]> Pileus Git - ~andy/linux/blob - fs/btrfs/extent_io.c
2fa23b57d8dfae0e93e0e94a66a1810100a1aad8
[~andy/linux] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        state->start, state->end, state->state, state->tree,
65                        atomic_read(&state->refs));
66                 list_del(&state->leak_list);
67                 kmem_cache_free(extent_state_cache, state);
68         }
69
70         while (!list_empty(&buffers)) {
71                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73                        "refs %d\n",
74                        eb->start, eb->len, atomic_read(&eb->refs));
75                 list_del(&eb->leak_list);
76                 kmem_cache_free(extent_buffer_cache, eb);
77         }
78 }
79
80 #define btrfs_debug_check_extent_io_range(tree, start, end)             \
81         __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
82 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83                 struct extent_io_tree *tree, u64 start, u64 end)
84 {
85         struct inode *inode;
86         u64 isize;
87
88         if (!tree->mapping)
89                 return;
90
91         inode = tree->mapping->host;
92         isize = i_size_read(inode);
93         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94                 printk_ratelimited(KERN_DEBUG
95                     "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
96                                 caller, btrfs_ino(inode), isize, start, end);
97         }
98 }
99 #else
100 #define btrfs_leak_debug_add(new, head) do {} while (0)
101 #define btrfs_leak_debug_del(entry)     do {} while (0)
102 #define btrfs_leak_debug_check()        do {} while (0)
103 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
104 #endif
105
106 #define BUFFER_LRU_MAX 64
107
108 struct tree_entry {
109         u64 start;
110         u64 end;
111         struct rb_node rb_node;
112 };
113
114 struct extent_page_data {
115         struct bio *bio;
116         struct extent_io_tree *tree;
117         get_extent_t *get_extent;
118         unsigned long bio_flags;
119
120         /* tells writepage not to lock the state bits for this range
121          * it still does the unlocking
122          */
123         unsigned int extent_locked:1;
124
125         /* tells the submit_bio code to use a WRITE_SYNC */
126         unsigned int sync_io:1;
127 };
128
129 static noinline void flush_write_bio(void *data);
130 static inline struct btrfs_fs_info *
131 tree_fs_info(struct extent_io_tree *tree)
132 {
133         if (!tree->mapping)
134                 return NULL;
135         return btrfs_sb(tree->mapping->host->i_sb);
136 }
137
138 int __init extent_io_init(void)
139 {
140         extent_state_cache = kmem_cache_create("btrfs_extent_state",
141                         sizeof(struct extent_state), 0,
142                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
143         if (!extent_state_cache)
144                 return -ENOMEM;
145
146         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
147                         sizeof(struct extent_buffer), 0,
148                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
149         if (!extent_buffer_cache)
150                 goto free_state_cache;
151
152         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153                                      offsetof(struct btrfs_io_bio, bio));
154         if (!btrfs_bioset)
155                 goto free_buffer_cache;
156
157         if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158                 goto free_bioset;
159
160         return 0;
161
162 free_bioset:
163         bioset_free(btrfs_bioset);
164         btrfs_bioset = NULL;
165
166 free_buffer_cache:
167         kmem_cache_destroy(extent_buffer_cache);
168         extent_buffer_cache = NULL;
169
170 free_state_cache:
171         kmem_cache_destroy(extent_state_cache);
172         extent_state_cache = NULL;
173         return -ENOMEM;
174 }
175
176 void extent_io_exit(void)
177 {
178         btrfs_leak_debug_check();
179
180         /*
181          * Make sure all delayed rcu free are flushed before we
182          * destroy caches.
183          */
184         rcu_barrier();
185         if (extent_state_cache)
186                 kmem_cache_destroy(extent_state_cache);
187         if (extent_buffer_cache)
188                 kmem_cache_destroy(extent_buffer_cache);
189         if (btrfs_bioset)
190                 bioset_free(btrfs_bioset);
191 }
192
193 void extent_io_tree_init(struct extent_io_tree *tree,
194                          struct address_space *mapping)
195 {
196         tree->state = RB_ROOT;
197         tree->ops = NULL;
198         tree->dirty_bytes = 0;
199         spin_lock_init(&tree->lock);
200         tree->mapping = mapping;
201 }
202
203 static struct extent_state *alloc_extent_state(gfp_t mask)
204 {
205         struct extent_state *state;
206
207         state = kmem_cache_alloc(extent_state_cache, mask);
208         if (!state)
209                 return state;
210         state->state = 0;
211         state->private = 0;
212         state->tree = NULL;
213         btrfs_leak_debug_add(&state->leak_list, &states);
214         atomic_set(&state->refs, 1);
215         init_waitqueue_head(&state->wq);
216         trace_alloc_extent_state(state, mask, _RET_IP_);
217         return state;
218 }
219
220 void free_extent_state(struct extent_state *state)
221 {
222         if (!state)
223                 return;
224         if (atomic_dec_and_test(&state->refs)) {
225                 WARN_ON(state->tree);
226                 btrfs_leak_debug_del(&state->leak_list);
227                 trace_free_extent_state(state, _RET_IP_);
228                 kmem_cache_free(extent_state_cache, state);
229         }
230 }
231
232 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
233                                    struct rb_node *node,
234                                    struct rb_node ***p_in,
235                                    struct rb_node **parent_in)
236 {
237         struct rb_node **p = &root->rb_node;
238         struct rb_node *parent = NULL;
239         struct tree_entry *entry;
240
241         if (p_in && parent_in) {
242                 p = *p_in;
243                 parent = *parent_in;
244                 goto do_insert;
245         }
246
247         while (*p) {
248                 parent = *p;
249                 entry = rb_entry(parent, struct tree_entry, rb_node);
250
251                 if (offset < entry->start)
252                         p = &(*p)->rb_left;
253                 else if (offset > entry->end)
254                         p = &(*p)->rb_right;
255                 else
256                         return parent;
257         }
258
259 do_insert:
260         rb_link_node(node, parent, p);
261         rb_insert_color(node, root);
262         return NULL;
263 }
264
265 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
266                                       struct rb_node **prev_ret,
267                                       struct rb_node **next_ret,
268                                       struct rb_node ***p_ret,
269                                       struct rb_node **parent_ret)
270 {
271         struct rb_root *root = &tree->state;
272         struct rb_node **n = &root->rb_node;
273         struct rb_node *prev = NULL;
274         struct rb_node *orig_prev = NULL;
275         struct tree_entry *entry;
276         struct tree_entry *prev_entry = NULL;
277
278         while (*n) {
279                 prev = *n;
280                 entry = rb_entry(prev, struct tree_entry, rb_node);
281                 prev_entry = entry;
282
283                 if (offset < entry->start)
284                         n = &(*n)->rb_left;
285                 else if (offset > entry->end)
286                         n = &(*n)->rb_right;
287                 else
288                         return *n;
289         }
290
291         if (p_ret)
292                 *p_ret = n;
293         if (parent_ret)
294                 *parent_ret = prev;
295
296         if (prev_ret) {
297                 orig_prev = prev;
298                 while (prev && offset > prev_entry->end) {
299                         prev = rb_next(prev);
300                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
301                 }
302                 *prev_ret = prev;
303                 prev = orig_prev;
304         }
305
306         if (next_ret) {
307                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
308                 while (prev && offset < prev_entry->start) {
309                         prev = rb_prev(prev);
310                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311                 }
312                 *next_ret = prev;
313         }
314         return NULL;
315 }
316
317 static inline struct rb_node *
318 tree_search_for_insert(struct extent_io_tree *tree,
319                        u64 offset,
320                        struct rb_node ***p_ret,
321                        struct rb_node **parent_ret)
322 {
323         struct rb_node *prev = NULL;
324         struct rb_node *ret;
325
326         ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
327         if (!ret)
328                 return prev;
329         return ret;
330 }
331
332 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
333                                           u64 offset)
334 {
335         return tree_search_for_insert(tree, offset, NULL, NULL);
336 }
337
338 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
339                      struct extent_state *other)
340 {
341         if (tree->ops && tree->ops->merge_extent_hook)
342                 tree->ops->merge_extent_hook(tree->mapping->host, new,
343                                              other);
344 }
345
346 /*
347  * utility function to look for merge candidates inside a given range.
348  * Any extents with matching state are merged together into a single
349  * extent in the tree.  Extents with EXTENT_IO in their state field
350  * are not merged because the end_io handlers need to be able to do
351  * operations on them without sleeping (or doing allocations/splits).
352  *
353  * This should be called with the tree lock held.
354  */
355 static void merge_state(struct extent_io_tree *tree,
356                         struct extent_state *state)
357 {
358         struct extent_state *other;
359         struct rb_node *other_node;
360
361         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
362                 return;
363
364         other_node = rb_prev(&state->rb_node);
365         if (other_node) {
366                 other = rb_entry(other_node, struct extent_state, rb_node);
367                 if (other->end == state->start - 1 &&
368                     other->state == state->state) {
369                         merge_cb(tree, state, other);
370                         state->start = other->start;
371                         other->tree = NULL;
372                         rb_erase(&other->rb_node, &tree->state);
373                         free_extent_state(other);
374                 }
375         }
376         other_node = rb_next(&state->rb_node);
377         if (other_node) {
378                 other = rb_entry(other_node, struct extent_state, rb_node);
379                 if (other->start == state->end + 1 &&
380                     other->state == state->state) {
381                         merge_cb(tree, state, other);
382                         state->end = other->end;
383                         other->tree = NULL;
384                         rb_erase(&other->rb_node, &tree->state);
385                         free_extent_state(other);
386                 }
387         }
388 }
389
390 static void set_state_cb(struct extent_io_tree *tree,
391                          struct extent_state *state, unsigned long *bits)
392 {
393         if (tree->ops && tree->ops->set_bit_hook)
394                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
395 }
396
397 static void clear_state_cb(struct extent_io_tree *tree,
398                            struct extent_state *state, unsigned long *bits)
399 {
400         if (tree->ops && tree->ops->clear_bit_hook)
401                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
402 }
403
404 static void set_state_bits(struct extent_io_tree *tree,
405                            struct extent_state *state, unsigned long *bits);
406
407 /*
408  * insert an extent_state struct into the tree.  'bits' are set on the
409  * struct before it is inserted.
410  *
411  * This may return -EEXIST if the extent is already there, in which case the
412  * state struct is freed.
413  *
414  * The tree lock is not taken internally.  This is a utility function and
415  * probably isn't what you want to call (see set/clear_extent_bit).
416  */
417 static int insert_state(struct extent_io_tree *tree,
418                         struct extent_state *state, u64 start, u64 end,
419                         struct rb_node ***p,
420                         struct rb_node **parent,
421                         unsigned long *bits)
422 {
423         struct rb_node *node;
424
425         if (end < start)
426                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
427                        end, start);
428         state->start = start;
429         state->end = end;
430
431         set_state_bits(tree, state, bits);
432
433         node = tree_insert(&tree->state, end, &state->rb_node, p, parent);
434         if (node) {
435                 struct extent_state *found;
436                 found = rb_entry(node, struct extent_state, rb_node);
437                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
438                        "%llu %llu\n",
439                        found->start, found->end, start, end);
440                 return -EEXIST;
441         }
442         state->tree = tree;
443         merge_state(tree, state);
444         return 0;
445 }
446
447 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
448                      u64 split)
449 {
450         if (tree->ops && tree->ops->split_extent_hook)
451                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
452 }
453
454 /*
455  * split a given extent state struct in two, inserting the preallocated
456  * struct 'prealloc' as the newly created second half.  'split' indicates an
457  * offset inside 'orig' where it should be split.
458  *
459  * Before calling,
460  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
461  * are two extent state structs in the tree:
462  * prealloc: [orig->start, split - 1]
463  * orig: [ split, orig->end ]
464  *
465  * The tree locks are not taken by this function. They need to be held
466  * by the caller.
467  */
468 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
469                        struct extent_state *prealloc, u64 split)
470 {
471         struct rb_node *node;
472
473         split_cb(tree, orig, split);
474
475         prealloc->start = orig->start;
476         prealloc->end = split - 1;
477         prealloc->state = orig->state;
478         orig->start = split;
479
480         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node,
481                            NULL, NULL);
482         if (node) {
483                 free_extent_state(prealloc);
484                 return -EEXIST;
485         }
486         prealloc->tree = tree;
487         return 0;
488 }
489
490 static struct extent_state *next_state(struct extent_state *state)
491 {
492         struct rb_node *next = rb_next(&state->rb_node);
493         if (next)
494                 return rb_entry(next, struct extent_state, rb_node);
495         else
496                 return NULL;
497 }
498
499 /*
500  * utility function to clear some bits in an extent state struct.
501  * it will optionally wake up any one waiting on this state (wake == 1).
502  *
503  * If no bits are set on the state struct after clearing things, the
504  * struct is freed and removed from the tree
505  */
506 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
507                                             struct extent_state *state,
508                                             unsigned long *bits, int wake)
509 {
510         struct extent_state *next;
511         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
512
513         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
514                 u64 range = state->end - state->start + 1;
515                 WARN_ON(range > tree->dirty_bytes);
516                 tree->dirty_bytes -= range;
517         }
518         clear_state_cb(tree, state, bits);
519         state->state &= ~bits_to_clear;
520         if (wake)
521                 wake_up(&state->wq);
522         if (state->state == 0) {
523                 next = next_state(state);
524                 if (state->tree) {
525                         rb_erase(&state->rb_node, &tree->state);
526                         state->tree = NULL;
527                         free_extent_state(state);
528                 } else {
529                         WARN_ON(1);
530                 }
531         } else {
532                 merge_state(tree, state);
533                 next = next_state(state);
534         }
535         return next;
536 }
537
538 static struct extent_state *
539 alloc_extent_state_atomic(struct extent_state *prealloc)
540 {
541         if (!prealloc)
542                 prealloc = alloc_extent_state(GFP_ATOMIC);
543
544         return prealloc;
545 }
546
547 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
548 {
549         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
550                     "Extent tree was modified by another "
551                     "thread while locked.");
552 }
553
554 /*
555  * clear some bits on a range in the tree.  This may require splitting
556  * or inserting elements in the tree, so the gfp mask is used to
557  * indicate which allocations or sleeping are allowed.
558  *
559  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
560  * the given range from the tree regardless of state (ie for truncate).
561  *
562  * the range [start, end] is inclusive.
563  *
564  * This takes the tree lock, and returns 0 on success and < 0 on error.
565  */
566 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
567                      unsigned long bits, int wake, int delete,
568                      struct extent_state **cached_state,
569                      gfp_t mask)
570 {
571         struct extent_state *state;
572         struct extent_state *cached;
573         struct extent_state *prealloc = NULL;
574         struct rb_node *node;
575         u64 last_end;
576         int err;
577         int clear = 0;
578
579         btrfs_debug_check_extent_io_range(tree, start, end);
580
581         if (bits & EXTENT_DELALLOC)
582                 bits |= EXTENT_NORESERVE;
583
584         if (delete)
585                 bits |= ~EXTENT_CTLBITS;
586         bits |= EXTENT_FIRST_DELALLOC;
587
588         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
589                 clear = 1;
590 again:
591         if (!prealloc && (mask & __GFP_WAIT)) {
592                 prealloc = alloc_extent_state(mask);
593                 if (!prealloc)
594                         return -ENOMEM;
595         }
596
597         spin_lock(&tree->lock);
598         if (cached_state) {
599                 cached = *cached_state;
600
601                 if (clear) {
602                         *cached_state = NULL;
603                         cached_state = NULL;
604                 }
605
606                 if (cached && cached->tree && cached->start <= start &&
607                     cached->end > start) {
608                         if (clear)
609                                 atomic_dec(&cached->refs);
610                         state = cached;
611                         goto hit_next;
612                 }
613                 if (clear)
614                         free_extent_state(cached);
615         }
616         /*
617          * this search will find the extents that end after
618          * our range starts
619          */
620         node = tree_search(tree, start);
621         if (!node)
622                 goto out;
623         state = rb_entry(node, struct extent_state, rb_node);
624 hit_next:
625         if (state->start > end)
626                 goto out;
627         WARN_ON(state->end < start);
628         last_end = state->end;
629
630         /* the state doesn't have the wanted bits, go ahead */
631         if (!(state->state & bits)) {
632                 state = next_state(state);
633                 goto next;
634         }
635
636         /*
637          *     | ---- desired range ---- |
638          *  | state | or
639          *  | ------------- state -------------- |
640          *
641          * We need to split the extent we found, and may flip
642          * bits on second half.
643          *
644          * If the extent we found extends past our range, we
645          * just split and search again.  It'll get split again
646          * the next time though.
647          *
648          * If the extent we found is inside our range, we clear
649          * the desired bit on it.
650          */
651
652         if (state->start < start) {
653                 prealloc = alloc_extent_state_atomic(prealloc);
654                 BUG_ON(!prealloc);
655                 err = split_state(tree, state, prealloc, start);
656                 if (err)
657                         extent_io_tree_panic(tree, err);
658
659                 prealloc = NULL;
660                 if (err)
661                         goto out;
662                 if (state->end <= end) {
663                         state = clear_state_bit(tree, state, &bits, wake);
664                         goto next;
665                 }
666                 goto search_again;
667         }
668         /*
669          * | ---- desired range ---- |
670          *                        | state |
671          * We need to split the extent, and clear the bit
672          * on the first half
673          */
674         if (state->start <= end && state->end > end) {
675                 prealloc = alloc_extent_state_atomic(prealloc);
676                 BUG_ON(!prealloc);
677                 err = split_state(tree, state, prealloc, end + 1);
678                 if (err)
679                         extent_io_tree_panic(tree, err);
680
681                 if (wake)
682                         wake_up(&state->wq);
683
684                 clear_state_bit(tree, prealloc, &bits, wake);
685
686                 prealloc = NULL;
687                 goto out;
688         }
689
690         state = clear_state_bit(tree, state, &bits, wake);
691 next:
692         if (last_end == (u64)-1)
693                 goto out;
694         start = last_end + 1;
695         if (start <= end && state && !need_resched())
696                 goto hit_next;
697         goto search_again;
698
699 out:
700         spin_unlock(&tree->lock);
701         if (prealloc)
702                 free_extent_state(prealloc);
703
704         return 0;
705
706 search_again:
707         if (start > end)
708                 goto out;
709         spin_unlock(&tree->lock);
710         if (mask & __GFP_WAIT)
711                 cond_resched();
712         goto again;
713 }
714
715 static void wait_on_state(struct extent_io_tree *tree,
716                           struct extent_state *state)
717                 __releases(tree->lock)
718                 __acquires(tree->lock)
719 {
720         DEFINE_WAIT(wait);
721         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
722         spin_unlock(&tree->lock);
723         schedule();
724         spin_lock(&tree->lock);
725         finish_wait(&state->wq, &wait);
726 }
727
728 /*
729  * waits for one or more bits to clear on a range in the state tree.
730  * The range [start, end] is inclusive.
731  * The tree lock is taken by this function
732  */
733 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734                             unsigned long bits)
735 {
736         struct extent_state *state;
737         struct rb_node *node;
738
739         btrfs_debug_check_extent_io_range(tree, start, end);
740
741         spin_lock(&tree->lock);
742 again:
743         while (1) {
744                 /*
745                  * this search will find all the extents that end after
746                  * our range starts
747                  */
748                 node = tree_search(tree, start);
749                 if (!node)
750                         break;
751
752                 state = rb_entry(node, struct extent_state, rb_node);
753
754                 if (state->start > end)
755                         goto out;
756
757                 if (state->state & bits) {
758                         start = state->start;
759                         atomic_inc(&state->refs);
760                         wait_on_state(tree, state);
761                         free_extent_state(state);
762                         goto again;
763                 }
764                 start = state->end + 1;
765
766                 if (start > end)
767                         break;
768
769                 cond_resched_lock(&tree->lock);
770         }
771 out:
772         spin_unlock(&tree->lock);
773 }
774
775 static void set_state_bits(struct extent_io_tree *tree,
776                            struct extent_state *state,
777                            unsigned long *bits)
778 {
779         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
780
781         set_state_cb(tree, state, bits);
782         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
783                 u64 range = state->end - state->start + 1;
784                 tree->dirty_bytes += range;
785         }
786         state->state |= bits_to_set;
787 }
788
789 static void cache_state(struct extent_state *state,
790                         struct extent_state **cached_ptr)
791 {
792         if (cached_ptr && !(*cached_ptr)) {
793                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
794                         *cached_ptr = state;
795                         atomic_inc(&state->refs);
796                 }
797         }
798 }
799
800 /*
801  * set some bits on a range in the tree.  This may require allocations or
802  * sleeping, so the gfp mask is used to indicate what is allowed.
803  *
804  * If any of the exclusive bits are set, this will fail with -EEXIST if some
805  * part of the range already has the desired bits set.  The start of the
806  * existing range is returned in failed_start in this case.
807  *
808  * [start, end] is inclusive This takes the tree lock.
809  */
810
811 static int __must_check
812 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
813                  unsigned long bits, unsigned long exclusive_bits,
814                  u64 *failed_start, struct extent_state **cached_state,
815                  gfp_t mask)
816 {
817         struct extent_state *state;
818         struct extent_state *prealloc = NULL;
819         struct rb_node *node;
820         struct rb_node **p;
821         struct rb_node *parent;
822         int err = 0;
823         u64 last_start;
824         u64 last_end;
825
826         btrfs_debug_check_extent_io_range(tree, start, end);
827
828         bits |= EXTENT_FIRST_DELALLOC;
829 again:
830         if (!prealloc && (mask & __GFP_WAIT)) {
831                 prealloc = alloc_extent_state(mask);
832                 BUG_ON(!prealloc);
833         }
834
835         spin_lock(&tree->lock);
836         if (cached_state && *cached_state) {
837                 state = *cached_state;
838                 if (state->start <= start && state->end > start &&
839                     state->tree) {
840                         node = &state->rb_node;
841                         goto hit_next;
842                 }
843         }
844         /*
845          * this search will find all the extents that end after
846          * our range starts.
847          */
848         node = tree_search_for_insert(tree, start, &p, &parent);
849         if (!node) {
850                 prealloc = alloc_extent_state_atomic(prealloc);
851                 BUG_ON(!prealloc);
852                 err = insert_state(tree, prealloc, start, end,
853                                    &p, &parent, &bits);
854                 if (err)
855                         extent_io_tree_panic(tree, err);
856
857                 cache_state(prealloc, cached_state);
858                 prealloc = NULL;
859                 goto out;
860         }
861         state = rb_entry(node, struct extent_state, rb_node);
862 hit_next:
863         last_start = state->start;
864         last_end = state->end;
865
866         /*
867          * | ---- desired range ---- |
868          * | state |
869          *
870          * Just lock what we found and keep going
871          */
872         if (state->start == start && state->end <= end) {
873                 if (state->state & exclusive_bits) {
874                         *failed_start = state->start;
875                         err = -EEXIST;
876                         goto out;
877                 }
878
879                 set_state_bits(tree, state, &bits);
880                 cache_state(state, cached_state);
881                 merge_state(tree, state);
882                 if (last_end == (u64)-1)
883                         goto out;
884                 start = last_end + 1;
885                 state = next_state(state);
886                 if (start < end && state && state->start == start &&
887                     !need_resched())
888                         goto hit_next;
889                 goto search_again;
890         }
891
892         /*
893          *     | ---- desired range ---- |
894          * | state |
895          *   or
896          * | ------------- state -------------- |
897          *
898          * We need to split the extent we found, and may flip bits on
899          * second half.
900          *
901          * If the extent we found extends past our
902          * range, we just split and search again.  It'll get split
903          * again the next time though.
904          *
905          * If the extent we found is inside our range, we set the
906          * desired bit on it.
907          */
908         if (state->start < start) {
909                 if (state->state & exclusive_bits) {
910                         *failed_start = start;
911                         err = -EEXIST;
912                         goto out;
913                 }
914
915                 prealloc = alloc_extent_state_atomic(prealloc);
916                 BUG_ON(!prealloc);
917                 err = split_state(tree, state, prealloc, start);
918                 if (err)
919                         extent_io_tree_panic(tree, err);
920
921                 prealloc = NULL;
922                 if (err)
923                         goto out;
924                 if (state->end <= end) {
925                         set_state_bits(tree, state, &bits);
926                         cache_state(state, cached_state);
927                         merge_state(tree, state);
928                         if (last_end == (u64)-1)
929                                 goto out;
930                         start = last_end + 1;
931                         state = next_state(state);
932                         if (start < end && state && state->start == start &&
933                             !need_resched())
934                                 goto hit_next;
935                 }
936                 goto search_again;
937         }
938         /*
939          * | ---- desired range ---- |
940          *     | state | or               | state |
941          *
942          * There's a hole, we need to insert something in it and
943          * ignore the extent we found.
944          */
945         if (state->start > start) {
946                 u64 this_end;
947                 if (end < last_start)
948                         this_end = end;
949                 else
950                         this_end = last_start - 1;
951
952                 prealloc = alloc_extent_state_atomic(prealloc);
953                 BUG_ON(!prealloc);
954
955                 /*
956                  * Avoid to free 'prealloc' if it can be merged with
957                  * the later extent.
958                  */
959                 err = insert_state(tree, prealloc, start, this_end,
960                                    NULL, NULL, &bits);
961                 if (err)
962                         extent_io_tree_panic(tree, err);
963
964                 cache_state(prealloc, cached_state);
965                 prealloc = NULL;
966                 start = this_end + 1;
967                 goto search_again;
968         }
969         /*
970          * | ---- desired range ---- |
971          *                        | state |
972          * We need to split the extent, and set the bit
973          * on the first half
974          */
975         if (state->start <= end && state->end > end) {
976                 if (state->state & exclusive_bits) {
977                         *failed_start = start;
978                         err = -EEXIST;
979                         goto out;
980                 }
981
982                 prealloc = alloc_extent_state_atomic(prealloc);
983                 BUG_ON(!prealloc);
984                 err = split_state(tree, state, prealloc, end + 1);
985                 if (err)
986                         extent_io_tree_panic(tree, err);
987
988                 set_state_bits(tree, prealloc, &bits);
989                 cache_state(prealloc, cached_state);
990                 merge_state(tree, prealloc);
991                 prealloc = NULL;
992                 goto out;
993         }
994
995         goto search_again;
996
997 out:
998         spin_unlock(&tree->lock);
999         if (prealloc)
1000                 free_extent_state(prealloc);
1001
1002         return err;
1003
1004 search_again:
1005         if (start > end)
1006                 goto out;
1007         spin_unlock(&tree->lock);
1008         if (mask & __GFP_WAIT)
1009                 cond_resched();
1010         goto again;
1011 }
1012
1013 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1014                    unsigned long bits, u64 * failed_start,
1015                    struct extent_state **cached_state, gfp_t mask)
1016 {
1017         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1018                                 cached_state, mask);
1019 }
1020
1021
1022 /**
1023  * convert_extent_bit - convert all bits in a given range from one bit to
1024  *                      another
1025  * @tree:       the io tree to search
1026  * @start:      the start offset in bytes
1027  * @end:        the end offset in bytes (inclusive)
1028  * @bits:       the bits to set in this range
1029  * @clear_bits: the bits to clear in this range
1030  * @cached_state:       state that we're going to cache
1031  * @mask:       the allocation mask
1032  *
1033  * This will go through and set bits for the given range.  If any states exist
1034  * already in this range they are set with the given bit and cleared of the
1035  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1036  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1037  * boundary bits like LOCK.
1038  */
1039 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1040                        unsigned long bits, unsigned long clear_bits,
1041                        struct extent_state **cached_state, gfp_t mask)
1042 {
1043         struct extent_state *state;
1044         struct extent_state *prealloc = NULL;
1045         struct rb_node *node;
1046         struct rb_node **p;
1047         struct rb_node *parent;
1048         int err = 0;
1049         u64 last_start;
1050         u64 last_end;
1051
1052         btrfs_debug_check_extent_io_range(tree, start, end);
1053
1054 again:
1055         if (!prealloc && (mask & __GFP_WAIT)) {
1056                 prealloc = alloc_extent_state(mask);
1057                 if (!prealloc)
1058                         return -ENOMEM;
1059         }
1060
1061         spin_lock(&tree->lock);
1062         if (cached_state && *cached_state) {
1063                 state = *cached_state;
1064                 if (state->start <= start && state->end > start &&
1065                     state->tree) {
1066                         node = &state->rb_node;
1067                         goto hit_next;
1068                 }
1069         }
1070
1071         /*
1072          * this search will find all the extents that end after
1073          * our range starts.
1074          */
1075         node = tree_search_for_insert(tree, start, &p, &parent);
1076         if (!node) {
1077                 prealloc = alloc_extent_state_atomic(prealloc);
1078                 if (!prealloc) {
1079                         err = -ENOMEM;
1080                         goto out;
1081                 }
1082                 err = insert_state(tree, prealloc, start, end,
1083                                    &p, &parent, &bits);
1084                 if (err)
1085                         extent_io_tree_panic(tree, err);
1086                 cache_state(prealloc, cached_state);
1087                 prealloc = NULL;
1088                 goto out;
1089         }
1090         state = rb_entry(node, struct extent_state, rb_node);
1091 hit_next:
1092         last_start = state->start;
1093         last_end = state->end;
1094
1095         /*
1096          * | ---- desired range ---- |
1097          * | state |
1098          *
1099          * Just lock what we found and keep going
1100          */
1101         if (state->start == start && state->end <= end) {
1102                 set_state_bits(tree, state, &bits);
1103                 cache_state(state, cached_state);
1104                 state = clear_state_bit(tree, state, &clear_bits, 0);
1105                 if (last_end == (u64)-1)
1106                         goto out;
1107                 start = last_end + 1;
1108                 if (start < end && state && state->start == start &&
1109                     !need_resched())
1110                         goto hit_next;
1111                 goto search_again;
1112         }
1113
1114         /*
1115          *     | ---- desired range ---- |
1116          * | state |
1117          *   or
1118          * | ------------- state -------------- |
1119          *
1120          * We need to split the extent we found, and may flip bits on
1121          * second half.
1122          *
1123          * If the extent we found extends past our
1124          * range, we just split and search again.  It'll get split
1125          * again the next time though.
1126          *
1127          * If the extent we found is inside our range, we set the
1128          * desired bit on it.
1129          */
1130         if (state->start < start) {
1131                 prealloc = alloc_extent_state_atomic(prealloc);
1132                 if (!prealloc) {
1133                         err = -ENOMEM;
1134                         goto out;
1135                 }
1136                 err = split_state(tree, state, prealloc, start);
1137                 if (err)
1138                         extent_io_tree_panic(tree, err);
1139                 prealloc = NULL;
1140                 if (err)
1141                         goto out;
1142                 if (state->end <= end) {
1143                         set_state_bits(tree, state, &bits);
1144                         cache_state(state, cached_state);
1145                         state = clear_state_bit(tree, state, &clear_bits, 0);
1146                         if (last_end == (u64)-1)
1147                                 goto out;
1148                         start = last_end + 1;
1149                         if (start < end && state && state->start == start &&
1150                             !need_resched())
1151                                 goto hit_next;
1152                 }
1153                 goto search_again;
1154         }
1155         /*
1156          * | ---- desired range ---- |
1157          *     | state | or               | state |
1158          *
1159          * There's a hole, we need to insert something in it and
1160          * ignore the extent we found.
1161          */
1162         if (state->start > start) {
1163                 u64 this_end;
1164                 if (end < last_start)
1165                         this_end = end;
1166                 else
1167                         this_end = last_start - 1;
1168
1169                 prealloc = alloc_extent_state_atomic(prealloc);
1170                 if (!prealloc) {
1171                         err = -ENOMEM;
1172                         goto out;
1173                 }
1174
1175                 /*
1176                  * Avoid to free 'prealloc' if it can be merged with
1177                  * the later extent.
1178                  */
1179                 err = insert_state(tree, prealloc, start, this_end,
1180                                    NULL, NULL, &bits);
1181                 if (err)
1182                         extent_io_tree_panic(tree, err);
1183                 cache_state(prealloc, cached_state);
1184                 prealloc = NULL;
1185                 start = this_end + 1;
1186                 goto search_again;
1187         }
1188         /*
1189          * | ---- desired range ---- |
1190          *                        | state |
1191          * We need to split the extent, and set the bit
1192          * on the first half
1193          */
1194         if (state->start <= end && state->end > end) {
1195                 prealloc = alloc_extent_state_atomic(prealloc);
1196                 if (!prealloc) {
1197                         err = -ENOMEM;
1198                         goto out;
1199                 }
1200
1201                 err = split_state(tree, state, prealloc, end + 1);
1202                 if (err)
1203                         extent_io_tree_panic(tree, err);
1204
1205                 set_state_bits(tree, prealloc, &bits);
1206                 cache_state(prealloc, cached_state);
1207                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1208                 prealloc = NULL;
1209                 goto out;
1210         }
1211
1212         goto search_again;
1213
1214 out:
1215         spin_unlock(&tree->lock);
1216         if (prealloc)
1217                 free_extent_state(prealloc);
1218
1219         return err;
1220
1221 search_again:
1222         if (start > end)
1223                 goto out;
1224         spin_unlock(&tree->lock);
1225         if (mask & __GFP_WAIT)
1226                 cond_resched();
1227         goto again;
1228 }
1229
1230 /* wrappers around set/clear extent bit */
1231 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1232                      gfp_t mask)
1233 {
1234         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1235                               NULL, mask);
1236 }
1237
1238 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1239                     unsigned long bits, gfp_t mask)
1240 {
1241         return set_extent_bit(tree, start, end, bits, NULL,
1242                               NULL, mask);
1243 }
1244
1245 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1246                       unsigned long bits, gfp_t mask)
1247 {
1248         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1249 }
1250
1251 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1252                         struct extent_state **cached_state, gfp_t mask)
1253 {
1254         return set_extent_bit(tree, start, end,
1255                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1256                               NULL, cached_state, mask);
1257 }
1258
1259 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1260                       struct extent_state **cached_state, gfp_t mask)
1261 {
1262         return set_extent_bit(tree, start, end,
1263                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1264                               NULL, cached_state, mask);
1265 }
1266
1267 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1268                        gfp_t mask)
1269 {
1270         return clear_extent_bit(tree, start, end,
1271                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1272                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1273 }
1274
1275 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1276                      gfp_t mask)
1277 {
1278         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1279                               NULL, mask);
1280 }
1281
1282 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1283                         struct extent_state **cached_state, gfp_t mask)
1284 {
1285         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1286                               cached_state, mask);
1287 }
1288
1289 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290                           struct extent_state **cached_state, gfp_t mask)
1291 {
1292         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1293                                 cached_state, mask);
1294 }
1295
1296 /*
1297  * either insert or lock state struct between start and end use mask to tell
1298  * us if waiting is desired.
1299  */
1300 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1301                      unsigned long bits, struct extent_state **cached_state)
1302 {
1303         int err;
1304         u64 failed_start;
1305         while (1) {
1306                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1307                                        EXTENT_LOCKED, &failed_start,
1308                                        cached_state, GFP_NOFS);
1309                 if (err == -EEXIST) {
1310                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1311                         start = failed_start;
1312                 } else
1313                         break;
1314                 WARN_ON(start > end);
1315         }
1316         return err;
1317 }
1318
1319 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1320 {
1321         return lock_extent_bits(tree, start, end, 0, NULL);
1322 }
1323
1324 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1325 {
1326         int err;
1327         u64 failed_start;
1328
1329         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1330                                &failed_start, NULL, GFP_NOFS);
1331         if (err == -EEXIST) {
1332                 if (failed_start > start)
1333                         clear_extent_bit(tree, start, failed_start - 1,
1334                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1335                 return 0;
1336         }
1337         return 1;
1338 }
1339
1340 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1341                          struct extent_state **cached, gfp_t mask)
1342 {
1343         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1344                                 mask);
1345 }
1346
1347 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1350                                 GFP_NOFS);
1351 }
1352
1353 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1354 {
1355         unsigned long index = start >> PAGE_CACHE_SHIFT;
1356         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1357         struct page *page;
1358
1359         while (index <= end_index) {
1360                 page = find_get_page(inode->i_mapping, index);
1361                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1362                 clear_page_dirty_for_io(page);
1363                 page_cache_release(page);
1364                 index++;
1365         }
1366         return 0;
1367 }
1368
1369 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1370 {
1371         unsigned long index = start >> PAGE_CACHE_SHIFT;
1372         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1373         struct page *page;
1374
1375         while (index <= end_index) {
1376                 page = find_get_page(inode->i_mapping, index);
1377                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378                 account_page_redirty(page);
1379                 __set_page_dirty_nobuffers(page);
1380                 page_cache_release(page);
1381                 index++;
1382         }
1383         return 0;
1384 }
1385
1386 /*
1387  * helper function to set both pages and extents in the tree writeback
1388  */
1389 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1390 {
1391         unsigned long index = start >> PAGE_CACHE_SHIFT;
1392         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1393         struct page *page;
1394
1395         while (index <= end_index) {
1396                 page = find_get_page(tree->mapping, index);
1397                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1398                 set_page_writeback(page);
1399                 page_cache_release(page);
1400                 index++;
1401         }
1402         return 0;
1403 }
1404
1405 /* find the first state struct with 'bits' set after 'start', and
1406  * return it.  tree->lock must be held.  NULL will returned if
1407  * nothing was found after 'start'
1408  */
1409 static struct extent_state *
1410 find_first_extent_bit_state(struct extent_io_tree *tree,
1411                             u64 start, unsigned long bits)
1412 {
1413         struct rb_node *node;
1414         struct extent_state *state;
1415
1416         /*
1417          * this search will find all the extents that end after
1418          * our range starts.
1419          */
1420         node = tree_search(tree, start);
1421         if (!node)
1422                 goto out;
1423
1424         while (1) {
1425                 state = rb_entry(node, struct extent_state, rb_node);
1426                 if (state->end >= start && (state->state & bits))
1427                         return state;
1428
1429                 node = rb_next(node);
1430                 if (!node)
1431                         break;
1432         }
1433 out:
1434         return NULL;
1435 }
1436
1437 /*
1438  * find the first offset in the io tree with 'bits' set. zero is
1439  * returned if we find something, and *start_ret and *end_ret are
1440  * set to reflect the state struct that was found.
1441  *
1442  * If nothing was found, 1 is returned. If found something, return 0.
1443  */
1444 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1445                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1446                           struct extent_state **cached_state)
1447 {
1448         struct extent_state *state;
1449         struct rb_node *n;
1450         int ret = 1;
1451
1452         spin_lock(&tree->lock);
1453         if (cached_state && *cached_state) {
1454                 state = *cached_state;
1455                 if (state->end == start - 1 && state->tree) {
1456                         n = rb_next(&state->rb_node);
1457                         while (n) {
1458                                 state = rb_entry(n, struct extent_state,
1459                                                  rb_node);
1460                                 if (state->state & bits)
1461                                         goto got_it;
1462                                 n = rb_next(n);
1463                         }
1464                         free_extent_state(*cached_state);
1465                         *cached_state = NULL;
1466                         goto out;
1467                 }
1468                 free_extent_state(*cached_state);
1469                 *cached_state = NULL;
1470         }
1471
1472         state = find_first_extent_bit_state(tree, start, bits);
1473 got_it:
1474         if (state) {
1475                 cache_state(state, cached_state);
1476                 *start_ret = state->start;
1477                 *end_ret = state->end;
1478                 ret = 0;
1479         }
1480 out:
1481         spin_unlock(&tree->lock);
1482         return ret;
1483 }
1484
1485 /*
1486  * find a contiguous range of bytes in the file marked as delalloc, not
1487  * more than 'max_bytes'.  start and end are used to return the range,
1488  *
1489  * 1 is returned if we find something, 0 if nothing was in the tree
1490  */
1491 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1492                                         u64 *start, u64 *end, u64 max_bytes,
1493                                         struct extent_state **cached_state)
1494 {
1495         struct rb_node *node;
1496         struct extent_state *state;
1497         u64 cur_start = *start;
1498         u64 found = 0;
1499         u64 total_bytes = 0;
1500
1501         spin_lock(&tree->lock);
1502
1503         /*
1504          * this search will find all the extents that end after
1505          * our range starts.
1506          */
1507         node = tree_search(tree, cur_start);
1508         if (!node) {
1509                 if (!found)
1510                         *end = (u64)-1;
1511                 goto out;
1512         }
1513
1514         while (1) {
1515                 state = rb_entry(node, struct extent_state, rb_node);
1516                 if (found && (state->start != cur_start ||
1517                               (state->state & EXTENT_BOUNDARY))) {
1518                         goto out;
1519                 }
1520                 if (!(state->state & EXTENT_DELALLOC)) {
1521                         if (!found)
1522                                 *end = state->end;
1523                         goto out;
1524                 }
1525                 if (!found) {
1526                         *start = state->start;
1527                         *cached_state = state;
1528                         atomic_inc(&state->refs);
1529                 }
1530                 found++;
1531                 *end = state->end;
1532                 cur_start = state->end + 1;
1533                 node = rb_next(node);
1534                 total_bytes += state->end - state->start + 1;
1535                 if (total_bytes >= max_bytes)
1536                         break;
1537                 if (!node)
1538                         break;
1539         }
1540 out:
1541         spin_unlock(&tree->lock);
1542         return found;
1543 }
1544
1545 static noinline void __unlock_for_delalloc(struct inode *inode,
1546                                            struct page *locked_page,
1547                                            u64 start, u64 end)
1548 {
1549         int ret;
1550         struct page *pages[16];
1551         unsigned long index = start >> PAGE_CACHE_SHIFT;
1552         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1553         unsigned long nr_pages = end_index - index + 1;
1554         int i;
1555
1556         if (index == locked_page->index && end_index == index)
1557                 return;
1558
1559         while (nr_pages > 0) {
1560                 ret = find_get_pages_contig(inode->i_mapping, index,
1561                                      min_t(unsigned long, nr_pages,
1562                                      ARRAY_SIZE(pages)), pages);
1563                 for (i = 0; i < ret; i++) {
1564                         if (pages[i] != locked_page)
1565                                 unlock_page(pages[i]);
1566                         page_cache_release(pages[i]);
1567                 }
1568                 nr_pages -= ret;
1569                 index += ret;
1570                 cond_resched();
1571         }
1572 }
1573
1574 static noinline int lock_delalloc_pages(struct inode *inode,
1575                                         struct page *locked_page,
1576                                         u64 delalloc_start,
1577                                         u64 delalloc_end)
1578 {
1579         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1580         unsigned long start_index = index;
1581         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1582         unsigned long pages_locked = 0;
1583         struct page *pages[16];
1584         unsigned long nrpages;
1585         int ret;
1586         int i;
1587
1588         /* the caller is responsible for locking the start index */
1589         if (index == locked_page->index && index == end_index)
1590                 return 0;
1591
1592         /* skip the page at the start index */
1593         nrpages = end_index - index + 1;
1594         while (nrpages > 0) {
1595                 ret = find_get_pages_contig(inode->i_mapping, index,
1596                                      min_t(unsigned long,
1597                                      nrpages, ARRAY_SIZE(pages)), pages);
1598                 if (ret == 0) {
1599                         ret = -EAGAIN;
1600                         goto done;
1601                 }
1602                 /* now we have an array of pages, lock them all */
1603                 for (i = 0; i < ret; i++) {
1604                         /*
1605                          * the caller is taking responsibility for
1606                          * locked_page
1607                          */
1608                         if (pages[i] != locked_page) {
1609                                 lock_page(pages[i]);
1610                                 if (!PageDirty(pages[i]) ||
1611                                     pages[i]->mapping != inode->i_mapping) {
1612                                         ret = -EAGAIN;
1613                                         unlock_page(pages[i]);
1614                                         page_cache_release(pages[i]);
1615                                         goto done;
1616                                 }
1617                         }
1618                         page_cache_release(pages[i]);
1619                         pages_locked++;
1620                 }
1621                 nrpages -= ret;
1622                 index += ret;
1623                 cond_resched();
1624         }
1625         ret = 0;
1626 done:
1627         if (ret && pages_locked) {
1628                 __unlock_for_delalloc(inode, locked_page,
1629                               delalloc_start,
1630                               ((u64)(start_index + pages_locked - 1)) <<
1631                               PAGE_CACHE_SHIFT);
1632         }
1633         return ret;
1634 }
1635
1636 /*
1637  * find a contiguous range of bytes in the file marked as delalloc, not
1638  * more than 'max_bytes'.  start and end are used to return the range,
1639  *
1640  * 1 is returned if we find something, 0 if nothing was in the tree
1641  */
1642 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1643                                     struct extent_io_tree *tree,
1644                                     struct page *locked_page, u64 *start,
1645                                     u64 *end, u64 max_bytes)
1646 {
1647         u64 delalloc_start;
1648         u64 delalloc_end;
1649         u64 found;
1650         struct extent_state *cached_state = NULL;
1651         int ret;
1652         int loops = 0;
1653
1654 again:
1655         /* step one, find a bunch of delalloc bytes starting at start */
1656         delalloc_start = *start;
1657         delalloc_end = 0;
1658         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1659                                     max_bytes, &cached_state);
1660         if (!found || delalloc_end <= *start) {
1661                 *start = delalloc_start;
1662                 *end = delalloc_end;
1663                 free_extent_state(cached_state);
1664                 return 0;
1665         }
1666
1667         /*
1668          * start comes from the offset of locked_page.  We have to lock
1669          * pages in order, so we can't process delalloc bytes before
1670          * locked_page
1671          */
1672         if (delalloc_start < *start)
1673                 delalloc_start = *start;
1674
1675         /*
1676          * make sure to limit the number of pages we try to lock down
1677          */
1678         if (delalloc_end + 1 - delalloc_start > max_bytes)
1679                 delalloc_end = delalloc_start + max_bytes - 1;
1680
1681         /* step two, lock all the pages after the page that has start */
1682         ret = lock_delalloc_pages(inode, locked_page,
1683                                   delalloc_start, delalloc_end);
1684         if (ret == -EAGAIN) {
1685                 /* some of the pages are gone, lets avoid looping by
1686                  * shortening the size of the delalloc range we're searching
1687                  */
1688                 free_extent_state(cached_state);
1689                 if (!loops) {
1690                         max_bytes = PAGE_CACHE_SIZE;
1691                         loops = 1;
1692                         goto again;
1693                 } else {
1694                         found = 0;
1695                         goto out_failed;
1696                 }
1697         }
1698         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1699
1700         /* step three, lock the state bits for the whole range */
1701         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1702
1703         /* then test to make sure it is all still delalloc */
1704         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1705                              EXTENT_DELALLOC, 1, cached_state);
1706         if (!ret) {
1707                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1708                                      &cached_state, GFP_NOFS);
1709                 __unlock_for_delalloc(inode, locked_page,
1710                               delalloc_start, delalloc_end);
1711                 cond_resched();
1712                 goto again;
1713         }
1714         free_extent_state(cached_state);
1715         *start = delalloc_start;
1716         *end = delalloc_end;
1717 out_failed:
1718         return found;
1719 }
1720
1721 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1722                                  struct page *locked_page,
1723                                  unsigned long clear_bits,
1724                                  unsigned long page_ops)
1725 {
1726         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1727         int ret;
1728         struct page *pages[16];
1729         unsigned long index = start >> PAGE_CACHE_SHIFT;
1730         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1731         unsigned long nr_pages = end_index - index + 1;
1732         int i;
1733
1734         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1735         if (page_ops == 0)
1736                 return 0;
1737
1738         while (nr_pages > 0) {
1739                 ret = find_get_pages_contig(inode->i_mapping, index,
1740                                      min_t(unsigned long,
1741                                      nr_pages, ARRAY_SIZE(pages)), pages);
1742                 for (i = 0; i < ret; i++) {
1743
1744                         if (page_ops & PAGE_SET_PRIVATE2)
1745                                 SetPagePrivate2(pages[i]);
1746
1747                         if (pages[i] == locked_page) {
1748                                 page_cache_release(pages[i]);
1749                                 continue;
1750                         }
1751                         if (page_ops & PAGE_CLEAR_DIRTY)
1752                                 clear_page_dirty_for_io(pages[i]);
1753                         if (page_ops & PAGE_SET_WRITEBACK)
1754                                 set_page_writeback(pages[i]);
1755                         if (page_ops & PAGE_END_WRITEBACK)
1756                                 end_page_writeback(pages[i]);
1757                         if (page_ops & PAGE_UNLOCK)
1758                                 unlock_page(pages[i]);
1759                         page_cache_release(pages[i]);
1760                 }
1761                 nr_pages -= ret;
1762                 index += ret;
1763                 cond_resched();
1764         }
1765         return 0;
1766 }
1767
1768 /*
1769  * count the number of bytes in the tree that have a given bit(s)
1770  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1771  * cached.  The total number found is returned.
1772  */
1773 u64 count_range_bits(struct extent_io_tree *tree,
1774                      u64 *start, u64 search_end, u64 max_bytes,
1775                      unsigned long bits, int contig)
1776 {
1777         struct rb_node *node;
1778         struct extent_state *state;
1779         u64 cur_start = *start;
1780         u64 total_bytes = 0;
1781         u64 last = 0;
1782         int found = 0;
1783
1784         if (WARN_ON(search_end <= cur_start))
1785                 return 0;
1786
1787         spin_lock(&tree->lock);
1788         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1789                 total_bytes = tree->dirty_bytes;
1790                 goto out;
1791         }
1792         /*
1793          * this search will find all the extents that end after
1794          * our range starts.
1795          */
1796         node = tree_search(tree, cur_start);
1797         if (!node)
1798                 goto out;
1799
1800         while (1) {
1801                 state = rb_entry(node, struct extent_state, rb_node);
1802                 if (state->start > search_end)
1803                         break;
1804                 if (contig && found && state->start > last + 1)
1805                         break;
1806                 if (state->end >= cur_start && (state->state & bits) == bits) {
1807                         total_bytes += min(search_end, state->end) + 1 -
1808                                        max(cur_start, state->start);
1809                         if (total_bytes >= max_bytes)
1810                                 break;
1811                         if (!found) {
1812                                 *start = max(cur_start, state->start);
1813                                 found = 1;
1814                         }
1815                         last = state->end;
1816                 } else if (contig && found) {
1817                         break;
1818                 }
1819                 node = rb_next(node);
1820                 if (!node)
1821                         break;
1822         }
1823 out:
1824         spin_unlock(&tree->lock);
1825         return total_bytes;
1826 }
1827
1828 /*
1829  * set the private field for a given byte offset in the tree.  If there isn't
1830  * an extent_state there already, this does nothing.
1831  */
1832 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1833 {
1834         struct rb_node *node;
1835         struct extent_state *state;
1836         int ret = 0;
1837
1838         spin_lock(&tree->lock);
1839         /*
1840          * this search will find all the extents that end after
1841          * our range starts.
1842          */
1843         node = tree_search(tree, start);
1844         if (!node) {
1845                 ret = -ENOENT;
1846                 goto out;
1847         }
1848         state = rb_entry(node, struct extent_state, rb_node);
1849         if (state->start != start) {
1850                 ret = -ENOENT;
1851                 goto out;
1852         }
1853         state->private = private;
1854 out:
1855         spin_unlock(&tree->lock);
1856         return ret;
1857 }
1858
1859 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1860 {
1861         struct rb_node *node;
1862         struct extent_state *state;
1863         int ret = 0;
1864
1865         spin_lock(&tree->lock);
1866         /*
1867          * this search will find all the extents that end after
1868          * our range starts.
1869          */
1870         node = tree_search(tree, start);
1871         if (!node) {
1872                 ret = -ENOENT;
1873                 goto out;
1874         }
1875         state = rb_entry(node, struct extent_state, rb_node);
1876         if (state->start != start) {
1877                 ret = -ENOENT;
1878                 goto out;
1879         }
1880         *private = state->private;
1881 out:
1882         spin_unlock(&tree->lock);
1883         return ret;
1884 }
1885
1886 /*
1887  * searches a range in the state tree for a given mask.
1888  * If 'filled' == 1, this returns 1 only if every extent in the tree
1889  * has the bits set.  Otherwise, 1 is returned if any bit in the
1890  * range is found set.
1891  */
1892 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1893                    unsigned long bits, int filled, struct extent_state *cached)
1894 {
1895         struct extent_state *state = NULL;
1896         struct rb_node *node;
1897         int bitset = 0;
1898
1899         spin_lock(&tree->lock);
1900         if (cached && cached->tree && cached->start <= start &&
1901             cached->end > start)
1902                 node = &cached->rb_node;
1903         else
1904                 node = tree_search(tree, start);
1905         while (node && start <= end) {
1906                 state = rb_entry(node, struct extent_state, rb_node);
1907
1908                 if (filled && state->start > start) {
1909                         bitset = 0;
1910                         break;
1911                 }
1912
1913                 if (state->start > end)
1914                         break;
1915
1916                 if (state->state & bits) {
1917                         bitset = 1;
1918                         if (!filled)
1919                                 break;
1920                 } else if (filled) {
1921                         bitset = 0;
1922                         break;
1923                 }
1924
1925                 if (state->end == (u64)-1)
1926                         break;
1927
1928                 start = state->end + 1;
1929                 if (start > end)
1930                         break;
1931                 node = rb_next(node);
1932                 if (!node) {
1933                         if (filled)
1934                                 bitset = 0;
1935                         break;
1936                 }
1937         }
1938         spin_unlock(&tree->lock);
1939         return bitset;
1940 }
1941
1942 /*
1943  * helper function to set a given page up to date if all the
1944  * extents in the tree for that page are up to date
1945  */
1946 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1947 {
1948         u64 start = page_offset(page);
1949         u64 end = start + PAGE_CACHE_SIZE - 1;
1950         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1951                 SetPageUptodate(page);
1952 }
1953
1954 /*
1955  * When IO fails, either with EIO or csum verification fails, we
1956  * try other mirrors that might have a good copy of the data.  This
1957  * io_failure_record is used to record state as we go through all the
1958  * mirrors.  If another mirror has good data, the page is set up to date
1959  * and things continue.  If a good mirror can't be found, the original
1960  * bio end_io callback is called to indicate things have failed.
1961  */
1962 struct io_failure_record {
1963         struct page *page;
1964         u64 start;
1965         u64 len;
1966         u64 logical;
1967         unsigned long bio_flags;
1968         int this_mirror;
1969         int failed_mirror;
1970         int in_validation;
1971 };
1972
1973 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1974                                 int did_repair)
1975 {
1976         int ret;
1977         int err = 0;
1978         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1979
1980         set_state_private(failure_tree, rec->start, 0);
1981         ret = clear_extent_bits(failure_tree, rec->start,
1982                                 rec->start + rec->len - 1,
1983                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1984         if (ret)
1985                 err = ret;
1986
1987         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1988                                 rec->start + rec->len - 1,
1989                                 EXTENT_DAMAGED, GFP_NOFS);
1990         if (ret && !err)
1991                 err = ret;
1992
1993         kfree(rec);
1994         return err;
1995 }
1996
1997 /*
1998  * this bypasses the standard btrfs submit functions deliberately, as
1999  * the standard behavior is to write all copies in a raid setup. here we only
2000  * want to write the one bad copy. so we do the mapping for ourselves and issue
2001  * submit_bio directly.
2002  * to avoid any synchronization issues, wait for the data after writing, which
2003  * actually prevents the read that triggered the error from finishing.
2004  * currently, there can be no more than two copies of every data bit. thus,
2005  * exactly one rewrite is required.
2006  */
2007 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2008                         u64 length, u64 logical, struct page *page,
2009                         int mirror_num)
2010 {
2011         struct bio *bio;
2012         struct btrfs_device *dev;
2013         u64 map_length = 0;
2014         u64 sector;
2015         struct btrfs_bio *bbio = NULL;
2016         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2017         int ret;
2018
2019         ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2020         BUG_ON(!mirror_num);
2021
2022         /* we can't repair anything in raid56 yet */
2023         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2024                 return 0;
2025
2026         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2027         if (!bio)
2028                 return -EIO;
2029         bio->bi_size = 0;
2030         map_length = length;
2031
2032         ret = btrfs_map_block(fs_info, WRITE, logical,
2033                               &map_length, &bbio, mirror_num);
2034         if (ret) {
2035                 bio_put(bio);
2036                 return -EIO;
2037         }
2038         BUG_ON(mirror_num != bbio->mirror_num);
2039         sector = bbio->stripes[mirror_num-1].physical >> 9;
2040         bio->bi_sector = sector;
2041         dev = bbio->stripes[mirror_num-1].dev;
2042         kfree(bbio);
2043         if (!dev || !dev->bdev || !dev->writeable) {
2044                 bio_put(bio);
2045                 return -EIO;
2046         }
2047         bio->bi_bdev = dev->bdev;
2048         bio_add_page(bio, page, length, start - page_offset(page));
2049
2050         if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2051                 /* try to remap that extent elsewhere? */
2052                 bio_put(bio);
2053                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2054                 return -EIO;
2055         }
2056
2057         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2058                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2059                       start, rcu_str_deref(dev->name), sector);
2060
2061         bio_put(bio);
2062         return 0;
2063 }
2064
2065 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2066                          int mirror_num)
2067 {
2068         u64 start = eb->start;
2069         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2070         int ret = 0;
2071
2072         if (root->fs_info->sb->s_flags & MS_RDONLY)
2073                 return -EROFS;
2074
2075         for (i = 0; i < num_pages; i++) {
2076                 struct page *p = extent_buffer_page(eb, i);
2077                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2078                                         start, p, mirror_num);
2079                 if (ret)
2080                         break;
2081                 start += PAGE_CACHE_SIZE;
2082         }
2083
2084         return ret;
2085 }
2086
2087 /*
2088  * each time an IO finishes, we do a fast check in the IO failure tree
2089  * to see if we need to process or clean up an io_failure_record
2090  */
2091 static int clean_io_failure(u64 start, struct page *page)
2092 {
2093         u64 private;
2094         u64 private_failure;
2095         struct io_failure_record *failrec;
2096         struct inode *inode = page->mapping->host;
2097         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2098         struct extent_state *state;
2099         int num_copies;
2100         int did_repair = 0;
2101         int ret;
2102
2103         private = 0;
2104         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2105                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2106         if (!ret)
2107                 return 0;
2108
2109         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2110                                 &private_failure);
2111         if (ret)
2112                 return 0;
2113
2114         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2115         BUG_ON(!failrec->this_mirror);
2116
2117         if (failrec->in_validation) {
2118                 /* there was no real error, just free the record */
2119                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2120                          failrec->start);
2121                 did_repair = 1;
2122                 goto out;
2123         }
2124         if (fs_info->sb->s_flags & MS_RDONLY)
2125                 goto out;
2126
2127         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2128         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2129                                             failrec->start,
2130                                             EXTENT_LOCKED);
2131         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2132
2133         if (state && state->start <= failrec->start &&
2134             state->end >= failrec->start + failrec->len - 1) {
2135                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2136                                               failrec->len);
2137                 if (num_copies > 1)  {
2138                         ret = repair_io_failure(fs_info, start, failrec->len,
2139                                                 failrec->logical, page,
2140                                                 failrec->failed_mirror);
2141                         did_repair = !ret;
2142                 }
2143                 ret = 0;
2144         }
2145
2146 out:
2147         if (!ret)
2148                 ret = free_io_failure(inode, failrec, did_repair);
2149
2150         return ret;
2151 }
2152
2153 /*
2154  * this is a generic handler for readpage errors (default
2155  * readpage_io_failed_hook). if other copies exist, read those and write back
2156  * good data to the failed position. does not investigate in remapping the
2157  * failed extent elsewhere, hoping the device will be smart enough to do this as
2158  * needed
2159  */
2160
2161 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2162                               struct page *page, u64 start, u64 end,
2163                               int failed_mirror)
2164 {
2165         struct io_failure_record *failrec = NULL;
2166         u64 private;
2167         struct extent_map *em;
2168         struct inode *inode = page->mapping->host;
2169         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2170         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2171         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2172         struct bio *bio;
2173         struct btrfs_io_bio *btrfs_failed_bio;
2174         struct btrfs_io_bio *btrfs_bio;
2175         int num_copies;
2176         int ret;
2177         int read_mode;
2178         u64 logical;
2179
2180         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2181
2182         ret = get_state_private(failure_tree, start, &private);
2183         if (ret) {
2184                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2185                 if (!failrec)
2186                         return -ENOMEM;
2187                 failrec->start = start;
2188                 failrec->len = end - start + 1;
2189                 failrec->this_mirror = 0;
2190                 failrec->bio_flags = 0;
2191                 failrec->in_validation = 0;
2192
2193                 read_lock(&em_tree->lock);
2194                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2195                 if (!em) {
2196                         read_unlock(&em_tree->lock);
2197                         kfree(failrec);
2198                         return -EIO;
2199                 }
2200
2201                 if (em->start > start || em->start + em->len <= start) {
2202                         free_extent_map(em);
2203                         em = NULL;
2204                 }
2205                 read_unlock(&em_tree->lock);
2206
2207                 if (!em) {
2208                         kfree(failrec);
2209                         return -EIO;
2210                 }
2211                 logical = start - em->start;
2212                 logical = em->block_start + logical;
2213                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2214                         logical = em->block_start;
2215                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2216                         extent_set_compress_type(&failrec->bio_flags,
2217                                                  em->compress_type);
2218                 }
2219                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2220                          "len=%llu\n", logical, start, failrec->len);
2221                 failrec->logical = logical;
2222                 free_extent_map(em);
2223
2224                 /* set the bits in the private failure tree */
2225                 ret = set_extent_bits(failure_tree, start, end,
2226                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2227                 if (ret >= 0)
2228                         ret = set_state_private(failure_tree, start,
2229                                                 (u64)(unsigned long)failrec);
2230                 /* set the bits in the inode's tree */
2231                 if (ret >= 0)
2232                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2233                                                 GFP_NOFS);
2234                 if (ret < 0) {
2235                         kfree(failrec);
2236                         return ret;
2237                 }
2238         } else {
2239                 failrec = (struct io_failure_record *)(unsigned long)private;
2240                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2241                          "start=%llu, len=%llu, validation=%d\n",
2242                          failrec->logical, failrec->start, failrec->len,
2243                          failrec->in_validation);
2244                 /*
2245                  * when data can be on disk more than twice, add to failrec here
2246                  * (e.g. with a list for failed_mirror) to make
2247                  * clean_io_failure() clean all those errors at once.
2248                  */
2249         }
2250         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2251                                       failrec->logical, failrec->len);
2252         if (num_copies == 1) {
2253                 /*
2254                  * we only have a single copy of the data, so don't bother with
2255                  * all the retry and error correction code that follows. no
2256                  * matter what the error is, it is very likely to persist.
2257                  */
2258                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2259                          num_copies, failrec->this_mirror, failed_mirror);
2260                 free_io_failure(inode, failrec, 0);
2261                 return -EIO;
2262         }
2263
2264         /*
2265          * there are two premises:
2266          *      a) deliver good data to the caller
2267          *      b) correct the bad sectors on disk
2268          */
2269         if (failed_bio->bi_vcnt > 1) {
2270                 /*
2271                  * to fulfill b), we need to know the exact failing sectors, as
2272                  * we don't want to rewrite any more than the failed ones. thus,
2273                  * we need separate read requests for the failed bio
2274                  *
2275                  * if the following BUG_ON triggers, our validation request got
2276                  * merged. we need separate requests for our algorithm to work.
2277                  */
2278                 BUG_ON(failrec->in_validation);
2279                 failrec->in_validation = 1;
2280                 failrec->this_mirror = failed_mirror;
2281                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2282         } else {
2283                 /*
2284                  * we're ready to fulfill a) and b) alongside. get a good copy
2285                  * of the failed sector and if we succeed, we have setup
2286                  * everything for repair_io_failure to do the rest for us.
2287                  */
2288                 if (failrec->in_validation) {
2289                         BUG_ON(failrec->this_mirror != failed_mirror);
2290                         failrec->in_validation = 0;
2291                         failrec->this_mirror = 0;
2292                 }
2293                 failrec->failed_mirror = failed_mirror;
2294                 failrec->this_mirror++;
2295                 if (failrec->this_mirror == failed_mirror)
2296                         failrec->this_mirror++;
2297                 read_mode = READ_SYNC;
2298         }
2299
2300         if (failrec->this_mirror > num_copies) {
2301                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2302                          num_copies, failrec->this_mirror, failed_mirror);
2303                 free_io_failure(inode, failrec, 0);
2304                 return -EIO;
2305         }
2306
2307         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2308         if (!bio) {
2309                 free_io_failure(inode, failrec, 0);
2310                 return -EIO;
2311         }
2312         bio->bi_end_io = failed_bio->bi_end_io;
2313         bio->bi_sector = failrec->logical >> 9;
2314         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2315         bio->bi_size = 0;
2316
2317         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2318         if (btrfs_failed_bio->csum) {
2319                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2320                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2321
2322                 btrfs_bio = btrfs_io_bio(bio);
2323                 btrfs_bio->csum = btrfs_bio->csum_inline;
2324                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2325                 phy_offset *= csum_size;
2326                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2327                        csum_size);
2328         }
2329
2330         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2331
2332         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2333                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2334                  failrec->this_mirror, num_copies, failrec->in_validation);
2335
2336         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2337                                          failrec->this_mirror,
2338                                          failrec->bio_flags, 0);
2339         return ret;
2340 }
2341
2342 /* lots and lots of room for performance fixes in the end_bio funcs */
2343
2344 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2345 {
2346         int uptodate = (err == 0);
2347         struct extent_io_tree *tree;
2348         int ret;
2349
2350         tree = &BTRFS_I(page->mapping->host)->io_tree;
2351
2352         if (tree->ops && tree->ops->writepage_end_io_hook) {
2353                 ret = tree->ops->writepage_end_io_hook(page, start,
2354                                                end, NULL, uptodate);
2355                 if (ret)
2356                         uptodate = 0;
2357         }
2358
2359         if (!uptodate) {
2360                 ClearPageUptodate(page);
2361                 SetPageError(page);
2362         }
2363         return 0;
2364 }
2365
2366 /*
2367  * after a writepage IO is done, we need to:
2368  * clear the uptodate bits on error
2369  * clear the writeback bits in the extent tree for this IO
2370  * end_page_writeback if the page has no more pending IO
2371  *
2372  * Scheduling is not allowed, so the extent state tree is expected
2373  * to have one and only one object corresponding to this IO.
2374  */
2375 static void end_bio_extent_writepage(struct bio *bio, int err)
2376 {
2377         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2378         u64 start;
2379         u64 end;
2380
2381         do {
2382                 struct page *page = bvec->bv_page;
2383
2384                 /* We always issue full-page reads, but if some block
2385                  * in a page fails to read, blk_update_request() will
2386                  * advance bv_offset and adjust bv_len to compensate.
2387                  * Print a warning for nonzero offsets, and an error
2388                  * if they don't add up to a full page.  */
2389                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2390                         printk("%s page write in btrfs with offset %u and length %u\n",
2391                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2392                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2393                                bvec->bv_offset, bvec->bv_len);
2394
2395                 start = page_offset(page);
2396                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2397
2398                 if (--bvec >= bio->bi_io_vec)
2399                         prefetchw(&bvec->bv_page->flags);
2400
2401                 if (end_extent_writepage(page, err, start, end))
2402                         continue;
2403
2404                 end_page_writeback(page);
2405         } while (bvec >= bio->bi_io_vec);
2406
2407         bio_put(bio);
2408 }
2409
2410 static void
2411 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2412                               int uptodate)
2413 {
2414         struct extent_state *cached = NULL;
2415         u64 end = start + len - 1;
2416
2417         if (uptodate && tree->track_uptodate)
2418                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2419         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2420 }
2421
2422 /*
2423  * after a readpage IO is done, we need to:
2424  * clear the uptodate bits on error
2425  * set the uptodate bits if things worked
2426  * set the page up to date if all extents in the tree are uptodate
2427  * clear the lock bit in the extent tree
2428  * unlock the page if there are no other extents locked for it
2429  *
2430  * Scheduling is not allowed, so the extent state tree is expected
2431  * to have one and only one object corresponding to this IO.
2432  */
2433 static void end_bio_extent_readpage(struct bio *bio, int err)
2434 {
2435         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2436         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2437         struct bio_vec *bvec = bio->bi_io_vec;
2438         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2439         struct extent_io_tree *tree;
2440         u64 offset = 0;
2441         u64 start;
2442         u64 end;
2443         u64 len;
2444         u64 extent_start = 0;
2445         u64 extent_len = 0;
2446         int mirror;
2447         int ret;
2448
2449         if (err)
2450                 uptodate = 0;
2451
2452         do {
2453                 struct page *page = bvec->bv_page;
2454                 struct inode *inode = page->mapping->host;
2455
2456                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2457                          "mirror=%lu\n", (u64)bio->bi_sector, err,
2458                          io_bio->mirror_num);
2459                 tree = &BTRFS_I(inode)->io_tree;
2460
2461                 /* We always issue full-page reads, but if some block
2462                  * in a page fails to read, blk_update_request() will
2463                  * advance bv_offset and adjust bv_len to compensate.
2464                  * Print a warning for nonzero offsets, and an error
2465                  * if they don't add up to a full page.  */
2466                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2467                         printk("%s page read in btrfs with offset %u and length %u\n",
2468                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2469                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2470                                bvec->bv_offset, bvec->bv_len);
2471
2472                 start = page_offset(page);
2473                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2474                 len = bvec->bv_len;
2475
2476                 if (++bvec <= bvec_end)
2477                         prefetchw(&bvec->bv_page->flags);
2478
2479                 mirror = io_bio->mirror_num;
2480                 if (likely(uptodate && tree->ops &&
2481                            tree->ops->readpage_end_io_hook)) {
2482                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2483                                                               page, start, end,
2484                                                               mirror);
2485                         if (ret)
2486                                 uptodate = 0;
2487                         else
2488                                 clean_io_failure(start, page);
2489                 }
2490
2491                 if (likely(uptodate))
2492                         goto readpage_ok;
2493
2494                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2495                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2496                         if (!ret && !err &&
2497                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2498                                 uptodate = 1;
2499                 } else {
2500                         /*
2501                          * The generic bio_readpage_error handles errors the
2502                          * following way: If possible, new read requests are
2503                          * created and submitted and will end up in
2504                          * end_bio_extent_readpage as well (if we're lucky, not
2505                          * in the !uptodate case). In that case it returns 0 and
2506                          * we just go on with the next page in our bio. If it
2507                          * can't handle the error it will return -EIO and we
2508                          * remain responsible for that page.
2509                          */
2510                         ret = bio_readpage_error(bio, offset, page, start, end,
2511                                                  mirror);
2512                         if (ret == 0) {
2513                                 uptodate =
2514                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2515                                 if (err)
2516                                         uptodate = 0;
2517                                 continue;
2518                         }
2519                 }
2520 readpage_ok:
2521                 if (likely(uptodate)) {
2522                         loff_t i_size = i_size_read(inode);
2523                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2524                         unsigned offset;
2525
2526                         /* Zero out the end if this page straddles i_size */
2527                         offset = i_size & (PAGE_CACHE_SIZE-1);
2528                         if (page->index == end_index && offset)
2529                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2530                         SetPageUptodate(page);
2531                 } else {
2532                         ClearPageUptodate(page);
2533                         SetPageError(page);
2534                 }
2535                 unlock_page(page);
2536                 offset += len;
2537
2538                 if (unlikely(!uptodate)) {
2539                         if (extent_len) {
2540                                 endio_readpage_release_extent(tree,
2541                                                               extent_start,
2542                                                               extent_len, 1);
2543                                 extent_start = 0;
2544                                 extent_len = 0;
2545                         }
2546                         endio_readpage_release_extent(tree, start,
2547                                                       end - start + 1, 0);
2548                 } else if (!extent_len) {
2549                         extent_start = start;
2550                         extent_len = end + 1 - start;
2551                 } else if (extent_start + extent_len == start) {
2552                         extent_len += end + 1 - start;
2553                 } else {
2554                         endio_readpage_release_extent(tree, extent_start,
2555                                                       extent_len, uptodate);
2556                         extent_start = start;
2557                         extent_len = end + 1 - start;
2558                 }
2559         } while (bvec <= bvec_end);
2560
2561         if (extent_len)
2562                 endio_readpage_release_extent(tree, extent_start, extent_len,
2563                                               uptodate);
2564         if (io_bio->end_io)
2565                 io_bio->end_io(io_bio, err);
2566         bio_put(bio);
2567 }
2568
2569 /*
2570  * this allocates from the btrfs_bioset.  We're returning a bio right now
2571  * but you can call btrfs_io_bio for the appropriate container_of magic
2572  */
2573 struct bio *
2574 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2575                 gfp_t gfp_flags)
2576 {
2577         struct btrfs_io_bio *btrfs_bio;
2578         struct bio *bio;
2579
2580         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2581
2582         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2583                 while (!bio && (nr_vecs /= 2)) {
2584                         bio = bio_alloc_bioset(gfp_flags,
2585                                                nr_vecs, btrfs_bioset);
2586                 }
2587         }
2588
2589         if (bio) {
2590                 bio->bi_size = 0;
2591                 bio->bi_bdev = bdev;
2592                 bio->bi_sector = first_sector;
2593                 btrfs_bio = btrfs_io_bio(bio);
2594                 btrfs_bio->csum = NULL;
2595                 btrfs_bio->csum_allocated = NULL;
2596                 btrfs_bio->end_io = NULL;
2597         }
2598         return bio;
2599 }
2600
2601 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2602 {
2603         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2604 }
2605
2606
2607 /* this also allocates from the btrfs_bioset */
2608 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2609 {
2610         struct btrfs_io_bio *btrfs_bio;
2611         struct bio *bio;
2612
2613         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2614         if (bio) {
2615                 btrfs_bio = btrfs_io_bio(bio);
2616                 btrfs_bio->csum = NULL;
2617                 btrfs_bio->csum_allocated = NULL;
2618                 btrfs_bio->end_io = NULL;
2619         }
2620         return bio;
2621 }
2622
2623
2624 static int __must_check submit_one_bio(int rw, struct bio *bio,
2625                                        int mirror_num, unsigned long bio_flags)
2626 {
2627         int ret = 0;
2628         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2629         struct page *page = bvec->bv_page;
2630         struct extent_io_tree *tree = bio->bi_private;
2631         u64 start;
2632
2633         start = page_offset(page) + bvec->bv_offset;
2634
2635         bio->bi_private = NULL;
2636
2637         bio_get(bio);
2638
2639         if (tree->ops && tree->ops->submit_bio_hook)
2640                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2641                                            mirror_num, bio_flags, start);
2642         else
2643                 btrfsic_submit_bio(rw, bio);
2644
2645         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2646                 ret = -EOPNOTSUPP;
2647         bio_put(bio);
2648         return ret;
2649 }
2650
2651 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2652                      unsigned long offset, size_t size, struct bio *bio,
2653                      unsigned long bio_flags)
2654 {
2655         int ret = 0;
2656         if (tree->ops && tree->ops->merge_bio_hook)
2657                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2658                                                 bio_flags);
2659         BUG_ON(ret < 0);
2660         return ret;
2661
2662 }
2663
2664 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2665                               struct page *page, sector_t sector,
2666                               size_t size, unsigned long offset,
2667                               struct block_device *bdev,
2668                               struct bio **bio_ret,
2669                               unsigned long max_pages,
2670                               bio_end_io_t end_io_func,
2671                               int mirror_num,
2672                               unsigned long prev_bio_flags,
2673                               unsigned long bio_flags)
2674 {
2675         int ret = 0;
2676         struct bio *bio;
2677         int nr;
2678         int contig = 0;
2679         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2680         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2681         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2682
2683         if (bio_ret && *bio_ret) {
2684                 bio = *bio_ret;
2685                 if (old_compressed)
2686                         contig = bio->bi_sector == sector;
2687                 else
2688                         contig = bio_end_sector(bio) == sector;
2689
2690                 if (prev_bio_flags != bio_flags || !contig ||
2691                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2692                     bio_add_page(bio, page, page_size, offset) < page_size) {
2693                         ret = submit_one_bio(rw, bio, mirror_num,
2694                                              prev_bio_flags);
2695                         if (ret < 0)
2696                                 return ret;
2697                         bio = NULL;
2698                 } else {
2699                         return 0;
2700                 }
2701         }
2702         if (this_compressed)
2703                 nr = BIO_MAX_PAGES;
2704         else
2705                 nr = bio_get_nr_vecs(bdev);
2706
2707         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2708         if (!bio)
2709                 return -ENOMEM;
2710
2711         bio_add_page(bio, page, page_size, offset);
2712         bio->bi_end_io = end_io_func;
2713         bio->bi_private = tree;
2714
2715         if (bio_ret)
2716                 *bio_ret = bio;
2717         else
2718                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2719
2720         return ret;
2721 }
2722
2723 static void attach_extent_buffer_page(struct extent_buffer *eb,
2724                                       struct page *page)
2725 {
2726         if (!PagePrivate(page)) {
2727                 SetPagePrivate(page);
2728                 page_cache_get(page);
2729                 set_page_private(page, (unsigned long)eb);
2730         } else {
2731                 WARN_ON(page->private != (unsigned long)eb);
2732         }
2733 }
2734
2735 void set_page_extent_mapped(struct page *page)
2736 {
2737         if (!PagePrivate(page)) {
2738                 SetPagePrivate(page);
2739                 page_cache_get(page);
2740                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2741         }
2742 }
2743
2744 static struct extent_map *
2745 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2746                  u64 start, u64 len, get_extent_t *get_extent,
2747                  struct extent_map **em_cached)
2748 {
2749         struct extent_map *em;
2750
2751         if (em_cached && *em_cached) {
2752                 em = *em_cached;
2753                 if (em->in_tree && start >= em->start &&
2754                     start < extent_map_end(em)) {
2755                         atomic_inc(&em->refs);
2756                         return em;
2757                 }
2758
2759                 free_extent_map(em);
2760                 *em_cached = NULL;
2761         }
2762
2763         em = get_extent(inode, page, pg_offset, start, len, 0);
2764         if (em_cached && !IS_ERR_OR_NULL(em)) {
2765                 BUG_ON(*em_cached);
2766                 atomic_inc(&em->refs);
2767                 *em_cached = em;
2768         }
2769         return em;
2770 }
2771 /*
2772  * basic readpage implementation.  Locked extent state structs are inserted
2773  * into the tree that are removed when the IO is done (by the end_io
2774  * handlers)
2775  * XXX JDM: This needs looking at to ensure proper page locking
2776  */
2777 static int __do_readpage(struct extent_io_tree *tree,
2778                          struct page *page,
2779                          get_extent_t *get_extent,
2780                          struct extent_map **em_cached,
2781                          struct bio **bio, int mirror_num,
2782                          unsigned long *bio_flags, int rw)
2783 {
2784         struct inode *inode = page->mapping->host;
2785         u64 start = page_offset(page);
2786         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2787         u64 end;
2788         u64 cur = start;
2789         u64 extent_offset;
2790         u64 last_byte = i_size_read(inode);
2791         u64 block_start;
2792         u64 cur_end;
2793         sector_t sector;
2794         struct extent_map *em;
2795         struct block_device *bdev;
2796         int ret;
2797         int nr = 0;
2798         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2799         size_t pg_offset = 0;
2800         size_t iosize;
2801         size_t disk_io_size;
2802         size_t blocksize = inode->i_sb->s_blocksize;
2803         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2804
2805         set_page_extent_mapped(page);
2806
2807         end = page_end;
2808         if (!PageUptodate(page)) {
2809                 if (cleancache_get_page(page) == 0) {
2810                         BUG_ON(blocksize != PAGE_SIZE);
2811                         unlock_extent(tree, start, end);
2812                         goto out;
2813                 }
2814         }
2815
2816         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2817                 char *userpage;
2818                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2819
2820                 if (zero_offset) {
2821                         iosize = PAGE_CACHE_SIZE - zero_offset;
2822                         userpage = kmap_atomic(page);
2823                         memset(userpage + zero_offset, 0, iosize);
2824                         flush_dcache_page(page);
2825                         kunmap_atomic(userpage);
2826                 }
2827         }
2828         while (cur <= end) {
2829                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2830
2831                 if (cur >= last_byte) {
2832                         char *userpage;
2833                         struct extent_state *cached = NULL;
2834
2835                         iosize = PAGE_CACHE_SIZE - pg_offset;
2836                         userpage = kmap_atomic(page);
2837                         memset(userpage + pg_offset, 0, iosize);
2838                         flush_dcache_page(page);
2839                         kunmap_atomic(userpage);
2840                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2841                                             &cached, GFP_NOFS);
2842                         if (!parent_locked)
2843                                 unlock_extent_cached(tree, cur,
2844                                                      cur + iosize - 1,
2845                                                      &cached, GFP_NOFS);
2846                         break;
2847                 }
2848                 em = __get_extent_map(inode, page, pg_offset, cur,
2849                                       end - cur + 1, get_extent, em_cached);
2850                 if (IS_ERR_OR_NULL(em)) {
2851                         SetPageError(page);
2852                         if (!parent_locked)
2853                                 unlock_extent(tree, cur, end);
2854                         break;
2855                 }
2856                 extent_offset = cur - em->start;
2857                 BUG_ON(extent_map_end(em) <= cur);
2858                 BUG_ON(end < cur);
2859
2860                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2861                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2862                         extent_set_compress_type(&this_bio_flag,
2863                                                  em->compress_type);
2864                 }
2865
2866                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2867                 cur_end = min(extent_map_end(em) - 1, end);
2868                 iosize = ALIGN(iosize, blocksize);
2869                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2870                         disk_io_size = em->block_len;
2871                         sector = em->block_start >> 9;
2872                 } else {
2873                         sector = (em->block_start + extent_offset) >> 9;
2874                         disk_io_size = iosize;
2875                 }
2876                 bdev = em->bdev;
2877                 block_start = em->block_start;
2878                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2879                         block_start = EXTENT_MAP_HOLE;
2880                 free_extent_map(em);
2881                 em = NULL;
2882
2883                 /* we've found a hole, just zero and go on */
2884                 if (block_start == EXTENT_MAP_HOLE) {
2885                         char *userpage;
2886                         struct extent_state *cached = NULL;
2887
2888                         userpage = kmap_atomic(page);
2889                         memset(userpage + pg_offset, 0, iosize);
2890                         flush_dcache_page(page);
2891                         kunmap_atomic(userpage);
2892
2893                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2894                                             &cached, GFP_NOFS);
2895                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2896                                              &cached, GFP_NOFS);
2897                         cur = cur + iosize;
2898                         pg_offset += iosize;
2899                         continue;
2900                 }
2901                 /* the get_extent function already copied into the page */
2902                 if (test_range_bit(tree, cur, cur_end,
2903                                    EXTENT_UPTODATE, 1, NULL)) {
2904                         check_page_uptodate(tree, page);
2905                         if (!parent_locked)
2906                                 unlock_extent(tree, cur, cur + iosize - 1);
2907                         cur = cur + iosize;
2908                         pg_offset += iosize;
2909                         continue;
2910                 }
2911                 /* we have an inline extent but it didn't get marked up
2912                  * to date.  Error out
2913                  */
2914                 if (block_start == EXTENT_MAP_INLINE) {
2915                         SetPageError(page);
2916                         if (!parent_locked)
2917                                 unlock_extent(tree, cur, cur + iosize - 1);
2918                         cur = cur + iosize;
2919                         pg_offset += iosize;
2920                         continue;
2921                 }
2922
2923                 pnr -= page->index;
2924                 ret = submit_extent_page(rw, tree, page,
2925                                          sector, disk_io_size, pg_offset,
2926                                          bdev, bio, pnr,
2927                                          end_bio_extent_readpage, mirror_num,
2928                                          *bio_flags,
2929                                          this_bio_flag);
2930                 if (!ret) {
2931                         nr++;
2932                         *bio_flags = this_bio_flag;
2933                 } else {
2934                         SetPageError(page);
2935                         if (!parent_locked)
2936                                 unlock_extent(tree, cur, cur + iosize - 1);
2937                 }
2938                 cur = cur + iosize;
2939                 pg_offset += iosize;
2940         }
2941 out:
2942         if (!nr) {
2943                 if (!PageError(page))
2944                         SetPageUptodate(page);
2945                 unlock_page(page);
2946         }
2947         return 0;
2948 }
2949
2950 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2951                                              struct page *pages[], int nr_pages,
2952                                              u64 start, u64 end,
2953                                              get_extent_t *get_extent,
2954                                              struct extent_map **em_cached,
2955                                              struct bio **bio, int mirror_num,
2956                                              unsigned long *bio_flags, int rw)
2957 {
2958         struct inode *inode;
2959         struct btrfs_ordered_extent *ordered;
2960         int index;
2961
2962         inode = pages[0]->mapping->host;
2963         while (1) {
2964                 lock_extent(tree, start, end);
2965                 ordered = btrfs_lookup_ordered_range(inode, start,
2966                                                      end - start + 1);
2967                 if (!ordered)
2968                         break;
2969                 unlock_extent(tree, start, end);
2970                 btrfs_start_ordered_extent(inode, ordered, 1);
2971                 btrfs_put_ordered_extent(ordered);
2972         }
2973
2974         for (index = 0; index < nr_pages; index++) {
2975                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2976                               mirror_num, bio_flags, rw);
2977                 page_cache_release(pages[index]);
2978         }
2979 }
2980
2981 static void __extent_readpages(struct extent_io_tree *tree,
2982                                struct page *pages[],
2983                                int nr_pages, get_extent_t *get_extent,
2984                                struct extent_map **em_cached,
2985                                struct bio **bio, int mirror_num,
2986                                unsigned long *bio_flags, int rw)
2987 {
2988         u64 start = 0;
2989         u64 end = 0;
2990         u64 page_start;
2991         int index;
2992         int first_index = 0;
2993
2994         for (index = 0; index < nr_pages; index++) {
2995                 page_start = page_offset(pages[index]);
2996                 if (!end) {
2997                         start = page_start;
2998                         end = start + PAGE_CACHE_SIZE - 1;
2999                         first_index = index;
3000                 } else if (end + 1 == page_start) {
3001                         end += PAGE_CACHE_SIZE;
3002                 } else {
3003                         __do_contiguous_readpages(tree, &pages[first_index],
3004                                                   index - first_index, start,
3005                                                   end, get_extent, em_cached,
3006                                                   bio, mirror_num, bio_flags,
3007                                                   rw);
3008                         start = page_start;
3009                         end = start + PAGE_CACHE_SIZE - 1;
3010                         first_index = index;
3011                 }
3012         }
3013
3014         if (end)
3015                 __do_contiguous_readpages(tree, &pages[first_index],
3016                                           index - first_index, start,
3017                                           end, get_extent, em_cached, bio,
3018                                           mirror_num, bio_flags, rw);
3019 }
3020
3021 static int __extent_read_full_page(struct extent_io_tree *tree,
3022                                    struct page *page,
3023                                    get_extent_t *get_extent,
3024                                    struct bio **bio, int mirror_num,
3025                                    unsigned long *bio_flags, int rw)
3026 {
3027         struct inode *inode = page->mapping->host;
3028         struct btrfs_ordered_extent *ordered;
3029         u64 start = page_offset(page);
3030         u64 end = start + PAGE_CACHE_SIZE - 1;
3031         int ret;
3032
3033         while (1) {
3034                 lock_extent(tree, start, end);
3035                 ordered = btrfs_lookup_ordered_extent(inode, start);
3036                 if (!ordered)
3037                         break;
3038                 unlock_extent(tree, start, end);
3039                 btrfs_start_ordered_extent(inode, ordered, 1);
3040                 btrfs_put_ordered_extent(ordered);
3041         }
3042
3043         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3044                             bio_flags, rw);
3045         return ret;
3046 }
3047
3048 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3049                             get_extent_t *get_extent, int mirror_num)
3050 {
3051         struct bio *bio = NULL;
3052         unsigned long bio_flags = 0;
3053         int ret;
3054
3055         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3056                                       &bio_flags, READ);
3057         if (bio)
3058                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3059         return ret;
3060 }
3061
3062 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3063                                  get_extent_t *get_extent, int mirror_num)
3064 {
3065         struct bio *bio = NULL;
3066         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3067         int ret;
3068
3069         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3070                                       &bio_flags, READ);
3071         if (bio)
3072                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3073         return ret;
3074 }
3075
3076 static noinline void update_nr_written(struct page *page,
3077                                       struct writeback_control *wbc,
3078                                       unsigned long nr_written)
3079 {
3080         wbc->nr_to_write -= nr_written;
3081         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3082             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3083                 page->mapping->writeback_index = page->index + nr_written;
3084 }
3085
3086 /*
3087  * the writepage semantics are similar to regular writepage.  extent
3088  * records are inserted to lock ranges in the tree, and as dirty areas
3089  * are found, they are marked writeback.  Then the lock bits are removed
3090  * and the end_io handler clears the writeback ranges
3091  */
3092 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3093                               void *data)
3094 {
3095         struct inode *inode = page->mapping->host;
3096         struct extent_page_data *epd = data;
3097         struct extent_io_tree *tree = epd->tree;
3098         u64 start = page_offset(page);
3099         u64 delalloc_start;
3100         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3101         u64 end;
3102         u64 cur = start;
3103         u64 extent_offset;
3104         u64 last_byte = i_size_read(inode);
3105         u64 block_start;
3106         u64 iosize;
3107         sector_t sector;
3108         struct extent_state *cached_state = NULL;
3109         struct extent_map *em;
3110         struct block_device *bdev;
3111         int ret;
3112         int nr = 0;
3113         size_t pg_offset = 0;
3114         size_t blocksize;
3115         loff_t i_size = i_size_read(inode);
3116         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3117         u64 nr_delalloc;
3118         u64 delalloc_end;
3119         int page_started;
3120         int compressed;
3121         int write_flags;
3122         unsigned long nr_written = 0;
3123         bool fill_delalloc = true;
3124
3125         if (wbc->sync_mode == WB_SYNC_ALL)
3126                 write_flags = WRITE_SYNC;
3127         else
3128                 write_flags = WRITE;
3129
3130         trace___extent_writepage(page, inode, wbc);
3131
3132         WARN_ON(!PageLocked(page));
3133
3134         ClearPageError(page);
3135
3136         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3137         if (page->index > end_index ||
3138            (page->index == end_index && !pg_offset)) {
3139                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3140                 unlock_page(page);
3141                 return 0;
3142         }
3143
3144         if (page->index == end_index) {
3145                 char *userpage;
3146
3147                 userpage = kmap_atomic(page);
3148                 memset(userpage + pg_offset, 0,
3149                        PAGE_CACHE_SIZE - pg_offset);
3150                 kunmap_atomic(userpage);
3151                 flush_dcache_page(page);
3152         }
3153         pg_offset = 0;
3154
3155         set_page_extent_mapped(page);
3156
3157         if (!tree->ops || !tree->ops->fill_delalloc)
3158                 fill_delalloc = false;
3159
3160         delalloc_start = start;
3161         delalloc_end = 0;
3162         page_started = 0;
3163         if (!epd->extent_locked && fill_delalloc) {
3164                 u64 delalloc_to_write = 0;
3165                 /*
3166                  * make sure the wbc mapping index is at least updated
3167                  * to this page.
3168                  */
3169                 update_nr_written(page, wbc, 0);
3170
3171                 while (delalloc_end < page_end) {
3172                         nr_delalloc = find_lock_delalloc_range(inode, tree,
3173                                                        page,
3174                                                        &delalloc_start,
3175                                                        &delalloc_end,
3176                                                        128 * 1024 * 1024);
3177                         if (nr_delalloc == 0) {
3178                                 delalloc_start = delalloc_end + 1;
3179                                 continue;
3180                         }
3181                         ret = tree->ops->fill_delalloc(inode, page,
3182                                                        delalloc_start,
3183                                                        delalloc_end,
3184                                                        &page_started,
3185                                                        &nr_written);
3186                         /* File system has been set read-only */
3187                         if (ret) {
3188                                 SetPageError(page);
3189                                 goto done;
3190                         }
3191                         /*
3192                          * delalloc_end is already one less than the total
3193                          * length, so we don't subtract one from
3194                          * PAGE_CACHE_SIZE
3195                          */
3196                         delalloc_to_write += (delalloc_end - delalloc_start +
3197                                               PAGE_CACHE_SIZE) >>
3198                                               PAGE_CACHE_SHIFT;
3199                         delalloc_start = delalloc_end + 1;
3200                 }
3201                 if (wbc->nr_to_write < delalloc_to_write) {
3202                         int thresh = 8192;
3203
3204                         if (delalloc_to_write < thresh * 2)
3205                                 thresh = delalloc_to_write;
3206                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3207                                                  thresh);
3208                 }
3209
3210                 /* did the fill delalloc function already unlock and start
3211                  * the IO?
3212                  */
3213                 if (page_started) {
3214                         ret = 0;
3215                         /*
3216                          * we've unlocked the page, so we can't update
3217                          * the mapping's writeback index, just update
3218                          * nr_to_write.
3219                          */
3220                         wbc->nr_to_write -= nr_written;
3221                         goto done_unlocked;
3222                 }
3223         }
3224         if (tree->ops && tree->ops->writepage_start_hook) {
3225                 ret = tree->ops->writepage_start_hook(page, start,
3226                                                       page_end);
3227                 if (ret) {
3228                         /* Fixup worker will requeue */
3229                         if (ret == -EBUSY)
3230                                 wbc->pages_skipped++;
3231                         else
3232                                 redirty_page_for_writepage(wbc, page);
3233                         update_nr_written(page, wbc, nr_written);
3234                         unlock_page(page);
3235                         ret = 0;
3236                         goto done_unlocked;
3237                 }
3238         }
3239
3240         /*
3241          * we don't want to touch the inode after unlocking the page,
3242          * so we update the mapping writeback index now
3243          */
3244         update_nr_written(page, wbc, nr_written + 1);
3245
3246         end = page_end;
3247         if (last_byte <= start) {
3248                 if (tree->ops && tree->ops->writepage_end_io_hook)
3249                         tree->ops->writepage_end_io_hook(page, start,
3250                                                          page_end, NULL, 1);
3251                 goto done;
3252         }
3253
3254         blocksize = inode->i_sb->s_blocksize;
3255
3256         while (cur <= end) {
3257                 if (cur >= last_byte) {
3258                         if (tree->ops && tree->ops->writepage_end_io_hook)
3259                                 tree->ops->writepage_end_io_hook(page, cur,
3260                                                          page_end, NULL, 1);
3261                         break;
3262                 }
3263                 em = epd->get_extent(inode, page, pg_offset, cur,
3264                                      end - cur + 1, 1);
3265                 if (IS_ERR_OR_NULL(em)) {
3266                         SetPageError(page);
3267                         break;
3268                 }
3269
3270                 extent_offset = cur - em->start;
3271                 BUG_ON(extent_map_end(em) <= cur);
3272                 BUG_ON(end < cur);
3273                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3274                 iosize = ALIGN(iosize, blocksize);
3275                 sector = (em->block_start + extent_offset) >> 9;
3276                 bdev = em->bdev;
3277                 block_start = em->block_start;
3278                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3279                 free_extent_map(em);
3280                 em = NULL;
3281
3282                 /*
3283                  * compressed and inline extents are written through other
3284                  * paths in the FS
3285                  */
3286                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3287                     block_start == EXTENT_MAP_INLINE) {
3288                         /*
3289                          * end_io notification does not happen here for
3290                          * compressed extents
3291                          */
3292                         if (!compressed && tree->ops &&
3293                             tree->ops->writepage_end_io_hook)
3294                                 tree->ops->writepage_end_io_hook(page, cur,
3295                                                          cur + iosize - 1,
3296                                                          NULL, 1);
3297                         else if (compressed) {
3298                                 /* we don't want to end_page_writeback on
3299                                  * a compressed extent.  this happens
3300                                  * elsewhere
3301                                  */
3302                                 nr++;
3303                         }
3304
3305                         cur += iosize;
3306                         pg_offset += iosize;
3307                         continue;
3308                 }
3309                 /* leave this out until we have a page_mkwrite call */
3310                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3311                                    EXTENT_DIRTY, 0, NULL)) {
3312                         cur = cur + iosize;
3313                         pg_offset += iosize;
3314                         continue;
3315                 }
3316
3317                 if (tree->ops && tree->ops->writepage_io_hook) {
3318                         ret = tree->ops->writepage_io_hook(page, cur,
3319                                                 cur + iosize - 1);
3320                 } else {
3321                         ret = 0;
3322                 }
3323                 if (ret) {
3324                         SetPageError(page);
3325                 } else {
3326                         unsigned long max_nr = end_index + 1;
3327
3328                         set_range_writeback(tree, cur, cur + iosize - 1);
3329                         if (!PageWriteback(page)) {
3330                                 printk(KERN_ERR "btrfs warning page %lu not "
3331                                        "writeback, cur %llu end %llu\n",
3332                                        page->index, cur, end);
3333                         }
3334
3335                         ret = submit_extent_page(write_flags, tree, page,
3336                                                  sector, iosize, pg_offset,
3337                                                  bdev, &epd->bio, max_nr,
3338                                                  end_bio_extent_writepage,
3339                                                  0, 0, 0);
3340                         if (ret)
3341                                 SetPageError(page);
3342                 }
3343                 cur = cur + iosize;
3344                 pg_offset += iosize;
3345                 nr++;
3346         }
3347 done:
3348         if (nr == 0) {
3349                 /* make sure the mapping tag for page dirty gets cleared */
3350                 set_page_writeback(page);
3351                 end_page_writeback(page);
3352         }
3353         unlock_page(page);
3354
3355 done_unlocked:
3356
3357         /* drop our reference on any cached states */
3358         free_extent_state(cached_state);
3359         return 0;
3360 }
3361
3362 static int eb_wait(void *word)
3363 {
3364         io_schedule();
3365         return 0;
3366 }
3367
3368 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3369 {
3370         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3371                     TASK_UNINTERRUPTIBLE);
3372 }
3373
3374 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3375                                      struct btrfs_fs_info *fs_info,
3376                                      struct extent_page_data *epd)
3377 {
3378         unsigned long i, num_pages;
3379         int flush = 0;
3380         int ret = 0;
3381
3382         if (!btrfs_try_tree_write_lock(eb)) {
3383                 flush = 1;
3384                 flush_write_bio(epd);
3385                 btrfs_tree_lock(eb);
3386         }
3387
3388         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3389                 btrfs_tree_unlock(eb);
3390                 if (!epd->sync_io)
3391                         return 0;
3392                 if (!flush) {
3393                         flush_write_bio(epd);
3394                         flush = 1;
3395                 }
3396                 while (1) {
3397                         wait_on_extent_buffer_writeback(eb);
3398                         btrfs_tree_lock(eb);
3399                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3400                                 break;
3401                         btrfs_tree_unlock(eb);
3402                 }
3403         }
3404
3405         /*
3406          * We need to do this to prevent races in people who check if the eb is
3407          * under IO since we can end up having no IO bits set for a short period
3408          * of time.
3409          */
3410         spin_lock(&eb->refs_lock);
3411         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3412                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3413                 spin_unlock(&eb->refs_lock);
3414                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3415                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3416                                      -eb->len,
3417                                      fs_info->dirty_metadata_batch);
3418                 ret = 1;
3419         } else {
3420                 spin_unlock(&eb->refs_lock);
3421         }
3422
3423         btrfs_tree_unlock(eb);
3424
3425         if (!ret)
3426                 return ret;
3427
3428         num_pages = num_extent_pages(eb->start, eb->len);
3429         for (i = 0; i < num_pages; i++) {
3430                 struct page *p = extent_buffer_page(eb, i);
3431
3432                 if (!trylock_page(p)) {
3433                         if (!flush) {
3434                                 flush_write_bio(epd);
3435                                 flush = 1;
3436                         }
3437                         lock_page(p);
3438                 }
3439         }
3440
3441         return ret;
3442 }
3443
3444 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3445 {
3446         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3447         smp_mb__after_clear_bit();
3448         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3449 }
3450
3451 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3452 {
3453         int uptodate = err == 0;
3454         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3455         struct extent_buffer *eb;
3456         int done;
3457
3458         do {
3459                 struct page *page = bvec->bv_page;
3460
3461                 bvec--;
3462                 eb = (struct extent_buffer *)page->private;
3463                 BUG_ON(!eb);
3464                 done = atomic_dec_and_test(&eb->io_pages);
3465
3466                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3467                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3468                         ClearPageUptodate(page);
3469                         SetPageError(page);
3470                 }
3471
3472                 end_page_writeback(page);
3473
3474                 if (!done)
3475                         continue;
3476
3477                 end_extent_buffer_writeback(eb);
3478         } while (bvec >= bio->bi_io_vec);
3479
3480         bio_put(bio);
3481
3482 }
3483
3484 static int write_one_eb(struct extent_buffer *eb,
3485                         struct btrfs_fs_info *fs_info,
3486                         struct writeback_control *wbc,
3487                         struct extent_page_data *epd)
3488 {
3489         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3490         struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3491         u64 offset = eb->start;
3492         unsigned long i, num_pages;
3493         unsigned long bio_flags = 0;
3494         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3495         int ret = 0;
3496
3497         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3498         num_pages = num_extent_pages(eb->start, eb->len);
3499         atomic_set(&eb->io_pages, num_pages);
3500         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3501                 bio_flags = EXTENT_BIO_TREE_LOG;
3502
3503         for (i = 0; i < num_pages; i++) {
3504                 struct page *p = extent_buffer_page(eb, i);
3505
3506                 clear_page_dirty_for_io(p);
3507                 set_page_writeback(p);
3508                 ret = submit_extent_page(rw, tree, p, offset >> 9,
3509                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3510                                          -1, end_bio_extent_buffer_writepage,
3511                                          0, epd->bio_flags, bio_flags);
3512                 epd->bio_flags = bio_flags;
3513                 if (ret) {
3514                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3515                         SetPageError(p);
3516                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3517                                 end_extent_buffer_writeback(eb);
3518                         ret = -EIO;
3519                         break;
3520                 }
3521                 offset += PAGE_CACHE_SIZE;
3522                 update_nr_written(p, wbc, 1);
3523                 unlock_page(p);
3524         }
3525
3526         if (unlikely(ret)) {
3527                 for (; i < num_pages; i++) {
3528                         struct page *p = extent_buffer_page(eb, i);
3529                         unlock_page(p);
3530                 }
3531         }
3532
3533         return ret;
3534 }
3535
3536 int btree_write_cache_pages(struct address_space *mapping,
3537                                    struct writeback_control *wbc)
3538 {
3539         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3540         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3541         struct extent_buffer *eb, *prev_eb = NULL;
3542         struct extent_page_data epd = {
3543                 .bio = NULL,
3544                 .tree = tree,
3545                 .extent_locked = 0,
3546                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3547                 .bio_flags = 0,
3548         };
3549         int ret = 0;
3550         int done = 0;
3551         int nr_to_write_done = 0;
3552         struct pagevec pvec;
3553         int nr_pages;
3554         pgoff_t index;
3555         pgoff_t end;            /* Inclusive */
3556         int scanned = 0;
3557         int tag;
3558
3559         pagevec_init(&pvec, 0);
3560         if (wbc->range_cyclic) {
3561                 index = mapping->writeback_index; /* Start from prev offset */
3562                 end = -1;
3563         } else {
3564                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3565                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3566                 scanned = 1;
3567         }
3568         if (wbc->sync_mode == WB_SYNC_ALL)
3569                 tag = PAGECACHE_TAG_TOWRITE;
3570         else
3571                 tag = PAGECACHE_TAG_DIRTY;
3572 retry:
3573         if (wbc->sync_mode == WB_SYNC_ALL)
3574                 tag_pages_for_writeback(mapping, index, end);
3575         while (!done && !nr_to_write_done && (index <= end) &&
3576                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3577                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3578                 unsigned i;
3579
3580                 scanned = 1;
3581                 for (i = 0; i < nr_pages; i++) {
3582                         struct page *page = pvec.pages[i];
3583
3584                         if (!PagePrivate(page))
3585                                 continue;
3586
3587                         if (!wbc->range_cyclic && page->index > end) {
3588                                 done = 1;
3589                                 break;
3590                         }
3591
3592                         spin_lock(&mapping->private_lock);
3593                         if (!PagePrivate(page)) {
3594                                 spin_unlock(&mapping->private_lock);
3595                                 continue;
3596                         }
3597
3598                         eb = (struct extent_buffer *)page->private;
3599
3600                         /*
3601                          * Shouldn't happen and normally this would be a BUG_ON
3602                          * but no sense in crashing the users box for something
3603                          * we can survive anyway.
3604                          */
3605                         if (WARN_ON(!eb)) {
3606                                 spin_unlock(&mapping->private_lock);
3607                                 continue;
3608                         }
3609
3610                         if (eb == prev_eb) {
3611                                 spin_unlock(&mapping->private_lock);
3612                                 continue;
3613                         }
3614
3615                         ret = atomic_inc_not_zero(&eb->refs);
3616                         spin_unlock(&mapping->private_lock);
3617                         if (!ret)
3618                                 continue;
3619
3620                         prev_eb = eb;
3621                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3622                         if (!ret) {
3623                                 free_extent_buffer(eb);
3624                                 continue;
3625                         }
3626
3627                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3628                         if (ret) {
3629                                 done = 1;
3630                                 free_extent_buffer(eb);
3631                                 break;
3632                         }
3633                         free_extent_buffer(eb);
3634
3635                         /*
3636                          * the filesystem may choose to bump up nr_to_write.
3637                          * We have to make sure to honor the new nr_to_write
3638                          * at any time
3639                          */
3640                         nr_to_write_done = wbc->nr_to_write <= 0;
3641                 }
3642                 pagevec_release(&pvec);
3643                 cond_resched();
3644         }
3645         if (!scanned && !done) {
3646                 /*
3647                  * We hit the last page and there is more work to be done: wrap
3648                  * back to the start of the file
3649                  */
3650                 scanned = 1;
3651                 index = 0;
3652                 goto retry;
3653         }
3654         flush_write_bio(&epd);
3655         return ret;
3656 }
3657
3658 /**
3659  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3660  * @mapping: address space structure to write
3661  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3662  * @writepage: function called for each page
3663  * @data: data passed to writepage function
3664  *
3665  * If a page is already under I/O, write_cache_pages() skips it, even
3666  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3667  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3668  * and msync() need to guarantee that all the data which was dirty at the time
3669  * the call was made get new I/O started against them.  If wbc->sync_mode is
3670  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3671  * existing IO to complete.
3672  */
3673 static int extent_write_cache_pages(struct extent_io_tree *tree,
3674                              struct address_space *mapping,
3675                              struct writeback_control *wbc,
3676                              writepage_t writepage, void *data,
3677                              void (*flush_fn)(void *))
3678 {
3679         struct inode *inode = mapping->host;
3680         int ret = 0;
3681         int done = 0;
3682         int nr_to_write_done = 0;
3683         struct pagevec pvec;
3684         int nr_pages;
3685         pgoff_t index;
3686         pgoff_t end;            /* Inclusive */
3687         int scanned = 0;
3688         int tag;
3689
3690         /*
3691          * We have to hold onto the inode so that ordered extents can do their
3692          * work when the IO finishes.  The alternative to this is failing to add
3693          * an ordered extent if the igrab() fails there and that is a huge pain
3694          * to deal with, so instead just hold onto the inode throughout the
3695          * writepages operation.  If it fails here we are freeing up the inode
3696          * anyway and we'd rather not waste our time writing out stuff that is
3697          * going to be truncated anyway.
3698          */
3699         if (!igrab(inode))
3700                 return 0;
3701
3702         pagevec_init(&pvec, 0);
3703         if (wbc->range_cyclic) {
3704                 index = mapping->writeback_index; /* Start from prev offset */
3705                 end = -1;
3706         } else {
3707                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3708                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3709                 scanned = 1;
3710         }
3711         if (wbc->sync_mode == WB_SYNC_ALL)
3712                 tag = PAGECACHE_TAG_TOWRITE;
3713         else
3714                 tag = PAGECACHE_TAG_DIRTY;
3715 retry:
3716         if (wbc->sync_mode == WB_SYNC_ALL)
3717                 tag_pages_for_writeback(mapping, index, end);
3718         while (!done && !nr_to_write_done && (index <= end) &&
3719                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3720                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3721                 unsigned i;
3722
3723                 scanned = 1;
3724                 for (i = 0; i < nr_pages; i++) {
3725                         struct page *page = pvec.pages[i];
3726
3727                         /*
3728                          * At this point we hold neither mapping->tree_lock nor
3729                          * lock on the page itself: the page may be truncated or
3730                          * invalidated (changing page->mapping to NULL), or even
3731                          * swizzled back from swapper_space to tmpfs file
3732                          * mapping
3733                          */
3734                         if (!trylock_page(page)) {
3735                                 flush_fn(data);
3736                                 lock_page(page);
3737                         }
3738
3739                         if (unlikely(page->mapping != mapping)) {
3740                                 unlock_page(page);
3741                                 continue;
3742                         }
3743
3744                         if (!wbc->range_cyclic && page->index > end) {
3745                                 done = 1;
3746                                 unlock_page(page);
3747                                 continue;
3748                         }
3749
3750                         if (wbc->sync_mode != WB_SYNC_NONE) {
3751                                 if (PageWriteback(page))
3752                                         flush_fn(data);
3753                                 wait_on_page_writeback(page);
3754                         }
3755
3756                         if (PageWriteback(page) ||
3757                             !clear_page_dirty_for_io(page)) {
3758                                 unlock_page(page);
3759                                 continue;
3760                         }
3761
3762                         ret = (*writepage)(page, wbc, data);
3763
3764                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3765                                 unlock_page(page);
3766                                 ret = 0;
3767                         }
3768                         if (ret)
3769                                 done = 1;
3770
3771                         /*
3772                          * the filesystem may choose to bump up nr_to_write.
3773                          * We have to make sure to honor the new nr_to_write
3774                          * at any time
3775                          */
3776                         nr_to_write_done = wbc->nr_to_write <= 0;
3777                 }
3778                 pagevec_release(&pvec);
3779                 cond_resched();
3780         }
3781         if (!scanned && !done) {
3782                 /*
3783                  * We hit the last page and there is more work to be done: wrap
3784                  * back to the start of the file
3785                  */
3786                 scanned = 1;
3787                 index = 0;
3788                 goto retry;
3789         }
3790         btrfs_add_delayed_iput(inode);
3791         return ret;
3792 }
3793
3794 static void flush_epd_write_bio(struct extent_page_data *epd)
3795 {
3796         if (epd->bio) {
3797                 int rw = WRITE;
3798                 int ret;
3799
3800                 if (epd->sync_io)
3801                         rw = WRITE_SYNC;
3802
3803                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3804                 BUG_ON(ret < 0); /* -ENOMEM */
3805                 epd->bio = NULL;
3806         }
3807 }
3808
3809 static noinline void flush_write_bio(void *data)
3810 {
3811         struct extent_page_data *epd = data;
3812         flush_epd_write_bio(epd);
3813 }
3814
3815 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3816                           get_extent_t *get_extent,
3817                           struct writeback_control *wbc)
3818 {
3819         int ret;
3820         struct extent_page_data epd = {
3821                 .bio = NULL,
3822                 .tree = tree,
3823                 .get_extent = get_extent,
3824                 .extent_locked = 0,
3825                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3826                 .bio_flags = 0,
3827         };
3828
3829         ret = __extent_writepage(page, wbc, &epd);
3830
3831         flush_epd_write_bio(&epd);
3832         return ret;
3833 }
3834
3835 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3836                               u64 start, u64 end, get_extent_t *get_extent,
3837                               int mode)
3838 {
3839         int ret = 0;
3840         struct address_space *mapping = inode->i_mapping;
3841         struct page *page;
3842         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3843                 PAGE_CACHE_SHIFT;
3844
3845         struct extent_page_data epd = {
3846                 .bio = NULL,
3847                 .tree = tree,
3848                 .get_extent = get_extent,
3849                 .extent_locked = 1,
3850                 .sync_io = mode == WB_SYNC_ALL,
3851                 .bio_flags = 0,
3852         };
3853         struct writeback_control wbc_writepages = {
3854                 .sync_mode      = mode,
3855                 .nr_to_write    = nr_pages * 2,
3856                 .range_start    = start,
3857                 .range_end      = end + 1,
3858         };
3859
3860         while (start <= end) {
3861                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3862                 if (clear_page_dirty_for_io(page))
3863                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3864                 else {
3865                         if (tree->ops && tree->ops->writepage_end_io_hook)
3866                                 tree->ops->writepage_end_io_hook(page, start,
3867                                                  start + PAGE_CACHE_SIZE - 1,
3868                                                  NULL, 1);
3869                         unlock_page(page);
3870                 }
3871                 page_cache_release(page);
3872                 start += PAGE_CACHE_SIZE;
3873         }
3874
3875         flush_epd_write_bio(&epd);
3876         return ret;
3877 }
3878
3879 int extent_writepages(struct extent_io_tree *tree,
3880                       struct address_space *mapping,
3881                       get_extent_t *get_extent,
3882                       struct writeback_control *wbc)
3883 {
3884         int ret = 0;
3885         struct extent_page_data epd = {
3886                 .bio = NULL,
3887                 .tree = tree,
3888                 .get_extent = get_extent,
3889                 .extent_locked = 0,
3890                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3891                 .bio_flags = 0,
3892         };
3893
3894         ret = extent_write_cache_pages(tree, mapping, wbc,
3895                                        __extent_writepage, &epd,
3896                                        flush_write_bio);
3897         flush_epd_write_bio(&epd);
3898         return ret;
3899 }
3900
3901 int extent_readpages(struct extent_io_tree *tree,
3902                      struct address_space *mapping,
3903                      struct list_head *pages, unsigned nr_pages,
3904                      get_extent_t get_extent)
3905 {
3906         struct bio *bio = NULL;
3907         unsigned page_idx;
3908         unsigned long bio_flags = 0;
3909         struct page *pagepool[16];
3910         struct page *page;
3911         struct extent_map *em_cached = NULL;
3912         int nr = 0;
3913
3914         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3915                 page = list_entry(pages->prev, struct page, lru);
3916
3917                 prefetchw(&page->flags);
3918                 list_del(&page->lru);
3919                 if (add_to_page_cache_lru(page, mapping,
3920                                         page->index, GFP_NOFS)) {
3921                         page_cache_release(page);
3922                         continue;
3923                 }
3924
3925                 pagepool[nr++] = page;
3926                 if (nr < ARRAY_SIZE(pagepool))
3927                         continue;
3928                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3929                                    &bio, 0, &bio_flags, READ);
3930                 nr = 0;
3931         }
3932         if (nr)
3933                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3934                                    &bio, 0, &bio_flags, READ);
3935
3936         if (em_cached)
3937                 free_extent_map(em_cached);
3938
3939         BUG_ON(!list_empty(pages));
3940         if (bio)
3941                 return submit_one_bio(READ, bio, 0, bio_flags);
3942         return 0;
3943 }
3944
3945 /*
3946  * basic invalidatepage code, this waits on any locked or writeback
3947  * ranges corresponding to the page, and then deletes any extent state
3948  * records from the tree
3949  */
3950 int extent_invalidatepage(struct extent_io_tree *tree,
3951                           struct page *page, unsigned long offset)
3952 {
3953         struct extent_state *cached_state = NULL;
3954         u64 start = page_offset(page);
3955         u64 end = start + PAGE_CACHE_SIZE - 1;
3956         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3957
3958         start += ALIGN(offset, blocksize);
3959         if (start > end)
3960                 return 0;
3961
3962         lock_extent_bits(tree, start, end, 0, &cached_state);
3963         wait_on_page_writeback(page);
3964         clear_extent_bit(tree, start, end,
3965                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3966                          EXTENT_DO_ACCOUNTING,
3967                          1, 1, &cached_state, GFP_NOFS);
3968         return 0;
3969 }
3970
3971 /*
3972  * a helper for releasepage, this tests for areas of the page that
3973  * are locked or under IO and drops the related state bits if it is safe
3974  * to drop the page.
3975  */
3976 static int try_release_extent_state(struct extent_map_tree *map,
3977                                     struct extent_io_tree *tree,
3978                                     struct page *page, gfp_t mask)
3979 {
3980         u64 start = page_offset(page);
3981         u64 end = start + PAGE_CACHE_SIZE - 1;
3982         int ret = 1;
3983
3984         if (test_range_bit(tree, start, end,
3985                            EXTENT_IOBITS, 0, NULL))
3986                 ret = 0;
3987         else {
3988                 if ((mask & GFP_NOFS) == GFP_NOFS)
3989                         mask = GFP_NOFS;
3990                 /*
3991                  * at this point we can safely clear everything except the
3992                  * locked bit and the nodatasum bit
3993                  */
3994                 ret = clear_extent_bit(tree, start, end,
3995                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3996                                  0, 0, NULL, mask);
3997
3998                 /* if clear_extent_bit failed for enomem reasons,
3999                  * we can't allow the release to continue.
4000                  */
4001                 if (ret < 0)
4002                         ret = 0;
4003                 else
4004                         ret = 1;
4005         }
4006         return ret;
4007 }
4008
4009 /*
4010  * a helper for releasepage.  As long as there are no locked extents
4011  * in the range corresponding to the page, both state records and extent
4012  * map records are removed
4013  */
4014 int try_release_extent_mapping(struct extent_map_tree *map,
4015                                struct extent_io_tree *tree, struct page *page,
4016                                gfp_t mask)
4017 {
4018         struct extent_map *em;
4019         u64 start = page_offset(page);
4020         u64 end = start + PAGE_CACHE_SIZE - 1;
4021
4022         if ((mask & __GFP_WAIT) &&
4023             page->mapping->host->i_size > 16 * 1024 * 1024) {
4024                 u64 len;
4025                 while (start <= end) {
4026                         len = end - start + 1;
4027                         write_lock(&map->lock);
4028                         em = lookup_extent_mapping(map, start, len);
4029                         if (!em) {
4030                                 write_unlock(&map->lock);
4031                                 break;
4032                         }
4033                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4034                             em->start != start) {
4035                                 write_unlock(&map->lock);
4036                                 free_extent_map(em);
4037                                 break;
4038                         }
4039                         if (!test_range_bit(tree, em->start,
4040                                             extent_map_end(em) - 1,
4041                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4042                                             0, NULL)) {
4043                                 remove_extent_mapping(map, em);
4044                                 /* once for the rb tree */
4045                                 free_extent_map(em);
4046                         }
4047                         start = extent_map_end(em);
4048                         write_unlock(&map->lock);
4049
4050                         /* once for us */
4051                         free_extent_map(em);
4052                 }
4053         }
4054         return try_release_extent_state(map, tree, page, mask);
4055 }
4056
4057 /*
4058  * helper function for fiemap, which doesn't want to see any holes.
4059  * This maps until we find something past 'last'
4060  */
4061 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4062                                                 u64 offset,
4063                                                 u64 last,
4064                                                 get_extent_t *get_extent)
4065 {
4066         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4067         struct extent_map *em;
4068         u64 len;
4069
4070         if (offset >= last)
4071                 return NULL;
4072
4073         while (1) {
4074                 len = last - offset;
4075                 if (len == 0)
4076                         break;
4077                 len = ALIGN(len, sectorsize);
4078                 em = get_extent(inode, NULL, 0, offset, len, 0);
4079                 if (IS_ERR_OR_NULL(em))
4080                         return em;
4081
4082                 /* if this isn't a hole return it */
4083                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4084                     em->block_start != EXTENT_MAP_HOLE) {
4085                         return em;
4086                 }
4087
4088                 /* this is a hole, advance to the next extent */
4089                 offset = extent_map_end(em);
4090                 free_extent_map(em);
4091                 if (offset >= last)
4092                         break;
4093         }
4094         return NULL;
4095 }
4096
4097 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4098 {
4099         unsigned long cnt = *((unsigned long *)ctx);
4100
4101         cnt++;
4102         *((unsigned long *)ctx) = cnt;
4103
4104         /* Now we're sure that the extent is shared. */
4105         if (cnt > 1)
4106                 return 1;
4107         return 0;
4108 }
4109
4110 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4111                 __u64 start, __u64 len, get_extent_t *get_extent)
4112 {
4113         int ret = 0;
4114         u64 off = start;
4115         u64 max = start + len;
4116         u32 flags = 0;
4117         u32 found_type;
4118         u64 last;
4119         u64 last_for_get_extent = 0;
4120         u64 disko = 0;
4121         u64 isize = i_size_read(inode);
4122         struct btrfs_key found_key;
4123         struct extent_map *em = NULL;
4124         struct extent_state *cached_state = NULL;
4125         struct btrfs_path *path;
4126         int end = 0;
4127         u64 em_start = 0;
4128         u64 em_len = 0;
4129         u64 em_end = 0;
4130
4131         if (len == 0)
4132                 return -EINVAL;
4133
4134         path = btrfs_alloc_path();
4135         if (!path)
4136                 return -ENOMEM;
4137         path->leave_spinning = 1;
4138
4139         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4140         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4141
4142         /*
4143          * lookup the last file extent.  We're not using i_size here
4144          * because there might be preallocation past i_size
4145          */
4146         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4147                                        path, btrfs_ino(inode), -1, 0);
4148         if (ret < 0) {
4149                 btrfs_free_path(path);
4150                 return ret;
4151         }
4152         WARN_ON(!ret);
4153         path->slots[0]--;
4154         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4155         found_type = btrfs_key_type(&found_key);
4156
4157         /* No extents, but there might be delalloc bits */
4158         if (found_key.objectid != btrfs_ino(inode) ||
4159             found_type != BTRFS_EXTENT_DATA_KEY) {
4160                 /* have to trust i_size as the end */
4161                 last = (u64)-1;
4162                 last_for_get_extent = isize;
4163         } else {
4164                 /*
4165                  * remember the start of the last extent.  There are a
4166                  * bunch of different factors that go into the length of the
4167                  * extent, so its much less complex to remember where it started
4168                  */
4169                 last = found_key.offset;
4170                 last_for_get_extent = last + 1;
4171         }
4172         btrfs_release_path(path);
4173
4174         /*
4175          * we might have some extents allocated but more delalloc past those
4176          * extents.  so, we trust isize unless the start of the last extent is
4177          * beyond isize
4178          */
4179         if (last < isize) {
4180                 last = (u64)-1;
4181                 last_for_get_extent = isize;
4182         }
4183
4184         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4185                          &cached_state);
4186
4187         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4188                                    get_extent);
4189         if (!em)
4190                 goto out;
4191         if (IS_ERR(em)) {
4192                 ret = PTR_ERR(em);
4193                 goto out;
4194         }
4195
4196         while (!end) {
4197                 u64 offset_in_extent = 0;
4198
4199                 /* break if the extent we found is outside the range */
4200                 if (em->start >= max || extent_map_end(em) < off)
4201                         break;
4202
4203                 /*
4204                  * get_extent may return an extent that starts before our
4205                  * requested range.  We have to make sure the ranges
4206                  * we return to fiemap always move forward and don't
4207                  * overlap, so adjust the offsets here
4208                  */
4209                 em_start = max(em->start, off);
4210
4211                 /*
4212                  * record the offset from the start of the extent
4213                  * for adjusting the disk offset below.  Only do this if the
4214                  * extent isn't compressed since our in ram offset may be past
4215                  * what we have actually allocated on disk.
4216                  */
4217                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4218                         offset_in_extent = em_start - em->start;
4219                 em_end = extent_map_end(em);
4220                 em_len = em_end - em_start;
4221                 disko = 0;
4222                 flags = 0;
4223
4224                 /*
4225                  * bump off for our next call to get_extent
4226                  */
4227                 off = extent_map_end(em);
4228                 if (off >= max)
4229                         end = 1;
4230
4231                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4232                         end = 1;
4233                         flags |= FIEMAP_EXTENT_LAST;
4234                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4235                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4236                                   FIEMAP_EXTENT_NOT_ALIGNED);
4237                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4238                         flags |= (FIEMAP_EXTENT_DELALLOC |
4239                                   FIEMAP_EXTENT_UNKNOWN);
4240                 } else {
4241                         unsigned long ref_cnt = 0;
4242
4243                         disko = em->block_start + offset_in_extent;
4244
4245                         /*
4246                          * As btrfs supports shared space, this information
4247                          * can be exported to userspace tools via
4248                          * flag FIEMAP_EXTENT_SHARED.
4249                          */
4250                         ret = iterate_inodes_from_logical(
4251                                         em->block_start,
4252                                         BTRFS_I(inode)->root->fs_info,
4253                                         path, count_ext_ref, &ref_cnt);
4254                         if (ret < 0 && ret != -ENOENT)
4255                                 goto out_free;
4256
4257                         if (ref_cnt > 1)
4258                                 flags |= FIEMAP_EXTENT_SHARED;
4259                 }
4260                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4261                         flags |= FIEMAP_EXTENT_ENCODED;
4262
4263                 free_extent_map(em);
4264                 em = NULL;
4265                 if ((em_start >= last) || em_len == (u64)-1 ||
4266                    (last == (u64)-1 && isize <= em_end)) {
4267                         flags |= FIEMAP_EXTENT_LAST;
4268                         end = 1;
4269                 }
4270
4271                 /* now scan forward to see if this is really the last extent. */
4272                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4273                                            get_extent);
4274                 if (IS_ERR(em)) {
4275                         ret = PTR_ERR(em);
4276                         goto out;
4277                 }
4278                 if (!em) {
4279                         flags |= FIEMAP_EXTENT_LAST;
4280                         end = 1;
4281                 }
4282                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4283                                               em_len, flags);
4284                 if (ret)
4285                         goto out_free;
4286         }
4287 out_free:
4288         free_extent_map(em);
4289 out:
4290         btrfs_free_path(path);
4291         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4292                              &cached_state, GFP_NOFS);
4293         return ret;
4294 }
4295
4296 static void __free_extent_buffer(struct extent_buffer *eb)
4297 {
4298         btrfs_leak_debug_del(&eb->leak_list);
4299         kmem_cache_free(extent_buffer_cache, eb);
4300 }
4301
4302 static int extent_buffer_under_io(struct extent_buffer *eb)
4303 {
4304         return (atomic_read(&eb->io_pages) ||
4305                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4306                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4307 }
4308
4309 /*
4310  * Helper for releasing extent buffer page.
4311  */
4312 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4313                                                 unsigned long start_idx)
4314 {
4315         unsigned long index;
4316         unsigned long num_pages;
4317         struct page *page;
4318         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4319
4320         BUG_ON(extent_buffer_under_io(eb));
4321
4322         num_pages = num_extent_pages(eb->start, eb->len);
4323         index = start_idx + num_pages;
4324         if (start_idx >= index)
4325                 return;
4326
4327         do {
4328                 index--;
4329                 page = extent_buffer_page(eb, index);
4330                 if (page && mapped) {
4331                         spin_lock(&page->mapping->private_lock);
4332                         /*
4333                          * We do this since we'll remove the pages after we've
4334                          * removed the eb from the radix tree, so we could race
4335                          * and have this page now attached to the new eb.  So
4336                          * only clear page_private if it's still connected to
4337                          * this eb.
4338                          */
4339                         if (PagePrivate(page) &&
4340                             page->private == (unsigned long)eb) {
4341                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4342                                 BUG_ON(PageDirty(page));
4343                                 BUG_ON(PageWriteback(page));
4344                                 /*
4345                                  * We need to make sure we haven't be attached
4346                                  * to a new eb.
4347                                  */
4348                                 ClearPagePrivate(page);
4349                                 set_page_private(page, 0);
4350                                 /* One for the page private */
4351                                 page_cache_release(page);
4352                         }
4353                         spin_unlock(&page->mapping->private_lock);
4354
4355                 }
4356                 if (page) {
4357                         /* One for when we alloced the page */
4358                         page_cache_release(page);
4359                 }
4360         } while (index != start_idx);
4361 }
4362
4363 /*
4364  * Helper for releasing the extent buffer.
4365  */
4366 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4367 {
4368         btrfs_release_extent_buffer_page(eb, 0);
4369         __free_extent_buffer(eb);
4370 }
4371
4372 static struct extent_buffer *
4373 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4374                       unsigned long len, gfp_t mask)
4375 {
4376         struct extent_buffer *eb = NULL;
4377
4378         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4379         if (eb == NULL)
4380                 return NULL;
4381         eb->start = start;
4382         eb->len = len;
4383         eb->fs_info = fs_info;
4384         eb->bflags = 0;
4385         rwlock_init(&eb->lock);
4386         atomic_set(&eb->write_locks, 0);
4387         atomic_set(&eb->read_locks, 0);
4388         atomic_set(&eb->blocking_readers, 0);
4389         atomic_set(&eb->blocking_writers, 0);
4390         atomic_set(&eb->spinning_readers, 0);
4391         atomic_set(&eb->spinning_writers, 0);
4392         eb->lock_nested = 0;
4393         init_waitqueue_head(&eb->write_lock_wq);
4394         init_waitqueue_head(&eb->read_lock_wq);
4395
4396         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4397
4398         spin_lock_init(&eb->refs_lock);
4399         atomic_set(&eb->refs, 1);
4400         atomic_set(&eb->io_pages, 0);
4401
4402         /*
4403          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4404          */
4405         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4406                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4407         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4408
4409         return eb;
4410 }
4411
4412 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4413 {
4414         unsigned long i;
4415         struct page *p;
4416         struct extent_buffer *new;
4417         unsigned long num_pages = num_extent_pages(src->start, src->len);
4418
4419         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4420         if (new == NULL)
4421                 return NULL;
4422
4423         for (i = 0; i < num_pages; i++) {
4424                 p = alloc_page(GFP_NOFS);
4425                 if (!p) {
4426                         btrfs_release_extent_buffer(new);
4427                         return NULL;
4428                 }
4429                 attach_extent_buffer_page(new, p);
4430                 WARN_ON(PageDirty(p));
4431                 SetPageUptodate(p);
4432                 new->pages[i] = p;
4433         }
4434
4435         copy_extent_buffer(new, src, 0, 0, src->len);
4436         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4437         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4438
4439         return new;
4440 }
4441
4442 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4443 {
4444         struct extent_buffer *eb;
4445         unsigned long num_pages = num_extent_pages(0, len);
4446         unsigned long i;
4447
4448         eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4449         if (!eb)
4450                 return NULL;
4451
4452         for (i = 0; i < num_pages; i++) {
4453                 eb->pages[i] = alloc_page(GFP_NOFS);
4454                 if (!eb->pages[i])
4455                         goto err;
4456         }
4457         set_extent_buffer_uptodate(eb);
4458         btrfs_set_header_nritems(eb, 0);
4459         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4460
4461         return eb;
4462 err:
4463         for (; i > 0; i--)
4464                 __free_page(eb->pages[i - 1]);
4465         __free_extent_buffer(eb);
4466         return NULL;
4467 }
4468
4469 static void check_buffer_tree_ref(struct extent_buffer *eb)
4470 {
4471         int refs;
4472         /* the ref bit is tricky.  We have to make sure it is set
4473          * if we have the buffer dirty.   Otherwise the
4474          * code to free a buffer can end up dropping a dirty
4475          * page
4476          *
4477          * Once the ref bit is set, it won't go away while the
4478          * buffer is dirty or in writeback, and it also won't
4479          * go away while we have the reference count on the
4480          * eb bumped.
4481          *
4482          * We can't just set the ref bit without bumping the
4483          * ref on the eb because free_extent_buffer might
4484          * see the ref bit and try to clear it.  If this happens
4485          * free_extent_buffer might end up dropping our original
4486          * ref by mistake and freeing the page before we are able
4487          * to add one more ref.
4488          *
4489          * So bump the ref count first, then set the bit.  If someone
4490          * beat us to it, drop the ref we added.
4491          */
4492         refs = atomic_read(&eb->refs);
4493         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4494                 return;
4495
4496         spin_lock(&eb->refs_lock);
4497         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4498                 atomic_inc(&eb->refs);
4499         spin_unlock(&eb->refs_lock);
4500 }
4501
4502 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4503 {
4504         unsigned long num_pages, i;
4505
4506         check_buffer_tree_ref(eb);
4507
4508         num_pages = num_extent_pages(eb->start, eb->len);
4509         for (i = 0; i < num_pages; i++) {
4510                 struct page *p = extent_buffer_page(eb, i);
4511                 mark_page_accessed(p);
4512         }
4513 }
4514
4515 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4516                                          u64 start)
4517 {
4518         struct extent_buffer *eb;
4519
4520         rcu_read_lock();
4521         eb = radix_tree_lookup(&fs_info->buffer_radix,
4522                                start >> PAGE_CACHE_SHIFT);
4523         if (eb && atomic_inc_not_zero(&eb->refs)) {
4524                 rcu_read_unlock();
4525                 mark_extent_buffer_accessed(eb);
4526                 return eb;
4527         }
4528         rcu_read_unlock();
4529
4530         return NULL;
4531 }
4532
4533 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4534                                           u64 start, unsigned long len)
4535 {
4536         unsigned long num_pages = num_extent_pages(start, len);
4537         unsigned long i;
4538         unsigned long index = start >> PAGE_CACHE_SHIFT;
4539         struct extent_buffer *eb;
4540         struct extent_buffer *exists = NULL;
4541         struct page *p;
4542         struct address_space *mapping = fs_info->btree_inode->i_mapping;
4543         int uptodate = 1;
4544         int ret;
4545
4546         eb = find_extent_buffer(fs_info, start);
4547         if (eb)
4548                 return eb;
4549
4550         eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4551         if (!eb)
4552                 return NULL;
4553
4554         for (i = 0; i < num_pages; i++, index++) {
4555                 p = find_or_create_page(mapping, index, GFP_NOFS);
4556                 if (!p)
4557                         goto free_eb;
4558
4559                 spin_lock(&mapping->private_lock);
4560                 if (PagePrivate(p)) {
4561                         /*
4562                          * We could have already allocated an eb for this page
4563                          * and attached one so lets see if we can get a ref on
4564                          * the existing eb, and if we can we know it's good and
4565                          * we can just return that one, else we know we can just
4566                          * overwrite page->private.
4567                          */
4568                         exists = (struct extent_buffer *)p->private;
4569                         if (atomic_inc_not_zero(&exists->refs)) {
4570                                 spin_unlock(&mapping->private_lock);
4571                                 unlock_page(p);
4572                                 page_cache_release(p);
4573                                 mark_extent_buffer_accessed(exists);
4574                                 goto free_eb;
4575                         }
4576
4577                         /*
4578                          * Do this so attach doesn't complain and we need to
4579                          * drop the ref the old guy had.
4580                          */
4581                         ClearPagePrivate(p);
4582                         WARN_ON(PageDirty(p));
4583                         page_cache_release(p);
4584                 }
4585                 attach_extent_buffer_page(eb, p);
4586                 spin_unlock(&mapping->private_lock);
4587                 WARN_ON(PageDirty(p));
4588                 mark_page_accessed(p);
4589                 eb->pages[i] = p;
4590                 if (!PageUptodate(p))
4591                         uptodate = 0;
4592
4593                 /*
4594                  * see below about how we avoid a nasty race with release page
4595                  * and why we unlock later
4596                  */
4597         }
4598         if (uptodate)
4599                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4600 again:
4601         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4602         if (ret)
4603                 goto free_eb;
4604
4605         spin_lock(&fs_info->buffer_lock);
4606         ret = radix_tree_insert(&fs_info->buffer_radix,
4607                                 start >> PAGE_CACHE_SHIFT, eb);
4608         spin_unlock(&fs_info->buffer_lock);
4609         radix_tree_preload_end();
4610         if (ret == -EEXIST) {
4611                 exists = find_extent_buffer(fs_info, start);
4612                 if (exists)
4613                         goto free_eb;
4614                 else
4615                         goto again;
4616         }
4617         /* add one reference for the tree */
4618         check_buffer_tree_ref(eb);
4619         set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4620
4621         /*
4622          * there is a race where release page may have
4623          * tried to find this extent buffer in the radix
4624          * but failed.  It will tell the VM it is safe to
4625          * reclaim the, and it will clear the page private bit.
4626          * We must make sure to set the page private bit properly
4627          * after the extent buffer is in the radix tree so
4628          * it doesn't get lost
4629          */
4630         SetPageChecked(eb->pages[0]);
4631         for (i = 1; i < num_pages; i++) {
4632                 p = extent_buffer_page(eb, i);
4633                 ClearPageChecked(p);
4634                 unlock_page(p);
4635         }
4636         unlock_page(eb->pages[0]);
4637         return eb;
4638
4639 free_eb:
4640         for (i = 0; i < num_pages; i++) {
4641                 if (eb->pages[i])
4642                         unlock_page(eb->pages[i]);
4643         }
4644
4645         WARN_ON(!atomic_dec_and_test(&eb->refs));
4646         btrfs_release_extent_buffer(eb);
4647         return exists;
4648 }
4649
4650 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4651 {
4652         struct extent_buffer *eb =
4653                         container_of(head, struct extent_buffer, rcu_head);
4654
4655         __free_extent_buffer(eb);
4656 }
4657
4658 /* Expects to have eb->eb_lock already held */
4659 static int release_extent_buffer(struct extent_buffer *eb)
4660 {
4661         WARN_ON(atomic_read(&eb->refs) == 0);
4662         if (atomic_dec_and_test(&eb->refs)) {
4663                 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4664                         struct btrfs_fs_info *fs_info = eb->fs_info;
4665
4666                         spin_unlock(&eb->refs_lock);
4667
4668                         spin_lock(&fs_info->buffer_lock);
4669                         radix_tree_delete(&fs_info->buffer_radix,
4670                                           eb->start >> PAGE_CACHE_SHIFT);
4671                         spin_unlock(&fs_info->buffer_lock);
4672                 } else {
4673                         spin_unlock(&eb->refs_lock);
4674                 }
4675
4676                 /* Should be safe to release our pages at this point */
4677                 btrfs_release_extent_buffer_page(eb, 0);
4678                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4679                 return 1;
4680         }
4681         spin_unlock(&eb->refs_lock);
4682
4683         return 0;
4684 }
4685
4686 void free_extent_buffer(struct extent_buffer *eb)
4687 {
4688         int refs;
4689         int old;
4690         if (!eb)
4691                 return;
4692
4693         while (1) {
4694                 refs = atomic_read(&eb->refs);
4695                 if (refs <= 3)
4696                         break;
4697                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4698                 if (old == refs)
4699                         return;
4700         }
4701
4702         spin_lock(&eb->refs_lock);
4703         if (atomic_read(&eb->refs) == 2 &&
4704             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4705                 atomic_dec(&eb->refs);
4706
4707         if (atomic_read(&eb->refs) == 2 &&
4708             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4709             !extent_buffer_under_io(eb) &&
4710             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4711                 atomic_dec(&eb->refs);
4712
4713         /*
4714          * I know this is terrible, but it's temporary until we stop tracking
4715          * the uptodate bits and such for the extent buffers.
4716          */
4717         release_extent_buffer(eb);
4718 }
4719
4720 void free_extent_buffer_stale(struct extent_buffer *eb)
4721 {
4722         if (!eb)
4723                 return;
4724
4725         spin_lock(&eb->refs_lock);
4726         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4727
4728         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4729             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4730                 atomic_dec(&eb->refs);
4731         release_extent_buffer(eb);
4732 }
4733
4734 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4735 {
4736         unsigned long i;
4737         unsigned long num_pages;
4738         struct page *page;
4739
4740         num_pages = num_extent_pages(eb->start, eb->len);
4741
4742         for (i = 0; i < num_pages; i++) {
4743                 page = extent_buffer_page(eb, i);
4744                 if (!PageDirty(page))
4745                         continue;
4746
4747                 lock_page(page);
4748                 WARN_ON(!PagePrivate(page));
4749
4750                 clear_page_dirty_for_io(page);
4751                 spin_lock_irq(&page->mapping->tree_lock);
4752                 if (!PageDirty(page)) {
4753                         radix_tree_tag_clear(&page->mapping->page_tree,
4754                                                 page_index(page),
4755                                                 PAGECACHE_TAG_DIRTY);
4756                 }
4757                 spin_unlock_irq(&page->mapping->tree_lock);
4758                 ClearPageError(page);
4759                 unlock_page(page);
4760         }
4761         WARN_ON(atomic_read(&eb->refs) == 0);
4762 }
4763
4764 int set_extent_buffer_dirty(struct extent_buffer *eb)
4765 {
4766         unsigned long i;
4767         unsigned long num_pages;
4768         int was_dirty = 0;
4769
4770         check_buffer_tree_ref(eb);
4771
4772         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4773
4774         num_pages = num_extent_pages(eb->start, eb->len);
4775         WARN_ON(atomic_read(&eb->refs) == 0);
4776         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4777
4778         for (i = 0; i < num_pages; i++)
4779                 set_page_dirty(extent_buffer_page(eb, i));
4780         return was_dirty;
4781 }
4782
4783 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4784 {
4785         unsigned long i;
4786         struct page *page;
4787         unsigned long num_pages;
4788
4789         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4790         num_pages = num_extent_pages(eb->start, eb->len);
4791         for (i = 0; i < num_pages; i++) {
4792                 page = extent_buffer_page(eb, i);
4793                 if (page)
4794                         ClearPageUptodate(page);
4795         }
4796         return 0;
4797 }
4798
4799 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4800 {
4801         unsigned long i;
4802         struct page *page;
4803         unsigned long num_pages;
4804
4805         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4806         num_pages = num_extent_pages(eb->start, eb->len);
4807         for (i = 0; i < num_pages; i++) {
4808                 page = extent_buffer_page(eb, i);
4809                 SetPageUptodate(page);
4810         }
4811         return 0;
4812 }
4813
4814 int extent_buffer_uptodate(struct extent_buffer *eb)
4815 {
4816         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4817 }
4818
4819 int read_extent_buffer_pages(struct extent_io_tree *tree,
4820                              struct extent_buffer *eb, u64 start, int wait,
4821                              get_extent_t *get_extent, int mirror_num)
4822 {
4823         unsigned long i;
4824         unsigned long start_i;
4825         struct page *page;
4826         int err;
4827         int ret = 0;
4828         int locked_pages = 0;
4829         int all_uptodate = 1;
4830         unsigned long num_pages;
4831         unsigned long num_reads = 0;
4832         struct bio *bio = NULL;
4833         unsigned long bio_flags = 0;
4834
4835         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4836                 return 0;
4837
4838         if (start) {
4839                 WARN_ON(start < eb->start);
4840                 start_i = (start >> PAGE_CACHE_SHIFT) -
4841                         (eb->start >> PAGE_CACHE_SHIFT);
4842         } else {
4843                 start_i = 0;
4844         }
4845
4846         num_pages = num_extent_pages(eb->start, eb->len);
4847         for (i = start_i; i < num_pages; i++) {
4848                 page = extent_buffer_page(eb, i);
4849                 if (wait == WAIT_NONE) {
4850                         if (!trylock_page(page))
4851                                 goto unlock_exit;
4852                 } else {
4853                         lock_page(page);
4854                 }
4855                 locked_pages++;
4856                 if (!PageUptodate(page)) {
4857                         num_reads++;
4858                         all_uptodate = 0;
4859                 }
4860         }
4861         if (all_uptodate) {
4862                 if (start_i == 0)
4863                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4864                 goto unlock_exit;
4865         }
4866
4867         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4868         eb->read_mirror = 0;
4869         atomic_set(&eb->io_pages, num_reads);
4870         for (i = start_i; i < num_pages; i++) {
4871                 page = extent_buffer_page(eb, i);
4872                 if (!PageUptodate(page)) {
4873                         ClearPageError(page);
4874                         err = __extent_read_full_page(tree, page,
4875                                                       get_extent, &bio,
4876                                                       mirror_num, &bio_flags,
4877                                                       READ | REQ_META);
4878                         if (err)
4879                                 ret = err;
4880                 } else {
4881                         unlock_page(page);
4882                 }
4883         }
4884
4885         if (bio) {
4886                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4887                                      bio_flags);
4888                 if (err)
4889                         return err;
4890         }
4891
4892         if (ret || wait != WAIT_COMPLETE)
4893                 return ret;
4894
4895         for (i = start_i; i < num_pages; i++) {
4896                 page = extent_buffer_page(eb, i);
4897                 wait_on_page_locked(page);
4898                 if (!PageUptodate(page))
4899                         ret = -EIO;
4900         }
4901
4902         return ret;
4903
4904 unlock_exit:
4905         i = start_i;
4906         while (locked_pages > 0) {
4907                 page = extent_buffer_page(eb, i);
4908                 i++;
4909                 unlock_page(page);
4910                 locked_pages--;
4911         }
4912         return ret;
4913 }
4914
4915 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4916                         unsigned long start,
4917                         unsigned long len)
4918 {
4919         size_t cur;
4920         size_t offset;
4921         struct page *page;
4922         char *kaddr;
4923         char *dst = (char *)dstv;
4924         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4925         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4926
4927         WARN_ON(start > eb->len);
4928         WARN_ON(start + len > eb->start + eb->len);
4929
4930         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
4931
4932         while (len > 0) {
4933                 page = extent_buffer_page(eb, i);
4934
4935                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4936                 kaddr = page_address(page);
4937                 memcpy(dst, kaddr + offset, cur);
4938
4939                 dst += cur;
4940                 len -= cur;
4941                 offset = 0;
4942                 i++;
4943         }
4944 }
4945
4946 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4947                                unsigned long min_len, char **map,
4948                                unsigned long *map_start,
4949                                unsigned long *map_len)
4950 {
4951         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4952         char *kaddr;
4953         struct page *p;
4954         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4955         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4956         unsigned long end_i = (start_offset + start + min_len - 1) >>
4957                 PAGE_CACHE_SHIFT;
4958
4959         if (i != end_i)
4960                 return -EINVAL;
4961
4962         if (i == 0) {
4963                 offset = start_offset;
4964                 *map_start = 0;
4965         } else {
4966                 offset = 0;
4967                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4968         }
4969
4970         if (start + min_len > eb->len) {
4971                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4972                        "wanted %lu %lu\n",
4973                        eb->start, eb->len, start, min_len);
4974                 return -EINVAL;
4975         }
4976
4977         p = extent_buffer_page(eb, i);
4978         kaddr = page_address(p);
4979         *map = kaddr + offset;
4980         *map_len = PAGE_CACHE_SIZE - offset;
4981         return 0;
4982 }
4983
4984 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4985                           unsigned long start,
4986                           unsigned long len)
4987 {
4988         size_t cur;
4989         size_t offset;
4990         struct page *page;
4991         char *kaddr;
4992         char *ptr = (char *)ptrv;
4993         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4994         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4995         int ret = 0;
4996
4997         WARN_ON(start > eb->len);
4998         WARN_ON(start + len > eb->start + eb->len);
4999
5000         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5001
5002         while (len > 0) {
5003                 page = extent_buffer_page(eb, i);
5004
5005                 cur = min(len, (PAGE_CACHE_SIZE - offset));
5006
5007                 kaddr = page_address(page);
5008                 ret = memcmp(ptr, kaddr + offset, cur);
5009                 if (ret)
5010                         break;
5011
5012                 ptr += cur;
5013                 len -= cur;
5014                 offset = 0;
5015                 i++;
5016         }
5017         return ret;
5018 }
5019
5020 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5021                          unsigned long start, unsigned long len)
5022 {
5023         size_t cur;
5024         size_t offset;
5025         struct page *page;
5026         char *kaddr;
5027         char *src = (char *)srcv;
5028         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5029         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5030
5031         WARN_ON(start > eb->len);
5032         WARN_ON(start + len > eb->start + eb->len);
5033
5034         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5035
5036         while (len > 0) {
5037                 page = extent_buffer_page(eb, i);
5038                 WARN_ON(!PageUptodate(page));
5039
5040                 cur = min(len, PAGE_CACHE_SIZE - offset);
5041                 kaddr = page_address(page);
5042                 memcpy(kaddr + offset, src, cur);
5043
5044                 src += cur;
5045                 len -= cur;
5046                 offset = 0;
5047                 i++;
5048         }
5049 }
5050
5051 void memset_extent_buffer(struct extent_buffer *eb, char c,
5052                           unsigned long start, unsigned long len)
5053 {
5054         size_t cur;
5055         size_t offset;
5056         struct page *page;
5057         char *kaddr;
5058         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5059         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5060
5061         WARN_ON(start > eb->len);
5062         WARN_ON(start + len > eb->start + eb->len);
5063
5064         offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5065
5066         while (len > 0) {
5067                 page = extent_buffer_page(eb, i);
5068                 WARN_ON(!PageUptodate(page));
5069
5070                 cur = min(len, PAGE_CACHE_SIZE - offset);
5071                 kaddr = page_address(page);
5072                 memset(kaddr + offset, c, cur);
5073
5074                 len -= cur;
5075                 offset = 0;
5076                 i++;
5077         }
5078 }
5079
5080 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5081                         unsigned long dst_offset, unsigned long src_offset,
5082                         unsigned long len)
5083 {
5084         u64 dst_len = dst->len;
5085         size_t cur;
5086         size_t offset;
5087         struct page *page;
5088         char *kaddr;
5089         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5090         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5091
5092         WARN_ON(src->len != dst_len);
5093
5094         offset = (start_offset + dst_offset) &
5095                 (PAGE_CACHE_SIZE - 1);
5096
5097         while (len > 0) {
5098                 page = extent_buffer_page(dst, i);
5099                 WARN_ON(!PageUptodate(page));
5100
5101                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5102
5103                 kaddr = page_address(page);
5104                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5105
5106                 src_offset += cur;
5107                 len -= cur;
5108                 offset = 0;
5109                 i++;
5110         }
5111 }
5112
5113 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5114 {
5115         unsigned long distance = (src > dst) ? src - dst : dst - src;
5116         return distance < len;
5117 }
5118
5119 static void copy_pages(struct page *dst_page, struct page *src_page,
5120                        unsigned long dst_off, unsigned long src_off,
5121                        unsigned long len)
5122 {
5123         char *dst_kaddr = page_address(dst_page);
5124         char *src_kaddr;
5125         int must_memmove = 0;
5126
5127         if (dst_page != src_page) {
5128                 src_kaddr = page_address(src_page);
5129         } else {
5130                 src_kaddr = dst_kaddr;
5131                 if (areas_overlap(src_off, dst_off, len))
5132                         must_memmove = 1;
5133         }
5134
5135         if (must_memmove)
5136                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5137         else
5138                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5139 }
5140
5141 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5142                            unsigned long src_offset, unsigned long len)
5143 {
5144         size_t cur;
5145         size_t dst_off_in_page;
5146         size_t src_off_in_page;
5147         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5148         unsigned long dst_i;
5149         unsigned long src_i;
5150
5151         if (src_offset + len > dst->len) {
5152                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5153                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5154                 BUG_ON(1);
5155         }
5156         if (dst_offset + len > dst->len) {
5157                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5158                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5159                 BUG_ON(1);
5160         }
5161
5162         while (len > 0) {
5163                 dst_off_in_page = (start_offset + dst_offset) &
5164                         (PAGE_CACHE_SIZE - 1);
5165                 src_off_in_page = (start_offset + src_offset) &
5166                         (PAGE_CACHE_SIZE - 1);
5167
5168                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5169                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5170
5171                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5172                                                src_off_in_page));
5173                 cur = min_t(unsigned long, cur,
5174                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5175
5176                 copy_pages(extent_buffer_page(dst, dst_i),
5177                            extent_buffer_page(dst, src_i),
5178                            dst_off_in_page, src_off_in_page, cur);
5179
5180                 src_offset += cur;
5181                 dst_offset += cur;
5182                 len -= cur;
5183         }
5184 }
5185
5186 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5187                            unsigned long src_offset, unsigned long len)
5188 {
5189         size_t cur;
5190         size_t dst_off_in_page;
5191         size_t src_off_in_page;
5192         unsigned long dst_end = dst_offset + len - 1;
5193         unsigned long src_end = src_offset + len - 1;
5194         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5195         unsigned long dst_i;
5196         unsigned long src_i;
5197
5198         if (src_offset + len > dst->len) {
5199                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5200                        "len %lu len %lu\n", src_offset, len, dst->len);
5201                 BUG_ON(1);
5202         }
5203         if (dst_offset + len > dst->len) {
5204                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5205                        "len %lu len %lu\n", dst_offset, len, dst->len);
5206                 BUG_ON(1);
5207         }
5208         if (dst_offset < src_offset) {
5209                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5210                 return;
5211         }
5212         while (len > 0) {
5213                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5214                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5215
5216                 dst_off_in_page = (start_offset + dst_end) &
5217                         (PAGE_CACHE_SIZE - 1);
5218                 src_off_in_page = (start_offset + src_end) &
5219                         (PAGE_CACHE_SIZE - 1);
5220
5221                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5222                 cur = min(cur, dst_off_in_page + 1);
5223                 copy_pages(extent_buffer_page(dst, dst_i),
5224                            extent_buffer_page(dst, src_i),
5225                            dst_off_in_page - cur + 1,
5226                            src_off_in_page - cur + 1, cur);
5227
5228                 dst_end -= cur;
5229                 src_end -= cur;
5230                 len -= cur;
5231         }
5232 }
5233
5234 int try_release_extent_buffer(struct page *page)
5235 {
5236         struct extent_buffer *eb;
5237
5238         /*
5239          * We need to make sure noboody is attaching this page to an eb right
5240          * now.
5241          */
5242         spin_lock(&page->mapping->private_lock);
5243         if (!PagePrivate(page)) {
5244                 spin_unlock(&page->mapping->private_lock);
5245                 return 1;
5246         }
5247
5248         eb = (struct extent_buffer *)page->private;
5249         BUG_ON(!eb);
5250
5251         /*
5252          * This is a little awful but should be ok, we need to make sure that
5253          * the eb doesn't disappear out from under us while we're looking at
5254          * this page.
5255          */
5256         spin_lock(&eb->refs_lock);
5257         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5258                 spin_unlock(&eb->refs_lock);
5259                 spin_unlock(&page->mapping->private_lock);
5260                 return 0;
5261         }
5262         spin_unlock(&page->mapping->private_lock);
5263
5264         /*
5265          * If tree ref isn't set then we know the ref on this eb is a real ref,
5266          * so just return, this page will likely be freed soon anyway.
5267          */
5268         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5269                 spin_unlock(&eb->refs_lock);
5270                 return 0;
5271         }
5272
5273         return release_extent_buffer(eb);
5274 }