]> Pileus Git - ~andy/linux/blob - fs/btrfs/free-space-cache.c
HID: roccat: added sensor sysfs attribute for Savu
[~andy/linux] / fs / btrfs / free-space-cache.c
1 /*
2  * Copyright (C) 2008 Red Hat.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30
31 #define BITS_PER_BITMAP         (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33
34 static int link_free_space(struct btrfs_free_space_ctl *ctl,
35                            struct btrfs_free_space *info);
36 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37                               struct btrfs_free_space *info);
38
39 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40                                                struct btrfs_path *path,
41                                                u64 offset)
42 {
43         struct btrfs_key key;
44         struct btrfs_key location;
45         struct btrfs_disk_key disk_key;
46         struct btrfs_free_space_header *header;
47         struct extent_buffer *leaf;
48         struct inode *inode = NULL;
49         int ret;
50
51         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
52         key.offset = offset;
53         key.type = 0;
54
55         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56         if (ret < 0)
57                 return ERR_PTR(ret);
58         if (ret > 0) {
59                 btrfs_release_path(path);
60                 return ERR_PTR(-ENOENT);
61         }
62
63         leaf = path->nodes[0];
64         header = btrfs_item_ptr(leaf, path->slots[0],
65                                 struct btrfs_free_space_header);
66         btrfs_free_space_key(leaf, header, &disk_key);
67         btrfs_disk_key_to_cpu(&location, &disk_key);
68         btrfs_release_path(path);
69
70         inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71         if (!inode)
72                 return ERR_PTR(-ENOENT);
73         if (IS_ERR(inode))
74                 return inode;
75         if (is_bad_inode(inode)) {
76                 iput(inode);
77                 return ERR_PTR(-ENOENT);
78         }
79
80         mapping_set_gfp_mask(inode->i_mapping,
81                         mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
82
83         return inode;
84 }
85
86 struct inode *lookup_free_space_inode(struct btrfs_root *root,
87                                       struct btrfs_block_group_cache
88                                       *block_group, struct btrfs_path *path)
89 {
90         struct inode *inode = NULL;
91         u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
92
93         spin_lock(&block_group->lock);
94         if (block_group->inode)
95                 inode = igrab(block_group->inode);
96         spin_unlock(&block_group->lock);
97         if (inode)
98                 return inode;
99
100         inode = __lookup_free_space_inode(root, path,
101                                           block_group->key.objectid);
102         if (IS_ERR(inode))
103                 return inode;
104
105         spin_lock(&block_group->lock);
106         if (!((BTRFS_I(inode)->flags & flags) == flags)) {
107                 printk(KERN_INFO "Old style space inode found, converting.\n");
108                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109                         BTRFS_INODE_NODATACOW;
110                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
111         }
112
113         if (!block_group->iref) {
114                 block_group->inode = igrab(inode);
115                 block_group->iref = 1;
116         }
117         spin_unlock(&block_group->lock);
118
119         return inode;
120 }
121
122 int __create_free_space_inode(struct btrfs_root *root,
123                               struct btrfs_trans_handle *trans,
124                               struct btrfs_path *path, u64 ino, u64 offset)
125 {
126         struct btrfs_key key;
127         struct btrfs_disk_key disk_key;
128         struct btrfs_free_space_header *header;
129         struct btrfs_inode_item *inode_item;
130         struct extent_buffer *leaf;
131         u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
132         int ret;
133
134         ret = btrfs_insert_empty_inode(trans, root, path, ino);
135         if (ret)
136                 return ret;
137
138         /* We inline crc's for the free disk space cache */
139         if (ino != BTRFS_FREE_INO_OBJECTID)
140                 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141
142         leaf = path->nodes[0];
143         inode_item = btrfs_item_ptr(leaf, path->slots[0],
144                                     struct btrfs_inode_item);
145         btrfs_item_key(leaf, &disk_key, path->slots[0]);
146         memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147                              sizeof(*inode_item));
148         btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149         btrfs_set_inode_size(leaf, inode_item, 0);
150         btrfs_set_inode_nbytes(leaf, inode_item, 0);
151         btrfs_set_inode_uid(leaf, inode_item, 0);
152         btrfs_set_inode_gid(leaf, inode_item, 0);
153         btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
154         btrfs_set_inode_flags(leaf, inode_item, flags);
155         btrfs_set_inode_nlink(leaf, inode_item, 1);
156         btrfs_set_inode_transid(leaf, inode_item, trans->transid);
157         btrfs_set_inode_block_group(leaf, inode_item, offset);
158         btrfs_mark_buffer_dirty(leaf);
159         btrfs_release_path(path);
160
161         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
162         key.offset = offset;
163         key.type = 0;
164
165         ret = btrfs_insert_empty_item(trans, root, path, &key,
166                                       sizeof(struct btrfs_free_space_header));
167         if (ret < 0) {
168                 btrfs_release_path(path);
169                 return ret;
170         }
171         leaf = path->nodes[0];
172         header = btrfs_item_ptr(leaf, path->slots[0],
173                                 struct btrfs_free_space_header);
174         memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175         btrfs_set_free_space_key(leaf, header, &disk_key);
176         btrfs_mark_buffer_dirty(leaf);
177         btrfs_release_path(path);
178
179         return 0;
180 }
181
182 int create_free_space_inode(struct btrfs_root *root,
183                             struct btrfs_trans_handle *trans,
184                             struct btrfs_block_group_cache *block_group,
185                             struct btrfs_path *path)
186 {
187         int ret;
188         u64 ino;
189
190         ret = btrfs_find_free_objectid(root, &ino);
191         if (ret < 0)
192                 return ret;
193
194         return __create_free_space_inode(root, trans, path, ino,
195                                          block_group->key.objectid);
196 }
197
198 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199                                     struct btrfs_trans_handle *trans,
200                                     struct btrfs_path *path,
201                                     struct inode *inode)
202 {
203         struct btrfs_block_rsv *rsv;
204         u64 needed_bytes;
205         loff_t oldsize;
206         int ret = 0;
207
208         rsv = trans->block_rsv;
209         trans->block_rsv = &root->fs_info->global_block_rsv;
210
211         /* 1 for slack space, 1 for updating the inode */
212         needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213                 btrfs_calc_trans_metadata_size(root, 1);
214
215         spin_lock(&trans->block_rsv->lock);
216         if (trans->block_rsv->reserved < needed_bytes) {
217                 spin_unlock(&trans->block_rsv->lock);
218                 trans->block_rsv = rsv;
219                 return -ENOSPC;
220         }
221         spin_unlock(&trans->block_rsv->lock);
222
223         oldsize = i_size_read(inode);
224         btrfs_i_size_write(inode, 0);
225         truncate_pagecache(inode, oldsize, 0);
226
227         /*
228          * We don't need an orphan item because truncating the free space cache
229          * will never be split across transactions.
230          */
231         ret = btrfs_truncate_inode_items(trans, root, inode,
232                                          0, BTRFS_EXTENT_DATA_KEY);
233
234         if (ret) {
235                 trans->block_rsv = rsv;
236                 btrfs_abort_transaction(trans, root, ret);
237                 return ret;
238         }
239
240         ret = btrfs_update_inode(trans, root, inode);
241         if (ret)
242                 btrfs_abort_transaction(trans, root, ret);
243         trans->block_rsv = rsv;
244
245         return ret;
246 }
247
248 static int readahead_cache(struct inode *inode)
249 {
250         struct file_ra_state *ra;
251         unsigned long last_index;
252
253         ra = kzalloc(sizeof(*ra), GFP_NOFS);
254         if (!ra)
255                 return -ENOMEM;
256
257         file_ra_state_init(ra, inode->i_mapping);
258         last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259
260         page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261
262         kfree(ra);
263
264         return 0;
265 }
266
267 struct io_ctl {
268         void *cur, *orig;
269         struct page *page;
270         struct page **pages;
271         struct btrfs_root *root;
272         unsigned long size;
273         int index;
274         int num_pages;
275         unsigned check_crcs:1;
276 };
277
278 static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279                        struct btrfs_root *root)
280 {
281         memset(io_ctl, 0, sizeof(struct io_ctl));
282         io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283                 PAGE_CACHE_SHIFT;
284         io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285                                 GFP_NOFS);
286         if (!io_ctl->pages)
287                 return -ENOMEM;
288         io_ctl->root = root;
289         if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290                 io_ctl->check_crcs = 1;
291         return 0;
292 }
293
294 static void io_ctl_free(struct io_ctl *io_ctl)
295 {
296         kfree(io_ctl->pages);
297 }
298
299 static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300 {
301         if (io_ctl->cur) {
302                 kunmap(io_ctl->page);
303                 io_ctl->cur = NULL;
304                 io_ctl->orig = NULL;
305         }
306 }
307
308 static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309 {
310         WARN_ON(io_ctl->cur);
311         BUG_ON(io_ctl->index >= io_ctl->num_pages);
312         io_ctl->page = io_ctl->pages[io_ctl->index++];
313         io_ctl->cur = kmap(io_ctl->page);
314         io_ctl->orig = io_ctl->cur;
315         io_ctl->size = PAGE_CACHE_SIZE;
316         if (clear)
317                 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
318 }
319
320 static void io_ctl_drop_pages(struct io_ctl *io_ctl)
321 {
322         int i;
323
324         io_ctl_unmap_page(io_ctl);
325
326         for (i = 0; i < io_ctl->num_pages; i++) {
327                 if (io_ctl->pages[i]) {
328                         ClearPageChecked(io_ctl->pages[i]);
329                         unlock_page(io_ctl->pages[i]);
330                         page_cache_release(io_ctl->pages[i]);
331                 }
332         }
333 }
334
335 static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
336                                 int uptodate)
337 {
338         struct page *page;
339         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
340         int i;
341
342         for (i = 0; i < io_ctl->num_pages; i++) {
343                 page = find_or_create_page(inode->i_mapping, i, mask);
344                 if (!page) {
345                         io_ctl_drop_pages(io_ctl);
346                         return -ENOMEM;
347                 }
348                 io_ctl->pages[i] = page;
349                 if (uptodate && !PageUptodate(page)) {
350                         btrfs_readpage(NULL, page);
351                         lock_page(page);
352                         if (!PageUptodate(page)) {
353                                 printk(KERN_ERR "btrfs: error reading free "
354                                        "space cache\n");
355                                 io_ctl_drop_pages(io_ctl);
356                                 return -EIO;
357                         }
358                 }
359         }
360
361         for (i = 0; i < io_ctl->num_pages; i++) {
362                 clear_page_dirty_for_io(io_ctl->pages[i]);
363                 set_page_extent_mapped(io_ctl->pages[i]);
364         }
365
366         return 0;
367 }
368
369 static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
370 {
371         __le64 *val;
372
373         io_ctl_map_page(io_ctl, 1);
374
375         /*
376          * Skip the csum areas.  If we don't check crcs then we just have a
377          * 64bit chunk at the front of the first page.
378          */
379         if (io_ctl->check_crcs) {
380                 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
381                 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
382         } else {
383                 io_ctl->cur += sizeof(u64);
384                 io_ctl->size -= sizeof(u64) * 2;
385         }
386
387         val = io_ctl->cur;
388         *val = cpu_to_le64(generation);
389         io_ctl->cur += sizeof(u64);
390 }
391
392 static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
393 {
394         __le64 *gen;
395
396         /*
397          * Skip the crc area.  If we don't check crcs then we just have a 64bit
398          * chunk at the front of the first page.
399          */
400         if (io_ctl->check_crcs) {
401                 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
402                 io_ctl->size -= sizeof(u64) +
403                         (sizeof(u32) * io_ctl->num_pages);
404         } else {
405                 io_ctl->cur += sizeof(u64);
406                 io_ctl->size -= sizeof(u64) * 2;
407         }
408
409         gen = io_ctl->cur;
410         if (le64_to_cpu(*gen) != generation) {
411                 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
412                                    "(%Lu) does not match inode (%Lu)\n", *gen,
413                                    generation);
414                 io_ctl_unmap_page(io_ctl);
415                 return -EIO;
416         }
417         io_ctl->cur += sizeof(u64);
418         return 0;
419 }
420
421 static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
422 {
423         u32 *tmp;
424         u32 crc = ~(u32)0;
425         unsigned offset = 0;
426
427         if (!io_ctl->check_crcs) {
428                 io_ctl_unmap_page(io_ctl);
429                 return;
430         }
431
432         if (index == 0)
433                 offset = sizeof(u32) * io_ctl->num_pages;
434
435         crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
436                               PAGE_CACHE_SIZE - offset);
437         btrfs_csum_final(crc, (char *)&crc);
438         io_ctl_unmap_page(io_ctl);
439         tmp = kmap(io_ctl->pages[0]);
440         tmp += index;
441         *tmp = crc;
442         kunmap(io_ctl->pages[0]);
443 }
444
445 static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
446 {
447         u32 *tmp, val;
448         u32 crc = ~(u32)0;
449         unsigned offset = 0;
450
451         if (!io_ctl->check_crcs) {
452                 io_ctl_map_page(io_ctl, 0);
453                 return 0;
454         }
455
456         if (index == 0)
457                 offset = sizeof(u32) * io_ctl->num_pages;
458
459         tmp = kmap(io_ctl->pages[0]);
460         tmp += index;
461         val = *tmp;
462         kunmap(io_ctl->pages[0]);
463
464         io_ctl_map_page(io_ctl, 0);
465         crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
466                               PAGE_CACHE_SIZE - offset);
467         btrfs_csum_final(crc, (char *)&crc);
468         if (val != crc) {
469                 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
470                                    "space cache\n");
471                 io_ctl_unmap_page(io_ctl);
472                 return -EIO;
473         }
474
475         return 0;
476 }
477
478 static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
479                             void *bitmap)
480 {
481         struct btrfs_free_space_entry *entry;
482
483         if (!io_ctl->cur)
484                 return -ENOSPC;
485
486         entry = io_ctl->cur;
487         entry->offset = cpu_to_le64(offset);
488         entry->bytes = cpu_to_le64(bytes);
489         entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
490                 BTRFS_FREE_SPACE_EXTENT;
491         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
492         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
493
494         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
495                 return 0;
496
497         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
498
499         /* No more pages to map */
500         if (io_ctl->index >= io_ctl->num_pages)
501                 return 0;
502
503         /* map the next page */
504         io_ctl_map_page(io_ctl, 1);
505         return 0;
506 }
507
508 static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
509 {
510         if (!io_ctl->cur)
511                 return -ENOSPC;
512
513         /*
514          * If we aren't at the start of the current page, unmap this one and
515          * map the next one if there is any left.
516          */
517         if (io_ctl->cur != io_ctl->orig) {
518                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
519                 if (io_ctl->index >= io_ctl->num_pages)
520                         return -ENOSPC;
521                 io_ctl_map_page(io_ctl, 0);
522         }
523
524         memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
525         io_ctl_set_crc(io_ctl, io_ctl->index - 1);
526         if (io_ctl->index < io_ctl->num_pages)
527                 io_ctl_map_page(io_ctl, 0);
528         return 0;
529 }
530
531 static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
532 {
533         /*
534          * If we're not on the boundary we know we've modified the page and we
535          * need to crc the page.
536          */
537         if (io_ctl->cur != io_ctl->orig)
538                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539         else
540                 io_ctl_unmap_page(io_ctl);
541
542         while (io_ctl->index < io_ctl->num_pages) {
543                 io_ctl_map_page(io_ctl, 1);
544                 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
545         }
546 }
547
548 static int io_ctl_read_entry(struct io_ctl *io_ctl,
549                             struct btrfs_free_space *entry, u8 *type)
550 {
551         struct btrfs_free_space_entry *e;
552         int ret;
553
554         if (!io_ctl->cur) {
555                 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
556                 if (ret)
557                         return ret;
558         }
559
560         e = io_ctl->cur;
561         entry->offset = le64_to_cpu(e->offset);
562         entry->bytes = le64_to_cpu(e->bytes);
563         *type = e->type;
564         io_ctl->cur += sizeof(struct btrfs_free_space_entry);
565         io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566
567         if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
568                 return 0;
569
570         io_ctl_unmap_page(io_ctl);
571
572         return 0;
573 }
574
575 static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
576                               struct btrfs_free_space *entry)
577 {
578         int ret;
579
580         ret = io_ctl_check_crc(io_ctl, io_ctl->index);
581         if (ret)
582                 return ret;
583
584         memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
585         io_ctl_unmap_page(io_ctl);
586
587         return 0;
588 }
589
590 /*
591  * Since we attach pinned extents after the fact we can have contiguous sections
592  * of free space that are split up in entries.  This poses a problem with the
593  * tree logging stuff since it could have allocated across what appears to be 2
594  * entries since we would have merged the entries when adding the pinned extents
595  * back to the free space cache.  So run through the space cache that we just
596  * loaded and merge contiguous entries.  This will make the log replay stuff not
597  * blow up and it will make for nicer allocator behavior.
598  */
599 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
600 {
601         struct btrfs_free_space *e, *prev = NULL;
602         struct rb_node *n;
603
604 again:
605         spin_lock(&ctl->tree_lock);
606         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
607                 e = rb_entry(n, struct btrfs_free_space, offset_index);
608                 if (!prev)
609                         goto next;
610                 if (e->bitmap || prev->bitmap)
611                         goto next;
612                 if (prev->offset + prev->bytes == e->offset) {
613                         unlink_free_space(ctl, prev);
614                         unlink_free_space(ctl, e);
615                         prev->bytes += e->bytes;
616                         kmem_cache_free(btrfs_free_space_cachep, e);
617                         link_free_space(ctl, prev);
618                         prev = NULL;
619                         spin_unlock(&ctl->tree_lock);
620                         goto again;
621                 }
622 next:
623                 prev = e;
624         }
625         spin_unlock(&ctl->tree_lock);
626 }
627
628 int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
629                             struct btrfs_free_space_ctl *ctl,
630                             struct btrfs_path *path, u64 offset)
631 {
632         struct btrfs_free_space_header *header;
633         struct extent_buffer *leaf;
634         struct io_ctl io_ctl;
635         struct btrfs_key key;
636         struct btrfs_free_space *e, *n;
637         struct list_head bitmaps;
638         u64 num_entries;
639         u64 num_bitmaps;
640         u64 generation;
641         u8 type;
642         int ret = 0;
643
644         INIT_LIST_HEAD(&bitmaps);
645
646         /* Nothing in the space cache, goodbye */
647         if (!i_size_read(inode))
648                 return 0;
649
650         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
651         key.offset = offset;
652         key.type = 0;
653
654         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
655         if (ret < 0)
656                 return 0;
657         else if (ret > 0) {
658                 btrfs_release_path(path);
659                 return 0;
660         }
661
662         ret = -1;
663
664         leaf = path->nodes[0];
665         header = btrfs_item_ptr(leaf, path->slots[0],
666                                 struct btrfs_free_space_header);
667         num_entries = btrfs_free_space_entries(leaf, header);
668         num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
669         generation = btrfs_free_space_generation(leaf, header);
670         btrfs_release_path(path);
671
672         if (BTRFS_I(inode)->generation != generation) {
673                 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
674                        " not match free space cache generation (%llu)\n",
675                        (unsigned long long)BTRFS_I(inode)->generation,
676                        (unsigned long long)generation);
677                 return 0;
678         }
679
680         if (!num_entries)
681                 return 0;
682
683         ret = io_ctl_init(&io_ctl, inode, root);
684         if (ret)
685                 return ret;
686
687         ret = readahead_cache(inode);
688         if (ret)
689                 goto out;
690
691         ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
692         if (ret)
693                 goto out;
694
695         ret = io_ctl_check_crc(&io_ctl, 0);
696         if (ret)
697                 goto free_cache;
698
699         ret = io_ctl_check_generation(&io_ctl, generation);
700         if (ret)
701                 goto free_cache;
702
703         while (num_entries) {
704                 e = kmem_cache_zalloc(btrfs_free_space_cachep,
705                                       GFP_NOFS);
706                 if (!e)
707                         goto free_cache;
708
709                 ret = io_ctl_read_entry(&io_ctl, e, &type);
710                 if (ret) {
711                         kmem_cache_free(btrfs_free_space_cachep, e);
712                         goto free_cache;
713                 }
714
715                 if (!e->bytes) {
716                         kmem_cache_free(btrfs_free_space_cachep, e);
717                         goto free_cache;
718                 }
719
720                 if (type == BTRFS_FREE_SPACE_EXTENT) {
721                         spin_lock(&ctl->tree_lock);
722                         ret = link_free_space(ctl, e);
723                         spin_unlock(&ctl->tree_lock);
724                         if (ret) {
725                                 printk(KERN_ERR "Duplicate entries in "
726                                        "free space cache, dumping\n");
727                                 kmem_cache_free(btrfs_free_space_cachep, e);
728                                 goto free_cache;
729                         }
730                 } else {
731                         BUG_ON(!num_bitmaps);
732                         num_bitmaps--;
733                         e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
734                         if (!e->bitmap) {
735                                 kmem_cache_free(
736                                         btrfs_free_space_cachep, e);
737                                 goto free_cache;
738                         }
739                         spin_lock(&ctl->tree_lock);
740                         ret = link_free_space(ctl, e);
741                         ctl->total_bitmaps++;
742                         ctl->op->recalc_thresholds(ctl);
743                         spin_unlock(&ctl->tree_lock);
744                         if (ret) {
745                                 printk(KERN_ERR "Duplicate entries in "
746                                        "free space cache, dumping\n");
747                                 kmem_cache_free(btrfs_free_space_cachep, e);
748                                 goto free_cache;
749                         }
750                         list_add_tail(&e->list, &bitmaps);
751                 }
752
753                 num_entries--;
754         }
755
756         io_ctl_unmap_page(&io_ctl);
757
758         /*
759          * We add the bitmaps at the end of the entries in order that
760          * the bitmap entries are added to the cache.
761          */
762         list_for_each_entry_safe(e, n, &bitmaps, list) {
763                 list_del_init(&e->list);
764                 ret = io_ctl_read_bitmap(&io_ctl, e);
765                 if (ret)
766                         goto free_cache;
767         }
768
769         io_ctl_drop_pages(&io_ctl);
770         merge_space_tree(ctl);
771         ret = 1;
772 out:
773         io_ctl_free(&io_ctl);
774         return ret;
775 free_cache:
776         io_ctl_drop_pages(&io_ctl);
777         __btrfs_remove_free_space_cache(ctl);
778         goto out;
779 }
780
781 int load_free_space_cache(struct btrfs_fs_info *fs_info,
782                           struct btrfs_block_group_cache *block_group)
783 {
784         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
785         struct btrfs_root *root = fs_info->tree_root;
786         struct inode *inode;
787         struct btrfs_path *path;
788         int ret = 0;
789         bool matched;
790         u64 used = btrfs_block_group_used(&block_group->item);
791
792         /*
793          * If this block group has been marked to be cleared for one reason or
794          * another then we can't trust the on disk cache, so just return.
795          */
796         spin_lock(&block_group->lock);
797         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
798                 spin_unlock(&block_group->lock);
799                 return 0;
800         }
801         spin_unlock(&block_group->lock);
802
803         path = btrfs_alloc_path();
804         if (!path)
805                 return 0;
806         path->search_commit_root = 1;
807         path->skip_locking = 1;
808
809         inode = lookup_free_space_inode(root, block_group, path);
810         if (IS_ERR(inode)) {
811                 btrfs_free_path(path);
812                 return 0;
813         }
814
815         /* We may have converted the inode and made the cache invalid. */
816         spin_lock(&block_group->lock);
817         if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
818                 spin_unlock(&block_group->lock);
819                 btrfs_free_path(path);
820                 goto out;
821         }
822         spin_unlock(&block_group->lock);
823
824         ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
825                                       path, block_group->key.objectid);
826         btrfs_free_path(path);
827         if (ret <= 0)
828                 goto out;
829
830         spin_lock(&ctl->tree_lock);
831         matched = (ctl->free_space == (block_group->key.offset - used -
832                                        block_group->bytes_super));
833         spin_unlock(&ctl->tree_lock);
834
835         if (!matched) {
836                 __btrfs_remove_free_space_cache(ctl);
837                 printk(KERN_ERR "block group %llu has an wrong amount of free "
838                        "space\n", block_group->key.objectid);
839                 ret = -1;
840         }
841 out:
842         if (ret < 0) {
843                 /* This cache is bogus, make sure it gets cleared */
844                 spin_lock(&block_group->lock);
845                 block_group->disk_cache_state = BTRFS_DC_CLEAR;
846                 spin_unlock(&block_group->lock);
847                 ret = 0;
848
849                 printk(KERN_ERR "btrfs: failed to load free space cache "
850                        "for block group %llu\n", block_group->key.objectid);
851         }
852
853         iput(inode);
854         return ret;
855 }
856
857 /**
858  * __btrfs_write_out_cache - write out cached info to an inode
859  * @root - the root the inode belongs to
860  * @ctl - the free space cache we are going to write out
861  * @block_group - the block_group for this cache if it belongs to a block_group
862  * @trans - the trans handle
863  * @path - the path to use
864  * @offset - the offset for the key we'll insert
865  *
866  * This function writes out a free space cache struct to disk for quick recovery
867  * on mount.  This will return 0 if it was successfull in writing the cache out,
868  * and -1 if it was not.
869  */
870 int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
871                             struct btrfs_free_space_ctl *ctl,
872                             struct btrfs_block_group_cache *block_group,
873                             struct btrfs_trans_handle *trans,
874                             struct btrfs_path *path, u64 offset)
875 {
876         struct btrfs_free_space_header *header;
877         struct extent_buffer *leaf;
878         struct rb_node *node;
879         struct list_head *pos, *n;
880         struct extent_state *cached_state = NULL;
881         struct btrfs_free_cluster *cluster = NULL;
882         struct extent_io_tree *unpin = NULL;
883         struct io_ctl io_ctl;
884         struct list_head bitmap_list;
885         struct btrfs_key key;
886         u64 start, extent_start, extent_end, len;
887         int entries = 0;
888         int bitmaps = 0;
889         int ret;
890         int err = -1;
891
892         INIT_LIST_HEAD(&bitmap_list);
893
894         if (!i_size_read(inode))
895                 return -1;
896
897         ret = io_ctl_init(&io_ctl, inode, root);
898         if (ret)
899                 return -1;
900
901         /* Get the cluster for this block_group if it exists */
902         if (block_group && !list_empty(&block_group->cluster_list))
903                 cluster = list_entry(block_group->cluster_list.next,
904                                      struct btrfs_free_cluster,
905                                      block_group_list);
906
907         /* Lock all pages first so we can lock the extent safely. */
908         io_ctl_prepare_pages(&io_ctl, inode, 0);
909
910         lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
911                          0, &cached_state);
912
913         node = rb_first(&ctl->free_space_offset);
914         if (!node && cluster) {
915                 node = rb_first(&cluster->root);
916                 cluster = NULL;
917         }
918
919         /* Make sure we can fit our crcs into the first page */
920         if (io_ctl.check_crcs &&
921             (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
922                 WARN_ON(1);
923                 goto out_nospc;
924         }
925
926         io_ctl_set_generation(&io_ctl, trans->transid);
927
928         /* Write out the extent entries */
929         while (node) {
930                 struct btrfs_free_space *e;
931
932                 e = rb_entry(node, struct btrfs_free_space, offset_index);
933                 entries++;
934
935                 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
936                                        e->bitmap);
937                 if (ret)
938                         goto out_nospc;
939
940                 if (e->bitmap) {
941                         list_add_tail(&e->list, &bitmap_list);
942                         bitmaps++;
943                 }
944                 node = rb_next(node);
945                 if (!node && cluster) {
946                         node = rb_first(&cluster->root);
947                         cluster = NULL;
948                 }
949         }
950
951         /*
952          * We want to add any pinned extents to our free space cache
953          * so we don't leak the space
954          */
955
956         /*
957          * We shouldn't have switched the pinned extents yet so this is the
958          * right one
959          */
960         unpin = root->fs_info->pinned_extents;
961
962         if (block_group)
963                 start = block_group->key.objectid;
964
965         while (block_group && (start < block_group->key.objectid +
966                                block_group->key.offset)) {
967                 ret = find_first_extent_bit(unpin, start,
968                                             &extent_start, &extent_end,
969                                             EXTENT_DIRTY);
970                 if (ret) {
971                         ret = 0;
972                         break;
973                 }
974
975                 /* This pinned extent is out of our range */
976                 if (extent_start >= block_group->key.objectid +
977                     block_group->key.offset)
978                         break;
979
980                 extent_start = max(extent_start, start);
981                 extent_end = min(block_group->key.objectid +
982                                  block_group->key.offset, extent_end + 1);
983                 len = extent_end - extent_start;
984
985                 entries++;
986                 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
987                 if (ret)
988                         goto out_nospc;
989
990                 start = extent_end;
991         }
992
993         /* Write out the bitmaps */
994         list_for_each_safe(pos, n, &bitmap_list) {
995                 struct btrfs_free_space *entry =
996                         list_entry(pos, struct btrfs_free_space, list);
997
998                 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
999                 if (ret)
1000                         goto out_nospc;
1001                 list_del_init(&entry->list);
1002         }
1003
1004         /* Zero out the rest of the pages just to make sure */
1005         io_ctl_zero_remaining_pages(&io_ctl);
1006
1007         ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1008                                 0, i_size_read(inode), &cached_state);
1009         io_ctl_drop_pages(&io_ctl);
1010         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1011                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1012
1013         if (ret)
1014                 goto out;
1015
1016
1017         btrfs_wait_ordered_range(inode, 0, (u64)-1);
1018
1019         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1020         key.offset = offset;
1021         key.type = 0;
1022
1023         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1024         if (ret < 0) {
1025                 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1026                                  EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1027                                  GFP_NOFS);
1028                 goto out;
1029         }
1030         leaf = path->nodes[0];
1031         if (ret > 0) {
1032                 struct btrfs_key found_key;
1033                 BUG_ON(!path->slots[0]);
1034                 path->slots[0]--;
1035                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1036                 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1037                     found_key.offset != offset) {
1038                         clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1039                                          inode->i_size - 1,
1040                                          EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1041                                          NULL, GFP_NOFS);
1042                         btrfs_release_path(path);
1043                         goto out;
1044                 }
1045         }
1046
1047         BTRFS_I(inode)->generation = trans->transid;
1048         header = btrfs_item_ptr(leaf, path->slots[0],
1049                                 struct btrfs_free_space_header);
1050         btrfs_set_free_space_entries(leaf, header, entries);
1051         btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1052         btrfs_set_free_space_generation(leaf, header, trans->transid);
1053         btrfs_mark_buffer_dirty(leaf);
1054         btrfs_release_path(path);
1055
1056         err = 0;
1057 out:
1058         io_ctl_free(&io_ctl);
1059         if (err) {
1060                 invalidate_inode_pages2(inode->i_mapping);
1061                 BTRFS_I(inode)->generation = 0;
1062         }
1063         btrfs_update_inode(trans, root, inode);
1064         return err;
1065
1066 out_nospc:
1067         list_for_each_safe(pos, n, &bitmap_list) {
1068                 struct btrfs_free_space *entry =
1069                         list_entry(pos, struct btrfs_free_space, list);
1070                 list_del_init(&entry->list);
1071         }
1072         io_ctl_drop_pages(&io_ctl);
1073         unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1074                              i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1075         goto out;
1076 }
1077
1078 int btrfs_write_out_cache(struct btrfs_root *root,
1079                           struct btrfs_trans_handle *trans,
1080                           struct btrfs_block_group_cache *block_group,
1081                           struct btrfs_path *path)
1082 {
1083         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1084         struct inode *inode;
1085         int ret = 0;
1086
1087         root = root->fs_info->tree_root;
1088
1089         spin_lock(&block_group->lock);
1090         if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1091                 spin_unlock(&block_group->lock);
1092                 return 0;
1093         }
1094         spin_unlock(&block_group->lock);
1095
1096         inode = lookup_free_space_inode(root, block_group, path);
1097         if (IS_ERR(inode))
1098                 return 0;
1099
1100         ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1101                                       path, block_group->key.objectid);
1102         if (ret) {
1103                 spin_lock(&block_group->lock);
1104                 block_group->disk_cache_state = BTRFS_DC_ERROR;
1105                 spin_unlock(&block_group->lock);
1106                 ret = 0;
1107 #ifdef DEBUG
1108                 printk(KERN_ERR "btrfs: failed to write free space cache "
1109                        "for block group %llu\n", block_group->key.objectid);
1110 #endif
1111         }
1112
1113         iput(inode);
1114         return ret;
1115 }
1116
1117 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1118                                           u64 offset)
1119 {
1120         BUG_ON(offset < bitmap_start);
1121         offset -= bitmap_start;
1122         return (unsigned long)(div_u64(offset, unit));
1123 }
1124
1125 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1126 {
1127         return (unsigned long)(div_u64(bytes, unit));
1128 }
1129
1130 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1131                                    u64 offset)
1132 {
1133         u64 bitmap_start;
1134         u64 bytes_per_bitmap;
1135
1136         bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1137         bitmap_start = offset - ctl->start;
1138         bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1139         bitmap_start *= bytes_per_bitmap;
1140         bitmap_start += ctl->start;
1141
1142         return bitmap_start;
1143 }
1144
1145 static int tree_insert_offset(struct rb_root *root, u64 offset,
1146                               struct rb_node *node, int bitmap)
1147 {
1148         struct rb_node **p = &root->rb_node;
1149         struct rb_node *parent = NULL;
1150         struct btrfs_free_space *info;
1151
1152         while (*p) {
1153                 parent = *p;
1154                 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1155
1156                 if (offset < info->offset) {
1157                         p = &(*p)->rb_left;
1158                 } else if (offset > info->offset) {
1159                         p = &(*p)->rb_right;
1160                 } else {
1161                         /*
1162                          * we could have a bitmap entry and an extent entry
1163                          * share the same offset.  If this is the case, we want
1164                          * the extent entry to always be found first if we do a
1165                          * linear search through the tree, since we want to have
1166                          * the quickest allocation time, and allocating from an
1167                          * extent is faster than allocating from a bitmap.  So
1168                          * if we're inserting a bitmap and we find an entry at
1169                          * this offset, we want to go right, or after this entry
1170                          * logically.  If we are inserting an extent and we've
1171                          * found a bitmap, we want to go left, or before
1172                          * logically.
1173                          */
1174                         if (bitmap) {
1175                                 if (info->bitmap) {
1176                                         WARN_ON_ONCE(1);
1177                                         return -EEXIST;
1178                                 }
1179                                 p = &(*p)->rb_right;
1180                         } else {
1181                                 if (!info->bitmap) {
1182                                         WARN_ON_ONCE(1);
1183                                         return -EEXIST;
1184                                 }
1185                                 p = &(*p)->rb_left;
1186                         }
1187                 }
1188         }
1189
1190         rb_link_node(node, parent, p);
1191         rb_insert_color(node, root);
1192
1193         return 0;
1194 }
1195
1196 /*
1197  * searches the tree for the given offset.
1198  *
1199  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1200  * want a section that has at least bytes size and comes at or after the given
1201  * offset.
1202  */
1203 static struct btrfs_free_space *
1204 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1205                    u64 offset, int bitmap_only, int fuzzy)
1206 {
1207         struct rb_node *n = ctl->free_space_offset.rb_node;
1208         struct btrfs_free_space *entry, *prev = NULL;
1209
1210         /* find entry that is closest to the 'offset' */
1211         while (1) {
1212                 if (!n) {
1213                         entry = NULL;
1214                         break;
1215                 }
1216
1217                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1218                 prev = entry;
1219
1220                 if (offset < entry->offset)
1221                         n = n->rb_left;
1222                 else if (offset > entry->offset)
1223                         n = n->rb_right;
1224                 else
1225                         break;
1226         }
1227
1228         if (bitmap_only) {
1229                 if (!entry)
1230                         return NULL;
1231                 if (entry->bitmap)
1232                         return entry;
1233
1234                 /*
1235                  * bitmap entry and extent entry may share same offset,
1236                  * in that case, bitmap entry comes after extent entry.
1237                  */
1238                 n = rb_next(n);
1239                 if (!n)
1240                         return NULL;
1241                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1242                 if (entry->offset != offset)
1243                         return NULL;
1244
1245                 WARN_ON(!entry->bitmap);
1246                 return entry;
1247         } else if (entry) {
1248                 if (entry->bitmap) {
1249                         /*
1250                          * if previous extent entry covers the offset,
1251                          * we should return it instead of the bitmap entry
1252                          */
1253                         n = &entry->offset_index;
1254                         while (1) {
1255                                 n = rb_prev(n);
1256                                 if (!n)
1257                                         break;
1258                                 prev = rb_entry(n, struct btrfs_free_space,
1259                                                 offset_index);
1260                                 if (!prev->bitmap) {
1261                                         if (prev->offset + prev->bytes > offset)
1262                                                 entry = prev;
1263                                         break;
1264                                 }
1265                         }
1266                 }
1267                 return entry;
1268         }
1269
1270         if (!prev)
1271                 return NULL;
1272
1273         /* find last entry before the 'offset' */
1274         entry = prev;
1275         if (entry->offset > offset) {
1276                 n = rb_prev(&entry->offset_index);
1277                 if (n) {
1278                         entry = rb_entry(n, struct btrfs_free_space,
1279                                         offset_index);
1280                         BUG_ON(entry->offset > offset);
1281                 } else {
1282                         if (fuzzy)
1283                                 return entry;
1284                         else
1285                                 return NULL;
1286                 }
1287         }
1288
1289         if (entry->bitmap) {
1290                 n = &entry->offset_index;
1291                 while (1) {
1292                         n = rb_prev(n);
1293                         if (!n)
1294                                 break;
1295                         prev = rb_entry(n, struct btrfs_free_space,
1296                                         offset_index);
1297                         if (!prev->bitmap) {
1298                                 if (prev->offset + prev->bytes > offset)
1299                                         return prev;
1300                                 break;
1301                         }
1302                 }
1303                 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1304                         return entry;
1305         } else if (entry->offset + entry->bytes > offset)
1306                 return entry;
1307
1308         if (!fuzzy)
1309                 return NULL;
1310
1311         while (1) {
1312                 if (entry->bitmap) {
1313                         if (entry->offset + BITS_PER_BITMAP *
1314                             ctl->unit > offset)
1315                                 break;
1316                 } else {
1317                         if (entry->offset + entry->bytes > offset)
1318                                 break;
1319                 }
1320
1321                 n = rb_next(&entry->offset_index);
1322                 if (!n)
1323                         return NULL;
1324                 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1325         }
1326         return entry;
1327 }
1328
1329 static inline void
1330 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1331                     struct btrfs_free_space *info)
1332 {
1333         rb_erase(&info->offset_index, &ctl->free_space_offset);
1334         ctl->free_extents--;
1335 }
1336
1337 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1338                               struct btrfs_free_space *info)
1339 {
1340         __unlink_free_space(ctl, info);
1341         ctl->free_space -= info->bytes;
1342 }
1343
1344 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1345                            struct btrfs_free_space *info)
1346 {
1347         int ret = 0;
1348
1349         BUG_ON(!info->bitmap && !info->bytes);
1350         ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1351                                  &info->offset_index, (info->bitmap != NULL));
1352         if (ret)
1353                 return ret;
1354
1355         ctl->free_space += info->bytes;
1356         ctl->free_extents++;
1357         return ret;
1358 }
1359
1360 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1361 {
1362         struct btrfs_block_group_cache *block_group = ctl->private;
1363         u64 max_bytes;
1364         u64 bitmap_bytes;
1365         u64 extent_bytes;
1366         u64 size = block_group->key.offset;
1367         u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1368         int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1369
1370         BUG_ON(ctl->total_bitmaps > max_bitmaps);
1371
1372         /*
1373          * The goal is to keep the total amount of memory used per 1gb of space
1374          * at or below 32k, so we need to adjust how much memory we allow to be
1375          * used by extent based free space tracking
1376          */
1377         if (size < 1024 * 1024 * 1024)
1378                 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1379         else
1380                 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1381                         div64_u64(size, 1024 * 1024 * 1024);
1382
1383         /*
1384          * we want to account for 1 more bitmap than what we have so we can make
1385          * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1386          * we add more bitmaps.
1387          */
1388         bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
1389
1390         if (bitmap_bytes >= max_bytes) {
1391                 ctl->extents_thresh = 0;
1392                 return;
1393         }
1394
1395         /*
1396          * we want the extent entry threshold to always be at most 1/2 the maxw
1397          * bytes we can have, or whatever is less than that.
1398          */
1399         extent_bytes = max_bytes - bitmap_bytes;
1400         extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
1401
1402         ctl->extents_thresh =
1403                 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
1404 }
1405
1406 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1407                                        struct btrfs_free_space *info,
1408                                        u64 offset, u64 bytes)
1409 {
1410         unsigned long start, count;
1411
1412         start = offset_to_bit(info->offset, ctl->unit, offset);
1413         count = bytes_to_bits(bytes, ctl->unit);
1414         BUG_ON(start + count > BITS_PER_BITMAP);
1415
1416         bitmap_clear(info->bitmap, start, count);
1417
1418         info->bytes -= bytes;
1419 }
1420
1421 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1422                               struct btrfs_free_space *info, u64 offset,
1423                               u64 bytes)
1424 {
1425         __bitmap_clear_bits(ctl, info, offset, bytes);
1426         ctl->free_space -= bytes;
1427 }
1428
1429 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1430                             struct btrfs_free_space *info, u64 offset,
1431                             u64 bytes)
1432 {
1433         unsigned long start, count;
1434
1435         start = offset_to_bit(info->offset, ctl->unit, offset);
1436         count = bytes_to_bits(bytes, ctl->unit);
1437         BUG_ON(start + count > BITS_PER_BITMAP);
1438
1439         bitmap_set(info->bitmap, start, count);
1440
1441         info->bytes += bytes;
1442         ctl->free_space += bytes;
1443 }
1444
1445 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1446                          struct btrfs_free_space *bitmap_info, u64 *offset,
1447                          u64 *bytes)
1448 {
1449         unsigned long found_bits = 0;
1450         unsigned long bits, i;
1451         unsigned long next_zero;
1452
1453         i = offset_to_bit(bitmap_info->offset, ctl->unit,
1454                           max_t(u64, *offset, bitmap_info->offset));
1455         bits = bytes_to_bits(*bytes, ctl->unit);
1456
1457         for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
1458              i < BITS_PER_BITMAP;
1459              i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
1460                 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1461                                                BITS_PER_BITMAP, i);
1462                 if ((next_zero - i) >= bits) {
1463                         found_bits = next_zero - i;
1464                         break;
1465                 }
1466                 i = next_zero;
1467         }
1468
1469         if (found_bits) {
1470                 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1471                 *bytes = (u64)(found_bits) * ctl->unit;
1472                 return 0;
1473         }
1474
1475         return -1;
1476 }
1477
1478 static struct btrfs_free_space *
1479 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
1480 {
1481         struct btrfs_free_space *entry;
1482         struct rb_node *node;
1483         int ret;
1484
1485         if (!ctl->free_space_offset.rb_node)
1486                 return NULL;
1487
1488         entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1489         if (!entry)
1490                 return NULL;
1491
1492         for (node = &entry->offset_index; node; node = rb_next(node)) {
1493                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1494                 if (entry->bytes < *bytes)
1495                         continue;
1496
1497                 if (entry->bitmap) {
1498                         ret = search_bitmap(ctl, entry, offset, bytes);
1499                         if (!ret)
1500                                 return entry;
1501                         continue;
1502                 }
1503
1504                 *offset = entry->offset;
1505                 *bytes = entry->bytes;
1506                 return entry;
1507         }
1508
1509         return NULL;
1510 }
1511
1512 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1513                            struct btrfs_free_space *info, u64 offset)
1514 {
1515         info->offset = offset_to_bitmap(ctl, offset);
1516         info->bytes = 0;
1517         INIT_LIST_HEAD(&info->list);
1518         link_free_space(ctl, info);
1519         ctl->total_bitmaps++;
1520
1521         ctl->op->recalc_thresholds(ctl);
1522 }
1523
1524 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1525                         struct btrfs_free_space *bitmap_info)
1526 {
1527         unlink_free_space(ctl, bitmap_info);
1528         kfree(bitmap_info->bitmap);
1529         kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1530         ctl->total_bitmaps--;
1531         ctl->op->recalc_thresholds(ctl);
1532 }
1533
1534 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1535                               struct btrfs_free_space *bitmap_info,
1536                               u64 *offset, u64 *bytes)
1537 {
1538         u64 end;
1539         u64 search_start, search_bytes;
1540         int ret;
1541
1542 again:
1543         end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1544
1545         /*
1546          * XXX - this can go away after a few releases.
1547          *
1548          * since the only user of btrfs_remove_free_space is the tree logging
1549          * stuff, and the only way to test that is under crash conditions, we
1550          * want to have this debug stuff here just in case somethings not
1551          * working.  Search the bitmap for the space we are trying to use to
1552          * make sure its actually there.  If its not there then we need to stop
1553          * because something has gone wrong.
1554          */
1555         search_start = *offset;
1556         search_bytes = *bytes;
1557         search_bytes = min(search_bytes, end - search_start + 1);
1558         ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
1559         BUG_ON(ret < 0 || search_start != *offset);
1560
1561         if (*offset > bitmap_info->offset && *offset + *bytes > end) {
1562                 bitmap_clear_bits(ctl, bitmap_info, *offset, end - *offset + 1);
1563                 *bytes -= end - *offset + 1;
1564                 *offset = end + 1;
1565         } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
1566                 bitmap_clear_bits(ctl, bitmap_info, *offset, *bytes);
1567                 *bytes = 0;
1568         }
1569
1570         if (*bytes) {
1571                 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1572                 if (!bitmap_info->bytes)
1573                         free_bitmap(ctl, bitmap_info);
1574
1575                 /*
1576                  * no entry after this bitmap, but we still have bytes to
1577                  * remove, so something has gone wrong.
1578                  */
1579                 if (!next)
1580                         return -EINVAL;
1581
1582                 bitmap_info = rb_entry(next, struct btrfs_free_space,
1583                                        offset_index);
1584
1585                 /*
1586                  * if the next entry isn't a bitmap we need to return to let the
1587                  * extent stuff do its work.
1588                  */
1589                 if (!bitmap_info->bitmap)
1590                         return -EAGAIN;
1591
1592                 /*
1593                  * Ok the next item is a bitmap, but it may not actually hold
1594                  * the information for the rest of this free space stuff, so
1595                  * look for it, and if we don't find it return so we can try
1596                  * everything over again.
1597                  */
1598                 search_start = *offset;
1599                 search_bytes = *bytes;
1600                 ret = search_bitmap(ctl, bitmap_info, &search_start,
1601                                     &search_bytes);
1602                 if (ret < 0 || search_start != *offset)
1603                         return -EAGAIN;
1604
1605                 goto again;
1606         } else if (!bitmap_info->bytes)
1607                 free_bitmap(ctl, bitmap_info);
1608
1609         return 0;
1610 }
1611
1612 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1613                                struct btrfs_free_space *info, u64 offset,
1614                                u64 bytes)
1615 {
1616         u64 bytes_to_set = 0;
1617         u64 end;
1618
1619         end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1620
1621         bytes_to_set = min(end - offset, bytes);
1622
1623         bitmap_set_bits(ctl, info, offset, bytes_to_set);
1624
1625         return bytes_to_set;
1626
1627 }
1628
1629 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1630                       struct btrfs_free_space *info)
1631 {
1632         struct btrfs_block_group_cache *block_group = ctl->private;
1633
1634         /*
1635          * If we are below the extents threshold then we can add this as an
1636          * extent, and don't have to deal with the bitmap
1637          */
1638         if (ctl->free_extents < ctl->extents_thresh) {
1639                 /*
1640                  * If this block group has some small extents we don't want to
1641                  * use up all of our free slots in the cache with them, we want
1642                  * to reserve them to larger extents, however if we have plent
1643                  * of cache left then go ahead an dadd them, no sense in adding
1644                  * the overhead of a bitmap if we don't have to.
1645                  */
1646                 if (info->bytes <= block_group->sectorsize * 4) {
1647                         if (ctl->free_extents * 2 <= ctl->extents_thresh)
1648                                 return false;
1649                 } else {
1650                         return false;
1651                 }
1652         }
1653
1654         /*
1655          * some block groups are so tiny they can't be enveloped by a bitmap, so
1656          * don't even bother to create a bitmap for this
1657          */
1658         if (BITS_PER_BITMAP * block_group->sectorsize >
1659             block_group->key.offset)
1660                 return false;
1661
1662         return true;
1663 }
1664
1665 static struct btrfs_free_space_op free_space_op = {
1666         .recalc_thresholds      = recalculate_thresholds,
1667         .use_bitmap             = use_bitmap,
1668 };
1669
1670 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1671                               struct btrfs_free_space *info)
1672 {
1673         struct btrfs_free_space *bitmap_info;
1674         struct btrfs_block_group_cache *block_group = NULL;
1675         int added = 0;
1676         u64 bytes, offset, bytes_added;
1677         int ret;
1678
1679         bytes = info->bytes;
1680         offset = info->offset;
1681
1682         if (!ctl->op->use_bitmap(ctl, info))
1683                 return 0;
1684
1685         if (ctl->op == &free_space_op)
1686                 block_group = ctl->private;
1687 again:
1688         /*
1689          * Since we link bitmaps right into the cluster we need to see if we
1690          * have a cluster here, and if so and it has our bitmap we need to add
1691          * the free space to that bitmap.
1692          */
1693         if (block_group && !list_empty(&block_group->cluster_list)) {
1694                 struct btrfs_free_cluster *cluster;
1695                 struct rb_node *node;
1696                 struct btrfs_free_space *entry;
1697
1698                 cluster = list_entry(block_group->cluster_list.next,
1699                                      struct btrfs_free_cluster,
1700                                      block_group_list);
1701                 spin_lock(&cluster->lock);
1702                 node = rb_first(&cluster->root);
1703                 if (!node) {
1704                         spin_unlock(&cluster->lock);
1705                         goto no_cluster_bitmap;
1706                 }
1707
1708                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1709                 if (!entry->bitmap) {
1710                         spin_unlock(&cluster->lock);
1711                         goto no_cluster_bitmap;
1712                 }
1713
1714                 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1715                         bytes_added = add_bytes_to_bitmap(ctl, entry,
1716                                                           offset, bytes);
1717                         bytes -= bytes_added;
1718                         offset += bytes_added;
1719                 }
1720                 spin_unlock(&cluster->lock);
1721                 if (!bytes) {
1722                         ret = 1;
1723                         goto out;
1724                 }
1725         }
1726
1727 no_cluster_bitmap:
1728         bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1729                                          1, 0);
1730         if (!bitmap_info) {
1731                 BUG_ON(added);
1732                 goto new_bitmap;
1733         }
1734
1735         bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1736         bytes -= bytes_added;
1737         offset += bytes_added;
1738         added = 0;
1739
1740         if (!bytes) {
1741                 ret = 1;
1742                 goto out;
1743         } else
1744                 goto again;
1745
1746 new_bitmap:
1747         if (info && info->bitmap) {
1748                 add_new_bitmap(ctl, info, offset);
1749                 added = 1;
1750                 info = NULL;
1751                 goto again;
1752         } else {
1753                 spin_unlock(&ctl->tree_lock);
1754
1755                 /* no pre-allocated info, allocate a new one */
1756                 if (!info) {
1757                         info = kmem_cache_zalloc(btrfs_free_space_cachep,
1758                                                  GFP_NOFS);
1759                         if (!info) {
1760                                 spin_lock(&ctl->tree_lock);
1761                                 ret = -ENOMEM;
1762                                 goto out;
1763                         }
1764                 }
1765
1766                 /* allocate the bitmap */
1767                 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
1768                 spin_lock(&ctl->tree_lock);
1769                 if (!info->bitmap) {
1770                         ret = -ENOMEM;
1771                         goto out;
1772                 }
1773                 goto again;
1774         }
1775
1776 out:
1777         if (info) {
1778                 if (info->bitmap)
1779                         kfree(info->bitmap);
1780                 kmem_cache_free(btrfs_free_space_cachep, info);
1781         }
1782
1783         return ret;
1784 }
1785
1786 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
1787                           struct btrfs_free_space *info, bool update_stat)
1788 {
1789         struct btrfs_free_space *left_info;
1790         struct btrfs_free_space *right_info;
1791         bool merged = false;
1792         u64 offset = info->offset;
1793         u64 bytes = info->bytes;
1794
1795         /*
1796          * first we want to see if there is free space adjacent to the range we
1797          * are adding, if there is remove that struct and add a new one to
1798          * cover the entire range
1799          */
1800         right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
1801         if (right_info && rb_prev(&right_info->offset_index))
1802                 left_info = rb_entry(rb_prev(&right_info->offset_index),
1803                                      struct btrfs_free_space, offset_index);
1804         else
1805                 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
1806
1807         if (right_info && !right_info->bitmap) {
1808                 if (update_stat)
1809                         unlink_free_space(ctl, right_info);
1810                 else
1811                         __unlink_free_space(ctl, right_info);
1812                 info->bytes += right_info->bytes;
1813                 kmem_cache_free(btrfs_free_space_cachep, right_info);
1814                 merged = true;
1815         }
1816
1817         if (left_info && !left_info->bitmap &&
1818             left_info->offset + left_info->bytes == offset) {
1819                 if (update_stat)
1820                         unlink_free_space(ctl, left_info);
1821                 else
1822                         __unlink_free_space(ctl, left_info);
1823                 info->offset = left_info->offset;
1824                 info->bytes += left_info->bytes;
1825                 kmem_cache_free(btrfs_free_space_cachep, left_info);
1826                 merged = true;
1827         }
1828
1829         return merged;
1830 }
1831
1832 int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1833                            u64 offset, u64 bytes)
1834 {
1835         struct btrfs_free_space *info;
1836         int ret = 0;
1837
1838         info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
1839         if (!info)
1840                 return -ENOMEM;
1841
1842         info->offset = offset;
1843         info->bytes = bytes;
1844
1845         spin_lock(&ctl->tree_lock);
1846
1847         if (try_merge_free_space(ctl, info, true))
1848                 goto link;
1849
1850         /*
1851          * There was no extent directly to the left or right of this new
1852          * extent then we know we're going to have to allocate a new extent, so
1853          * before we do that see if we need to drop this into a bitmap
1854          */
1855         ret = insert_into_bitmap(ctl, info);
1856         if (ret < 0) {
1857                 goto out;
1858         } else if (ret) {
1859                 ret = 0;
1860                 goto out;
1861         }
1862 link:
1863         ret = link_free_space(ctl, info);
1864         if (ret)
1865                 kmem_cache_free(btrfs_free_space_cachep, info);
1866 out:
1867         spin_unlock(&ctl->tree_lock);
1868
1869         if (ret) {
1870                 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
1871                 BUG_ON(ret == -EEXIST);
1872         }
1873
1874         return ret;
1875 }
1876
1877 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1878                             u64 offset, u64 bytes)
1879 {
1880         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1881         struct btrfs_free_space *info;
1882         struct btrfs_free_space *next_info = NULL;
1883         int ret = 0;
1884
1885         spin_lock(&ctl->tree_lock);
1886
1887 again:
1888         info = tree_search_offset(ctl, offset, 0, 0);
1889         if (!info) {
1890                 /*
1891                  * oops didn't find an extent that matched the space we wanted
1892                  * to remove, look for a bitmap instead
1893                  */
1894                 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
1895                                           1, 0);
1896                 if (!info) {
1897                         /* the tree logging code might be calling us before we
1898                          * have fully loaded the free space rbtree for this
1899                          * block group.  So it is possible the entry won't
1900                          * be in the rbtree yet at all.  The caching code
1901                          * will make sure not to put it in the rbtree if
1902                          * the logging code has pinned it.
1903                          */
1904                         goto out_lock;
1905                 }
1906         }
1907
1908         if (info->bytes < bytes && rb_next(&info->offset_index)) {
1909                 u64 end;
1910                 next_info = rb_entry(rb_next(&info->offset_index),
1911                                              struct btrfs_free_space,
1912                                              offset_index);
1913
1914                 if (next_info->bitmap)
1915                         end = next_info->offset +
1916                               BITS_PER_BITMAP * ctl->unit - 1;
1917                 else
1918                         end = next_info->offset + next_info->bytes;
1919
1920                 if (next_info->bytes < bytes ||
1921                     next_info->offset > offset || offset > end) {
1922                         printk(KERN_CRIT "Found free space at %llu, size %llu,"
1923                               " trying to use %llu\n",
1924                               (unsigned long long)info->offset,
1925                               (unsigned long long)info->bytes,
1926                               (unsigned long long)bytes);
1927                         WARN_ON(1);
1928                         ret = -EINVAL;
1929                         goto out_lock;
1930                 }
1931
1932                 info = next_info;
1933         }
1934
1935         if (info->bytes == bytes) {
1936                 unlink_free_space(ctl, info);
1937                 if (info->bitmap) {
1938                         kfree(info->bitmap);
1939                         ctl->total_bitmaps--;
1940                 }
1941                 kmem_cache_free(btrfs_free_space_cachep, info);
1942                 ret = 0;
1943                 goto out_lock;
1944         }
1945
1946         if (!info->bitmap && info->offset == offset) {
1947                 unlink_free_space(ctl, info);
1948                 info->offset += bytes;
1949                 info->bytes -= bytes;
1950                 ret = link_free_space(ctl, info);
1951                 WARN_ON(ret);
1952                 goto out_lock;
1953         }
1954
1955         if (!info->bitmap && info->offset <= offset &&
1956             info->offset + info->bytes >= offset + bytes) {
1957                 u64 old_start = info->offset;
1958                 /*
1959                  * we're freeing space in the middle of the info,
1960                  * this can happen during tree log replay
1961                  *
1962                  * first unlink the old info and then
1963                  * insert it again after the hole we're creating
1964                  */
1965                 unlink_free_space(ctl, info);
1966                 if (offset + bytes < info->offset + info->bytes) {
1967                         u64 old_end = info->offset + info->bytes;
1968
1969                         info->offset = offset + bytes;
1970                         info->bytes = old_end - info->offset;
1971                         ret = link_free_space(ctl, info);
1972                         WARN_ON(ret);
1973                         if (ret)
1974                                 goto out_lock;
1975                 } else {
1976                         /* the hole we're creating ends at the end
1977                          * of the info struct, just free the info
1978                          */
1979                         kmem_cache_free(btrfs_free_space_cachep, info);
1980                 }
1981                 spin_unlock(&ctl->tree_lock);
1982
1983                 /* step two, insert a new info struct to cover
1984                  * anything before the hole
1985                  */
1986                 ret = btrfs_add_free_space(block_group, old_start,
1987                                            offset - old_start);
1988                 WARN_ON(ret); /* -ENOMEM */
1989                 goto out;
1990         }
1991
1992         ret = remove_from_bitmap(ctl, info, &offset, &bytes);
1993         if (ret == -EAGAIN)
1994                 goto again;
1995         BUG_ON(ret); /* logic error */
1996 out_lock:
1997         spin_unlock(&ctl->tree_lock);
1998 out:
1999         return ret;
2000 }
2001
2002 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2003                            u64 bytes)
2004 {
2005         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2006         struct btrfs_free_space *info;
2007         struct rb_node *n;
2008         int count = 0;
2009
2010         for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2011                 info = rb_entry(n, struct btrfs_free_space, offset_index);
2012                 if (info->bytes >= bytes)
2013                         count++;
2014                 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
2015                        (unsigned long long)info->offset,
2016                        (unsigned long long)info->bytes,
2017                        (info->bitmap) ? "yes" : "no");
2018         }
2019         printk(KERN_INFO "block group has cluster?: %s\n",
2020                list_empty(&block_group->cluster_list) ? "no" : "yes");
2021         printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
2022                "\n", count);
2023 }
2024
2025 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2026 {
2027         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2028
2029         spin_lock_init(&ctl->tree_lock);
2030         ctl->unit = block_group->sectorsize;
2031         ctl->start = block_group->key.objectid;
2032         ctl->private = block_group;
2033         ctl->op = &free_space_op;
2034
2035         /*
2036          * we only want to have 32k of ram per block group for keeping
2037          * track of free space, and if we pass 1/2 of that we want to
2038          * start converting things over to using bitmaps
2039          */
2040         ctl->extents_thresh = ((1024 * 32) / 2) /
2041                                 sizeof(struct btrfs_free_space);
2042 }
2043
2044 /*
2045  * for a given cluster, put all of its extents back into the free
2046  * space cache.  If the block group passed doesn't match the block group
2047  * pointed to by the cluster, someone else raced in and freed the
2048  * cluster already.  In that case, we just return without changing anything
2049  */
2050 static int
2051 __btrfs_return_cluster_to_free_space(
2052                              struct btrfs_block_group_cache *block_group,
2053                              struct btrfs_free_cluster *cluster)
2054 {
2055         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2056         struct btrfs_free_space *entry;
2057         struct rb_node *node;
2058
2059         spin_lock(&cluster->lock);
2060         if (cluster->block_group != block_group)
2061                 goto out;
2062
2063         cluster->block_group = NULL;
2064         cluster->window_start = 0;
2065         list_del_init(&cluster->block_group_list);
2066
2067         node = rb_first(&cluster->root);
2068         while (node) {
2069                 bool bitmap;
2070
2071                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2072                 node = rb_next(&entry->offset_index);
2073                 rb_erase(&entry->offset_index, &cluster->root);
2074
2075                 bitmap = (entry->bitmap != NULL);
2076                 if (!bitmap)
2077                         try_merge_free_space(ctl, entry, false);
2078                 tree_insert_offset(&ctl->free_space_offset,
2079                                    entry->offset, &entry->offset_index, bitmap);
2080         }
2081         cluster->root = RB_ROOT;
2082
2083 out:
2084         spin_unlock(&cluster->lock);
2085         btrfs_put_block_group(block_group);
2086         return 0;
2087 }
2088
2089 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
2090 {
2091         struct btrfs_free_space *info;
2092         struct rb_node *node;
2093
2094         while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2095                 info = rb_entry(node, struct btrfs_free_space, offset_index);
2096                 if (!info->bitmap) {
2097                         unlink_free_space(ctl, info);
2098                         kmem_cache_free(btrfs_free_space_cachep, info);
2099                 } else {
2100                         free_bitmap(ctl, info);
2101                 }
2102                 if (need_resched()) {
2103                         spin_unlock(&ctl->tree_lock);
2104                         cond_resched();
2105                         spin_lock(&ctl->tree_lock);
2106                 }
2107         }
2108 }
2109
2110 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2111 {
2112         spin_lock(&ctl->tree_lock);
2113         __btrfs_remove_free_space_cache_locked(ctl);
2114         spin_unlock(&ctl->tree_lock);
2115 }
2116
2117 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2118 {
2119         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2120         struct btrfs_free_cluster *cluster;
2121         struct list_head *head;
2122
2123         spin_lock(&ctl->tree_lock);
2124         while ((head = block_group->cluster_list.next) !=
2125                &block_group->cluster_list) {
2126                 cluster = list_entry(head, struct btrfs_free_cluster,
2127                                      block_group_list);
2128
2129                 WARN_ON(cluster->block_group != block_group);
2130                 __btrfs_return_cluster_to_free_space(block_group, cluster);
2131                 if (need_resched()) {
2132                         spin_unlock(&ctl->tree_lock);
2133                         cond_resched();
2134                         spin_lock(&ctl->tree_lock);
2135                 }
2136         }
2137         __btrfs_remove_free_space_cache_locked(ctl);
2138         spin_unlock(&ctl->tree_lock);
2139
2140 }
2141
2142 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2143                                u64 offset, u64 bytes, u64 empty_size)
2144 {
2145         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2146         struct btrfs_free_space *entry = NULL;
2147         u64 bytes_search = bytes + empty_size;
2148         u64 ret = 0;
2149
2150         spin_lock(&ctl->tree_lock);
2151         entry = find_free_space(ctl, &offset, &bytes_search);
2152         if (!entry)
2153                 goto out;
2154
2155         ret = offset;
2156         if (entry->bitmap) {
2157                 bitmap_clear_bits(ctl, entry, offset, bytes);
2158                 if (!entry->bytes)
2159                         free_bitmap(ctl, entry);
2160         } else {
2161                 unlink_free_space(ctl, entry);
2162                 entry->offset += bytes;
2163                 entry->bytes -= bytes;
2164                 if (!entry->bytes)
2165                         kmem_cache_free(btrfs_free_space_cachep, entry);
2166                 else
2167                         link_free_space(ctl, entry);
2168         }
2169
2170 out:
2171         spin_unlock(&ctl->tree_lock);
2172
2173         return ret;
2174 }
2175
2176 /*
2177  * given a cluster, put all of its extents back into the free space
2178  * cache.  If a block group is passed, this function will only free
2179  * a cluster that belongs to the passed block group.
2180  *
2181  * Otherwise, it'll get a reference on the block group pointed to by the
2182  * cluster and remove the cluster from it.
2183  */
2184 int btrfs_return_cluster_to_free_space(
2185                                struct btrfs_block_group_cache *block_group,
2186                                struct btrfs_free_cluster *cluster)
2187 {
2188         struct btrfs_free_space_ctl *ctl;
2189         int ret;
2190
2191         /* first, get a safe pointer to the block group */
2192         spin_lock(&cluster->lock);
2193         if (!block_group) {
2194                 block_group = cluster->block_group;
2195                 if (!block_group) {
2196                         spin_unlock(&cluster->lock);
2197                         return 0;
2198                 }
2199         } else if (cluster->block_group != block_group) {
2200                 /* someone else has already freed it don't redo their work */
2201                 spin_unlock(&cluster->lock);
2202                 return 0;
2203         }
2204         atomic_inc(&block_group->count);
2205         spin_unlock(&cluster->lock);
2206
2207         ctl = block_group->free_space_ctl;
2208
2209         /* now return any extents the cluster had on it */
2210         spin_lock(&ctl->tree_lock);
2211         ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2212         spin_unlock(&ctl->tree_lock);
2213
2214         /* finally drop our ref */
2215         btrfs_put_block_group(block_group);
2216         return ret;
2217 }
2218
2219 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2220                                    struct btrfs_free_cluster *cluster,
2221                                    struct btrfs_free_space *entry,
2222                                    u64 bytes, u64 min_start)
2223 {
2224         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2225         int err;
2226         u64 search_start = cluster->window_start;
2227         u64 search_bytes = bytes;
2228         u64 ret = 0;
2229
2230         search_start = min_start;
2231         search_bytes = bytes;
2232
2233         err = search_bitmap(ctl, entry, &search_start, &search_bytes);
2234         if (err)
2235                 return 0;
2236
2237         ret = search_start;
2238         __bitmap_clear_bits(ctl, entry, ret, bytes);
2239
2240         return ret;
2241 }
2242
2243 /*
2244  * given a cluster, try to allocate 'bytes' from it, returns 0
2245  * if it couldn't find anything suitably large, or a logical disk offset
2246  * if things worked out
2247  */
2248 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2249                              struct btrfs_free_cluster *cluster, u64 bytes,
2250                              u64 min_start)
2251 {
2252         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2253         struct btrfs_free_space *entry = NULL;
2254         struct rb_node *node;
2255         u64 ret = 0;
2256
2257         spin_lock(&cluster->lock);
2258         if (bytes > cluster->max_size)
2259                 goto out;
2260
2261         if (cluster->block_group != block_group)
2262                 goto out;
2263
2264         node = rb_first(&cluster->root);
2265         if (!node)
2266                 goto out;
2267
2268         entry = rb_entry(node, struct btrfs_free_space, offset_index);
2269         while(1) {
2270                 if (entry->bytes < bytes ||
2271                     (!entry->bitmap && entry->offset < min_start)) {
2272                         node = rb_next(&entry->offset_index);
2273                         if (!node)
2274                                 break;
2275                         entry = rb_entry(node, struct btrfs_free_space,
2276                                          offset_index);
2277                         continue;
2278                 }
2279
2280                 if (entry->bitmap) {
2281                         ret = btrfs_alloc_from_bitmap(block_group,
2282                                                       cluster, entry, bytes,
2283                                                       cluster->window_start);
2284                         if (ret == 0) {
2285                                 node = rb_next(&entry->offset_index);
2286                                 if (!node)
2287                                         break;
2288                                 entry = rb_entry(node, struct btrfs_free_space,
2289                                                  offset_index);
2290                                 continue;
2291                         }
2292                         cluster->window_start += bytes;
2293                 } else {
2294                         ret = entry->offset;
2295
2296                         entry->offset += bytes;
2297                         entry->bytes -= bytes;
2298                 }
2299
2300                 if (entry->bytes == 0)
2301                         rb_erase(&entry->offset_index, &cluster->root);
2302                 break;
2303         }
2304 out:
2305         spin_unlock(&cluster->lock);
2306
2307         if (!ret)
2308                 return 0;
2309
2310         spin_lock(&ctl->tree_lock);
2311
2312         ctl->free_space -= bytes;
2313         if (entry->bytes == 0) {
2314                 ctl->free_extents--;
2315                 if (entry->bitmap) {
2316                         kfree(entry->bitmap);
2317                         ctl->total_bitmaps--;
2318                         ctl->op->recalc_thresholds(ctl);
2319                 }
2320                 kmem_cache_free(btrfs_free_space_cachep, entry);
2321         }
2322
2323         spin_unlock(&ctl->tree_lock);
2324
2325         return ret;
2326 }
2327
2328 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2329                                 struct btrfs_free_space *entry,
2330                                 struct btrfs_free_cluster *cluster,
2331                                 u64 offset, u64 bytes,
2332                                 u64 cont1_bytes, u64 min_bytes)
2333 {
2334         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2335         unsigned long next_zero;
2336         unsigned long i;
2337         unsigned long want_bits;
2338         unsigned long min_bits;
2339         unsigned long found_bits;
2340         unsigned long start = 0;
2341         unsigned long total_found = 0;
2342         int ret;
2343
2344         i = offset_to_bit(entry->offset, block_group->sectorsize,
2345                           max_t(u64, offset, entry->offset));
2346         want_bits = bytes_to_bits(bytes, block_group->sectorsize);
2347         min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
2348
2349 again:
2350         found_bits = 0;
2351         for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
2352              i < BITS_PER_BITMAP;
2353              i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
2354                 next_zero = find_next_zero_bit(entry->bitmap,
2355                                                BITS_PER_BITMAP, i);
2356                 if (next_zero - i >= min_bits) {
2357                         found_bits = next_zero - i;
2358                         break;
2359                 }
2360                 i = next_zero;
2361         }
2362
2363         if (!found_bits)
2364                 return -ENOSPC;
2365
2366         if (!total_found) {
2367                 start = i;
2368                 cluster->max_size = 0;
2369         }
2370
2371         total_found += found_bits;
2372
2373         if (cluster->max_size < found_bits * block_group->sectorsize)
2374                 cluster->max_size = found_bits * block_group->sectorsize;
2375
2376         if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2377                 i = next_zero + 1;
2378                 goto again;
2379         }
2380
2381         cluster->window_start = start * block_group->sectorsize +
2382                 entry->offset;
2383         rb_erase(&entry->offset_index, &ctl->free_space_offset);
2384         ret = tree_insert_offset(&cluster->root, entry->offset,
2385                                  &entry->offset_index, 1);
2386         BUG_ON(ret); /* -EEXIST; Logic error */
2387
2388         trace_btrfs_setup_cluster(block_group, cluster,
2389                                   total_found * block_group->sectorsize, 1);
2390         return 0;
2391 }
2392
2393 /*
2394  * This searches the block group for just extents to fill the cluster with.
2395  * Try to find a cluster with at least bytes total bytes, at least one
2396  * extent of cont1_bytes, and other clusters of at least min_bytes.
2397  */
2398 static noinline int
2399 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2400                         struct btrfs_free_cluster *cluster,
2401                         struct list_head *bitmaps, u64 offset, u64 bytes,
2402                         u64 cont1_bytes, u64 min_bytes)
2403 {
2404         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2405         struct btrfs_free_space *first = NULL;
2406         struct btrfs_free_space *entry = NULL;
2407         struct btrfs_free_space *last;
2408         struct rb_node *node;
2409         u64 window_start;
2410         u64 window_free;
2411         u64 max_extent;
2412         u64 total_size = 0;
2413
2414         entry = tree_search_offset(ctl, offset, 0, 1);
2415         if (!entry)
2416                 return -ENOSPC;
2417
2418         /*
2419          * We don't want bitmaps, so just move along until we find a normal
2420          * extent entry.
2421          */
2422         while (entry->bitmap || entry->bytes < min_bytes) {
2423                 if (entry->bitmap && list_empty(&entry->list))
2424                         list_add_tail(&entry->list, bitmaps);
2425                 node = rb_next(&entry->offset_index);
2426                 if (!node)
2427                         return -ENOSPC;
2428                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2429         }
2430
2431         window_start = entry->offset;
2432         window_free = entry->bytes;
2433         max_extent = entry->bytes;
2434         first = entry;
2435         last = entry;
2436
2437         for (node = rb_next(&entry->offset_index); node;
2438              node = rb_next(&entry->offset_index)) {
2439                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2440
2441                 if (entry->bitmap) {
2442                         if (list_empty(&entry->list))
2443                                 list_add_tail(&entry->list, bitmaps);
2444                         continue;
2445                 }
2446
2447                 if (entry->bytes < min_bytes)
2448                         continue;
2449
2450                 last = entry;
2451                 window_free += entry->bytes;
2452                 if (entry->bytes > max_extent)
2453                         max_extent = entry->bytes;
2454         }
2455
2456         if (window_free < bytes || max_extent < cont1_bytes)
2457                 return -ENOSPC;
2458
2459         cluster->window_start = first->offset;
2460
2461         node = &first->offset_index;
2462
2463         /*
2464          * now we've found our entries, pull them out of the free space
2465          * cache and put them into the cluster rbtree
2466          */
2467         do {
2468                 int ret;
2469
2470                 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2471                 node = rb_next(&entry->offset_index);
2472                 if (entry->bitmap || entry->bytes < min_bytes)
2473                         continue;
2474
2475                 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2476                 ret = tree_insert_offset(&cluster->root, entry->offset,
2477                                          &entry->offset_index, 0);
2478                 total_size += entry->bytes;
2479                 BUG_ON(ret); /* -EEXIST; Logic error */
2480         } while (node && entry != last);
2481
2482         cluster->max_size = max_extent;
2483         trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2484         return 0;
2485 }
2486
2487 /*
2488  * This specifically looks for bitmaps that may work in the cluster, we assume
2489  * that we have already failed to find extents that will work.
2490  */
2491 static noinline int
2492 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2493                      struct btrfs_free_cluster *cluster,
2494                      struct list_head *bitmaps, u64 offset, u64 bytes,
2495                      u64 cont1_bytes, u64 min_bytes)
2496 {
2497         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2498         struct btrfs_free_space *entry;
2499         int ret = -ENOSPC;
2500         u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2501
2502         if (ctl->total_bitmaps == 0)
2503                 return -ENOSPC;
2504
2505         /*
2506          * The bitmap that covers offset won't be in the list unless offset
2507          * is just its start offset.
2508          */
2509         entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2510         if (entry->offset != bitmap_offset) {
2511                 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2512                 if (entry && list_empty(&entry->list))
2513                         list_add(&entry->list, bitmaps);
2514         }
2515
2516         list_for_each_entry(entry, bitmaps, list) {
2517                 if (entry->bytes < bytes)
2518                         continue;
2519                 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2520                                            bytes, cont1_bytes, min_bytes);
2521                 if (!ret)
2522                         return 0;
2523         }
2524
2525         /*
2526          * The bitmaps list has all the bitmaps that record free space
2527          * starting after offset, so no more search is required.
2528          */
2529         return -ENOSPC;
2530 }
2531
2532 /*
2533  * here we try to find a cluster of blocks in a block group.  The goal
2534  * is to find at least bytes+empty_size.
2535  * We might not find them all in one contiguous area.
2536  *
2537  * returns zero and sets up cluster if things worked out, otherwise
2538  * it returns -enospc
2539  */
2540 int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
2541                              struct btrfs_root *root,
2542                              struct btrfs_block_group_cache *block_group,
2543                              struct btrfs_free_cluster *cluster,
2544                              u64 offset, u64 bytes, u64 empty_size)
2545 {
2546         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2547         struct btrfs_free_space *entry, *tmp;
2548         LIST_HEAD(bitmaps);
2549         u64 min_bytes;
2550         u64 cont1_bytes;
2551         int ret;
2552
2553         /*
2554          * Choose the minimum extent size we'll require for this
2555          * cluster.  For SSD_SPREAD, don't allow any fragmentation.
2556          * For metadata, allow allocates with smaller extents.  For
2557          * data, keep it dense.
2558          */
2559         if (btrfs_test_opt(root, SSD_SPREAD)) {
2560                 cont1_bytes = min_bytes = bytes + empty_size;
2561         } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
2562                 cont1_bytes = bytes;
2563                 min_bytes = block_group->sectorsize;
2564         } else {
2565                 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2566                 min_bytes = block_group->sectorsize;
2567         }
2568
2569         spin_lock(&ctl->tree_lock);
2570
2571         /*
2572          * If we know we don't have enough space to make a cluster don't even
2573          * bother doing all the work to try and find one.
2574          */
2575         if (ctl->free_space < bytes) {
2576                 spin_unlock(&ctl->tree_lock);
2577                 return -ENOSPC;
2578         }
2579
2580         spin_lock(&cluster->lock);
2581
2582         /* someone already found a cluster, hooray */
2583         if (cluster->block_group) {
2584                 ret = 0;
2585                 goto out;
2586         }
2587
2588         trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2589                                  min_bytes);
2590
2591         INIT_LIST_HEAD(&bitmaps);
2592         ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
2593                                       bytes + empty_size,
2594                                       cont1_bytes, min_bytes);
2595         if (ret)
2596                 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
2597                                            offset, bytes + empty_size,
2598                                            cont1_bytes, min_bytes);
2599
2600         /* Clear our temporary list */
2601         list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2602                 list_del_init(&entry->list);
2603
2604         if (!ret) {
2605                 atomic_inc(&block_group->count);
2606                 list_add_tail(&cluster->block_group_list,
2607                               &block_group->cluster_list);
2608                 cluster->block_group = block_group;
2609         } else {
2610                 trace_btrfs_failed_cluster_setup(block_group);
2611         }
2612 out:
2613         spin_unlock(&cluster->lock);
2614         spin_unlock(&ctl->tree_lock);
2615
2616         return ret;
2617 }
2618
2619 /*
2620  * simple code to zero out a cluster
2621  */
2622 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2623 {
2624         spin_lock_init(&cluster->lock);
2625         spin_lock_init(&cluster->refill_lock);
2626         cluster->root = RB_ROOT;
2627         cluster->max_size = 0;
2628         INIT_LIST_HEAD(&cluster->block_group_list);
2629         cluster->block_group = NULL;
2630 }
2631
2632 static int do_trimming(struct btrfs_block_group_cache *block_group,
2633                        u64 *total_trimmed, u64 start, u64 bytes,
2634                        u64 reserved_start, u64 reserved_bytes)
2635 {
2636         struct btrfs_space_info *space_info = block_group->space_info;
2637         struct btrfs_fs_info *fs_info = block_group->fs_info;
2638         int ret;
2639         int update = 0;
2640         u64 trimmed = 0;
2641
2642         spin_lock(&space_info->lock);
2643         spin_lock(&block_group->lock);
2644         if (!block_group->ro) {
2645                 block_group->reserved += reserved_bytes;
2646                 space_info->bytes_reserved += reserved_bytes;
2647                 update = 1;
2648         }
2649         spin_unlock(&block_group->lock);
2650         spin_unlock(&space_info->lock);
2651
2652         ret = btrfs_error_discard_extent(fs_info->extent_root,
2653                                          start, bytes, &trimmed);
2654         if (!ret)
2655                 *total_trimmed += trimmed;
2656
2657         btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2658
2659         if (update) {
2660                 spin_lock(&space_info->lock);
2661                 spin_lock(&block_group->lock);
2662                 if (block_group->ro)
2663                         space_info->bytes_readonly += reserved_bytes;
2664                 block_group->reserved -= reserved_bytes;
2665                 space_info->bytes_reserved -= reserved_bytes;
2666                 spin_unlock(&space_info->lock);
2667                 spin_unlock(&block_group->lock);
2668         }
2669
2670         return ret;
2671 }
2672
2673 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2674                           u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2675 {
2676         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2677         struct btrfs_free_space *entry;
2678         struct rb_node *node;
2679         int ret = 0;
2680         u64 extent_start;
2681         u64 extent_bytes;
2682         u64 bytes;
2683
2684         while (start < end) {
2685                 spin_lock(&ctl->tree_lock);
2686
2687                 if (ctl->free_space < minlen) {
2688                         spin_unlock(&ctl->tree_lock);
2689                         break;
2690                 }
2691
2692                 entry = tree_search_offset(ctl, start, 0, 1);
2693                 if (!entry) {
2694                         spin_unlock(&ctl->tree_lock);
2695                         break;
2696                 }
2697
2698                 /* skip bitmaps */
2699                 while (entry->bitmap) {
2700                         node = rb_next(&entry->offset_index);
2701                         if (!node) {
2702                                 spin_unlock(&ctl->tree_lock);
2703                                 goto out;
2704                         }
2705                         entry = rb_entry(node, struct btrfs_free_space,
2706                                          offset_index);
2707                 }
2708
2709                 if (entry->offset >= end) {
2710                         spin_unlock(&ctl->tree_lock);
2711                         break;
2712                 }
2713
2714                 extent_start = entry->offset;
2715                 extent_bytes = entry->bytes;
2716                 start = max(start, extent_start);
2717                 bytes = min(extent_start + extent_bytes, end) - start;
2718                 if (bytes < minlen) {
2719                         spin_unlock(&ctl->tree_lock);
2720                         goto next;
2721                 }
2722
2723                 unlink_free_space(ctl, entry);
2724                 kmem_cache_free(btrfs_free_space_cachep, entry);
2725
2726                 spin_unlock(&ctl->tree_lock);
2727
2728                 ret = do_trimming(block_group, total_trimmed, start, bytes,
2729                                   extent_start, extent_bytes);
2730                 if (ret)
2731                         break;
2732 next:
2733                 start += bytes;
2734
2735                 if (fatal_signal_pending(current)) {
2736                         ret = -ERESTARTSYS;
2737                         break;
2738                 }
2739
2740                 cond_resched();
2741         }
2742 out:
2743         return ret;
2744 }
2745
2746 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2747                         u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2748 {
2749         struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2750         struct btrfs_free_space *entry;
2751         int ret = 0;
2752         int ret2;
2753         u64 bytes;
2754         u64 offset = offset_to_bitmap(ctl, start);
2755
2756         while (offset < end) {
2757                 bool next_bitmap = false;
2758
2759                 spin_lock(&ctl->tree_lock);
2760
2761                 if (ctl->free_space < minlen) {
2762                         spin_unlock(&ctl->tree_lock);
2763                         break;
2764                 }
2765
2766                 entry = tree_search_offset(ctl, offset, 1, 0);
2767                 if (!entry) {
2768                         spin_unlock(&ctl->tree_lock);
2769                         next_bitmap = true;
2770                         goto next;
2771                 }
2772
2773                 bytes = minlen;
2774                 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2775                 if (ret2 || start >= end) {
2776                         spin_unlock(&ctl->tree_lock);
2777                         next_bitmap = true;
2778                         goto next;
2779                 }
2780
2781                 bytes = min(bytes, end - start);
2782                 if (bytes < minlen) {
2783                         spin_unlock(&ctl->tree_lock);
2784                         goto next;
2785                 }
2786
2787                 bitmap_clear_bits(ctl, entry, start, bytes);
2788                 if (entry->bytes == 0)
2789                         free_bitmap(ctl, entry);
2790
2791                 spin_unlock(&ctl->tree_lock);
2792
2793                 ret = do_trimming(block_group, total_trimmed, start, bytes,
2794                                   start, bytes);
2795                 if (ret)
2796                         break;
2797 next:
2798                 if (next_bitmap) {
2799                         offset += BITS_PER_BITMAP * ctl->unit;
2800                 } else {
2801                         start += bytes;
2802                         if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2803                                 offset += BITS_PER_BITMAP * ctl->unit;
2804                 }
2805
2806                 if (fatal_signal_pending(current)) {
2807                         ret = -ERESTARTSYS;
2808                         break;
2809                 }
2810
2811                 cond_resched();
2812         }
2813
2814         return ret;
2815 }
2816
2817 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2818                            u64 *trimmed, u64 start, u64 end, u64 minlen)
2819 {
2820         int ret;
2821
2822         *trimmed = 0;
2823
2824         ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2825         if (ret)
2826                 return ret;
2827
2828         ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2829
2830         return ret;
2831 }
2832
2833 /*
2834  * Find the left-most item in the cache tree, and then return the
2835  * smallest inode number in the item.
2836  *
2837  * Note: the returned inode number may not be the smallest one in
2838  * the tree, if the left-most item is a bitmap.
2839  */
2840 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2841 {
2842         struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2843         struct btrfs_free_space *entry = NULL;
2844         u64 ino = 0;
2845
2846         spin_lock(&ctl->tree_lock);
2847
2848         if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2849                 goto out;
2850
2851         entry = rb_entry(rb_first(&ctl->free_space_offset),
2852                          struct btrfs_free_space, offset_index);
2853
2854         if (!entry->bitmap) {
2855                 ino = entry->offset;
2856
2857                 unlink_free_space(ctl, entry);
2858                 entry->offset++;
2859                 entry->bytes--;
2860                 if (!entry->bytes)
2861                         kmem_cache_free(btrfs_free_space_cachep, entry);
2862                 else
2863                         link_free_space(ctl, entry);
2864         } else {
2865                 u64 offset = 0;
2866                 u64 count = 1;
2867                 int ret;
2868
2869                 ret = search_bitmap(ctl, entry, &offset, &count);
2870                 /* Logic error; Should be empty if it can't find anything */
2871                 BUG_ON(ret);
2872
2873                 ino = offset;
2874                 bitmap_clear_bits(ctl, entry, offset, 1);
2875                 if (entry->bytes == 0)
2876                         free_bitmap(ctl, entry);
2877         }
2878 out:
2879         spin_unlock(&ctl->tree_lock);
2880
2881         return ino;
2882 }
2883
2884 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2885                                     struct btrfs_path *path)
2886 {
2887         struct inode *inode = NULL;
2888
2889         spin_lock(&root->cache_lock);
2890         if (root->cache_inode)
2891                 inode = igrab(root->cache_inode);
2892         spin_unlock(&root->cache_lock);
2893         if (inode)
2894                 return inode;
2895
2896         inode = __lookup_free_space_inode(root, path, 0);
2897         if (IS_ERR(inode))
2898                 return inode;
2899
2900         spin_lock(&root->cache_lock);
2901         if (!btrfs_fs_closing(root->fs_info))
2902                 root->cache_inode = igrab(inode);
2903         spin_unlock(&root->cache_lock);
2904
2905         return inode;
2906 }
2907
2908 int create_free_ino_inode(struct btrfs_root *root,
2909                           struct btrfs_trans_handle *trans,
2910                           struct btrfs_path *path)
2911 {
2912         return __create_free_space_inode(root, trans, path,
2913                                          BTRFS_FREE_INO_OBJECTID, 0);
2914 }
2915
2916 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2917 {
2918         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2919         struct btrfs_path *path;
2920         struct inode *inode;
2921         int ret = 0;
2922         u64 root_gen = btrfs_root_generation(&root->root_item);
2923
2924         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2925                 return 0;
2926
2927         /*
2928          * If we're unmounting then just return, since this does a search on the
2929          * normal root and not the commit root and we could deadlock.
2930          */
2931         if (btrfs_fs_closing(fs_info))
2932                 return 0;
2933
2934         path = btrfs_alloc_path();
2935         if (!path)
2936                 return 0;
2937
2938         inode = lookup_free_ino_inode(root, path);
2939         if (IS_ERR(inode))
2940                 goto out;
2941
2942         if (root_gen != BTRFS_I(inode)->generation)
2943                 goto out_put;
2944
2945         ret = __load_free_space_cache(root, inode, ctl, path, 0);
2946
2947         if (ret < 0)
2948                 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2949                        "root %llu\n", root->root_key.objectid);
2950 out_put:
2951         iput(inode);
2952 out:
2953         btrfs_free_path(path);
2954         return ret;
2955 }
2956
2957 int btrfs_write_out_ino_cache(struct btrfs_root *root,
2958                               struct btrfs_trans_handle *trans,
2959                               struct btrfs_path *path)
2960 {
2961         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2962         struct inode *inode;
2963         int ret;
2964
2965         if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2966                 return 0;
2967
2968         inode = lookup_free_ino_inode(root, path);
2969         if (IS_ERR(inode))
2970                 return 0;
2971
2972         ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
2973         if (ret) {
2974                 btrfs_delalloc_release_metadata(inode, inode->i_size);
2975 #ifdef DEBUG
2976                 printk(KERN_ERR "btrfs: failed to write free ino cache "
2977                        "for root %llu\n", root->root_key.objectid);
2978 #endif
2979         }
2980
2981         iput(inode);
2982         return ret;
2983 }