]> Pileus Git - ~andy/linux/blob - fs/btrfs/extent_io.c
Merge branch 'integrity-check-patch-v2' of git://btrfs.giantdisaster.de/git/btrfs...
[~andy/linux] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22
23 static struct kmem_cache *extent_state_cache;
24 static struct kmem_cache *extent_buffer_cache;
25
26 static LIST_HEAD(buffers);
27 static LIST_HEAD(states);
28
29 #define LEAK_DEBUG 0
30 #if LEAK_DEBUG
31 static DEFINE_SPINLOCK(leak_lock);
32 #endif
33
34 #define BUFFER_LRU_MAX 64
35
36 struct tree_entry {
37         u64 start;
38         u64 end;
39         struct rb_node rb_node;
40 };
41
42 struct extent_page_data {
43         struct bio *bio;
44         struct extent_io_tree *tree;
45         get_extent_t *get_extent;
46
47         /* tells writepage not to lock the state bits for this range
48          * it still does the unlocking
49          */
50         unsigned int extent_locked:1;
51
52         /* tells the submit_bio code to use a WRITE_SYNC */
53         unsigned int sync_io:1;
54 };
55
56 int __init extent_io_init(void)
57 {
58         extent_state_cache = kmem_cache_create("extent_state",
59                         sizeof(struct extent_state), 0,
60                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
61         if (!extent_state_cache)
62                 return -ENOMEM;
63
64         extent_buffer_cache = kmem_cache_create("extent_buffers",
65                         sizeof(struct extent_buffer), 0,
66                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
67         if (!extent_buffer_cache)
68                 goto free_state_cache;
69         return 0;
70
71 free_state_cache:
72         kmem_cache_destroy(extent_state_cache);
73         return -ENOMEM;
74 }
75
76 void extent_io_exit(void)
77 {
78         struct extent_state *state;
79         struct extent_buffer *eb;
80
81         while (!list_empty(&states)) {
82                 state = list_entry(states.next, struct extent_state, leak_list);
83                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
84                        "state %lu in tree %p refs %d\n",
85                        (unsigned long long)state->start,
86                        (unsigned long long)state->end,
87                        state->state, state->tree, atomic_read(&state->refs));
88                 list_del(&state->leak_list);
89                 kmem_cache_free(extent_state_cache, state);
90
91         }
92
93         while (!list_empty(&buffers)) {
94                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
95                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
96                        "refs %d\n", (unsigned long long)eb->start,
97                        eb->len, atomic_read(&eb->refs));
98                 list_del(&eb->leak_list);
99                 kmem_cache_free(extent_buffer_cache, eb);
100         }
101         if (extent_state_cache)
102                 kmem_cache_destroy(extent_state_cache);
103         if (extent_buffer_cache)
104                 kmem_cache_destroy(extent_buffer_cache);
105 }
106
107 void extent_io_tree_init(struct extent_io_tree *tree,
108                          struct address_space *mapping)
109 {
110         tree->state = RB_ROOT;
111         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
112         tree->ops = NULL;
113         tree->dirty_bytes = 0;
114         spin_lock_init(&tree->lock);
115         spin_lock_init(&tree->buffer_lock);
116         tree->mapping = mapping;
117 }
118
119 static struct extent_state *alloc_extent_state(gfp_t mask)
120 {
121         struct extent_state *state;
122 #if LEAK_DEBUG
123         unsigned long flags;
124 #endif
125
126         state = kmem_cache_alloc(extent_state_cache, mask);
127         if (!state)
128                 return state;
129         state->state = 0;
130         state->private = 0;
131         state->tree = NULL;
132 #if LEAK_DEBUG
133         spin_lock_irqsave(&leak_lock, flags);
134         list_add(&state->leak_list, &states);
135         spin_unlock_irqrestore(&leak_lock, flags);
136 #endif
137         atomic_set(&state->refs, 1);
138         init_waitqueue_head(&state->wq);
139         return state;
140 }
141
142 void free_extent_state(struct extent_state *state)
143 {
144         if (!state)
145                 return;
146         if (atomic_dec_and_test(&state->refs)) {
147 #if LEAK_DEBUG
148                 unsigned long flags;
149 #endif
150                 WARN_ON(state->tree);
151 #if LEAK_DEBUG
152                 spin_lock_irqsave(&leak_lock, flags);
153                 list_del(&state->leak_list);
154                 spin_unlock_irqrestore(&leak_lock, flags);
155 #endif
156                 kmem_cache_free(extent_state_cache, state);
157         }
158 }
159
160 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
161                                    struct rb_node *node)
162 {
163         struct rb_node **p = &root->rb_node;
164         struct rb_node *parent = NULL;
165         struct tree_entry *entry;
166
167         while (*p) {
168                 parent = *p;
169                 entry = rb_entry(parent, struct tree_entry, rb_node);
170
171                 if (offset < entry->start)
172                         p = &(*p)->rb_left;
173                 else if (offset > entry->end)
174                         p = &(*p)->rb_right;
175                 else
176                         return parent;
177         }
178
179         entry = rb_entry(node, struct tree_entry, rb_node);
180         rb_link_node(node, parent, p);
181         rb_insert_color(node, root);
182         return NULL;
183 }
184
185 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
186                                      struct rb_node **prev_ret,
187                                      struct rb_node **next_ret)
188 {
189         struct rb_root *root = &tree->state;
190         struct rb_node *n = root->rb_node;
191         struct rb_node *prev = NULL;
192         struct rb_node *orig_prev = NULL;
193         struct tree_entry *entry;
194         struct tree_entry *prev_entry = NULL;
195
196         while (n) {
197                 entry = rb_entry(n, struct tree_entry, rb_node);
198                 prev = n;
199                 prev_entry = entry;
200
201                 if (offset < entry->start)
202                         n = n->rb_left;
203                 else if (offset > entry->end)
204                         n = n->rb_right;
205                 else
206                         return n;
207         }
208
209         if (prev_ret) {
210                 orig_prev = prev;
211                 while (prev && offset > prev_entry->end) {
212                         prev = rb_next(prev);
213                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
214                 }
215                 *prev_ret = prev;
216                 prev = orig_prev;
217         }
218
219         if (next_ret) {
220                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221                 while (prev && offset < prev_entry->start) {
222                         prev = rb_prev(prev);
223                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224                 }
225                 *next_ret = prev;
226         }
227         return NULL;
228 }
229
230 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
231                                           u64 offset)
232 {
233         struct rb_node *prev = NULL;
234         struct rb_node *ret;
235
236         ret = __etree_search(tree, offset, &prev, NULL);
237         if (!ret)
238                 return prev;
239         return ret;
240 }
241
242 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
243                      struct extent_state *other)
244 {
245         if (tree->ops && tree->ops->merge_extent_hook)
246                 tree->ops->merge_extent_hook(tree->mapping->host, new,
247                                              other);
248 }
249
250 /*
251  * utility function to look for merge candidates inside a given range.
252  * Any extents with matching state are merged together into a single
253  * extent in the tree.  Extents with EXTENT_IO in their state field
254  * are not merged because the end_io handlers need to be able to do
255  * operations on them without sleeping (or doing allocations/splits).
256  *
257  * This should be called with the tree lock held.
258  */
259 static void merge_state(struct extent_io_tree *tree,
260                         struct extent_state *state)
261 {
262         struct extent_state *other;
263         struct rb_node *other_node;
264
265         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
266                 return;
267
268         other_node = rb_prev(&state->rb_node);
269         if (other_node) {
270                 other = rb_entry(other_node, struct extent_state, rb_node);
271                 if (other->end == state->start - 1 &&
272                     other->state == state->state) {
273                         merge_cb(tree, state, other);
274                         state->start = other->start;
275                         other->tree = NULL;
276                         rb_erase(&other->rb_node, &tree->state);
277                         free_extent_state(other);
278                 }
279         }
280         other_node = rb_next(&state->rb_node);
281         if (other_node) {
282                 other = rb_entry(other_node, struct extent_state, rb_node);
283                 if (other->start == state->end + 1 &&
284                     other->state == state->state) {
285                         merge_cb(tree, state, other);
286                         state->end = other->end;
287                         other->tree = NULL;
288                         rb_erase(&other->rb_node, &tree->state);
289                         free_extent_state(other);
290                 }
291         }
292 }
293
294 static void set_state_cb(struct extent_io_tree *tree,
295                          struct extent_state *state, int *bits)
296 {
297         if (tree->ops && tree->ops->set_bit_hook)
298                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
299 }
300
301 static void clear_state_cb(struct extent_io_tree *tree,
302                            struct extent_state *state, int *bits)
303 {
304         if (tree->ops && tree->ops->clear_bit_hook)
305                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
306 }
307
308 static void set_state_bits(struct extent_io_tree *tree,
309                            struct extent_state *state, int *bits);
310
311 /*
312  * insert an extent_state struct into the tree.  'bits' are set on the
313  * struct before it is inserted.
314  *
315  * This may return -EEXIST if the extent is already there, in which case the
316  * state struct is freed.
317  *
318  * The tree lock is not taken internally.  This is a utility function and
319  * probably isn't what you want to call (see set/clear_extent_bit).
320  */
321 static int insert_state(struct extent_io_tree *tree,
322                         struct extent_state *state, u64 start, u64 end,
323                         int *bits)
324 {
325         struct rb_node *node;
326
327         if (end < start) {
328                 printk(KERN_ERR "btrfs end < start %llu %llu\n",
329                        (unsigned long long)end,
330                        (unsigned long long)start);
331                 WARN_ON(1);
332         }
333         state->start = start;
334         state->end = end;
335
336         set_state_bits(tree, state, bits);
337
338         node = tree_insert(&tree->state, end, &state->rb_node);
339         if (node) {
340                 struct extent_state *found;
341                 found = rb_entry(node, struct extent_state, rb_node);
342                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
343                        "%llu %llu\n", (unsigned long long)found->start,
344                        (unsigned long long)found->end,
345                        (unsigned long long)start, (unsigned long long)end);
346                 return -EEXIST;
347         }
348         state->tree = tree;
349         merge_state(tree, state);
350         return 0;
351 }
352
353 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
354                      u64 split)
355 {
356         if (tree->ops && tree->ops->split_extent_hook)
357                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
358 }
359
360 /*
361  * split a given extent state struct in two, inserting the preallocated
362  * struct 'prealloc' as the newly created second half.  'split' indicates an
363  * offset inside 'orig' where it should be split.
364  *
365  * Before calling,
366  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
367  * are two extent state structs in the tree:
368  * prealloc: [orig->start, split - 1]
369  * orig: [ split, orig->end ]
370  *
371  * The tree locks are not taken by this function. They need to be held
372  * by the caller.
373  */
374 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
375                        struct extent_state *prealloc, u64 split)
376 {
377         struct rb_node *node;
378
379         split_cb(tree, orig, split);
380
381         prealloc->start = orig->start;
382         prealloc->end = split - 1;
383         prealloc->state = orig->state;
384         orig->start = split;
385
386         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
387         if (node) {
388                 free_extent_state(prealloc);
389                 return -EEXIST;
390         }
391         prealloc->tree = tree;
392         return 0;
393 }
394
395 /*
396  * utility function to clear some bits in an extent state struct.
397  * it will optionally wake up any one waiting on this state (wake == 1), or
398  * forcibly remove the state from the tree (delete == 1).
399  *
400  * If no bits are set on the state struct after clearing things, the
401  * struct is freed and removed from the tree
402  */
403 static int clear_state_bit(struct extent_io_tree *tree,
404                             struct extent_state *state,
405                             int *bits, int wake)
406 {
407         int bits_to_clear = *bits & ~EXTENT_CTLBITS;
408         int ret = state->state & bits_to_clear;
409
410         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
411                 u64 range = state->end - state->start + 1;
412                 WARN_ON(range > tree->dirty_bytes);
413                 tree->dirty_bytes -= range;
414         }
415         clear_state_cb(tree, state, bits);
416         state->state &= ~bits_to_clear;
417         if (wake)
418                 wake_up(&state->wq);
419         if (state->state == 0) {
420                 if (state->tree) {
421                         rb_erase(&state->rb_node, &tree->state);
422                         state->tree = NULL;
423                         free_extent_state(state);
424                 } else {
425                         WARN_ON(1);
426                 }
427         } else {
428                 merge_state(tree, state);
429         }
430         return ret;
431 }
432
433 static struct extent_state *
434 alloc_extent_state_atomic(struct extent_state *prealloc)
435 {
436         if (!prealloc)
437                 prealloc = alloc_extent_state(GFP_ATOMIC);
438
439         return prealloc;
440 }
441
442 /*
443  * clear some bits on a range in the tree.  This may require splitting
444  * or inserting elements in the tree, so the gfp mask is used to
445  * indicate which allocations or sleeping are allowed.
446  *
447  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448  * the given range from the tree regardless of state (ie for truncate).
449  *
450  * the range [start, end] is inclusive.
451  *
452  * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453  * bits were already set, or zero if none of the bits were already set.
454  */
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456                      int bits, int wake, int delete,
457                      struct extent_state **cached_state,
458                      gfp_t mask)
459 {
460         struct extent_state *state;
461         struct extent_state *cached;
462         struct extent_state *prealloc = NULL;
463         struct rb_node *next_node;
464         struct rb_node *node;
465         u64 last_end;
466         int err;
467         int set = 0;
468         int clear = 0;
469
470         if (delete)
471                 bits |= ~EXTENT_CTLBITS;
472         bits |= EXTENT_FIRST_DELALLOC;
473
474         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475                 clear = 1;
476 again:
477         if (!prealloc && (mask & __GFP_WAIT)) {
478                 prealloc = alloc_extent_state(mask);
479                 if (!prealloc)
480                         return -ENOMEM;
481         }
482
483         spin_lock(&tree->lock);
484         if (cached_state) {
485                 cached = *cached_state;
486
487                 if (clear) {
488                         *cached_state = NULL;
489                         cached_state = NULL;
490                 }
491
492                 if (cached && cached->tree && cached->start <= start &&
493                     cached->end > start) {
494                         if (clear)
495                                 atomic_dec(&cached->refs);
496                         state = cached;
497                         goto hit_next;
498                 }
499                 if (clear)
500                         free_extent_state(cached);
501         }
502         /*
503          * this search will find the extents that end after
504          * our range starts
505          */
506         node = tree_search(tree, start);
507         if (!node)
508                 goto out;
509         state = rb_entry(node, struct extent_state, rb_node);
510 hit_next:
511         if (state->start > end)
512                 goto out;
513         WARN_ON(state->end < start);
514         last_end = state->end;
515
516         /*
517          *     | ---- desired range ---- |
518          *  | state | or
519          *  | ------------- state -------------- |
520          *
521          * We need to split the extent we found, and may flip
522          * bits on second half.
523          *
524          * If the extent we found extends past our range, we
525          * just split and search again.  It'll get split again
526          * the next time though.
527          *
528          * If the extent we found is inside our range, we clear
529          * the desired bit on it.
530          */
531
532         if (state->start < start) {
533                 prealloc = alloc_extent_state_atomic(prealloc);
534                 BUG_ON(!prealloc);
535                 err = split_state(tree, state, prealloc, start);
536                 BUG_ON(err == -EEXIST);
537                 prealloc = NULL;
538                 if (err)
539                         goto out;
540                 if (state->end <= end) {
541                         set |= clear_state_bit(tree, state, &bits, wake);
542                         if (last_end == (u64)-1)
543                                 goto out;
544                         start = last_end + 1;
545                 }
546                 goto search_again;
547         }
548         /*
549          * | ---- desired range ---- |
550          *                        | state |
551          * We need to split the extent, and clear the bit
552          * on the first half
553          */
554         if (state->start <= end && state->end > end) {
555                 prealloc = alloc_extent_state_atomic(prealloc);
556                 BUG_ON(!prealloc);
557                 err = split_state(tree, state, prealloc, end + 1);
558                 BUG_ON(err == -EEXIST);
559                 if (wake)
560                         wake_up(&state->wq);
561
562                 set |= clear_state_bit(tree, prealloc, &bits, wake);
563
564                 prealloc = NULL;
565                 goto out;
566         }
567
568         if (state->end < end && prealloc && !need_resched())
569                 next_node = rb_next(&state->rb_node);
570         else
571                 next_node = NULL;
572
573         set |= clear_state_bit(tree, state, &bits, wake);
574         if (last_end == (u64)-1)
575                 goto out;
576         start = last_end + 1;
577         if (start <= end && next_node) {
578                 state = rb_entry(next_node, struct extent_state,
579                                  rb_node);
580                 if (state->start == start)
581                         goto hit_next;
582         }
583         goto search_again;
584
585 out:
586         spin_unlock(&tree->lock);
587         if (prealloc)
588                 free_extent_state(prealloc);
589
590         return set;
591
592 search_again:
593         if (start > end)
594                 goto out;
595         spin_unlock(&tree->lock);
596         if (mask & __GFP_WAIT)
597                 cond_resched();
598         goto again;
599 }
600
601 static int wait_on_state(struct extent_io_tree *tree,
602                          struct extent_state *state)
603                 __releases(tree->lock)
604                 __acquires(tree->lock)
605 {
606         DEFINE_WAIT(wait);
607         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
608         spin_unlock(&tree->lock);
609         schedule();
610         spin_lock(&tree->lock);
611         finish_wait(&state->wq, &wait);
612         return 0;
613 }
614
615 /*
616  * waits for one or more bits to clear on a range in the state tree.
617  * The range [start, end] is inclusive.
618  * The tree lock is taken by this function
619  */
620 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621 {
622         struct extent_state *state;
623         struct rb_node *node;
624
625         spin_lock(&tree->lock);
626 again:
627         while (1) {
628                 /*
629                  * this search will find all the extents that end after
630                  * our range starts
631                  */
632                 node = tree_search(tree, start);
633                 if (!node)
634                         break;
635
636                 state = rb_entry(node, struct extent_state, rb_node);
637
638                 if (state->start > end)
639                         goto out;
640
641                 if (state->state & bits) {
642                         start = state->start;
643                         atomic_inc(&state->refs);
644                         wait_on_state(tree, state);
645                         free_extent_state(state);
646                         goto again;
647                 }
648                 start = state->end + 1;
649
650                 if (start > end)
651                         break;
652
653                 cond_resched_lock(&tree->lock);
654         }
655 out:
656         spin_unlock(&tree->lock);
657         return 0;
658 }
659
660 static void set_state_bits(struct extent_io_tree *tree,
661                            struct extent_state *state,
662                            int *bits)
663 {
664         int bits_to_set = *bits & ~EXTENT_CTLBITS;
665
666         set_state_cb(tree, state, bits);
667         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
668                 u64 range = state->end - state->start + 1;
669                 tree->dirty_bytes += range;
670         }
671         state->state |= bits_to_set;
672 }
673
674 static void cache_state(struct extent_state *state,
675                         struct extent_state **cached_ptr)
676 {
677         if (cached_ptr && !(*cached_ptr)) {
678                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
679                         *cached_ptr = state;
680                         atomic_inc(&state->refs);
681                 }
682         }
683 }
684
685 static void uncache_state(struct extent_state **cached_ptr)
686 {
687         if (cached_ptr && (*cached_ptr)) {
688                 struct extent_state *state = *cached_ptr;
689                 *cached_ptr = NULL;
690                 free_extent_state(state);
691         }
692 }
693
694 /*
695  * set some bits on a range in the tree.  This may require allocations or
696  * sleeping, so the gfp mask is used to indicate what is allowed.
697  *
698  * If any of the exclusive bits are set, this will fail with -EEXIST if some
699  * part of the range already has the desired bits set.  The start of the
700  * existing range is returned in failed_start in this case.
701  *
702  * [start, end] is inclusive This takes the tree lock.
703  */
704
705 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706                    int bits, int exclusive_bits, u64 *failed_start,
707                    struct extent_state **cached_state, gfp_t mask)
708 {
709         struct extent_state *state;
710         struct extent_state *prealloc = NULL;
711         struct rb_node *node;
712         int err = 0;
713         u64 last_start;
714         u64 last_end;
715
716         bits |= EXTENT_FIRST_DELALLOC;
717 again:
718         if (!prealloc && (mask & __GFP_WAIT)) {
719                 prealloc = alloc_extent_state(mask);
720                 BUG_ON(!prealloc);
721         }
722
723         spin_lock(&tree->lock);
724         if (cached_state && *cached_state) {
725                 state = *cached_state;
726                 if (state->start <= start && state->end > start &&
727                     state->tree) {
728                         node = &state->rb_node;
729                         goto hit_next;
730                 }
731         }
732         /*
733          * this search will find all the extents that end after
734          * our range starts.
735          */
736         node = tree_search(tree, start);
737         if (!node) {
738                 prealloc = alloc_extent_state_atomic(prealloc);
739                 BUG_ON(!prealloc);
740                 err = insert_state(tree, prealloc, start, end, &bits);
741                 prealloc = NULL;
742                 BUG_ON(err == -EEXIST);
743                 goto out;
744         }
745         state = rb_entry(node, struct extent_state, rb_node);
746 hit_next:
747         last_start = state->start;
748         last_end = state->end;
749
750         /*
751          * | ---- desired range ---- |
752          * | state |
753          *
754          * Just lock what we found and keep going
755          */
756         if (state->start == start && state->end <= end) {
757                 struct rb_node *next_node;
758                 if (state->state & exclusive_bits) {
759                         *failed_start = state->start;
760                         err = -EEXIST;
761                         goto out;
762                 }
763
764                 set_state_bits(tree, state, &bits);
765
766                 cache_state(state, cached_state);
767                 merge_state(tree, state);
768                 if (last_end == (u64)-1)
769                         goto out;
770
771                 start = last_end + 1;
772                 next_node = rb_next(&state->rb_node);
773                 if (next_node && start < end && prealloc && !need_resched()) {
774                         state = rb_entry(next_node, struct extent_state,
775                                          rb_node);
776                         if (state->start == start)
777                                 goto hit_next;
778                 }
779                 goto search_again;
780         }
781
782         /*
783          *     | ---- desired range ---- |
784          * | state |
785          *   or
786          * | ------------- state -------------- |
787          *
788          * We need to split the extent we found, and may flip bits on
789          * second half.
790          *
791          * If the extent we found extends past our
792          * range, we just split and search again.  It'll get split
793          * again the next time though.
794          *
795          * If the extent we found is inside our range, we set the
796          * desired bit on it.
797          */
798         if (state->start < start) {
799                 if (state->state & exclusive_bits) {
800                         *failed_start = start;
801                         err = -EEXIST;
802                         goto out;
803                 }
804
805                 prealloc = alloc_extent_state_atomic(prealloc);
806                 BUG_ON(!prealloc);
807                 err = split_state(tree, state, prealloc, start);
808                 BUG_ON(err == -EEXIST);
809                 prealloc = NULL;
810                 if (err)
811                         goto out;
812                 if (state->end <= end) {
813                         set_state_bits(tree, state, &bits);
814                         cache_state(state, cached_state);
815                         merge_state(tree, state);
816                         if (last_end == (u64)-1)
817                                 goto out;
818                         start = last_end + 1;
819                 }
820                 goto search_again;
821         }
822         /*
823          * | ---- desired range ---- |
824          *     | state | or               | state |
825          *
826          * There's a hole, we need to insert something in it and
827          * ignore the extent we found.
828          */
829         if (state->start > start) {
830                 u64 this_end;
831                 if (end < last_start)
832                         this_end = end;
833                 else
834                         this_end = last_start - 1;
835
836                 prealloc = alloc_extent_state_atomic(prealloc);
837                 BUG_ON(!prealloc);
838
839                 /*
840                  * Avoid to free 'prealloc' if it can be merged with
841                  * the later extent.
842                  */
843                 err = insert_state(tree, prealloc, start, this_end,
844                                    &bits);
845                 BUG_ON(err == -EEXIST);
846                 if (err) {
847                         free_extent_state(prealloc);
848                         prealloc = NULL;
849                         goto out;
850                 }
851                 cache_state(prealloc, cached_state);
852                 prealloc = NULL;
853                 start = this_end + 1;
854                 goto search_again;
855         }
856         /*
857          * | ---- desired range ---- |
858          *                        | state |
859          * We need to split the extent, and set the bit
860          * on the first half
861          */
862         if (state->start <= end && state->end > end) {
863                 if (state->state & exclusive_bits) {
864                         *failed_start = start;
865                         err = -EEXIST;
866                         goto out;
867                 }
868
869                 prealloc = alloc_extent_state_atomic(prealloc);
870                 BUG_ON(!prealloc);
871                 err = split_state(tree, state, prealloc, end + 1);
872                 BUG_ON(err == -EEXIST);
873
874                 set_state_bits(tree, prealloc, &bits);
875                 cache_state(prealloc, cached_state);
876                 merge_state(tree, prealloc);
877                 prealloc = NULL;
878                 goto out;
879         }
880
881         goto search_again;
882
883 out:
884         spin_unlock(&tree->lock);
885         if (prealloc)
886                 free_extent_state(prealloc);
887
888         return err;
889
890 search_again:
891         if (start > end)
892                 goto out;
893         spin_unlock(&tree->lock);
894         if (mask & __GFP_WAIT)
895                 cond_resched();
896         goto again;
897 }
898
899 /**
900  * convert_extent - convert all bits in a given range from one bit to another
901  * @tree:       the io tree to search
902  * @start:      the start offset in bytes
903  * @end:        the end offset in bytes (inclusive)
904  * @bits:       the bits to set in this range
905  * @clear_bits: the bits to clear in this range
906  * @mask:       the allocation mask
907  *
908  * This will go through and set bits for the given range.  If any states exist
909  * already in this range they are set with the given bit and cleared of the
910  * clear_bits.  This is only meant to be used by things that are mergeable, ie
911  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
912  * boundary bits like LOCK.
913  */
914 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
915                        int bits, int clear_bits, gfp_t mask)
916 {
917         struct extent_state *state;
918         struct extent_state *prealloc = NULL;
919         struct rb_node *node;
920         int err = 0;
921         u64 last_start;
922         u64 last_end;
923
924 again:
925         if (!prealloc && (mask & __GFP_WAIT)) {
926                 prealloc = alloc_extent_state(mask);
927                 if (!prealloc)
928                         return -ENOMEM;
929         }
930
931         spin_lock(&tree->lock);
932         /*
933          * this search will find all the extents that end after
934          * our range starts.
935          */
936         node = tree_search(tree, start);
937         if (!node) {
938                 prealloc = alloc_extent_state_atomic(prealloc);
939                 if (!prealloc) {
940                         err = -ENOMEM;
941                         goto out;
942                 }
943                 err = insert_state(tree, prealloc, start, end, &bits);
944                 prealloc = NULL;
945                 BUG_ON(err == -EEXIST);
946                 goto out;
947         }
948         state = rb_entry(node, struct extent_state, rb_node);
949 hit_next:
950         last_start = state->start;
951         last_end = state->end;
952
953         /*
954          * | ---- desired range ---- |
955          * | state |
956          *
957          * Just lock what we found and keep going
958          */
959         if (state->start == start && state->end <= end) {
960                 struct rb_node *next_node;
961
962                 set_state_bits(tree, state, &bits);
963                 clear_state_bit(tree, state, &clear_bits, 0);
964
965                 merge_state(tree, state);
966                 if (last_end == (u64)-1)
967                         goto out;
968
969                 start = last_end + 1;
970                 next_node = rb_next(&state->rb_node);
971                 if (next_node && start < end && prealloc && !need_resched()) {
972                         state = rb_entry(next_node, struct extent_state,
973                                          rb_node);
974                         if (state->start == start)
975                                 goto hit_next;
976                 }
977                 goto search_again;
978         }
979
980         /*
981          *     | ---- desired range ---- |
982          * | state |
983          *   or
984          * | ------------- state -------------- |
985          *
986          * We need to split the extent we found, and may flip bits on
987          * second half.
988          *
989          * If the extent we found extends past our
990          * range, we just split and search again.  It'll get split
991          * again the next time though.
992          *
993          * If the extent we found is inside our range, we set the
994          * desired bit on it.
995          */
996         if (state->start < start) {
997                 prealloc = alloc_extent_state_atomic(prealloc);
998                 if (!prealloc) {
999                         err = -ENOMEM;
1000                         goto out;
1001                 }
1002                 err = split_state(tree, state, prealloc, start);
1003                 BUG_ON(err == -EEXIST);
1004                 prealloc = NULL;
1005                 if (err)
1006                         goto out;
1007                 if (state->end <= end) {
1008                         set_state_bits(tree, state, &bits);
1009                         clear_state_bit(tree, state, &clear_bits, 0);
1010                         merge_state(tree, state);
1011                         if (last_end == (u64)-1)
1012                                 goto out;
1013                         start = last_end + 1;
1014                 }
1015                 goto search_again;
1016         }
1017         /*
1018          * | ---- desired range ---- |
1019          *     | state | or               | state |
1020          *
1021          * There's a hole, we need to insert something in it and
1022          * ignore the extent we found.
1023          */
1024         if (state->start > start) {
1025                 u64 this_end;
1026                 if (end < last_start)
1027                         this_end = end;
1028                 else
1029                         this_end = last_start - 1;
1030
1031                 prealloc = alloc_extent_state_atomic(prealloc);
1032                 if (!prealloc) {
1033                         err = -ENOMEM;
1034                         goto out;
1035                 }
1036
1037                 /*
1038                  * Avoid to free 'prealloc' if it can be merged with
1039                  * the later extent.
1040                  */
1041                 err = insert_state(tree, prealloc, start, this_end,
1042                                    &bits);
1043                 BUG_ON(err == -EEXIST);
1044                 if (err) {
1045                         free_extent_state(prealloc);
1046                         prealloc = NULL;
1047                         goto out;
1048                 }
1049                 prealloc = NULL;
1050                 start = this_end + 1;
1051                 goto search_again;
1052         }
1053         /*
1054          * | ---- desired range ---- |
1055          *                        | state |
1056          * We need to split the extent, and set the bit
1057          * on the first half
1058          */
1059         if (state->start <= end && state->end > end) {
1060                 prealloc = alloc_extent_state_atomic(prealloc);
1061                 if (!prealloc) {
1062                         err = -ENOMEM;
1063                         goto out;
1064                 }
1065
1066                 err = split_state(tree, state, prealloc, end + 1);
1067                 BUG_ON(err == -EEXIST);
1068
1069                 set_state_bits(tree, prealloc, &bits);
1070                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1071
1072                 merge_state(tree, prealloc);
1073                 prealloc = NULL;
1074                 goto out;
1075         }
1076
1077         goto search_again;
1078
1079 out:
1080         spin_unlock(&tree->lock);
1081         if (prealloc)
1082                 free_extent_state(prealloc);
1083
1084         return err;
1085
1086 search_again:
1087         if (start > end)
1088                 goto out;
1089         spin_unlock(&tree->lock);
1090         if (mask & __GFP_WAIT)
1091                 cond_resched();
1092         goto again;
1093 }
1094
1095 /* wrappers around set/clear extent bit */
1096 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1097                      gfp_t mask)
1098 {
1099         return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1100                               NULL, mask);
1101 }
1102
1103 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1104                     int bits, gfp_t mask)
1105 {
1106         return set_extent_bit(tree, start, end, bits, 0, NULL,
1107                               NULL, mask);
1108 }
1109
1110 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1111                       int bits, gfp_t mask)
1112 {
1113         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1114 }
1115
1116 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1117                         struct extent_state **cached_state, gfp_t mask)
1118 {
1119         return set_extent_bit(tree, start, end,
1120                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1121                               0, NULL, cached_state, mask);
1122 }
1123
1124 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1125                        gfp_t mask)
1126 {
1127         return clear_extent_bit(tree, start, end,
1128                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1129                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1130 }
1131
1132 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1133                      gfp_t mask)
1134 {
1135         return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1136                               NULL, mask);
1137 }
1138
1139 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1140                         struct extent_state **cached_state, gfp_t mask)
1141 {
1142         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1143                               NULL, cached_state, mask);
1144 }
1145
1146 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1147                                  u64 end, struct extent_state **cached_state,
1148                                  gfp_t mask)
1149 {
1150         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1151                                 cached_state, mask);
1152 }
1153
1154 /*
1155  * either insert or lock state struct between start and end use mask to tell
1156  * us if waiting is desired.
1157  */
1158 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1159                      int bits, struct extent_state **cached_state, gfp_t mask)
1160 {
1161         int err;
1162         u64 failed_start;
1163         while (1) {
1164                 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1165                                      EXTENT_LOCKED, &failed_start,
1166                                      cached_state, mask);
1167                 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1168                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1169                         start = failed_start;
1170                 } else {
1171                         break;
1172                 }
1173                 WARN_ON(start > end);
1174         }
1175         return err;
1176 }
1177
1178 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1179 {
1180         return lock_extent_bits(tree, start, end, 0, NULL, mask);
1181 }
1182
1183 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1184                     gfp_t mask)
1185 {
1186         int err;
1187         u64 failed_start;
1188
1189         err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1190                              &failed_start, NULL, mask);
1191         if (err == -EEXIST) {
1192                 if (failed_start > start)
1193                         clear_extent_bit(tree, start, failed_start - 1,
1194                                          EXTENT_LOCKED, 1, 0, NULL, mask);
1195                 return 0;
1196         }
1197         return 1;
1198 }
1199
1200 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1201                          struct extent_state **cached, gfp_t mask)
1202 {
1203         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1204                                 mask);
1205 }
1206
1207 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1208 {
1209         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1210                                 mask);
1211 }
1212
1213 /*
1214  * helper function to set both pages and extents in the tree writeback
1215  */
1216 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1217 {
1218         unsigned long index = start >> PAGE_CACHE_SHIFT;
1219         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1220         struct page *page;
1221
1222         while (index <= end_index) {
1223                 page = find_get_page(tree->mapping, index);
1224                 BUG_ON(!page);
1225                 set_page_writeback(page);
1226                 page_cache_release(page);
1227                 index++;
1228         }
1229         return 0;
1230 }
1231
1232 /* find the first state struct with 'bits' set after 'start', and
1233  * return it.  tree->lock must be held.  NULL will returned if
1234  * nothing was found after 'start'
1235  */
1236 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1237                                                  u64 start, int bits)
1238 {
1239         struct rb_node *node;
1240         struct extent_state *state;
1241
1242         /*
1243          * this search will find all the extents that end after
1244          * our range starts.
1245          */
1246         node = tree_search(tree, start);
1247         if (!node)
1248                 goto out;
1249
1250         while (1) {
1251                 state = rb_entry(node, struct extent_state, rb_node);
1252                 if (state->end >= start && (state->state & bits))
1253                         return state;
1254
1255                 node = rb_next(node);
1256                 if (!node)
1257                         break;
1258         }
1259 out:
1260         return NULL;
1261 }
1262
1263 /*
1264  * find the first offset in the io tree with 'bits' set. zero is
1265  * returned if we find something, and *start_ret and *end_ret are
1266  * set to reflect the state struct that was found.
1267  *
1268  * If nothing was found, 1 is returned, < 0 on error
1269  */
1270 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1271                           u64 *start_ret, u64 *end_ret, int bits)
1272 {
1273         struct extent_state *state;
1274         int ret = 1;
1275
1276         spin_lock(&tree->lock);
1277         state = find_first_extent_bit_state(tree, start, bits);
1278         if (state) {
1279                 *start_ret = state->start;
1280                 *end_ret = state->end;
1281                 ret = 0;
1282         }
1283         spin_unlock(&tree->lock);
1284         return ret;
1285 }
1286
1287 /*
1288  * find a contiguous range of bytes in the file marked as delalloc, not
1289  * more than 'max_bytes'.  start and end are used to return the range,
1290  *
1291  * 1 is returned if we find something, 0 if nothing was in the tree
1292  */
1293 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1294                                         u64 *start, u64 *end, u64 max_bytes,
1295                                         struct extent_state **cached_state)
1296 {
1297         struct rb_node *node;
1298         struct extent_state *state;
1299         u64 cur_start = *start;
1300         u64 found = 0;
1301         u64 total_bytes = 0;
1302
1303         spin_lock(&tree->lock);
1304
1305         /*
1306          * this search will find all the extents that end after
1307          * our range starts.
1308          */
1309         node = tree_search(tree, cur_start);
1310         if (!node) {
1311                 if (!found)
1312                         *end = (u64)-1;
1313                 goto out;
1314         }
1315
1316         while (1) {
1317                 state = rb_entry(node, struct extent_state, rb_node);
1318                 if (found && (state->start != cur_start ||
1319                               (state->state & EXTENT_BOUNDARY))) {
1320                         goto out;
1321                 }
1322                 if (!(state->state & EXTENT_DELALLOC)) {
1323                         if (!found)
1324                                 *end = state->end;
1325                         goto out;
1326                 }
1327                 if (!found) {
1328                         *start = state->start;
1329                         *cached_state = state;
1330                         atomic_inc(&state->refs);
1331                 }
1332                 found++;
1333                 *end = state->end;
1334                 cur_start = state->end + 1;
1335                 node = rb_next(node);
1336                 if (!node)
1337                         break;
1338                 total_bytes += state->end - state->start + 1;
1339                 if (total_bytes >= max_bytes)
1340                         break;
1341         }
1342 out:
1343         spin_unlock(&tree->lock);
1344         return found;
1345 }
1346
1347 static noinline int __unlock_for_delalloc(struct inode *inode,
1348                                           struct page *locked_page,
1349                                           u64 start, u64 end)
1350 {
1351         int ret;
1352         struct page *pages[16];
1353         unsigned long index = start >> PAGE_CACHE_SHIFT;
1354         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1355         unsigned long nr_pages = end_index - index + 1;
1356         int i;
1357
1358         if (index == locked_page->index && end_index == index)
1359                 return 0;
1360
1361         while (nr_pages > 0) {
1362                 ret = find_get_pages_contig(inode->i_mapping, index,
1363                                      min_t(unsigned long, nr_pages,
1364                                      ARRAY_SIZE(pages)), pages);
1365                 for (i = 0; i < ret; i++) {
1366                         if (pages[i] != locked_page)
1367                                 unlock_page(pages[i]);
1368                         page_cache_release(pages[i]);
1369                 }
1370                 nr_pages -= ret;
1371                 index += ret;
1372                 cond_resched();
1373         }
1374         return 0;
1375 }
1376
1377 static noinline int lock_delalloc_pages(struct inode *inode,
1378                                         struct page *locked_page,
1379                                         u64 delalloc_start,
1380                                         u64 delalloc_end)
1381 {
1382         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1383         unsigned long start_index = index;
1384         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1385         unsigned long pages_locked = 0;
1386         struct page *pages[16];
1387         unsigned long nrpages;
1388         int ret;
1389         int i;
1390
1391         /* the caller is responsible for locking the start index */
1392         if (index == locked_page->index && index == end_index)
1393                 return 0;
1394
1395         /* skip the page at the start index */
1396         nrpages = end_index - index + 1;
1397         while (nrpages > 0) {
1398                 ret = find_get_pages_contig(inode->i_mapping, index,
1399                                      min_t(unsigned long,
1400                                      nrpages, ARRAY_SIZE(pages)), pages);
1401                 if (ret == 0) {
1402                         ret = -EAGAIN;
1403                         goto done;
1404                 }
1405                 /* now we have an array of pages, lock them all */
1406                 for (i = 0; i < ret; i++) {
1407                         /*
1408                          * the caller is taking responsibility for
1409                          * locked_page
1410                          */
1411                         if (pages[i] != locked_page) {
1412                                 lock_page(pages[i]);
1413                                 if (!PageDirty(pages[i]) ||
1414                                     pages[i]->mapping != inode->i_mapping) {
1415                                         ret = -EAGAIN;
1416                                         unlock_page(pages[i]);
1417                                         page_cache_release(pages[i]);
1418                                         goto done;
1419                                 }
1420                         }
1421                         page_cache_release(pages[i]);
1422                         pages_locked++;
1423                 }
1424                 nrpages -= ret;
1425                 index += ret;
1426                 cond_resched();
1427         }
1428         ret = 0;
1429 done:
1430         if (ret && pages_locked) {
1431                 __unlock_for_delalloc(inode, locked_page,
1432                               delalloc_start,
1433                               ((u64)(start_index + pages_locked - 1)) <<
1434                               PAGE_CACHE_SHIFT);
1435         }
1436         return ret;
1437 }
1438
1439 /*
1440  * find a contiguous range of bytes in the file marked as delalloc, not
1441  * more than 'max_bytes'.  start and end are used to return the range,
1442  *
1443  * 1 is returned if we find something, 0 if nothing was in the tree
1444  */
1445 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1446                                              struct extent_io_tree *tree,
1447                                              struct page *locked_page,
1448                                              u64 *start, u64 *end,
1449                                              u64 max_bytes)
1450 {
1451         u64 delalloc_start;
1452         u64 delalloc_end;
1453         u64 found;
1454         struct extent_state *cached_state = NULL;
1455         int ret;
1456         int loops = 0;
1457
1458 again:
1459         /* step one, find a bunch of delalloc bytes starting at start */
1460         delalloc_start = *start;
1461         delalloc_end = 0;
1462         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1463                                     max_bytes, &cached_state);
1464         if (!found || delalloc_end <= *start) {
1465                 *start = delalloc_start;
1466                 *end = delalloc_end;
1467                 free_extent_state(cached_state);
1468                 return found;
1469         }
1470
1471         /*
1472          * start comes from the offset of locked_page.  We have to lock
1473          * pages in order, so we can't process delalloc bytes before
1474          * locked_page
1475          */
1476         if (delalloc_start < *start)
1477                 delalloc_start = *start;
1478
1479         /*
1480          * make sure to limit the number of pages we try to lock down
1481          * if we're looping.
1482          */
1483         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1484                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1485
1486         /* step two, lock all the pages after the page that has start */
1487         ret = lock_delalloc_pages(inode, locked_page,
1488                                   delalloc_start, delalloc_end);
1489         if (ret == -EAGAIN) {
1490                 /* some of the pages are gone, lets avoid looping by
1491                  * shortening the size of the delalloc range we're searching
1492                  */
1493                 free_extent_state(cached_state);
1494                 if (!loops) {
1495                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1496                         max_bytes = PAGE_CACHE_SIZE - offset;
1497                         loops = 1;
1498                         goto again;
1499                 } else {
1500                         found = 0;
1501                         goto out_failed;
1502                 }
1503         }
1504         BUG_ON(ret);
1505
1506         /* step three, lock the state bits for the whole range */
1507         lock_extent_bits(tree, delalloc_start, delalloc_end,
1508                          0, &cached_state, GFP_NOFS);
1509
1510         /* then test to make sure it is all still delalloc */
1511         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1512                              EXTENT_DELALLOC, 1, cached_state);
1513         if (!ret) {
1514                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1515                                      &cached_state, GFP_NOFS);
1516                 __unlock_for_delalloc(inode, locked_page,
1517                               delalloc_start, delalloc_end);
1518                 cond_resched();
1519                 goto again;
1520         }
1521         free_extent_state(cached_state);
1522         *start = delalloc_start;
1523         *end = delalloc_end;
1524 out_failed:
1525         return found;
1526 }
1527
1528 int extent_clear_unlock_delalloc(struct inode *inode,
1529                                 struct extent_io_tree *tree,
1530                                 u64 start, u64 end, struct page *locked_page,
1531                                 unsigned long op)
1532 {
1533         int ret;
1534         struct page *pages[16];
1535         unsigned long index = start >> PAGE_CACHE_SHIFT;
1536         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1537         unsigned long nr_pages = end_index - index + 1;
1538         int i;
1539         int clear_bits = 0;
1540
1541         if (op & EXTENT_CLEAR_UNLOCK)
1542                 clear_bits |= EXTENT_LOCKED;
1543         if (op & EXTENT_CLEAR_DIRTY)
1544                 clear_bits |= EXTENT_DIRTY;
1545
1546         if (op & EXTENT_CLEAR_DELALLOC)
1547                 clear_bits |= EXTENT_DELALLOC;
1548
1549         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1550         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1551                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1552                     EXTENT_SET_PRIVATE2)))
1553                 return 0;
1554
1555         while (nr_pages > 0) {
1556                 ret = find_get_pages_contig(inode->i_mapping, index,
1557                                      min_t(unsigned long,
1558                                      nr_pages, ARRAY_SIZE(pages)), pages);
1559                 for (i = 0; i < ret; i++) {
1560
1561                         if (op & EXTENT_SET_PRIVATE2)
1562                                 SetPagePrivate2(pages[i]);
1563
1564                         if (pages[i] == locked_page) {
1565                                 page_cache_release(pages[i]);
1566                                 continue;
1567                         }
1568                         if (op & EXTENT_CLEAR_DIRTY)
1569                                 clear_page_dirty_for_io(pages[i]);
1570                         if (op & EXTENT_SET_WRITEBACK)
1571                                 set_page_writeback(pages[i]);
1572                         if (op & EXTENT_END_WRITEBACK)
1573                                 end_page_writeback(pages[i]);
1574                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1575                                 unlock_page(pages[i]);
1576                         page_cache_release(pages[i]);
1577                 }
1578                 nr_pages -= ret;
1579                 index += ret;
1580                 cond_resched();
1581         }
1582         return 0;
1583 }
1584
1585 /*
1586  * count the number of bytes in the tree that have a given bit(s)
1587  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1588  * cached.  The total number found is returned.
1589  */
1590 u64 count_range_bits(struct extent_io_tree *tree,
1591                      u64 *start, u64 search_end, u64 max_bytes,
1592                      unsigned long bits, int contig)
1593 {
1594         struct rb_node *node;
1595         struct extent_state *state;
1596         u64 cur_start = *start;
1597         u64 total_bytes = 0;
1598         u64 last = 0;
1599         int found = 0;
1600
1601         if (search_end <= cur_start) {
1602                 WARN_ON(1);
1603                 return 0;
1604         }
1605
1606         spin_lock(&tree->lock);
1607         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1608                 total_bytes = tree->dirty_bytes;
1609                 goto out;
1610         }
1611         /*
1612          * this search will find all the extents that end after
1613          * our range starts.
1614          */
1615         node = tree_search(tree, cur_start);
1616         if (!node)
1617                 goto out;
1618
1619         while (1) {
1620                 state = rb_entry(node, struct extent_state, rb_node);
1621                 if (state->start > search_end)
1622                         break;
1623                 if (contig && found && state->start > last + 1)
1624                         break;
1625                 if (state->end >= cur_start && (state->state & bits) == bits) {
1626                         total_bytes += min(search_end, state->end) + 1 -
1627                                        max(cur_start, state->start);
1628                         if (total_bytes >= max_bytes)
1629                                 break;
1630                         if (!found) {
1631                                 *start = max(cur_start, state->start);
1632                                 found = 1;
1633                         }
1634                         last = state->end;
1635                 } else if (contig && found) {
1636                         break;
1637                 }
1638                 node = rb_next(node);
1639                 if (!node)
1640                         break;
1641         }
1642 out:
1643         spin_unlock(&tree->lock);
1644         return total_bytes;
1645 }
1646
1647 /*
1648  * set the private field for a given byte offset in the tree.  If there isn't
1649  * an extent_state there already, this does nothing.
1650  */
1651 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1652 {
1653         struct rb_node *node;
1654         struct extent_state *state;
1655         int ret = 0;
1656
1657         spin_lock(&tree->lock);
1658         /*
1659          * this search will find all the extents that end after
1660          * our range starts.
1661          */
1662         node = tree_search(tree, start);
1663         if (!node) {
1664                 ret = -ENOENT;
1665                 goto out;
1666         }
1667         state = rb_entry(node, struct extent_state, rb_node);
1668         if (state->start != start) {
1669                 ret = -ENOENT;
1670                 goto out;
1671         }
1672         state->private = private;
1673 out:
1674         spin_unlock(&tree->lock);
1675         return ret;
1676 }
1677
1678 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1679 {
1680         struct rb_node *node;
1681         struct extent_state *state;
1682         int ret = 0;
1683
1684         spin_lock(&tree->lock);
1685         /*
1686          * this search will find all the extents that end after
1687          * our range starts.
1688          */
1689         node = tree_search(tree, start);
1690         if (!node) {
1691                 ret = -ENOENT;
1692                 goto out;
1693         }
1694         state = rb_entry(node, struct extent_state, rb_node);
1695         if (state->start != start) {
1696                 ret = -ENOENT;
1697                 goto out;
1698         }
1699         *private = state->private;
1700 out:
1701         spin_unlock(&tree->lock);
1702         return ret;
1703 }
1704
1705 /*
1706  * searches a range in the state tree for a given mask.
1707  * If 'filled' == 1, this returns 1 only if every extent in the tree
1708  * has the bits set.  Otherwise, 1 is returned if any bit in the
1709  * range is found set.
1710  */
1711 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1712                    int bits, int filled, struct extent_state *cached)
1713 {
1714         struct extent_state *state = NULL;
1715         struct rb_node *node;
1716         int bitset = 0;
1717
1718         spin_lock(&tree->lock);
1719         if (cached && cached->tree && cached->start <= start &&
1720             cached->end > start)
1721                 node = &cached->rb_node;
1722         else
1723                 node = tree_search(tree, start);
1724         while (node && start <= end) {
1725                 state = rb_entry(node, struct extent_state, rb_node);
1726
1727                 if (filled && state->start > start) {
1728                         bitset = 0;
1729                         break;
1730                 }
1731
1732                 if (state->start > end)
1733                         break;
1734
1735                 if (state->state & bits) {
1736                         bitset = 1;
1737                         if (!filled)
1738                                 break;
1739                 } else if (filled) {
1740                         bitset = 0;
1741                         break;
1742                 }
1743
1744                 if (state->end == (u64)-1)
1745                         break;
1746
1747                 start = state->end + 1;
1748                 if (start > end)
1749                         break;
1750                 node = rb_next(node);
1751                 if (!node) {
1752                         if (filled)
1753                                 bitset = 0;
1754                         break;
1755                 }
1756         }
1757         spin_unlock(&tree->lock);
1758         return bitset;
1759 }
1760
1761 /*
1762  * helper function to set a given page up to date if all the
1763  * extents in the tree for that page are up to date
1764  */
1765 static int check_page_uptodate(struct extent_io_tree *tree,
1766                                struct page *page)
1767 {
1768         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1769         u64 end = start + PAGE_CACHE_SIZE - 1;
1770         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1771                 SetPageUptodate(page);
1772         return 0;
1773 }
1774
1775 /*
1776  * helper function to unlock a page if all the extents in the tree
1777  * for that page are unlocked
1778  */
1779 static int check_page_locked(struct extent_io_tree *tree,
1780                              struct page *page)
1781 {
1782         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1783         u64 end = start + PAGE_CACHE_SIZE - 1;
1784         if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1785                 unlock_page(page);
1786         return 0;
1787 }
1788
1789 /*
1790  * helper function to end page writeback if all the extents
1791  * in the tree for that page are done with writeback
1792  */
1793 static int check_page_writeback(struct extent_io_tree *tree,
1794                              struct page *page)
1795 {
1796         end_page_writeback(page);
1797         return 0;
1798 }
1799
1800 /*
1801  * When IO fails, either with EIO or csum verification fails, we
1802  * try other mirrors that might have a good copy of the data.  This
1803  * io_failure_record is used to record state as we go through all the
1804  * mirrors.  If another mirror has good data, the page is set up to date
1805  * and things continue.  If a good mirror can't be found, the original
1806  * bio end_io callback is called to indicate things have failed.
1807  */
1808 struct io_failure_record {
1809         struct page *page;
1810         u64 start;
1811         u64 len;
1812         u64 logical;
1813         unsigned long bio_flags;
1814         int this_mirror;
1815         int failed_mirror;
1816         int in_validation;
1817 };
1818
1819 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1820                                 int did_repair)
1821 {
1822         int ret;
1823         int err = 0;
1824         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1825
1826         set_state_private(failure_tree, rec->start, 0);
1827         ret = clear_extent_bits(failure_tree, rec->start,
1828                                 rec->start + rec->len - 1,
1829                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1830         if (ret)
1831                 err = ret;
1832
1833         if (did_repair) {
1834                 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1835                                         rec->start + rec->len - 1,
1836                                         EXTENT_DAMAGED, GFP_NOFS);
1837                 if (ret && !err)
1838                         err = ret;
1839         }
1840
1841         kfree(rec);
1842         return err;
1843 }
1844
1845 static void repair_io_failure_callback(struct bio *bio, int err)
1846 {
1847         complete(bio->bi_private);
1848 }
1849
1850 /*
1851  * this bypasses the standard btrfs submit functions deliberately, as
1852  * the standard behavior is to write all copies in a raid setup. here we only
1853  * want to write the one bad copy. so we do the mapping for ourselves and issue
1854  * submit_bio directly.
1855  * to avoid any synchonization issues, wait for the data after writing, which
1856  * actually prevents the read that triggered the error from finishing.
1857  * currently, there can be no more than two copies of every data bit. thus,
1858  * exactly one rewrite is required.
1859  */
1860 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1861                         u64 length, u64 logical, struct page *page,
1862                         int mirror_num)
1863 {
1864         struct bio *bio;
1865         struct btrfs_device *dev;
1866         DECLARE_COMPLETION_ONSTACK(compl);
1867         u64 map_length = 0;
1868         u64 sector;
1869         struct btrfs_bio *bbio = NULL;
1870         int ret;
1871
1872         BUG_ON(!mirror_num);
1873
1874         bio = bio_alloc(GFP_NOFS, 1);
1875         if (!bio)
1876                 return -EIO;
1877         bio->bi_private = &compl;
1878         bio->bi_end_io = repair_io_failure_callback;
1879         bio->bi_size = 0;
1880         map_length = length;
1881
1882         ret = btrfs_map_block(map_tree, WRITE, logical,
1883                               &map_length, &bbio, mirror_num);
1884         if (ret) {
1885                 bio_put(bio);
1886                 return -EIO;
1887         }
1888         BUG_ON(mirror_num != bbio->mirror_num);
1889         sector = bbio->stripes[mirror_num-1].physical >> 9;
1890         bio->bi_sector = sector;
1891         dev = bbio->stripes[mirror_num-1].dev;
1892         kfree(bbio);
1893         if (!dev || !dev->bdev || !dev->writeable) {
1894                 bio_put(bio);
1895                 return -EIO;
1896         }
1897         bio->bi_bdev = dev->bdev;
1898         bio_add_page(bio, page, length, start-page_offset(page));
1899         btrfsic_submit_bio(WRITE_SYNC, bio);
1900         wait_for_completion(&compl);
1901
1902         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1903                 /* try to remap that extent elsewhere? */
1904                 bio_put(bio);
1905                 return -EIO;
1906         }
1907
1908         printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1909                         "sector %llu)\n", page->mapping->host->i_ino, start,
1910                         dev->name, sector);
1911
1912         bio_put(bio);
1913         return 0;
1914 }
1915
1916 /*
1917  * each time an IO finishes, we do a fast check in the IO failure tree
1918  * to see if we need to process or clean up an io_failure_record
1919  */
1920 static int clean_io_failure(u64 start, struct page *page)
1921 {
1922         u64 private;
1923         u64 private_failure;
1924         struct io_failure_record *failrec;
1925         struct btrfs_mapping_tree *map_tree;
1926         struct extent_state *state;
1927         int num_copies;
1928         int did_repair = 0;
1929         int ret;
1930         struct inode *inode = page->mapping->host;
1931
1932         private = 0;
1933         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1934                                 (u64)-1, 1, EXTENT_DIRTY, 0);
1935         if (!ret)
1936                 return 0;
1937
1938         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1939                                 &private_failure);
1940         if (ret)
1941                 return 0;
1942
1943         failrec = (struct io_failure_record *)(unsigned long) private_failure;
1944         BUG_ON(!failrec->this_mirror);
1945
1946         if (failrec->in_validation) {
1947                 /* there was no real error, just free the record */
1948                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1949                          failrec->start);
1950                 did_repair = 1;
1951                 goto out;
1952         }
1953
1954         spin_lock(&BTRFS_I(inode)->io_tree.lock);
1955         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1956                                             failrec->start,
1957                                             EXTENT_LOCKED);
1958         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1959
1960         if (state && state->start == failrec->start) {
1961                 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1962                 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1963                                                 failrec->len);
1964                 if (num_copies > 1)  {
1965                         ret = repair_io_failure(map_tree, start, failrec->len,
1966                                                 failrec->logical, page,
1967                                                 failrec->failed_mirror);
1968                         did_repair = !ret;
1969                 }
1970         }
1971
1972 out:
1973         if (!ret)
1974                 ret = free_io_failure(inode, failrec, did_repair);
1975
1976         return ret;
1977 }
1978
1979 /*
1980  * this is a generic handler for readpage errors (default
1981  * readpage_io_failed_hook). if other copies exist, read those and write back
1982  * good data to the failed position. does not investigate in remapping the
1983  * failed extent elsewhere, hoping the device will be smart enough to do this as
1984  * needed
1985  */
1986
1987 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1988                                 u64 start, u64 end, int failed_mirror,
1989                                 struct extent_state *state)
1990 {
1991         struct io_failure_record *failrec = NULL;
1992         u64 private;
1993         struct extent_map *em;
1994         struct inode *inode = page->mapping->host;
1995         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1996         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1997         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1998         struct bio *bio;
1999         int num_copies;
2000         int ret;
2001         int read_mode;
2002         u64 logical;
2003
2004         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2005
2006         ret = get_state_private(failure_tree, start, &private);
2007         if (ret) {
2008                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2009                 if (!failrec)
2010                         return -ENOMEM;
2011                 failrec->start = start;
2012                 failrec->len = end - start + 1;
2013                 failrec->this_mirror = 0;
2014                 failrec->bio_flags = 0;
2015                 failrec->in_validation = 0;
2016
2017                 read_lock(&em_tree->lock);
2018                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2019                 if (!em) {
2020                         read_unlock(&em_tree->lock);
2021                         kfree(failrec);
2022                         return -EIO;
2023                 }
2024
2025                 if (em->start > start || em->start + em->len < start) {
2026                         free_extent_map(em);
2027                         em = NULL;
2028                 }
2029                 read_unlock(&em_tree->lock);
2030
2031                 if (!em || IS_ERR(em)) {
2032                         kfree(failrec);
2033                         return -EIO;
2034                 }
2035                 logical = start - em->start;
2036                 logical = em->block_start + logical;
2037                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2038                         logical = em->block_start;
2039                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2040                         extent_set_compress_type(&failrec->bio_flags,
2041                                                  em->compress_type);
2042                 }
2043                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2044                          "len=%llu\n", logical, start, failrec->len);
2045                 failrec->logical = logical;
2046                 free_extent_map(em);
2047
2048                 /* set the bits in the private failure tree */
2049                 ret = set_extent_bits(failure_tree, start, end,
2050                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2051                 if (ret >= 0)
2052                         ret = set_state_private(failure_tree, start,
2053                                                 (u64)(unsigned long)failrec);
2054                 /* set the bits in the inode's tree */
2055                 if (ret >= 0)
2056                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2057                                                 GFP_NOFS);
2058                 if (ret < 0) {
2059                         kfree(failrec);
2060                         return ret;
2061                 }
2062         } else {
2063                 failrec = (struct io_failure_record *)(unsigned long)private;
2064                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2065                          "start=%llu, len=%llu, validation=%d\n",
2066                          failrec->logical, failrec->start, failrec->len,
2067                          failrec->in_validation);
2068                 /*
2069                  * when data can be on disk more than twice, add to failrec here
2070                  * (e.g. with a list for failed_mirror) to make
2071                  * clean_io_failure() clean all those errors at once.
2072                  */
2073         }
2074         num_copies = btrfs_num_copies(
2075                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
2076                               failrec->logical, failrec->len);
2077         if (num_copies == 1) {
2078                 /*
2079                  * we only have a single copy of the data, so don't bother with
2080                  * all the retry and error correction code that follows. no
2081                  * matter what the error is, it is very likely to persist.
2082                  */
2083                 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2084                          "state=%p, num_copies=%d, next_mirror %d, "
2085                          "failed_mirror %d\n", state, num_copies,
2086                          failrec->this_mirror, failed_mirror);
2087                 free_io_failure(inode, failrec, 0);
2088                 return -EIO;
2089         }
2090
2091         if (!state) {
2092                 spin_lock(&tree->lock);
2093                 state = find_first_extent_bit_state(tree, failrec->start,
2094                                                     EXTENT_LOCKED);
2095                 if (state && state->start != failrec->start)
2096                         state = NULL;
2097                 spin_unlock(&tree->lock);
2098         }
2099
2100         /*
2101          * there are two premises:
2102          *      a) deliver good data to the caller
2103          *      b) correct the bad sectors on disk
2104          */
2105         if (failed_bio->bi_vcnt > 1) {
2106                 /*
2107                  * to fulfill b), we need to know the exact failing sectors, as
2108                  * we don't want to rewrite any more than the failed ones. thus,
2109                  * we need separate read requests for the failed bio
2110                  *
2111                  * if the following BUG_ON triggers, our validation request got
2112                  * merged. we need separate requests for our algorithm to work.
2113                  */
2114                 BUG_ON(failrec->in_validation);
2115                 failrec->in_validation = 1;
2116                 failrec->this_mirror = failed_mirror;
2117                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2118         } else {
2119                 /*
2120                  * we're ready to fulfill a) and b) alongside. get a good copy
2121                  * of the failed sector and if we succeed, we have setup
2122                  * everything for repair_io_failure to do the rest for us.
2123                  */
2124                 if (failrec->in_validation) {
2125                         BUG_ON(failrec->this_mirror != failed_mirror);
2126                         failrec->in_validation = 0;
2127                         failrec->this_mirror = 0;
2128                 }
2129                 failrec->failed_mirror = failed_mirror;
2130                 failrec->this_mirror++;
2131                 if (failrec->this_mirror == failed_mirror)
2132                         failrec->this_mirror++;
2133                 read_mode = READ_SYNC;
2134         }
2135
2136         if (!state || failrec->this_mirror > num_copies) {
2137                 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2138                          "next_mirror %d, failed_mirror %d\n", state,
2139                          num_copies, failrec->this_mirror, failed_mirror);
2140                 free_io_failure(inode, failrec, 0);
2141                 return -EIO;
2142         }
2143
2144         bio = bio_alloc(GFP_NOFS, 1);
2145         bio->bi_private = state;
2146         bio->bi_end_io = failed_bio->bi_end_io;
2147         bio->bi_sector = failrec->logical >> 9;
2148         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2149         bio->bi_size = 0;
2150
2151         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2152
2153         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2154                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2155                  failrec->this_mirror, num_copies, failrec->in_validation);
2156
2157         tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2158                                         failrec->bio_flags, 0);
2159         return 0;
2160 }
2161
2162 /* lots and lots of room for performance fixes in the end_bio funcs */
2163
2164 /*
2165  * after a writepage IO is done, we need to:
2166  * clear the uptodate bits on error
2167  * clear the writeback bits in the extent tree for this IO
2168  * end_page_writeback if the page has no more pending IO
2169  *
2170  * Scheduling is not allowed, so the extent state tree is expected
2171  * to have one and only one object corresponding to this IO.
2172  */
2173 static void end_bio_extent_writepage(struct bio *bio, int err)
2174 {
2175         int uptodate = err == 0;
2176         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2177         struct extent_io_tree *tree;
2178         u64 start;
2179         u64 end;
2180         int whole_page;
2181         int ret;
2182
2183         do {
2184                 struct page *page = bvec->bv_page;
2185                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2186
2187                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2188                          bvec->bv_offset;
2189                 end = start + bvec->bv_len - 1;
2190
2191                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2192                         whole_page = 1;
2193                 else
2194                         whole_page = 0;
2195
2196                 if (--bvec >= bio->bi_io_vec)
2197                         prefetchw(&bvec->bv_page->flags);
2198                 if (tree->ops && tree->ops->writepage_end_io_hook) {
2199                         ret = tree->ops->writepage_end_io_hook(page, start,
2200                                                        end, NULL, uptodate);
2201                         if (ret)
2202                                 uptodate = 0;
2203                 }
2204
2205                 if (!uptodate && tree->ops &&
2206                     tree->ops->writepage_io_failed_hook) {
2207                         ret = tree->ops->writepage_io_failed_hook(bio, page,
2208                                                          start, end, NULL);
2209                         if (ret == 0) {
2210                                 uptodate = (err == 0);
2211                                 continue;
2212                         }
2213                 }
2214
2215                 if (!uptodate) {
2216                         clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2217                         ClearPageUptodate(page);
2218                         SetPageError(page);
2219                 }
2220
2221                 if (whole_page)
2222                         end_page_writeback(page);
2223                 else
2224                         check_page_writeback(tree, page);
2225         } while (bvec >= bio->bi_io_vec);
2226
2227         bio_put(bio);
2228 }
2229
2230 /*
2231  * after a readpage IO is done, we need to:
2232  * clear the uptodate bits on error
2233  * set the uptodate bits if things worked
2234  * set the page up to date if all extents in the tree are uptodate
2235  * clear the lock bit in the extent tree
2236  * unlock the page if there are no other extents locked for it
2237  *
2238  * Scheduling is not allowed, so the extent state tree is expected
2239  * to have one and only one object corresponding to this IO.
2240  */
2241 static void end_bio_extent_readpage(struct bio *bio, int err)
2242 {
2243         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2244         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2245         struct bio_vec *bvec = bio->bi_io_vec;
2246         struct extent_io_tree *tree;
2247         u64 start;
2248         u64 end;
2249         int whole_page;
2250         int ret;
2251
2252         if (err)
2253                 uptodate = 0;
2254
2255         do {
2256                 struct page *page = bvec->bv_page;
2257                 struct extent_state *cached = NULL;
2258                 struct extent_state *state;
2259
2260                 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2261                          "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2262                          (long int)bio->bi_bdev);
2263                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2264
2265                 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2266                         bvec->bv_offset;
2267                 end = start + bvec->bv_len - 1;
2268
2269                 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2270                         whole_page = 1;
2271                 else
2272                         whole_page = 0;
2273
2274                 if (++bvec <= bvec_end)
2275                         prefetchw(&bvec->bv_page->flags);
2276
2277                 spin_lock(&tree->lock);
2278                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2279                 if (state && state->start == start) {
2280                         /*
2281                          * take a reference on the state, unlock will drop
2282                          * the ref
2283                          */
2284                         cache_state(state, &cached);
2285                 }
2286                 spin_unlock(&tree->lock);
2287
2288                 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2289                         ret = tree->ops->readpage_end_io_hook(page, start, end,
2290                                                               state);
2291                         if (ret)
2292                                 uptodate = 0;
2293                         else
2294                                 clean_io_failure(start, page);
2295                 }
2296                 if (!uptodate) {
2297                         int failed_mirror;
2298                         failed_mirror = (int)(unsigned long)bio->bi_bdev;
2299                         /*
2300                          * The generic bio_readpage_error handles errors the
2301                          * following way: If possible, new read requests are
2302                          * created and submitted and will end up in
2303                          * end_bio_extent_readpage as well (if we're lucky, not
2304                          * in the !uptodate case). In that case it returns 0 and
2305                          * we just go on with the next page in our bio. If it
2306                          * can't handle the error it will return -EIO and we
2307                          * remain responsible for that page.
2308                          */
2309                         ret = bio_readpage_error(bio, page, start, end,
2310                                                         failed_mirror, NULL);
2311                         if (ret == 0) {
2312 error_handled:
2313                                 uptodate =
2314                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2315                                 if (err)
2316                                         uptodate = 0;
2317                                 uncache_state(&cached);
2318                                 continue;
2319                         }
2320                         if (tree->ops && tree->ops->readpage_io_failed_hook) {
2321                                 ret = tree->ops->readpage_io_failed_hook(
2322                                                         bio, page, start, end,
2323                                                         failed_mirror, state);
2324                                 if (ret == 0)
2325                                         goto error_handled;
2326                         }
2327                 }
2328
2329                 if (uptodate) {
2330                         set_extent_uptodate(tree, start, end, &cached,
2331                                             GFP_ATOMIC);
2332                 }
2333                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2334
2335                 if (whole_page) {
2336                         if (uptodate) {
2337                                 SetPageUptodate(page);
2338                         } else {
2339                                 ClearPageUptodate(page);
2340                                 SetPageError(page);
2341                         }
2342                         unlock_page(page);
2343                 } else {
2344                         if (uptodate) {
2345                                 check_page_uptodate(tree, page);
2346                         } else {
2347                                 ClearPageUptodate(page);
2348                                 SetPageError(page);
2349                         }
2350                         check_page_locked(tree, page);
2351                 }
2352         } while (bvec <= bvec_end);
2353
2354         bio_put(bio);
2355 }
2356
2357 struct bio *
2358 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2359                 gfp_t gfp_flags)
2360 {
2361         struct bio *bio;
2362
2363         bio = bio_alloc(gfp_flags, nr_vecs);
2364
2365         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2366                 while (!bio && (nr_vecs /= 2))
2367                         bio = bio_alloc(gfp_flags, nr_vecs);
2368         }
2369
2370         if (bio) {
2371                 bio->bi_size = 0;
2372                 bio->bi_bdev = bdev;
2373                 bio->bi_sector = first_sector;
2374         }
2375         return bio;
2376 }
2377
2378 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2379                           unsigned long bio_flags)
2380 {
2381         int ret = 0;
2382         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2383         struct page *page = bvec->bv_page;
2384         struct extent_io_tree *tree = bio->bi_private;
2385         u64 start;
2386
2387         start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2388
2389         bio->bi_private = NULL;
2390
2391         bio_get(bio);
2392
2393         if (tree->ops && tree->ops->submit_bio_hook)
2394                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2395                                            mirror_num, bio_flags, start);
2396         else
2397                 btrfsic_submit_bio(rw, bio);
2398
2399         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2400                 ret = -EOPNOTSUPP;
2401         bio_put(bio);
2402         return ret;
2403 }
2404
2405 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2406                               struct page *page, sector_t sector,
2407                               size_t size, unsigned long offset,
2408                               struct block_device *bdev,
2409                               struct bio **bio_ret,
2410                               unsigned long max_pages,
2411                               bio_end_io_t end_io_func,
2412                               int mirror_num,
2413                               unsigned long prev_bio_flags,
2414                               unsigned long bio_flags)
2415 {
2416         int ret = 0;
2417         struct bio *bio;
2418         int nr;
2419         int contig = 0;
2420         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2421         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2422         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2423
2424         if (bio_ret && *bio_ret) {
2425                 bio = *bio_ret;
2426                 if (old_compressed)
2427                         contig = bio->bi_sector == sector;
2428                 else
2429                         contig = bio->bi_sector + (bio->bi_size >> 9) ==
2430                                 sector;
2431
2432                 if (prev_bio_flags != bio_flags || !contig ||
2433                     (tree->ops && tree->ops->merge_bio_hook &&
2434                      tree->ops->merge_bio_hook(page, offset, page_size, bio,
2435                                                bio_flags)) ||
2436                     bio_add_page(bio, page, page_size, offset) < page_size) {
2437                         ret = submit_one_bio(rw, bio, mirror_num,
2438                                              prev_bio_flags);
2439                         bio = NULL;
2440                 } else {
2441                         return 0;
2442                 }
2443         }
2444         if (this_compressed)
2445                 nr = BIO_MAX_PAGES;
2446         else
2447                 nr = bio_get_nr_vecs(bdev);
2448
2449         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2450         if (!bio)
2451                 return -ENOMEM;
2452
2453         bio_add_page(bio, page, page_size, offset);
2454         bio->bi_end_io = end_io_func;
2455         bio->bi_private = tree;
2456
2457         if (bio_ret)
2458                 *bio_ret = bio;
2459         else
2460                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2461
2462         return ret;
2463 }
2464
2465 void set_page_extent_mapped(struct page *page)
2466 {
2467         if (!PagePrivate(page)) {
2468                 SetPagePrivate(page);
2469                 page_cache_get(page);
2470                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2471         }
2472 }
2473
2474 static void set_page_extent_head(struct page *page, unsigned long len)
2475 {
2476         WARN_ON(!PagePrivate(page));
2477         set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2478 }
2479
2480 /*
2481  * basic readpage implementation.  Locked extent state structs are inserted
2482  * into the tree that are removed when the IO is done (by the end_io
2483  * handlers)
2484  */
2485 static int __extent_read_full_page(struct extent_io_tree *tree,
2486                                    struct page *page,
2487                                    get_extent_t *get_extent,
2488                                    struct bio **bio, int mirror_num,
2489                                    unsigned long *bio_flags)
2490 {
2491         struct inode *inode = page->mapping->host;
2492         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2493         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2494         u64 end;
2495         u64 cur = start;
2496         u64 extent_offset;
2497         u64 last_byte = i_size_read(inode);
2498         u64 block_start;
2499         u64 cur_end;
2500         sector_t sector;
2501         struct extent_map *em;
2502         struct block_device *bdev;
2503         struct btrfs_ordered_extent *ordered;
2504         int ret;
2505         int nr = 0;
2506         size_t pg_offset = 0;
2507         size_t iosize;
2508         size_t disk_io_size;
2509         size_t blocksize = inode->i_sb->s_blocksize;
2510         unsigned long this_bio_flag = 0;
2511
2512         set_page_extent_mapped(page);
2513
2514         if (!PageUptodate(page)) {
2515                 if (cleancache_get_page(page) == 0) {
2516                         BUG_ON(blocksize != PAGE_SIZE);
2517                         goto out;
2518                 }
2519         }
2520
2521         end = page_end;
2522         while (1) {
2523                 lock_extent(tree, start, end, GFP_NOFS);
2524                 ordered = btrfs_lookup_ordered_extent(inode, start);
2525                 if (!ordered)
2526                         break;
2527                 unlock_extent(tree, start, end, GFP_NOFS);
2528                 btrfs_start_ordered_extent(inode, ordered, 1);
2529                 btrfs_put_ordered_extent(ordered);
2530         }
2531
2532         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2533                 char *userpage;
2534                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2535
2536                 if (zero_offset) {
2537                         iosize = PAGE_CACHE_SIZE - zero_offset;
2538                         userpage = kmap_atomic(page, KM_USER0);
2539                         memset(userpage + zero_offset, 0, iosize);
2540                         flush_dcache_page(page);
2541                         kunmap_atomic(userpage, KM_USER0);
2542                 }
2543         }
2544         while (cur <= end) {
2545                 if (cur >= last_byte) {
2546                         char *userpage;
2547                         struct extent_state *cached = NULL;
2548
2549                         iosize = PAGE_CACHE_SIZE - pg_offset;
2550                         userpage = kmap_atomic(page, KM_USER0);
2551                         memset(userpage + pg_offset, 0, iosize);
2552                         flush_dcache_page(page);
2553                         kunmap_atomic(userpage, KM_USER0);
2554                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2555                                             &cached, GFP_NOFS);
2556                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2557                                              &cached, GFP_NOFS);
2558                         break;
2559                 }
2560                 em = get_extent(inode, page, pg_offset, cur,
2561                                 end - cur + 1, 0);
2562                 if (IS_ERR_OR_NULL(em)) {
2563                         SetPageError(page);
2564                         unlock_extent(tree, cur, end, GFP_NOFS);
2565                         break;
2566                 }
2567                 extent_offset = cur - em->start;
2568                 BUG_ON(extent_map_end(em) <= cur);
2569                 BUG_ON(end < cur);
2570
2571                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2572                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2573                         extent_set_compress_type(&this_bio_flag,
2574                                                  em->compress_type);
2575                 }
2576
2577                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2578                 cur_end = min(extent_map_end(em) - 1, end);
2579                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2580                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2581                         disk_io_size = em->block_len;
2582                         sector = em->block_start >> 9;
2583                 } else {
2584                         sector = (em->block_start + extent_offset) >> 9;
2585                         disk_io_size = iosize;
2586                 }
2587                 bdev = em->bdev;
2588                 block_start = em->block_start;
2589                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2590                         block_start = EXTENT_MAP_HOLE;
2591                 free_extent_map(em);
2592                 em = NULL;
2593
2594                 /* we've found a hole, just zero and go on */
2595                 if (block_start == EXTENT_MAP_HOLE) {
2596                         char *userpage;
2597                         struct extent_state *cached = NULL;
2598
2599                         userpage = kmap_atomic(page, KM_USER0);
2600                         memset(userpage + pg_offset, 0, iosize);
2601                         flush_dcache_page(page);
2602                         kunmap_atomic(userpage, KM_USER0);
2603
2604                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2605                                             &cached, GFP_NOFS);
2606                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2607                                              &cached, GFP_NOFS);
2608                         cur = cur + iosize;
2609                         pg_offset += iosize;
2610                         continue;
2611                 }
2612                 /* the get_extent function already copied into the page */
2613                 if (test_range_bit(tree, cur, cur_end,
2614                                    EXTENT_UPTODATE, 1, NULL)) {
2615                         check_page_uptodate(tree, page);
2616                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2617                         cur = cur + iosize;
2618                         pg_offset += iosize;
2619                         continue;
2620                 }
2621                 /* we have an inline extent but it didn't get marked up
2622                  * to date.  Error out
2623                  */
2624                 if (block_start == EXTENT_MAP_INLINE) {
2625                         SetPageError(page);
2626                         unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2627                         cur = cur + iosize;
2628                         pg_offset += iosize;
2629                         continue;
2630                 }
2631
2632                 ret = 0;
2633                 if (tree->ops && tree->ops->readpage_io_hook) {
2634                         ret = tree->ops->readpage_io_hook(page, cur,
2635                                                           cur + iosize - 1);
2636                 }
2637                 if (!ret) {
2638                         unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2639                         pnr -= page->index;
2640                         ret = submit_extent_page(READ, tree, page,
2641                                          sector, disk_io_size, pg_offset,
2642                                          bdev, bio, pnr,
2643                                          end_bio_extent_readpage, mirror_num,
2644                                          *bio_flags,
2645                                          this_bio_flag);
2646                         nr++;
2647                         *bio_flags = this_bio_flag;
2648                 }
2649                 if (ret)
2650                         SetPageError(page);
2651                 cur = cur + iosize;
2652                 pg_offset += iosize;
2653         }
2654 out:
2655         if (!nr) {
2656                 if (!PageError(page))
2657                         SetPageUptodate(page);
2658                 unlock_page(page);
2659         }
2660         return 0;
2661 }
2662
2663 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2664                             get_extent_t *get_extent, int mirror_num)
2665 {
2666         struct bio *bio = NULL;
2667         unsigned long bio_flags = 0;
2668         int ret;
2669
2670         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2671                                       &bio_flags);
2672         if (bio)
2673                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2674         return ret;
2675 }
2676
2677 static noinline void update_nr_written(struct page *page,
2678                                       struct writeback_control *wbc,
2679                                       unsigned long nr_written)
2680 {
2681         wbc->nr_to_write -= nr_written;
2682         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2683             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2684                 page->mapping->writeback_index = page->index + nr_written;
2685 }
2686
2687 /*
2688  * the writepage semantics are similar to regular writepage.  extent
2689  * records are inserted to lock ranges in the tree, and as dirty areas
2690  * are found, they are marked writeback.  Then the lock bits are removed
2691  * and the end_io handler clears the writeback ranges
2692  */
2693 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2694                               void *data)
2695 {
2696         struct inode *inode = page->mapping->host;
2697         struct extent_page_data *epd = data;
2698         struct extent_io_tree *tree = epd->tree;
2699         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2700         u64 delalloc_start;
2701         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2702         u64 end;
2703         u64 cur = start;
2704         u64 extent_offset;
2705         u64 last_byte = i_size_read(inode);
2706         u64 block_start;
2707         u64 iosize;
2708         sector_t sector;
2709         struct extent_state *cached_state = NULL;
2710         struct extent_map *em;
2711         struct block_device *bdev;
2712         int ret;
2713         int nr = 0;
2714         size_t pg_offset = 0;
2715         size_t blocksize;
2716         loff_t i_size = i_size_read(inode);
2717         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2718         u64 nr_delalloc;
2719         u64 delalloc_end;
2720         int page_started;
2721         int compressed;
2722         int write_flags;
2723         unsigned long nr_written = 0;
2724         bool fill_delalloc = true;
2725
2726         if (wbc->sync_mode == WB_SYNC_ALL)
2727                 write_flags = WRITE_SYNC;
2728         else
2729                 write_flags = WRITE;
2730
2731         trace___extent_writepage(page, inode, wbc);
2732
2733         WARN_ON(!PageLocked(page));
2734
2735         ClearPageError(page);
2736
2737         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2738         if (page->index > end_index ||
2739            (page->index == end_index && !pg_offset)) {
2740                 page->mapping->a_ops->invalidatepage(page, 0);
2741                 unlock_page(page);
2742                 return 0;
2743         }
2744
2745         if (page->index == end_index) {
2746                 char *userpage;
2747
2748                 userpage = kmap_atomic(page, KM_USER0);
2749                 memset(userpage + pg_offset, 0,
2750                        PAGE_CACHE_SIZE - pg_offset);
2751                 kunmap_atomic(userpage, KM_USER0);
2752                 flush_dcache_page(page);
2753         }
2754         pg_offset = 0;
2755
2756         set_page_extent_mapped(page);
2757
2758         if (!tree->ops || !tree->ops->fill_delalloc)
2759                 fill_delalloc = false;
2760
2761         delalloc_start = start;
2762         delalloc_end = 0;
2763         page_started = 0;
2764         if (!epd->extent_locked && fill_delalloc) {
2765                 u64 delalloc_to_write = 0;
2766                 /*
2767                  * make sure the wbc mapping index is at least updated
2768                  * to this page.
2769                  */
2770                 update_nr_written(page, wbc, 0);
2771
2772                 while (delalloc_end < page_end) {
2773                         nr_delalloc = find_lock_delalloc_range(inode, tree,
2774                                                        page,
2775                                                        &delalloc_start,
2776                                                        &delalloc_end,
2777                                                        128 * 1024 * 1024);
2778                         if (nr_delalloc == 0) {
2779                                 delalloc_start = delalloc_end + 1;
2780                                 continue;
2781                         }
2782                         tree->ops->fill_delalloc(inode, page, delalloc_start,
2783                                                  delalloc_end, &page_started,
2784                                                  &nr_written);
2785                         /*
2786                          * delalloc_end is already one less than the total
2787                          * length, so we don't subtract one from
2788                          * PAGE_CACHE_SIZE
2789                          */
2790                         delalloc_to_write += (delalloc_end - delalloc_start +
2791                                               PAGE_CACHE_SIZE) >>
2792                                               PAGE_CACHE_SHIFT;
2793                         delalloc_start = delalloc_end + 1;
2794                 }
2795                 if (wbc->nr_to_write < delalloc_to_write) {
2796                         int thresh = 8192;
2797
2798                         if (delalloc_to_write < thresh * 2)
2799                                 thresh = delalloc_to_write;
2800                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
2801                                                  thresh);
2802                 }
2803
2804                 /* did the fill delalloc function already unlock and start
2805                  * the IO?
2806                  */
2807                 if (page_started) {
2808                         ret = 0;
2809                         /*
2810                          * we've unlocked the page, so we can't update
2811                          * the mapping's writeback index, just update
2812                          * nr_to_write.
2813                          */
2814                         wbc->nr_to_write -= nr_written;
2815                         goto done_unlocked;
2816                 }
2817         }
2818         if (tree->ops && tree->ops->writepage_start_hook) {
2819                 ret = tree->ops->writepage_start_hook(page, start,
2820                                                       page_end);
2821                 if (ret == -EAGAIN) {
2822                         redirty_page_for_writepage(wbc, page);
2823                         update_nr_written(page, wbc, nr_written);
2824                         unlock_page(page);
2825                         ret = 0;
2826                         goto done_unlocked;
2827                 }
2828         }
2829
2830         /*
2831          * we don't want to touch the inode after unlocking the page,
2832          * so we update the mapping writeback index now
2833          */
2834         update_nr_written(page, wbc, nr_written + 1);
2835
2836         end = page_end;
2837         if (last_byte <= start) {
2838                 if (tree->ops && tree->ops->writepage_end_io_hook)
2839                         tree->ops->writepage_end_io_hook(page, start,
2840                                                          page_end, NULL, 1);
2841                 goto done;
2842         }
2843
2844         blocksize = inode->i_sb->s_blocksize;
2845
2846         while (cur <= end) {
2847                 if (cur >= last_byte) {
2848                         if (tree->ops && tree->ops->writepage_end_io_hook)
2849                                 tree->ops->writepage_end_io_hook(page, cur,
2850                                                          page_end, NULL, 1);
2851                         break;
2852                 }
2853                 em = epd->get_extent(inode, page, pg_offset, cur,
2854                                      end - cur + 1, 1);
2855                 if (IS_ERR_OR_NULL(em)) {
2856                         SetPageError(page);
2857                         break;
2858                 }
2859
2860                 extent_offset = cur - em->start;
2861                 BUG_ON(extent_map_end(em) <= cur);
2862                 BUG_ON(end < cur);
2863                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2864                 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2865                 sector = (em->block_start + extent_offset) >> 9;
2866                 bdev = em->bdev;
2867                 block_start = em->block_start;
2868                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2869                 free_extent_map(em);
2870                 em = NULL;
2871
2872                 /*
2873                  * compressed and inline extents are written through other
2874                  * paths in the FS
2875                  */
2876                 if (compressed || block_start == EXTENT_MAP_HOLE ||
2877                     block_start == EXTENT_MAP_INLINE) {
2878                         /*
2879                          * end_io notification does not happen here for
2880                          * compressed extents
2881                          */
2882                         if (!compressed && tree->ops &&
2883                             tree->ops->writepage_end_io_hook)
2884                                 tree->ops->writepage_end_io_hook(page, cur,
2885                                                          cur + iosize - 1,
2886                                                          NULL, 1);
2887                         else if (compressed) {
2888                                 /* we don't want to end_page_writeback on
2889                                  * a compressed extent.  this happens
2890                                  * elsewhere
2891                                  */
2892                                 nr++;
2893                         }
2894
2895                         cur += iosize;
2896                         pg_offset += iosize;
2897                         continue;
2898                 }
2899                 /* leave this out until we have a page_mkwrite call */
2900                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2901                                    EXTENT_DIRTY, 0, NULL)) {
2902                         cur = cur + iosize;
2903                         pg_offset += iosize;
2904                         continue;
2905                 }
2906
2907                 if (tree->ops && tree->ops->writepage_io_hook) {
2908                         ret = tree->ops->writepage_io_hook(page, cur,
2909                                                 cur + iosize - 1);
2910                 } else {
2911                         ret = 0;
2912                 }
2913                 if (ret) {
2914                         SetPageError(page);
2915                 } else {
2916                         unsigned long max_nr = end_index + 1;
2917
2918                         set_range_writeback(tree, cur, cur + iosize - 1);
2919                         if (!PageWriteback(page)) {
2920                                 printk(KERN_ERR "btrfs warning page %lu not "
2921                                        "writeback, cur %llu end %llu\n",
2922                                        page->index, (unsigned long long)cur,
2923                                        (unsigned long long)end);
2924                         }
2925
2926                         ret = submit_extent_page(write_flags, tree, page,
2927                                                  sector, iosize, pg_offset,
2928                                                  bdev, &epd->bio, max_nr,
2929                                                  end_bio_extent_writepage,
2930                                                  0, 0, 0);
2931                         if (ret)
2932                                 SetPageError(page);
2933                 }
2934                 cur = cur + iosize;
2935                 pg_offset += iosize;
2936                 nr++;
2937         }
2938 done:
2939         if (nr == 0) {
2940                 /* make sure the mapping tag for page dirty gets cleared */
2941                 set_page_writeback(page);
2942                 end_page_writeback(page);
2943         }
2944         unlock_page(page);
2945
2946 done_unlocked:
2947
2948         /* drop our reference on any cached states */
2949         free_extent_state(cached_state);
2950         return 0;
2951 }
2952
2953 /**
2954  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2955  * @mapping: address space structure to write
2956  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2957  * @writepage: function called for each page
2958  * @data: data passed to writepage function
2959  *
2960  * If a page is already under I/O, write_cache_pages() skips it, even
2961  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2962  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2963  * and msync() need to guarantee that all the data which was dirty at the time
2964  * the call was made get new I/O started against them.  If wbc->sync_mode is
2965  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2966  * existing IO to complete.
2967  */
2968 static int extent_write_cache_pages(struct extent_io_tree *tree,
2969                              struct address_space *mapping,
2970                              struct writeback_control *wbc,
2971                              writepage_t writepage, void *data,
2972                              void (*flush_fn)(void *))
2973 {
2974         int ret = 0;
2975         int done = 0;
2976         int nr_to_write_done = 0;
2977         struct pagevec pvec;
2978         int nr_pages;
2979         pgoff_t index;
2980         pgoff_t end;            /* Inclusive */
2981         int scanned = 0;
2982         int tag;
2983
2984         pagevec_init(&pvec, 0);
2985         if (wbc->range_cyclic) {
2986                 index = mapping->writeback_index; /* Start from prev offset */
2987                 end = -1;
2988         } else {
2989                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2990                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2991                 scanned = 1;
2992         }
2993         if (wbc->sync_mode == WB_SYNC_ALL)
2994                 tag = PAGECACHE_TAG_TOWRITE;
2995         else
2996                 tag = PAGECACHE_TAG_DIRTY;
2997 retry:
2998         if (wbc->sync_mode == WB_SYNC_ALL)
2999                 tag_pages_for_writeback(mapping, index, end);
3000         while (!done && !nr_to_write_done && (index <= end) &&
3001                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3002                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3003                 unsigned i;
3004
3005                 scanned = 1;
3006                 for (i = 0; i < nr_pages; i++) {
3007                         struct page *page = pvec.pages[i];
3008
3009                         /*
3010                          * At this point we hold neither mapping->tree_lock nor
3011                          * lock on the page itself: the page may be truncated or
3012                          * invalidated (changing page->mapping to NULL), or even
3013                          * swizzled back from swapper_space to tmpfs file
3014                          * mapping
3015                          */
3016                         if (tree->ops &&
3017                             tree->ops->write_cache_pages_lock_hook) {
3018                                 tree->ops->write_cache_pages_lock_hook(page,
3019                                                                data, flush_fn);
3020                         } else {
3021                                 if (!trylock_page(page)) {
3022                                         flush_fn(data);
3023                                         lock_page(page);
3024                                 }
3025                         }
3026
3027                         if (unlikely(page->mapping != mapping)) {
3028                                 unlock_page(page);
3029                                 continue;
3030                         }
3031
3032                         if (!wbc->range_cyclic && page->index > end) {
3033                                 done = 1;
3034                                 unlock_page(page);
3035                                 continue;
3036                         }
3037
3038                         if (wbc->sync_mode != WB_SYNC_NONE) {
3039                                 if (PageWriteback(page))
3040                                         flush_fn(data);
3041                                 wait_on_page_writeback(page);
3042                         }
3043
3044                         if (PageWriteback(page) ||
3045                             !clear_page_dirty_for_io(page)) {
3046                                 unlock_page(page);
3047                                 continue;
3048                         }
3049
3050                         ret = (*writepage)(page, wbc, data);
3051
3052                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3053                                 unlock_page(page);
3054                                 ret = 0;
3055                         }
3056                         if (ret)
3057                                 done = 1;
3058
3059                         /*
3060                          * the filesystem may choose to bump up nr_to_write.
3061                          * We have to make sure to honor the new nr_to_write
3062                          * at any time
3063                          */
3064                         nr_to_write_done = wbc->nr_to_write <= 0;
3065                 }
3066                 pagevec_release(&pvec);
3067                 cond_resched();
3068         }
3069         if (!scanned && !done) {
3070                 /*
3071                  * We hit the last page and there is more work to be done: wrap
3072                  * back to the start of the file
3073                  */
3074                 scanned = 1;
3075                 index = 0;
3076                 goto retry;
3077         }
3078         return ret;
3079 }
3080
3081 static void flush_epd_write_bio(struct extent_page_data *epd)
3082 {
3083         if (epd->bio) {
3084                 if (epd->sync_io)
3085                         submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3086                 else
3087                         submit_one_bio(WRITE, epd->bio, 0, 0);
3088                 epd->bio = NULL;
3089         }
3090 }
3091
3092 static noinline void flush_write_bio(void *data)
3093 {
3094         struct extent_page_data *epd = data;
3095         flush_epd_write_bio(epd);
3096 }
3097
3098 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3099                           get_extent_t *get_extent,
3100                           struct writeback_control *wbc)
3101 {
3102         int ret;
3103         struct extent_page_data epd = {
3104                 .bio = NULL,
3105                 .tree = tree,
3106                 .get_extent = get_extent,
3107                 .extent_locked = 0,
3108                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3109         };
3110
3111         ret = __extent_writepage(page, wbc, &epd);
3112
3113         flush_epd_write_bio(&epd);
3114         return ret;
3115 }
3116
3117 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3118                               u64 start, u64 end, get_extent_t *get_extent,
3119                               int mode)
3120 {
3121         int ret = 0;
3122         struct address_space *mapping = inode->i_mapping;
3123         struct page *page;
3124         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3125                 PAGE_CACHE_SHIFT;
3126
3127         struct extent_page_data epd = {
3128                 .bio = NULL,
3129                 .tree = tree,
3130                 .get_extent = get_extent,
3131                 .extent_locked = 1,
3132                 .sync_io = mode == WB_SYNC_ALL,
3133         };
3134         struct writeback_control wbc_writepages = {
3135                 .sync_mode      = mode,
3136                 .nr_to_write    = nr_pages * 2,
3137                 .range_start    = start,
3138                 .range_end      = end + 1,
3139         };
3140
3141         while (start <= end) {
3142                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3143                 if (clear_page_dirty_for_io(page))
3144                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3145                 else {
3146                         if (tree->ops && tree->ops->writepage_end_io_hook)
3147                                 tree->ops->writepage_end_io_hook(page, start,
3148                                                  start + PAGE_CACHE_SIZE - 1,
3149                                                  NULL, 1);
3150                         unlock_page(page);
3151                 }
3152                 page_cache_release(page);
3153                 start += PAGE_CACHE_SIZE;
3154         }
3155
3156         flush_epd_write_bio(&epd);
3157         return ret;
3158 }
3159
3160 int extent_writepages(struct extent_io_tree *tree,
3161                       struct address_space *mapping,
3162                       get_extent_t *get_extent,
3163                       struct writeback_control *wbc)
3164 {
3165         int ret = 0;
3166         struct extent_page_data epd = {
3167                 .bio = NULL,
3168                 .tree = tree,
3169                 .get_extent = get_extent,
3170                 .extent_locked = 0,
3171                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3172         };
3173
3174         ret = extent_write_cache_pages(tree, mapping, wbc,
3175                                        __extent_writepage, &epd,
3176                                        flush_write_bio);
3177         flush_epd_write_bio(&epd);
3178         return ret;
3179 }
3180
3181 int extent_readpages(struct extent_io_tree *tree,
3182                      struct address_space *mapping,
3183                      struct list_head *pages, unsigned nr_pages,
3184                      get_extent_t get_extent)
3185 {
3186         struct bio *bio = NULL;
3187         unsigned page_idx;
3188         unsigned long bio_flags = 0;
3189
3190         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3191                 struct page *page = list_entry(pages->prev, struct page, lru);
3192
3193                 prefetchw(&page->flags);
3194                 list_del(&page->lru);
3195                 if (!add_to_page_cache_lru(page, mapping,
3196                                         page->index, GFP_NOFS)) {
3197                         __extent_read_full_page(tree, page, get_extent,
3198                                                 &bio, 0, &bio_flags);
3199                 }
3200                 page_cache_release(page);
3201         }
3202         BUG_ON(!list_empty(pages));
3203         if (bio)
3204                 submit_one_bio(READ, bio, 0, bio_flags);
3205         return 0;
3206 }
3207
3208 /*
3209  * basic invalidatepage code, this waits on any locked or writeback
3210  * ranges corresponding to the page, and then deletes any extent state
3211  * records from the tree
3212  */
3213 int extent_invalidatepage(struct extent_io_tree *tree,
3214                           struct page *page, unsigned long offset)
3215 {
3216         struct extent_state *cached_state = NULL;
3217         u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3218         u64 end = start + PAGE_CACHE_SIZE - 1;
3219         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3220
3221         start += (offset + blocksize - 1) & ~(blocksize - 1);
3222         if (start > end)
3223                 return 0;
3224
3225         lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3226         wait_on_page_writeback(page);
3227         clear_extent_bit(tree, start, end,
3228                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3229                          EXTENT_DO_ACCOUNTING,
3230                          1, 1, &cached_state, GFP_NOFS);
3231         return 0;
3232 }
3233
3234 /*
3235  * a helper for releasepage, this tests for areas of the page that
3236  * are locked or under IO and drops the related state bits if it is safe
3237  * to drop the page.
3238  */
3239 int try_release_extent_state(struct extent_map_tree *map,
3240                              struct extent_io_tree *tree, struct page *page,
3241                              gfp_t mask)
3242 {
3243         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3244         u64 end = start + PAGE_CACHE_SIZE - 1;
3245         int ret = 1;
3246
3247         if (test_range_bit(tree, start, end,
3248                            EXTENT_IOBITS, 0, NULL))
3249                 ret = 0;
3250         else {
3251                 if ((mask & GFP_NOFS) == GFP_NOFS)
3252                         mask = GFP_NOFS;
3253                 /*
3254                  * at this point we can safely clear everything except the
3255                  * locked bit and the nodatasum bit
3256                  */
3257                 ret = clear_extent_bit(tree, start, end,
3258                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3259                                  0, 0, NULL, mask);
3260
3261                 /* if clear_extent_bit failed for enomem reasons,
3262                  * we can't allow the release to continue.
3263                  */
3264                 if (ret < 0)
3265                         ret = 0;
3266                 else
3267                         ret = 1;
3268         }
3269         return ret;
3270 }
3271
3272 /*
3273  * a helper for releasepage.  As long as there are no locked extents
3274  * in the range corresponding to the page, both state records and extent
3275  * map records are removed
3276  */
3277 int try_release_extent_mapping(struct extent_map_tree *map,
3278                                struct extent_io_tree *tree, struct page *page,
3279                                gfp_t mask)
3280 {
3281         struct extent_map *em;
3282         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3283         u64 end = start + PAGE_CACHE_SIZE - 1;
3284
3285         if ((mask & __GFP_WAIT) &&
3286             page->mapping->host->i_size > 16 * 1024 * 1024) {
3287                 u64 len;
3288                 while (start <= end) {
3289                         len = end - start + 1;
3290                         write_lock(&map->lock);
3291                         em = lookup_extent_mapping(map, start, len);
3292                         if (IS_ERR_OR_NULL(em)) {
3293                                 write_unlock(&map->lock);
3294                                 break;
3295                         }
3296                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3297                             em->start != start) {
3298                                 write_unlock(&map->lock);
3299                                 free_extent_map(em);
3300                                 break;
3301                         }
3302                         if (!test_range_bit(tree, em->start,
3303                                             extent_map_end(em) - 1,
3304                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3305                                             0, NULL)) {
3306                                 remove_extent_mapping(map, em);
3307                                 /* once for the rb tree */
3308                                 free_extent_map(em);
3309                         }
3310                         start = extent_map_end(em);
3311                         write_unlock(&map->lock);
3312
3313                         /* once for us */
3314                         free_extent_map(em);
3315                 }
3316         }
3317         return try_release_extent_state(map, tree, page, mask);
3318 }
3319
3320 /*
3321  * helper function for fiemap, which doesn't want to see any holes.
3322  * This maps until we find something past 'last'
3323  */
3324 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3325                                                 u64 offset,
3326                                                 u64 last,
3327                                                 get_extent_t *get_extent)
3328 {
3329         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3330         struct extent_map *em;
3331         u64 len;
3332
3333         if (offset >= last)
3334                 return NULL;
3335
3336         while(1) {
3337                 len = last - offset;
3338                 if (len == 0)
3339                         break;
3340                 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3341                 em = get_extent(inode, NULL, 0, offset, len, 0);
3342                 if (IS_ERR_OR_NULL(em))
3343                         return em;
3344
3345                 /* if this isn't a hole return it */
3346                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3347                     em->block_start != EXTENT_MAP_HOLE) {
3348                         return em;
3349                 }
3350
3351                 /* this is a hole, advance to the next extent */
3352                 offset = extent_map_end(em);
3353                 free_extent_map(em);
3354                 if (offset >= last)
3355                         break;
3356         }
3357         return NULL;
3358 }
3359
3360 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3361                 __u64 start, __u64 len, get_extent_t *get_extent)
3362 {
3363         int ret = 0;
3364         u64 off = start;
3365         u64 max = start + len;
3366         u32 flags = 0;
3367         u32 found_type;
3368         u64 last;
3369         u64 last_for_get_extent = 0;
3370         u64 disko = 0;
3371         u64 isize = i_size_read(inode);
3372         struct btrfs_key found_key;
3373         struct extent_map *em = NULL;
3374         struct extent_state *cached_state = NULL;
3375         struct btrfs_path *path;
3376         struct btrfs_file_extent_item *item;
3377         int end = 0;
3378         u64 em_start = 0;
3379         u64 em_len = 0;
3380         u64 em_end = 0;
3381         unsigned long emflags;
3382
3383         if (len == 0)
3384                 return -EINVAL;
3385
3386         path = btrfs_alloc_path();
3387         if (!path)
3388                 return -ENOMEM;
3389         path->leave_spinning = 1;
3390
3391         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3392         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3393
3394         /*
3395          * lookup the last file extent.  We're not using i_size here
3396          * because there might be preallocation past i_size
3397          */
3398         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3399                                        path, btrfs_ino(inode), -1, 0);
3400         if (ret < 0) {
3401                 btrfs_free_path(path);
3402                 return ret;
3403         }
3404         WARN_ON(!ret);
3405         path->slots[0]--;
3406         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3407                               struct btrfs_file_extent_item);
3408         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3409         found_type = btrfs_key_type(&found_key);
3410
3411         /* No extents, but there might be delalloc bits */
3412         if (found_key.objectid != btrfs_ino(inode) ||
3413             found_type != BTRFS_EXTENT_DATA_KEY) {
3414                 /* have to trust i_size as the end */
3415                 last = (u64)-1;
3416                 last_for_get_extent = isize;
3417         } else {
3418                 /*
3419                  * remember the start of the last extent.  There are a
3420                  * bunch of different factors that go into the length of the
3421                  * extent, so its much less complex to remember where it started
3422                  */
3423                 last = found_key.offset;
3424                 last_for_get_extent = last + 1;
3425         }
3426         btrfs_free_path(path);
3427
3428         /*
3429          * we might have some extents allocated but more delalloc past those
3430          * extents.  so, we trust isize unless the start of the last extent is
3431          * beyond isize
3432          */
3433         if (last < isize) {
3434                 last = (u64)-1;
3435                 last_for_get_extent = isize;
3436         }
3437
3438         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3439                          &cached_state, GFP_NOFS);
3440
3441         em = get_extent_skip_holes(inode, start, last_for_get_extent,
3442                                    get_extent);
3443         if (!em)
3444                 goto out;
3445         if (IS_ERR(em)) {
3446                 ret = PTR_ERR(em);
3447                 goto out;
3448         }
3449
3450         while (!end) {
3451                 u64 offset_in_extent;
3452
3453                 /* break if the extent we found is outside the range */
3454                 if (em->start >= max || extent_map_end(em) < off)
3455                         break;
3456
3457                 /*
3458                  * get_extent may return an extent that starts before our
3459                  * requested range.  We have to make sure the ranges
3460                  * we return to fiemap always move forward and don't
3461                  * overlap, so adjust the offsets here
3462                  */
3463                 em_start = max(em->start, off);
3464
3465                 /*
3466                  * record the offset from the start of the extent
3467                  * for adjusting the disk offset below
3468                  */
3469                 offset_in_extent = em_start - em->start;
3470                 em_end = extent_map_end(em);
3471                 em_len = em_end - em_start;
3472                 emflags = em->flags;
3473                 disko = 0;
3474                 flags = 0;
3475
3476                 /*
3477                  * bump off for our next call to get_extent
3478                  */
3479                 off = extent_map_end(em);
3480                 if (off >= max)
3481                         end = 1;
3482
3483                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3484                         end = 1;
3485                         flags |= FIEMAP_EXTENT_LAST;
3486                 } else if (em->block_start == EXTENT_MAP_INLINE) {
3487                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
3488                                   FIEMAP_EXTENT_NOT_ALIGNED);
3489                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3490                         flags |= (FIEMAP_EXTENT_DELALLOC |
3491                                   FIEMAP_EXTENT_UNKNOWN);
3492                 } else {
3493                         disko = em->block_start + offset_in_extent;
3494                 }
3495                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3496                         flags |= FIEMAP_EXTENT_ENCODED;
3497
3498                 free_extent_map(em);
3499                 em = NULL;
3500                 if ((em_start >= last) || em_len == (u64)-1 ||
3501                    (last == (u64)-1 && isize <= em_end)) {
3502                         flags |= FIEMAP_EXTENT_LAST;
3503                         end = 1;
3504                 }
3505
3506                 /* now scan forward to see if this is really the last extent. */
3507                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3508                                            get_extent);
3509                 if (IS_ERR(em)) {
3510                         ret = PTR_ERR(em);
3511                         goto out;
3512                 }
3513                 if (!em) {
3514                         flags |= FIEMAP_EXTENT_LAST;
3515                         end = 1;
3516                 }
3517                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3518                                               em_len, flags);
3519                 if (ret)
3520                         goto out_free;
3521         }
3522 out_free:
3523         free_extent_map(em);
3524 out:
3525         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3526                              &cached_state, GFP_NOFS);
3527         return ret;
3528 }
3529
3530 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3531                                               unsigned long i)
3532 {
3533         struct page *p;
3534         struct address_space *mapping;
3535
3536         if (i == 0)
3537                 return eb->first_page;
3538         i += eb->start >> PAGE_CACHE_SHIFT;
3539         mapping = eb->first_page->mapping;
3540         if (!mapping)
3541                 return NULL;
3542
3543         /*
3544          * extent_buffer_page is only called after pinning the page
3545          * by increasing the reference count.  So we know the page must
3546          * be in the radix tree.
3547          */
3548         rcu_read_lock();
3549         p = radix_tree_lookup(&mapping->page_tree, i);
3550         rcu_read_unlock();
3551
3552         return p;
3553 }
3554
3555 inline unsigned long num_extent_pages(u64 start, u64 len)
3556 {
3557         return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3558                 (start >> PAGE_CACHE_SHIFT);
3559 }
3560
3561 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3562                                                    u64 start,
3563                                                    unsigned long len,
3564                                                    gfp_t mask)
3565 {
3566         struct extent_buffer *eb = NULL;
3567 #if LEAK_DEBUG
3568         unsigned long flags;
3569 #endif
3570
3571         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3572         if (eb == NULL)
3573                 return NULL;
3574         eb->start = start;
3575         eb->len = len;
3576         rwlock_init(&eb->lock);
3577         atomic_set(&eb->write_locks, 0);
3578         atomic_set(&eb->read_locks, 0);
3579         atomic_set(&eb->blocking_readers, 0);
3580         atomic_set(&eb->blocking_writers, 0);
3581         atomic_set(&eb->spinning_readers, 0);
3582         atomic_set(&eb->spinning_writers, 0);
3583         eb->lock_nested = 0;
3584         init_waitqueue_head(&eb->write_lock_wq);
3585         init_waitqueue_head(&eb->read_lock_wq);
3586
3587 #if LEAK_DEBUG
3588         spin_lock_irqsave(&leak_lock, flags);
3589         list_add(&eb->leak_list, &buffers);
3590         spin_unlock_irqrestore(&leak_lock, flags);
3591 #endif
3592         atomic_set(&eb->refs, 1);
3593
3594         return eb;
3595 }
3596
3597 static void __free_extent_buffer(struct extent_buffer *eb)
3598 {
3599 #if LEAK_DEBUG
3600         unsigned long flags;
3601         spin_lock_irqsave(&leak_lock, flags);
3602         list_del(&eb->leak_list);
3603         spin_unlock_irqrestore(&leak_lock, flags);
3604 #endif
3605         kmem_cache_free(extent_buffer_cache, eb);
3606 }
3607
3608 /*
3609  * Helper for releasing extent buffer page.
3610  */
3611 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3612                                                 unsigned long start_idx)
3613 {
3614         unsigned long index;
3615         struct page *page;
3616
3617         if (!eb->first_page)
3618                 return;
3619
3620         index = num_extent_pages(eb->start, eb->len);
3621         if (start_idx >= index)
3622                 return;
3623
3624         do {
3625                 index--;
3626                 page = extent_buffer_page(eb, index);
3627                 if (page)
3628                         page_cache_release(page);
3629         } while (index != start_idx);
3630 }
3631
3632 /*
3633  * Helper for releasing the extent buffer.
3634  */
3635 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3636 {
3637         btrfs_release_extent_buffer_page(eb, 0);
3638         __free_extent_buffer(eb);
3639 }
3640
3641 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3642                                           u64 start, unsigned long len,
3643                                           struct page *page0)
3644 {
3645         unsigned long num_pages = num_extent_pages(start, len);
3646         unsigned long i;
3647         unsigned long index = start >> PAGE_CACHE_SHIFT;
3648         struct extent_buffer *eb;
3649         struct extent_buffer *exists = NULL;
3650         struct page *p;
3651         struct address_space *mapping = tree->mapping;
3652         int uptodate = 1;
3653         int ret;
3654
3655         rcu_read_lock();
3656         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3657         if (eb && atomic_inc_not_zero(&eb->refs)) {
3658                 rcu_read_unlock();
3659                 mark_page_accessed(eb->first_page);
3660                 return eb;
3661         }
3662         rcu_read_unlock();
3663
3664         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3665         if (!eb)
3666                 return NULL;
3667
3668         if (page0) {
3669                 eb->first_page = page0;
3670                 i = 1;
3671                 index++;
3672                 page_cache_get(page0);
3673                 mark_page_accessed(page0);
3674                 set_page_extent_mapped(page0);
3675                 set_page_extent_head(page0, len);
3676                 uptodate = PageUptodate(page0);
3677         } else {
3678                 i = 0;
3679         }
3680         for (; i < num_pages; i++, index++) {
3681                 p = find_or_create_page(mapping, index, GFP_NOFS);
3682                 if (!p) {
3683                         WARN_ON(1);
3684                         goto free_eb;
3685                 }
3686                 set_page_extent_mapped(p);
3687                 mark_page_accessed(p);
3688                 if (i == 0) {
3689                         eb->first_page = p;
3690                         set_page_extent_head(p, len);
3691                 } else {
3692                         set_page_private(p, EXTENT_PAGE_PRIVATE);
3693                 }
3694                 if (!PageUptodate(p))
3695                         uptodate = 0;
3696
3697                 /*
3698                  * see below about how we avoid a nasty race with release page
3699                  * and why we unlock later
3700                  */
3701                 if (i != 0)
3702                         unlock_page(p);
3703         }
3704         if (uptodate)
3705                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3706
3707         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3708         if (ret)
3709                 goto free_eb;
3710
3711         spin_lock(&tree->buffer_lock);
3712         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3713         if (ret == -EEXIST) {
3714                 exists = radix_tree_lookup(&tree->buffer,
3715                                                 start >> PAGE_CACHE_SHIFT);
3716                 /* add one reference for the caller */
3717                 atomic_inc(&exists->refs);
3718                 spin_unlock(&tree->buffer_lock);
3719                 radix_tree_preload_end();
3720                 goto free_eb;
3721         }
3722         /* add one reference for the tree */
3723         atomic_inc(&eb->refs);
3724         spin_unlock(&tree->buffer_lock);
3725         radix_tree_preload_end();
3726
3727         /*
3728          * there is a race where release page may have
3729          * tried to find this extent buffer in the radix
3730          * but failed.  It will tell the VM it is safe to
3731          * reclaim the, and it will clear the page private bit.
3732          * We must make sure to set the page private bit properly
3733          * after the extent buffer is in the radix tree so
3734          * it doesn't get lost
3735          */
3736         set_page_extent_mapped(eb->first_page);
3737         set_page_extent_head(eb->first_page, eb->len);
3738         if (!page0)
3739                 unlock_page(eb->first_page);
3740         return eb;
3741
3742 free_eb:
3743         if (eb->first_page && !page0)
3744                 unlock_page(eb->first_page);
3745
3746         if (!atomic_dec_and_test(&eb->refs))
3747                 return exists;
3748         btrfs_release_extent_buffer(eb);
3749         return exists;
3750 }
3751
3752 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3753                                          u64 start, unsigned long len)
3754 {
3755         struct extent_buffer *eb;
3756
3757         rcu_read_lock();
3758         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3759         if (eb && atomic_inc_not_zero(&eb->refs)) {
3760                 rcu_read_unlock();
3761                 mark_page_accessed(eb->first_page);
3762                 return eb;
3763         }
3764         rcu_read_unlock();
3765
3766         return NULL;
3767 }
3768
3769 void free_extent_buffer(struct extent_buffer *eb)
3770 {
3771         if (!eb)
3772                 return;
3773
3774         if (!atomic_dec_and_test(&eb->refs))
3775                 return;
3776
3777         WARN_ON(1);
3778 }
3779
3780 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3781                               struct extent_buffer *eb)
3782 {
3783         unsigned long i;
3784         unsigned long num_pages;
3785         struct page *page;
3786
3787         num_pages = num_extent_pages(eb->start, eb->len);
3788
3789         for (i = 0; i < num_pages; i++) {
3790                 page = extent_buffer_page(eb, i);
3791                 if (!PageDirty(page))
3792                         continue;
3793
3794                 lock_page(page);
3795                 WARN_ON(!PagePrivate(page));
3796
3797                 set_page_extent_mapped(page);
3798                 if (i == 0)
3799                         set_page_extent_head(page, eb->len);
3800
3801                 clear_page_dirty_for_io(page);
3802                 spin_lock_irq(&page->mapping->tree_lock);
3803                 if (!PageDirty(page)) {
3804                         radix_tree_tag_clear(&page->mapping->page_tree,
3805                                                 page_index(page),
3806                                                 PAGECACHE_TAG_DIRTY);
3807                 }
3808                 spin_unlock_irq(&page->mapping->tree_lock);
3809                 ClearPageError(page);
3810                 unlock_page(page);
3811         }
3812         return 0;
3813 }
3814
3815 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3816                              struct extent_buffer *eb)
3817 {
3818         unsigned long i;
3819         unsigned long num_pages;
3820         int was_dirty = 0;
3821
3822         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3823         num_pages = num_extent_pages(eb->start, eb->len);
3824         for (i = 0; i < num_pages; i++)
3825                 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3826         return was_dirty;
3827 }
3828
3829 static int __eb_straddles_pages(u64 start, u64 len)
3830 {
3831         if (len < PAGE_CACHE_SIZE)
3832                 return 1;
3833         if (start & (PAGE_CACHE_SIZE - 1))
3834                 return 1;
3835         if ((start + len) & (PAGE_CACHE_SIZE - 1))
3836                 return 1;
3837         return 0;
3838 }
3839
3840 static int eb_straddles_pages(struct extent_buffer *eb)
3841 {
3842         return __eb_straddles_pages(eb->start, eb->len);
3843 }
3844
3845 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3846                                 struct extent_buffer *eb,
3847                                 struct extent_state **cached_state)
3848 {
3849         unsigned long i;
3850         struct page *page;
3851         unsigned long num_pages;
3852
3853         num_pages = num_extent_pages(eb->start, eb->len);
3854         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3855
3856         if (eb_straddles_pages(eb)) {
3857                 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3858                                       cached_state, GFP_NOFS);
3859         }
3860         for (i = 0; i < num_pages; i++) {
3861                 page = extent_buffer_page(eb, i);
3862                 if (page)
3863                         ClearPageUptodate(page);
3864         }
3865         return 0;
3866 }
3867
3868 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3869                                 struct extent_buffer *eb)
3870 {
3871         unsigned long i;
3872         struct page *page;
3873         unsigned long num_pages;
3874
3875         num_pages = num_extent_pages(eb->start, eb->len);
3876
3877         if (eb_straddles_pages(eb)) {
3878                 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3879                                     NULL, GFP_NOFS);
3880         }
3881         for (i = 0; i < num_pages; i++) {
3882                 page = extent_buffer_page(eb, i);
3883                 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3884                     ((i == num_pages - 1) &&
3885                      ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3886                         check_page_uptodate(tree, page);
3887                         continue;
3888                 }
3889                 SetPageUptodate(page);
3890         }
3891         return 0;
3892 }
3893
3894 int extent_range_uptodate(struct extent_io_tree *tree,
3895                           u64 start, u64 end)
3896 {
3897         struct page *page;
3898         int ret;
3899         int pg_uptodate = 1;
3900         int uptodate;
3901         unsigned long index;
3902
3903         if (__eb_straddles_pages(start, end - start + 1)) {
3904                 ret = test_range_bit(tree, start, end,
3905                                      EXTENT_UPTODATE, 1, NULL);
3906                 if (ret)
3907                         return 1;
3908         }
3909         while (start <= end) {
3910                 index = start >> PAGE_CACHE_SHIFT;
3911                 page = find_get_page(tree->mapping, index);
3912                 uptodate = PageUptodate(page);
3913                 page_cache_release(page);
3914                 if (!uptodate) {
3915                         pg_uptodate = 0;
3916                         break;
3917                 }
3918                 start += PAGE_CACHE_SIZE;
3919         }
3920         return pg_uptodate;
3921 }
3922
3923 int extent_buffer_uptodate(struct extent_io_tree *tree,
3924                            struct extent_buffer *eb,
3925                            struct extent_state *cached_state)
3926 {
3927         int ret = 0;
3928         unsigned long num_pages;
3929         unsigned long i;
3930         struct page *page;
3931         int pg_uptodate = 1;
3932
3933         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3934                 return 1;
3935
3936         if (eb_straddles_pages(eb)) {
3937                 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3938                                    EXTENT_UPTODATE, 1, cached_state);
3939                 if (ret)
3940                         return ret;
3941         }
3942
3943         num_pages = num_extent_pages(eb->start, eb->len);
3944         for (i = 0; i < num_pages; i++) {
3945                 page = extent_buffer_page(eb, i);
3946                 if (!PageUptodate(page)) {
3947                         pg_uptodate = 0;
3948                         break;
3949                 }
3950         }
3951         return pg_uptodate;
3952 }
3953
3954 int read_extent_buffer_pages(struct extent_io_tree *tree,
3955                              struct extent_buffer *eb, u64 start, int wait,
3956                              get_extent_t *get_extent, int mirror_num)
3957 {
3958         unsigned long i;
3959         unsigned long start_i;
3960         struct page *page;
3961         int err;
3962         int ret = 0;
3963         int locked_pages = 0;
3964         int all_uptodate = 1;
3965         int inc_all_pages = 0;
3966         unsigned long num_pages;
3967         struct bio *bio = NULL;
3968         unsigned long bio_flags = 0;
3969
3970         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3971                 return 0;
3972
3973         if (eb_straddles_pages(eb)) {
3974                 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3975                                    EXTENT_UPTODATE, 1, NULL)) {
3976                         return 0;
3977                 }
3978         }
3979
3980         if (start) {
3981                 WARN_ON(start < eb->start);
3982                 start_i = (start >> PAGE_CACHE_SHIFT) -
3983                         (eb->start >> PAGE_CACHE_SHIFT);
3984         } else {
3985                 start_i = 0;
3986         }
3987
3988         num_pages = num_extent_pages(eb->start, eb->len);
3989         for (i = start_i; i < num_pages; i++) {
3990                 page = extent_buffer_page(eb, i);
3991                 if (wait == WAIT_NONE) {
3992                         if (!trylock_page(page))
3993                                 goto unlock_exit;
3994                 } else {
3995                         lock_page(page);
3996                 }
3997                 locked_pages++;
3998                 if (!PageUptodate(page))
3999                         all_uptodate = 0;
4000         }
4001         if (all_uptodate) {
4002                 if (start_i == 0)
4003                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4004                 goto unlock_exit;
4005         }
4006
4007         for (i = start_i; i < num_pages; i++) {
4008                 page = extent_buffer_page(eb, i);
4009
4010                 WARN_ON(!PagePrivate(page));
4011
4012                 set_page_extent_mapped(page);
4013                 if (i == 0)
4014                         set_page_extent_head(page, eb->len);
4015
4016                 if (inc_all_pages)
4017                         page_cache_get(page);
4018                 if (!PageUptodate(page)) {
4019                         if (start_i == 0)
4020                                 inc_all_pages = 1;
4021                         ClearPageError(page);
4022                         err = __extent_read_full_page(tree, page,
4023                                                       get_extent, &bio,
4024                                                       mirror_num, &bio_flags);
4025                         if (err)
4026                                 ret = err;
4027                 } else {
4028                         unlock_page(page);
4029                 }
4030         }
4031
4032         if (bio)
4033                 submit_one_bio(READ, bio, mirror_num, bio_flags);
4034
4035         if (ret || wait != WAIT_COMPLETE)
4036                 return ret;
4037
4038         for (i = start_i; i < num_pages; i++) {
4039                 page = extent_buffer_page(eb, i);
4040                 wait_on_page_locked(page);
4041                 if (!PageUptodate(page))
4042                         ret = -EIO;
4043         }
4044
4045         if (!ret)
4046                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4047         return ret;
4048
4049 unlock_exit:
4050         i = start_i;
4051         while (locked_pages > 0) {
4052                 page = extent_buffer_page(eb, i);
4053                 i++;
4054                 unlock_page(page);
4055                 locked_pages--;
4056         }
4057         return ret;
4058 }
4059
4060 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4061                         unsigned long start,
4062                         unsigned long len)
4063 {
4064         size_t cur;
4065         size_t offset;
4066         struct page *page;
4067         char *kaddr;
4068         char *dst = (char *)dstv;
4069         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4070         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4071
4072         WARN_ON(start > eb->len);
4073         WARN_ON(start + len > eb->start + eb->len);
4074
4075         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4076
4077         while (len > 0) {
4078                 page = extent_buffer_page(eb, i);
4079
4080                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4081                 kaddr = page_address(page);
4082                 memcpy(dst, kaddr + offset, cur);
4083
4084                 dst += cur;
4085                 len -= cur;
4086                 offset = 0;
4087                 i++;
4088         }
4089 }
4090
4091 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4092                                unsigned long min_len, char **map,
4093                                unsigned long *map_start,
4094                                unsigned long *map_len)
4095 {
4096         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4097         char *kaddr;
4098         struct page *p;
4099         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4100         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4101         unsigned long end_i = (start_offset + start + min_len - 1) >>
4102                 PAGE_CACHE_SHIFT;
4103
4104         if (i != end_i)
4105                 return -EINVAL;
4106
4107         if (i == 0) {
4108                 offset = start_offset;
4109                 *map_start = 0;
4110         } else {
4111                 offset = 0;
4112                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4113         }
4114
4115         if (start + min_len > eb->len) {
4116                 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4117                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4118                        eb->len, start, min_len);
4119                 WARN_ON(1);
4120                 return -EINVAL;
4121         }
4122
4123         p = extent_buffer_page(eb, i);
4124         kaddr = page_address(p);
4125         *map = kaddr + offset;
4126         *map_len = PAGE_CACHE_SIZE - offset;
4127         return 0;
4128 }
4129
4130 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4131                           unsigned long start,
4132                           unsigned long len)
4133 {
4134         size_t cur;
4135         size_t offset;
4136         struct page *page;
4137         char *kaddr;
4138         char *ptr = (char *)ptrv;
4139         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4140         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4141         int ret = 0;
4142
4143         WARN_ON(start > eb->len);
4144         WARN_ON(start + len > eb->start + eb->len);
4145
4146         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4147
4148         while (len > 0) {
4149                 page = extent_buffer_page(eb, i);
4150
4151                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4152
4153                 kaddr = page_address(page);
4154                 ret = memcmp(ptr, kaddr + offset, cur);
4155                 if (ret)
4156                         break;
4157
4158                 ptr += cur;
4159                 len -= cur;
4160                 offset = 0;
4161                 i++;
4162         }
4163         return ret;
4164 }
4165
4166 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4167                          unsigned long start, unsigned long len)
4168 {
4169         size_t cur;
4170         size_t offset;
4171         struct page *page;
4172         char *kaddr;
4173         char *src = (char *)srcv;
4174         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4175         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4176
4177         WARN_ON(start > eb->len);
4178         WARN_ON(start + len > eb->start + eb->len);
4179
4180         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4181
4182         while (len > 0) {
4183                 page = extent_buffer_page(eb, i);
4184                 WARN_ON(!PageUptodate(page));
4185
4186                 cur = min(len, PAGE_CACHE_SIZE - offset);
4187                 kaddr = page_address(page);
4188                 memcpy(kaddr + offset, src, cur);
4189
4190                 src += cur;
4191                 len -= cur;
4192                 offset = 0;
4193                 i++;
4194         }
4195 }
4196
4197 void memset_extent_buffer(struct extent_buffer *eb, char c,
4198                           unsigned long start, unsigned long len)
4199 {
4200         size_t cur;
4201         size_t offset;
4202         struct page *page;
4203         char *kaddr;
4204         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4205         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4206
4207         WARN_ON(start > eb->len);
4208         WARN_ON(start + len > eb->start + eb->len);
4209
4210         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4211
4212         while (len > 0) {
4213                 page = extent_buffer_page(eb, i);
4214                 WARN_ON(!PageUptodate(page));
4215
4216                 cur = min(len, PAGE_CACHE_SIZE - offset);
4217                 kaddr = page_address(page);
4218                 memset(kaddr + offset, c, cur);
4219
4220                 len -= cur;
4221                 offset = 0;
4222                 i++;
4223         }
4224 }
4225
4226 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4227                         unsigned long dst_offset, unsigned long src_offset,
4228                         unsigned long len)
4229 {
4230         u64 dst_len = dst->len;
4231         size_t cur;
4232         size_t offset;
4233         struct page *page;
4234         char *kaddr;
4235         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4236         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4237
4238         WARN_ON(src->len != dst_len);
4239
4240         offset = (start_offset + dst_offset) &
4241                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4242
4243         while (len > 0) {
4244                 page = extent_buffer_page(dst, i);
4245                 WARN_ON(!PageUptodate(page));
4246
4247                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4248
4249                 kaddr = page_address(page);
4250                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4251
4252                 src_offset += cur;
4253                 len -= cur;
4254                 offset = 0;
4255                 i++;
4256         }
4257 }
4258
4259 static void move_pages(struct page *dst_page, struct page *src_page,
4260                        unsigned long dst_off, unsigned long src_off,
4261                        unsigned long len)
4262 {
4263         char *dst_kaddr = page_address(dst_page);
4264         if (dst_page == src_page) {
4265                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4266         } else {
4267                 char *src_kaddr = page_address(src_page);
4268                 char *p = dst_kaddr + dst_off + len;
4269                 char *s = src_kaddr + src_off + len;
4270
4271                 while (len--)
4272                         *--p = *--s;
4273         }
4274 }
4275
4276 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4277 {
4278         unsigned long distance = (src > dst) ? src - dst : dst - src;
4279         return distance < len;
4280 }
4281
4282 static void copy_pages(struct page *dst_page, struct page *src_page,
4283                        unsigned long dst_off, unsigned long src_off,
4284                        unsigned long len)
4285 {
4286         char *dst_kaddr = page_address(dst_page);
4287         char *src_kaddr;
4288
4289         if (dst_page != src_page) {
4290                 src_kaddr = page_address(src_page);
4291         } else {
4292                 src_kaddr = dst_kaddr;
4293                 BUG_ON(areas_overlap(src_off, dst_off, len));
4294         }
4295
4296         memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4297 }
4298
4299 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4300                            unsigned long src_offset, unsigned long len)
4301 {
4302         size_t cur;
4303         size_t dst_off_in_page;
4304         size_t src_off_in_page;
4305         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4306         unsigned long dst_i;
4307         unsigned long src_i;
4308
4309         if (src_offset + len > dst->len) {
4310                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4311                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4312                 BUG_ON(1);
4313         }
4314         if (dst_offset + len > dst->len) {
4315                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4316                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4317                 BUG_ON(1);
4318         }
4319
4320         while (len > 0) {
4321                 dst_off_in_page = (start_offset + dst_offset) &
4322                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4323                 src_off_in_page = (start_offset + src_offset) &
4324                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4325
4326                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4327                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4328
4329                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4330                                                src_off_in_page));
4331                 cur = min_t(unsigned long, cur,
4332                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4333
4334                 copy_pages(extent_buffer_page(dst, dst_i),
4335                            extent_buffer_page(dst, src_i),
4336                            dst_off_in_page, src_off_in_page, cur);
4337
4338                 src_offset += cur;
4339                 dst_offset += cur;
4340                 len -= cur;
4341         }
4342 }
4343
4344 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4345                            unsigned long src_offset, unsigned long len)
4346 {
4347         size_t cur;
4348         size_t dst_off_in_page;
4349         size_t src_off_in_page;
4350         unsigned long dst_end = dst_offset + len - 1;
4351         unsigned long src_end = src_offset + len - 1;
4352         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4353         unsigned long dst_i;
4354         unsigned long src_i;
4355
4356         if (src_offset + len > dst->len) {
4357                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4358                        "len %lu len %lu\n", src_offset, len, dst->len);
4359                 BUG_ON(1);
4360         }
4361         if (dst_offset + len > dst->len) {
4362                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4363                        "len %lu len %lu\n", dst_offset, len, dst->len);
4364                 BUG_ON(1);
4365         }
4366         if (!areas_overlap(src_offset, dst_offset, len)) {
4367                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4368                 return;
4369         }
4370         while (len > 0) {
4371                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4372                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4373
4374                 dst_off_in_page = (start_offset + dst_end) &
4375                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4376                 src_off_in_page = (start_offset + src_end) &
4377                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4378
4379                 cur = min_t(unsigned long, len, src_off_in_page + 1);
4380                 cur = min(cur, dst_off_in_page + 1);
4381                 move_pages(extent_buffer_page(dst, dst_i),
4382                            extent_buffer_page(dst, src_i),
4383                            dst_off_in_page - cur + 1,
4384                            src_off_in_page - cur + 1, cur);
4385
4386                 dst_end -= cur;
4387                 src_end -= cur;
4388                 len -= cur;
4389         }
4390 }
4391
4392 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4393 {
4394         struct extent_buffer *eb =
4395                         container_of(head, struct extent_buffer, rcu_head);
4396
4397         btrfs_release_extent_buffer(eb);
4398 }
4399
4400 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4401 {
4402         u64 start = page_offset(page);
4403         struct extent_buffer *eb;
4404         int ret = 1;
4405
4406         spin_lock(&tree->buffer_lock);
4407         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4408         if (!eb) {
4409                 spin_unlock(&tree->buffer_lock);
4410                 return ret;
4411         }
4412
4413         if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4414                 ret = 0;
4415                 goto out;
4416         }
4417
4418         /*
4419          * set @eb->refs to 0 if it is already 1, and then release the @eb.
4420          * Or go back.
4421          */
4422         if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4423                 ret = 0;
4424                 goto out;
4425         }
4426
4427         radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4428 out:
4429         spin_unlock(&tree->buffer_lock);
4430
4431         /* at this point we can safely release the extent buffer */
4432         if (atomic_read(&eb->refs) == 0)
4433                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4434         return ret;
4435 }