190                 kunmap_atomic(kaddr, KM_USER0);
191                 page_cache_release(page);
192         }
193         btrfs_mark_buffer_dirty(leaf);
194         btrfs_free_path(path);
195
196         /*
197          * we're an inline extent, so nobody can
198          * extend the file past i_size without locking
199          * a page we already have locked.
200          *
201          * We must do any isize and inode updates
202          * before we unlock the pages.  Otherwise we
203          * could end up racing with unlink.
204          */
205         BTRFS_I(inode)->disk_i_size = inode->i_size;
206         btrfs_update_inode(trans, root, inode);
207
208         return 0;
209 fail:
210         btrfs_free_path(path);
211         return err;
212 }
213
214
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221                                  struct btrfs_root *root,
222                                  struct inode *inode, u64 start, u64 end,
223                                  size_t compressed_size, int compress_type,
224                                  struct page **compressed_pages)
225 {
226         u64 isize = i_size_read(inode);
227         u64 actual_end = min(end + 1, isize);
228         u64 inline_len = actual_end - start;
229         u64 aligned_end = (end + root->sectorsize - 1) &
230                         ~((u64)root->sectorsize - 1);
231         u64 hint_byte;
232         u64 data_len = inline_len;
233         int ret;
234
235         if (compressed_size)
236                 data_len = compressed_size;
237
238         if (start > 0 ||
239             actual_end >= PAGE_CACHE_SIZE ||
240             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241             (!compressed_size &&
242             (actual_end & (root->sectorsize - 1)) == 0) ||
243             end + 1 < isize ||
244             data_len > root->fs_info->max_inline) {
245                 return 1;
246         }
247
248         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249                                  &hint_byte, 1);
250         BUG_ON(ret);
251
252         if (isize > actual_end)
253                 inline_len = min_t(u64, isize, actual_end);
254         ret = insert_inline_extent(trans, root, inode, start,
255                                    inline_len, compressed_size,
256                                    compress_type, compressed_pages);
257         BUG_ON(ret);
258         btrfs_delalloc_release_metadata(inode, end + 1 - start);
259         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260         return 0;
261 }
262
263 struct async_extent {
264         u64 start;
265         u64 ram_size;
266         u64 compressed_size;
267         struct page **pages;
268         unsigned long nr_pages;
269         int compress_type;
270         struct list_head list;
271 };
272
273 struct async_cow {
274         struct inode *inode;
275         struct btrfs_root *root;
276         struct page *locked_page;
277         u64 start;
278         u64 end;
279         struct list_head extents;
280         struct btrfs_work work;
281 };
282
283 static noinline int add_async_extent(struct async_cow *cow,
284                                      u64 start, u64 ram_size,
285                                      u64 compressed_size,
286                                      struct page **pages,
287                                      unsigned long nr_pages,
288                                      int compress_type)
289 {
290         struct async_extent *async_extent;
291
292         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293         BUG_ON(!async_extent);
294         async_extent->start = start;
295         async_extent->ram_size = ram_size;
296         async_extent->compressed_size = compressed_size;
297         async_extent->pages = pages;
298         async_extent->nr_pages = nr_pages;
299         async_extent->compress_type = compress_type;
300         list_add_tail(&async_extent->list, &cow->extents);
301         return 0;
302 }
303
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321                                         struct page *locked_page,
322                                         u64 start, u64 end,
323                                         struct async_cow *async_cow,
324                                         int *num_added)
325 {
326         struct btrfs_root *root = BTRFS_I(inode)->root;
327         struct btrfs_trans_handle *trans;
328         u64 num_bytes;
329         u64 blocksize = root->sectorsize;
330         u64 actual_end;
331         u64 isize = i_size_read(inode);
332         int ret = 0;
333         struct page **pages = NULL;
334         unsigned long nr_pages;
335         unsigned long nr_pages_ret = 0;
336         unsigned long total_compressed = 0;
337         unsigned long total_in = 0;
338         unsigned long max_compressed = 128 * 1024;
339         unsigned long max_uncompressed = 128 * 1024;
340         int i;
341         int will_compress;
342         int compress_type = root->fs_info->compress_type;
343
344         /* if this is a small write inside eof, kick off a defragbot */
345         if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346                 btrfs_add_inode_defrag(NULL, inode);
347
348         actual_end = min_t(u64, isize, end + 1);
349 again:
350         will_compress = 0;
351         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353
354         /*
355          * we don't want to send crud past the end of i_size through
356          * compression, that's just a waste of CPU time.  So, if the
357          * end of the file is before the start of our current
358          * requested range of bytes, we bail out to the uncompressed
359          * cleanup code that can deal with all of this.
360          *
361          * It isn't really the fastest way to fix things, but this is a
362          * very uncommon corner.
363          */
364         if (actual_end <= start)
365                 goto cleanup_and_bail_uncompressed;
366
367         total_compressed = actual_end - start;
368
369         /* we want to make sure that amount of ram required to uncompress
370          * an extent is reasonable, so we limit the total size in ram
371          * of a compressed extent to 128k.  This is a crucial number
372          * because it also controls how easily we can spread reads across
373          * cpus for decompression.
374          *
375          * We also want to make sure the amount of IO required to do
376          * a random read is reasonably small, so we limit the size of
377          * a compressed extent to 128k.
378          */
379         total_compressed = min(total_compressed, max_uncompressed);
380         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381         num_bytes = max(blocksize,  num_bytes);
382         total_in = 0;
383         ret = 0;
384
385         /*
386          * we do compression for mount -o compress and when the
387          * inode has not been flagged as nocompress.  This flag can
388          * change at any time if we discover bad compression ratios.
389          */
390         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391             (btrfs_test_opt(root, COMPRESS) ||
392              (BTRFS_I(inode)->force_compress) ||
393              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394                 WARN_ON(pages);
395                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396                 BUG_ON(!pages);
397
398                 if (BTRFS_I(inode)->force_compress)
399                         compress_type = BTRFS_I(inode)->force_compress;
400
401                 ret = btrfs_compress_pages(compress_type,
402                                            inode->i_mapping, start,
403                                            total_compressed, pages,
404                                            nr_pages, &nr_pages_ret,
405                                            &total_in,
406                                            &total_compressed,
407                                            max_compressed);
408
409                 if (!ret) {
410                         unsigned long offset = total_compressed &
411                                 (PAGE_CACHE_SIZE - 1);
412                         struct page *page = pages[nr_pages_ret - 1];
413                         char *kaddr;
414
415                         /* zero the tail end of the last page, we might be
416                          * sending it down to disk
417                          */
418                         if (offset) {
419                                 kaddr = kmap_atomic(page, KM_USER0);
420                                 memset(kaddr + offset, 0,
421                                        PAGE_CACHE_SIZE - offset);
422                                 kunmap_atomic(kaddr, KM_USER0);
423                         }
424                         will_compress = 1;
425                 }
426         }
427         if (start == 0) {
428                 trans = btrfs_join_transaction(root);
429                 BUG_ON(IS_ERR(trans));
430                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431
432                 /* lets try to make an inline extent */
433                 if (ret || total_in < (actual_end - start)) {
434                         /* we didn't compress the entire range, try
435                          * to make an uncompressed inline extent.
436                          */
437                         ret = cow_file_range_inline(trans, root, inode,
438                                                     start, end, 0, 0, NULL);
439                 } else {
440                         /* try making a compressed inline extent */
441                         ret = cow_file_range_inline(trans, root, inode,
442                                                     start, end,
443                                                     total_compressed,
444                                                     compress_type, pages);
445                 }
446                 if (ret == 0) {
447                         /*
448                          * inline extent creation worked, we don't need
449                          * to create any more async work items.  Unlock
450                          * and free up our temp pages.
451                          */
452                         extent_clear_unlock_delalloc(inode,
453                              &BTRFS_I(inode)->io_tree,
454                              start, end, NULL,
455                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456                              EXTENT_CLEAR_DELALLOC |
457                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458
459                         btrfs_end_transaction(trans, root);
460                         goto free_pages_out;
461                 }
462                 btrfs_end_transaction(trans, root);
463         }
464
465         if (will_compress) {
466                 /*
467                  * we aren't doing an inline extent round the compressed size
468                  * up to a block size boundary so the allocator does sane
469                  * things
470                  */
471                 total_compressed = (total_compressed + blocksize - 1) &
472                         ~(blocksize - 1);
473
474                 /*
475                  * one last check to make sure the compression is really a
476                  * win, compare the page count read with the blocks on disk
477                  */
478                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479                         ~(PAGE_CACHE_SIZE - 1);
480                 if (total_compressed >= total_in) {
481                         will_compress = 0;
482                 } else {
483                         num_bytes = total_in;
484                 }
485         }
486         if (!will_compress && pages) {
487                 /*
488                  * the compression code ran but failed to make things smaller,
489                  * free any pages it allocated and our page pointer array
490                  */
491                 for (i = 0; i < nr_pages_ret; i++) {
492                         WARN_ON(pages[i]->mapping);
493                         page_cache_release(pages[i]);
494                 }
495                 kfree(pages);
496                 pages = NULL;
497                 total_compressed = 0;
498                 nr_pages_ret = 0;
499
500                 /* flag the file so we don't compress in the future */
501                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502                     !(BTRFS_I(inode)->force_compress)) {
503                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504                 }
505         }
506         if (will_compress) {
507                 *num_added += 1;
508
509                 /* the async work queues will take care of doing actual
510                  * allocation on disk for these compressed pages,
511                  * and will submit them to the elevator.
512                  */
513                 add_async_extent(async_cow, start, num_bytes,
514                                  total_compressed, pages, nr_pages_ret,
515                                  compress_type);
516
517                 if (start + num_bytes < end) {
518                         start += num_bytes;
519                         pages = NULL;
520                         cond_resched();
521                         goto again;
522                 }
523         } else {
524 cleanup_and_bail_uncompressed:
525                 /*
526                  * No compression, but we still need to write the pages in
527                  * the file we've been given so far.  redirty the locked
528                  * page if it corresponds to our extent and set things up
529                  * for the async work queue to run cow_file_range to do
530                  * the normal delalloc dance
531                  */
532                 if (page_offset(locked_page) >= start &&
533                     page_offset(locked_page) <= end) {
534                         __set_page_dirty_nobuffers(locked_page);
535                         /* unlocked later on in the async handlers */
536                 }
537                 add_async_extent(async_cow, start, end - start + 1,
538                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
539                 *num_added += 1;
540         }
541
542 out:
543         return 0;
544
545 free_pages_out:
546         for (i = 0; i < nr_pages_ret; i++) {
547                 WARN_ON(pages[i]->mapping);
548                 page_cache_release(pages[i]);
549         }
550         kfree(pages);
551
552         goto out;
553 }
554
555 /*
556  * phase two of compressed writeback.  This is the ordered portion
557  * of the code, which only gets called in the order the work was
558  * queued.  We walk all the async extents created by compress_file_range
559  * and send them down to the disk.
560  */
561 static noinline int submit_compressed_extents(struct inode *inode,
562                                               struct async_cow *async_cow)
563 {
564         struct async_extent *async_extent;
565         u64 alloc_hint = 0;
566         struct btrfs_trans_handle *trans;
567         struct btrfs_key ins;
568         struct extent_map *em;
569         struct btrfs_root *root = BTRFS_I(inode)->root;
570         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571         struct extent_io_tree *io_tree;
572         int ret = 0;
573
574         if (list_empty(&async_cow->extents))
575                 return 0;
576
577
578         while (!list_empty(&async_cow->extents)) {
579                 async_extent = list_entry(async_cow->extents.next,
580                                           struct async_extent, list);
581                 list_del(&async_extent->list);
582
583                 io_tree = &BTRFS_I(inode)->io_tree;
584
585 retry:
586                 /* did the compression code fall back to uncompressed IO? */
587                 if (!async_extent->pages) {
588                         int page_started = 0;
589                         unsigned long nr_written = 0;
590
591                         lock_extent(io_tree, async_extent->start,
592                                          async_extent->start +
593                                          async_extent->ram_size - 1, GFP_NOFS);
594
595                         /* allocate blocks */
596                         ret = cow_file_range(inode, async_cow->locked_page,
597                                              async_extent->start,
598                                              async_extent->start +
599                                              async_extent->ram_size - 1,
600                                              &page_started, &nr_written, 0);
601
602                         /*
603                          * if page_started, cow_file_range inserted an
604                          * inline extent and took care of all the unlocking
605                          * and IO for us.  Otherwise, we need to submit
606                          * all those pages down to the drive.
607                          */
608                         if (!page_started && !ret)
609                                 extent_write_locked_range(io_tree,
610                                                   inode, async_extent->start,
611                                                   async_extent->start +
612                                                   async_extent->ram_size - 1,
613                                                   btrfs_get_extent,
614                                                   WB_SYNC_ALL);
615                         kfree(async_extent);
616                         cond_resched();
617                         continue;
618                 }
619
620                 lock_extent(io_tree, async_extent->start,
621                             async_extent->start + async_extent->ram_size - 1,
622                             GFP_NOFS);
623
624                 trans = btrfs_join_transaction(root);
625                 BUG_ON(IS_ERR(trans));
626                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627                 ret = btrfs_reserve_extent(trans, root,
628                                            async_extent->compressed_size,
629                                            async_extent->compressed_size,
630                                            0, alloc_hint,
631                                            (u64)-1, &ins, 1);
632                 btrfs_end_transaction(trans, root);
633
634                 if (ret) {
635                         int i;
636                         for (i = 0; i < async_extent->nr_pages; i++) {
637                                 WARN_ON(async_extent->pages[i]->mapping);
638                                 page_cache_release(async_extent->pages[i]);
639                         }
640                         kfree(async_extent->pages);
641                         async_extent->nr_pages = 0;
642                         async_extent->pages = NULL;
643                         unlock_extent(io_tree, async_extent->start,
644                                       async_extent->start +
645                                       async_extent->ram_size - 1, GFP_NOFS);
646                         goto retry;
647                 }
648
649                 /*
650                  * here we're doing allocation and writeback of the
651                  * compressed pages
652                  */
653                 btrfs_drop_extent_cache(inode, async_extent->start,
654                                         async_extent->start +
655                                         async_extent->ram_size - 1, 0);
656
657                 em = alloc_extent_map();
658                 BUG_ON(!em);
659                 em->start = async_extent->start;
660                 em->len = async_extent->ram_size;
661                 em->orig_start = em->start;
662
663                 em->block_start = ins.objectid;
664                 em->block_len = ins.offset;
665                 em->bdev = root->fs_info->fs_devices->latest_bdev;
666                 em->compress_type = async_extent->compress_type;
667                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
670                 while (1) {
671                         write_lock(&em_tree->lock);
672                         ret = add_extent_mapping(em_tree, em);
673                         write_unlock(&em_tree->lock);
674                         if (ret != -EEXIST) {
675                                 free_extent_map(em);
676                                 break;
677                         }
678                         btrfs_drop_extent_cache(inode, async_extent->start,
679                                                 async_extent->start +
680                                                 async_extent->ram_size - 1, 0);
681                 }
682
683                 ret = btrfs_add_ordered_extent_compress(inode,
684                                                 async_extent->start,
685                                                 ins.objectid,
686                                                 async_extent->ram_size,
687                                                 ins.offset,
688                                                 BTRFS_ORDERED_COMPRESSED,
689                                                 async_extent->compress_type);
690                 BUG_ON(ret);
691
692                 /*
693                  * clear dirty, set writeback and unlock the pages.
694                  */
695                 extent_clear_unlock_delalloc(inode,
696                                 &BTRFS_I(inode)->io_tree,
697                                 async_extent->start,
698                                 async_extent->start +
699                                 async_extent->ram_size - 1,
700                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701                                 EXTENT_CLEAR_UNLOCK |
702                                 EXTENT_CLEAR_DELALLOC |
703                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704
705                 ret = btrfs_submit_compressed_write(inode,
706                                     async_extent->start,
707                                     async_extent->ram_size,
708                                     ins.objectid,
709                                     ins.offset, async_extent->pages,
710                                     async_extent->nr_pages);
711
712                 BUG_ON(ret);
713                 alloc_hint = ins.objectid + ins.offset;
714                 kfree(async_extent);
715                 cond_resched();
716         }
717
718         return 0;
719 }
720
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722                                       u64 num_bytes)
723 {
724         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725         struct extent_map *em;
726         u64 alloc_hint = 0;
727
728         read_lock(&em_tree->lock);
729         em = search_extent_mapping(em_tree, start, num_bytes);
730         if (em) {
731                 /*
732                  * if block start isn't an actual block number then find the
733                  * first block in this inode and use that as a hint.  If that
734                  * block is also bogus then just don't worry about it.
735                  */
736                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737                         free_extent_map(em);
738                         em = search_extent_mapping(em_tree, 0, 0);
739                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740                                 alloc_hint = em->block_start;
741                         if (em)
742                                 free_extent_map(em);
743                 } else {
744                         alloc_hint = em->block_start;
745                         free_extent_map(em);
746                 }
747         }
748         read_unlock(&em_tree->lock);
749
750         return alloc_hint;
751 }
752
753 /*
754  * when extent_io.c finds a delayed allocation range in the file,
755  * the call backs end up in this code.  The basic idea is to
756  * allocate extents on disk for the range, and create ordered data structs
757  * in ram to track those extents.
758  *
759  * locked_page is the page that writepage had locked already.  We use
760  * it to make sure we don't do extra locks or unlocks.
761  *
762  * *page_started is set to one if we unlock locked_page and do everything
763  * required to start IO on it.  It may be clean and already done with
764  * IO when we return.
765  */
766 static noinline int cow_file_range(struct inode *inode,
767                                    struct page *locked_page,
768                                    u64 start, u64 end, int *page_started,
769                                    unsigned long *nr_written,
770                                    int unlock)
771 {
772         struct btrfs_root *root = BTRFS_I(inode)->root;
773         struct btrfs_trans_handle *trans;
774         u64 alloc_hint = 0;
775         u64 num_bytes;
776         unsigned long ram_size;
777         u64 disk_num_bytes;
778         u64 cur_alloc_size;
779         u64 blocksize = root->sectorsize;
780         struct btrfs_key ins;
781         struct extent_map *em;
782         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783         int ret = 0;
784
785         BUG_ON(btrfs_is_free_space_inode(root, inode));
786         trans = btrfs_join_transaction(root);
787         BUG_ON(IS_ERR(trans));
788         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
789
790         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791         num_bytes = max(blocksize,  num_bytes);
792         disk_num_bytes = num_bytes;
793         ret = 0;
794
795         /* if this is a small write inside eof, kick off defrag */
796         if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797                 btrfs_add_inode_defrag(trans, inode);
798
799         if (start == 0) {
800                 /* lets try to make an inline extent */
801                 ret = cow_file_range_inline(trans, root, inode,
802                                             start, end, 0, 0, NULL);
803                 if (ret == 0) {
804                         extent_clear_unlock_delalloc(inode,
805                                      &BTRFS_I(inode)->io_tree,
806                                      start, end, NULL,
807                                      EXTENT_CLEAR_UNLOCK_PAGE |
808                                      EXTENT_CLEAR_UNLOCK |
809                                      EXTENT_CLEAR_DELALLOC |
810                                      EXTENT_CLEAR_DIRTY |
811                                      EXTENT_SET_WRITEBACK |
812                                      EXTENT_END_WRITEBACK);
813
814                         *nr_written = *nr_written +
815                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816                         *page_started = 1;
817                         ret = 0;
818                         goto out;
819                 }
820         }
821
822         BUG_ON(disk_num_bytes >
823                btrfs_super_total_bytes(&root->fs_info->super_copy));
824
825         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
826         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827
828         while (disk_num_bytes > 0) {
829                 unsigned long op;
830
831                 cur_alloc_size = disk_num_bytes;
832                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
833                                            root->sectorsize, 0, alloc_hint,
834                                            (u64)-1, &ins, 1);
835                 BUG_ON(ret);
836
837                 em = alloc_extent_map();
838                 BUG_ON(!em);
839                 em->start = start;
840                 em->orig_start = em->start;
841                 ram_size = ins.offset;
842                 em->len = ins.offset;
843
844                 em->block_start = ins.objectid;
845                 em->block_len = ins.offset;
846                 em->bdev = root->fs_info->fs_devices->latest_bdev;
847                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
848
849                 while (1) {
850                         write_lock(&em_tree->lock);
851                         ret = add_extent_mapping(em_tree, em);
852                         write_unlock(&em_tree->lock);
853                         if (ret != -EEXIST) {
854                                 free_extent_map(em);
855                                 break;
856                         }
857                         btrfs_drop_extent_cache(inode, start,
858                                                 start + ram_size - 1, 0);
859                 }
860
861                 cur_alloc_size = ins.offset;
862                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
863                                                ram_size, cur_alloc_size, 0);
864                 BUG_ON(ret);
865
866                 if (root->root_key.objectid ==
867                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
868                         ret = btrfs_reloc_clone_csums(inode, start,
869                                                       cur_alloc_size);
870                         BUG_ON(ret);
871                 }
872
873                 if (disk_num_bytes < cur_alloc_size)
874                         break;
875
876                 /* we're not doing compressed IO, don't unlock the first
877                  * page (which the caller expects to stay locked), don't
878                  * clear any dirty bits and don't set any writeback bits
879                  *
880                  * Do set the Private2 bit so we know this page was properly
881                  * setup for writepage
882                  */
883                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885                         EXTENT_SET_PRIVATE2;
886
887                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888                                              start, start + ram_size - 1,
889                                              locked_page, op);
890                 disk_num_bytes -= cur_alloc_size;
891                 num_bytes -= cur_alloc_size;
892                 alloc_hint = ins.objectid + ins.offset;
893                 start += cur_alloc_size;
894         }
895 out:
896         ret = 0;
897         btrfs_end_transaction(trans, root);
898
899         return ret;
900 }
901
902 /*
903  * work queue call back to started compression on a file and pages
904  */
905 static noinline void async_cow_start(struct btrfs_work *work)
906 {
907         struct async_cow *async_cow;
908         int num_added = 0;
909         async_cow = container_of(work, struct async_cow, work);
910
911         compress_file_range(async_cow->inode, async_cow->locked_page,
912                             async_cow->start, async_cow->end, async_cow,
913                             &num_added);
914         if (num_added == 0)
915                 async_cow->inode = NULL;
916 }
917
918 /*
919  * work queue call back to submit previously compressed pages
920  */
921 static noinline void async_cow_submit(struct btrfs_work *work)
922 {
923         struct async_cow *async_cow;
924         struct btrfs_root *root;
925         unsigned long nr_pages;
926
927         async_cow = container_of(work, struct async_cow, work);
928
929         root = async_cow->root;
930         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931                 PAGE_CACHE_SHIFT;
932
933         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934
935         if (atomic_read(&root->fs_info->async_delalloc_pages) <
936             5 * 1042 * 1024 &&
937             waitqueue_active(&root->fs_info->async_submit_wait))
938                 wake_up(&root->fs_info->async_submit_wait);
939
940         if (async_cow->inode)
941                 submit_compressed_extents(async_cow->inode, async_cow);
942 }
943
944 static noinline void async_cow_free(struct btrfs_work *work)
945 {
946         struct async_cow *async_cow;
947         async_cow = container_of(work, struct async_cow, work);
948         kfree(async_cow);
949 }
950
951 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952                                 u64 start, u64 end, int *page_started,
953                                 unsigned long *nr_written)
954 {
955         struct async_cow *async_cow;
956         struct btrfs_root *root = BTRFS_I(inode)->root;
957         unsigned long nr_pages;
958         u64 cur_end;
959         int limit = 10 * 1024 * 1042;
960
961         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962                          1, 0, NULL, GFP_NOFS);
963         while (start < end) {
964                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
965                 BUG_ON(!async_cow);
966                 async_cow->inode = inode;
967                 async_cow->root = root;
968                 async_cow->locked_page = locked_page;
969                 async_cow->start = start;
970
971                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
972                         cur_end = end;
973                 else
974                         cur_end = min(end, start + 512 * 1024 - 1);
975
976                 async_cow->end = cur_end;
977                 INIT_LIST_HEAD(&async_cow->extents);
978
979                 async_cow->work.func = async_cow_start;
980                 async_cow->work.ordered_func = async_cow_submit;
981                 async_cow->work.ordered_free = async_cow_free;
982                 async_cow->work.flags = 0;
983
984                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985                         PAGE_CACHE_SHIFT;
986                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987
988                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989                                    &async_cow->work);
990
991                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992                         wait_event(root->fs_info->async_submit_wait,
993                            (atomic_read(&root->fs_info->async_delalloc_pages) <
994                             limit));
995                 }
996
997                 while (atomic_read(&root->fs_info->async_submit_draining) &&
998                       atomic_read(&root->fs_info->async_delalloc_pages)) {
999                         wait_event(root->fs_info->async_submit_wait,
1000                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001                            0));
1002                 }
1003
1004                 *nr_written += nr_pages;
1005                 start = cur_end + 1;
1006         }
1007         *page_started = 1;
1008         return 0;
1009 }
1010
1011 static noinline int csum_exist_in_range(struct btrfs_root *root,
1012                                         u64 bytenr, u64 num_bytes)
1013 {
1014         int ret;
1015         struct btrfs_ordered_sum *sums;
1016         LIST_HEAD(list);
1017
1018         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1019                                        bytenr + num_bytes - 1, &list, 0);
1020         if (ret == 0 && list_empty(&list))
1021                 return 0;
1022
1023         while (!list_empty(&list)) {
1024                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025                 list_del(&sums->list);
1026                 kfree(sums);
1027         }
1028         return 1;
1029 }
1030
1031 /*
1032  * when nowcow writeback call back.  This checks for snapshots or COW copies
1033  * of the extents that exist in the file, and COWs the file as required.
1034  *
1035  * If no cow copies or snapshots exist, we write directly to the existing
1036  * blocks on disk
1037  */
1038 static noinline int run_delalloc_nocow(struct inode *inode,
1039                                        struct page *locked_page,
1040                               u64 start, u64 end, int *page_started, int force,
1041                               unsigned long *nr_written)
1042 {
1043         struct btrfs_root *root = BTRFS_I(inode)->root;
1044         struct btrfs_trans_handle *trans;
1045         struct extent_buffer *leaf;
1046         struct btrfs_path *path;
1047         struct btrfs_file_extent_item *fi;
1048         struct btrfs_key found_key;
1049         u64 cow_start;
1050         u64 cur_offset;
1051         u64 extent_end;
1052         u64 extent_offset;
1053         u64 disk_bytenr;
1054         u64 num_bytes;
1055         int extent_type;
1056         int ret;
1057         int type;
1058         int nocow;
1059         int check_prev = 1;
1060         bool nolock;
1061         u64 ino = btrfs_ino(inode);
1062
1063         path = btrfs_alloc_path();
1064         if (!path)
1065                 return -ENOMEM;
1066
1067         nolock = btrfs_is_free_space_inode(root, inode);
1068
1069         if (nolock)
1070                 trans = btrfs_join_transaction_nolock(root);
1071         else
1072                 trans = btrfs_join_transaction(root);
1073
1074         BUG_ON(IS_ERR(trans));
1075         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1076
1077         cow_start = (u64)-1;
1078         cur_offset = start;
1079         while (1) {
1080                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1081                                                cur_offset, 0);
1082                 BUG_ON(ret < 0);
1083                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084                         leaf = path->nodes[0];
1085                         btrfs_item_key_to_cpu(leaf, &found_key,
1086                                               path->slots[0] - 1);
1087                         if (found_key.objectid == ino &&
1088                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1089                                 path->slots[0]--;
1090                 }
1091                 check_prev = 0;
1092 next_slot:
1093                 leaf = path->nodes[0];
1094                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095                         ret = btrfs_next_leaf(root, path);
1096                         if (ret < 0)
1097                                 BUG_ON(1);
1098                         if (ret > 0)
1099                                 break;
1100                         leaf = path->nodes[0];
1101                 }
1102
1103                 nocow = 0;
1104                 disk_bytenr = 0;
1105                 num_bytes = 0;
1106                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107
1108                 if (found_key.objectid > ino ||
1109                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110                     found_key.offset > end)
1111                         break;
1112
1113                 if (found_key.offset > cur_offset) {
1114                         extent_end = found_key.offset;
1115                         extent_type = 0;
1116                         goto out_check;
1117                 }
1118
1119                 fi = btrfs_item_ptr(leaf, path->slots[0],
1120                                     struct btrfs_file_extent_item);
1121                 extent_type = btrfs_file_extent_type(leaf, fi);
1122
1123                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1125                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1126                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1127                         extent_end = found_key.offset +
1128                                 btrfs_file_extent_num_bytes(leaf, fi);
1129                         if (extent_end <= start) {
1130                                 path->slots[0]++;
1131                                 goto next_slot;
1132                         }
1133                         if (disk_bytenr == 0)
1134                                 goto out_check;
1135                         if (btrfs_file_extent_compression(leaf, fi) ||
1136                             btrfs_file_extent_encryption(leaf, fi) ||
1137                             btrfs_file_extent_other_encoding(leaf, fi))
1138                                 goto out_check;
1139                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140                                 goto out_check;
1141                         if (btrfs_extent_readonly(root, disk_bytenr))
1142                                 goto out_check;
1143                         if (btrfs_cross_ref_exist(trans, root, ino,
1144                                                   found_key.offset -
1145                                                   extent_offset, disk_bytenr))
1146                                 goto out_check;
1147                         disk_bytenr += extent_offset;
1148                         disk_bytenr += cur_offset - found_key.offset;
1149                         num_bytes = min(end + 1, extent_end) - cur_offset;
1150                         /*
1151                          * force cow if csum exists in the range.
1152                          * this ensure that csum for a given extent are
1153                          * either valid or do not exist.
1154                          */
1155                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156                                 goto out_check;
1157                         nocow = 1;
1158                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159                         extent_end = found_key.offset +
1160                                 btrfs_file_extent_inline_len(leaf, fi);
1161                         extent_end = ALIGN(extent_end, root->sectorsize);
1162                 } else {
1163                         BUG_ON(1);
1164                 }
1165 out_check:
1166                 if (extent_end <= start) {
1167                         path->slots[0]++;
1168                         goto next_slot;
1169                 }
1170                 if (!nocow) {
1171                         if (cow_start == (u64)-1)
1172                                 cow_start = cur_offset;
1173                         cur_offset = extent_end;
1174                         if (cur_offset > end)
1175                                 break;
1176                         path->slots[0]++;
1177                         goto next_slot;
1178                 }
1179
1180                 btrfs_release_path(path);
1181                 if (cow_start != (u64)-1) {
1182                         ret = cow_file_range(inode, locked_page, cow_start,
1183                                         found_key.offset - 1, page_started,
1184                                         nr_written, 1);
1185                         BUG_ON(ret);
1186                         cow_start = (u64)-1;
1187                 }
1188
1189                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190                         struct extent_map *em;
1191                         struct extent_map_tree *em_tree;
1192                         em_tree = &BTRFS_I(inode)->extent_tree;
1193                         em = alloc_extent_map();
1194                         BUG_ON(!em);
1195                         em->start = cur_offset;
1196                         em->orig_start = em->start;
1197                         em->len = num_bytes;
1198                         em->block_len = num_bytes;
1199                         em->block_start = disk_bytenr;
1200                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1201                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202                         while (1) {
1203                                 write_lock(&em_tree->lock);
1204                                 ret = add_extent_mapping(em_tree, em);
1205                                 write_unlock(&em_tree->lock);
1206                                 if (ret != -EEXIST) {
1207                                         free_extent_map(em);
1208                                         break;
1209                                 }
1210                                 btrfs_drop_extent_cache(inode, em->start,
1211                                                 em->start + em->len - 1, 0);
1212                         }
1213                         type = BTRFS_ORDERED_PREALLOC;
1214                 } else {
1215                         type = BTRFS_ORDERED_NOCOW;
1216                 }
1217
1218                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1219                                                num_bytes, num_bytes, type);
1220                 BUG_ON(ret);
1221
1222                 if (root->root_key.objectid ==
1223                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225                                                       num_bytes);
1226                         BUG_ON(ret);
1227                 }
1228
1229                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1230                                 cur_offset, cur_offset + num_bytes - 1,
1231                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233                                 EXTENT_SET_PRIVATE2);
1234                 cur_offset = extent_end;
1235                 if (cur_offset > end)
1236                         break;
1237         }
1238         btrfs_release_path(path);
1239
1240         if (cur_offset <= end && cow_start == (u64)-1)
1241                 cow_start = cur_offset;
1242         if (cow_start != (u64)-1) {
1243                 ret = cow_file_range(inode, locked_page, cow_start, end,
1244                                      page_started, nr_written, 1);
1245                 BUG_ON(ret);
1246         }
1247
1248         if (nolock) {
1249                 ret = btrfs_end_transaction_nolock(trans, root);
1250                 BUG_ON(ret);
1251         } else {
1252                 ret = btrfs_end_transaction(trans, root);
1253                 BUG_ON(ret);
1254         }
1255         btrfs_free_path(path);
1256         return 0;
1257 }
1258
1259 /*
1260  * extent_io.c call back to do delayed allocation processing
1261  */
1262 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1263                               u64 start, u64 end, int *page_started,
1264                               unsigned long *nr_written)
1265 {
1266         int ret;
1267         struct btrfs_root *root = BTRFS_I(inode)->root;
1268
1269         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1270                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1271                                          page_started, 1, nr_written);
1272         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1273                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1274                                          page_started, 0, nr_written);
1275         else if (!btrfs_test_opt(root, COMPRESS) &&
1276                  !(BTRFS_I(inode)->force_compress) &&
1277                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1278                 ret = cow_file_range(inode, locked_page, start, end,
1279                                       page_started, nr_written, 1);
1280         else
1281                 ret = cow_file_range_async(inode, locked_page, start, end,
1282                                            page_started, nr_written);
1283         return ret;
1284 }
1285
1286 static int btrfs_split_extent_hook(struct inode *inode,
1287                                    struct extent_state *orig, u64 split)
1288 {
1289         /* not delalloc, ignore it */
1290         if (!(orig->state & EXTENT_DELALLOC))
1291                 return 0;
1292
1293         spin_lock(&BTRFS_I(inode)->lock);
1294         BTRFS_I(inode)->outstanding_extents++;
1295         spin_unlock(&BTRFS_I(inode)->lock);
1296         return 0;
1297 }
1298
1299 /*
1300  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1301  * extents so we can keep track of new extents that are just merged onto old
1302  * extents, such as when we are doing sequential writes, so we can properly
1303  * account for the metadata space we'll need.
1304  */
1305 static int btrfs_merge_extent_hook(struct inode *inode,
1306                                    struct extent_state *new,
1307                                    struct extent_state *other)
1308 {
1309         /* not delalloc, ignore it */
1310         if (!(other->state & EXTENT_DELALLOC))
1311                 return 0;
1312
1313         spin_lock(&BTRFS_I(inode)->lock);
1314         BTRFS_I(inode)->outstanding_extents--;
1315         spin_unlock(&BTRFS_I(inode)->lock);
1316         return 0;
1317 }
1318
1319 /*
1320  * extent_io.c set_bit_hook, used to track delayed allocation
1321  * bytes in this file, and to maintain the list of inodes that
1322  * have pending delalloc work to be done.
1323  */
1324 static int btrfs_set_bit_hook(struct inode *inode,
1325                               struct extent_state *state, int *bits)
1326 {
1327
1328         /*
1329          * set_bit and clear bit hooks normally require _irqsave/restore
1330          * but in this case, we are only testing for the DELALLOC
1331          * bit, which is only set or cleared with irqs on
1332          */
1333         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1334                 struct btrfs_root *root = BTRFS_I(inode)->root;
1335                 u64 len = state->end + 1 - state->start;
1336                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1337
1338                 if (*bits & EXTENT_FIRST_DELALLOC) {
1339                         *bits &= ~EXTENT_FIRST_DELALLOC;
1340                 } else {
1341                         spin_lock(&BTRFS_I(inode)->lock);
1342                         BTRFS_I(inode)->outstanding_extents++;
1343                         spin_unlock(&BTRFS_I(inode)->lock);
1344                 }
1345
1346                 spin_lock(&root->fs_info->delalloc_lock);
1347                 BTRFS_I(inode)->delalloc_bytes += len;
1348                 root->fs_info->delalloc_bytes += len;
1349                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1350                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1351                                       &root->fs_info->delalloc_inodes);
1352                 }
1353                 spin_unlock(&root->fs_info->delalloc_lock);
1354         }
1355         return 0;
1356 }
1357
1358 /*
1359  * extent_io.c clear_bit_hook, see set_bit_hook for why
1360  */
1361 static int btrfs_clear_bit_hook(struct inode *inode,
1362                                 struct extent_state *state, int *bits)
1363 {
1364         /*
1365          * set_bit and clear bit hooks normally require _irqsave/restore
1366          * but in this case, we are only testing for the DELALLOC
1367          * bit, which is only set or cleared with irqs on
1368          */
1369         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1370                 struct btrfs_root *root = BTRFS_I(inode)->root;
1371                 u64 len = state->end + 1 - state->start;
1372                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1373
1374                 if (*bits & EXTENT_FIRST_DELALLOC) {
1375                         *bits &= ~EXTENT_FIRST_DELALLOC;
1376                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1377                         spin_lock(&BTRFS_I(inode)->lock);
1378                         BTRFS_I(inode)->outstanding_extents--;
1379                         spin_unlock(&BTRFS_I(inode)->lock);
1380                 }
1381
1382                 if (*bits & EXTENT_DO_ACCOUNTING)
1383                         btrfs_delalloc_release_metadata(inode, len);
1384
1385                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1386                     && do_list)
1387                         btrfs_free_reserved_data_space(inode, len);
1388
1389                 spin_lock(&root->fs_info->delalloc_lock);
1390                 root->fs_info->delalloc_bytes -= len;
1391                 BTRFS_I(inode)->delalloc_bytes -= len;
1392
1393                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1394                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1395                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1396                 }
1397                 spin_unlock(&root->fs_info->delalloc_lock);
1398         }
1399         return 0;
1400 }
1401
1402 /*
1403  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1404  * we don't create bios that span stripes or chunks
1405  */
1406 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1407                          size_t size, struct bio *bio,
1408                          unsigned long bio_flags)
1409 {
1410         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1411         struct btrfs_mapping_tree *map_tree;
1412         u64 logical = (u64)bio->bi_sector << 9;
1413         u64 length = 0;
1414         u64 map_length;
1415         int ret;
1416
1417         if (bio_flags & EXTENT_BIO_COMPRESSED)
1418                 return 0;
1419
1420         length = bio->bi_size;
1421         map_tree = &root->fs_info->mapping_tree;
1422         map_length = length;
1423         ret = btrfs_map_block(map_tree, READ, logical,
1424                               &map_length, NULL, 0);
1425
1426         if (map_length < length + size)
1427                 return 1;
1428         return ret;
1429 }
1430
1431 /*
1432  * in order to insert checksums into the metadata in large chunks,
1433  * we wait until bio submission time.   All the pages in the bio are
1434  * checksummed and sums are attached onto the ordered extent record.
1435  *
1436  * At IO completion time the cums attached on the ordered extent record
1437  * are inserted into the btree
1438  */
1439 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1440                                     struct bio *bio, int mirror_num,
1441                                     unsigned long bio_flags,
1442                                     u64 bio_offset)
1443 {
1444         struct btrfs_root *root = BTRFS_I(inode)->root;
1445         int ret = 0;
1446
1447         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1448         BUG_ON(ret);
1449         return 0;
1450 }
1451
1452 /*
1453  * in order to insert checksums into the metadata in large chunks,
1454  * we wait until bio submission time.   All the pages in the bio are
1455  * checksummed and sums are attached onto the ordered extent record.
1456  *
1457  * At IO completion time the cums attached on the ordered extent record
1458  * are inserted into the btree
1459  */
1460 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1461                           int mirror_num, unsigned long bio_flags,
1462                           u64 bio_offset)
1463 {
1464         struct btrfs_root *root = BTRFS_I(inode)->root;
1465         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1466 }
1467
1468 /*
1469  * extent_io.c submission hook. This does the right thing for csum calculation
1470  * on write, or reading the csums from the tree before a read
1471  */
1472 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1473                           int mirror_num, unsigned long bio_flags,
1474                           u64 bio_offset)
1475 {
1476         struct btrfs_root *root = BTRFS_I(inode)->root;
1477         int ret = 0;
1478         int skip_sum;
1479
1480         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1481
1482         if (btrfs_is_free_space_inode(root, inode))
1483                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1484         else
1485                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1486         BUG_ON(ret);
1487
1488         if (!(rw & REQ_WRITE)) {
1489                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1490                         return btrfs_submit_compressed_read(inode, bio,
1491                                                     mirror_num, bio_flags);
1492                 } else if (!skip_sum) {
1493                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1494                         if (ret)
1495                                 return ret;
1496                 }
1497                 goto mapit;
1498         } else if (!skip_sum) {
1499                 /* csum items have already been cloned */
1500                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1501                         goto mapit;
1502                 /* we're doing a write, do the async checksumming */
1503                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1504                                    inode, rw, bio, mirror_num,
1505                                    bio_flags, bio_offset,
1506                                    __btrfs_submit_bio_start,
1507                                    __btrfs_submit_bio_done);
1508         }
1509
1510 mapit:
1511         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1512 }
1513
1514 /*
1515  * given a list of ordered sums record them in the inode.  This happens
1516  * at IO completion time based on sums calculated at bio submission time.
1517  */
1518 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1519                              struct inode *inode, u64 file_offset,
1520                              struct list_head *list)
1521 {
1522         struct btrfs_ordered_sum *sum;
1523
1524         list_for_each_entry(sum, list, list) {
1525                 btrfs_csum_file_blocks(trans,
1526                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1527         }
1528         return 0;
1529 }
1530
1531 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1532                               struct extent_state **cached_state)
1533 {
1534         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1535                 WARN_ON(1);
1536         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1537                                    cached_state, GFP_NOFS);
1538 }
1539
1540 /* see btrfs_writepage_start_hook for details on why this is required */
1541 struct btrfs_writepage_fixup {
1542         struct page *page;
1543         struct btrfs_work work;
1544 };
1545
1546 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1547 {
1548         struct btrfs_writepage_fixup *fixup;
1549         struct btrfs_ordered_extent *ordered;
1550         struct extent_state *cached_state = NULL;
1551         struct page *page;
1552         struct inode *inode;
1553         u64 page_start;
1554         u64 page_end;
1555
1556         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1557         page = fixup->page;
1558 again:
1559         lock_page(page);
1560         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1561                 ClearPageChecked(page);
1562                 goto out_page;
1563         }
1564
1565         inode = page->mapping->host;
1566         page_start = page_offset(page);
1567         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568
1569         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1570                          &cached_state, GFP_NOFS);
1571
1572         /* already ordered? We're done */
1573         if (PagePrivate2(page))
1574                 goto out;
1575
1576         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1577         if (ordered) {
1578                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1579                                      page_end, &cached_state, GFP_NOFS);
1580                 unlock_page(page);
1581                 btrfs_start_ordered_extent(inode, ordered, 1);
1582                 goto again;
1583         }
1584
1585         BUG();
1586         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1587         ClearPageChecked(page);
1588 out:
1589         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1590                              &cached_state, GFP_NOFS);
1591 out_page:
1592         unlock_page(page);
1593         page_cache_release(page);
1594         kfree(fixup);
1595 }
1596
1597 /*
1598  * There are a few paths in the higher layers of the kernel that directly
1599  * set the page dirty bit without asking the filesystem if it is a
1600  * good idea.  This causes problems because we want to make sure COW
1601  * properly happens and the data=ordered rules are followed.
1602  *
1603  * In our case any range that doesn't have the ORDERED bit set
1604  * hasn't been properly setup for IO.  We kick off an async process
1605  * to fix it up.  The async helper will wait for ordered extents, set
1606  * the delalloc bit and make it safe to write the page.
1607  */
1608 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1609 {
1610         struct inode *inode = page->mapping->host;
1611         struct btrfs_writepage_fixup *fixup;
1612         struct btrfs_root *root = BTRFS_I(inode)->root;
1613
1614         /* this page is properly in the ordered list */
1615         if (TestClearPagePrivate2(page))
1616                 return 0;
1617
1618         if (PageChecked(page))
1619                 return -EAGAIN;
1620
1621         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1622         if (!fixup)
1623                 return -EAGAIN;
1624
1625         SetPageChecked(page);
1626         page_cache_get(page);
1627         fixup->work.func = btrfs_writepage_fixup_worker;
1628         fixup->page = page;
1629         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1630         return -EAGAIN;
1631 }
1632
1633 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1634                                        struct inode *inode, u64 file_pos,
1635                                        u64 disk_bytenr, u64 disk_num_bytes,
1636                                        u64 num_bytes, u64 ram_bytes,
1637                                        u8 compression, u8 encryption,
1638                                        u16 other_encoding, int extent_type)
1639 {
1640         struct btrfs_root *root = BTRFS_I(inode)->root;
1641         struct btrfs_file_extent_item *fi;
1642         struct btrfs_path *path;
1643         struct extent_buffer *leaf;
1644         struct btrfs_key ins;
1645         u64 hint;
1646         int ret;
1647
1648         path = btrfs_alloc_path();
1649         if (!path)
1650                 return -ENOMEM;
1651
1652         path->leave_spinning = 1;
1653
1654         /*
1655          * we may be replacing one extent in the tree with another.
1656          * The new extent is pinned in the extent map, and we don't want
1657          * to drop it from the cache until it is completely in the btree.
1658          *
1659          * So, tell btrfs_drop_extents to leave this extent in the cache.
1660          * the caller is expected to unpin it and allow it to be merged
1661          * with the others.
1662          */
1663         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1664                                  &hint, 0);
1665         BUG_ON(ret);
1666
1667         ins.objectid = btrfs_ino(inode);
1668         ins.offset = file_pos;
1669         ins.type = BTRFS_EXTENT_DATA_KEY;
1670         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1671         BUG_ON(ret);
1672         leaf = path->nodes[0];
1673         fi = btrfs_item_ptr(leaf, path->slots[0],
1674                             struct btrfs_file_extent_item);
1675         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1676         btrfs_set_file_extent_type(leaf, fi, extent_type);
1677         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1678         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1679         btrfs_set_file_extent_offset(leaf, fi, 0);
1680         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1681         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1682         btrfs_set_file_extent_compression(leaf, fi, compression);
1683         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1684         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1685
1686         btrfs_unlock_up_safe(path, 1);
1687         btrfs_set_lock_blocking(leaf);
1688
1689         btrfs_mark_buffer_dirty(leaf);
1690
1691         inode_add_bytes(inode, num_bytes);
1692
1693         ins.objectid = disk_bytenr;
1694         ins.offset = disk_num_bytes;
1695         ins.type = BTRFS_EXTENT_ITEM_KEY;
1696         ret = btrfs_alloc_reserved_file_extent(trans, root,
1697                                         root->root_key.objectid,
1698                                         btrfs_ino(inode), file_pos, &ins);
1699         BUG_ON(ret);
1700         btrfs_free_path(path);
1701
1702         return 0;
1703 }
1704
1705 /*
1706  * helper function for btrfs_finish_ordered_io, this
1707  * just reads in some of the csum leaves to prime them into ram
1708  * before we start the transaction.  It limits the amount of btree
1709  * reads required while inside the transaction.
1710  */
1711 /* as ordered data IO finishes, this gets called so we can finish
1712  * an ordered extent if the range of bytes in the file it covers are
1713  * fully written.
1714  */
1715 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1716 {
1717         struct btrfs_root *root = BTRFS_I(inode)->root;
1718         struct btrfs_trans_handle *trans = NULL;
1719         struct btrfs_ordered_extent *ordered_extent = NULL;
1720         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1721         struct extent_state *cached_state = NULL;
1722         int compress_type = 0;
1723         int ret;
1724         bool nolock;
1725
1726         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1727                                              end - start + 1);
1728         if (!ret)
1729                 return 0;
1730         BUG_ON(!ordered_extent);
1731
1732         nolock = btrfs_is_free_space_inode(root, inode);
1733
1734         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1735                 BUG_ON(!list_empty(&ordered_extent->list));
1736                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1737                 if (!ret) {
1738                         if (nolock)
1739                                 trans = btrfs_join_transaction_nolock(root);
1740                         else
1741                                 trans = btrfs_join_transaction(root);
1742                         BUG_ON(IS_ERR(trans));
1743                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1744                         ret = btrfs_update_inode(trans, root, inode);
1745                         BUG_ON(ret);
1746                 }
1747                 goto out;
1748         }
1749
1750         lock_extent_bits(io_tree, ordered_extent->file_offset,
1751                          ordered_extent->file_offset + ordered_extent->len - 1,
1752                          0, &cached_state, GFP_NOFS);
1753
1754         if (nolock)
1755                 trans = btrfs_join_transaction_nolock(root);
1756         else
1757                 trans = btrfs_join_transaction(root);
1758         BUG_ON(IS_ERR(trans));
1759         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1760
1761         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1762                 compress_type = ordered_extent->compress_type;
1763         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1764                 BUG_ON(compress_type);
1765                 ret = btrfs_mark_extent_written(trans, inode,
1766                                                 ordered_extent->file_offset,
1767                                                 ordered_extent->file_offset +
1768                                                 ordered_extent->len);
1769                 BUG_ON(ret);
1770         } else {
1771                 BUG_ON(root == root->fs_info->tree_root);
1772                 ret = insert_reserved_file_extent(trans, inode,
1773                                                 ordered_extent->file_offset,
1774                                                 ordered_extent->start,
1775                                                 ordered_extent->disk_len,
1776                                                 ordered_extent->len,
1777                                                 ordered_extent->len,
1778                                                 compress_type, 0, 0,
1779                                                 BTRFS_FILE_EXTENT_REG);
1780                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1781                                    ordered_extent->file_offset,
1782                                    ordered_extent->len);
1783                 BUG_ON(ret);
1784         }
1785         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1786                              ordered_extent->file_offset +
1787                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1788
1789         add_pending_csums(trans, inode, ordered_extent->file_offset,
1790                           &ordered_extent->list);
1791
1792         ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1793         if (!ret) {
1794                 ret = btrfs_update_inode(trans, root, inode);
1795                 BUG_ON(ret);
1796         }
1797         ret = 0;
1798 out:
1799         if (nolock) {
1800                 if (trans)
1801                         btrfs_end_transaction_nolock(trans, root);
1802         } else {
1803                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1804                 if (trans)
1805                         btrfs_end_transaction(trans, root);
1806         }
1807
1808         /* once for us */
1809         btrfs_put_ordered_extent(ordered_extent);
1810         /* once for the tree */
1811         btrfs_put_ordered_extent(ordered_extent);
1812
1813         return 0;
1814 }
1815
1816 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1817                                 struct extent_state *state, int uptodate)
1818 {
1819         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1820
1821         ClearPagePrivate2(page);
1822         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1823 }
1824
1825 /*
1826  * When IO fails, either with EIO or csum verification fails, we
1827  * try other mirrors that might have a good copy of the data.  This
1828  * io_failure_record is used to record state as we go through all the
1829  * mirrors.  If another mirror has good data, the page is set up to date
1830  * and things continue.  If a good mirror can't be found, the original
1831  * bio end_io callback is called to indicate things have failed.
1832  */
1833 struct io_failure_record {
1834         struct page *page;
1835         u64 start;
1836         u64 len;
1837         u64 logical;
1838         unsigned long bio_flags;
1839         int last_mirror;
1840 };
1841
1842 static int btrfs_io_failed_hook(struct bio *failed_bio,
1843                          struct page *page, u64 start, u64 end,
1844                          struct extent_state *state)
1845 {
1846         struct io_failure_record *failrec = NULL;
1847         u64 private;
1848         struct extent_map *em;
1849         struct inode *inode = page->mapping->host;
1850         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1851         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1852         struct bio *bio;
1853         int num_copies;
1854         int ret;
1855         int rw;
1856         u64 logical;
1857
1858         ret = get_state_private(failure_tree, start, &private);
1859         if (ret) {
1860                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1861                 if (!failrec)
1862                         return -ENOMEM;
1863                 failrec->start = start;
1864                 failrec->len = end - start + 1;
1865                 failrec->last_mirror = 0;
1866                 failrec->bio_flags = 0;
1867
1868                 read_lock(&em_tree->lock);
1869                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1870                 if (em->start > start || em->start + em->len < start) {
1871                         free_extent_map(em);
1872                         em = NULL;
1873                 }
1874                 read_unlock(&em_tree->lock);
1875
1876                 if (IS_ERR_OR_NULL(em)) {
1877                         kfree(failrec);
1878                         return -EIO;
1879                 }
1880                 logical = start - em->start;
1881                 logical = em->block_start + logical;
1882                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1883                         logical = em->block_start;
1884                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1885                         extent_set_compress_type(&failrec->bio_flags,
1886                                                  em->compress_type);
1887                 }
1888                 failrec->logical = logical;
1889                 free_extent_map(em);
1890                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1891                                 EXTENT_DIRTY, GFP_NOFS);
1892                 set_state_private(failure_tree, start,
1893                                  (u64)(unsigned long)failrec);
1894         } else {
1895                 failrec = (struct io_failure_record *)(unsigned long)private;
1896         }
1897         num_copies = btrfs_num_copies(
1898                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1899                               failrec->logical, failrec->len);
1900         failrec->last_mirror++;
1901         if (!state) {
1902                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1903                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1904                                                     failrec->start,
1905                                                     EXTENT_LOCKED);
1906                 if (state && state->start != failrec->start)
1907                         state = NULL;
1908                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1909         }
1910         if (!state || failrec->last_mirror > num_copies) {
1911                 set_state_private(failure_tree, failrec->start, 0);
1912                 clear_extent_bits(failure_tree, failrec->start,
1913                                   failrec->start + failrec->len - 1,
1914                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1915                 kfree(failrec);
1916                 return -EIO;
1917         }
1918         bio = bio_alloc(GFP_NOFS, 1);
1919         bio->bi_private = state;
1920         bio->bi_end_io = failed_bio->bi_end_io;
1921         bio->bi_sector = failrec->logical >> 9;
1922         bio->bi_bdev = failed_bio->bi_bdev;
1923         bio->bi_size = 0;
1924
1925         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1926         if (failed_bio->bi_rw & REQ_WRITE)
1927                 rw = WRITE;
1928         else
1929                 rw = READ;
1930
1931         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1932                                                       failrec->last_mirror,
1933                                                       failrec->bio_flags, 0);
1934         return ret;
1935 }
1936
1937 /*
1938  * each time an IO finishes, we do a fast check in the IO failure tree
1939  * to see if we need to process or clean up an io_failure_record
1940  */
1941 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1942 {
1943         u64 private;
1944         u64 private_failure;
1945         struct io_failure_record *failure;
1946         int ret;
1947
1948         private = 0;
1949         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1950                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1951                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1952                                         start, &private_failure);
1953                 if (ret == 0) {
1954                         failure = (struct io_failure_record *)(unsigned long)
1955                                    private_failure;
1956                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1957                                           failure->start, 0);
1958                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1959                                           failure->start,
1960                                           failure->start + failure->len - 1,
1961                                           EXTENT_DIRTY | EXTENT_LOCKED,
1962                                           GFP_NOFS);
1963                         kfree(failure);
1964                 }
1965         }
1966         return 0;
1967 }
1968
1969 /*
1970  * when reads are done, we need to check csums to verify the data is correct
1971  * if there's a match, we allow the bio to finish.  If not, we go through
1972  * the io_failure_record routines to find good copies
1973  */
1974 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1975                                struct extent_state *state)
1976 {
1977         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1978         struct inode *inode = page->mapping->host;
1979         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1980         char *kaddr;
1981         u64 private = ~(u32)0;
1982         int ret;
1983         struct btrfs_root *root = BTRFS_I(inode)->root;
1984         u32 csum = ~(u32)0;
1985
1986         if (PageChecked(page)) {
1987                 ClearPageChecked(page);
1988                 goto good;
1989         }
1990
1991         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1992                 goto good;
1993
1994         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1995             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1996                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1997                                   GFP_NOFS);
1998                 return 0;
1999         }
2000
2001         if (state && state->start == start) {
2002                 private = state->private;
2003                 ret = 0;
2004         } else {
2005                 ret = get_state_private(io_tree, start, &private);
2006         }
2007         kaddr = kmap_atomic(page, KM_USER0);
2008         if (ret)
2009                 goto zeroit;
2010
2011         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2012         btrfs_csum_final(csum, (char *)&csum);
2013         if (csum != private)
2014                 goto zeroit;
2015
2016         kunmap_atomic(kaddr, KM_USER0);
2017 good:
2018         /* if the io failure tree for this inode is non-empty,
2019          * check to see if we've recovered from a failed IO
2020          */
2021         btrfs_clean_io_failures(inode, start);
2022         return 0;
2023
2024 zeroit:
2025         printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2026                        "private %llu\n",
2027                        (unsigned long long)btrfs_ino(page->mapping->host),
2028                        (unsigned long long)start, csum,
2029                        (unsigned long long)private);
2030         memset(kaddr + offset, 1, end - start + 1);
2031         flush_dcache_page(page);
2032         kunmap_atomic(kaddr, KM_USER0);
2033         if (private == 0)
2034                 return 0;
2035         return -EIO;
2036 }
2037
2038 struct delayed_iput {
2039         struct list_head list;
2040         struct inode *inode;
2041 };
2042
2043 void btrfs_add_delayed_iput(struct inode *inode)
2044 {
2045         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2046         struct delayed_iput *delayed;
2047
2048         if (atomic_add_unless(&inode->i_count, -1, 1))
2049                 return;
2050
2051         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2052         delayed->inode = inode;
2053
2054         spin_lock(&fs_info->delayed_iput_lock);
2055         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2056         spin_unlock(&fs_info->delayed_iput_lock);
2057 }
2058
2059 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2060 {
2061         LIST_HEAD(list);
2062         struct btrfs_fs_info *fs_info = root->fs_info;
2063         struct delayed_iput *delayed;
2064         int empty;
2065
2066         spin_lock(&fs_info->delayed_iput_lock);
2067         empty = list_empty(&fs_info->delayed_iputs);
2068         spin_unlock(&fs_info->delayed_iput_lock);
2069         if (empty)
2070                 return;
2071
2072         down_read(&root->fs_info->cleanup_work_sem);
2073         spin_lock(&fs_info->delayed_iput_lock);
2074         list_splice_init(&fs_info->delayed_iputs, &list);
2075         spin_unlock(&fs_info->delayed_iput_lock);
2076
2077         while (!list_empty(&list)) {
2078                 delayed = list_entry(list.next, struct delayed_iput, list);
2079                 list_del(&delayed->list);
2080                 iput(delayed->inode);
2081                 kfree(delayed);
2082         }
2083         up_read(&root->fs_info->cleanup_work_sem);
2084 }
2085
2086 /*
2087  * calculate extra metadata reservation when snapshotting a subvolume
2088  * contains orphan files.
2089  */
2090 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2091                                 struct btrfs_pending_snapshot *pending,
2092                                 u64 *bytes_to_reserve)
2093 {
2094         struct btrfs_root *root;
2095         struct btrfs_block_rsv *block_rsv;
2096         u64 num_bytes;
2097         int index;
2098
2099         root = pending->root;
2100         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2101                 return;
2102
2103         block_rsv = root->orphan_block_rsv;
2104
2105         /* orphan block reservation for the snapshot */
2106         num_bytes = block_rsv->size;
2107
2108         /*
2109          * after the snapshot is created, COWing tree blocks may use more
2110          * space than it frees. So we should make sure there is enough
2111          * reserved space.
2112          */
2113         index = trans->transid & 0x1;
2114         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2115                 num_bytes += block_rsv->size -
2116                              (block_rsv->reserved + block_rsv->freed[index]);
2117         }
2118
2119         *bytes_to_reserve += num_bytes;
2120 }
2121
2122 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2123                                 struct btrfs_pending_snapshot *pending)
2124 {
2125         struct btrfs_root *root = pending->root;
2126         struct btrfs_root *snap = pending->snap;
2127         struct btrfs_block_rsv *block_rsv;
2128         u64 num_bytes;
2129         int index;
2130         int ret;
2131
2132         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2133                 return;
2134
2135         /* refill source subvolume's orphan block reservation */
2136         block_rsv = root->orphan_block_rsv;
2137         index = trans->transid & 0x1;
2138         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2139                 num_bytes = block_rsv->size -
2140                             (block_rsv->reserved + block_rsv->freed[index]);
2141                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2142                                               root->orphan_block_rsv,
2143                                               num_bytes);
2144                 BUG_ON(ret);
2145         }
2146
2147         /* setup orphan block reservation for the snapshot */
2148         block_rsv = btrfs_alloc_block_rsv(snap);
2149         BUG_ON(!block_rsv);
2150
2151         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2152         snap->orphan_block_rsv = block_rsv;
2153
2154         num_bytes = root->orphan_block_rsv->size;
2155         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2156                                       block_rsv, num_bytes);
2157         BUG_ON(ret);
2158
2159 #if 0
2160         /* insert orphan item for the snapshot */
2161         WARN_ON(!root->orphan_item_inserted);
2162         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2163                                        snap->root_key.objectid);
2164         BUG_ON(ret);
2165         snap->orphan_item_inserted = 1;
2166 #endif
2167 }
2168
2169 enum btrfs_orphan_cleanup_state {
2170         ORPHAN_CLEANUP_STARTED  = 1,
2171         ORPHAN_CLEANUP_DONE     = 2,
2172 };
2173
2174 /*
2175  * This is called in transaction commmit time. If there are no orphan
2176  * files in the subvolume, it removes orphan item and frees block_rsv
2177  * structure.
2178  */
2179 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2180                               struct btrfs_root *root)
2181 {
2182         int ret;
2183
2184         if (!list_empty(&root->orphan_list) ||
2185             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2186                 return;
2187
2188         if (root->orphan_item_inserted &&
2189             btrfs_root_refs(&root->root_item) > 0) {
2190                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2191                                             root->root_key.objectid);
2192                 BUG_ON(ret);
2193                 root->orphan_item_inserted = 0;
2194         }
2195
2196         if (root->orphan_block_rsv) {
2197                 WARN_ON(root->orphan_block_rsv->size > 0);
2198                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2199                 root->orphan_block_rsv = NULL;
2200         }
2201 }
2202
2203 /*
2204  * This creates an orphan entry for the given inode in case something goes
2205  * wrong in the middle of an unlink/truncate.
2206  *
2207  * NOTE: caller of this function should reserve 5 units of metadata for
2208  *       this function.
2209  */
2210 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2211 {
2212         struct btrfs_root *root = BTRFS_I(inode)->root;
2213         struct btrfs_block_rsv *block_rsv = NULL;
2214         int reserve = 0;
2215         int insert = 0;
2216         int ret;
2217
2218         if (!root->orphan_block_rsv) {
2219                 block_rsv = btrfs_alloc_block_rsv(root);
2220                 BUG_ON(!block_rsv);
2221         }
2222
2223         spin_lock(&root->orphan_lock);
2224         if (!root->orphan_block_rsv) {
2225                 root->orphan_block_rsv = block_rsv;
2226         } else if (block_rsv) {
2227                 btrfs_free_block_rsv(root, block_rsv);
2228                 block_rsv = NULL;
2229         }
2230
2231         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2232                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2233 #if 0
2234                 /*
2235                  * For proper ENOSPC handling, we should do orphan
2236                  * cleanup when mounting. But this introduces backward
2237                  * compatibility issue.
2238                  */
2239                 if (!xchg(&root->orphan_item_inserted, 1))
2240                         insert = 2;
2241                 else
2242                         insert = 1;
2243 #endif
2244                 insert = 1;
2245         }
2246
2247         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2248                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2249                 reserve = 1;
2250         }
2251         spin_unlock(&root->orphan_lock);
2252
2253         if (block_rsv)
2254                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2255
2256         /* grab metadata reservation from transaction handle */
2257         if (reserve) {
2258                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2259                 BUG_ON(ret);
2260         }
2261
2262         /* insert an orphan item to track this unlinked/truncated file */
2263         if (insert >= 1) {
2264                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2265                 BUG_ON(ret);
2266         }
2267
2268         /* insert an orphan item to track subvolume contains orphan files */
2269         if (insert >= 2) {
2270                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2271                                                root->root_key.objectid);
2272                 BUG_ON(ret);
2273         }
2274         return 0;
2275 }
2276
2277 /*
2278  * We have done the truncate/delete so we can go ahead and remove the orphan
2279  * item for this particular inode.
2280  */
2281 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2282 {
2283         struct btrfs_root *root = BTRFS_I(inode)->root;
2284         int delete_item = 0;
2285         int release_rsv = 0;
2286         int ret = 0;
2287
2288         spin_lock(&root->orphan_lock);
2289         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2290                 list_del_init(&BTRFS_I(inode)->i_orphan);
2291                 delete_item = 1;
2292         }
2293
2294         if (BTRFS_I(inode)->orphan_meta_reserved) {
2295                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2296                 release_rsv = 1;
2297         }
2298         spin_unlock(&root->orphan_lock);
2299
2300         if (trans && delete_item) {
2301                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2302                 BUG_ON(ret);
2303         }
2304
2305         if (release_rsv)
2306                 btrfs_orphan_release_metadata(inode);
2307
2308         return 0;
2309 }
2310
2311 /*
2312  * this cleans up any orphans that may be left on the list from the last use
2313  * of this root.
2314  */
2315 int btrfs_orphan_cleanup(struct btrfs_root *root)
2316 {
2317         struct btrfs_path *path;
2318         struct extent_buffer *leaf;
2319         struct btrfs_key key, found_key;
2320         struct btrfs_trans_handle *trans;
2321         struct inode *inode;
2322         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2323
2324         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2325                 return 0;
2326
2327         path = btrfs_alloc_path();
2328         if (!path) {
2329                 ret = -ENOMEM;
2330                 goto out;
2331         }
2332         path->reada = -1;
2333
2334         key.objectid = BTRFS_ORPHAN_OBJECTID;
2335         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2336         key.offset = (u64)-1;
2337
2338         while (1) {
2339                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2340                 if (ret < 0)
2341                         goto out;
2342
2343                 /*
2344                  * if ret == 0 means we found what we were searching for, which
2345                  * is weird, but possible, so only screw with path if we didn't
2346                  * find the key and see if we have stuff that matches
2347                  */
2348                 if (ret > 0) {
2349                         ret = 0;
2350                         if (path->slots[0] == 0)
2351                                 break;
2352                         path->slots[0]--;
2353                 }
2354
2355                 /* pull out the item */
2356                 leaf = path->nodes[0];
2357                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2358
2359                 /* make sure the item matches what we want */
2360                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2361                         break;
2362                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2363                         break;
2364
2365                 /* release the path since we're done with it */
2366                 btrfs_release_path(path);
2367
2368                 /*
2369                  * this is where we are basically btrfs_lookup, without the
2370                  * crossing root thing.  we store the inode number in the
2371                  * offset of the orphan item.
2372                  */
2373                 found_key.objectid = found_key.offset;
2374                 found_key.type = BTRFS_INODE_ITEM_KEY;
2375                 found_key.offset = 0;
2376                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2377                 if (IS_ERR(inode)) {
2378                         ret = PTR_ERR(inode);
2379                         goto out;
2380                 }
2381
2382                 /*
2383                  * add this inode to the orphan list so btrfs_orphan_del does
2384                  * the proper thing when we hit it
2385                  */
2386                 spin_lock(&root->orphan_lock);
2387                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2388                 spin_unlock(&root->orphan_lock);
2389
2390                 /*
2391                  * if this is a bad inode, means we actually succeeded in
2392                  * removing the inode, but not the orphan record, which means
2393                  * we need to manually delete the orphan since iput will just
2394                  * do a destroy_inode
2395                  */
2396                 if (is_bad_inode(inode)) {
2397                         trans = btrfs_start_transaction(root, 0);
2398                         if (IS_ERR(trans)) {
2399                                 ret = PTR_ERR(trans);
2400                                 goto out;
2401                         }
2402                         btrfs_orphan_del(trans, inode);
2403                         btrfs_end_transaction(trans, root);
2404                         iput(inode);
2405                         continue;
2406                 }
2407
2408                 /* if we have links, this was a truncate, lets do that */
2409                 if (inode->i_nlink) {
2410                         if (!S_ISREG(inode->i_mode)) {
2411                                 WARN_ON(1);
2412                                 iput(inode);
2413                                 continue;
2414                         }
2415                         nr_truncate++;
2416                         ret = btrfs_truncate(inode);
2417                 } else {
2418                         nr_unlink++;
2419                 }
2420
2421                 /* this will do delete_inode and everything for us */
2422                 iput(inode);
2423                 if (ret)
2424                         goto out;
2425         }
2426         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2427
2428         if (root->orphan_block_rsv)
2429                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2430                                         (u64)-1);
2431
2432         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2433                 trans = btrfs_join_transaction(root);
2434                 if (!IS_ERR(trans))
2435                         btrfs_end_transaction(trans, root);
2436         }
2437
2438         if (nr_unlink)
2439                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2440         if (nr_truncate)
2441                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2442
2443 out:
2444         if (ret)
2445                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2446         btrfs_free_path(path);
2447         return ret;
2448 }
2449
2450 /*
2451  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2452  * don't find any xattrs, we know there can't be any acls.
2453  *
2454  * slot is the slot the inode is in, objectid is the objectid of the inode
2455  */
2456 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2457                                           int slot, u64 objectid)
2458 {
2459         u32 nritems = btrfs_header_nritems(leaf);
2460         struct btrfs_key found_key;
2461         int scanned = 0;
2462
2463         slot++;
2464         while (slot < nritems) {
2465                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2466
2467                 /* we found a different objectid, there must not be acls */
2468                 if (found_key.objectid != objectid)
2469                         return 0;
2470
2471                 /* we found an xattr, assume we've got an acl */
2472                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2473                         return 1;
2474
2475                 /*
2476                  * we found a key greater than an xattr key, there can't
2477                  * be any acls later on
2478                  */
2479                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2480                         return 0;
2481
2482                 slot++;
2483                 scanned++;
2484
2485                 /*
2486                  * it goes inode, inode backrefs, xattrs, extents,
2487                  * so if there are a ton of hard links to an inode there can
2488                  * be a lot of backrefs.  Don't waste time searching too hard,
2489                  * this is just an optimization
2490                  */
2491                 if (scanned >= 8)
2492                         break;
2493         }
2494         /* we hit the end of the leaf before we found an xattr or
2495          * something larger than an xattr.  We have to assume the inode
2496          * has acls
2497          */
2498         return 1;
2499 }
2500
2501 /*
2502  * read an inode from the btree into the in-memory inode
2503  */
2504 static void btrfs_read_locked_inode(struct inode *inode)
2505 {
2506         struct btrfs_path *path;
2507         struct extent_buffer *leaf;
2508         struct btrfs_inode_item *inode_item;
2509         struct btrfs_timespec *tspec;
2510         struct btrfs_root *root = BTRFS_I(inode)->root;
2511         struct btrfs_key location;
2512         int maybe_acls;
2513         u32 rdev;
2514         int ret;
2515         bool filled = false;
2516
2517         ret = btrfs_fill_inode(inode, &rdev);
2518         if (!ret)
2519                 filled = true;
2520
2521         path = btrfs_alloc_path();
2522         if (!path)
2523                 goto make_bad;
2524
2525         path->leave_spinning = 1;
2526         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2527
2528         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2529         if (ret)
2530                 goto make_bad;
2531
2532         leaf = path->nodes[0];
2533
2534         if (filled)
2535                 goto cache_acl;
2536
2537         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2538                                     struct btrfs_inode_item);
2539         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2540         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2541         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2542         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2543         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2544
2545         tspec = btrfs_inode_atime(inode_item);
2546         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2547         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2548
2549         tspec = btrfs_inode_mtime(inode_item);
2550         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2551         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2552
2553         tspec = btrfs_inode_ctime(inode_item);
2554         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2555         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2556
2557         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2558         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2559         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2560         inode->i_generation = BTRFS_I(inode)->generation;
2561         inode->i_rdev = 0;
2562         rdev = btrfs_inode_rdev(leaf, inode_item);
2563
2564         BTRFS_I(inode)->index_cnt = (u64)-1;
2565         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2566 cache_acl:
2567         /*
2568          * try to precache a NULL acl entry for files that don't have
2569          * any xattrs or acls
2570          */
2571         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2572                                            btrfs_ino(inode));
2573         if (!maybe_acls)
2574                 cache_no_acl(inode);
2575
2576         btrfs_free_path(path);
2577
2578         switch (inode->i_mode & S_IFMT) {
2579         case S_IFREG:
2580                 inode->i_mapping->a_ops = &btrfs_aops;
2581                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2582                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2583                 inode->i_fop = &btrfs_file_operations;
2584                 inode->i_op = &btrfs_file_inode_operations;
2585                 break;
2586         case S_IFDIR:
2587                 inode->i_fop = &btrfs_dir_file_operations;
2588                 if (root == root->fs_info->tree_root)
2589                         inode->i_op = &btrfs_dir_ro_inode_operations;
2590                 else
2591                         inode->i_op = &btrfs_dir_inode_operations;
2592                 break;
2593         case S_IFLNK:
2594                 inode->i_op = &btrfs_symlink_inode_operations;
2595                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2596                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2597                 break;
2598         default:
2599                 inode->i_op = &btrfs_special_inode_operations;
2600                 init_special_inode(inode, inode->i_mode, rdev);
2601                 break;
2602         }
2603
2604         btrfs_update_iflags(inode);
2605         return;
2606
2607 make_bad:
2608         btrfs_free_path(path);
2609         make_bad_inode(inode);
2610 }
2611
2612 /*
2613  * given a leaf and an inode, copy the inode fields into the leaf
2614  */
2615 static void fill_inode_item(struct btrfs_trans_handle *trans,
2616                             struct extent_buffer *leaf,
2617                             struct btrfs_inode_item *item,
2618                             struct inode *inode)
2619 {
2620         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2621         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2622         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2623         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2624         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2625
2626         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2627                                inode->i_atime.tv_sec);
2628         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2629                                 inode->i_atime.tv_nsec);
2630
2631         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2632                                inode->i_mtime.tv_sec);
2633         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2634                                 inode->i_mtime.tv_nsec);
2635
2636         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2637                                inode->i_ctime.tv_sec);
2638         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2639                                 inode->i_ctime.tv_nsec);
2640
2641         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2642         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2643         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2644         btrfs_set_inode_transid(leaf, item, trans->transid);
2645         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2646         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2647         btrfs_set_inode_block_group(leaf, item, 0);
2648 }
2649
2650 /*
2651  * copy everything in the in-memory inode into the btree.
2652  */
2653 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2654                                 struct btrfs_root *root, struct inode *inode)
2655 {
2656         struct btrfs_inode_item *inode_item;
2657         struct btrfs_path *path;
2658         struct extent_buffer *leaf;
2659         int ret;
2660
2661         /*
2662          * If the inode is a free space inode, we can deadlock during commit
2663          * if we put it into the delayed code.
2664          *
2665          * The data relocation inode should also be directly updated
2666          * without delay
2667          */
2668         if (!btrfs_is_free_space_inode(root, inode)
2669             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2670                 ret = btrfs_delayed_update_inode(trans, root, inode);
2671                 if (!ret)
2672                         btrfs_set_inode_last_trans(trans, inode);
2673                 return ret;
2674         }
2675
2676         path = btrfs_alloc_path();
2677         if (!path)
2678                 return -ENOMEM;
2679
2680         path->leave_spinning = 1;
2681         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2682                                  1);
2683         if (ret) {
2684                 if (ret > 0)
2685                         ret = -ENOENT;
2686                 goto failed;
2687         }
2688
2689         btrfs_unlock_up_safe(path, 1);
2690         leaf = path->nodes[0];
2691         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2692                                     struct btrfs_inode_item);
2693
2694         fill_inode_item(trans, leaf, inode_item, inode);
2695         btrfs_mark_buffer_dirty(leaf);
2696         btrfs_set_inode_last_trans(trans, inode);
2697         ret = 0;
2698 failed:
2699         btrfs_free_path(path);
2700         return ret;
2701 }
2702
2703 /*
2704  * unlink helper that gets used here in inode.c and in the tree logging
2705  * recovery code.  It remove a link in a directory with a given name, and
2706  * also drops the back refs in the inode to the directory
2707  */
2708 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2709                                 struct btrfs_root *root,
2710                                 struct inode *dir, struct inode *inode,
2711                                 const char *name, int name_len)
2712 {
2713         struct btrfs_path *path;
2714         int ret = 0;
2715         struct extent_buffer *leaf;
2716         struct btrfs_dir_item *di;
2717         struct btrfs_key key;
2718         u64 index;
2719         u64 ino = btrfs_ino(inode);
2720         u64 dir_ino = btrfs_ino(dir);
2721
2722         path = btrfs_alloc_path();
2723         if (!path) {
2724                 ret = -ENOMEM;
2725                 goto out;
2726         }
2727
2728         path->leave_spinning = 1;
2729         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2730                                     name, name_len, -1);
2731         if (IS_ERR(di)) {
2732                 ret = PTR_ERR(di);
2733                 goto err;
2734         }
2735         if (!di) {
2736                 ret = -ENOENT;
2737                 goto err;
2738         }
2739         leaf = path->nodes[0];
2740         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2741         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2742         if (ret)
2743                 goto err;
2744         btrfs_release_path(path);
2745
2746         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2747                                   dir_ino, &index);
2748         if (ret) {
2749                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2750                        "inode %llu parent %llu\n", name_len, name,
2751                        (unsigned long long)ino, (unsigned long long)dir_ino);
2752                 goto err;
2753         }
2754
2755         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2756         if (ret)
2757                 goto err;
2758
2759         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2760                                          inode, dir_ino);
2761         BUG_ON(ret != 0 && ret != -ENOENT);
2762
2763         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2764                                            dir, index);
2765         if (ret == -ENOENT)
2766                 ret = 0;
2767 err:
2768         btrfs_free_path(path);
2769         if (ret)
2770                 goto out;
2771
2772         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2773         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2774         btrfs_update_inode(trans, root, dir);
2775 out:
2776         return ret;
2777 }
2778
2779 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2780                        struct btrfs_root *root,
2781                        struct inode *dir, struct inode *inode,
2782                        const char *name, int name_len)
2783 {
2784         int ret;
2785         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2786         if (!ret) {
2787                 btrfs_drop_nlink(inode);
2788                 ret = btrfs_update_inode(trans, root, inode);
2789         }
2790         return ret;
2791 }
2792                 
2793
2794 /* helper to check if there is any shared block in the path */
2795 static int check_path_shared(struct btrfs_root *root,
2796                              struct btrfs_path *path)
2797 {
2798         struct extent_buffer *eb;
2799         int level;
2800         u64 refs = 1;
2801
2802         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2803                 int ret;
2804
2805                 if (!path->nodes[level])
2806                         break;
2807                 eb = path->nodes[level];
2808                 if (!btrfs_block_can_be_shared(root, eb))
2809                         continue;
2810                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2811                                                &refs, NULL);
2812                 if (refs > 1)
2813                         return 1;
2814         }
2815         return 0;
2816 }
2817
2818 /*
2819  * helper to start transaction for unlink and rmdir.
2820  *
2821  * unlink and rmdir are special in btrfs, they do not always free space.
2822  * so in enospc case, we should make sure they will free space before
2823  * allowing them to use the global metadata reservation.
2824  */
2825 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2826                                                        struct dentry *dentry)
2827 {
2828         struct btrfs_trans_handle *trans;
2829         struct btrfs_root *root = BTRFS_I(dir)->root;
2830         struct btrfs_path *path;
2831         struct btrfs_inode_ref *ref;
2832         struct btrfs_dir_item *di;
2833         struct inode *inode = dentry->d_inode;
2834         u64 index;
2835         int check_link = 1;
2836         int err = -ENOSPC;
2837         int ret;
2838         u64 ino = btrfs_ino(inode);
2839         u64 dir_ino = btrfs_ino(dir);
2840
2841         trans = btrfs_start_transaction(root, 10);
2842         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2843                 return trans;
2844
2845         if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2846                 return ERR_PTR(-ENOSPC);
2847
2848         /* check if there is someone else holds reference */
2849         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2850                 return ERR_PTR(-ENOSPC);
2851
2852         if (atomic_read(&inode->i_count) > 2)
2853                 return ERR_PTR(-ENOSPC);
2854
2855         if (xchg(&root->fs_info->enospc_unlink, 1))
2856                 return ERR_PTR(-ENOSPC);
2857
2858         path = btrfs_alloc_path();
2859         if (!path) {
2860                 root->fs_info->enospc_unlink = 0;
2861                 return ERR_PTR(-ENOMEM);
2862         }
2863
2864         trans = btrfs_start_transaction(root, 0);
2865         if (IS_ERR(trans)) {
2866                 btrfs_free_path(path);
2867                 root->fs_info->enospc_unlink = 0;
2868                 return trans;
2869         }
2870
2871         path->skip_locking = 1;
2872         path->search_commit_root = 1;
2873
2874         ret = btrfs_lookup_inode(trans, root, path,
2875                                 &BTRFS_I(dir)->location, 0);
2876         if (ret < 0) {
2877                 err = ret;
2878                 goto out;
2879         }
2880         if (ret == 0) {
2881                 if (check_path_shared(root, path))
2882                         goto out;
2883         } else {
2884                 check_link = 0;
2885         }
2886         btrfs_release_path(path);
2887
2888         ret = btrfs_lookup_inode(trans, root, path,
2889                                 &BTRFS_I(inode)->location, 0);
2890         if (ret < 0) {
2891                 err = ret;
2892                 goto out;
2893         }
2894         if (ret == 0) {
2895                 if (check_path_shared(root, path))
2896                         goto out;
2897         } else {
2898                 check_link = 0;
2899         }
2900         btrfs_release_path(path);
2901
2902         if (ret == 0 && S_ISREG(inode->i_mode)) {
2903                 ret = btrfs_lookup_file_extent(trans, root, path,
2904                                                ino, (u64)-1, 0);
2905                 if (ret < 0) {
2906                         err = ret;
2907                         goto out;
2908                 }
2909                 BUG_ON(ret == 0);
2910                 if (check_path_shared(root, path))
2911                         goto out;
2912                 btrfs_release_path(path);
2913         }
2914
2915         if (!check_link) {
2916                 err = 0;
2917                 goto out;
2918         }
2919
2920         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2921                                 dentry->d_name.name, dentry->d_name.len, 0);
2922         if (IS_ERR(di)) {
2923                 err = PTR_ERR(di);
2924                 goto out;
2925         }
2926         if (di) {
2927                 if (check_path_shared(root, path))
2928                         goto out;
2929         } else {
2930                 err = 0;
2931                 goto out;
2932         }
2933         btrfs_release_path(path);
2934
2935         ref = btrfs_lookup_inode_ref(trans, root, path,
2936                                 dentry->d_name.name, dentry->d_name.len,
2937                                 ino, dir_ino, 0);
2938         if (IS_ERR(ref)) {
2939                 err = PTR_ERR(ref);
2940                 goto out;
2941         }
2942         BUG_ON(!ref);
2943         if (check_path_shared(root, path))
2944                 goto out;
2945         index = btrfs_inode_ref_index(path->nodes[0], ref);
2946         btrfs_release_path(path);
2947
2948         /*
2949          * This is a commit root search, if we can lookup inode item and other
2950          * relative items in the commit root, it means the transaction of
2951          * dir/file creation has been committed, and the dir index item that we
2952          * delay to insert has also been inserted into the commit root. So
2953          * we needn't worry about the delayed insertion of the dir index item
2954          * here.
2955          */
2956         di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2957                                 dentry->d_name.name, dentry->d_name.len, 0);
2958         if (IS_ERR(di)) {
2959                 err = PTR_ERR(di);
2960                 goto out;
2961         }
2962         BUG_ON(ret == -ENOENT);
2963         if (check_path_shared(root, path))
2964                 goto out;
2965
2966         err = 0;
2967 out:
2968         btrfs_free_path(path);
2969         if (err) {
2970                 btrfs_end_transaction(trans, root);
2971                 root->fs_info->enospc_unlink = 0;
2972                 return ERR_PTR(err);
2973         }
2974
2975         trans->block_rsv = &root->fs_info->global_block_rsv;
2976         return trans;
2977 }
2978
2979 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2980                                struct btrfs_root *root)
2981 {
2982         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2983                 BUG_ON(!root->fs_info->enospc_unlink);
2984                 root->fs_info->enospc_unlink = 0;
2985         }
2986         btrfs_end_transaction_throttle(trans, root);
2987 }
2988
2989 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2990 {
2991         struct btrfs_root *root = BTRFS_I(dir)->root;
2992         struct btrfs_trans_handle *trans;
2993         struct inode *inode = dentry->d_inode;
2994         int ret;
2995         unsigned long nr = 0;
2996
2997         trans = __unlink_start_trans(dir, dentry);
2998         if (IS_ERR(trans))
2999                 return PTR_ERR(trans);
3000
3001         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3002
3003         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3004                                  dentry->d_name.name, dentry->d_name.len);
3005         BUG_ON(ret);
3006
3007         if (inode->i_nlink == 0) {
3008                 ret = btrfs_orphan_add(trans, inode);
3009                 BUG_ON(ret);
3010         }
3011
3012         nr = trans->blocks_used;
3013         __unlink_end_trans(trans, root);
3014         btrfs_btree_balance_dirty(root, nr);
3015         return ret;
3016 }
3017
3018 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3019                         struct btrfs_root *root,
3020                         struct inode *dir, u64 objectid,
3021                         const char *name, int name_len)
3022 {
3023         struct btrfs_path *path;
3024         struct extent_buffer *leaf;
3025         struct btrfs_dir_item *di;
3026         struct btrfs_key key;
3027         u64 index;
3028         int ret;
3029         u64 dir_ino = btrfs_ino(dir);
3030
3031         path = btrfs_alloc_path();
3032         if (!path)
3033                 return -ENOMEM;
3034
3035         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3036                                    name, name_len, -1);
3037         BUG_ON(IS_ERR_OR_NULL(di));
3038
3039         leaf = path->nodes[0];
3040         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3041         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3042         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3043         BUG_ON(ret);
3044         btrfs_release_path(path);
3045
3046         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3047                                  objectid, root->root_key.objectid,
3048                                  dir_ino, &index, name, name_len);
3049         if (ret < 0) {
3050                 BUG_ON(ret != -ENOENT);
3051                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3052                                                  name, name_len);
3053                 BUG_ON(IS_ERR_OR_NULL(di));
3054
3055                 leaf = path->nodes[0];
3056                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3057                 btrfs_release_path(path);
3058                 index = key.offset;
3059         }
3060         btrfs_release_path(path);
3061
3062         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3063         BUG_ON(ret);
3064
3065         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3066         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3067         ret = btrfs_update_inode(trans, root, dir);
3068         BUG_ON(ret);
3069
3070         btrfs_free_path(path);
3071         return 0;
3072 }
3073
3074 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3075 {
3076         struct inode *inode = dentry->d_inode;
3077         int err = 0;
3078         struct btrfs_root *root = BTRFS_I(dir)->root;
3079         struct btrfs_trans_handle *trans;
3080         unsigned long nr = 0;
3081
3082         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3083             btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3084                 return -ENOTEMPTY;
3085
3086         trans = __unlink_start_trans(dir, dentry);
3087         if (IS_ERR(trans))
3088                 return PTR_ERR(trans);
3089
3090         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3091                 err = btrfs_unlink_subvol(trans, root, dir,
3092                                           BTRFS_I(inode)->location.objectid,
3093                                           dentry->d_name.name,
3094                                           dentry->d_name.len);
3095                 goto out;
3096         }
3097
3098         err = btrfs_orphan_add(trans, inode);
3099         if (err)
3100                 goto out;
3101
3102         /* now the directory is empty */
3103         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3104                                  dentry->d_name.name, dentry->d_name.len);
3105         if (!err)
3106                 btrfs_i_size_write(inode, 0);
3107 out:
3108         nr = trans->blocks_used;
3109         __unlink_end_trans(trans, root);
3110         btrfs_btree_balance_dirty(root, nr);
3111
3112         return err;
3113 }
3114
3115 /*
3116  * this can truncate away extent items, csum items and directory items.
3117  * It starts at a high offset and removes keys until it can't find
3118  * any higher than new_size
3119  *
3120  * csum items that cross the new i_size are truncated to the new size
3121  * as well.
3122  *
3123  * min_type is the minimum key type to truncate down to.  If set to 0, this
3124  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3125  */
3126 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3127                                struct btrfs_root *root,
3128                                struct inode *inode,
3129                                u64 new_size, u32 min_type)
3130 {
3131         struct btrfs_path *path;
3132         struct extent_buffer *leaf;
3133         struct btrfs_file_extent_item *fi;
3134         struct btrfs_key key;
3135         struct btrfs_key found_key;
3136         u64 extent_start = 0;
3137         u64 extent_num_bytes = 0;
3138         u64 extent_offset = 0;
3139         u64 item_end = 0;
3140         u64 mask = root->sectorsize - 1;
3141         u32 found_type = (u8)-1;
3142         int found_extent;
3143         int del_item;
3144         int pending_del_nr = 0;
3145         int pending_del_slot = 0;
3146         int extent_type = -1;
3147         int encoding;
3148         int ret;
3149         int err = 0;
3150         u64 ino = btrfs_ino(inode);
3151
3152         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3153
3154         path = btrfs_alloc_path();
3155         if (!path)
3156                 return -ENOMEM;
3157         path->reada = -1;
3158
3159         if (root->ref_cows || root == root->fs_info->tree_root)
3160                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3161
3162         /*
3163          * This function is also used to drop the items in the log tree before
3164          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3165          * it is used to drop the loged items. So we shouldn't kill the delayed
3166          * items.
3167          */
3168         if (min_type == 0 && root == BTRFS_I(inode)->root)
3169                 btrfs_kill_delayed_inode_items(inode);
3170
3171         key.objectid = ino;
3172         key.offset = (u64)-1;
3173         key.type = (u8)-1;
3174
3175 search_again:
3176         path->leave_spinning = 1;
3177         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3178         if (ret < 0) {
3179                 err = ret;
3180                 goto out;
3181         }
3182
3183         if (ret > 0) {
3184                 /* there are no items in the tree for us to truncate, we're
3185                  * done
3186                  */
3187                 if (path->slots[0] == 0)
3188                         goto out;
3189                 path->slots[0]--;
3190         }
3191
3192         while (1) {
3193                 fi = NULL;
3194                 leaf = path->nodes[0];
3195                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3196                 found_type = btrfs_key_type(&found_key);
3197                 encoding = 0;
3198
3199                 if (found_key.objectid != ino)
3200                         break;
3201
3202                 if (found_type < min_type)
3203                         break;
3204
3205                 item_end = found_key.offset;
3206                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3207                         fi = btrfs_item_ptr(leaf, path->slots[0],
3208                                             struct btrfs_file_extent_item);
3209                         extent_type = btrfs_file_extent_type(leaf, fi);
3210                         encoding = btrfs_file_extent_compression(leaf, fi);
3211                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3212                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3213
3214                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3215                                 item_end +=
3216                                     btrfs_file_extent_num_bytes(leaf, fi);
3217                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3218                                 item_end += btrfs_file_extent_inline_len(leaf,
3219                                                                          fi);
3220                         }
3221                         item_end--;
3222                 }
3223                 if (found_type > min_type) {
3224                         del_item = 1;
3225                 } else {
3226                         if (item_end < new_size)
3227                                 break;
3228                         if (found_key.offset >= new_size)
3229                                 del_item = 1;
3230                         else
3231                                 del_item = 0;
3232                 }
3233                 found_extent = 0;
3234                 /* FIXME, shrink the extent if the ref count is only 1 */
3235                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3236                         goto delete;
3237
3238                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3239                         u64 num_dec;
3240                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3241                         if (!del_item && !encoding) {
3242                                 u64 orig_num_bytes =
3243                                         btrfs_file_extent_num_bytes(leaf, fi);
3244                                 extent_num_bytes = new_size -
3245                                         found_key.offset + root->sectorsize - 1;
3246                                 extent_num_bytes = extent_num_bytes &
3247                                         ~((u64)root->sectorsize - 1);
3248                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3249                                                          extent_num_bytes);
3250                                 num_dec = (orig_num_bytes -
3251                                            extent_num_bytes);
3252                                 if (root->ref_cows && extent_start != 0)
3253                                         inode_sub_bytes(inode, num_dec);
3254                                 btrfs_mark_buffer_dirty(leaf);
3255                         } else {
3256                                 extent_num_bytes =
3257                                         btrfs_file_extent_disk_num_bytes(leaf,
3258                                                                          fi);
3259                                 extent_offset = found_key.offset -
3260                                         btrfs_file_extent_offset(leaf, fi);
3261
3262                                 /* FIXME blocksize != 4096 */
3263                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3264                                 if (extent_start != 0) {
3265                                         found_extent = 1;
3266                                         if (root->ref_cows)
3267                                                 inode_sub_bytes(inode, num_dec);
3268                                 }
3269                         }
3270                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3271                         /*
3272                          * we can't truncate inline items that have had
3273                          * special encodings
3274                          */
3275                         if (!del_item &&
3276                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3277                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3278                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3279                                 u32 size = new_size - found_key.offset;
3280
3281                                 if (root->ref_cows) {
3282                                         inode_sub_bytes(inode, item_end + 1 -
3283                                                         new_size);
3284                                 }
3285                                 size =
3286                                     btrfs_file_extent_calc_inline_size(size);
3287                                 ret = btrfs_truncate_item(trans, root, path,
3288                                                           size, 1);
3289                         } else if (root->ref_cows) {
3290                                 inode_sub_bytes(inode, item_end + 1 -
3291                                                 found_key.offset);
3292                         }
3293                 }
3294 delete:
3295                 if (del_item) {
3296                         if (!pending_del_nr) {
3297                                 /* no pending yet, add ourselves */
3298                                 pending_del_slot = path->slots[0];
3299                                 pending_del_nr = 1;
3300                         } else if (pending_del_nr &&
3301                                    path->slots[0] + 1 == pending_del_slot) {
3302                                 /* hop on the pending chunk */
3303                                 pending_del_nr++;
3304                                 pending_del_slot = path->slots[0];
3305                         } else {
3306                                 BUG();
3307                         }
3308                 } else {
3309                         break;
3310                 }
3311                 if (found_extent && (root->ref_cows ||
3312                                      root == root->fs_info->tree_root)) {
3313                         btrfs_set_path_blocking(path);
3314                         ret = btrfs_free_extent(trans, root, extent_start,
3315                                                 extent_num_bytes, 0,
3316                                                 btrfs_header_owner(leaf),
3317                                                 ino, extent_offset);
3318                         BUG_ON(ret);
3319                 }
3320
3321                 if (found_type == BTRFS_INODE_ITEM_KEY)
3322                         break;
3323
3324                 if (path->slots[0] == 0 ||
3325                     path->slots[0] != pending_del_slot) {
3326                         if (root->ref_cows &&
3327                             BTRFS_I(inode)->location.objectid !=
3328                                                 BTRFS_FREE_INO_OBJECTID) {
3329                                 err = -EAGAIN;
3330                                 goto out;
3331                         }
3332                         if (pending_del_nr) {
3333                                 ret = btrfs_del_items(trans, root, path,
3334                                                 pending_del_slot,
3335                                                 pending_del_nr);
3336                                 BUG_ON(ret);
3337                                 pending_del_nr = 0;
3338                         }
3339                         btrfs_release_path(path);
3340                         goto search_again;
3341                 } else {
3342                         path->slots[0]--;
3343                 }
3344         }
3345 out:
3346         if (pending_del_nr) {
3347                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3348                                       pending_del_nr);
3349                 BUG_ON(ret);
3350         }
3351         btrfs_free_path(path);
3352         return err;
3353 }
3354
3355 /*
3356  * taken from block_truncate_page, but does cow as it zeros out
3357  * any bytes left in the last page in the file.
3358  */
3359 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3360 {
3361         struct inode *inode = mapping->host;
3362         struct btrfs_root *root = BTRFS_I(inode)->root;
3363         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3364         struct btrfs_ordered_extent *ordered;
3365         struct extent_state *cached_state = NULL;
3366         char *kaddr;
3367         u32 blocksize = root->sectorsize;
3368         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3369         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3370         struct page *page;
3371         int ret = 0;
3372         u64 page_start;
3373         u64 page_end;
3374
3375         if ((offset & (blocksize - 1)) == 0)
3376                 goto out;
3377         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3378         if (ret)
3379                 goto out;
3380
3381         ret = -ENOMEM;
3382 again:
3383         page = find_or_create_page(mapping, index, GFP_NOFS);
3384         if (!page) {
3385                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3386                 goto out;
3387         }
3388
3389         page_start = page_offset(page);
3390         page_end = page_start + PAGE_CACHE_SIZE - 1;
3391
3392         if (!PageUptodate(page)) {
3393                 ret = btrfs_readpage(NULL, page);
3394                 lock_page(page);
3395                 if (page->mapping != mapping) {
3396                         unlock_page(page);
3397                         page_cache_release(page);
3398                         goto again;
3399                 }
3400                 if (!PageUptodate(page)) {
3401                         ret = -EIO;
3402                         goto out_unlock;
3403                 }
3404         }
3405         wait_on_page_writeback(page);
3406
3407         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3408                          GFP_NOFS);
3409         set_page_extent_mapped(page);
3410
3411         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3412         if (ordered) {
3413                 unlock_extent_cached(io_tree, page_start, page_end,
3414                                      &cached_state, GFP_NOFS);
3415                 unlock_page(page);
3416                 page_cache_release(page);
3417                 btrfs_start_ordered_extent(inode, ordered, 1);
3418                 btrfs_put_ordered_extent(ordered);
3419                 goto again;
3420         }
3421
3422         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3423                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3424                           0, 0, &cached_state, GFP_NOFS);
3425
3426         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3427                                         &cached_state);
3428         if (ret) {
3429                 unlock_extent_cached(io_tree, page_start, page_end,
3430                                      &cached_state, GFP_NOFS);
3431                 goto out_unlock;
3432         }
3433
3434         ret = 0;
3435         if (offset != PAGE_CACHE_SIZE) {
3436                 kaddr = kmap(page);
3437                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3438                 flush_dcache_page(page);
3439                 kunmap(page);
3440         }
3441         ClearPageChecked(page);
3442         set_page_dirty(page);
3443         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3444                              GFP_NOFS);
3445
3446 out_unlock:
3447         if (ret)
3448                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3449         unlock_page(page);
3450         page_cache_release(page);
3451 out:
3452         return ret;
3453 }
3454
3455 /*
3456  * This function puts in dummy file extents for the area we're creating a hole
3457  * for.  So if we are truncating this file to a larger size we need to insert
3458  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3459  * the range between oldsize and size
3460  */
3461 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3462 {
3463         struct btrfs_trans_handle *trans;
3464         struct btrfs_root *root = BTRFS_I(inode)->root;
3465         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3466         struct extent_map *em = NULL;
3467         struct extent_state *cached_state = NULL;
3468         u64 mask = root->sectorsize - 1;
3469         u64 hole_start = (oldsize + mask) & ~mask;
3470         u64 block_end = (size + mask) & ~mask;
3471         u64 last_byte;
3472         u64 cur_offset;
3473         u64 hole_size;
3474         int err = 0;
3475
3476         if (size <= hole_start)
3477                 return 0;
3478
3479         while (1) {
3480                 struct btrfs_ordered_extent *ordered;
3481                 btrfs_wait_ordered_range(inode, hole_start,
3482                                          block_end - hole_start);
3483                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3484                                  &cached_state, GFP_NOFS);
3485                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3486                 if (!ordered)
3487                         break;
3488                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3489                                      &cached_state, GFP_NOFS);
3490                 btrfs_put_ordered_extent(ordered);
3491         }
3492
3493         cur_offset = hole_start;
3494         while (1) {
3495                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3496                                 block_end - cur_offset, 0);
3497                 BUG_ON(IS_ERR_OR_NULL(em));
3498                 last_byte = min(extent_map_end(em), block_end);
3499                 last_byte = (last_byte + mask) & ~mask;
3500                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3501                         u64 hint_byte = 0;
3502                         hole_size = last_byte - cur_offset;
3503
3504                         trans = btrfs_start_transaction(root, 2);
3505                         if (IS_ERR(trans)) {
3506                                 err = PTR_ERR(trans);
3507                                 break;
3508                         }
3509
3510                         err = btrfs_drop_extents(trans, inode, cur_offset,
3511                                                  cur_offset + hole_size,
3512                                                  &hint_byte, 1);
3513                         if (err)
3514                                 break;
3515
3516                         err = btrfs_insert_file_extent(trans, root,
3517                                         btrfs_ino(inode), cur_offset, 0,
3518                                         0, hole_size, 0, hole_size,
3519                                         0, 0, 0);
3520                         if (err)
3521                                 break;
3522
3523                         btrfs_drop_extent_cache(inode, hole_start,
3524                                         last_byte - 1, 0);
3525
3526                         btrfs_end_transaction(trans, root);
3527                 }
3528                 free_extent_map(em);
3529                 em = NULL;
3530                 cur_offset = last_byte;
3531                 if (cur_offset >= block_end)
3532                         break;
3533         }
3534
3535         free_extent_map(em);
3536         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3537                              GFP_NOFS);
3538         return err;
3539 }
3540
3541 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3542 {
3543         loff_t oldsize = i_size_read(inode);
3544         int ret;
3545
3546         if (newsize == oldsize)
3547                 return 0;
3548
3549         if (newsize > oldsize) {
3550                 i_size_write(inode, newsize);
3551                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3552                 truncate_pagecache(inode, oldsize, newsize);
3553                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3554                 if (ret) {
3555                         btrfs_setsize(inode, oldsize);
3556                         return ret;
3557                 }
3558
3559                 mark_inode_dirty(inode);
3560         } else {
3561
3562                 /*
3563                  * We're truncating a file that used to have good data down to
3564                  * zero. Make sure it gets into the ordered flush list so that
3565                  * any new writes get down to disk quickly.
3566                  */
3567                 if (newsize == 0)
3568                         BTRFS_I(inode)->ordered_data_close = 1;
3569
3570                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3571                 truncate_setsize(inode, newsize);
3572                 ret = btrfs_truncate(inode);
3573         }
3574
3575         return ret;
3576 }
3577
3578 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3579 {
3580         struct inode *inode = dentry->d_inode;
3581         struct btrfs_root *root = BTRFS_I(inode)->root;
3582         int err;
3583
3584         if (btrfs_root_readonly(root))
3585                 return -EROFS;
3586
3587         err = inode_change_ok(inode, attr);
3588         if (err)
3589                 return err;
3590
3591         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3592                 err = btrfs_setsize(inode, attr->ia_size);
3593                 if (err)
3594                         return err;
3595         }
3596
3597         if (attr->ia_valid) {
3598                 setattr_copy(inode, attr);
3599                 mark_inode_dirty(inode);
3600
3601                 if (attr->ia_valid & ATTR_MODE)
3602                         err = btrfs_acl_chmod(inode);
3603         }
3604
3605         return err;
3606 }
3607
3608 void btrfs_evict_inode(struct inode *inode)
3609 {
3610         struct btrfs_trans_handle *trans;
3611         struct btrfs_root *root = BTRFS_I(inode)->root;
3612         unsigned long nr;
3613         int ret;
3614
3615         trace_btrfs_inode_evict(inode);
3616
3617         truncate_inode_pages(&inode->i_data, 0);
3618         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3619                                btrfs_is_free_space_inode(root, inode)))
3620                 goto no_delete;
3621
3622         if (is_bad_inode(inode)) {
3623                 btrfs_orphan_del(NULL, inode);
3624                 goto no_delete;
3625         }
3626         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3627         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3628
3629         if (root->fs_info->log_root_recovering) {
3630                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3631                 goto no_delete;
3632         }
3633
3634         if (inode->i_nlink > 0) {
3635                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3636                 goto no_delete;
3637         }
3638
3639         btrfs_i_size_write(inode, 0);
3640
3641         while (1) {
3642                 trans = btrfs_join_transaction(root);
3643                 BUG_ON(IS_ERR(trans));
3644                 trans->block_rsv = root->orphan_block_rsv;
3645
3646                 ret = btrfs_block_rsv_check(trans, root,
3647                                             root->orphan_block_rsv, 0, 5);
3648                 if (ret) {
3649                         BUG_ON(ret != -EAGAIN);
3650                         ret = btrfs_commit_transaction(trans, root);
3651                         BUG_ON(ret);
3652                         continue;
3653                 }
3654
3655                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3656                 if (ret != -EAGAIN)
3657                         break;
3658
3659                 nr = trans->blocks_used;
3660                 btrfs_end_transaction(trans, root);
3661                 trans = NULL;
3662                 btrfs_btree_balance_dirty(root, nr);
3663
3664         }
3665
3666         if (ret == 0) {
3667                 ret = btrfs_orphan_del(trans, inode);
3668                 BUG_ON(ret);
3669         }
3670
3671         if (!(root == root->fs_info->tree_root ||
3672               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3673                 btrfs_return_ino(root, btrfs_ino(inode));
3674
3675         nr = trans->blocks_used;
3676         btrfs_end_transaction(trans, root);
3677         btrfs_btree_balance_dirty(root, nr);
3678 no_delete:
3679         end_writeback(inode);
3680         return;
3681 }
3682
3683 /*
3684  * this returns the key found in the dir entry in the location pointer.
3685  * If no dir entries were found, location->objectid is 0.
3686  */
3687 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3688                                struct btrfs_key *location)
3689 {
3690         const char *name = dentry->d_name.name;
3691         int namelen = dentry->d_name.len;
3692         struct btrfs_dir_item *di;
3693         struct btrfs_path *path;
3694         struct btrfs_root *root = BTRFS_I(dir)->root;
3695         int ret = 0;
3696
3697         path = btrfs_alloc_path();
3698         if (!path)
3699                 return -ENOMEM;
3700
3701         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3702                                     namelen, 0);
3703         if (IS_ERR(di))
3704                 ret = PTR_ERR(di);
3705
3706         if (IS_ERR_OR_NULL(di))
3707                 goto out_err;
3708
3709         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3710 out:
3711         btrfs_free_path(path);
3712         return ret;
3713 out_err:
3714         location->objectid = 0;
3715         goto out;
3716 }
3717
3718 /*
3719  * when we hit a tree root in a directory, the btrfs part of the inode
3720  * needs to be changed to reflect the root directory of the tree root.  This
3721  * is kind of like crossing a mount point.
3722  */
3723 static int fixup_tree_root_location(struct btrfs_root *root,
3724                                     struct inode *dir,
3725                                     struct dentry *dentry,
3726                                     struct btrfs_key *location,
3727                                     struct btrfs_root **sub_root)
3728 {
3729         struct btrfs_path *path;
3730         struct btrfs_root *new_root;
3731         struct btrfs_root_ref *ref;
3732         struct extent_buffer *leaf;
3733         int ret;
3734         int err = 0;
3735
3736         path = btrfs_alloc_path();
3737         if (!path) {
3738                 err = -ENOMEM;
3739                 goto out;
3740         }
3741
3742         err = -ENOENT;
3743         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3744                                   BTRFS_I(dir)->root->root_key.objectid,
3745                                   location->objectid);
3746         if (ret) {
3747                 if (ret < 0)
3748                         err = ret;
3749                 goto out;
3750         }
3751
3752         leaf = path->nodes[0];
3753         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3754         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3755             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3756                 goto out;
3757
3758         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3759                                    (unsigned long)(ref + 1),
3760                                    dentry->d_name.len);
3761         if (ret)
3762                 goto out;
3763
3764         btrfs_release_path(path);
3765
3766         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3767         if (IS_ERR(new_root)) {
3768                 err = PTR_ERR(new_root);
3769                 goto out;
3770         }
3771
3772         if (btrfs_root_refs(&new_root->root_item) == 0) {
3773                 err = -ENOENT;
3774                 goto out;
3775         }
3776
3777         *sub_root = new_root;
3778         location->objectid = btrfs_root_dirid(&new_root->root_item);
3779         location->type = BTRFS_INODE_ITEM_KEY;
3780         location->offset = 0;
3781         err = 0;
3782 out:
3783         btrfs_free_path(path);
3784         return err;
3785 }
3786
3787 static void inode_tree_add(struct inode *inode)
3788 {
3789         struct btrfs_root *root = BTRFS_I(inode)->root;
3790         struct btrfs_inode *entry;
3791         struct rb_node **p;
3792         struct rb_node *parent;
3793         u64 ino = btrfs_ino(inode);
3794 again:
3795         p = &root->inode_tree.rb_node;
3796         parent = NULL;
3797
3798         if (inode_unhashed(inode))
3799                 return;
3800
3801         spin_lock(&root->inode_lock);
3802         while (*p) {
3803                 parent = *p;
3804                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3805
3806                 if (ino < btrfs_ino(&entry->vfs_inode))
3807                         p = &parent->rb_left;
3808                 else if (ino > btrfs_ino(&entry->vfs_inode))
3809                         p = &parent->rb_right;
3810                 else {
3811                         WARN_ON(!(entry->vfs_inode.i_state &
3812                                   (I_WILL_FREE | I_FREEING)));
3813                         rb_erase(parent, &root->inode_tree);
3814                         RB_CLEAR_NODE(parent);
3815                         spin_unlock(&root->inode_lock);
3816                         goto again;
3817                 }
3818         }
3819         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3820         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3821         spin_unlock(&root->inode_lock);
3822 }
3823
3824 static void inode_tree_del(struct inode *inode)
3825 {
3826         struct btrfs_root *root = BTRFS_I(inode)->root;
3827         int empty = 0;
3828
3829         spin_lock(&root->inode_lock);
3830         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3831                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3832                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3833                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3834         }
3835         spin_unlock(&root->inode_lock);
3836
3837         /*
3838          * Free space cache has inodes in the tree root, but the tree root has a
3839          * root_refs of 0, so this could end up dropping the tree root as a
3840          * snapshot, so we need the extra !root->fs_info->tree_root check to
3841          * make sure we don't drop it.
3842          */
3843         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3844             root != root->fs_info->tree_root) {
3845                 synchronize_srcu(&root->fs_info->subvol_srcu);
3846                 spin_lock(&root->inode_lock);
3847                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3848                 spin_unlock(&root->inode_lock);
3849                 if (empty)
3850                         btrfs_add_dead_root(root);
3851         }
3852 }
3853
3854 int btrfs_invalidate_inodes(struct btrfs_root *root)
3855 {
3856         struct rb_node *node;
3857         struct rb_node *prev;
3858         struct btrfs_inode *entry;
3859         struct inode *inode;
3860         u64 objectid = 0;
3861
3862         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3863
3864         spin_lock(&root->inode_lock);
3865 again:
3866         node = root->inode_tree.rb_node;
3867         prev = NULL;
3868         while (node) {
3869                 prev = node;
3870                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3871
3872                 if (objectid < btrfs_ino(&entry->vfs_inode))
3873                         node = node->rb_left;
3874                 else if (objectid > btrfs_ino(&entry->vfs_inode))
3875                         node = node->rb_right;
3876                 else
3877                         break;
3878         }
3879         if (!node) {
3880                 while (prev) {
3881                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3882                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3883                                 node = prev;
3884                                 break;
3885                         }
3886                         prev = rb_next(prev);
3887                 }
3888         }
3889         while (node) {
3890                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3891                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3892                 inode = igrab(&entry->vfs_inode);
3893                 if (inode) {
3894                         spin_unlock(&root->inode_lock);
3895                         if (atomic_read(&inode->i_count) > 1)
3896                                 d_prune_aliases(inode);
3897                         /*
3898                          * btrfs_drop_inode will have it removed from
3899                          * the inode cache when its usage count
3900                          * hits zero.
3901                          */
3902                         iput(inode);
3903                         cond_resched();
3904                         spin_lock(&root->inode_lock);
3905                         goto again;
3906                 }
3907
3908                 if (cond_resched_lock(&root->inode_lock))
3909                         goto again;
3910
3911                 node = rb_next(node);
3912         }
3913         spin_unlock(&root->inode_lock);
3914         return 0;
3915 }
3916
3917 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3918 {
3919         struct btrfs_iget_args *args = p;
3920         inode->i_ino = args->ino;
3921         BTRFS_I(inode)->root = args->root;
3922         btrfs_set_inode_space_info(args->root, inode);
3923         return 0;
3924 }
3925
3926 static int btrfs_find_actor(struct inode *inode, void *opaque)
3927 {
3928         struct btrfs_iget_args *args = opaque;
3929         return args->ino == btrfs_ino(inode) &&
3930                 args->root == BTRFS_I(inode)->root;
3931 }
3932
3933 static struct inode *btrfs_iget_locked(struct super_block *s,
3934                                        u64 objectid,
3935                                        struct btrfs_root *root)
3936 {
3937         struct inode *inode;
3938         struct btrfs_iget_args args;
3939         args.ino = objectid;
3940         args.root = root;
3941
3942         inode = iget5_locked(s, objectid, btrfs_find_actor,
3943                              btrfs_init_locked_inode,
3944                              (void *)&args);
3945         return inode;
3946 }
3947
3948 /* Get an inode object given its location and corresponding root.
3949  * Returns in *is_new if the inode was read from disk
3950  */
3951 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3952                          struct btrfs_root *root, int *new)
3953 {
3954         struct inode *inode;
3955         int bad_inode = 0;
3956
3957         inode = btrfs_iget_locked(s, location->objectid, root);
3958         if (!inode)
3959                 return ERR_PTR(-ENOMEM);
3960
3961         if (inode->i_state & I_NEW) {
3962                 BTRFS_I(inode)->root = root;
3963                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3964                 btrfs_read_locked_inode(inode);
3965                 if (!is_bad_inode(inode)) {
3966                         inode_tree_add(inode);
3967                         unlock_new_inode(inode);
3968                         if (new)
3969                                 *new = 1;
3970                 } else {
3971                         bad_inode = 1;
3972                 }
3973         }
3974
3975         if (bad_inode) {
3976                 iput(inode);
3977                 inode = ERR_PTR(-ESTALE);
3978         }
3979
3980         return inode;
3981 }
3982
3983 static struct inode *new_simple_dir(struct super_block *s,
3984                                     struct btrfs_key *key,
3985                                     struct btrfs_root *root)
3986 {
3987         struct inode *inode = new_inode(s);
3988
3989         if (!inode)
3990                 return ERR_PTR(-ENOMEM);
3991
3992         BTRFS_I(inode)->root = root;
3993         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3994         BTRFS_I(inode)->dummy_inode = 1;
3995
3996         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3997         inode->i_op = &simple_dir_inode_operations;
3998         inode->i_fop = &simple_dir_operations;
3999         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4000         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4001
4002         return inode;
4003 }
4004
4005 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4006 {
4007         struct inode *inode;
4008         struct btrfs_root *root = BTRFS_I(dir)->root;
4009         struct btrfs_root *sub_root = root;
4010         struct btrfs_key location;
4011         int index;
4012         int ret;
4013
4014         if (dentry->d_name.len > BTRFS_NAME_LEN)
4015                 return ERR_PTR(-ENAMETOOLONG);
4016
4017         ret = btrfs_inode_by_name(dir, dentry, &location);
4018
4019         if (ret < 0)
4020                 return ERR_PTR(ret);
4021
4022         if (location.objectid == 0)
4023                 return NULL;
4024
4025         if (location.type == BTRFS_INODE_ITEM_KEY) {
4026                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4027                 return inode;
4028         }
4029
4030         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4031
4032         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4033         ret = fixup_tree_root_location(root, dir, dentry,
4034                                        &location, &sub_root);
4035         if (ret < 0) {
4036                 if (ret != -ENOENT)
4037                         inode = ERR_PTR(ret);
4038                 else
4039                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4040         } else {
4041                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4042         }
4043         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4044
4045         if (!IS_ERR(inode) && root != sub_root) {
4046                 down_read(&root->fs_info->cleanup_work_sem);
4047                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4048                         ret = btrfs_orphan_cleanup(sub_root);
4049                 up_read(&root->fs_info->cleanup_work_sem);
4050                 if (ret)
4051                         inode = ERR_PTR(ret);
4052         }
4053
4054         return inode;
4055 }
4056
4057 static int btrfs_dentry_delete(const struct dentry *dentry)
4058 {
4059         struct btrfs_root *root;
4060
4061         if (!dentry->d_inode && !IS_ROOT(dentry))
4062                 dentry = dentry->d_parent;
4063
4064         if (dentry->d_inode) {
4065                 root = BTRFS_I(dentry->d_inode)->root;
4066                 if (btrfs_root_refs(&root->root_item) == 0)
4067                         return 1;
4068         }
4069         return 0;
4070 }
4071
4072 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4073                                    struct nameidata *nd)
4074 {
4075         struct inode *inode;
4076
4077         inode = btrfs_lookup_dentry(dir, dentry);
4078         if (IS_ERR(inode))
4079                 return ERR_CAST(inode);
4080
4081         return d_splice_alias(inode, dentry);
4082 }
4083
4084 unsigned char btrfs_filetype_table[] = {
4085         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4086 };
4087
4088 static int btrfs_real_readdir(struct file *filp, void *dirent,
4089                               filldir_t filldir)
4090 {
4091         struct inode *inode = filp->f_dentry->d_inode;
4092         struct btrfs_root *root = BTRFS_I(inode)->root;
4093         struct btrfs_item *item;
4094         struct btrfs_dir_item *di;
4095         struct btrfs_key key;
4096         struct btrfs_key found_key;
4097         struct btrfs_path *path;
4098         struct list_head ins_list;
4099         struct list_head del_list;
4100         int ret;
4101         struct extent_buffer *leaf;
4102         int slot;
4103         unsigned char d_type;
4104         int over = 0;
4105         u32 di_cur;
4106         u32 di_total;
4107         u32 di_len;
4108         int key_type = BTRFS_DIR_INDEX_KEY;
4109         char tmp_name[32];
4110         char *name_ptr;
4111         int name_len;
4112         int is_curr = 0;        /* filp->f_pos points to the current index? */
4113
4114         /* FIXME, use a real flag for deciding about the key type */
4115         if (root->fs_info->tree_root == root)
4116                 key_type = BTRFS_DIR_ITEM_KEY;
4117
4118         /* special case for "." */
4119         if (filp->f_pos == 0) {
4120                 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4121                 if (over)
4122                         return 0;
4123                 filp->f_pos = 1;
4124         }
4125         /* special case for .., just use the back ref */
4126         if (filp->f_pos == 1) {
4127                 u64 pino = parent_ino(filp->f_path.dentry);
4128                 over = filldir(dirent, "..", 2,
4129                                2, pino, DT_DIR);
4130                 if (over)
4131                         return 0;
4132                 filp->f_pos = 2;
4133         }
4134         path = btrfs_alloc_path();
4135         if (!path)
4136                 return -ENOMEM;
4137
4138         path->reada = 1;
4139
4140         if (key_type == BTRFS_DIR_INDEX_KEY) {
4141                 INIT_LIST_HEAD(&ins_list);
4142                 INIT_LIST_HEAD(&del_list);
4143                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4144         }
4145
4146         btrfs_set_key_type(&key, key_type);
4147         key.offset = filp->f_pos;
4148         key.objectid = btrfs_ino(inode);
4149
4150         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4151         if (ret < 0)
4152                 goto err;
4153
4154         while (1) {
4155                 leaf = path->nodes[0];
4156                 slot = path->slots[0];
4157                 if (slot >= btrfs_header_nritems(leaf)) {
4158                         ret = btrfs_next_leaf(root, path);
4159                         if (ret < 0)
4160                                 goto err;
4161                         else if (ret > 0)
4162                                 break;
4163                         continue;
4164                 }
4165
4166                 item = btrfs_item_nr(leaf, slot);
4167                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4168
4169                 if (found_key.objectid != key.objectid)
4170                         break;
4171                 if (btrfs_key_type(&found_key) != key_type)
4172                         break;
4173                 if (found_key.offset < filp->f_pos)
4174                         goto next;
4175                 if (key_type == BTRFS_DIR_INDEX_KEY &&
4176                     btrfs_should_delete_dir_index(&del_list,
4177                                                   found_key.offset))
4178                         goto next;
4179
4180                 filp->f_pos = found_key.offset;
4181                 is_curr = 1;
4182
4183                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4184                 di_cur = 0;
4185                 di_total = btrfs_item_size(leaf, item);
4186
4187                 while (di_cur < di_total) {
4188                         struct btrfs_key location;
4189
4190                         if (verify_dir_item(root, leaf, di))
4191                                 break;
4192
4193                         name_len = btrfs_dir_name_len(leaf, di);
4194                         if (name_len <= sizeof(tmp_name)) {
4195                                 name_ptr = tmp_name;
4196                         } else {
4197                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4198                                 if (!name_ptr) {
4199                                         ret = -ENOMEM;
4200                                         goto err;
4201                                 }
4202                         }
4203                         read_extent_buffer(leaf, name_ptr,
4204                                            (unsigned long)(di + 1), name_len);
4205
4206                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4207                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4208
4209                         /* is this a reference to our own snapshot? If so
4210                          * skip it
4211                          */
4212                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4213                             location.objectid == root->root_key.objectid) {
4214                                 over = 0;
4215                                 goto skip;
4216                         }
4217                         over = filldir(dirent, name_ptr, name_len,
4218                                        found_key.offset, location.objectid,
4219                                        d_type);
4220
4221 skip:
4222                         if (name_ptr != tmp_name)
4223                                 kfree(name_ptr);
4224
4225                         if (over)
4226                                 goto nopos;
4227                         di_len = btrfs_dir_name_len(leaf, di) +
4228                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4229                         di_cur += di_len;
4230                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4231                 }
4232 next:
4233                 path->slots[0]++;
4234         }
4235
4236         if (key_type == BTRFS_DIR_INDEX_KEY) {
4237                 if (is_curr)
4238                         filp->f_pos++;
4239                 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4240                                                       &ins_list);
4241                 if (ret)
4242                         goto nopos;
4243         }
4244
4245         /* Reached end of directory/root. Bump pos past the last item. */
4246         if (key_type == BTRFS_DIR_INDEX_KEY)
4247                 /*
4248                  * 32-bit glibc will use getdents64, but then strtol -
4249                  * so the last number we can serve is this.
4250                  */
4251                 filp->f_pos = 0x7fffffff;
4252         else
4253                 filp->f_pos++;
4254 nopos:
4255         ret = 0;
4256 err:
4257         if (key_type == BTRFS_DIR_INDEX_KEY)
4258                 btrfs_put_delayed_items(&ins_list, &del_list);
4259         btrfs_free_path(path);
4260         return ret;
4261 }
4262
4263 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4264 {
4265         struct btrfs_root *root = BTRFS_I(inode)->root;
4266         struct btrfs_trans_handle *trans;
4267         int ret = 0;
4268         bool nolock = false;
4269
4270         if (BTRFS_I(inode)->dummy_inode)
4271                 return 0;
4272
4273         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4274                 nolock = true;
4275
4276         if (wbc->sync_mode == WB_SYNC_ALL) {
4277                 if (nolock)
4278                         trans = btrfs_join_transaction_nolock(root);
4279                 else
4280                         trans = btrfs_join_transaction(root);
4281                 if (IS_ERR(trans))
4282                         return PTR_ERR(trans);
4283                 if (nolock)
4284                         ret = btrfs_end_transaction_nolock(trans, root);
4285                 else
4286                         ret = btrfs_commit_transaction(trans, root);
4287         }
4288         return ret;
4289 }
4290
4291 /*
4292  * This is somewhat expensive, updating the tree every time the
4293  * inode changes.  But, it is most likely to find the inode in cache.
4294  * FIXME, needs more benchmarking...there are no reasons other than performance
4295  * to keep or drop this code.
4296  */
4297 void btrfs_dirty_inode(struct inode *inode, int flags)
4298 {
4299         struct btrfs_root *root = BTRFS_I(inode)->root;
4300         struct btrfs_trans_handle *trans;
4301         int ret;
4302
4303         if (BTRFS_I(inode)->dummy_inode)
4304                 return;
4305
4306         trans = btrfs_join_transaction(root);
4307         BUG_ON(IS_ERR(trans));
4308
4309         ret = btrfs_update_inode(trans, root, inode);
4310         if (ret && ret == -ENOSPC) {
4311                 /* whoops, lets try again with the full transaction */
4312                 btrfs_end_transaction(trans, root);
4313                 trans = btrfs_start_transaction(root, 1);
4314                 if (IS_ERR(trans)) {
4315                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4316                                        "dirty  inode %llu error %ld\n",
4317                                        (unsigned long long)btrfs_ino(inode),
4318                                        PTR_ERR(trans));
4319                         return;
4320                 }
4321
4322                 ret = btrfs_update_inode(trans, root, inode);
4323                 if (ret) {
4324                         printk_ratelimited(KERN_ERR "btrfs: fail to "
4325                                        "dirty  inode %llu error %d\n",
4326                                        (unsigned long long)btrfs_ino(inode),
4327                                        ret);
4328                 }
4329         }
4330         btrfs_end_transaction(trans, root);
4331         if (BTRFS_I(inode)->delayed_node)
4332                 btrfs_balance_delayed_items(root);
4333 }
4334
4335 /*
4336  * find the highest existing sequence number in a directory
4337  * and then set the in-memory index_cnt variable to reflect
4338  * free sequence numbers
4339  */
4340 static int btrfs_set_inode_index_count(struct inode *inode)
4341 {
4342         struct btrfs_root *root = BTRFS_I(inode)->root;
4343         struct btrfs_key key, found_key;
4344         struct btrfs_path *path;
4345         struct extent_buffer *leaf;
4346         int ret;
4347
4348         key.objectid = btrfs_ino(inode);
4349         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4350         key.offset = (u64)-1;
4351
4352         path = btrfs_alloc_path();
4353         if (!path)
4354                 return -ENOMEM;
4355
4356         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4357         if (ret < 0)
4358                 goto out;
4359         /* FIXME: we should be able to handle this */
4360         if (ret == 0)
4361                 goto out;
4362         ret = 0;
4363
4364         /*
4365          * MAGIC NUMBER EXPLANATION:
4366          * since we search a directory based on f_pos we have to start at 2
4367          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4368          * else has to start at 2
4369          */
4370         if (path->slots[0] == 0) {
4371                 BTRFS_I(inode)->index_cnt = 2;
4372                 goto out;
4373         }
4374
4375         path->slots[0]--;
4376
4377         leaf = path->nodes[0];
4378         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4379
4380         if (found_key.objectid != btrfs_ino(inode) ||
4381             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4382                 BTRFS_I(inode)->index_cnt = 2;
4383                 goto out;
4384         }
4385
4386         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4387 out:
4388         btrfs_free_path(path);
4389         return ret;
4390 }
4391
4392 /*
4393  * helper to find a free sequence number in a given directory.  This current
4394  * code is very simple, later versions will do smarter things in the btree
4395  */
4396 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4397 {
4398         int ret = 0;
4399
4400         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4401                 ret = btrfs_inode_delayed_dir_index_count(dir);
4402                 if (ret) {
4403                         ret = btrfs_set_inode_index_count(dir);
4404                         if (ret)
4405                                 return ret;
4406                 }
4407         }
4408
4409         *index = BTRFS_I(dir)->index_cnt;
4410         BTRFS_I(dir)->index_cnt++;
4411
4412         return ret;
4413 }
4414
4415 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4416                                      struct btrfs_root *root,
4417                                      struct inode *dir,
4418                                      const char *name, int name_len,
4419                                      u64 ref_objectid, u64 objectid, int mode,
4420                                      u64 *index)
4421 {
4422         struct inode *inode;
4423         struct btrfs_inode_item *inode_item;
4424         struct btrfs_key *location;
4425         struct btrfs_path *path;
4426         struct btrfs_inode_ref *ref;
4427         struct btrfs_key key[2];
4428         u32 sizes[2];
4429         unsigned long ptr;
4430         int ret;
4431         int owner;
4432
4433         path = btrfs_alloc_path();
4434         if (!path)
4435                 return ERR_PTR(-ENOMEM);
4436
4437         inode = new_inode(root->fs_info->sb);
4438         if (!inode) {
4439                 btrfs_free_path(path);
4440                 return ERR_PTR(-ENOMEM);
4441         }
4442
4443         /*
4444          * we have to initialize this early, so we can reclaim the inode
4445          * number if we fail afterwards in this function.
4446          */
4447         inode->i_ino = objectid;
4448
4449         if (dir) {
4450                 trace_btrfs_inode_request(dir);
4451
4452                 ret = btrfs_set_inode_index(dir, index);
4453                 if (ret) {
4454                         btrfs_free_path(path);
4455                         iput(inode);
4456                         return ERR_PTR(ret);
4457                 }
4458         }
4459         /*
4460          * index_cnt is ignored for everything but a dir,
4461          * btrfs_get_inode_index_count has an explanation for the magic
4462          * number
4463          */
4464         BTRFS_I(inode)->index_cnt = 2;
4465         BTRFS_I(inode)->root = root;
4466         BTRFS_I(inode)->generation = trans->transid;
4467         inode->i_generation = BTRFS_I(inode)->generation;
4468         btrfs_set_inode_space_info(root, inode);
4469
4470         if (mode & S_IFDIR)
4471                 owner = 0;
4472         else
4473                 owner = 1;
4474
4475         key[0].objectid = objectid;
4476         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4477         key[0].offset = 0;
4478
4479         key[1].objectid = objectid;
4480         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4481         key[1].offset = ref_objectid;
4482
4483         sizes[0] = sizeof(struct btrfs_inode_item);
4484         sizes[1] = name_len + sizeof(*ref);
4485
4486         path->leave_spinning = 1;
4487         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4488         if (ret != 0)
4489                 goto fail;
4490
4491         inode_init_owner(inode, dir, mode);
4492         inode_set_bytes(inode, 0);
4493         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4494         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4495                                   struct btrfs_inode_item);
4496         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4497
4498         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4499                              struct btrfs_inode_ref);
4500         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4501         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4502         ptr = (unsigned long)(ref + 1);
4503         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4504
4505         btrfs_mark_buffer_dirty(path->nodes[0]);
4506         btrfs_free_path(path);
4507
4508         location = &BTRFS_I(inode)->location;
4509         location->objectid = objectid;
4510         location->offset = 0;
4511         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4512
4513         btrfs_inherit_iflags(inode, dir);
4514
4515         if ((mode & S_IFREG)) {
4516                 if (btrfs_test_opt(root, NODATASUM))
4517                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4518                 if (btrfs_test_opt(root, NODATACOW) ||
4519                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4520                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4521         }
4522
4523         insert_inode_hash(inode);
4524         inode_tree_add(inode);
4525
4526         trace_btrfs_inode_new(inode);
4527         btrfs_set_inode_last_trans(trans, inode);
4528
4529         return inode;
4530 fail:
4531         if (dir)
4532                 BTRFS_I(dir)->index_cnt--;
4533         btrfs_free_path(path);
4534         iput(inode);
4535         return ERR_PTR(ret);
4536 }
4537
4538 static inline u8 btrfs_inode_type(struct inode *inode)
4539 {
4540         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4541 }
4542
4543 /*
4544  * utility function to add 'inode' into 'parent_inode' with
4545  * a give name and a given sequence number.
4546  * if 'add_backref' is true, also insert a backref from the
4547  * inode to the parent directory.
4548  */
4549 int btrfs_add_link(struct btrfs_trans_handle *trans,
4550                    struct inode *parent_inode, struct inode *inode,
4551                    const char *name, int name_len, int add_backref, u64 index)
4552 {
4553         int ret = 0;
4554         struct btrfs_key key;
4555         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4556         u64 ino = btrfs_ino(inode);
4557         u64 parent_ino = btrfs_ino(parent_inode);
4558
4559         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4560                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4561         } else {
4562                 key.objectid = ino;
4563                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4564                 key.offset = 0;
4565         }
4566
4567         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4568                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4569                                          key.objectid, root->root_key.objectid,
4570                                          parent_ino, index, name, name_len);
4571         } else if (add_backref) {
4572                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4573                                              parent_ino, index);
4574         }
4575
4576         if (ret == 0) {
4577                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4578                                             parent_inode, &key,
4579                                             btrfs_inode_type(inode), index);
4580                 BUG_ON(ret);
4581
4582                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4583                                    name_len * 2);
4584                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4585                 ret = btrfs_update_inode(trans, root, parent_inode);
4586         }
4587         return ret;
4588 }
4589
4590 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4591                             struct inode *dir, struct dentry *dentry,
4592                             struct inode *inode, int backref, u64 index)
4593 {
4594         int err = btrfs_add_link(trans, dir, inode,
4595                                  dentry->d_name.name, dentry->d_name.len,
4596                                  backref, index);
4597         if (!err) {
4598                 d_instantiate(dentry, inode);
4599                 return 0;
4600         }
4601         if (err > 0)
4602                 err = -EEXIST;
4603         return err;
4604 }
4605
4606 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4607                         int mode, dev_t rdev)
4608 {
4609         struct btrfs_trans_handle *trans;
4610         struct btrfs_root *root = BTRFS_I(dir)->root;
4611         struct inode *inode = NULL;
4612         int err;
4613         int drop_inode = 0;
4614         u64 objectid;
4615         unsigned long nr = 0;
4616         u64 index = 0;
4617
4618         if (!new_valid_dev(rdev))
4619                 return -EINVAL;
4620
4621         /*
4622          * 2 for inode item and ref
4623          * 2 for dir items
4624          * 1 for xattr if selinux is on
4625          */
4626         trans = btrfs_start_transaction(root, 5);
4627         if (IS_ERR(trans))
4628                 return PTR_ERR(trans);
4629
4630         err = btrfs_find_free_ino(root, &objectid);
4631         if (err)
4632                 goto out_unlock;
4633
4634         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4635                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4636                                 mode, &index);
4637         if (IS_ERR(inode)) {
4638                 err = PTR_ERR(inode);
4639                 goto out_unlock;
4640         }
4641
4642         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4643         if (err) {
4644                 drop_inode = 1;
4645                 goto out_unlock;
4646         }
4647
4648         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4649         if (err)
4650                 drop_inode = 1;
4651         else {
4652                 inode->i_op = &btrfs_special_inode_operations;
4653                 init_special_inode(inode, inode->i_mode, rdev);
4654                 btrfs_update_inode(trans, root, inode);
4655         }
4656 out_unlock:
4657         nr = trans->blocks_used;
4658         btrfs_end_transaction_throttle(trans, root);
4659         btrfs_btree_balance_dirty(root, nr);
4660         if (drop_inode) {
4661                 inode_dec_link_count(inode);
4662                 iput(inode);
4663         }
4664         return err;
4665 }
4666
4667 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4668                         int mode, struct nameidata *nd)
4669 {
4670         struct btrfs_trans_handle *trans;
4671         struct btrfs_root *root = BTRFS_I(dir)->root;
4672         struct inode *inode = NULL;
4673         int drop_inode = 0;
4674         int err;
4675         unsigned long nr = 0;
4676         u64 objectid;
4677         u64 index = 0;
4678
4679         /*
4680          * 2 for inode item and ref
4681          * 2 for dir items
4682          * 1 for xattr if selinux is on
4683          */
4684         trans = btrfs_start_transaction(root, 5);
4685         if (IS_ERR(trans))
4686                 return PTR_ERR(trans);
4687
4688         err = btrfs_find_free_ino(root, &objectid);
4689         if (err)
4690                 goto out_unlock;
4691
4692         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4693                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4694                                 mode, &index);
4695         if (IS_ERR(inode)) {
4696                 err = PTR_ERR(inode);
4697                 goto out_unlock;
4698         }
4699
4700         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4701         if (err) {
4702                 drop_inode = 1;
4703                 goto out_unlock;
4704         }
4705
4706         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4707         if (err)
4708                 drop_inode = 1;
4709         else {
4710                 inode->i_mapping->a_ops = &btrfs_aops;
4711                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4712                 inode->i_fop = &btrfs_file_operations;
4713                 inode->i_op = &btrfs_file_inode_operations;
4714                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4715         }
4716 out_unlock:
4717         nr = trans->blocks_used;
4718         btrfs_end_transaction_throttle(trans, root);
4719         if (drop_inode) {
4720                 inode_dec_link_count(inode);
4721                 iput(inode);
4722         }
4723         btrfs_btree_balance_dirty(root, nr);
4724         return err;
4725 }
4726
4727 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4728                       struct dentry *dentry)
4729 {
4730         struct btrfs_trans_handle *trans;
4731         struct btrfs_root *root = BTRFS_I(dir)->root;
4732         struct inode *inode = old_dentry->d_inode;
4733         u64 index;
4734         unsigned long nr = 0;
4735         int err;
4736         int drop_inode = 0;
4737
4738         /* do not allow sys_link's with other subvols of the same device */
4739         if (root->objectid != BTRFS_I(inode)->root->objectid)
4740                 return -EXDEV;
4741
4742         if (inode->i_nlink == ~0U)
4743                 return -EMLINK;
4744
4745         err = btrfs_set_inode_index(dir, &index);
4746         if (err)
4747                 goto fail;
4748
4749         /*
4750          * 2 items for inode and inode ref
4751          * 2 items for dir items
4752          * 1 item for parent inode
4753          */
4754         trans = btrfs_start_transaction(root, 5);
4755         if (IS_ERR(trans)) {
4756                 err = PTR_ERR(trans);
4757                 goto fail;
4758         }
4759
4760         btrfs_inc_nlink(inode);
4761         inode->i_ctime = CURRENT_TIME;
4762         ihold(inode);
4763
4764         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4765
4766         if (err) {
4767                 drop_inode = 1;
4768         } else {
4769                 struct dentry *parent = dget_parent(dentry);
4770                 err = btrfs_update_inode(trans, root, inode);
4771                 BUG_ON(err);
4772                 btrfs_log_new_name(trans, inode, NULL, parent);
4773                 dput(parent);
4774         }
4775
4776         nr = trans->blocks_used;
4777         btrfs_end_transaction_throttle(trans, root);
4778 fail:
4779         if (drop_inode) {
4780                 inode_dec_link_count(inode);
4781                 iput(inode);
4782         }
4783         btrfs_btree_balance_dirty(root, nr);
4784         return err;
4785 }
4786
4787 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4788 {
4789         struct inode *inode = NULL;
4790         struct btrfs_trans_handle *trans;
4791         struct btrfs_root *root = BTRFS_I(dir)->root;
4792         int err = 0;
4793         int drop_on_err = 0;
4794         u64 objectid = 0;
4795         u64 index = 0;
4796         unsigned long nr = 1;
4797
4798         /*
4799          * 2 items for inode and ref
4800          * 2 items for dir items
4801          * 1 for xattr if selinux is on
4802          */
4803         trans = btrfs_start_transaction(root, 5);
4804         if (IS_ERR(trans))
4805                 return PTR_ERR(trans);
4806
4807         err = btrfs_find_free_ino(root, &objectid);
4808         if (err)
4809                 goto out_fail;
4810
4811         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4812                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4813                                 S_IFDIR | mode, &index);
4814         if (IS_ERR(inode)) {
4815                 err = PTR_ERR(inode);
4816                 goto out_fail;
4817         }
4818
4819         drop_on_err = 1;
4820
4821         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4822         if (err)
4823                 goto out_fail;
4824
4825         inode->i_op = &btrfs_dir_inode_operations;
4826         inode->i_fop = &btrfs_dir_file_operations;
4827
4828         btrfs_i_size_write(inode, 0);
4829         err = btrfs_update_inode(trans, root, inode);
4830         if (err)
4831                 goto out_fail;
4832
4833         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4834                              dentry->d_name.len, 0, index);
4835         if (err)
4836                 goto out_fail;
4837
4838         d_instantiate(dentry, inode);
4839         drop_on_err = 0;
4840
4841 out_fail:
4842         nr = trans->blocks_used;
4843         btrfs_end_transaction_throttle(trans, root);
4844         if (drop_on_err)
4845                 iput(inode);
4846         btrfs_btree_balance_dirty(root, nr);
4847         return err;
4848 }
4849
4850 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4851  * and an extent that you want to insert, deal with overlap and insert
4852  * the new extent into the tree.
4853  */
4854 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4855                                 struct extent_map *existing,
4856                                 struct extent_map *em,
4857                                 u64 map_start, u64 map_len)
4858 {
4859         u64 start_diff;
4860
4861         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4862         start_diff = map_start - em->start;
4863         em->start = map_start;
4864         em->len = map_len;
4865         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4866             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4867                 em->block_start += start_diff;
4868                 em->block_len -= start_diff;
4869         }
4870         return add_extent_mapping(em_tree, em);
4871 }
4872
4873 static noinline int uncompress_inline(struct btrfs_path *path,
4874                                       struct inode *inode, struct page *page,
4875                                       size_t pg_offset, u64 extent_offset,
4876                                       struct btrfs_file_extent_item *item)
4877 {
4878         int ret;
4879         struct extent_buffer *leaf = path->nodes[0];
4880         char *tmp;
4881         size_t max_size;
4882         unsigned long inline_size;
4883         unsigned long ptr;
4884         int compress_type;
4885
4886         WARN_ON(pg_offset != 0);
4887         compress_type = btrfs_file_extent_compression(leaf, item);
4888         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4889         inline_size = btrfs_file_extent_inline_item_len(leaf,
4890                                         btrfs_item_nr(leaf, path->slots[0]));
4891         tmp = kmalloc(inline_size, GFP_NOFS);
4892         if (!tmp)
4893                 return -ENOMEM;
4894         ptr = btrfs_file_extent_inline_start(item);
4895
4896         read_extent_buffer(leaf, tmp, ptr, inline_size);
4897
4898         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4899         ret = btrfs_decompress(compress_type, tmp, page,
4900                                extent_offset, inline_size, max_size);
4901         if (ret) {
4902                 char *kaddr = kmap_atomic(page, KM_USER0);
4903                 unsigned long copy_size = min_t(u64,
4904                                   PAGE_CACHE_SIZE - pg_offset,
4905                                   max_size - extent_offset);
4906                 memset(kaddr + pg_offset, 0, copy_size);
4907                 kunmap_atomic(kaddr, KM_USER0);
4908         }
4909         kfree(tmp);
4910         return 0;
4911 }
4912
4913 /*
4914  * a bit scary, this does extent mapping from logical file offset to the disk.
4915  * the ugly parts come from merging extents from the disk with the in-ram
4916  * representation.  This gets more complex because of the data=ordered code,
4917  * where the in-ram extents might be locked pending data=ordered completion.
4918  *
4919  * This also copies inline extents directly into the page.
4920  */
4921
4922 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4923                                     size_t pg_offset, u64 start, u64 len,
4924                                     int create)
4925 {
4926         int ret;
4927         int err = 0;
4928         u64 bytenr;
4929         u64 extent_start = 0;
4930         u64 extent_end = 0;
4931         u64 objectid = btrfs_ino(inode);
4932         u32 found_type;
4933         struct btrfs_path *path = NULL;
4934         struct btrfs_root *root = BTRFS_I(inode)->root;
4935         struct btrfs_file_extent_item *item;
4936         struct extent_buffer *leaf;
4937         struct btrfs_key found_key;
4938         struct extent_map *em = NULL;
4939         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4940         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4941         struct btrfs_trans_handle *trans = NULL;
4942         int compress_type;
4943
4944 again:
4945         read_lock(&em_tree->lock);
4946         em = lookup_extent_mapping(em_tree, start, len);
4947         if (em)
4948                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4949         read_unlock(&em_tree->lock);
4950
4951         if (em) {
4952                 if (em->start > start || em->start + em->len <= start)
4953                         free_extent_map(em);
4954                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4955                         free_extent_map(em);
4956                 else
4957                         goto out;
4958         }
4959         em = alloc_extent_map();
4960         if (!em) {
4961                 err = -ENOMEM;
4962                 goto out;
4963         }
4964         em->bdev = root->fs_info->fs_devices->latest_bdev;
4965         em->start = EXTENT_MAP_HOLE;
4966         em->orig_start = EXTENT_MAP_HOLE;
4967         em->len = (u64)-1;
4968         em->block_len = (u64)-1;
4969
4970         if (!path) {
4971                 path = btrfs_alloc_path();
4972                 if (!path) {
4973                         err = -ENOMEM;
4974                         goto out;
4975                 }
4976                 /*
4977                  * Chances are we'll be called again, so go ahead and do
4978                  * readahead
4979                  */
4980                 path->reada = 1;
4981         }
4982
4983         ret = btrfs_lookup_file_extent(trans, root, path,
4984                                        objectid, start, trans != NULL);
4985         if (ret < 0) {
4986                 err = ret;
4987                 goto out;
4988         }
4989
4990         if (ret != 0) {
4991                 if (path->slots[0] == 0)
4992                         goto not_found;
4993                 path->slots[0]--;
4994         }
4995
4996         leaf = path->nodes[0];
4997         item = btrfs_item_ptr(leaf, path->slots[0],
4998                               struct btrfs_file_extent_item);
4999         /* are we inside the extent that was found? */
5000         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5001         found_type = btrfs_key_type(&found_key);
5002         if (found_key.objectid != objectid ||
5003             found_type != BTRFS_EXTENT_DATA_KEY) {
5004                 goto not_found;
5005         }
5006
5007         found_type = btrfs_file_extent_type(leaf, item);
5008         extent_start = found_key.offset;
5009         compress_type = btrfs_file_extent_compression(leaf, item);
5010         if (found_type == BTRFS_FILE_EXTENT_REG ||
5011             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5012                 extent_end = extent_start +
5013                        btrfs_file_extent_num_bytes(leaf, item);
5014         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5015                 size_t size;
5016                 size = btrfs_file_extent_inline_len(leaf, item);
5017                 extent_end = (extent_start + size + root->sectorsize - 1) &
5018                         ~((u64)root->sectorsize - 1);
5019         }
5020
5021         if (start >= extent_end) {
5022                 path->slots[0]++;
5023                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5024                         ret = btrfs_next_leaf(root, path);
5025                         if (ret < 0) {
5026                                 err = ret;
5027                                 goto out;
5028                         }
5029                         if (ret > 0)
5030                                 goto not_found;
5031                         leaf = path->nodes[0];
5032                 }
5033                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5034                 if (found_key.objectid != objectid ||
5035                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5036                         goto not_found;
5037                 if (start + len <= found_key.offset)
5038                         goto not_found;
5039                 em->start = start;
5040                 em->len = found_key.offset - start;
5041                 goto not_found_em;
5042         }
5043
5044         if (found_type == BTRFS_FILE_EXTENT_REG ||
5045             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5046                 em->start = extent_start;
5047                 em->len = extent_end - extent_start;
5048                 em->orig_start = extent_start -
5049                                  btrfs_file_extent_offset(leaf, item);
5050                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5051                 if (bytenr == 0) {
5052                         em->block_start = EXTENT_MAP_HOLE;
5053                         goto insert;
5054                 }
5055                 if (compress_type != BTRFS_COMPRESS_NONE) {
5056                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5057                         em->compress_type = compress_type;
5058                         em->block_start = bytenr;
5059                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5060                                                                          item);
5061                 } else {
5062                         bytenr += btrfs_file_extent_offset(leaf, item);
5063                         em->block_start = bytenr;
5064                         em->block_len = em->len;
5065                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5066                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5067                 }
5068                 goto insert;
5069         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5070                 unsigned long ptr;
5071                 char *map;
5072                 size_t size;
5073                 size_t extent_offset;
5074                 size_t copy_size;
5075
5076                 em->block_start = EXTENT_MAP_INLINE;
5077                 if (!page || create) {
5078                         em->start = extent_start;
5079                         em->len = extent_end - extent_start;
5080                         goto out;
5081                 }
5082
5083                 size = btrfs_file_extent_inline_len(leaf, item);
5084                 extent_offset = page_offset(page) + pg_offset - extent_start;
5085                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5086                                 size - extent_offset);
5087                 em->start = extent_start + extent_offset;
5088                 em->len = (copy_size + root->sectorsize - 1) &
5089                         ~((u64)root->sectorsize - 1);
5090                 em->orig_start = EXTENT_MAP_INLINE;
5091                 if (compress_type) {
5092                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5093                         em->compress_type = compress_type;
5094                 }
5095                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5096                 if (create == 0 && !PageUptodate(page)) {
5097                         if (btrfs_file_extent_compression(leaf, item) !=
5098                             BTRFS_COMPRESS_NONE) {
5099                                 ret = uncompress_inline(path, inode, page,
5100                                                         pg_offset,
5101                                                         extent_offset, item);
5102                                 BUG_ON(ret);
5103                         } else {
5104                                 map = kmap(page);
5105                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5106                                                    copy_size);
5107                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5108                                         memset(map + pg_offset + copy_size, 0,
5109                                                PAGE_CACHE_SIZE - pg_offset -
5110                                                copy_size);
5111                                 }
5112                                 kunmap(page);
5113                         }
5114                         flush_dcache_page(page);
5115                 } else if (create && PageUptodate(page)) {
5116                         WARN_ON(1);
5117                         if (!trans) {
5118                                 kunmap(page);
5119                                 free_extent_map(em);
5120                                 em = NULL;
5121
5122                                 btrfs_release_path(path);
5123                                 trans = btrfs_join_transaction(root);
5124
5125                                 if (IS_ERR(trans))
5126                                         return ERR_CAST(trans);
5127                                 goto again;
5128                         }
5129                         map = kmap(page);
5130                         write_extent_buffer(leaf, map + pg_offset, ptr,
5131                                             copy_size);
5132                         kunmap(page);
5133                         btrfs_mark_buffer_dirty(leaf);
5134                 }
5135                 set_extent_uptodate(io_tree, em->start,
5136                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
5137                 goto insert;
5138         } else {
5139                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5140                 WARN_ON(1);
5141         }
5142 not_found:
5143         em->start = start;
5144         em->len = len;
5145 not_found_em:
5146         em->block_start = EXTENT_MAP_HOLE;
5147         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5148 insert:
5149         btrfs_release_path(path);
5150         if (em->start > start || extent_map_end(em) <= start) {
5151                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5152                        "[%llu %llu]\n", (unsigned long long)em->start,
5153                        (unsigned long long)em->len,
5154                        (unsigned long long)start,
5155                        (unsigned long long)len);
5156                 err = -EIO;
5157                 goto out;
5158         }
5159
5160         err = 0;
5161         write_lock(&em_tree->lock);
5162         ret = add_extent_mapping(em_tree, em);
5163         /* it is possible that someone inserted the extent into the tree
5164          * while we had the lock dropped.  It is also possible that
5165          * an overlapping map exists in the tree
5166          */
5167         if (ret == -EEXIST) {
5168                 struct extent_map *existing;
5169
5170                 ret = 0;
5171
5172                 existing = lookup_extent_mapping(em_tree, start, len);
5173                 if (existing && (existing->start > start ||
5174                     existing->start + existing->len <= start)) {
5175                         free_extent_map(existing);
5176                         existing = NULL;
5177                 }
5178                 if (!existing) {
5179                         existing = lookup_extent_mapping(em_tree, em->start,
5180                                                          em->len);
5181                         if (existing) {
5182                                 err = merge_extent_mapping(em_tree, existing,
5183                                                            em, start,
5184                                                            root->sectorsize);
5185                                 free_extent_map(existing);
5186                                 if (err) {
5187                                         free_extent_map(em);
5188                                         em = NULL;
5189                                 }
5190                         } else {
5191                                 err = -EIO;
5192                                 free_extent_map(em);
5193                                 em = NULL;
5194                         }
5195                 } else {
5196                         free_extent_map(em);
5197                         em = existing;
5198                         err = 0;
5199                 }
5200         }
5201         write_unlock(&em_tree->lock);
5202 out:
5203
5204         trace_btrfs_get_extent(root, em);
5205
5206         if (path)
5207                 btrfs_free_path(path);
5208         if (trans) {
5209                 ret = btrfs_end_transaction(trans, root);
5210                 if (!err)
5211                         err = ret;
5212         }
5213         if (err) {
5214                 free_extent_map(em);
5215                 return ERR_PTR(err);
5216         }
5217         return em;
5218 }
5219
5220 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5221                                            size_t pg_offset, u64 start, u64 len,
5222                                            int create)
5223 {
5224         struct extent_map *em;
5225         struct extent_map *hole_em = NULL;
5226         u64 range_start = start;
5227         u64 end;
5228         u64 found;
5229         u64 found_end;
5230         int err = 0;
5231
5232         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5233         if (IS_ERR(em))
5234                 return em;
5235         if (em) {
5236                 /*
5237                  * if our em maps to a hole, there might
5238                  * actually be delalloc bytes behind it
5239                  */
5240                 if (em->block_start != EXTENT_MAP_HOLE)
5241                         return em;
5242                 else
5243                         hole_em = em;
5244         }
5245
5246         /* check to see if we've wrapped (len == -1 or similar) */
5247         end = start + len;
5248         if (end < start)
5249                 end = (u64)-1;
5250         else
5251                 end -= 1;
5252
5253         em = NULL;
5254
5255         /* ok, we didn't find anything, lets look for delalloc */
5256         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5257                                  end, len, EXTENT_DELALLOC, 1);
5258         found_end = range_start + found;
5259         if (found_end < range_start)
5260                 found_end = (u64)-1;
5261
5262         /*
5263          * we didn't find anything useful, return
5264          * the original results from get_extent()
5265          */
5266         if (range_start > end || found_end <= start) {
5267                 em = hole_em;
5268                 hole_em = NULL;
5269                 goto out;
5270         }
5271
5272         /* adjust the range_start to make sure it doesn't
5273          * go backwards from the start they passed in
5274          */
5275         range_start = max(start,range_start);
5276         found = found_end - range_start;
5277
5278         if (found > 0) {
5279                 u64 hole_start = start;
5280                 u64 hole_len = len;
5281
5282                 em = alloc_extent_map();
5283                 if (!em) {
5284                         err = -ENOMEM;
5285                         goto out;
5286                 }
5287                 /*
5288                  * when btrfs_get_extent can't find anything it
5289                  * returns one huge hole
5290                  *
5291                  * make sure what it found really fits our range, and
5292                  * adjust to make sure it is based on the start from
5293                  * the caller
5294                  */
5295                 if (hole_em) {
5296                         u64 calc_end = extent_map_end(hole_em);
5297
5298                         if (calc_end <= start || (hole_em->start > end)) {
5299                                 free_extent_map(hole_em);
5300                                 hole_em = NULL;
5301                         } else {
5302                                 hole_start = max(hole_em->start, start);
5303                                 hole_len = calc_end - hole_start;
5304                         }
5305                 }
5306                 em->bdev = NULL;
5307                 if (hole_em && range_start > hole_start) {
5308                         /* our hole starts before our delalloc, so we
5309                          * have to return just the parts of the hole
5310                          * that go until  the delalloc starts
5311                          */
5312                         em->len = min(hole_len,
5313                                       range_start - hole_start);
5314                         em->start = hole_start;
5315                         em->orig_start = hole_start;
5316                         /*
5317                          * don't adjust block start at all,
5318                          * it is fixed at EXTENT_MAP_HOLE
5319                          */
5320                         em->block_start = hole_em->block_start;
5321                         em->block_len = hole_len;
5322                 } else {
5323                         em->start = range_start;
5324                         em->len = found;
5325                         em->orig_start = range_start;
5326                         em->block_start = EXTENT_MAP_DELALLOC;
5327                         em->block_len = found;
5328                 }
5329         } else if (hole_em) {
5330                 return hole_em;
5331         }
5332 out:
5333
5334         free_extent_map(hole_em);
5335         if (err) {
5336                 free_extent_map(em);
5337                 return ERR_PTR(err);
5338         }
5339         return em;
5340 }
5341
5342 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5343                                                   struct extent_map *em,
5344                                                   u64 start, u64 len)
5345 {
5346         struct btrfs_root *root = BTRFS_I(inode)->root;
5347         struct btrfs_trans_handle *trans;
5348         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5349         struct btrfs_key ins;
5350         u64 alloc_hint;
5351         int ret;
5352         bool insert = false;
5353
5354         /*
5355          * Ok if the extent map we looked up is a hole and is for the exact
5356          * range we want, there is no reason to allocate a new one, however if
5357          * it is not right then we need to free this one and drop the cache for
5358          * our range.
5359          */
5360         if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5361             em->len != len) {
5362                 free_extent_map(em);
5363                 em = NULL;
5364                 insert = true;
5365                 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5366         }
5367
5368         trans = btrfs_join_transaction(root);
5369         if (IS_ERR(trans))
5370                 return ERR_CAST(trans);
5371
5372         if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5373                 btrfs_add_inode_defrag(trans, inode);
5374
5375         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5376
5377         alloc_hint = get_extent_allocation_hint(inode, start, len);
5378         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5379                                    alloc_hint, (u64)-1, &ins, 1);
5380         if (ret) {
5381                 em = ERR_PTR(ret);
5382                 goto out;
5383         }
5384
5385         if (!em) {
5386                 em = alloc_extent_map();
5387                 if (!em) {
5388                         em = ERR_PTR(-ENOMEM);
5389                         goto out;
5390                 }
5391         }
5392
5393         em->start = start;
5394         em->orig_start = em->start;
5395         em->len = ins.offset;
5396
5397         em->block_start = ins.objectid;
5398         em->block_len = ins.offset;
5399         em->bdev = root->fs_info->fs_devices->latest_bdev;
5400
5401         /*
5402          * We need to do this because if we're using the original em we searched
5403          * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5404          */
5405         em->flags = 0;
5406         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5407
5408         while (insert) {
5409                 write_lock(&em_tree->lock);
5410                 ret = add_extent_mapping(em_tree, em);
5411                 write_unlock(&em_tree->lock);
5412                 if (ret != -EEXIST)
5413                         break;
5414                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5415         }
5416
5417         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5418                                            ins.offset, ins.offset, 0);
5419         if (ret) {
5420                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5421                 em = ERR_PTR(ret);
5422         }
5423 out:
5424         btrfs_end_transaction(trans, root);
5425         return em;
5426 }
5427
5428 /*
5429  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5430  * block must be cow'd
5431  */
5432 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5433                                       struct inode *inode, u64 offset, u64 len)
5434 {
5435         struct btrfs_path *path;
5436         int ret;
5437         struct extent_buffer *leaf;
5438         struct btrfs_root *root = BTRFS_I(inode)->root;
5439         struct btrfs_file_extent_item *fi;
5440         struct btrfs_key key;
5441         u64 disk_bytenr;
5442         u64 backref_offset;
5443         u64 extent_end;
5444         u64 num_bytes;
5445         int slot;
5446         int found_type;
5447
5448         path = btrfs_alloc_path();
5449         if (!path)
5450                 return -ENOMEM;
5451
5452         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5453                                        offset, 0);
5454         if (ret < 0)
5455                 goto out;
5456
5457         slot = path->slots[0];
5458         if (ret == 1) {
5459                 if (slot == 0) {
5460                         /* can't find the item, must cow */
5461                         ret = 0;
5462                         goto out;
5463                 }
5464                 slot--;
5465         }
5466         ret = 0;
5467         leaf = path->nodes[0];
5468         btrfs_item_key_to_cpu(leaf, &key, slot);
5469         if (key.objectid != btrfs_ino(inode) ||
5470             key.type != BTRFS_EXTENT_DATA_KEY) {
5471                 /* not our file or wrong item type, must cow */
5472                 goto out;
5473         }
5474
5475         if (key.offset > offset) {
5476                 /* Wrong offset, must cow */
5477                 goto out;
5478         }
5479
5480         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5481         found_type = btrfs_file_extent_type(leaf, fi);
5482         if (found_type != BTRFS_FILE_EXTENT_REG &&
5483             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5484                 /* not a regular extent, must cow */
5485                 goto out;
5486         }
5487         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5488         backref_offset = btrfs_file_extent_offset(leaf, fi);
5489
5490         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5491         if (extent_end < offset + len) {
5492                 /* extent doesn't include our full range, must cow */
5493                 goto out;
5494         }
5495
5496         if (btrfs_extent_readonly(root, disk_bytenr))
5497                 goto out;
5498
5499         /*
5500          * look for other files referencing this extent, if we
5501          * find any we must cow
5502          */
5503         if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5504                                   key.offset - backref_offset, disk_bytenr))
5505                 goto out;
5506
5507         /*
5508          * adjust disk_bytenr and num_bytes to cover just the bytes
5509          * in this extent we are about to write.  If there
5510          * are any csums in that range we have to cow in order
5511          * to keep the csums correct
5512          */
5513         disk_bytenr += backref_offset;
5514         disk_bytenr += offset - key.offset;
5515         num_bytes = min(offset + len, extent_end) - offset;
5516         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5517                                 goto out;
5518         /*
5519          * all of the above have passed, it is safe to overwrite this extent
5520          * without cow
5521          */
5522         ret = 1;
5523 out:
5524         btrfs_free_path(path);
5525         return ret;
5526 }
5527
5528 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5529                                    struct buffer_head *bh_result, int create)
5530 {
5531         struct extent_map *em;
5532         struct btrfs_root *root = BTRFS_I(inode)->root;
5533         u64 start = iblock << inode->i_blkbits;
5534         u64 len = bh_result->b_size;
5535         struct btrfs_trans_handle *trans;
5536
5537         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5538         if (IS_ERR(em))
5539                 return PTR_ERR(em);
5540
5541         /*
5542          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5543          * io.  INLINE is special, and we could probably kludge it in here, but
5544          * it's still buffered so for safety lets just fall back to the generic
5545          * buffered path.
5546          *
5547          * For COMPRESSED we _have_ to read the entire extent in so we can
5548          * decompress it, so there will be buffering required no matter what we
5549          * do, so go ahead and fallback to buffered.
5550          *
5551          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5552          * to buffered IO.  Don't blame me, this is the price we pay for using
5553          * the generic code.
5554          */
5555         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5556             em->block_start == EXTENT_MAP_INLINE) {
5557                 free_extent_map(em);
5558                 return -ENOTBLK;
5559         }
5560
5561         /* Just a good old fashioned hole, return */
5562         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5563                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5564                 free_extent_map(em);
5565                 /* DIO will do one hole at a time, so just unlock a sector */
5566                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5567                               start + root->sectorsize - 1, GFP_NOFS);
5568                 return 0;
5569         }
5570
5571         /*
5572          * We don't allocate a new extent in the following cases
5573          *
5574          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5575          * existing extent.
5576          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5577          * just use the extent.
5578          *
5579          */
5580         if (!create) {
5581                 len = em->len - (start - em->start);
5582                 goto map;
5583         }
5584
5585         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5586             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5587              em->block_start != EXTENT_MAP_HOLE)) {
5588                 int type;
5589                 int ret;
5590                 u64 block_start;
5591
5592                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5593                         type = BTRFS_ORDERED_PREALLOC;
5594                 else
5595                         type = BTRFS_ORDERED_NOCOW;
5596                 len = min(len, em->len - (start - em->start));
5597                 block_start = em->block_start + (start - em->start);
5598
5599                 /*
5600                  * we're not going to log anything, but we do need
5601                  * to make sure the current transaction stays open
5602                  * while we look for nocow cross refs
5603                  */
5604                 trans = btrfs_join_transaction(root);
5605                 if (IS_ERR(trans))
5606                         goto must_cow;
5607
5608                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5609                         ret = btrfs_add_ordered_extent_dio(inode, start,
5610                                            block_start, len, len, type);
5611                         btrfs_end_transaction(trans, root);
5612                         if (ret) {
5613                                 free_extent_map(em);
5614                                 return ret;
5615                         }
5616                         goto unlock;
5617                 }
5618                 btrfs_end_transaction(trans, root);
5619         }
5620 must_cow:
5621         /*
5622          * this will cow the extent, reset the len in case we changed
5623          * it above
5624          */
5625         len = bh_result->b_size;
5626         em = btrfs_new_extent_direct(inode, em, start, len);
5627         if (IS_ERR(em))
5628                 return PTR_ERR(em);
5629         len = min(len, em->len - (start - em->start));
5630 unlock:
5631         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5632                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5633                           0, NULL, GFP_NOFS);
5634 map:
5635         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5636                 inode->i_blkbits;
5637         bh_result->b_size = len;
5638         bh_result->b_bdev = em->bdev;
5639         set_buffer_mapped(bh_result);
5640         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5641                 set_buffer_new(bh_result);
5642
5643         free_extent_map(em);
5644
5645         return 0;
5646 }
5647
5648 struct btrfs_dio_private {
5649         struct inode *inode;
5650         u64 logical_offset;
5651         u64 disk_bytenr;
5652         u64 bytes;
5653         u32 *csums;
5654         void *private;
5655
5656         /* number of bios pending for this dio */
5657         atomic_t pending_bios;
5658
5659         /* IO errors */
5660         int errors;
5661
5662         struct bio *orig_bio;
5663 };
5664
5665 static void btrfs_endio_direct_read(struct bio *bio, int err)
5666 {
5667         struct btrfs_dio_private *dip = bio->bi_private;
5668         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5669         struct bio_vec *bvec = bio->bi_io_vec;
5670         struct inode *inode = dip->inode;
5671         struct btrfs_root *root = BTRFS_I(inode)->root;
5672         u64 start;
5673         u32 *private = dip->csums;
5674
5675         start = dip->logical_offset;
5676         do {
5677                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5678                         struct page *page = bvec->bv_page;
5679                         char *kaddr;
5680                         u32 csum = ~(u32)0;
5681                         unsigned long flags;
5682
5683                         local_irq_save(flags);
5684                         kaddr = kmap_atomic(page, KM_IRQ0);
5685                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5686                                                csum, bvec->bv_len);
5687                         btrfs_csum_final(csum, (char *)&csum);
5688                         kunmap_atomic(kaddr, KM_IRQ0);
5689                         local_irq_restore(flags);
5690
5691                         flush_dcache_page(bvec->bv_page);
5692                         if (csum != *private) {
5693                                 printk(KERN_ERR "btrfs csum failed ino %llu off"
5694                                       " %llu csum %u private %u\n",
5695                                       (unsigned long long)btrfs_ino(inode),
5696                                       (unsigned long long)start,
5697                                       csum, *private);
5698                                 err = -EIO;
5699                         }
5700                 }
5701
5702                 start += bvec->bv_len;
5703                 private++;
5704                 bvec++;
5705         } while (bvec <= bvec_end);
5706
5707         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5708                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5709         bio->bi_private = dip->private;
5710
5711         kfree(dip->csums);
5712         kfree(dip);
5713
5714         /* If we had a csum failure make sure to clear the uptodate flag */
5715         if (err)
5716                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5717         dio_end_io(bio, err);
5718 }
5719
5720 static void btrfs_endio_direct_write(struct bio *bio, int err)
5721 {
5722         struct btrfs_dio_private *dip = bio->bi_private;
5723         struct inode *inode = dip->inode;
5724         struct btrfs_root *root = BTRFS_I(inode)->root;
5725         struct btrfs_trans_handle *trans;
5726         struct btrfs_ordered_extent *ordered = NULL;
5727         struct extent_state *cached_state = NULL;
5728         u64 ordered_offset = dip->logical_offset;
5729         u64 ordered_bytes = dip->bytes;
5730         int ret;
5731
5732         if (err)
5733                 goto out_done;
5734 again:
5735         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5736                                                    &ordered_offset,
5737                                                    ordered_bytes);
5738         if (!ret)
5739                 goto out_test;
5740
5741         BUG_ON(!ordered);
5742
5743         trans = btrfs_join_transaction(root);
5744         if (IS_ERR(trans)) {
5745                 err = -ENOMEM;
5746                 goto out;
5747         }
5748         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5749
5750         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5751                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5752                 if (!ret)
5753                         ret = btrfs_update_inode(trans, root, inode);
5754                 err = ret;
5755                 goto out;
5756         }
5757
5758         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5759                          ordered->file_offset + ordered->len - 1, 0,
5760                          &cached_state, GFP_NOFS);
5761
5762         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5763                 ret = btrfs_mark_extent_written(trans, inode,
5764                                                 ordered->file_offset,
5765                                                 ordered->file_offset +
5766                                                 ordered->len);
5767                 if (ret) {
5768                         err = ret;
5769                         goto out_unlock;
5770                 }
5771         } else {
5772                 ret = insert_reserved_file_extent(trans, inode,
5773                                                   ordered->file_offset,
5774                                                   ordered->start,
5775                                                   ordered->disk_len,
5776                                                   ordered->len,
5777                                                   ordered->len,
5778                                                   0, 0, 0,
5779                                                   BTRFS_FILE_EXTENT_REG);
5780                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5781                                    ordered->file_offset, ordered->len);
5782                 if (ret) {
5783                         err = ret;
5784                         WARN_ON(1);
5785                         goto out_unlock;
5786                 }
5787         }
5788
5789         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5790         ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5791         if (!ret)
5792                 btrfs_update_inode(trans, root, inode);
5793         ret = 0;
5794 out_unlock:
5795         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5796                              ordered->file_offset + ordered->len - 1,
5797                              &cached_state, GFP_NOFS);
5798 out:
5799         btrfs_delalloc_release_metadata(inode, ordered->len);
5800         btrfs_end_transaction(trans, root);
5801         ordered_offset = ordered->file_offset + ordered->len;
5802         btrfs_put_ordered_extent(ordered);
5803         btrfs_put_ordered_extent(ordered);
5804
5805 out_test:
5806         /*
5807          * our bio might span multiple ordered extents.  If we haven't
5808          * completed the accounting for the whole dio, go back and try again
5809          */
5810         if (ordered_offset < dip->logical_offset + dip->bytes) {
5811                 ordered_bytes = dip->logical_offset + dip->bytes -
5812                         ordered_offset;
5813                 goto again;
5814         }
5815 out_done:
5816         bio->bi_private = dip->private;
5817
5818         kfree(dip->csums);
5819         kfree(dip);
5820
5821         /* If we had an error make sure to clear the uptodate flag */
5822         if (err)
5823                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5824         dio_end_io(bio, err);
5825 }
5826
5827 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5828                                     struct bio *bio, int mirror_num,
5829                                     unsigned long bio_flags, u64 offset)
5830 {
5831         int ret;
5832         struct btrfs_root *root = BTRFS_I(inode)->root;
5833         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5834         BUG_ON(ret);
5835         return 0;
5836 }
5837
5838 static void btrfs_end_dio_bio(struct bio *bio, int err)
5839 {
5840         struct btrfs_dio_private *dip = bio->bi_private;
5841
5842         if (err) {
5843                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5844                       "sector %#Lx len %u err no %d\n",
5845                       (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5846                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5847                 dip->errors = 1;
5848
5849                 /*
5850                  * before atomic variable goto zero, we must make sure
5851                  * dip->errors is perceived to be set.
5852                  */
5853                 smp_mb__before_atomic_dec();
5854         }
5855
5856         /* if there are more bios still pending for this dio, just exit */
5857         if (!atomic_dec_and_test(&dip->pending_bios))
5858                 goto out;
5859
5860         if (dip->errors)
5861                 bio_io_error(dip->orig_bio);
5862         else {
5863                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5864                 bio_endio(dip->orig_bio, 0);
5865         }
5866 out:
5867         bio_put(bio);
5868 }
5869
5870 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5871                                        u64 first_sector, gfp_t gfp_flags)
5872 {
5873         int nr_vecs = bio_get_nr_vecs(bdev);
5874         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5875 }
5876
5877 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5878                                          int rw, u64 file_offset, int skip_sum,
5879                                          u32 *csums, int async_submit)
5880 {
5881         int write = rw & REQ_WRITE;
5882         struct btrfs_root *root = BTRFS_I(inode)->root;
5883         int ret;
5884
5885         bio_get(bio);
5886         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5887         if (ret)
5888                 goto err;
5889
5890         if (skip_sum)
5891                 goto map;
5892
5893         if (write && async_submit) {
5894                 ret = btrfs_wq_submit_bio(root->fs_info,
5895                                    inode, rw, bio, 0, 0,
5896                                    file_offset,
5897                                    __btrfs_submit_bio_start_direct_io,
5898                                    __btrfs_submit_bio_done);
5899                 goto err;
5900         } else if (write) {
5901                 /*
5902                  * If we aren't doing async submit, calculate the csum of the
5903                  * bio now.
5904                  */
5905                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5906                 if (ret)
5907                         goto err;
5908         } else if (!skip_sum) {
5909                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5910                                           file_offset, csums);
5911                 if (ret)
5912                         goto err;
5913         }
5914
5915 map:
5916         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5917 err:
5918         bio_put(bio);
5919         return ret;
5920 }
5921
5922 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5923                                     int skip_sum)
5924 {
5925         struct inode *inode = dip->inode;
5926         struct btrfs_root *root = BTRFS_I(inode)->root;
5927         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5928         struct bio *bio;
5929         struct bio *orig_bio = dip->orig_bio;
5930         struct bio_vec *bvec = orig_bio->bi_io_vec;
5931         u64 start_sector = orig_bio->bi_sector;
5932         u64 file_offset = dip->logical_offset;
5933         u64 submit_len = 0;
5934         u64 map_length;
5935         int nr_pages = 0;
5936         u32 *csums = dip->csums;
5937         int ret = 0;
5938         int async_submit = 0;
5939         int write = rw & REQ_WRITE;
5940
5941         map_length = orig_bio->bi_size;
5942         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5943                               &map_length, NULL, 0);
5944         if (ret) {
5945                 bio_put(orig_bio);
5946                 return -EIO;
5947         }
5948
5949         if (map_length >= orig_bio->bi_size) {
5950                 bio = orig_bio;
5951                 goto submit;
5952         }
5953
5954         async_submit = 1;
5955         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5956         if (!bio)
5957                 return -ENOMEM;
5958         bio->bi_private = dip;
5959         bio->bi_end_io = btrfs_end_dio_bio;
5960         atomic_inc(&dip->pending_bios);
5961
5962         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5963                 if (unlikely(map_length < submit_len + bvec->bv_len ||
5964                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5965                                  bvec->bv_offset) < bvec->bv_len)) {
5966                         /*
5967                          * inc the count before we submit the bio so
5968                          * we know the end IO handler won't happen before
5969                          * we inc the count. Otherwise, the dip might get freed
5970                          * before we're done setting it up
5971                          */
5972                         atomic_inc(&dip->pending_bios);
5973                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
5974                                                      file_offset, skip_sum,
5975                                                      csums, async_submit);
5976                         if (ret) {
5977                                 bio_put(bio);
5978                                 atomic_dec(&dip->pending_bios);
5979                                 goto out_err;
5980                         }
5981
5982                         /* Write's use the ordered csums */
5983                         if (!write && !skip_sum)
5984                                 csums = csums + nr_pages;
5985                         start_sector += submit_len >> 9;
5986                         file_offset += submit_len;
5987
5988                         submit_len = 0;
5989                         nr_pages = 0;
5990
5991                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5992                                                   start_sector, GFP_NOFS);
5993                         if (!bio)
5994                                 goto out_err;
5995                         bio->bi_private = dip;
5996                         bio->bi_end_io = btrfs_end_dio_bio;
5997
5998                         map_length = orig_bio->bi_size;
5999                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6000                                               &map_length, NULL, 0);
6001                         if (ret) {
6002                                 bio_put(bio);
6003                                 goto out_err;
6004                         }
6005                 } else {
6006                         submit_len += bvec->bv_len;
6007                         nr_pages ++;
6008                         bvec++;
6009                 }
6010         }
6011
6012 submit:
6013         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6014                                      csums, async_submit);
6015         if (!ret)
6016                 return 0;
6017
6018         bio_put(bio);
6019 out_err:
6020         dip->errors = 1;
6021         /*
6022          * before atomic variable goto zero, we must
6023          * make sure dip->errors is perceived to be set.
6024          */
6025         smp_mb__before_atomic_dec();
6026         if (atomic_dec_and_test(&dip->pending_bios))
6027                 bio_io_error(dip->orig_bio);
6028
6029         /* bio_end_io() will handle error, so we needn't return it */
6030         return 0;
6031 }
6032
6033 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6034                                 loff_t file_offset)
6035 {
6036         struct btrfs_root *root = BTRFS_I(inode)->root;
6037         struct btrfs_dio_private *dip;
6038         struct bio_vec *bvec = bio->bi_io_vec;
6039         int skip_sum;
6040         int write = rw & REQ_WRITE;
6041         int ret = 0;
6042
6043         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6044
6045         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6046         if (!dip) {
6047                 ret = -ENOMEM;
6048                 goto free_ordered;
6049         }
6050         dip->csums = NULL;
6051
6052         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6053         if (!write && !skip_sum) {
6054                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6055                 if (!dip->csums) {
6056                         kfree(dip);
6057                         ret = -ENOMEM;
6058                         goto free_ordered;
6059                 }
6060         }
6061
6062         dip->private = bio->bi_private;
6063         dip->inode = inode;
6064         dip->logical_offset = file_offset;
6065
6066         dip->bytes = 0;
6067         do {
6068                 dip->bytes += bvec->bv_len;
6069                 bvec++;
6070         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6071
6072         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6073         bio->bi_private = dip;
6074         dip->errors = 0;
6075         dip->orig_bio = bio;
6076         atomic_set(&dip->pending_bios, 0);
6077
6078         if (write)
6079                 bio->bi_end_io = btrfs_endio_direct_write;
6080         else
6081                 bio->bi_end_io = btrfs_endio_direct_read;
6082
6083         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6084         if (!ret)
6085                 return;
6086 free_ordered:
6087         /*
6088          * If this is a write, we need to clean up the reserved space and kill
6089          * the ordered extent.
6090          */
6091         if (write) {
6092                 struct btrfs_ordered_extent *ordered;
6093                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6094                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6095                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6096                         btrfs_free_reserved_extent(root, ordered->start,
6097                                                    ordered->disk_len);
6098                 btrfs_put_ordered_extent(ordered);
6099                 btrfs_put_ordered_extent(ordered);
6100         }
6101         bio_endio(bio, ret);
6102 }
6103
6104 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6105                         const struct iovec *iov, loff_t offset,
6106                         unsigned long nr_segs)
6107 {
6108         int seg;
6109         int i;
6110         size_t size;
6111         unsigned long addr;
6112         unsigned blocksize_mask = root->sectorsize - 1;
6113         ssize_t retval = -EINVAL;
6114         loff_t end = offset;
6115
6116         if (offset & blocksize_mask)
6117                 goto out;
6118
6119         /* Check the memory alignment.  Blocks cannot straddle pages */
6120         for (seg = 0; seg < nr_segs; seg++) {
6121                 addr = (unsigned long)iov[seg].iov_base;
6122                 size = iov[seg].iov_len;
6123                 end += size;
6124                 if ((addr & blocksize_mask) || (size & blocksize_mask))
6125                         goto out;
6126
6127                 /* If this is a write we don't need to check anymore */
6128                 if (rw & WRITE)
6129                         continue;
6130
6131                 /*
6132                  * Check to make sure we don't have duplicate iov_base's in this
6133                  * iovec, if so return EINVAL, otherwise we'll get csum errors
6134                  * when reading back.
6135                  */
6136                 for (i = seg + 1; i < nr_segs; i++) {
6137                         if (iov[seg].iov_base == iov[i].iov_base)
6138                                 goto out;
6139                 }
6140         }
6141         retval = 0;
6142 out:
6143         return retval;
6144 }
6145 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6146                         const struct iovec *iov, loff_t offset,
6147                         unsigned long nr_segs)
6148 {
6149         struct file *file = iocb->ki_filp;
6150         struct inode *inode = file->f_mapping->host;
6151         struct btrfs_ordered_extent *ordered;
6152         struct extent_state *cached_state = NULL;
6153         u64 lockstart, lockend;
6154         ssize_t ret;
6155         int writing = rw & WRITE;
6156         int write_bits = 0;
6157         size_t count = iov_length(iov, nr_segs);
6158
6159         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6160                             offset, nr_segs)) {
6161                 return 0;
6162         }
6163
6164         lockstart = offset;
6165         lockend = offset + count - 1;
6166
6167         if (writing) {
6168                 ret = btrfs_delalloc_reserve_space(inode, count);
6169                 if (ret)
6170                         goto out;
6171         }
6172
6173         while (1) {
6174                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6175                                  0, &cached_state, GFP_NOFS);
6176                 /*
6177                  * We're concerned with the entire range that we're going to be
6178                  * doing DIO to, so we need to make sure theres no ordered
6179                  * extents in this range.
6180                  */
6181                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6182                                                      lockend - lockstart + 1);
6183                 if (!ordered)
6184                         break;
6185                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6186                                      &cached_state, GFP_NOFS);
6187                 btrfs_start_ordered_extent(inode, ordered, 1);
6188                 btrfs_put_ordered_extent(ordered);
6189                 cond_resched();
6190         }
6191
6192         /*
6193          * we don't use btrfs_set_extent_delalloc because we don't want
6194          * the dirty or uptodate bits
6195          */
6196         if (writing) {
6197                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6198                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6199                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6200                                      GFP_NOFS);
6201                 if (ret) {
6202                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6203                                          lockend, EXTENT_LOCKED | write_bits,
6204                                          1, 0, &cached_state, GFP_NOFS);
6205                         goto out;
6206                 }
6207         }
6208
6209         free_extent_state(cached_state);
6210         cached_state = NULL;
6211
6212         ret = __blockdev_direct_IO(rw, iocb, inode,
6213                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6214                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6215                    btrfs_submit_direct, 0);
6216
6217         if (ret < 0 && ret != -EIOCBQUEUED) {
6218                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6219                               offset + iov_length(iov, nr_segs) - 1,
6220                               EXTENT_LOCKED | write_bits, 1, 0,
6221                               &cached_state, GFP_NOFS);
6222         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6223                 /*
6224                  * We're falling back to buffered, unlock the section we didn't
6225                  * do IO on.
6226                  */
6227                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6228                               offset + iov_length(iov, nr_segs) - 1,
6229                               EXTENT_LOCKED | write_bits, 1, 0,
6230                               &cached_state, GFP_NOFS);
6231         }
6232 out:
6233         free_extent_state(cached_state);
6234         return ret;
6235 }
6236
6237 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6238                 __u64 start, __u64 len)
6239 {
6240         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6241 }
6242
6243 int btrfs_readpage(struct file *file, struct page *page)
6244 {
6245         struct extent_io_tree *tree;
6246         tree = &BTRFS_I(page->mapping->host)->io_tree;
6247         return extent_read_full_page(tree, page, btrfs_get_extent);
6248 }
6249
6250 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6251 {
6252         struct extent_io_tree *tree;
6253
6254
6255         if (current->flags & PF_MEMALLOC) {
6256                 redirty_page_for_writepage(wbc, page);
6257                 unlock_page(page);
6258                 return 0;
6259         }
6260         tree = &BTRFS_I(page->mapping->host)->io_tree;
6261         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6262 }
6263
6264 int btrfs_writepages(struct address_space *mapping,
6265                      struct writeback_control *wbc)
6266 {
6267         struct extent_io_tree *tree;
6268
6269         tree = &BTRFS_I(mapping->host)->io_tree;
6270         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6271 }
6272
6273 static int
6274 btrfs_readpages(struct file *file, struct address_space *mapping,
6275                 struct list_head *pages, unsigned nr_pages)
6276 {
6277         struct extent_io_tree *tree;
6278         tree = &BTRFS_I(mapping->host)->io_tree;
6279         return extent_readpages(tree, mapping, pages, nr_pages,
6280                                 btrfs_get_extent);
6281 }
6282 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6283 {
6284         struct extent_io_tree *tree;
6285         struct extent_map_tree *map;
6286         int ret;
6287
6288         tree = &BTRFS_I(page->mapping->host)->io_tree;
6289         map = &BTRFS_I(page->mapping->host)->extent_tree;
6290         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6291         if (ret == 1) {
6292                 ClearPagePrivate(page);
6293                 set_page_private(page, 0);
6294                 page_cache_release(page);
6295         }
6296         return ret;
6297 }
6298
6299 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6300 {
6301         if (PageWriteback(page) || PageDirty(page))
6302                 return 0;
6303         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6304 }
6305
6306 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6307 {
6308         struct extent_io_tree *tree;
6309         struct btrfs_ordered_extent *ordered;
6310         struct extent_state *cached_state = NULL;
6311         u64 page_start = page_offset(page);
6312         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6313
6314
6315         /*
6316          * we have the page locked, so new writeback can't start,
6317          * and the dirty bit won't be cleared while we are here.
6318          *
6319          * Wait for IO on this page so that we can safely clear
6320          * the PagePrivate2 bit and do ordered accounting
6321          */
6322         wait_on_page_writeback(page);
6323
6324         tree = &BTRFS_I(page->mapping->host)->io_tree;
6325         if (offset) {
6326                 btrfs_releasepage(page, GFP_NOFS);
6327                 return;
6328         }
6329         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6330                          GFP_NOFS);
6331         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6332                                            page_offset(page));
6333         if (ordered) {
6334                 /*
6335                  * IO on this page will never be started, so we need
6336                  * to account for any ordered extents now
6337                  */
6338                 clear_extent_bit(tree, page_start, page_end,
6339                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6340                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6341                                  &cached_state, GFP_NOFS);
6342                 /*
6343                  * whoever cleared the private bit is responsible
6344                  * for the finish_ordered_io
6345                  */
6346                 if (TestClearPagePrivate2(page)) {
6347                         btrfs_finish_ordered_io(page->mapping->host,
6348                                                 page_start, page_end);
6349                 }
6350                 btrfs_put_ordered_extent(ordered);
6351                 cached_state = NULL;
6352                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6353                                  GFP_NOFS);
6354         }
6355         clear_extent_bit(tree, page_start, page_end,
6356                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6357                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6358         __btrfs_releasepage(page, GFP_NOFS);
6359
6360         ClearPageChecked(page);
6361         if (PagePrivate(page)) {
6362                 ClearPagePrivate(page);
6363                 set_page_private(page, 0);
6364                 page_cache_release(page);
6365         }
6366 }
6367
6368 /*
6369  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6370  * called from a page fault handler when a page is first dirtied. Hence we must
6371  * be careful to check for EOF conditions here. We set the page up correctly
6372  * for a written page which means we get ENOSPC checking when writing into
6373  * holes and correct delalloc and unwritten extent mapping on filesystems that
6374  * support these features.
6375  *
6376  * We are not allowed to take the i_mutex here so we have to play games to
6377  * protect against truncate races as the page could now be beyond EOF.  Because
6378  * vmtruncate() writes the inode size before removing pages, once we have the
6379  * page lock we can determine safely if the page is beyond EOF. If it is not
6380  * beyond EOF, then the page is guaranteed safe against truncation until we
6381  * unlock the page.
6382  */
6383 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6384 {
6385         struct page *page = vmf->page;
6386         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6387         struct btrfs_root *root = BTRFS_I(inode)->root;
6388         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6389         struct btrfs_ordered_extent *ordered;
6390         struct extent_state *cached_state = NULL;
6391         char *kaddr;
6392         unsigned long zero_start;
6393         loff_t size;
6394         int ret;
6395         u64 page_start;
6396         u64 page_end;
6397
6398         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6399         if (ret) {
6400                 if (ret == -ENOMEM)
6401                         ret = VM_FAULT_OOM;
6402                 else /* -ENOSPC, -EIO, etc */
6403                         ret = VM_FAULT_SIGBUS;
6404                 goto out;
6405         }
6406
6407         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6408 again:
6409         lock_page(page);
6410         size = i_size_read(inode);
6411         page_start = page_offset(page);
6412         page_end = page_start + PAGE_CACHE_SIZE - 1;
6413
6414         if ((page->mapping != inode->i_mapping) ||
6415             (page_start >= size)) {
6416                 /* page got truncated out from underneath us */
6417                 goto out_unlock;
6418         }
6419         wait_on_page_writeback(page);
6420
6421         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6422                          GFP_NOFS);
6423         set_page_extent_mapped(page);
6424
6425         /*
6426          * we can't set the delalloc bits if there are pending ordered
6427          * extents.  Drop our locks and wait for them to finish
6428          */
6429         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6430         if (ordered) {
6431                 unlock_extent_cached(io_tree, page_start, page_end,
6432                                      &cached_state, GFP_NOFS);
6433                 unlock_page(page);
6434                 btrfs_start_ordered_extent(inode, ordered, 1);
6435                 btrfs_put_ordered_extent(ordered);
6436                 goto again;
6437         }
6438
6439         /*
6440          * XXX - page_mkwrite gets called every time the page is dirtied, even
6441          * if it was already dirty, so for space accounting reasons we need to
6442          * clear any delalloc bits for the range we are fixing to save.  There
6443          * is probably a better way to do this, but for now keep consistent with
6444          * prepare_pages in the normal write path.
6445          */
6446         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6447                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6448                           0, 0, &cached_state, GFP_NOFS);
6449
6450         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6451                                         &cached_state);
6452         if (ret) {
6453                 unlock_extent_cached(io_tree, page_start, page_end,
6454                                      &cached_state, GFP_NOFS);
6455                 ret = VM_FAULT_SIGBUS;
6456                 goto out_unlock;
6457         }
6458         ret = 0;
6459
6460         /* page is wholly or partially inside EOF */
6461         if (page_start + PAGE_CACHE_SIZE > size)
6462                 zero_start = size & ~PAGE_CACHE_MASK;
6463         else
6464                 zero_start = PAGE_CACHE_SIZE;
6465
6466         if (zero_start != PAGE_CACHE_SIZE) {
6467                 kaddr = kmap(page);
6468                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6469                 flush_dcache_page(page);
6470                 kunmap(page);
6471         }
6472         ClearPageChecked(page);
6473         set_page_dirty(page);
6474         SetPageUptodate(page);
6475
6476         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6477         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6478
6479         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6480
6481 out_unlock:
6482         if (!ret)
6483                 return VM_FAULT_LOCKED;
6484         unlock_page(page);
6485         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6486 out:
6487         return ret;
6488 }
6489
6490 static int btrfs_truncate(struct inode *inode)
6491 {
6492         struct btrfs_root *root = BTRFS_I(inode)->root;
6493         struct btrfs_block_rsv *rsv;
6494         int ret;
6495         int err = 0;
6496         struct btrfs_trans_handle *trans;
6497         unsigned long nr;
6498         u64 mask = root->sectorsize - 1;
6499
6500         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6501         if (ret)
6502                 return ret;
6503
6504         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6505         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6506
6507         /*
6508          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6509          * 3 things going on here
6510          *
6511          * 1) We need to reserve space for our orphan item and the space to
6512          * delete our orphan item.  Lord knows we don't want to have a dangling
6513          * orphan item because we didn't reserve space to remove it.
6514          *
6515          * 2) We need to reserve space to update our inode.
6516          *
6517          * 3) We need to have something to cache all the space that is going to
6518          * be free'd up by the truncate operation, but also have some slack
6519          * space reserved in case it uses space during the truncate (thank you
6520          * very much snapshotting).
6521          *
6522          * And we need these to all be seperate.  The fact is we can use alot of
6523          * space doing the truncate, and we have no earthly idea how much space
6524          * we will use, so we need the truncate reservation to be seperate so it
6525          * doesn't end up using space reserved for updating the inode or
6526          * removing the orphan item.  We also need to be able to stop the
6527          * transaction and start a new one, which means we need to be able to
6528          * update the inode several times, and we have no idea of knowing how
6529          * many times that will be, so we can't just reserve 1 item for the
6530          * entirety of the opration, so that has to be done seperately as well.
6531          * Then there is the orphan item, which does indeed need to be held on
6532          * to for the whole operation, and we need nobody to touch this reserved
6533          * space except the orphan code.
6534          *
6535          * So that leaves us with
6536          *
6537          * 1) root->orphan_block_rsv - for the orphan deletion.
6538          * 2) rsv - for the truncate reservation, which we will steal from the
6539          * transaction reservation.
6540          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6541          * updating the inode.
6542          */
6543         rsv = btrfs_alloc_block_rsv(root);
6544         if (!rsv)
6545                 return -ENOMEM;
6546         btrfs_add_durable_block_rsv(root->fs_info, rsv);
6547
6548         trans = btrfs_start_transaction(root, 4);
6549         if (IS_ERR(trans)) {
6550                 err = PTR_ERR(trans);
6551                 goto out;
6552         }
6553
6554         /*
6555          * Reserve space for the truncate process.  Truncate should be adding
6556          * space, but if there are snapshots it may end up using space.
6557          */
6558         ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6559         BUG_ON(ret);
6560
6561         ret = btrfs_orphan_add(trans, inode);
6562         if (ret) {
6563                 btrfs_end_transaction(trans, root);
6564                 goto out;
6565         }
6566
6567         nr = trans->blocks_used;
6568         btrfs_end_transaction(trans, root);
6569         btrfs_btree_balance_dirty(root, nr);
6570
6571         /*
6572          * Ok so we've already migrated our bytes over for the truncate, so here
6573          * just reserve the one slot we need for updating the inode.
6574          */
6575         trans = btrfs_start_transaction(root, 1);
6576         if (IS_ERR(trans)) {
6577                 err = PTR_ERR(trans);
6578                 goto out;
6579         }
6580         trans->block_rsv = rsv;
6581
6582         /*
6583          * setattr is responsible for setting the ordered_data_close flag,
6584          * but that is only tested during the last file release.  That
6585          * could happen well after the next commit, leaving a great big
6586          * window where new writes may get lost if someone chooses to write
6587          * to this file after truncating to zero
6588          *
6589          * The inode doesn't have any dirty data here, and so if we commit
6590          * this is a noop.  If someone immediately starts writing to the inode
6591          * it is very likely we'll catch some of their writes in this
6592          * transaction, and the commit will find this file on the ordered
6593          * data list with good things to send down.
6594          *
6595          * This is a best effort solution, there is still a window where
6596          * using truncate to replace the contents of the file will
6597          * end up with a zero length file after a crash.
6598          */
6599         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6600                 btrfs_add_ordered_operation(trans, root, inode);
6601
6602         while (1) {
6603                 if (!trans) {
6604                         trans = btrfs_start_transaction(root, 3);
6605                         if (IS_ERR(trans)) {
6606                                 err = PTR_ERR(trans);
6607                                 goto out;
6608                         }
6609
6610                         ret = btrfs_truncate_reserve_metadata(trans, root,
6611                                                               rsv);
6612                         BUG_ON(ret);
6613
6614                         trans->block_rsv = rsv;
6615                 }
6616
6617                 ret = btrfs_truncate_inode_items(trans, root, inode,
6618                                                  inode->i_size,
6619                                                  BTRFS_EXTENT_DATA_KEY);
6620                 if (ret != -EAGAIN) {
6621                         err = ret;
6622                         break;
6623                 }
6624
6625                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6626                 ret = btrfs_update_inode(trans, root, inode);
6627                 if (ret) {
6628                         err = ret;
6629                         break;
6630                 }
6631
6632                 nr = trans->blocks_used;
6633                 btrfs_end_transaction(trans, root);
6634                 trans = NULL;
6635                 btrfs_btree_balance_dirty(root, nr);
6636         }
6637
6638         if (ret == 0 && inode->i_nlink > 0) {
6639                 trans->block_rsv = root->orphan_block_rsv;
6640                 ret = btrfs_orphan_del(trans, inode);
6641                 if (ret)
6642                         err = ret;
6643         } else if (ret && inode->i_nlink > 0) {
6644                 /*
6645                  * Failed to do the truncate, remove us from the in memory
6646                  * orphan list.
6647                  */
6648                 ret = btrfs_orphan_del(NULL, inode);
6649         }
6650
6651         trans->block_rsv = &root->fs_info->trans_block_rsv;
6652         ret = btrfs_update_inode(trans, root, inode);
6653         if (ret && !err)
6654                 err = ret;
6655
6656         nr = trans->blocks_used;
6657         ret = btrfs_end_transaction_throttle(trans, root);
6658         btrfs_btree_balance_dirty(root, nr);
6659
6660 out:
6661         btrfs_free_block_rsv(root, rsv);
6662
6663         if (ret && !err)
6664                 err = ret;
6665
6666         return err;
6667 }
6668
6669 /*
6670  * create a new subvolume directory/inode (helper for the ioctl).
6671  */
6672 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6673                              struct btrfs_root *new_root, u64 new_dirid)
6674 {
6675         struct inode *inode;
6676         int err;
6677         u64 index = 0;
6678
6679         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6680                                 new_dirid, S_IFDIR | 0700, &index);
6681         if (IS_ERR(inode))
6682                 return PTR_ERR(inode);
6683         inode->i_op = &btrfs_dir_inode_operations;
6684         inode->i_fop = &btrfs_dir_file_operations;
6685
6686         inode->i_nlink = 1;
6687         btrfs_i_size_write(inode, 0);
6688
6689         err = btrfs_update_inode(trans, new_root, inode);
6690         BUG_ON(err);
6691
6692         iput(inode);
6693         return 0;
6694 }
6695
6696 /* helper function for file defrag and space balancing.  This
6697  * forces readahead on a given range of bytes in an inode
6698  */
6699 unsigned long btrfs_force_ra(struct address_space *mapping,
6700                               struct file_ra_state *ra, struct file *file,
6701                               pgoff_t offset, pgoff_t last_index)
6702 {
6703         pgoff_t req_size = last_index - offset + 1;
6704
6705         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6706         return offset + req_size;
6707 }
6708
6709 struct inode *btrfs_alloc_inode(struct super_block *sb)
6710 {
6711         struct btrfs_inode *ei;
6712         struct inode *inode;
6713
6714         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6715         if (!ei)
6716                 return NULL;
6717
6718         ei->root = NULL;
6719         ei->space_info = NULL;
6720         ei->generation = 0;
6721         ei->sequence = 0;
6722         ei->last_trans = 0;
6723         ei->last_sub_trans = 0;
6724         ei->logged_trans = 0;
6725         ei->delalloc_bytes = 0;
6726         ei->reserved_bytes = 0;
6727         ei->disk_i_size = 0;
6728         ei->flags = 0;
6729         ei->index_cnt = (u64)-1;
6730         ei->last_unlink_trans = 0;
6731
6732         spin_lock_init(&ei->lock);
6733         ei->outstanding_extents = 0;
6734         ei->reserved_extents = 0;
6735
6736         ei->ordered_data_close = 0;
6737         ei->orphan_meta_reserved = 0;
6738         ei->dummy_inode = 0;
6739         ei->in_defrag = 0;
6740         ei->force_compress = BTRFS_COMPRESS_NONE;
6741
6742         ei->delayed_node = NULL;
6743
6744         inode = &ei->vfs_inode;
6745         extent_map_tree_init(&ei->extent_tree);
6746         extent_io_tree_init(&ei->io_tree, &inode->i_data);
6747         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6748         mutex_init(&ei->log_mutex);
6749         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6750         INIT_LIST_HEAD(&ei->i_orphan);
6751         INIT_LIST_HEAD(&ei->delalloc_inodes);
6752         INIT_LIST_HEAD(&ei->ordered_operations);
6753         RB_CLEAR_NODE(&ei->rb_node);
6754
6755         return inode;
6756 }
6757
6758 static void btrfs_i_callback(struct rcu_head *head)
6759 {
6760         struct inode *inode = container_of(head, struct inode, i_rcu);
6761         INIT_LIST_HEAD(&inode->i_dentry);
6762         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6763 }
6764
6765 void btrfs_destroy_inode(struct inode *inode)
6766 {
6767         struct btrfs_ordered_extent *ordered;
6768         struct btrfs_root *root = BTRFS_I(inode)->root;
6769
6770         WARN_ON(!list_empty(&inode->i_dentry));
6771         WARN_ON(inode->i_data.nrpages);
6772         WARN_ON(BTRFS_I(inode)->outstanding_extents);
6773         WARN_ON(BTRFS_I(inode)->reserved_extents);
6774
6775         /*
6776          * This can happen where we create an inode, but somebody else also
6777          * created the same inode and we need to destroy the one we already
6778          * created.
6779          */
6780         if (!root)
6781                 goto free;
6782
6783         /*
6784          * Make sure we're properly removed from the ordered operation
6785          * lists.
6786          */
6787         smp_mb();
6788         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6789                 spin_lock(&root->fs_info->ordered_extent_lock);
6790                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6791                 spin_unlock(&root->fs_info->ordered_extent_lock);
6792         }
6793
6794         spin_lock(&root->orphan_lock);
6795         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6796                 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6797                        (unsigned long long)btrfs_ino(inode));
6798                 list_del_init(&BTRFS_I(inode)->i_orphan);
6799         }
6800         spin_unlock(&root->orphan_lock);
6801
6802         while (1) {
6803                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6804                 if (!ordered)
6805                         break;
6806                 else {
6807                         printk(KERN_ERR "btrfs found ordered "
6808                                "extent %llu %llu on inode cleanup\n",
6809                                (unsigned long long)ordered->file_offset,
6810                                (unsigned long long)ordered->len);
6811                         btrfs_remove_ordered_extent(inode, ordered);
6812                         btrfs_put_ordered_extent(ordered);
6813                         btrfs_put_ordered_extent(ordered);
6814                 }
6815         }
6816         inode_tree_del(inode);
6817         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6818 free:
6819         btrfs_remove_delayed_node(inode);
6820         call_rcu(&inode->i_rcu, btrfs_i_callback);
6821 }
6822
6823 int btrfs_drop_inode(struct inode *inode)
6824 {
6825         struct btrfs_root *root = BTRFS_I(inode)->root;
6826
6827         if (btrfs_root_refs(&root->root_item) == 0 &&
6828             !btrfs_is_free_space_inode(root, inode))
6829                 return 1;
6830         else
6831                 return generic_drop_inode(inode);
6832 }
6833
6834 static void init_once(void *foo)
6835 {
6836         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6837
6838         inode_init_once(&ei->vfs_inode);
6839 }
6840
6841 void btrfs_destroy_cachep(void)
6842 {
6843         if (btrfs_inode_cachep)
6844                 kmem_cache_destroy(btrfs_inode_cachep);
6845         if (btrfs_trans_handle_cachep)
6846                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6847         if (btrfs_transaction_cachep)
6848                 kmem_cache_destroy(btrfs_transaction_cachep);
6849         if (btrfs_path_cachep)
6850                 kmem_cache_destroy(btrfs_path_cachep);
6851         if (btrfs_free_space_cachep)
6852                 kmem_cache_destroy(btrfs_free_space_cachep);
6853 }
6854
6855 int btrfs_init_cachep(void)
6856 {
6857         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6858                         sizeof(struct btrfs_inode), 0,
6859                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6860         if (!btrfs_inode_cachep)
6861                 goto fail;
6862
6863         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6864                         sizeof(struct btrfs_trans_handle), 0,
6865                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6866         if (!btrfs_trans_handle_cachep)
6867                 goto fail;
6868
6869         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6870                         sizeof(struct btrfs_transaction), 0,
6871                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6872         if (!btrfs_transaction_cachep)
6873                 goto fail;
6874
6875         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6876                         sizeof(struct btrfs_path), 0,
6877                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6878         if (!btrfs_path_cachep)
6879                 goto fail;
6880
6881         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6882                         sizeof(struct btrfs_free_space), 0,
6883                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6884         if (!btrfs_free_space_cachep)
6885                 goto fail;
6886
6887         return 0;
6888 fail:
6889         btrfs_destroy_cachep();
6890         return -ENOMEM;
6891 }
6892
6893 static int btrfs_getattr(struct vfsmount *mnt,
6894                          struct dentry *dentry, struct kstat *stat)
6895 {
6896         struct inode *inode = dentry->d_inode;
6897         generic_fillattr(inode, stat);
6898         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6899         stat->blksize = PAGE_CACHE_SIZE;
6900         stat->blocks = (inode_get_bytes(inode) +
6901                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6902         return 0;
6903 }
6904
6905 /*
6906  * If a file is moved, it will inherit the cow and compression flags of the new
6907  * directory.
6908  */
6909 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6910 {
6911         struct btrfs_inode *b_dir = BTRFS_I(dir);
6912         struct btrfs_inode *b_inode = BTRFS_I(inode);
6913
6914         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6915                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6916         else
6917                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6918
6919         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6920                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6921         else
6922                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6923 }
6924
6925 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6926                            struct inode *new_dir, struct dentry *new_dentry)
6927 {
6928         struct btrfs_trans_handle *trans;
6929         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6930         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6931         struct inode *new_inode = new_dentry->d_inode;
6932         struct inode *old_inode = old_dentry->d_inode;
6933         struct timespec ctime = CURRENT_TIME;
6934         u64 index = 0;
6935         u64 root_objectid;
6936         int ret;
6937         u64 old_ino = btrfs_ino(old_inode);
6938
6939         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6940                 return -EPERM;
6941
6942         /* we only allow rename subvolume link between subvolumes */
6943         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6944                 return -EXDEV;
6945
6946         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6947             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6948                 return -ENOTEMPTY;
6949
6950         if (S_ISDIR(old_inode->i_mode) && new_inode &&
6951             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6952                 return -ENOTEMPTY;
6953         /*
6954          * we're using rename to replace one file with another.
6955          * and the replacement file is large.  Start IO on it now so
6956          * we don't add too much work to the end of the transaction
6957          */
6958         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6959             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6960                 filemap_flush(old_inode->i_mapping);
6961
6962         /* close the racy window with snapshot create/destroy ioctl */
6963         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6964                 down_read(&root->fs_info->subvol_sem);
6965         /*
6966          * We want to reserve the absolute worst case amount of items.  So if
6967          * both inodes are subvols and we need to unlink them then that would
6968          * require 4 item modifications, but if they are both normal inodes it
6969          * would require 5 item modifications, so we'll assume their normal
6970          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6971          * should cover the worst case number of items we'll modify.
6972          */
6973         trans = btrfs_start_transaction(root, 20);
6974         if (IS_ERR(trans)) {
6975                 ret = PTR_ERR(trans);
6976                 goto out_notrans;
6977         }
6978
6979         if (dest != root)
6980                 btrfs_record_root_in_trans(trans, dest);
6981
6982         ret = btrfs_set_inode_index(new_dir, &index);
6983         if (ret)
6984                 goto out_fail;
6985
6986         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6987                 /* force full log commit if subvolume involved. */
6988                 root->fs_info->last_trans_log_full_commit = trans->transid;
6989         } else {
6990                 ret = btrfs_insert_inode_ref(trans, dest,
6991                                              new_dentry->d_name.name,
6992                                              new_dentry->d_name.len,
6993                                              old_ino,
6994                                              btrfs_ino(new_dir), index);
6995                 if (ret)
6996                         goto out_fail;
6997                 /*
6998                  * this is an ugly little race, but the rename is required
6999                  * to make sure that if we crash, the inode is either at the
7000                  * old name or the new one.  pinning the log transaction lets
7001                  * us make sure we don't allow a log commit to come in after
7002                  * we unlink the name but before we add the new name back in.
7003                  */
7004                 btrfs_pin_log_trans(root);
7005         }
7006         /*
7007          * make sure the inode gets flushed if it is replacing
7008          * something.
7009          */
7010         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7011                 btrfs_add_ordered_operation(trans, root, old_inode);
7012
7013         old_dir->i_ctime = old_dir->i_mtime = ctime;
7014         new_dir->i_ctime = new_dir->i_mtime = ctime;
7015         old_inode->i_ctime = ctime;
7016
7017         if (old_dentry->d_parent != new_dentry->d_parent)
7018                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7019
7020         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7021                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7022                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7023                                         old_dentry->d_name.name,
7024                                         old_dentry->d_name.len);
7025         } else {
7026                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7027                                         old_dentry->d_inode,
7028                                         old_dentry->d_name.name,
7029                                         old_dentry->d_name.len);
7030                 if (!ret)
7031                         ret = btrfs_update_inode(trans, root, old_inode);
7032         }
7033         BUG_ON(ret);
7034
7035         if (new_inode) {
7036                 new_inode->i_ctime = CURRENT_TIME;
7037                 if (unlikely(btrfs_ino(new_inode) ==
7038                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7039                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7040                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7041                                                 root_objectid,
7042                                                 new_dentry->d_name.name,
7043                                                 new_dentry->d_name.len);
7044                         BUG_ON(new_inode->i_nlink == 0);
7045                 } else {
7046                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7047                                                  new_dentry->d_inode,
7048                                                  new_dentry->d_name.name,
7049                                                  new_dentry->d_name.len);
7050                 }
7051                 BUG_ON(ret);
7052                 if (new_inode->i_nlink == 0) {
7053                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7054                         BUG_ON(ret);
7055                 }
7056         }
7057
7058         fixup_inode_flags(new_dir, old_inode);
7059
7060         ret = btrfs_add_link(trans, new_dir, old_inode,
7061                              new_dentry->d_name.name,
7062                              new_dentry->d_name.len, 0, index);
7063         BUG_ON(ret);
7064
7065         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7066                 struct dentry *parent = dget_parent(new_dentry);
7067                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7068                 dput(parent);
7069                 btrfs_end_log_trans(root);
7070         }
7071 out_fail:
7072         btrfs_end_transaction_throttle(trans, root);
7073 out_notrans:
7074         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7075                 up_read(&root->fs_info->subvol_sem);
7076
7077         return ret;
7078 }
7079
7080 /*
7081  * some fairly slow code that needs optimization. This walks the list
7082  * of all the inodes with pending delalloc and forces them to disk.
7083  */
7084 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7085 {
7086         struct list_head *head = &root->fs_info->delalloc_inodes;
7087         struct btrfs_inode *binode;
7088         struct inode *inode;
7089
7090         if (root->fs_info->sb->s_flags & MS_RDONLY)
7091                 return -EROFS;
7092
7093         spin_lock(&root->fs_info->delalloc_lock);
7094         while (!list_empty(head)) {
7095                 binode = list_entry(head->next, struct btrfs_inode,
7096                                     delalloc_inodes);
7097                 inode = igrab(&binode->vfs_inode);
7098                 if (!inode)
7099                         list_del_init(&binode->delalloc_inodes);
7100                 spin_unlock(&root->fs_info->delalloc_lock);
7101                 if (inode) {
7102                         filemap_flush(inode->i_mapping);
7103                         if (delay_iput)
7104                                 btrfs_add_delayed_iput(inode);
7105                         else
7106                                 iput(inode);
7107                 }
7108                 cond_resched();
7109                 spin_lock(&root->fs_info->delalloc_lock);
7110         }
7111         spin_unlock(&root->fs_info->delalloc_lock);
7112
7113         /* the filemap_flush will queue IO into the worker threads, but
7114          * we have to make sure the IO is actually started and that
7115          * ordered extents get created before we return
7116          */
7117         atomic_inc(&root->fs_info->async_submit_draining);
7118         while (atomic_read(&root->fs_info->nr_async_submits) ||
7119               atomic_read(&root->fs_info->async_delalloc_pages)) {
7120                 wait_event(root->fs_info->async_submit_wait,
7121                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7122                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7123         }
7124         atomic_dec(&root->fs_info->async_submit_draining);
7125         return 0;
7126 }
7127
7128 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7129                          const char *symname)
7130 {
7131         struct btrfs_trans_handle *trans;
7132         struct btrfs_root *root = BTRFS_I(dir)->root;
7133         struct btrfs_path *path;
7134         struct btrfs_key key;
7135         struct inode *inode = NULL;
7136         int err;
7137         int drop_inode = 0;
7138         u64 objectid;
7139         u64 index = 0 ;
7140         int name_len;
7141         int datasize;
7142         unsigned long ptr;
7143         struct btrfs_file_extent_item *ei;
7144         struct extent_buffer *leaf;
7145         unsigned long nr = 0;
7146
7147         name_len = strlen(symname) + 1;
7148         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7149                 return -ENAMETOOLONG;
7150
7151         /*
7152          * 2 items for inode item and ref
7153          * 2 items for dir items
7154          * 1 item for xattr if selinux is on
7155          */
7156         trans = btrfs_start_transaction(root, 5);
7157         if (IS_ERR(trans))
7158                 return PTR_ERR(trans);
7159
7160         err = btrfs_find_free_ino(root, &objectid);
7161         if (err)
7162                 goto out_unlock;
7163
7164         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7165                                 dentry->d_name.len, btrfs_ino(dir), objectid,
7166                                 S_IFLNK|S_IRWXUGO, &index);
7167         if (IS_ERR(inode)) {
7168                 err = PTR_ERR(inode);
7169                 goto out_unlock;
7170         }
7171
7172         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7173         if (err) {
7174                 drop_inode = 1;
7175                 goto out_unlock;
7176         }
7177
7178         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7179         if (err)
7180                 drop_inode = 1;
7181         else {
7182                 inode->i_mapping->a_ops = &btrfs_aops;
7183                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7184                 inode->i_fop = &btrfs_file_operations;
7185                 inode->i_op = &btrfs_file_inode_operations;
7186                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7187         }
7188         if (drop_inode)
7189                 goto out_unlock;
7190
7191         path = btrfs_alloc_path();
7192         if (!path) {
7193                 err = -ENOMEM;
7194                 drop_inode = 1;
7195                 goto out_unlock;
7196         }
7197         key.objectid = btrfs_ino(inode);
7198         key.offset = 0;
7199         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7200         datasize = btrfs_file_extent_calc_inline_size(name_len);
7201         err = btrfs_insert_empty_item(trans, root, path, &key,
7202                                       datasize);
7203         if (err) {
7204                 drop_inode = 1;
7205                 btrfs_free_path(path);
7206                 goto out_unlock;
7207         }
7208         leaf = path->nodes[0];
7209         ei = btrfs_item_ptr(leaf, path->slots[0],
7210                             struct btrfs_file_extent_item);
7211         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7212         btrfs_set_file_extent_type(leaf, ei,
7213                                    BTRFS_FILE_EXTENT_INLINE);
7214         btrfs_set_file_extent_encryption(leaf, ei, 0);
7215         btrfs_set_file_extent_compression(leaf, ei, 0);
7216         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7217         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7218
7219         ptr = btrfs_file_extent_inline_start(ei);
7220         write_extent_buffer(leaf, symname, ptr, name_len);
7221         btrfs_mark_buffer_dirty(leaf);
7222         btrfs_free_path(path);
7223
7224         inode->i_op = &btrfs_symlink_inode_operations;
7225         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7226         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7227         inode_set_bytes(inode, name_len);
7228         btrfs_i_size_write(inode, name_len - 1);
7229         err = btrfs_update_inode(trans, root, inode);
7230         if (err)
7231                 drop_inode = 1;
7232
7233 out_unlock:
7234         nr = trans->blocks_used;
7235         btrfs_end_transaction_throttle(trans, root);
7236         if (drop_inode) {
7237                 inode_dec_link_count(inode);
7238                 iput(inode);
7239         }
7240         btrfs_btree_balance_dirty(root, nr);
7241         return err;
7242 }
7243
7244 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7245                                        u64 start, u64 num_bytes, u64 min_size,
7246                                        loff_t actual_len, u64 *alloc_hint,
7247                                        struct btrfs_trans_handle *trans)
7248 {
7249         struct btrfs_root *root = BTRFS_I(inode)->root;
7250         struct btrfs_key ins;
7251         u64 cur_offset = start;
7252         u64 i_size;
7253         int ret = 0;
7254         bool own_trans = true;
7255
7256         if (trans)
7257                 own_trans = false;
7258         while (num_bytes > 0) {
7259                 if (own_trans) {
7260                         trans = btrfs_start_transaction(root, 3);
7261                         if (IS_ERR(trans)) {
7262                                 ret = PTR_ERR(trans);
7263                                 break;
7264                         }
7265                 }
7266
7267                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7268                                            0, *alloc_hint, (u64)-1, &ins, 1);
7269                 if (ret) {
7270                         if (own_trans)
7271                                 btrfs_end_transaction(trans, root);
7272                         break;
7273                 }
7274
7275                 ret = insert_reserved_file_extent(trans, inode,
7276                                                   cur_offset, ins.objectid,
7277                                                   ins.offset, ins.offset,
7278                                                   ins.offset, 0, 0, 0,
7279                                                   BTRFS_FILE_EXTENT_PREALLOC);
7280                 BUG_ON(ret);
7281                 btrfs_drop_extent_cache(inode, cur_offset,
7282                                         cur_offset + ins.offset -1, 0);
7283
7284                 num_bytes -= ins.offset;
7285                 cur_offset += ins.offset;
7286                 *alloc_hint = ins.objectid + ins.offset;
7287
7288                 inode->i_ctime = CURRENT_TIME;
7289                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7290                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7291                     (actual_len > inode->i_size) &&
7292                     (cur_offset > inode->i_size)) {
7293                         if (cur_offset > actual_len)
7294                                 i_size = actual_len;
7295                         else
7296                                 i_size = cur_offset;
7297                         i_size_write(inode, i_size);
7298                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7299                 }
7300
7301                 ret = btrfs_update_inode(trans, root, inode);
7302                 BUG_ON(ret);
7303
7304                 if (own_trans)
7305                         btrfs_end_transaction(trans, root);
7306         }
7307         return ret;
7308 }
7309
7310 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7311                               u64 start, u64 num_bytes, u64 min_size,
7312                               loff_t actual_len, u64 *alloc_hint)
7313 {
7314         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7315                                            min_size, actual_len, alloc_hint,
7316                                            NULL);
7317 }
7318
7319 int btrfs_prealloc_file_range_trans(struct inode *inode,
7320                                     struct btrfs_trans_handle *trans, int mode,
7321                                     u64 start, u64 num_bytes, u64 min_size,
7322                                     loff_t actual_len, u64 *alloc_hint)
7323 {
7324         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7325                                            min_size, actual_len, alloc_hint, trans);
7326 }
7327
7328 static int btrfs_set_page_dirty(struct page *page)
7329 {
7330         return __set_page_dirty_nobuffers(page);
7331 }
7332
7333 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7334 {
7335         struct btrfs_root *root = BTRFS_I(inode)->root;
7336
7337         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7338                 return -EROFS;
7339         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7340                 return -EACCES;
7341         return generic_permission(inode, mask, flags, btrfs_check_acl);
7342 }
7343
7344 static const struct inode_operations btrfs_dir_inode_operations = {
7345         .getattr        = btrfs_getattr,
7346         .lookup         = btrfs_lookup,
7347         .create         = btrfs_create,
7348         .unlink         = btrfs_unlink,
7349         .link           = btrfs_link,
7350         .mkdir          = btrfs_mkdir,
7351         .rmdir          = btrfs_rmdir,
7352         .rename         = btrfs_rename,
7353         .symlink        = btrfs_symlink,
7354         .setattr        = btrfs_setattr,
7355         .mknod          = btrfs_mknod,
7356         .setxattr       = btrfs_setxattr,
7357         .getxattr       = btrfs_getxattr,
7358         .listxattr      = btrfs_listxattr,
7359         .removexattr    = btrfs_removexattr,
7360         .permission     = btrfs_permission,
7361 };
7362 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7363         .lookup         = btrfs_lookup,
7364         .permission     = btrfs_permission,
7365 };
7366
7367 static const struct file_operations btrfs_dir_file_operations = {
7368         .llseek         = generic_file_llseek,
7369         .read           = generic_read_dir,
7370         .readdir        = btrfs_real_readdir,
7371         .unlocked_ioctl = btrfs_ioctl,
7372 #ifdef CONFIG_COMPAT
7373         .compat_ioctl   = btrfs_ioctl,
7374 #endif
7375         .release        = btrfs_release_file,
7376         .fsync          = btrfs_sync_file,
7377 };
7378
7379 static struct extent_io_ops btrfs_extent_io_ops = {
7380         .fill_delalloc = run_delalloc_range,
7381         .submit_bio_hook = btrfs_submit_bio_hook,
7382         .merge_bio_hook = btrfs_merge_bio_hook,
7383         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7384         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7385         .writepage_start_hook = btrfs_writepage_start_hook,
7386         .readpage_io_failed_hook = btrfs_io_failed_hook,
7387         .set_bit_hook = btrfs_set_bit_hook,
7388         .clear_bit_hook = btrfs_clear_bit_hook,
7389         .merge_extent_hook = btrfs_merge_extent_hook,
7390         .split_extent_hook = btrfs_split_extent_hook,
7391 };
7392
7393 /*
7394  * btrfs doesn't support the bmap operation because swapfiles
7395  * use bmap to make a mapping of extents in the file.  They assume
7396  * these extents won't change over the life of the file and they
7397  * use the bmap result to do IO directly to the drive.
7398  *
7399  * the btrfs bmap call would return logical addresses that aren't
7400  * suitable for IO and they also will change frequently as COW
7401  * operations happen.  So, swapfile + btrfs == corruption.
7402  *
7403  * For now we're avoiding this by dropping bmap.
7404  */
7405 static const struct address_space_operations btrfs_aops = {
7406         .readpage       = btrfs_readpage,
7407         .writepage      = btrfs_writepage,
7408         .writepages     = btrfs_writepages,
7409         .readpages      = btrfs_readpages,
7410         .direct_IO      = btrfs_direct_IO,
7411         .invalidatepage = btrfs_invalidatepage,
7412         .releasepage    = btrfs_releasepage,
7413         .set_page_dirty = btrfs_set_page_dirty,
7414         .error_remove_page = generic_error_remove_page,
7415 };
7416
7417 static const struct address_space_operations btrfs_symlink_aops = {
7418         .readpage       = btrfs_readpage,
7419         .writepage      = btrfs_writepage,
7420         .invalidatepage = btrfs_invalidatepage,
7421         .releasepage    = btrfs_releasepage,
7422 };
7423
7424 static const struct inode_operations btrfs_file_inode_operations = {
7425         .getattr        = btrfs_getattr,
7426         .setattr        = btrfs_setattr,
7427         .setxattr       = btrfs_setxattr,
7428         .getxattr       = btrfs_getxattr,
7429         .listxattr      = btrfs_listxattr,
7430         .removexattr    = btrfs_removexattr,
7431         .permission     = btrfs_permission,
7432         .fiemap         = btrfs_fiemap,
7433 };
7434 static const struct inode_operations btrfs_special_inode_operations = {
7435         .getattr        = btrfs_getattr,
7436         .setattr        = btrfs_setattr,
7437         .permission     = btrfs_permission,
7438         .setxattr       = btrfs_setxattr,
7439         .getxattr       = btrfs_getxattr,
7440         .listxattr      = btrfs_listxattr,
7441         .removexattr    = btrfs_removexattr,
7442 };
7443 static const struct inode_operations btrfs_symlink_inode_operations = {
7444         .readlink       = generic_readlink,
7445         .follow_link    = page_follow_link_light,
7446         .put_link       = page_put_link,
7447         .getattr        = btrfs_getattr,
7448         .permission     = btrfs_permission,
7449         .setxattr       = btrfs_setxattr,
7450         .getxattr       = btrfs_getxattr,
7451         .listxattr      = btrfs_listxattr,
7452         .removexattr    = btrfs_removexattr,
7453 };
7454
7455 const struct dentry_operations btrfs_dentry_operations = {
7456         .d_delete       = btrfs_dentry_delete,
7457 };