]> Pileus Git - ~andy/linux/blob - fs/btrfs/disk-io.c
Btrfs: avoid potential super block corruption
[~andy/linux] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #include <linux/freezer.h>
30 #include "compat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "ref-cache.h"
41 #include "tree-log.h"
42
43 #if 0
44 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
45 {
46         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
47                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
48                        (unsigned long long)extent_buffer_blocknr(buf),
49                        (unsigned long long)btrfs_header_blocknr(buf));
50                 return 1;
51         }
52         return 0;
53 }
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58
59 /*
60  * end_io_wq structs are used to do processing in task context when an IO is
61  * complete.  This is used during reads to verify checksums, and it is used
62  * by writes to insert metadata for new file extents after IO is complete.
63  */
64 struct end_io_wq {
65         struct bio *bio;
66         bio_end_io_t *end_io;
67         void *private;
68         struct btrfs_fs_info *info;
69         int error;
70         int metadata;
71         struct list_head list;
72         struct btrfs_work work;
73 };
74
75 /*
76  * async submit bios are used to offload expensive checksumming
77  * onto the worker threads.  They checksum file and metadata bios
78  * just before they are sent down the IO stack.
79  */
80 struct async_submit_bio {
81         struct inode *inode;
82         struct bio *bio;
83         struct list_head list;
84         extent_submit_bio_hook_t *submit_bio_start;
85         extent_submit_bio_hook_t *submit_bio_done;
86         int rw;
87         int mirror_num;
88         unsigned long bio_flags;
89         struct btrfs_work work;
90 };
91
92 /*
93  * extents on the btree inode are pretty simple, there's one extent
94  * that covers the entire device
95  */
96 static struct extent_map *btree_get_extent(struct inode *inode,
97                 struct page *page, size_t page_offset, u64 start, u64 len,
98                 int create)
99 {
100         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
101         struct extent_map *em;
102         int ret;
103
104         spin_lock(&em_tree->lock);
105         em = lookup_extent_mapping(em_tree, start, len);
106         if (em) {
107                 em->bdev =
108                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
109                 spin_unlock(&em_tree->lock);
110                 goto out;
111         }
112         spin_unlock(&em_tree->lock);
113
114         em = alloc_extent_map(GFP_NOFS);
115         if (!em) {
116                 em = ERR_PTR(-ENOMEM);
117                 goto out;
118         }
119         em->start = 0;
120         em->len = (u64)-1;
121         em->block_len = (u64)-1;
122         em->block_start = 0;
123         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
124
125         spin_lock(&em_tree->lock);
126         ret = add_extent_mapping(em_tree, em);
127         if (ret == -EEXIST) {
128                 u64 failed_start = em->start;
129                 u64 failed_len = em->len;
130
131                 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
132                        em->start, em->len, em->block_start);
133                 free_extent_map(em);
134                 em = lookup_extent_mapping(em_tree, start, len);
135                 if (em) {
136                         printk("after failing, found %Lu %Lu %Lu\n",
137                                em->start, em->len, em->block_start);
138                         ret = 0;
139                 } else {
140                         em = lookup_extent_mapping(em_tree, failed_start,
141                                                    failed_len);
142                         if (em) {
143                                 printk("double failure lookup gives us "
144                                        "%Lu %Lu -> %Lu\n", em->start,
145                                        em->len, em->block_start);
146                                 free_extent_map(em);
147                         }
148                         ret = -EIO;
149                 }
150         } else if (ret) {
151                 free_extent_map(em);
152                 em = NULL;
153         }
154         spin_unlock(&em_tree->lock);
155
156         if (ret)
157                 em = ERR_PTR(ret);
158 out:
159         return em;
160 }
161
162 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
163 {
164         return btrfs_crc32c(seed, data, len);
165 }
166
167 void btrfs_csum_final(u32 crc, char *result)
168 {
169         *(__le32 *)result = ~cpu_to_le32(crc);
170 }
171
172 /*
173  * compute the csum for a btree block, and either verify it or write it
174  * into the csum field of the block.
175  */
176 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
177                            int verify)
178 {
179         u16 csum_size =
180                 btrfs_super_csum_size(&root->fs_info->super_copy);
181         char *result = NULL;
182         unsigned long len;
183         unsigned long cur_len;
184         unsigned long offset = BTRFS_CSUM_SIZE;
185         char *map_token = NULL;
186         char *kaddr;
187         unsigned long map_start;
188         unsigned long map_len;
189         int err;
190         u32 crc = ~(u32)0;
191         unsigned long inline_result;
192
193         len = buf->len - offset;
194         while(len > 0) {
195                 err = map_private_extent_buffer(buf, offset, 32,
196                                         &map_token, &kaddr,
197                                         &map_start, &map_len, KM_USER0);
198                 if (err) {
199                         printk("failed to map extent buffer! %lu\n",
200                                offset);
201                         return 1;
202                 }
203                 cur_len = min(len, map_len - (offset - map_start));
204                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
205                                       crc, cur_len);
206                 len -= cur_len;
207                 offset += cur_len;
208                 unmap_extent_buffer(buf, map_token, KM_USER0);
209         }
210         if (csum_size > sizeof(inline_result)) {
211                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
212                 if (!result)
213                         return 1;
214         } else {
215                 result = (char *)&inline_result;
216         }
217
218         btrfs_csum_final(crc, result);
219
220         if (verify) {
221                 /* FIXME, this is not good */
222                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
223                         u32 val;
224                         u32 found = 0;
225                         memcpy(&found, result, csum_size);
226
227                         read_extent_buffer(buf, &val, 0, csum_size);
228                         printk("btrfs: %s checksum verify failed on %llu "
229                                "wanted %X found %X level %d\n",
230                                root->fs_info->sb->s_id,
231                                buf->start, val, found, btrfs_header_level(buf));
232                         if (result != (char *)&inline_result)
233                                 kfree(result);
234                         return 1;
235                 }
236         } else {
237                 write_extent_buffer(buf, result, 0, csum_size);
238         }
239         if (result != (char *)&inline_result)
240                 kfree(result);
241         return 0;
242 }
243
244 /*
245  * we can't consider a given block up to date unless the transid of the
246  * block matches the transid in the parent node's pointer.  This is how we
247  * detect blocks that either didn't get written at all or got written
248  * in the wrong place.
249  */
250 static int verify_parent_transid(struct extent_io_tree *io_tree,
251                                  struct extent_buffer *eb, u64 parent_transid)
252 {
253         int ret;
254
255         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
256                 return 0;
257
258         lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
259         if (extent_buffer_uptodate(io_tree, eb) &&
260             btrfs_header_generation(eb) == parent_transid) {
261                 ret = 0;
262                 goto out;
263         }
264         printk("parent transid verify failed on %llu wanted %llu found %llu\n",
265                (unsigned long long)eb->start,
266                (unsigned long long)parent_transid,
267                (unsigned long long)btrfs_header_generation(eb));
268         ret = 1;
269         clear_extent_buffer_uptodate(io_tree, eb);
270 out:
271         unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
272                       GFP_NOFS);
273         return ret;
274 }
275
276 /*
277  * helper to read a given tree block, doing retries as required when
278  * the checksums don't match and we have alternate mirrors to try.
279  */
280 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
281                                           struct extent_buffer *eb,
282                                           u64 start, u64 parent_transid)
283 {
284         struct extent_io_tree *io_tree;
285         int ret;
286         int num_copies = 0;
287         int mirror_num = 0;
288
289         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
290         while (1) {
291                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
292                                                btree_get_extent, mirror_num);
293                 if (!ret &&
294                     !verify_parent_transid(io_tree, eb, parent_transid))
295                         return ret;
296 printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
297                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
298                                               eb->start, eb->len);
299                 if (num_copies == 1)
300                         return ret;
301
302                 mirror_num++;
303                 if (mirror_num > num_copies)
304                         return ret;
305         }
306         return -EIO;
307 }
308
309 /*
310  * checksum a dirty tree block before IO.  This has extra checks to make
311  * sure we only fill in the checksum field in the first page of a multi-page block
312  */
313 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
314 {
315         struct extent_io_tree *tree;
316         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
317         u64 found_start;
318         int found_level;
319         unsigned long len;
320         struct extent_buffer *eb;
321         int ret;
322
323         tree = &BTRFS_I(page->mapping->host)->io_tree;
324
325         if (page->private == EXTENT_PAGE_PRIVATE)
326                 goto out;
327         if (!page->private)
328                 goto out;
329         len = page->private >> 2;
330         if (len == 0) {
331                 WARN_ON(1);
332         }
333         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
334         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
335                                              btrfs_header_generation(eb));
336         BUG_ON(ret);
337         found_start = btrfs_header_bytenr(eb);
338         if (found_start != start) {
339                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
340                        start, found_start, len);
341                 WARN_ON(1);
342                 goto err;
343         }
344         if (eb->first_page != page) {
345                 printk("bad first page %lu %lu\n", eb->first_page->index,
346                        page->index);
347                 WARN_ON(1);
348                 goto err;
349         }
350         if (!PageUptodate(page)) {
351                 printk("csum not up to date page %lu\n", page->index);
352                 WARN_ON(1);
353                 goto err;
354         }
355         found_level = btrfs_header_level(eb);
356
357         csum_tree_block(root, eb, 0);
358 err:
359         free_extent_buffer(eb);
360 out:
361         return 0;
362 }
363
364 static int check_tree_block_fsid(struct btrfs_root *root,
365                                  struct extent_buffer *eb)
366 {
367         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
368         u8 fsid[BTRFS_UUID_SIZE];
369         int ret = 1;
370
371         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
372                            BTRFS_FSID_SIZE);
373         while (fs_devices) {
374                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
375                         ret = 0;
376                         break;
377                 }
378                 fs_devices = fs_devices->seed;
379         }
380         return ret;
381 }
382
383 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
384                                struct extent_state *state)
385 {
386         struct extent_io_tree *tree;
387         u64 found_start;
388         int found_level;
389         unsigned long len;
390         struct extent_buffer *eb;
391         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
392         int ret = 0;
393
394         tree = &BTRFS_I(page->mapping->host)->io_tree;
395         if (page->private == EXTENT_PAGE_PRIVATE)
396                 goto out;
397         if (!page->private)
398                 goto out;
399         len = page->private >> 2;
400         if (len == 0) {
401                 WARN_ON(1);
402         }
403         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
404
405         found_start = btrfs_header_bytenr(eb);
406         if (found_start != start) {
407                 printk("bad tree block start %llu %llu\n",
408                        (unsigned long long)found_start,
409                        (unsigned long long)eb->start);
410                 ret = -EIO;
411                 goto err;
412         }
413         if (eb->first_page != page) {
414                 printk("bad first page %lu %lu\n", eb->first_page->index,
415                        page->index);
416                 WARN_ON(1);
417                 ret = -EIO;
418                 goto err;
419         }
420         if (check_tree_block_fsid(root, eb)) {
421                 printk("bad fsid on block %Lu\n", eb->start);
422                 ret = -EIO;
423                 goto err;
424         }
425         found_level = btrfs_header_level(eb);
426
427         ret = csum_tree_block(root, eb, 1);
428         if (ret)
429                 ret = -EIO;
430
431         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
432         end = eb->start + end - 1;
433 err:
434         free_extent_buffer(eb);
435 out:
436         return ret;
437 }
438
439 static void end_workqueue_bio(struct bio *bio, int err)
440 {
441         struct end_io_wq *end_io_wq = bio->bi_private;
442         struct btrfs_fs_info *fs_info;
443
444         fs_info = end_io_wq->info;
445         end_io_wq->error = err;
446         end_io_wq->work.func = end_workqueue_fn;
447         end_io_wq->work.flags = 0;
448
449         if (bio->bi_rw & (1 << BIO_RW)) {
450                 if (end_io_wq->metadata)
451                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
452                                            &end_io_wq->work);
453                 else
454                         btrfs_queue_worker(&fs_info->endio_write_workers,
455                                            &end_io_wq->work);
456         } else {
457                 if (end_io_wq->metadata)
458                         btrfs_queue_worker(&fs_info->endio_meta_workers,
459                                            &end_io_wq->work);
460                 else
461                         btrfs_queue_worker(&fs_info->endio_workers,
462                                            &end_io_wq->work);
463         }
464 }
465
466 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
467                         int metadata)
468 {
469         struct end_io_wq *end_io_wq;
470         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
471         if (!end_io_wq)
472                 return -ENOMEM;
473
474         end_io_wq->private = bio->bi_private;
475         end_io_wq->end_io = bio->bi_end_io;
476         end_io_wq->info = info;
477         end_io_wq->error = 0;
478         end_io_wq->bio = bio;
479         end_io_wq->metadata = metadata;
480
481         bio->bi_private = end_io_wq;
482         bio->bi_end_io = end_workqueue_bio;
483         return 0;
484 }
485
486 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
487 {
488         unsigned long limit = min_t(unsigned long,
489                                     info->workers.max_workers,
490                                     info->fs_devices->open_devices);
491         return 256 * limit;
492 }
493
494 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
495 {
496         return atomic_read(&info->nr_async_bios) >
497                 btrfs_async_submit_limit(info);
498 }
499
500 static void run_one_async_start(struct btrfs_work *work)
501 {
502         struct btrfs_fs_info *fs_info;
503         struct async_submit_bio *async;
504
505         async = container_of(work, struct  async_submit_bio, work);
506         fs_info = BTRFS_I(async->inode)->root->fs_info;
507         async->submit_bio_start(async->inode, async->rw, async->bio,
508                                async->mirror_num, async->bio_flags);
509 }
510
511 static void run_one_async_done(struct btrfs_work *work)
512 {
513         struct btrfs_fs_info *fs_info;
514         struct async_submit_bio *async;
515         int limit;
516
517         async = container_of(work, struct  async_submit_bio, work);
518         fs_info = BTRFS_I(async->inode)->root->fs_info;
519
520         limit = btrfs_async_submit_limit(fs_info);
521         limit = limit * 2 / 3;
522
523         atomic_dec(&fs_info->nr_async_submits);
524
525         if (atomic_read(&fs_info->nr_async_submits) < limit &&
526             waitqueue_active(&fs_info->async_submit_wait))
527                 wake_up(&fs_info->async_submit_wait);
528
529         async->submit_bio_done(async->inode, async->rw, async->bio,
530                                async->mirror_num, async->bio_flags);
531 }
532
533 static void run_one_async_free(struct btrfs_work *work)
534 {
535         struct async_submit_bio *async;
536
537         async = container_of(work, struct  async_submit_bio, work);
538         kfree(async);
539 }
540
541 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
542                         int rw, struct bio *bio, int mirror_num,
543                         unsigned long bio_flags,
544                         extent_submit_bio_hook_t *submit_bio_start,
545                         extent_submit_bio_hook_t *submit_bio_done)
546 {
547         struct async_submit_bio *async;
548
549         async = kmalloc(sizeof(*async), GFP_NOFS);
550         if (!async)
551                 return -ENOMEM;
552
553         async->inode = inode;
554         async->rw = rw;
555         async->bio = bio;
556         async->mirror_num = mirror_num;
557         async->submit_bio_start = submit_bio_start;
558         async->submit_bio_done = submit_bio_done;
559
560         async->work.func = run_one_async_start;
561         async->work.ordered_func = run_one_async_done;
562         async->work.ordered_free = run_one_async_free;
563
564         async->work.flags = 0;
565         async->bio_flags = bio_flags;
566
567         atomic_inc(&fs_info->nr_async_submits);
568         btrfs_queue_worker(&fs_info->workers, &async->work);
569 #if 0
570         int limit = btrfs_async_submit_limit(fs_info);
571         if (atomic_read(&fs_info->nr_async_submits) > limit) {
572                 wait_event_timeout(fs_info->async_submit_wait,
573                            (atomic_read(&fs_info->nr_async_submits) < limit),
574                            HZ/10);
575
576                 wait_event_timeout(fs_info->async_submit_wait,
577                            (atomic_read(&fs_info->nr_async_bios) < limit),
578                            HZ/10);
579         }
580 #endif
581         while(atomic_read(&fs_info->async_submit_draining) &&
582               atomic_read(&fs_info->nr_async_submits)) {
583                 wait_event(fs_info->async_submit_wait,
584                            (atomic_read(&fs_info->nr_async_submits) == 0));
585         }
586
587         return 0;
588 }
589
590 static int btree_csum_one_bio(struct bio *bio)
591 {
592         struct bio_vec *bvec = bio->bi_io_vec;
593         int bio_index = 0;
594         struct btrfs_root *root;
595
596         WARN_ON(bio->bi_vcnt <= 0);
597         while(bio_index < bio->bi_vcnt) {
598                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
599                 csum_dirty_buffer(root, bvec->bv_page);
600                 bio_index++;
601                 bvec++;
602         }
603         return 0;
604 }
605
606 static int __btree_submit_bio_start(struct inode *inode, int rw,
607                                     struct bio *bio, int mirror_num,
608                                     unsigned long bio_flags)
609 {
610         /*
611          * when we're called for a write, we're already in the async
612          * submission context.  Just jump into btrfs_map_bio
613          */
614         btree_csum_one_bio(bio);
615         return 0;
616 }
617
618 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
619                                  int mirror_num, unsigned long bio_flags)
620 {
621         /*
622          * when we're called for a write, we're already in the async
623          * submission context.  Just jump into btrfs_map_bio
624          */
625         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
626 }
627
628 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
629                                  int mirror_num, unsigned long bio_flags)
630 {
631         int ret;
632
633         ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
634                                           bio, 1);
635         BUG_ON(ret);
636
637         if (!(rw & (1 << BIO_RW))) {
638                 /*
639                  * called for a read, do the setup so that checksum validation
640                  * can happen in the async kernel threads
641                  */
642                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
643                                      mirror_num, 0);
644         }
645         /*
646          * kthread helpers are used to submit writes so that checksumming
647          * can happen in parallel across all CPUs
648          */
649         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
650                                    inode, rw, bio, mirror_num, 0,
651                                    __btree_submit_bio_start,
652                                    __btree_submit_bio_done);
653 }
654
655 static int btree_writepage(struct page *page, struct writeback_control *wbc)
656 {
657         struct extent_io_tree *tree;
658         tree = &BTRFS_I(page->mapping->host)->io_tree;
659
660         if (current->flags & PF_MEMALLOC) {
661                 redirty_page_for_writepage(wbc, page);
662                 unlock_page(page);
663                 return 0;
664         }
665         return extent_write_full_page(tree, page, btree_get_extent, wbc);
666 }
667
668 static int btree_writepages(struct address_space *mapping,
669                             struct writeback_control *wbc)
670 {
671         struct extent_io_tree *tree;
672         tree = &BTRFS_I(mapping->host)->io_tree;
673         if (wbc->sync_mode == WB_SYNC_NONE) {
674                 u64 num_dirty;
675                 u64 start = 0;
676                 unsigned long thresh = 32 * 1024 * 1024;
677
678                 if (wbc->for_kupdate)
679                         return 0;
680
681                 num_dirty = count_range_bits(tree, &start, (u64)-1,
682                                              thresh, EXTENT_DIRTY);
683                 if (num_dirty < thresh) {
684                         return 0;
685                 }
686         }
687         return extent_writepages(tree, mapping, btree_get_extent, wbc);
688 }
689
690 static int btree_readpage(struct file *file, struct page *page)
691 {
692         struct extent_io_tree *tree;
693         tree = &BTRFS_I(page->mapping->host)->io_tree;
694         return extent_read_full_page(tree, page, btree_get_extent);
695 }
696
697 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
698 {
699         struct extent_io_tree *tree;
700         struct extent_map_tree *map;
701         int ret;
702
703         if (PageWriteback(page) || PageDirty(page))
704             return 0;
705
706         tree = &BTRFS_I(page->mapping->host)->io_tree;
707         map = &BTRFS_I(page->mapping->host)->extent_tree;
708
709         ret = try_release_extent_state(map, tree, page, gfp_flags);
710         if (!ret) {
711                 return 0;
712         }
713
714         ret = try_release_extent_buffer(tree, page);
715         if (ret == 1) {
716                 ClearPagePrivate(page);
717                 set_page_private(page, 0);
718                 page_cache_release(page);
719         }
720
721         return ret;
722 }
723
724 static void btree_invalidatepage(struct page *page, unsigned long offset)
725 {
726         struct extent_io_tree *tree;
727         tree = &BTRFS_I(page->mapping->host)->io_tree;
728         extent_invalidatepage(tree, page, offset);
729         btree_releasepage(page, GFP_NOFS);
730         if (PagePrivate(page)) {
731                 printk("warning page private not zero on page %Lu\n",
732                        page_offset(page));
733                 ClearPagePrivate(page);
734                 set_page_private(page, 0);
735                 page_cache_release(page);
736         }
737 }
738
739 #if 0
740 static int btree_writepage(struct page *page, struct writeback_control *wbc)
741 {
742         struct buffer_head *bh;
743         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
744         struct buffer_head *head;
745         if (!page_has_buffers(page)) {
746                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
747                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
748         }
749         head = page_buffers(page);
750         bh = head;
751         do {
752                 if (buffer_dirty(bh))
753                         csum_tree_block(root, bh, 0);
754                 bh = bh->b_this_page;
755         } while (bh != head);
756         return block_write_full_page(page, btree_get_block, wbc);
757 }
758 #endif
759
760 static struct address_space_operations btree_aops = {
761         .readpage       = btree_readpage,
762         .writepage      = btree_writepage,
763         .writepages     = btree_writepages,
764         .releasepage    = btree_releasepage,
765         .invalidatepage = btree_invalidatepage,
766         .sync_page      = block_sync_page,
767 };
768
769 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
770                          u64 parent_transid)
771 {
772         struct extent_buffer *buf = NULL;
773         struct inode *btree_inode = root->fs_info->btree_inode;
774         int ret = 0;
775
776         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
777         if (!buf)
778                 return 0;
779         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
780                                  buf, 0, 0, btree_get_extent, 0);
781         free_extent_buffer(buf);
782         return ret;
783 }
784
785 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
786                                             u64 bytenr, u32 blocksize)
787 {
788         struct inode *btree_inode = root->fs_info->btree_inode;
789         struct extent_buffer *eb;
790         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
791                                 bytenr, blocksize, GFP_NOFS);
792         return eb;
793 }
794
795 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
796                                                  u64 bytenr, u32 blocksize)
797 {
798         struct inode *btree_inode = root->fs_info->btree_inode;
799         struct extent_buffer *eb;
800
801         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
802                                  bytenr, blocksize, NULL, GFP_NOFS);
803         return eb;
804 }
805
806
807 int btrfs_write_tree_block(struct extent_buffer *buf)
808 {
809         return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
810                                       buf->start + buf->len - 1, WB_SYNC_ALL);
811 }
812
813 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
814 {
815         return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
816                                   buf->start, buf->start + buf->len -1);
817 }
818
819 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
820                                       u32 blocksize, u64 parent_transid)
821 {
822         struct extent_buffer *buf = NULL;
823         struct inode *btree_inode = root->fs_info->btree_inode;
824         struct extent_io_tree *io_tree;
825         int ret;
826
827         io_tree = &BTRFS_I(btree_inode)->io_tree;
828
829         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
830         if (!buf)
831                 return NULL;
832
833         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
834
835         if (ret == 0) {
836                 buf->flags |= EXTENT_UPTODATE;
837         } else {
838                 WARN_ON(1);
839         }
840         return buf;
841
842 }
843
844 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
845                      struct extent_buffer *buf)
846 {
847         struct inode *btree_inode = root->fs_info->btree_inode;
848         if (btrfs_header_generation(buf) ==
849             root->fs_info->running_transaction->transid) {
850                 WARN_ON(!btrfs_tree_locked(buf));
851                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
852                                           buf);
853         }
854         return 0;
855 }
856
857 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
858                         u32 stripesize, struct btrfs_root *root,
859                         struct btrfs_fs_info *fs_info,
860                         u64 objectid)
861 {
862         root->node = NULL;
863         root->commit_root = NULL;
864         root->ref_tree = NULL;
865         root->sectorsize = sectorsize;
866         root->nodesize = nodesize;
867         root->leafsize = leafsize;
868         root->stripesize = stripesize;
869         root->ref_cows = 0;
870         root->track_dirty = 0;
871
872         root->fs_info = fs_info;
873         root->objectid = objectid;
874         root->last_trans = 0;
875         root->highest_inode = 0;
876         root->last_inode_alloc = 0;
877         root->name = NULL;
878         root->in_sysfs = 0;
879
880         INIT_LIST_HEAD(&root->dirty_list);
881         INIT_LIST_HEAD(&root->orphan_list);
882         INIT_LIST_HEAD(&root->dead_list);
883         spin_lock_init(&root->node_lock);
884         spin_lock_init(&root->list_lock);
885         mutex_init(&root->objectid_mutex);
886         mutex_init(&root->log_mutex);
887         extent_io_tree_init(&root->dirty_log_pages,
888                              fs_info->btree_inode->i_mapping, GFP_NOFS);
889
890         btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
891         root->ref_tree = &root->ref_tree_struct;
892
893         memset(&root->root_key, 0, sizeof(root->root_key));
894         memset(&root->root_item, 0, sizeof(root->root_item));
895         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
896         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
897         root->defrag_trans_start = fs_info->generation;
898         init_completion(&root->kobj_unregister);
899         root->defrag_running = 0;
900         root->defrag_level = 0;
901         root->root_key.objectid = objectid;
902         root->anon_super.s_root = NULL;
903         root->anon_super.s_dev = 0;
904         INIT_LIST_HEAD(&root->anon_super.s_list);
905         INIT_LIST_HEAD(&root->anon_super.s_instances);
906         init_rwsem(&root->anon_super.s_umount);
907
908         return 0;
909 }
910
911 static int find_and_setup_root(struct btrfs_root *tree_root,
912                                struct btrfs_fs_info *fs_info,
913                                u64 objectid,
914                                struct btrfs_root *root)
915 {
916         int ret;
917         u32 blocksize;
918         u64 generation;
919
920         __setup_root(tree_root->nodesize, tree_root->leafsize,
921                      tree_root->sectorsize, tree_root->stripesize,
922                      root, fs_info, objectid);
923         ret = btrfs_find_last_root(tree_root, objectid,
924                                    &root->root_item, &root->root_key);
925         BUG_ON(ret);
926
927         generation = btrfs_root_generation(&root->root_item);
928         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
929         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
930                                      blocksize, generation);
931         BUG_ON(!root->node);
932         return 0;
933 }
934
935 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
936                              struct btrfs_fs_info *fs_info)
937 {
938         struct extent_buffer *eb;
939         struct btrfs_root *log_root_tree = fs_info->log_root_tree;
940         u64 start = 0;
941         u64 end = 0;
942         int ret;
943
944         if (!log_root_tree)
945                 return 0;
946
947         while(1) {
948                 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
949                                     0, &start, &end, EXTENT_DIRTY);
950                 if (ret)
951                         break;
952
953                 clear_extent_dirty(&log_root_tree->dirty_log_pages,
954                                    start, end, GFP_NOFS);
955         }
956         eb = fs_info->log_root_tree->node;
957
958         WARN_ON(btrfs_header_level(eb) != 0);
959         WARN_ON(btrfs_header_nritems(eb) != 0);
960
961         ret = btrfs_free_reserved_extent(fs_info->tree_root,
962                                 eb->start, eb->len);
963         BUG_ON(ret);
964
965         free_extent_buffer(eb);
966         kfree(fs_info->log_root_tree);
967         fs_info->log_root_tree = NULL;
968         return 0;
969 }
970
971 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
972                              struct btrfs_fs_info *fs_info)
973 {
974         struct btrfs_root *root;
975         struct btrfs_root *tree_root = fs_info->tree_root;
976
977         root = kzalloc(sizeof(*root), GFP_NOFS);
978         if (!root)
979                 return -ENOMEM;
980
981         __setup_root(tree_root->nodesize, tree_root->leafsize,
982                      tree_root->sectorsize, tree_root->stripesize,
983                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
984
985         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
986         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
987         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
988         root->ref_cows = 0;
989
990         root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
991                                             0, BTRFS_TREE_LOG_OBJECTID,
992                                             trans->transid, 0, 0, 0);
993
994         btrfs_set_header_nritems(root->node, 0);
995         btrfs_set_header_level(root->node, 0);
996         btrfs_set_header_bytenr(root->node, root->node->start);
997         btrfs_set_header_generation(root->node, trans->transid);
998         btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
999
1000         write_extent_buffer(root->node, root->fs_info->fsid,
1001                             (unsigned long)btrfs_header_fsid(root->node),
1002                             BTRFS_FSID_SIZE);
1003         btrfs_mark_buffer_dirty(root->node);
1004         btrfs_tree_unlock(root->node);
1005         fs_info->log_root_tree = root;
1006         return 0;
1007 }
1008
1009 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1010                                                struct btrfs_key *location)
1011 {
1012         struct btrfs_root *root;
1013         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1014         struct btrfs_path *path;
1015         struct extent_buffer *l;
1016         u64 highest_inode;
1017         u64 generation;
1018         u32 blocksize;
1019         int ret = 0;
1020
1021         root = kzalloc(sizeof(*root), GFP_NOFS);
1022         if (!root)
1023                 return ERR_PTR(-ENOMEM);
1024         if (location->offset == (u64)-1) {
1025                 ret = find_and_setup_root(tree_root, fs_info,
1026                                           location->objectid, root);
1027                 if (ret) {
1028                         kfree(root);
1029                         return ERR_PTR(ret);
1030                 }
1031                 goto insert;
1032         }
1033
1034         __setup_root(tree_root->nodesize, tree_root->leafsize,
1035                      tree_root->sectorsize, tree_root->stripesize,
1036                      root, fs_info, location->objectid);
1037
1038         path = btrfs_alloc_path();
1039         BUG_ON(!path);
1040         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1041         if (ret != 0) {
1042                 if (ret > 0)
1043                         ret = -ENOENT;
1044                 goto out;
1045         }
1046         l = path->nodes[0];
1047         read_extent_buffer(l, &root->root_item,
1048                btrfs_item_ptr_offset(l, path->slots[0]),
1049                sizeof(root->root_item));
1050         memcpy(&root->root_key, location, sizeof(*location));
1051         ret = 0;
1052 out:
1053         btrfs_release_path(root, path);
1054         btrfs_free_path(path);
1055         if (ret) {
1056                 kfree(root);
1057                 return ERR_PTR(ret);
1058         }
1059         generation = btrfs_root_generation(&root->root_item);
1060         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1061         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1062                                      blocksize, generation);
1063         BUG_ON(!root->node);
1064 insert:
1065         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1066                 root->ref_cows = 1;
1067                 ret = btrfs_find_highest_inode(root, &highest_inode);
1068                 if (ret == 0) {
1069                         root->highest_inode = highest_inode;
1070                         root->last_inode_alloc = highest_inode;
1071                 }
1072         }
1073         return root;
1074 }
1075
1076 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1077                                         u64 root_objectid)
1078 {
1079         struct btrfs_root *root;
1080
1081         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1082                 return fs_info->tree_root;
1083         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1084                 return fs_info->extent_root;
1085
1086         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1087                                  (unsigned long)root_objectid);
1088         return root;
1089 }
1090
1091 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1092                                               struct btrfs_key *location)
1093 {
1094         struct btrfs_root *root;
1095         int ret;
1096
1097         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1098                 return fs_info->tree_root;
1099         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1100                 return fs_info->extent_root;
1101         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1102                 return fs_info->chunk_root;
1103         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1104                 return fs_info->dev_root;
1105         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1106                 return fs_info->csum_root;
1107
1108         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1109                                  (unsigned long)location->objectid);
1110         if (root)
1111                 return root;
1112
1113         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1114         if (IS_ERR(root))
1115                 return root;
1116
1117         set_anon_super(&root->anon_super, NULL);
1118
1119         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1120                                 (unsigned long)root->root_key.objectid,
1121                                 root);
1122         if (ret) {
1123                 free_extent_buffer(root->node);
1124                 kfree(root);
1125                 return ERR_PTR(ret);
1126         }
1127         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1128                 ret = btrfs_find_dead_roots(fs_info->tree_root,
1129                                             root->root_key.objectid, root);
1130                 BUG_ON(ret);
1131                 btrfs_orphan_cleanup(root);
1132         }
1133         return root;
1134 }
1135
1136 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1137                                       struct btrfs_key *location,
1138                                       const char *name, int namelen)
1139 {
1140         struct btrfs_root *root;
1141         int ret;
1142
1143         root = btrfs_read_fs_root_no_name(fs_info, location);
1144         if (!root)
1145                 return NULL;
1146
1147         if (root->in_sysfs)
1148                 return root;
1149
1150         ret = btrfs_set_root_name(root, name, namelen);
1151         if (ret) {
1152                 free_extent_buffer(root->node);
1153                 kfree(root);
1154                 return ERR_PTR(ret);
1155         }
1156 #if 0
1157         ret = btrfs_sysfs_add_root(root);
1158         if (ret) {
1159                 free_extent_buffer(root->node);
1160                 kfree(root->name);
1161                 kfree(root);
1162                 return ERR_PTR(ret);
1163         }
1164 #endif
1165         root->in_sysfs = 1;
1166         return root;
1167 }
1168 #if 0
1169 static int add_hasher(struct btrfs_fs_info *info, char *type) {
1170         struct btrfs_hasher *hasher;
1171
1172         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1173         if (!hasher)
1174                 return -ENOMEM;
1175         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1176         if (!hasher->hash_tfm) {
1177                 kfree(hasher);
1178                 return -EINVAL;
1179         }
1180         spin_lock(&info->hash_lock);
1181         list_add(&hasher->list, &info->hashers);
1182         spin_unlock(&info->hash_lock);
1183         return 0;
1184 }
1185 #endif
1186
1187 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1188 {
1189         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1190         int ret = 0;
1191         struct list_head *cur;
1192         struct btrfs_device *device;
1193         struct backing_dev_info *bdi;
1194 #if 0
1195         if ((bdi_bits & (1 << BDI_write_congested)) &&
1196             btrfs_congested_async(info, 0))
1197                 return 1;
1198 #endif
1199         list_for_each(cur, &info->fs_devices->devices) {
1200                 device = list_entry(cur, struct btrfs_device, dev_list);
1201                 if (!device->bdev)
1202                         continue;
1203                 bdi = blk_get_backing_dev_info(device->bdev);
1204                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1205                         ret = 1;
1206                         break;
1207                 }
1208         }
1209         return ret;
1210 }
1211
1212 /*
1213  * this unplugs every device on the box, and it is only used when page
1214  * is null
1215  */
1216 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1217 {
1218         struct list_head *cur;
1219         struct btrfs_device *device;
1220         struct btrfs_fs_info *info;
1221
1222         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1223         list_for_each(cur, &info->fs_devices->devices) {
1224                 device = list_entry(cur, struct btrfs_device, dev_list);
1225                 if (!device->bdev)
1226                         continue;
1227
1228                 bdi = blk_get_backing_dev_info(device->bdev);
1229                 if (bdi->unplug_io_fn) {
1230                         bdi->unplug_io_fn(bdi, page);
1231                 }
1232         }
1233 }
1234
1235 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1236 {
1237         struct inode *inode;
1238         struct extent_map_tree *em_tree;
1239         struct extent_map *em;
1240         struct address_space *mapping;
1241         u64 offset;
1242
1243         /* the generic O_DIRECT read code does this */
1244         if (1 || !page) {
1245                 __unplug_io_fn(bdi, page);
1246                 return;
1247         }
1248
1249         /*
1250          * page->mapping may change at any time.  Get a consistent copy
1251          * and use that for everything below
1252          */
1253         smp_mb();
1254         mapping = page->mapping;
1255         if (!mapping)
1256                 return;
1257
1258         inode = mapping->host;
1259
1260         /*
1261          * don't do the expensive searching for a small number of
1262          * devices
1263          */
1264         if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1265                 __unplug_io_fn(bdi, page);
1266                 return;
1267         }
1268
1269         offset = page_offset(page);
1270
1271         em_tree = &BTRFS_I(inode)->extent_tree;
1272         spin_lock(&em_tree->lock);
1273         em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1274         spin_unlock(&em_tree->lock);
1275         if (!em) {
1276                 __unplug_io_fn(bdi, page);
1277                 return;
1278         }
1279
1280         if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1281                 free_extent_map(em);
1282                 __unplug_io_fn(bdi, page);
1283                 return;
1284         }
1285         offset = offset - em->start;
1286         btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1287                           em->block_start + offset, page);
1288         free_extent_map(em);
1289 }
1290
1291 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1292 {
1293         bdi_init(bdi);
1294         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1295         bdi->state              = 0;
1296         bdi->capabilities       = default_backing_dev_info.capabilities;
1297         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
1298         bdi->unplug_io_data     = info;
1299         bdi->congested_fn       = btrfs_congested_fn;
1300         bdi->congested_data     = info;
1301         return 0;
1302 }
1303
1304 static int bio_ready_for_csum(struct bio *bio)
1305 {
1306         u64 length = 0;
1307         u64 buf_len = 0;
1308         u64 start = 0;
1309         struct page *page;
1310         struct extent_io_tree *io_tree = NULL;
1311         struct btrfs_fs_info *info = NULL;
1312         struct bio_vec *bvec;
1313         int i;
1314         int ret;
1315
1316         bio_for_each_segment(bvec, bio, i) {
1317                 page = bvec->bv_page;
1318                 if (page->private == EXTENT_PAGE_PRIVATE) {
1319                         length += bvec->bv_len;
1320                         continue;
1321                 }
1322                 if (!page->private) {
1323                         length += bvec->bv_len;
1324                         continue;
1325                 }
1326                 length = bvec->bv_len;
1327                 buf_len = page->private >> 2;
1328                 start = page_offset(page) + bvec->bv_offset;
1329                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1330                 info = BTRFS_I(page->mapping->host)->root->fs_info;
1331         }
1332         /* are we fully contained in this bio? */
1333         if (buf_len <= length)
1334                 return 1;
1335
1336         ret = extent_range_uptodate(io_tree, start + length,
1337                                     start + buf_len - 1);
1338         if (ret == 1)
1339                 return ret;
1340         return ret;
1341 }
1342
1343 /*
1344  * called by the kthread helper functions to finally call the bio end_io
1345  * functions.  This is where read checksum verification actually happens
1346  */
1347 static void end_workqueue_fn(struct btrfs_work *work)
1348 {
1349         struct bio *bio;
1350         struct end_io_wq *end_io_wq;
1351         struct btrfs_fs_info *fs_info;
1352         int error;
1353
1354         end_io_wq = container_of(work, struct end_io_wq, work);
1355         bio = end_io_wq->bio;
1356         fs_info = end_io_wq->info;
1357
1358         /* metadata bio reads are special because the whole tree block must
1359          * be checksummed at once.  This makes sure the entire block is in
1360          * ram and up to date before trying to verify things.  For
1361          * blocksize <= pagesize, it is basically a noop
1362          */
1363         if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
1364             !bio_ready_for_csum(bio)) {
1365                 btrfs_queue_worker(&fs_info->endio_meta_workers,
1366                                    &end_io_wq->work);
1367                 return;
1368         }
1369         error = end_io_wq->error;
1370         bio->bi_private = end_io_wq->private;
1371         bio->bi_end_io = end_io_wq->end_io;
1372         kfree(end_io_wq);
1373         bio_endio(bio, error);
1374 }
1375
1376 static int cleaner_kthread(void *arg)
1377 {
1378         struct btrfs_root *root = arg;
1379
1380         do {
1381                 smp_mb();
1382                 if (root->fs_info->closing)
1383                         break;
1384
1385                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1386                 mutex_lock(&root->fs_info->cleaner_mutex);
1387                 btrfs_clean_old_snapshots(root);
1388                 mutex_unlock(&root->fs_info->cleaner_mutex);
1389
1390                 if (freezing(current)) {
1391                         refrigerator();
1392                 } else {
1393                         smp_mb();
1394                         if (root->fs_info->closing)
1395                                 break;
1396                         set_current_state(TASK_INTERRUPTIBLE);
1397                         schedule();
1398                         __set_current_state(TASK_RUNNING);
1399                 }
1400         } while (!kthread_should_stop());
1401         return 0;
1402 }
1403
1404 static int transaction_kthread(void *arg)
1405 {
1406         struct btrfs_root *root = arg;
1407         struct btrfs_trans_handle *trans;
1408         struct btrfs_transaction *cur;
1409         unsigned long now;
1410         unsigned long delay;
1411         int ret;
1412
1413         do {
1414                 smp_mb();
1415                 if (root->fs_info->closing)
1416                         break;
1417
1418                 delay = HZ * 30;
1419                 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1420                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1421
1422                 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1423                         printk("btrfs: total reference cache size %Lu\n",
1424                                 root->fs_info->total_ref_cache_size);
1425                 }
1426
1427                 mutex_lock(&root->fs_info->trans_mutex);
1428                 cur = root->fs_info->running_transaction;
1429                 if (!cur) {
1430                         mutex_unlock(&root->fs_info->trans_mutex);
1431                         goto sleep;
1432                 }
1433
1434                 now = get_seconds();
1435                 if (now < cur->start_time || now - cur->start_time < 30) {
1436                         mutex_unlock(&root->fs_info->trans_mutex);
1437                         delay = HZ * 5;
1438                         goto sleep;
1439                 }
1440                 mutex_unlock(&root->fs_info->trans_mutex);
1441                 trans = btrfs_start_transaction(root, 1);
1442                 ret = btrfs_commit_transaction(trans, root);
1443 sleep:
1444                 wake_up_process(root->fs_info->cleaner_kthread);
1445                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1446
1447                 if (freezing(current)) {
1448                         refrigerator();
1449                 } else {
1450                         if (root->fs_info->closing)
1451                                 break;
1452                         set_current_state(TASK_INTERRUPTIBLE);
1453                         schedule_timeout(delay);
1454                         __set_current_state(TASK_RUNNING);
1455                 }
1456         } while (!kthread_should_stop());
1457         return 0;
1458 }
1459
1460 struct btrfs_root *open_ctree(struct super_block *sb,
1461                               struct btrfs_fs_devices *fs_devices,
1462                               char *options)
1463 {
1464         u32 sectorsize;
1465         u32 nodesize;
1466         u32 leafsize;
1467         u32 blocksize;
1468         u32 stripesize;
1469         u64 generation;
1470         u64 features;
1471         struct btrfs_key location;
1472         struct buffer_head *bh;
1473         struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1474                                                  GFP_NOFS);
1475         struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1476                                                  GFP_NOFS);
1477         struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1478                                                GFP_NOFS);
1479         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1480                                                 GFP_NOFS);
1481         struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1482                                                 GFP_NOFS);
1483         struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1484                                               GFP_NOFS);
1485         struct btrfs_root *log_tree_root;
1486
1487         int ret;
1488         int err = -EINVAL;
1489
1490         struct btrfs_super_block *disk_super;
1491
1492         if (!extent_root || !tree_root || !fs_info ||
1493             !chunk_root || !dev_root || !csum_root) {
1494                 err = -ENOMEM;
1495                 goto fail;
1496         }
1497         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1498         INIT_LIST_HEAD(&fs_info->trans_list);
1499         INIT_LIST_HEAD(&fs_info->dead_roots);
1500         INIT_LIST_HEAD(&fs_info->hashers);
1501         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1502         spin_lock_init(&fs_info->hash_lock);
1503         spin_lock_init(&fs_info->delalloc_lock);
1504         spin_lock_init(&fs_info->new_trans_lock);
1505         spin_lock_init(&fs_info->ref_cache_lock);
1506
1507         init_completion(&fs_info->kobj_unregister);
1508         fs_info->tree_root = tree_root;
1509         fs_info->extent_root = extent_root;
1510         fs_info->csum_root = csum_root;
1511         fs_info->chunk_root = chunk_root;
1512         fs_info->dev_root = dev_root;
1513         fs_info->fs_devices = fs_devices;
1514         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1515         INIT_LIST_HEAD(&fs_info->space_info);
1516         btrfs_mapping_init(&fs_info->mapping_tree);
1517         atomic_set(&fs_info->nr_async_submits, 0);
1518         atomic_set(&fs_info->async_delalloc_pages, 0);
1519         atomic_set(&fs_info->async_submit_draining, 0);
1520         atomic_set(&fs_info->nr_async_bios, 0);
1521         atomic_set(&fs_info->throttles, 0);
1522         atomic_set(&fs_info->throttle_gen, 0);
1523         fs_info->sb = sb;
1524         fs_info->max_extent = (u64)-1;
1525         fs_info->max_inline = 8192 * 1024;
1526         setup_bdi(fs_info, &fs_info->bdi);
1527         fs_info->btree_inode = new_inode(sb);
1528         fs_info->btree_inode->i_ino = 1;
1529         fs_info->btree_inode->i_nlink = 1;
1530
1531         fs_info->thread_pool_size = min_t(unsigned long,
1532                                           num_online_cpus() + 2, 8);
1533
1534         INIT_LIST_HEAD(&fs_info->ordered_extents);
1535         spin_lock_init(&fs_info->ordered_extent_lock);
1536
1537         sb->s_blocksize = 4096;
1538         sb->s_blocksize_bits = blksize_bits(4096);
1539
1540         /*
1541          * we set the i_size on the btree inode to the max possible int.
1542          * the real end of the address space is determined by all of
1543          * the devices in the system
1544          */
1545         fs_info->btree_inode->i_size = OFFSET_MAX;
1546         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1547         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1548
1549         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1550                              fs_info->btree_inode->i_mapping,
1551                              GFP_NOFS);
1552         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1553                              GFP_NOFS);
1554
1555         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1556
1557         spin_lock_init(&fs_info->block_group_cache_lock);
1558         fs_info->block_group_cache_tree.rb_node = NULL;
1559
1560         extent_io_tree_init(&fs_info->pinned_extents,
1561                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1562         extent_io_tree_init(&fs_info->pending_del,
1563                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1564         extent_io_tree_init(&fs_info->extent_ins,
1565                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1566         fs_info->do_barriers = 1;
1567
1568         INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1569         btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1570         btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1571
1572         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1573         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1574                sizeof(struct btrfs_key));
1575         insert_inode_hash(fs_info->btree_inode);
1576
1577         mutex_init(&fs_info->trans_mutex);
1578         mutex_init(&fs_info->tree_log_mutex);
1579         mutex_init(&fs_info->drop_mutex);
1580         mutex_init(&fs_info->extent_ins_mutex);
1581         mutex_init(&fs_info->pinned_mutex);
1582         mutex_init(&fs_info->chunk_mutex);
1583         mutex_init(&fs_info->transaction_kthread_mutex);
1584         mutex_init(&fs_info->cleaner_mutex);
1585         mutex_init(&fs_info->volume_mutex);
1586         mutex_init(&fs_info->tree_reloc_mutex);
1587         init_waitqueue_head(&fs_info->transaction_throttle);
1588         init_waitqueue_head(&fs_info->transaction_wait);
1589         init_waitqueue_head(&fs_info->async_submit_wait);
1590         init_waitqueue_head(&fs_info->tree_log_wait);
1591         atomic_set(&fs_info->tree_log_commit, 0);
1592         atomic_set(&fs_info->tree_log_writers, 0);
1593         fs_info->tree_log_transid = 0;
1594
1595 #if 0
1596         ret = add_hasher(fs_info, "crc32c");
1597         if (ret) {
1598                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1599                 err = -ENOMEM;
1600                 goto fail_iput;
1601         }
1602 #endif
1603         __setup_root(4096, 4096, 4096, 4096, tree_root,
1604                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1605
1606
1607         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1608         if (!bh)
1609                 goto fail_iput;
1610
1611         memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1612         memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1613                sizeof(fs_info->super_for_commit));
1614         brelse(bh);
1615
1616         memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1617
1618         disk_super = &fs_info->super_copy;
1619         if (!btrfs_super_root(disk_super))
1620                 goto fail_iput;
1621
1622         ret = btrfs_parse_options(tree_root, options);
1623         if (ret) {
1624                 err = ret;
1625                 goto fail_iput;
1626         }
1627
1628         features = btrfs_super_incompat_flags(disk_super) &
1629                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1630         if (features) {
1631                 printk(KERN_ERR "BTRFS: couldn't mount because of "
1632                        "unsupported optional features (%Lx).\n",
1633                        features);
1634                 err = -EINVAL;
1635                 goto fail_iput;
1636         }
1637
1638         features = btrfs_super_compat_ro_flags(disk_super) &
1639                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1640         if (!(sb->s_flags & MS_RDONLY) && features) {
1641                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1642                        "unsupported option features (%Lx).\n",
1643                        features);
1644                 err = -EINVAL;
1645                 goto fail_iput;
1646         }
1647
1648         /*
1649          * we need to start all the end_io workers up front because the
1650          * queue work function gets called at interrupt time, and so it
1651          * cannot dynamically grow.
1652          */
1653         btrfs_init_workers(&fs_info->workers, "worker",
1654                            fs_info->thread_pool_size);
1655
1656         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1657                            fs_info->thread_pool_size);
1658
1659         btrfs_init_workers(&fs_info->submit_workers, "submit",
1660                            min_t(u64, fs_devices->num_devices,
1661                            fs_info->thread_pool_size));
1662
1663         /* a higher idle thresh on the submit workers makes it much more
1664          * likely that bios will be send down in a sane order to the
1665          * devices
1666          */
1667         fs_info->submit_workers.idle_thresh = 64;
1668
1669         fs_info->workers.idle_thresh = 16;
1670         fs_info->workers.ordered = 1;
1671
1672         fs_info->delalloc_workers.idle_thresh = 2;
1673         fs_info->delalloc_workers.ordered = 1;
1674
1675         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1676         btrfs_init_workers(&fs_info->endio_workers, "endio",
1677                            fs_info->thread_pool_size);
1678         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1679                            fs_info->thread_pool_size);
1680         btrfs_init_workers(&fs_info->endio_meta_write_workers,
1681                            "endio-meta-write", fs_info->thread_pool_size);
1682         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1683                            fs_info->thread_pool_size);
1684
1685         /*
1686          * endios are largely parallel and should have a very
1687          * low idle thresh
1688          */
1689         fs_info->endio_workers.idle_thresh = 4;
1690         fs_info->endio_write_workers.idle_thresh = 64;
1691         fs_info->endio_meta_write_workers.idle_thresh = 64;
1692
1693         btrfs_start_workers(&fs_info->workers, 1);
1694         btrfs_start_workers(&fs_info->submit_workers, 1);
1695         btrfs_start_workers(&fs_info->delalloc_workers, 1);
1696         btrfs_start_workers(&fs_info->fixup_workers, 1);
1697         btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1698         btrfs_start_workers(&fs_info->endio_meta_workers,
1699                             fs_info->thread_pool_size);
1700         btrfs_start_workers(&fs_info->endio_meta_write_workers,
1701                             fs_info->thread_pool_size);
1702         btrfs_start_workers(&fs_info->endio_write_workers,
1703                             fs_info->thread_pool_size);
1704
1705         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1706         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1707                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1708
1709         nodesize = btrfs_super_nodesize(disk_super);
1710         leafsize = btrfs_super_leafsize(disk_super);
1711         sectorsize = btrfs_super_sectorsize(disk_super);
1712         stripesize = btrfs_super_stripesize(disk_super);
1713         tree_root->nodesize = nodesize;
1714         tree_root->leafsize = leafsize;
1715         tree_root->sectorsize = sectorsize;
1716         tree_root->stripesize = stripesize;
1717
1718         sb->s_blocksize = sectorsize;
1719         sb->s_blocksize_bits = blksize_bits(sectorsize);
1720
1721         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1722                     sizeof(disk_super->magic))) {
1723                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1724                 goto fail_sb_buffer;
1725         }
1726
1727         mutex_lock(&fs_info->chunk_mutex);
1728         ret = btrfs_read_sys_array(tree_root);
1729         mutex_unlock(&fs_info->chunk_mutex);
1730         if (ret) {
1731                 printk("btrfs: failed to read the system array on %s\n",
1732                        sb->s_id);
1733                 goto fail_sys_array;
1734         }
1735
1736         blocksize = btrfs_level_size(tree_root,
1737                                      btrfs_super_chunk_root_level(disk_super));
1738         generation = btrfs_super_chunk_root_generation(disk_super);
1739
1740         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1741                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1742
1743         chunk_root->node = read_tree_block(chunk_root,
1744                                            btrfs_super_chunk_root(disk_super),
1745                                            blocksize, generation);
1746         BUG_ON(!chunk_root->node);
1747
1748         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1749                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1750                  BTRFS_UUID_SIZE);
1751
1752         mutex_lock(&fs_info->chunk_mutex);
1753         ret = btrfs_read_chunk_tree(chunk_root);
1754         mutex_unlock(&fs_info->chunk_mutex);
1755         if (ret) {
1756                 printk("btrfs: failed to read chunk tree on %s\n", sb->s_id);
1757                 goto fail_chunk_root;
1758         }
1759
1760         btrfs_close_extra_devices(fs_devices);
1761
1762         blocksize = btrfs_level_size(tree_root,
1763                                      btrfs_super_root_level(disk_super));
1764         generation = btrfs_super_generation(disk_super);
1765
1766         tree_root->node = read_tree_block(tree_root,
1767                                           btrfs_super_root(disk_super),
1768                                           blocksize, generation);
1769         if (!tree_root->node)
1770                 goto fail_chunk_root;
1771
1772
1773         ret = find_and_setup_root(tree_root, fs_info,
1774                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1775         if (ret)
1776                 goto fail_tree_root;
1777         extent_root->track_dirty = 1;
1778
1779         ret = find_and_setup_root(tree_root, fs_info,
1780                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1781         dev_root->track_dirty = 1;
1782
1783         if (ret)
1784                 goto fail_extent_root;
1785
1786         ret = find_and_setup_root(tree_root, fs_info,
1787                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
1788         if (ret)
1789                 goto fail_extent_root;
1790
1791         csum_root->track_dirty = 1;
1792
1793         btrfs_read_block_groups(extent_root);
1794
1795         fs_info->generation = generation;
1796         fs_info->last_trans_committed = generation;
1797         fs_info->data_alloc_profile = (u64)-1;
1798         fs_info->metadata_alloc_profile = (u64)-1;
1799         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1800         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1801                                                "btrfs-cleaner");
1802         if (!fs_info->cleaner_kthread)
1803                 goto fail_csum_root;
1804
1805         fs_info->transaction_kthread = kthread_run(transaction_kthread,
1806                                                    tree_root,
1807                                                    "btrfs-transaction");
1808         if (!fs_info->transaction_kthread)
1809                 goto fail_cleaner;
1810
1811         if (btrfs_super_log_root(disk_super) != 0) {
1812                 u64 bytenr = btrfs_super_log_root(disk_super);
1813
1814                 if (fs_devices->rw_devices == 0) {
1815                         printk("Btrfs log replay required on RO media\n");
1816                         err = -EIO;
1817                         goto fail_trans_kthread;
1818                 }
1819                 blocksize =
1820                      btrfs_level_size(tree_root,
1821                                       btrfs_super_log_root_level(disk_super));
1822
1823                 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1824                                                       GFP_NOFS);
1825
1826                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1827                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1828
1829                 log_tree_root->node = read_tree_block(tree_root, bytenr,
1830                                                       blocksize,
1831                                                       generation + 1);
1832                 ret = btrfs_recover_log_trees(log_tree_root);
1833                 BUG_ON(ret);
1834
1835                 if (sb->s_flags & MS_RDONLY) {
1836                         ret =  btrfs_commit_super(tree_root);
1837                         BUG_ON(ret);
1838                 }
1839         }
1840
1841         if (!(sb->s_flags & MS_RDONLY)) {
1842                 ret = btrfs_cleanup_reloc_trees(tree_root);
1843                 BUG_ON(ret);
1844         }
1845
1846         location.objectid = BTRFS_FS_TREE_OBJECTID;
1847         location.type = BTRFS_ROOT_ITEM_KEY;
1848         location.offset = (u64)-1;
1849
1850         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1851         if (!fs_info->fs_root)
1852                 goto fail_trans_kthread;
1853         return tree_root;
1854
1855 fail_trans_kthread:
1856         kthread_stop(fs_info->transaction_kthread);
1857 fail_cleaner:
1858         kthread_stop(fs_info->cleaner_kthread);
1859
1860         /*
1861          * make sure we're done with the btree inode before we stop our
1862          * kthreads
1863          */
1864         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1865         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1866
1867 fail_csum_root:
1868         free_extent_buffer(csum_root->node);
1869 fail_extent_root:
1870         free_extent_buffer(extent_root->node);
1871 fail_tree_root:
1872         free_extent_buffer(tree_root->node);
1873 fail_chunk_root:
1874         free_extent_buffer(chunk_root->node);
1875 fail_sys_array:
1876         free_extent_buffer(dev_root->node);
1877 fail_sb_buffer:
1878         btrfs_stop_workers(&fs_info->fixup_workers);
1879         btrfs_stop_workers(&fs_info->delalloc_workers);
1880         btrfs_stop_workers(&fs_info->workers);
1881         btrfs_stop_workers(&fs_info->endio_workers);
1882         btrfs_stop_workers(&fs_info->endio_meta_workers);
1883         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1884         btrfs_stop_workers(&fs_info->endio_write_workers);
1885         btrfs_stop_workers(&fs_info->submit_workers);
1886 fail_iput:
1887         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1888         iput(fs_info->btree_inode);
1889 fail:
1890         btrfs_close_devices(fs_info->fs_devices);
1891         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1892
1893         kfree(extent_root);
1894         kfree(tree_root);
1895         bdi_destroy(&fs_info->bdi);
1896         kfree(fs_info);
1897         kfree(chunk_root);
1898         kfree(dev_root);
1899         kfree(csum_root);
1900         return ERR_PTR(err);
1901 }
1902
1903 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1904 {
1905         char b[BDEVNAME_SIZE];
1906
1907         if (uptodate) {
1908                 set_buffer_uptodate(bh);
1909         } else {
1910                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1911                         printk(KERN_WARNING "lost page write due to "
1912                                         "I/O error on %s\n",
1913                                        bdevname(bh->b_bdev, b));
1914                 }
1915                 /* note, we dont' set_buffer_write_io_error because we have
1916                  * our own ways of dealing with the IO errors
1917                  */
1918                 clear_buffer_uptodate(bh);
1919         }
1920         unlock_buffer(bh);
1921         put_bh(bh);
1922 }
1923
1924 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
1925 {
1926         struct buffer_head *bh;
1927         struct buffer_head *latest = NULL;
1928         struct btrfs_super_block *super;
1929         int i;
1930         u64 transid = 0;
1931         u64 bytenr;
1932
1933         /* we would like to check all the supers, but that would make
1934          * a btrfs mount succeed after a mkfs from a different FS.
1935          * So, we need to add a special mount option to scan for
1936          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1937          */
1938         for (i = 0; i < 1; i++) {
1939                 bytenr = btrfs_sb_offset(i);
1940                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
1941                         break;
1942                 bh = __bread(bdev, bytenr / 4096, 4096);
1943                 if (!bh)
1944                         continue;
1945
1946                 super = (struct btrfs_super_block *)bh->b_data;
1947                 if (btrfs_super_bytenr(super) != bytenr ||
1948                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
1949                             sizeof(super->magic))) {
1950                         brelse(bh);
1951                         continue;
1952                 }
1953
1954                 if (!latest || btrfs_super_generation(super) > transid) {
1955                         brelse(latest);
1956                         latest = bh;
1957                         transid = btrfs_super_generation(super);
1958                 } else {
1959                         brelse(bh);
1960                 }
1961         }
1962         return latest;
1963 }
1964
1965 static int write_dev_supers(struct btrfs_device *device,
1966                             struct btrfs_super_block *sb,
1967                             int do_barriers, int wait, int max_mirrors)
1968 {
1969         struct buffer_head *bh;
1970         int i;
1971         int ret;
1972         int errors = 0;
1973         u32 crc;
1974         u64 bytenr;
1975         int last_barrier = 0;
1976
1977         if (max_mirrors == 0)
1978                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
1979
1980         /* make sure only the last submit_bh does a barrier */
1981         if (do_barriers) {
1982                 for (i = 0; i < max_mirrors; i++) {
1983                         bytenr = btrfs_sb_offset(i);
1984                         if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1985                             device->total_bytes)
1986                                 break;
1987                         last_barrier = i;
1988                 }
1989         }
1990
1991         for (i = 0; i < max_mirrors; i++) {
1992                 bytenr = btrfs_sb_offset(i);
1993                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
1994                         break;
1995
1996                 if (wait) {
1997                         bh = __find_get_block(device->bdev, bytenr / 4096,
1998                                               BTRFS_SUPER_INFO_SIZE);
1999                         BUG_ON(!bh);
2000                         brelse(bh);
2001                         wait_on_buffer(bh);
2002                         if (buffer_uptodate(bh)) {
2003                                 brelse(bh);
2004                                 continue;
2005                         }
2006                 } else {
2007                         btrfs_set_super_bytenr(sb, bytenr);
2008
2009                         crc = ~(u32)0;
2010                         crc = btrfs_csum_data(NULL, (char *)sb +
2011                                               BTRFS_CSUM_SIZE, crc,
2012                                               BTRFS_SUPER_INFO_SIZE -
2013                                               BTRFS_CSUM_SIZE);
2014                         btrfs_csum_final(crc, sb->csum);
2015
2016                         bh = __getblk(device->bdev, bytenr / 4096,
2017                                       BTRFS_SUPER_INFO_SIZE);
2018                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2019
2020                         set_buffer_uptodate(bh);
2021                         get_bh(bh);
2022                         lock_buffer(bh);
2023                         bh->b_end_io = btrfs_end_buffer_write_sync;
2024                 }
2025
2026                 if (i == last_barrier && do_barriers && device->barriers) {
2027                         ret = submit_bh(WRITE_BARRIER, bh);
2028                         if (ret == -EOPNOTSUPP) {
2029                                 printk("btrfs: disabling barriers on dev %s\n",
2030                                        device->name);
2031                                 set_buffer_uptodate(bh);
2032                                 device->barriers = 0;
2033                                 get_bh(bh);
2034                                 lock_buffer(bh);
2035                                 ret = submit_bh(WRITE, bh);
2036                         }
2037                 } else {
2038                         ret = submit_bh(WRITE, bh);
2039                 }
2040
2041                 if (!ret && wait) {
2042                         wait_on_buffer(bh);
2043                         if (!buffer_uptodate(bh))
2044                                 errors++;
2045                 } else if (ret) {
2046                         errors++;
2047                 }
2048                 if (wait)
2049                         brelse(bh);
2050         }
2051         return errors < i ? 0 : -1;
2052 }
2053
2054 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2055 {
2056         struct list_head *cur;
2057         struct list_head *head = &root->fs_info->fs_devices->devices;
2058         struct btrfs_device *dev;
2059         struct btrfs_super_block *sb;
2060         struct btrfs_dev_item *dev_item;
2061         int ret;
2062         int do_barriers;
2063         int max_errors;
2064         int total_errors = 0;
2065         u64 flags;
2066
2067         max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2068         do_barriers = !btrfs_test_opt(root, NOBARRIER);
2069
2070         sb = &root->fs_info->super_for_commit;
2071         dev_item = &sb->dev_item;
2072         list_for_each(cur, head) {
2073                 dev = list_entry(cur, struct btrfs_device, dev_list);
2074                 if (!dev->bdev) {
2075                         total_errors++;
2076                         continue;
2077                 }
2078                 if (!dev->in_fs_metadata || !dev->writeable)
2079                         continue;
2080
2081                 btrfs_set_stack_device_generation(dev_item, 0);
2082                 btrfs_set_stack_device_type(dev_item, dev->type);
2083                 btrfs_set_stack_device_id(dev_item, dev->devid);
2084                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2085                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2086                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2087                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2088                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2089                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2090                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2091
2092                 flags = btrfs_super_flags(sb);
2093                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2094
2095                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2096                 if (ret)
2097                         total_errors++;
2098         }
2099         if (total_errors > max_errors) {
2100                 printk("btrfs: %d errors while writing supers\n", total_errors);
2101                 BUG();
2102         }
2103
2104         total_errors = 0;
2105         list_for_each(cur, head) {
2106                 dev = list_entry(cur, struct btrfs_device, dev_list);
2107                 if (!dev->bdev)
2108                         continue;
2109                 if (!dev->in_fs_metadata || !dev->writeable)
2110                         continue;
2111
2112                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2113                 if (ret)
2114                         total_errors++;
2115         }
2116         if (total_errors > max_errors) {
2117                 printk("btrfs: %d errors while writing supers\n", total_errors);
2118                 BUG();
2119         }
2120         return 0;
2121 }
2122
2123 int write_ctree_super(struct btrfs_trans_handle *trans,
2124                       struct btrfs_root *root, int max_mirrors)
2125 {
2126         int ret;
2127
2128         ret = write_all_supers(root, max_mirrors);
2129         return ret;
2130 }
2131
2132 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2133 {
2134         radix_tree_delete(&fs_info->fs_roots_radix,
2135                           (unsigned long)root->root_key.objectid);
2136         if (root->anon_super.s_dev) {
2137                 down_write(&root->anon_super.s_umount);
2138                 kill_anon_super(&root->anon_super);
2139         }
2140 #if 0
2141         if (root->in_sysfs)
2142                 btrfs_sysfs_del_root(root);
2143 #endif
2144         if (root->node)
2145                 free_extent_buffer(root->node);
2146         if (root->commit_root)
2147                 free_extent_buffer(root->commit_root);
2148         if (root->name)
2149                 kfree(root->name);
2150         kfree(root);
2151         return 0;
2152 }
2153
2154 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2155 {
2156         int ret;
2157         struct btrfs_root *gang[8];
2158         int i;
2159
2160         while(1) {
2161                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2162                                              (void **)gang, 0,
2163                                              ARRAY_SIZE(gang));
2164                 if (!ret)
2165                         break;
2166                 for (i = 0; i < ret; i++)
2167                         btrfs_free_fs_root(fs_info, gang[i]);
2168         }
2169         return 0;
2170 }
2171
2172 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2173 {
2174         u64 root_objectid = 0;
2175         struct btrfs_root *gang[8];
2176         int i;
2177         int ret;
2178
2179         while (1) {
2180                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2181                                              (void **)gang, root_objectid,
2182                                              ARRAY_SIZE(gang));
2183                 if (!ret)
2184                         break;
2185                 for (i = 0; i < ret; i++) {
2186                         root_objectid = gang[i]->root_key.objectid;
2187                         ret = btrfs_find_dead_roots(fs_info->tree_root,
2188                                                     root_objectid, gang[i]);
2189                         BUG_ON(ret);
2190                         btrfs_orphan_cleanup(gang[i]);
2191                 }
2192                 root_objectid++;
2193         }
2194         return 0;
2195 }
2196
2197 int btrfs_commit_super(struct btrfs_root *root)
2198 {
2199         struct btrfs_trans_handle *trans;
2200         int ret;
2201
2202         mutex_lock(&root->fs_info->cleaner_mutex);
2203         btrfs_clean_old_snapshots(root);
2204         mutex_unlock(&root->fs_info->cleaner_mutex);
2205         trans = btrfs_start_transaction(root, 1);
2206         ret = btrfs_commit_transaction(trans, root);
2207         BUG_ON(ret);
2208         /* run commit again to drop the original snapshot */
2209         trans = btrfs_start_transaction(root, 1);
2210         btrfs_commit_transaction(trans, root);
2211         ret = btrfs_write_and_wait_transaction(NULL, root);
2212         BUG_ON(ret);
2213
2214         ret = write_ctree_super(NULL, root, 0);
2215         return ret;
2216 }
2217
2218 int close_ctree(struct btrfs_root *root)
2219 {
2220         struct btrfs_fs_info *fs_info = root->fs_info;
2221         int ret;
2222
2223         fs_info->closing = 1;
2224         smp_mb();
2225
2226         kthread_stop(root->fs_info->transaction_kthread);
2227         kthread_stop(root->fs_info->cleaner_kthread);
2228
2229         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2230                 ret =  btrfs_commit_super(root);
2231                 if (ret) {
2232                         printk("btrfs: commit super returns %d\n", ret);
2233                 }
2234         }
2235
2236         if (fs_info->delalloc_bytes) {
2237                 printk("btrfs: at unmount delalloc count %Lu\n",
2238                        fs_info->delalloc_bytes);
2239         }
2240         if (fs_info->total_ref_cache_size) {
2241                 printk("btrfs: at umount reference cache size %Lu\n",
2242                         fs_info->total_ref_cache_size);
2243         }
2244
2245         if (fs_info->extent_root->node)
2246                 free_extent_buffer(fs_info->extent_root->node);
2247
2248         if (fs_info->tree_root->node)
2249                 free_extent_buffer(fs_info->tree_root->node);
2250
2251         if (root->fs_info->chunk_root->node);
2252                 free_extent_buffer(root->fs_info->chunk_root->node);
2253
2254         if (root->fs_info->dev_root->node);
2255                 free_extent_buffer(root->fs_info->dev_root->node);
2256
2257         if (root->fs_info->csum_root->node);
2258                 free_extent_buffer(root->fs_info->csum_root->node);
2259
2260         btrfs_free_block_groups(root->fs_info);
2261
2262         del_fs_roots(fs_info);
2263
2264         iput(fs_info->btree_inode);
2265
2266         btrfs_stop_workers(&fs_info->fixup_workers);
2267         btrfs_stop_workers(&fs_info->delalloc_workers);
2268         btrfs_stop_workers(&fs_info->workers);
2269         btrfs_stop_workers(&fs_info->endio_workers);
2270         btrfs_stop_workers(&fs_info->endio_meta_workers);
2271         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2272         btrfs_stop_workers(&fs_info->endio_write_workers);
2273         btrfs_stop_workers(&fs_info->submit_workers);
2274
2275 #if 0
2276         while(!list_empty(&fs_info->hashers)) {
2277                 struct btrfs_hasher *hasher;
2278                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2279                                     hashers);
2280                 list_del(&hasher->hashers);
2281                 crypto_free_hash(&fs_info->hash_tfm);
2282                 kfree(hasher);
2283         }
2284 #endif
2285         btrfs_close_devices(fs_info->fs_devices);
2286         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2287
2288         bdi_destroy(&fs_info->bdi);
2289
2290         kfree(fs_info->extent_root);
2291         kfree(fs_info->tree_root);
2292         kfree(fs_info->chunk_root);
2293         kfree(fs_info->dev_root);
2294         kfree(fs_info->csum_root);
2295         return 0;
2296 }
2297
2298 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2299 {
2300         int ret;
2301         struct inode *btree_inode = buf->first_page->mapping->host;
2302
2303         ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2304         if (!ret)
2305                 return ret;
2306
2307         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2308                                     parent_transid);
2309         return !ret;
2310 }
2311
2312 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2313 {
2314         struct inode *btree_inode = buf->first_page->mapping->host;
2315         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2316                                           buf);
2317 }
2318
2319 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2320 {
2321         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2322         u64 transid = btrfs_header_generation(buf);
2323         struct inode *btree_inode = root->fs_info->btree_inode;
2324
2325         WARN_ON(!btrfs_tree_locked(buf));
2326         if (transid != root->fs_info->generation) {
2327                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2328                         (unsigned long long)buf->start,
2329                         transid, root->fs_info->generation);
2330                 WARN_ON(1);
2331         }
2332         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2333 }
2334
2335 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2336 {
2337         /*
2338          * looks as though older kernels can get into trouble with
2339          * this code, they end up stuck in balance_dirty_pages forever
2340          */
2341         struct extent_io_tree *tree;
2342         u64 num_dirty;
2343         u64 start = 0;
2344         unsigned long thresh = 32 * 1024 * 1024;
2345         tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2346
2347         if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2348                 return;
2349
2350         num_dirty = count_range_bits(tree, &start, (u64)-1,
2351                                      thresh, EXTENT_DIRTY);
2352         if (num_dirty > thresh) {
2353                 balance_dirty_pages_ratelimited_nr(
2354                                    root->fs_info->btree_inode->i_mapping, 1);
2355         }
2356         return;
2357 }
2358
2359 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2360 {
2361         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2362         int ret;
2363         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2364         if (ret == 0) {
2365                 buf->flags |= EXTENT_UPTODATE;
2366         }
2367         return ret;
2368 }
2369
2370 int btree_lock_page_hook(struct page *page)
2371 {
2372         struct inode *inode = page->mapping->host;
2373         struct btrfs_root *root = BTRFS_I(inode)->root;
2374         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2375         struct extent_buffer *eb;
2376         unsigned long len;
2377         u64 bytenr = page_offset(page);
2378
2379         if (page->private == EXTENT_PAGE_PRIVATE)
2380                 goto out;
2381
2382         len = page->private >> 2;
2383         eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2384         if (!eb)
2385                 goto out;
2386
2387         btrfs_tree_lock(eb);
2388         spin_lock(&root->fs_info->hash_lock);
2389         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2390         spin_unlock(&root->fs_info->hash_lock);
2391         btrfs_tree_unlock(eb);
2392         free_extent_buffer(eb);
2393 out:
2394         lock_page(page);
2395         return 0;
2396 }
2397
2398 static struct extent_io_ops btree_extent_io_ops = {
2399         .write_cache_pages_lock_hook = btree_lock_page_hook,
2400         .readpage_end_io_hook = btree_readpage_end_io_hook,
2401         .submit_bio_hook = btree_submit_bio_hook,
2402         /* note we're sharing with inode.c for the merge bio hook */
2403         .merge_bio_hook = btrfs_merge_bio_hook,
2404 };