]> Pileus Git - ~andy/linux/blob - fs/btrfs/disk-io.c
Merge branch 'for-linus' into raid56-experimental
[~andy/linux] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59                                     int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
61 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
62 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
63                                       struct btrfs_root *root);
64 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71
72 /*
73  * end_io_wq structs are used to do processing in task context when an IO is
74  * complete.  This is used during reads to verify checksums, and it is used
75  * by writes to insert metadata for new file extents after IO is complete.
76  */
77 struct end_io_wq {
78         struct bio *bio;
79         bio_end_io_t *end_io;
80         void *private;
81         struct btrfs_fs_info *info;
82         int error;
83         int metadata;
84         struct list_head list;
85         struct btrfs_work work;
86 };
87
88 /*
89  * async submit bios are used to offload expensive checksumming
90  * onto the worker threads.  They checksum file and metadata bios
91  * just before they are sent down the IO stack.
92  */
93 struct async_submit_bio {
94         struct inode *inode;
95         struct bio *bio;
96         struct list_head list;
97         extent_submit_bio_hook_t *submit_bio_start;
98         extent_submit_bio_hook_t *submit_bio_done;
99         int rw;
100         int mirror_num;
101         unsigned long bio_flags;
102         /*
103          * bio_offset is optional, can be used if the pages in the bio
104          * can't tell us where in the file the bio should go
105          */
106         u64 bio_offset;
107         struct btrfs_work work;
108         int error;
109 };
110
111 /*
112  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
113  * eb, the lockdep key is determined by the btrfs_root it belongs to and
114  * the level the eb occupies in the tree.
115  *
116  * Different roots are used for different purposes and may nest inside each
117  * other and they require separate keysets.  As lockdep keys should be
118  * static, assign keysets according to the purpose of the root as indicated
119  * by btrfs_root->objectid.  This ensures that all special purpose roots
120  * have separate keysets.
121  *
122  * Lock-nesting across peer nodes is always done with the immediate parent
123  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
124  * subclass to avoid triggering lockdep warning in such cases.
125  *
126  * The key is set by the readpage_end_io_hook after the buffer has passed
127  * csum validation but before the pages are unlocked.  It is also set by
128  * btrfs_init_new_buffer on freshly allocated blocks.
129  *
130  * We also add a check to make sure the highest level of the tree is the
131  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
132  * needs update as well.
133  */
134 #ifdef CONFIG_DEBUG_LOCK_ALLOC
135 # if BTRFS_MAX_LEVEL != 8
136 #  error
137 # endif
138
139 static struct btrfs_lockdep_keyset {
140         u64                     id;             /* root objectid */
141         const char              *name_stem;     /* lock name stem */
142         char                    names[BTRFS_MAX_LEVEL + 1][20];
143         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
144 } btrfs_lockdep_keysets[] = {
145         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
146         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
147         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
148         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
149         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
150         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
151         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
152         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
153         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
154         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
155         { .id = 0,                              .name_stem = "tree"     },
156 };
157
158 void __init btrfs_init_lockdep(void)
159 {
160         int i, j;
161
162         /* initialize lockdep class names */
163         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
164                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
165
166                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
167                         snprintf(ks->names[j], sizeof(ks->names[j]),
168                                  "btrfs-%s-%02d", ks->name_stem, j);
169         }
170 }
171
172 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
173                                     int level)
174 {
175         struct btrfs_lockdep_keyset *ks;
176
177         BUG_ON(level >= ARRAY_SIZE(ks->keys));
178
179         /* find the matching keyset, id 0 is the default entry */
180         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
181                 if (ks->id == objectid)
182                         break;
183
184         lockdep_set_class_and_name(&eb->lock,
185                                    &ks->keys[level], ks->names[level]);
186 }
187
188 #endif
189
190 /*
191  * extents on the btree inode are pretty simple, there's one extent
192  * that covers the entire device
193  */
194 static struct extent_map *btree_get_extent(struct inode *inode,
195                 struct page *page, size_t pg_offset, u64 start, u64 len,
196                 int create)
197 {
198         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
199         struct extent_map *em;
200         int ret;
201
202         read_lock(&em_tree->lock);
203         em = lookup_extent_mapping(em_tree, start, len);
204         if (em) {
205                 em->bdev =
206                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
207                 read_unlock(&em_tree->lock);
208                 goto out;
209         }
210         read_unlock(&em_tree->lock);
211
212         em = alloc_extent_map();
213         if (!em) {
214                 em = ERR_PTR(-ENOMEM);
215                 goto out;
216         }
217         em->start = 0;
218         em->len = (u64)-1;
219         em->block_len = (u64)-1;
220         em->block_start = 0;
221         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
222
223         write_lock(&em_tree->lock);
224         ret = add_extent_mapping(em_tree, em);
225         if (ret == -EEXIST) {
226                 free_extent_map(em);
227                 em = lookup_extent_mapping(em_tree, start, len);
228                 if (!em)
229                         em = ERR_PTR(-EIO);
230         } else if (ret) {
231                 free_extent_map(em);
232                 em = ERR_PTR(ret);
233         }
234         write_unlock(&em_tree->lock);
235
236 out:
237         return em;
238 }
239
240 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
241 {
242         return crc32c(seed, data, len);
243 }
244
245 void btrfs_csum_final(u32 crc, char *result)
246 {
247         put_unaligned_le32(~crc, result);
248 }
249
250 /*
251  * compute the csum for a btree block, and either verify it or write it
252  * into the csum field of the block.
253  */
254 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
255                            int verify)
256 {
257         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
258         char *result = NULL;
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266         u32 crc = ~(u32)0;
267         unsigned long inline_result;
268
269         len = buf->len - offset;
270         while (len > 0) {
271                 err = map_private_extent_buffer(buf, offset, 32,
272                                         &kaddr, &map_start, &map_len);
273                 if (err)
274                         return 1;
275                 cur_len = min(len, map_len - (offset - map_start));
276                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
277                                       crc, cur_len);
278                 len -= cur_len;
279                 offset += cur_len;
280         }
281         if (csum_size > sizeof(inline_result)) {
282                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
283                 if (!result)
284                         return 1;
285         } else {
286                 result = (char *)&inline_result;
287         }
288
289         btrfs_csum_final(crc, result);
290
291         if (verify) {
292                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
293                         u32 val;
294                         u32 found = 0;
295                         memcpy(&found, result, csum_size);
296
297                         read_extent_buffer(buf, &val, 0, csum_size);
298                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
299                                        "failed on %llu wanted %X found %X "
300                                        "level %d\n",
301                                        root->fs_info->sb->s_id,
302                                        (unsigned long long)buf->start, val, found,
303                                        btrfs_header_level(buf));
304                         if (result != (char *)&inline_result)
305                                 kfree(result);
306                         return 1;
307                 }
308         } else {
309                 write_extent_buffer(buf, result, 0, csum_size);
310         }
311         if (result != (char *)&inline_result)
312                 kfree(result);
313         return 0;
314 }
315
316 /*
317  * we can't consider a given block up to date unless the transid of the
318  * block matches the transid in the parent node's pointer.  This is how we
319  * detect blocks that either didn't get written at all or got written
320  * in the wrong place.
321  */
322 static int verify_parent_transid(struct extent_io_tree *io_tree,
323                                  struct extent_buffer *eb, u64 parent_transid,
324                                  int atomic)
325 {
326         struct extent_state *cached_state = NULL;
327         int ret;
328
329         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
330                 return 0;
331
332         if (atomic)
333                 return -EAGAIN;
334
335         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
336                          0, &cached_state);
337         if (extent_buffer_uptodate(eb) &&
338             btrfs_header_generation(eb) == parent_transid) {
339                 ret = 0;
340                 goto out;
341         }
342         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
343                        "found %llu\n",
344                        (unsigned long long)eb->start,
345                        (unsigned long long)parent_transid,
346                        (unsigned long long)btrfs_header_generation(eb));
347         ret = 1;
348         clear_extent_buffer_uptodate(eb);
349 out:
350         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
351                              &cached_state, GFP_NOFS);
352         return ret;
353 }
354
355 /*
356  * helper to read a given tree block, doing retries as required when
357  * the checksums don't match and we have alternate mirrors to try.
358  */
359 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
360                                           struct extent_buffer *eb,
361                                           u64 start, u64 parent_transid)
362 {
363         struct extent_io_tree *io_tree;
364         int failed = 0;
365         int ret;
366         int num_copies = 0;
367         int mirror_num = 0;
368         int failed_mirror = 0;
369
370         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
371         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
372         while (1) {
373                 ret = read_extent_buffer_pages(io_tree, eb, start,
374                                                WAIT_COMPLETE,
375                                                btree_get_extent, mirror_num);
376                 if (!ret) {
377                         if (!verify_parent_transid(io_tree, eb,
378                                                    parent_transid, 0))
379                                 break;
380                         else
381                                 ret = -EIO;
382                 }
383
384                 /*
385                  * This buffer's crc is fine, but its contents are corrupted, so
386                  * there is no reason to read the other copies, they won't be
387                  * any less wrong.
388                  */
389                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
390                         break;
391
392                 num_copies = btrfs_num_copies(root->fs_info,
393                                               eb->start, eb->len);
394                 if (num_copies == 1)
395                         break;
396
397                 if (!failed_mirror) {
398                         failed = 1;
399                         failed_mirror = eb->read_mirror;
400                 }
401
402                 mirror_num++;
403                 if (mirror_num == failed_mirror)
404                         mirror_num++;
405
406                 if (mirror_num > num_copies)
407                         break;
408         }
409
410         if (failed && !ret && failed_mirror)
411                 repair_eb_io_failure(root, eb, failed_mirror);
412
413         return ret;
414 }
415
416 /*
417  * checksum a dirty tree block before IO.  This has extra checks to make sure
418  * we only fill in the checksum field in the first page of a multi-page block
419  */
420
421 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
422 {
423         struct extent_io_tree *tree;
424         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
425         u64 found_start;
426         struct extent_buffer *eb;
427
428         tree = &BTRFS_I(page->mapping->host)->io_tree;
429
430         eb = (struct extent_buffer *)page->private;
431         if (page != eb->pages[0])
432                 return 0;
433         found_start = btrfs_header_bytenr(eb);
434         if (found_start != start) {
435                 WARN_ON(1);
436                 return 0;
437         }
438         if (!PageUptodate(page)) {
439                 WARN_ON(1);
440                 return 0;
441         }
442         csum_tree_block(root, eb, 0);
443         return 0;
444 }
445
446 static int check_tree_block_fsid(struct btrfs_root *root,
447                                  struct extent_buffer *eb)
448 {
449         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
450         u8 fsid[BTRFS_UUID_SIZE];
451         int ret = 1;
452
453         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
454                            BTRFS_FSID_SIZE);
455         while (fs_devices) {
456                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
457                         ret = 0;
458                         break;
459                 }
460                 fs_devices = fs_devices->seed;
461         }
462         return ret;
463 }
464
465 #define CORRUPT(reason, eb, root, slot)                         \
466         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
467                "root=%llu, slot=%d\n", reason,                  \
468                (unsigned long long)btrfs_header_bytenr(eb),     \
469                (unsigned long long)root->objectid, slot)
470
471 static noinline int check_leaf(struct btrfs_root *root,
472                                struct extent_buffer *leaf)
473 {
474         struct btrfs_key key;
475         struct btrfs_key leaf_key;
476         u32 nritems = btrfs_header_nritems(leaf);
477         int slot;
478
479         if (nritems == 0)
480                 return 0;
481
482         /* Check the 0 item */
483         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
484             BTRFS_LEAF_DATA_SIZE(root)) {
485                 CORRUPT("invalid item offset size pair", leaf, root, 0);
486                 return -EIO;
487         }
488
489         /*
490          * Check to make sure each items keys are in the correct order and their
491          * offsets make sense.  We only have to loop through nritems-1 because
492          * we check the current slot against the next slot, which verifies the
493          * next slot's offset+size makes sense and that the current's slot
494          * offset is correct.
495          */
496         for (slot = 0; slot < nritems - 1; slot++) {
497                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
498                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
499
500                 /* Make sure the keys are in the right order */
501                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
502                         CORRUPT("bad key order", leaf, root, slot);
503                         return -EIO;
504                 }
505
506                 /*
507                  * Make sure the offset and ends are right, remember that the
508                  * item data starts at the end of the leaf and grows towards the
509                  * front.
510                  */
511                 if (btrfs_item_offset_nr(leaf, slot) !=
512                         btrfs_item_end_nr(leaf, slot + 1)) {
513                         CORRUPT("slot offset bad", leaf, root, slot);
514                         return -EIO;
515                 }
516
517                 /*
518                  * Check to make sure that we don't point outside of the leaf,
519                  * just incase all the items are consistent to eachother, but
520                  * all point outside of the leaf.
521                  */
522                 if (btrfs_item_end_nr(leaf, slot) >
523                     BTRFS_LEAF_DATA_SIZE(root)) {
524                         CORRUPT("slot end outside of leaf", leaf, root, slot);
525                         return -EIO;
526                 }
527         }
528
529         return 0;
530 }
531
532 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
533                                        struct page *page, int max_walk)
534 {
535         struct extent_buffer *eb;
536         u64 start = page_offset(page);
537         u64 target = start;
538         u64 min_start;
539
540         if (start < max_walk)
541                 min_start = 0;
542         else
543                 min_start = start - max_walk;
544
545         while (start >= min_start) {
546                 eb = find_extent_buffer(tree, start, 0);
547                 if (eb) {
548                         /*
549                          * we found an extent buffer and it contains our page
550                          * horray!
551                          */
552                         if (eb->start <= target &&
553                             eb->start + eb->len > target)
554                                 return eb;
555
556                         /* we found an extent buffer that wasn't for us */
557                         free_extent_buffer(eb);
558                         return NULL;
559                 }
560                 if (start == 0)
561                         break;
562                 start -= PAGE_CACHE_SIZE;
563         }
564         return NULL;
565 }
566
567 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
568                                struct extent_state *state, int mirror)
569 {
570         struct extent_io_tree *tree;
571         u64 found_start;
572         int found_level;
573         struct extent_buffer *eb;
574         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
575         int ret = 0;
576         int reads_done;
577
578         if (!page->private)
579                 goto out;
580
581         tree = &BTRFS_I(page->mapping->host)->io_tree;
582         eb = (struct extent_buffer *)page->private;
583
584         /* the pending IO might have been the only thing that kept this buffer
585          * in memory.  Make sure we have a ref for all this other checks
586          */
587         extent_buffer_get(eb);
588
589         reads_done = atomic_dec_and_test(&eb->io_pages);
590         if (!reads_done)
591                 goto err;
592
593         eb->read_mirror = mirror;
594         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
595                 ret = -EIO;
596                 goto err;
597         }
598
599         found_start = btrfs_header_bytenr(eb);
600         if (found_start != eb->start) {
601                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
602                                "%llu %llu\n",
603                                (unsigned long long)found_start,
604                                (unsigned long long)eb->start);
605                 ret = -EIO;
606                 goto err;
607         }
608         if (check_tree_block_fsid(root, eb)) {
609                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
610                                (unsigned long long)eb->start);
611                 ret = -EIO;
612                 goto err;
613         }
614         found_level = btrfs_header_level(eb);
615
616         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
617                                        eb, found_level);
618
619         ret = csum_tree_block(root, eb, 1);
620         if (ret) {
621                 ret = -EIO;
622                 goto err;
623         }
624
625         /*
626          * If this is a leaf block and it is corrupt, set the corrupt bit so
627          * that we don't try and read the other copies of this block, just
628          * return -EIO.
629          */
630         if (found_level == 0 && check_leaf(root, eb)) {
631                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
632                 ret = -EIO;
633         }
634
635         if (!ret)
636                 set_extent_buffer_uptodate(eb);
637 err:
638         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
639                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
640                 btree_readahead_hook(root, eb, eb->start, ret);
641         }
642
643         if (ret) {
644                 /*
645                  * our io error hook is going to dec the io pages
646                  * again, we have to make sure it has something
647                  * to decrement
648                  */
649                 atomic_inc(&eb->io_pages);
650                 clear_extent_buffer_uptodate(eb);
651         }
652         free_extent_buffer(eb);
653 out:
654         return ret;
655 }
656
657 static int btree_io_failed_hook(struct page *page, int failed_mirror)
658 {
659         struct extent_buffer *eb;
660         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
661
662         eb = (struct extent_buffer *)page->private;
663         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
664         eb->read_mirror = failed_mirror;
665         atomic_dec(&eb->io_pages);
666         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
667                 btree_readahead_hook(root, eb, eb->start, -EIO);
668         return -EIO;    /* we fixed nothing */
669 }
670
671 static void end_workqueue_bio(struct bio *bio, int err)
672 {
673         struct end_io_wq *end_io_wq = bio->bi_private;
674         struct btrfs_fs_info *fs_info;
675
676         fs_info = end_io_wq->info;
677         end_io_wq->error = err;
678         end_io_wq->work.func = end_workqueue_fn;
679         end_io_wq->work.flags = 0;
680
681         if (bio->bi_rw & REQ_WRITE) {
682                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
683                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
684                                            &end_io_wq->work);
685                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
686                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
687                                            &end_io_wq->work);
688                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
689                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
690                                            &end_io_wq->work);
691                 else
692                         btrfs_queue_worker(&fs_info->endio_write_workers,
693                                            &end_io_wq->work);
694         } else {
695                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
696                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
697                                            &end_io_wq->work);
698                 else if (end_io_wq->metadata)
699                         btrfs_queue_worker(&fs_info->endio_meta_workers,
700                                            &end_io_wq->work);
701                 else
702                         btrfs_queue_worker(&fs_info->endio_workers,
703                                            &end_io_wq->work);
704         }
705 }
706
707 /*
708  * For the metadata arg you want
709  *
710  * 0 - if data
711  * 1 - if normal metadta
712  * 2 - if writing to the free space cache area
713  * 3 - raid parity work
714  */
715 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
716                         int metadata)
717 {
718         struct end_io_wq *end_io_wq;
719         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
720         if (!end_io_wq)
721                 return -ENOMEM;
722
723         end_io_wq->private = bio->bi_private;
724         end_io_wq->end_io = bio->bi_end_io;
725         end_io_wq->info = info;
726         end_io_wq->error = 0;
727         end_io_wq->bio = bio;
728         end_io_wq->metadata = metadata;
729
730         bio->bi_private = end_io_wq;
731         bio->bi_end_io = end_workqueue_bio;
732         return 0;
733 }
734
735 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
736 {
737         unsigned long limit = min_t(unsigned long,
738                                     info->workers.max_workers,
739                                     info->fs_devices->open_devices);
740         return 256 * limit;
741 }
742
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745         struct async_submit_bio *async;
746         int ret;
747
748         async = container_of(work, struct  async_submit_bio, work);
749         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
750                                       async->mirror_num, async->bio_flags,
751                                       async->bio_offset);
752         if (ret)
753                 async->error = ret;
754 }
755
756 static void run_one_async_done(struct btrfs_work *work)
757 {
758         struct btrfs_fs_info *fs_info;
759         struct async_submit_bio *async;
760         int limit;
761
762         async = container_of(work, struct  async_submit_bio, work);
763         fs_info = BTRFS_I(async->inode)->root->fs_info;
764
765         limit = btrfs_async_submit_limit(fs_info);
766         limit = limit * 2 / 3;
767
768         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
769             waitqueue_active(&fs_info->async_submit_wait))
770                 wake_up(&fs_info->async_submit_wait);
771
772         /* If an error occured we just want to clean up the bio and move on */
773         if (async->error) {
774                 bio_endio(async->bio, async->error);
775                 return;
776         }
777
778         async->submit_bio_done(async->inode, async->rw, async->bio,
779                                async->mirror_num, async->bio_flags,
780                                async->bio_offset);
781 }
782
783 static void run_one_async_free(struct btrfs_work *work)
784 {
785         struct async_submit_bio *async;
786
787         async = container_of(work, struct  async_submit_bio, work);
788         kfree(async);
789 }
790
791 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
792                         int rw, struct bio *bio, int mirror_num,
793                         unsigned long bio_flags,
794                         u64 bio_offset,
795                         extent_submit_bio_hook_t *submit_bio_start,
796                         extent_submit_bio_hook_t *submit_bio_done)
797 {
798         struct async_submit_bio *async;
799
800         async = kmalloc(sizeof(*async), GFP_NOFS);
801         if (!async)
802                 return -ENOMEM;
803
804         async->inode = inode;
805         async->rw = rw;
806         async->bio = bio;
807         async->mirror_num = mirror_num;
808         async->submit_bio_start = submit_bio_start;
809         async->submit_bio_done = submit_bio_done;
810
811         async->work.func = run_one_async_start;
812         async->work.ordered_func = run_one_async_done;
813         async->work.ordered_free = run_one_async_free;
814
815         async->work.flags = 0;
816         async->bio_flags = bio_flags;
817         async->bio_offset = bio_offset;
818
819         async->error = 0;
820
821         atomic_inc(&fs_info->nr_async_submits);
822
823         if (rw & REQ_SYNC)
824                 btrfs_set_work_high_prio(&async->work);
825
826         btrfs_queue_worker(&fs_info->workers, &async->work);
827
828         while (atomic_read(&fs_info->async_submit_draining) &&
829               atomic_read(&fs_info->nr_async_submits)) {
830                 wait_event(fs_info->async_submit_wait,
831                            (atomic_read(&fs_info->nr_async_submits) == 0));
832         }
833
834         return 0;
835 }
836
837 static int btree_csum_one_bio(struct bio *bio)
838 {
839         struct bio_vec *bvec = bio->bi_io_vec;
840         int bio_index = 0;
841         struct btrfs_root *root;
842         int ret = 0;
843
844         WARN_ON(bio->bi_vcnt <= 0);
845         while (bio_index < bio->bi_vcnt) {
846                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
847                 ret = csum_dirty_buffer(root, bvec->bv_page);
848                 if (ret)
849                         break;
850                 bio_index++;
851                 bvec++;
852         }
853         return ret;
854 }
855
856 static int __btree_submit_bio_start(struct inode *inode, int rw,
857                                     struct bio *bio, int mirror_num,
858                                     unsigned long bio_flags,
859                                     u64 bio_offset)
860 {
861         /*
862          * when we're called for a write, we're already in the async
863          * submission context.  Just jump into btrfs_map_bio
864          */
865         return btree_csum_one_bio(bio);
866 }
867
868 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
869                                  int mirror_num, unsigned long bio_flags,
870                                  u64 bio_offset)
871 {
872         int ret;
873
874         /*
875          * when we're called for a write, we're already in the async
876          * submission context.  Just jump into btrfs_map_bio
877          */
878         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879         if (ret)
880                 bio_endio(bio, ret);
881         return ret;
882 }
883
884 static int check_async_write(struct inode *inode, unsigned long bio_flags)
885 {
886         if (bio_flags & EXTENT_BIO_TREE_LOG)
887                 return 0;
888 #ifdef CONFIG_X86
889         if (cpu_has_xmm4_2)
890                 return 0;
891 #endif
892         return 1;
893 }
894
895 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
896                                  int mirror_num, unsigned long bio_flags,
897                                  u64 bio_offset)
898 {
899         int async = check_async_write(inode, bio_flags);
900         int ret;
901
902         if (!(rw & REQ_WRITE)) {
903                 /*
904                  * called for a read, do the setup so that checksum validation
905                  * can happen in the async kernel threads
906                  */
907                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908                                           bio, 1);
909                 if (ret)
910                         goto out_w_error;
911                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912                                     mirror_num, 0);
913         } else if (!async) {
914                 ret = btree_csum_one_bio(bio);
915                 if (ret)
916                         goto out_w_error;
917                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918                                     mirror_num, 0);
919         } else {
920                 /*
921                  * kthread helpers are used to submit writes so that
922                  * checksumming can happen in parallel across all CPUs
923                  */
924                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925                                           inode, rw, bio, mirror_num, 0,
926                                           bio_offset,
927                                           __btree_submit_bio_start,
928                                           __btree_submit_bio_done);
929         }
930
931         if (ret) {
932 out_w_error:
933                 bio_endio(bio, ret);
934         }
935         return ret;
936 }
937
938 #ifdef CONFIG_MIGRATION
939 static int btree_migratepage(struct address_space *mapping,
940                         struct page *newpage, struct page *page,
941                         enum migrate_mode mode)
942 {
943         /*
944          * we can't safely write a btree page from here,
945          * we haven't done the locking hook
946          */
947         if (PageDirty(page))
948                 return -EAGAIN;
949         /*
950          * Buffers may be managed in a filesystem specific way.
951          * We must have no buffers or drop them.
952          */
953         if (page_has_private(page) &&
954             !try_to_release_page(page, GFP_KERNEL))
955                 return -EAGAIN;
956         return migrate_page(mapping, newpage, page, mode);
957 }
958 #endif
959
960
961 static int btree_writepages(struct address_space *mapping,
962                             struct writeback_control *wbc)
963 {
964         struct extent_io_tree *tree;
965         tree = &BTRFS_I(mapping->host)->io_tree;
966         if (wbc->sync_mode == WB_SYNC_NONE) {
967                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
968                 u64 num_dirty;
969                 unsigned long thresh = 32 * 1024 * 1024;
970
971                 if (wbc->for_kupdate)
972                         return 0;
973
974                 /* this is a bit racy, but that's ok */
975                 num_dirty = root->fs_info->dirty_metadata_bytes;
976                 if (num_dirty < thresh)
977                         return 0;
978         }
979         return btree_write_cache_pages(mapping, wbc);
980 }
981
982 static int btree_readpage(struct file *file, struct page *page)
983 {
984         struct extent_io_tree *tree;
985         tree = &BTRFS_I(page->mapping->host)->io_tree;
986         return extent_read_full_page(tree, page, btree_get_extent, 0);
987 }
988
989 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
990 {
991         if (PageWriteback(page) || PageDirty(page))
992                 return 0;
993         /*
994          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
995          * slab allocation from alloc_extent_state down the callchain where
996          * it'd hit a BUG_ON as those flags are not allowed.
997          */
998         gfp_flags &= ~GFP_SLAB_BUG_MASK;
999
1000         return try_release_extent_buffer(page, gfp_flags);
1001 }
1002
1003 static void btree_invalidatepage(struct page *page, unsigned long offset)
1004 {
1005         struct extent_io_tree *tree;
1006         tree = &BTRFS_I(page->mapping->host)->io_tree;
1007         extent_invalidatepage(tree, page, offset);
1008         btree_releasepage(page, GFP_NOFS);
1009         if (PagePrivate(page)) {
1010                 printk(KERN_WARNING "btrfs warning page private not zero "
1011                        "on page %llu\n", (unsigned long long)page_offset(page));
1012                 ClearPagePrivate(page);
1013                 set_page_private(page, 0);
1014                 page_cache_release(page);
1015         }
1016 }
1017
1018 static int btree_set_page_dirty(struct page *page)
1019 {
1020 #ifdef DEBUG
1021         struct extent_buffer *eb;
1022
1023         BUG_ON(!PagePrivate(page));
1024         eb = (struct extent_buffer *)page->private;
1025         BUG_ON(!eb);
1026         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1027         BUG_ON(!atomic_read(&eb->refs));
1028         btrfs_assert_tree_locked(eb);
1029 #endif
1030         return __set_page_dirty_nobuffers(page);
1031 }
1032
1033 static const struct address_space_operations btree_aops = {
1034         .readpage       = btree_readpage,
1035         .writepages     = btree_writepages,
1036         .releasepage    = btree_releasepage,
1037         .invalidatepage = btree_invalidatepage,
1038 #ifdef CONFIG_MIGRATION
1039         .migratepage    = btree_migratepage,
1040 #endif
1041         .set_page_dirty = btree_set_page_dirty,
1042 };
1043
1044 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1045                          u64 parent_transid)
1046 {
1047         struct extent_buffer *buf = NULL;
1048         struct inode *btree_inode = root->fs_info->btree_inode;
1049         int ret = 0;
1050
1051         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1052         if (!buf)
1053                 return 0;
1054         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1055                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1056         free_extent_buffer(buf);
1057         return ret;
1058 }
1059
1060 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1061                          int mirror_num, struct extent_buffer **eb)
1062 {
1063         struct extent_buffer *buf = NULL;
1064         struct inode *btree_inode = root->fs_info->btree_inode;
1065         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1066         int ret;
1067
1068         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1069         if (!buf)
1070                 return 0;
1071
1072         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1073
1074         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1075                                        btree_get_extent, mirror_num);
1076         if (ret) {
1077                 free_extent_buffer(buf);
1078                 return ret;
1079         }
1080
1081         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1082                 free_extent_buffer(buf);
1083                 return -EIO;
1084         } else if (extent_buffer_uptodate(buf)) {
1085                 *eb = buf;
1086         } else {
1087                 free_extent_buffer(buf);
1088         }
1089         return 0;
1090 }
1091
1092 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1093                                             u64 bytenr, u32 blocksize)
1094 {
1095         struct inode *btree_inode = root->fs_info->btree_inode;
1096         struct extent_buffer *eb;
1097         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1098                                 bytenr, blocksize);
1099         return eb;
1100 }
1101
1102 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1103                                                  u64 bytenr, u32 blocksize)
1104 {
1105         struct inode *btree_inode = root->fs_info->btree_inode;
1106         struct extent_buffer *eb;
1107
1108         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1109                                  bytenr, blocksize);
1110         return eb;
1111 }
1112
1113
1114 int btrfs_write_tree_block(struct extent_buffer *buf)
1115 {
1116         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1117                                         buf->start + buf->len - 1);
1118 }
1119
1120 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1121 {
1122         return filemap_fdatawait_range(buf->pages[0]->mapping,
1123                                        buf->start, buf->start + buf->len - 1);
1124 }
1125
1126 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1127                                       u32 blocksize, u64 parent_transid)
1128 {
1129         struct extent_buffer *buf = NULL;
1130         int ret;
1131
1132         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1133         if (!buf)
1134                 return NULL;
1135
1136         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1137         return buf;
1138
1139 }
1140
1141 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1142                       struct extent_buffer *buf)
1143 {
1144         if (btrfs_header_generation(buf) ==
1145             root->fs_info->running_transaction->transid) {
1146                 btrfs_assert_tree_locked(buf);
1147
1148                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1149                         spin_lock(&root->fs_info->delalloc_lock);
1150                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1151                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1152                         else {
1153                                 spin_unlock(&root->fs_info->delalloc_lock);
1154                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1155                                           "Can't clear %lu bytes from "
1156                                           " dirty_mdatadata_bytes (%llu)",
1157                                           buf->len,
1158                                           root->fs_info->dirty_metadata_bytes);
1159                         }
1160                         spin_unlock(&root->fs_info->delalloc_lock);
1161
1162                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1163                         btrfs_set_lock_blocking(buf);
1164                         clear_extent_buffer_dirty(buf);
1165                 }
1166         }
1167 }
1168
1169 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1170                          u32 stripesize, struct btrfs_root *root,
1171                          struct btrfs_fs_info *fs_info,
1172                          u64 objectid)
1173 {
1174         root->node = NULL;
1175         root->commit_root = NULL;
1176         root->sectorsize = sectorsize;
1177         root->nodesize = nodesize;
1178         root->leafsize = leafsize;
1179         root->stripesize = stripesize;
1180         root->ref_cows = 0;
1181         root->track_dirty = 0;
1182         root->in_radix = 0;
1183         root->orphan_item_inserted = 0;
1184         root->orphan_cleanup_state = 0;
1185
1186         root->objectid = objectid;
1187         root->last_trans = 0;
1188         root->highest_objectid = 0;
1189         root->name = NULL;
1190         root->inode_tree = RB_ROOT;
1191         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1192         root->block_rsv = NULL;
1193         root->orphan_block_rsv = NULL;
1194
1195         INIT_LIST_HEAD(&root->dirty_list);
1196         INIT_LIST_HEAD(&root->root_list);
1197         spin_lock_init(&root->orphan_lock);
1198         spin_lock_init(&root->inode_lock);
1199         spin_lock_init(&root->accounting_lock);
1200         mutex_init(&root->objectid_mutex);
1201         mutex_init(&root->log_mutex);
1202         init_waitqueue_head(&root->log_writer_wait);
1203         init_waitqueue_head(&root->log_commit_wait[0]);
1204         init_waitqueue_head(&root->log_commit_wait[1]);
1205         atomic_set(&root->log_commit[0], 0);
1206         atomic_set(&root->log_commit[1], 0);
1207         atomic_set(&root->log_writers, 0);
1208         atomic_set(&root->log_batch, 0);
1209         atomic_set(&root->orphan_inodes, 0);
1210         root->log_transid = 0;
1211         root->last_log_commit = 0;
1212         extent_io_tree_init(&root->dirty_log_pages,
1213                              fs_info->btree_inode->i_mapping);
1214
1215         memset(&root->root_key, 0, sizeof(root->root_key));
1216         memset(&root->root_item, 0, sizeof(root->root_item));
1217         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1218         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1219         root->defrag_trans_start = fs_info->generation;
1220         init_completion(&root->kobj_unregister);
1221         root->defrag_running = 0;
1222         root->root_key.objectid = objectid;
1223         root->anon_dev = 0;
1224
1225         spin_lock_init(&root->root_item_lock);
1226 }
1227
1228 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1229                                             struct btrfs_fs_info *fs_info,
1230                                             u64 objectid,
1231                                             struct btrfs_root *root)
1232 {
1233         int ret;
1234         u32 blocksize;
1235         u64 generation;
1236
1237         __setup_root(tree_root->nodesize, tree_root->leafsize,
1238                      tree_root->sectorsize, tree_root->stripesize,
1239                      root, fs_info, objectid);
1240         ret = btrfs_find_last_root(tree_root, objectid,
1241                                    &root->root_item, &root->root_key);
1242         if (ret > 0)
1243                 return -ENOENT;
1244         else if (ret < 0)
1245                 return ret;
1246
1247         generation = btrfs_root_generation(&root->root_item);
1248         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1249         root->commit_root = NULL;
1250         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1251                                      blocksize, generation);
1252         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1253                 free_extent_buffer(root->node);
1254                 root->node = NULL;
1255                 return -EIO;
1256         }
1257         root->commit_root = btrfs_root_node(root);
1258         return 0;
1259 }
1260
1261 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1262 {
1263         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1264         if (root)
1265                 root->fs_info = fs_info;
1266         return root;
1267 }
1268
1269 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1270                                      struct btrfs_fs_info *fs_info,
1271                                      u64 objectid)
1272 {
1273         struct extent_buffer *leaf;
1274         struct btrfs_root *tree_root = fs_info->tree_root;
1275         struct btrfs_root *root;
1276         struct btrfs_key key;
1277         int ret = 0;
1278         u64 bytenr;
1279
1280         root = btrfs_alloc_root(fs_info);
1281         if (!root)
1282                 return ERR_PTR(-ENOMEM);
1283
1284         __setup_root(tree_root->nodesize, tree_root->leafsize,
1285                      tree_root->sectorsize, tree_root->stripesize,
1286                      root, fs_info, objectid);
1287         root->root_key.objectid = objectid;
1288         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1289         root->root_key.offset = 0;
1290
1291         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1292                                       0, objectid, NULL, 0, 0, 0);
1293         if (IS_ERR(leaf)) {
1294                 ret = PTR_ERR(leaf);
1295                 goto fail;
1296         }
1297
1298         bytenr = leaf->start;
1299         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300         btrfs_set_header_bytenr(leaf, leaf->start);
1301         btrfs_set_header_generation(leaf, trans->transid);
1302         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303         btrfs_set_header_owner(leaf, objectid);
1304         root->node = leaf;
1305
1306         write_extent_buffer(leaf, fs_info->fsid,
1307                             (unsigned long)btrfs_header_fsid(leaf),
1308                             BTRFS_FSID_SIZE);
1309         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311                             BTRFS_UUID_SIZE);
1312         btrfs_mark_buffer_dirty(leaf);
1313
1314         root->commit_root = btrfs_root_node(root);
1315         root->track_dirty = 1;
1316
1317
1318         root->root_item.flags = 0;
1319         root->root_item.byte_limit = 0;
1320         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321         btrfs_set_root_generation(&root->root_item, trans->transid);
1322         btrfs_set_root_level(&root->root_item, 0);
1323         btrfs_set_root_refs(&root->root_item, 1);
1324         btrfs_set_root_used(&root->root_item, leaf->len);
1325         btrfs_set_root_last_snapshot(&root->root_item, 0);
1326         btrfs_set_root_dirid(&root->root_item, 0);
1327         root->root_item.drop_level = 0;
1328
1329         key.objectid = objectid;
1330         key.type = BTRFS_ROOT_ITEM_KEY;
1331         key.offset = 0;
1332         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333         if (ret)
1334                 goto fail;
1335
1336         btrfs_tree_unlock(leaf);
1337
1338 fail:
1339         if (ret)
1340                 return ERR_PTR(ret);
1341
1342         return root;
1343 }
1344
1345 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1346                                          struct btrfs_fs_info *fs_info)
1347 {
1348         struct btrfs_root *root;
1349         struct btrfs_root *tree_root = fs_info->tree_root;
1350         struct extent_buffer *leaf;
1351
1352         root = btrfs_alloc_root(fs_info);
1353         if (!root)
1354                 return ERR_PTR(-ENOMEM);
1355
1356         __setup_root(tree_root->nodesize, tree_root->leafsize,
1357                      tree_root->sectorsize, tree_root->stripesize,
1358                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1359
1360         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1361         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1362         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1363         /*
1364          * log trees do not get reference counted because they go away
1365          * before a real commit is actually done.  They do store pointers
1366          * to file data extents, and those reference counts still get
1367          * updated (along with back refs to the log tree).
1368          */
1369         root->ref_cows = 0;
1370
1371         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1372                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1373                                       0, 0, 0);
1374         if (IS_ERR(leaf)) {
1375                 kfree(root);
1376                 return ERR_CAST(leaf);
1377         }
1378
1379         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1380         btrfs_set_header_bytenr(leaf, leaf->start);
1381         btrfs_set_header_generation(leaf, trans->transid);
1382         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1383         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1384         root->node = leaf;
1385
1386         write_extent_buffer(root->node, root->fs_info->fsid,
1387                             (unsigned long)btrfs_header_fsid(root->node),
1388                             BTRFS_FSID_SIZE);
1389         btrfs_mark_buffer_dirty(root->node);
1390         btrfs_tree_unlock(root->node);
1391         return root;
1392 }
1393
1394 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1395                              struct btrfs_fs_info *fs_info)
1396 {
1397         struct btrfs_root *log_root;
1398
1399         log_root = alloc_log_tree(trans, fs_info);
1400         if (IS_ERR(log_root))
1401                 return PTR_ERR(log_root);
1402         WARN_ON(fs_info->log_root_tree);
1403         fs_info->log_root_tree = log_root;
1404         return 0;
1405 }
1406
1407 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1408                        struct btrfs_root *root)
1409 {
1410         struct btrfs_root *log_root;
1411         struct btrfs_inode_item *inode_item;
1412
1413         log_root = alloc_log_tree(trans, root->fs_info);
1414         if (IS_ERR(log_root))
1415                 return PTR_ERR(log_root);
1416
1417         log_root->last_trans = trans->transid;
1418         log_root->root_key.offset = root->root_key.objectid;
1419
1420         inode_item = &log_root->root_item.inode;
1421         inode_item->generation = cpu_to_le64(1);
1422         inode_item->size = cpu_to_le64(3);
1423         inode_item->nlink = cpu_to_le32(1);
1424         inode_item->nbytes = cpu_to_le64(root->leafsize);
1425         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1426
1427         btrfs_set_root_node(&log_root->root_item, log_root->node);
1428
1429         WARN_ON(root->log_root);
1430         root->log_root = log_root;
1431         root->log_transid = 0;
1432         root->last_log_commit = 0;
1433         return 0;
1434 }
1435
1436 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1437                                                struct btrfs_key *location)
1438 {
1439         struct btrfs_root *root;
1440         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1441         struct btrfs_path *path;
1442         struct extent_buffer *l;
1443         u64 generation;
1444         u32 blocksize;
1445         int ret = 0;
1446         int slot;
1447
1448         root = btrfs_alloc_root(fs_info);
1449         if (!root)
1450                 return ERR_PTR(-ENOMEM);
1451         if (location->offset == (u64)-1) {
1452                 ret = find_and_setup_root(tree_root, fs_info,
1453                                           location->objectid, root);
1454                 if (ret) {
1455                         kfree(root);
1456                         return ERR_PTR(ret);
1457                 }
1458                 goto out;
1459         }
1460
1461         __setup_root(tree_root->nodesize, tree_root->leafsize,
1462                      tree_root->sectorsize, tree_root->stripesize,
1463                      root, fs_info, location->objectid);
1464
1465         path = btrfs_alloc_path();
1466         if (!path) {
1467                 kfree(root);
1468                 return ERR_PTR(-ENOMEM);
1469         }
1470         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1471         if (ret == 0) {
1472                 l = path->nodes[0];
1473                 slot = path->slots[0];
1474                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1475                 memcpy(&root->root_key, location, sizeof(*location));
1476         }
1477         btrfs_free_path(path);
1478         if (ret) {
1479                 kfree(root);
1480                 if (ret > 0)
1481                         ret = -ENOENT;
1482                 return ERR_PTR(ret);
1483         }
1484
1485         generation = btrfs_root_generation(&root->root_item);
1486         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1487         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1488                                      blocksize, generation);
1489         root->commit_root = btrfs_root_node(root);
1490         BUG_ON(!root->node); /* -ENOMEM */
1491 out:
1492         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1493                 root->ref_cows = 1;
1494                 btrfs_check_and_init_root_item(&root->root_item);
1495         }
1496
1497         return root;
1498 }
1499
1500 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1501                                               struct btrfs_key *location)
1502 {
1503         struct btrfs_root *root;
1504         int ret;
1505
1506         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1507                 return fs_info->tree_root;
1508         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1509                 return fs_info->extent_root;
1510         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1511                 return fs_info->chunk_root;
1512         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1513                 return fs_info->dev_root;
1514         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1515                 return fs_info->csum_root;
1516         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1517                 return fs_info->quota_root ? fs_info->quota_root :
1518                                              ERR_PTR(-ENOENT);
1519 again:
1520         spin_lock(&fs_info->fs_roots_radix_lock);
1521         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1522                                  (unsigned long)location->objectid);
1523         spin_unlock(&fs_info->fs_roots_radix_lock);
1524         if (root)
1525                 return root;
1526
1527         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1528         if (IS_ERR(root))
1529                 return root;
1530
1531         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1532         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1533                                         GFP_NOFS);
1534         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1535                 ret = -ENOMEM;
1536                 goto fail;
1537         }
1538
1539         btrfs_init_free_ino_ctl(root);
1540         mutex_init(&root->fs_commit_mutex);
1541         spin_lock_init(&root->cache_lock);
1542         init_waitqueue_head(&root->cache_wait);
1543
1544         ret = get_anon_bdev(&root->anon_dev);
1545         if (ret)
1546                 goto fail;
1547
1548         if (btrfs_root_refs(&root->root_item) == 0) {
1549                 ret = -ENOENT;
1550                 goto fail;
1551         }
1552
1553         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1554         if (ret < 0)
1555                 goto fail;
1556         if (ret == 0)
1557                 root->orphan_item_inserted = 1;
1558
1559         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1560         if (ret)
1561                 goto fail;
1562
1563         spin_lock(&fs_info->fs_roots_radix_lock);
1564         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1565                                 (unsigned long)root->root_key.objectid,
1566                                 root);
1567         if (ret == 0)
1568                 root->in_radix = 1;
1569
1570         spin_unlock(&fs_info->fs_roots_radix_lock);
1571         radix_tree_preload_end();
1572         if (ret) {
1573                 if (ret == -EEXIST) {
1574                         free_fs_root(root);
1575                         goto again;
1576                 }
1577                 goto fail;
1578         }
1579
1580         ret = btrfs_find_dead_roots(fs_info->tree_root,
1581                                     root->root_key.objectid);
1582         WARN_ON(ret);
1583         return root;
1584 fail:
1585         free_fs_root(root);
1586         return ERR_PTR(ret);
1587 }
1588
1589 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1590 {
1591         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1592         int ret = 0;
1593         struct btrfs_device *device;
1594         struct backing_dev_info *bdi;
1595
1596         rcu_read_lock();
1597         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1598                 if (!device->bdev)
1599                         continue;
1600                 bdi = blk_get_backing_dev_info(device->bdev);
1601                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1602                         ret = 1;
1603                         break;
1604                 }
1605         }
1606         rcu_read_unlock();
1607         return ret;
1608 }
1609
1610 /*
1611  * If this fails, caller must call bdi_destroy() to get rid of the
1612  * bdi again.
1613  */
1614 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1615 {
1616         int err;
1617
1618         bdi->capabilities = BDI_CAP_MAP_COPY;
1619         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1620         if (err)
1621                 return err;
1622
1623         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1624         bdi->congested_fn       = btrfs_congested_fn;
1625         bdi->congested_data     = info;
1626         return 0;
1627 }
1628
1629 /*
1630  * called by the kthread helper functions to finally call the bio end_io
1631  * functions.  This is where read checksum verification actually happens
1632  */
1633 static void end_workqueue_fn(struct btrfs_work *work)
1634 {
1635         struct bio *bio;
1636         struct end_io_wq *end_io_wq;
1637         struct btrfs_fs_info *fs_info;
1638         int error;
1639
1640         end_io_wq = container_of(work, struct end_io_wq, work);
1641         bio = end_io_wq->bio;
1642         fs_info = end_io_wq->info;
1643
1644         error = end_io_wq->error;
1645         bio->bi_private = end_io_wq->private;
1646         bio->bi_end_io = end_io_wq->end_io;
1647         kfree(end_io_wq);
1648         bio_endio(bio, error);
1649 }
1650
1651 static int cleaner_kthread(void *arg)
1652 {
1653         struct btrfs_root *root = arg;
1654
1655         do {
1656                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1657                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1658                         btrfs_run_delayed_iputs(root);
1659                         btrfs_clean_old_snapshots(root);
1660                         mutex_unlock(&root->fs_info->cleaner_mutex);
1661                         btrfs_run_defrag_inodes(root->fs_info);
1662                 }
1663
1664                 if (!try_to_freeze()) {
1665                         set_current_state(TASK_INTERRUPTIBLE);
1666                         if (!kthread_should_stop())
1667                                 schedule();
1668                         __set_current_state(TASK_RUNNING);
1669                 }
1670         } while (!kthread_should_stop());
1671         return 0;
1672 }
1673
1674 static int transaction_kthread(void *arg)
1675 {
1676         struct btrfs_root *root = arg;
1677         struct btrfs_trans_handle *trans;
1678         struct btrfs_transaction *cur;
1679         u64 transid;
1680         unsigned long now;
1681         unsigned long delay;
1682         bool cannot_commit;
1683
1684         do {
1685                 cannot_commit = false;
1686                 delay = HZ * 30;
1687                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1688
1689                 spin_lock(&root->fs_info->trans_lock);
1690                 cur = root->fs_info->running_transaction;
1691                 if (!cur) {
1692                         spin_unlock(&root->fs_info->trans_lock);
1693                         goto sleep;
1694                 }
1695
1696                 now = get_seconds();
1697                 if (!cur->blocked &&
1698                     (now < cur->start_time || now - cur->start_time < 30)) {
1699                         spin_unlock(&root->fs_info->trans_lock);
1700                         delay = HZ * 5;
1701                         goto sleep;
1702                 }
1703                 transid = cur->transid;
1704                 spin_unlock(&root->fs_info->trans_lock);
1705
1706                 /* If the file system is aborted, this will always fail. */
1707                 trans = btrfs_attach_transaction(root);
1708                 if (IS_ERR(trans)) {
1709                         if (PTR_ERR(trans) != -ENOENT)
1710                                 cannot_commit = true;
1711                         goto sleep;
1712                 }
1713                 if (transid == trans->transid) {
1714                         btrfs_commit_transaction(trans, root);
1715                 } else {
1716                         btrfs_end_transaction(trans, root);
1717                 }
1718 sleep:
1719                 wake_up_process(root->fs_info->cleaner_kthread);
1720                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1721
1722                 if (!try_to_freeze()) {
1723                         set_current_state(TASK_INTERRUPTIBLE);
1724                         if (!kthread_should_stop() &&
1725                             (!btrfs_transaction_blocked(root->fs_info) ||
1726                              cannot_commit))
1727                                 schedule_timeout(delay);
1728                         __set_current_state(TASK_RUNNING);
1729                 }
1730         } while (!kthread_should_stop());
1731         return 0;
1732 }
1733
1734 /*
1735  * this will find the highest generation in the array of
1736  * root backups.  The index of the highest array is returned,
1737  * or -1 if we can't find anything.
1738  *
1739  * We check to make sure the array is valid by comparing the
1740  * generation of the latest  root in the array with the generation
1741  * in the super block.  If they don't match we pitch it.
1742  */
1743 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1744 {
1745         u64 cur;
1746         int newest_index = -1;
1747         struct btrfs_root_backup *root_backup;
1748         int i;
1749
1750         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1751                 root_backup = info->super_copy->super_roots + i;
1752                 cur = btrfs_backup_tree_root_gen(root_backup);
1753                 if (cur == newest_gen)
1754                         newest_index = i;
1755         }
1756
1757         /* check to see if we actually wrapped around */
1758         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1759                 root_backup = info->super_copy->super_roots;
1760                 cur = btrfs_backup_tree_root_gen(root_backup);
1761                 if (cur == newest_gen)
1762                         newest_index = 0;
1763         }
1764         return newest_index;
1765 }
1766
1767
1768 /*
1769  * find the oldest backup so we know where to store new entries
1770  * in the backup array.  This will set the backup_root_index
1771  * field in the fs_info struct
1772  */
1773 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1774                                      u64 newest_gen)
1775 {
1776         int newest_index = -1;
1777
1778         newest_index = find_newest_super_backup(info, newest_gen);
1779         /* if there was garbage in there, just move along */
1780         if (newest_index == -1) {
1781                 info->backup_root_index = 0;
1782         } else {
1783                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1784         }
1785 }
1786
1787 /*
1788  * copy all the root pointers into the super backup array.
1789  * this will bump the backup pointer by one when it is
1790  * done
1791  */
1792 static void backup_super_roots(struct btrfs_fs_info *info)
1793 {
1794         int next_backup;
1795         struct btrfs_root_backup *root_backup;
1796         int last_backup;
1797
1798         next_backup = info->backup_root_index;
1799         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1800                 BTRFS_NUM_BACKUP_ROOTS;
1801
1802         /*
1803          * just overwrite the last backup if we're at the same generation
1804          * this happens only at umount
1805          */
1806         root_backup = info->super_for_commit->super_roots + last_backup;
1807         if (btrfs_backup_tree_root_gen(root_backup) ==
1808             btrfs_header_generation(info->tree_root->node))
1809                 next_backup = last_backup;
1810
1811         root_backup = info->super_for_commit->super_roots + next_backup;
1812
1813         /*
1814          * make sure all of our padding and empty slots get zero filled
1815          * regardless of which ones we use today
1816          */
1817         memset(root_backup, 0, sizeof(*root_backup));
1818
1819         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1820
1821         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1822         btrfs_set_backup_tree_root_gen(root_backup,
1823                                btrfs_header_generation(info->tree_root->node));
1824
1825         btrfs_set_backup_tree_root_level(root_backup,
1826                                btrfs_header_level(info->tree_root->node));
1827
1828         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1829         btrfs_set_backup_chunk_root_gen(root_backup,
1830                                btrfs_header_generation(info->chunk_root->node));
1831         btrfs_set_backup_chunk_root_level(root_backup,
1832                                btrfs_header_level(info->chunk_root->node));
1833
1834         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1835         btrfs_set_backup_extent_root_gen(root_backup,
1836                                btrfs_header_generation(info->extent_root->node));
1837         btrfs_set_backup_extent_root_level(root_backup,
1838                                btrfs_header_level(info->extent_root->node));
1839
1840         /*
1841          * we might commit during log recovery, which happens before we set
1842          * the fs_root.  Make sure it is valid before we fill it in.
1843          */
1844         if (info->fs_root && info->fs_root->node) {
1845                 btrfs_set_backup_fs_root(root_backup,
1846                                          info->fs_root->node->start);
1847                 btrfs_set_backup_fs_root_gen(root_backup,
1848                                btrfs_header_generation(info->fs_root->node));
1849                 btrfs_set_backup_fs_root_level(root_backup,
1850                                btrfs_header_level(info->fs_root->node));
1851         }
1852
1853         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1854         btrfs_set_backup_dev_root_gen(root_backup,
1855                                btrfs_header_generation(info->dev_root->node));
1856         btrfs_set_backup_dev_root_level(root_backup,
1857                                        btrfs_header_level(info->dev_root->node));
1858
1859         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1860         btrfs_set_backup_csum_root_gen(root_backup,
1861                                btrfs_header_generation(info->csum_root->node));
1862         btrfs_set_backup_csum_root_level(root_backup,
1863                                btrfs_header_level(info->csum_root->node));
1864
1865         btrfs_set_backup_total_bytes(root_backup,
1866                              btrfs_super_total_bytes(info->super_copy));
1867         btrfs_set_backup_bytes_used(root_backup,
1868                              btrfs_super_bytes_used(info->super_copy));
1869         btrfs_set_backup_num_devices(root_backup,
1870                              btrfs_super_num_devices(info->super_copy));
1871
1872         /*
1873          * if we don't copy this out to the super_copy, it won't get remembered
1874          * for the next commit
1875          */
1876         memcpy(&info->super_copy->super_roots,
1877                &info->super_for_commit->super_roots,
1878                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1879 }
1880
1881 /*
1882  * this copies info out of the root backup array and back into
1883  * the in-memory super block.  It is meant to help iterate through
1884  * the array, so you send it the number of backups you've already
1885  * tried and the last backup index you used.
1886  *
1887  * this returns -1 when it has tried all the backups
1888  */
1889 static noinline int next_root_backup(struct btrfs_fs_info *info,
1890                                      struct btrfs_super_block *super,
1891                                      int *num_backups_tried, int *backup_index)
1892 {
1893         struct btrfs_root_backup *root_backup;
1894         int newest = *backup_index;
1895
1896         if (*num_backups_tried == 0) {
1897                 u64 gen = btrfs_super_generation(super);
1898
1899                 newest = find_newest_super_backup(info, gen);
1900                 if (newest == -1)
1901                         return -1;
1902
1903                 *backup_index = newest;
1904                 *num_backups_tried = 1;
1905         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1906                 /* we've tried all the backups, all done */
1907                 return -1;
1908         } else {
1909                 /* jump to the next oldest backup */
1910                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1911                         BTRFS_NUM_BACKUP_ROOTS;
1912                 *backup_index = newest;
1913                 *num_backups_tried += 1;
1914         }
1915         root_backup = super->super_roots + newest;
1916
1917         btrfs_set_super_generation(super,
1918                                    btrfs_backup_tree_root_gen(root_backup));
1919         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1920         btrfs_set_super_root_level(super,
1921                                    btrfs_backup_tree_root_level(root_backup));
1922         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1923
1924         /*
1925          * fixme: the total bytes and num_devices need to match or we should
1926          * need a fsck
1927          */
1928         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1929         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1930         return 0;
1931 }
1932
1933 /* helper to cleanup tree roots */
1934 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1935 {
1936         free_extent_buffer(info->tree_root->node);
1937         free_extent_buffer(info->tree_root->commit_root);
1938         free_extent_buffer(info->dev_root->node);
1939         free_extent_buffer(info->dev_root->commit_root);
1940         free_extent_buffer(info->extent_root->node);
1941         free_extent_buffer(info->extent_root->commit_root);
1942         free_extent_buffer(info->csum_root->node);
1943         free_extent_buffer(info->csum_root->commit_root);
1944         if (info->quota_root) {
1945                 free_extent_buffer(info->quota_root->node);
1946                 free_extent_buffer(info->quota_root->commit_root);
1947         }
1948
1949         info->tree_root->node = NULL;
1950         info->tree_root->commit_root = NULL;
1951         info->dev_root->node = NULL;
1952         info->dev_root->commit_root = NULL;
1953         info->extent_root->node = NULL;
1954         info->extent_root->commit_root = NULL;
1955         info->csum_root->node = NULL;
1956         info->csum_root->commit_root = NULL;
1957         if (info->quota_root) {
1958                 info->quota_root->node = NULL;
1959                 info->quota_root->commit_root = NULL;
1960         }
1961
1962         if (chunk_root) {
1963                 free_extent_buffer(info->chunk_root->node);
1964                 free_extent_buffer(info->chunk_root->commit_root);
1965                 info->chunk_root->node = NULL;
1966                 info->chunk_root->commit_root = NULL;
1967         }
1968 }
1969
1970
1971 int open_ctree(struct super_block *sb,
1972                struct btrfs_fs_devices *fs_devices,
1973                char *options)
1974 {
1975         u32 sectorsize;
1976         u32 nodesize;
1977         u32 leafsize;
1978         u32 blocksize;
1979         u32 stripesize;
1980         u64 generation;
1981         u64 features;
1982         struct btrfs_key location;
1983         struct buffer_head *bh;
1984         struct btrfs_super_block *disk_super;
1985         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1986         struct btrfs_root *tree_root;
1987         struct btrfs_root *extent_root;
1988         struct btrfs_root *csum_root;
1989         struct btrfs_root *chunk_root;
1990         struct btrfs_root *dev_root;
1991         struct btrfs_root *quota_root;
1992         struct btrfs_root *log_tree_root;
1993         int ret;
1994         int err = -EINVAL;
1995         int num_backups_tried = 0;
1996         int backup_index = 0;
1997
1998         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1999         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2000         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2001         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2002         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2003         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2004
2005         if (!tree_root || !extent_root || !csum_root ||
2006             !chunk_root || !dev_root || !quota_root) {
2007                 err = -ENOMEM;
2008                 goto fail;
2009         }
2010
2011         ret = init_srcu_struct(&fs_info->subvol_srcu);
2012         if (ret) {
2013                 err = ret;
2014                 goto fail;
2015         }
2016
2017         ret = setup_bdi(fs_info, &fs_info->bdi);
2018         if (ret) {
2019                 err = ret;
2020                 goto fail_srcu;
2021         }
2022
2023         fs_info->btree_inode = new_inode(sb);
2024         if (!fs_info->btree_inode) {
2025                 err = -ENOMEM;
2026                 goto fail_bdi;
2027         }
2028
2029         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2030
2031         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2032         INIT_LIST_HEAD(&fs_info->trans_list);
2033         INIT_LIST_HEAD(&fs_info->dead_roots);
2034         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2035         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2036         INIT_LIST_HEAD(&fs_info->ordered_operations);
2037         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2038         spin_lock_init(&fs_info->delalloc_lock);
2039         spin_lock_init(&fs_info->trans_lock);
2040         spin_lock_init(&fs_info->fs_roots_radix_lock);
2041         spin_lock_init(&fs_info->delayed_iput_lock);
2042         spin_lock_init(&fs_info->defrag_inodes_lock);
2043         spin_lock_init(&fs_info->free_chunk_lock);
2044         spin_lock_init(&fs_info->tree_mod_seq_lock);
2045         rwlock_init(&fs_info->tree_mod_log_lock);
2046         mutex_init(&fs_info->reloc_mutex);
2047
2048         init_completion(&fs_info->kobj_unregister);
2049         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2050         INIT_LIST_HEAD(&fs_info->space_info);
2051         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2052         btrfs_mapping_init(&fs_info->mapping_tree);
2053         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2054                              BTRFS_BLOCK_RSV_GLOBAL);
2055         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2056                              BTRFS_BLOCK_RSV_DELALLOC);
2057         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2058         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2059         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2060         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2061                              BTRFS_BLOCK_RSV_DELOPS);
2062         atomic_set(&fs_info->nr_async_submits, 0);
2063         atomic_set(&fs_info->async_delalloc_pages, 0);
2064         atomic_set(&fs_info->async_submit_draining, 0);
2065         atomic_set(&fs_info->nr_async_bios, 0);
2066         atomic_set(&fs_info->defrag_running, 0);
2067         atomic_set(&fs_info->tree_mod_seq, 0);
2068         fs_info->sb = sb;
2069         fs_info->max_inline = 8192 * 1024;
2070         fs_info->metadata_ratio = 0;
2071         fs_info->defrag_inodes = RB_ROOT;
2072         fs_info->trans_no_join = 0;
2073         fs_info->free_chunk_space = 0;
2074         fs_info->tree_mod_log = RB_ROOT;
2075
2076         /* readahead state */
2077         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2078         spin_lock_init(&fs_info->reada_lock);
2079
2080         fs_info->thread_pool_size = min_t(unsigned long,
2081                                           num_online_cpus() + 2, 8);
2082
2083         INIT_LIST_HEAD(&fs_info->ordered_extents);
2084         spin_lock_init(&fs_info->ordered_extent_lock);
2085         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2086                                         GFP_NOFS);
2087         if (!fs_info->delayed_root) {
2088                 err = -ENOMEM;
2089                 goto fail_iput;
2090         }
2091         btrfs_init_delayed_root(fs_info->delayed_root);
2092
2093         mutex_init(&fs_info->scrub_lock);
2094         atomic_set(&fs_info->scrubs_running, 0);
2095         atomic_set(&fs_info->scrub_pause_req, 0);
2096         atomic_set(&fs_info->scrubs_paused, 0);
2097         atomic_set(&fs_info->scrub_cancel_req, 0);
2098         init_waitqueue_head(&fs_info->scrub_pause_wait);
2099         init_rwsem(&fs_info->scrub_super_lock);
2100         fs_info->scrub_workers_refcnt = 0;
2101 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2102         fs_info->check_integrity_print_mask = 0;
2103 #endif
2104
2105         spin_lock_init(&fs_info->balance_lock);
2106         mutex_init(&fs_info->balance_mutex);
2107         atomic_set(&fs_info->balance_running, 0);
2108         atomic_set(&fs_info->balance_pause_req, 0);
2109         atomic_set(&fs_info->balance_cancel_req, 0);
2110         fs_info->balance_ctl = NULL;
2111         init_waitqueue_head(&fs_info->balance_wait_q);
2112
2113         sb->s_blocksize = 4096;
2114         sb->s_blocksize_bits = blksize_bits(4096);
2115         sb->s_bdi = &fs_info->bdi;
2116
2117         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2118         set_nlink(fs_info->btree_inode, 1);
2119         /*
2120          * we set the i_size on the btree inode to the max possible int.
2121          * the real end of the address space is determined by all of
2122          * the devices in the system
2123          */
2124         fs_info->btree_inode->i_size = OFFSET_MAX;
2125         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2126         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2127
2128         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2129         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2130                              fs_info->btree_inode->i_mapping);
2131         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2132         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2133
2134         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2135
2136         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2137         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2138                sizeof(struct btrfs_key));
2139         set_bit(BTRFS_INODE_DUMMY,
2140                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2141         insert_inode_hash(fs_info->btree_inode);
2142
2143         spin_lock_init(&fs_info->block_group_cache_lock);
2144         fs_info->block_group_cache_tree = RB_ROOT;
2145
2146         extent_io_tree_init(&fs_info->freed_extents[0],
2147                              fs_info->btree_inode->i_mapping);
2148         extent_io_tree_init(&fs_info->freed_extents[1],
2149                              fs_info->btree_inode->i_mapping);
2150         fs_info->pinned_extents = &fs_info->freed_extents[0];
2151         fs_info->do_barriers = 1;
2152
2153
2154         mutex_init(&fs_info->ordered_operations_mutex);
2155         mutex_init(&fs_info->tree_log_mutex);
2156         mutex_init(&fs_info->chunk_mutex);
2157         mutex_init(&fs_info->transaction_kthread_mutex);
2158         mutex_init(&fs_info->cleaner_mutex);
2159         mutex_init(&fs_info->volume_mutex);
2160         init_rwsem(&fs_info->extent_commit_sem);
2161         init_rwsem(&fs_info->cleanup_work_sem);
2162         init_rwsem(&fs_info->subvol_sem);
2163         fs_info->dev_replace.lock_owner = 0;
2164         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2165         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2166         mutex_init(&fs_info->dev_replace.lock_management_lock);
2167         mutex_init(&fs_info->dev_replace.lock);
2168
2169         spin_lock_init(&fs_info->qgroup_lock);
2170         fs_info->qgroup_tree = RB_ROOT;
2171         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2172         fs_info->qgroup_seq = 1;
2173         fs_info->quota_enabled = 0;
2174         fs_info->pending_quota_state = 0;
2175
2176         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2177         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2178
2179         init_waitqueue_head(&fs_info->transaction_throttle);
2180         init_waitqueue_head(&fs_info->transaction_wait);
2181         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2182         init_waitqueue_head(&fs_info->async_submit_wait);
2183
2184         ret = btrfs_alloc_stripe_hash_table(fs_info);
2185         if (ret) {
2186                 err = -ENOMEM;
2187                 goto fail_alloc;
2188         }
2189
2190         __setup_root(4096, 4096, 4096, 4096, tree_root,
2191                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2192
2193         invalidate_bdev(fs_devices->latest_bdev);
2194         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2195         if (!bh) {
2196                 err = -EINVAL;
2197                 goto fail_alloc;
2198         }
2199
2200         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2201         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2202                sizeof(*fs_info->super_for_commit));
2203         brelse(bh);
2204
2205         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2206
2207         disk_super = fs_info->super_copy;
2208         if (!btrfs_super_root(disk_super))
2209                 goto fail_alloc;
2210
2211         /* check FS state, whether FS is broken. */
2212         fs_info->fs_state |= btrfs_super_flags(disk_super);
2213
2214         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2215         if (ret) {
2216                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2217                 err = ret;
2218                 goto fail_alloc;
2219         }
2220
2221         /*
2222          * run through our array of backup supers and setup
2223          * our ring pointer to the oldest one
2224          */
2225         generation = btrfs_super_generation(disk_super);
2226         find_oldest_super_backup(fs_info, generation);
2227
2228         /*
2229          * In the long term, we'll store the compression type in the super
2230          * block, and it'll be used for per file compression control.
2231          */
2232         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2233
2234         ret = btrfs_parse_options(tree_root, options);
2235         if (ret) {
2236                 err = ret;
2237                 goto fail_alloc;
2238         }
2239
2240         features = btrfs_super_incompat_flags(disk_super) &
2241                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2242         if (features) {
2243                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2244                        "unsupported optional features (%Lx).\n",
2245                        (unsigned long long)features);
2246                 err = -EINVAL;
2247                 goto fail_alloc;
2248         }
2249
2250         if (btrfs_super_leafsize(disk_super) !=
2251             btrfs_super_nodesize(disk_super)) {
2252                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2253                        "blocksizes don't match.  node %d leaf %d\n",
2254                        btrfs_super_nodesize(disk_super),
2255                        btrfs_super_leafsize(disk_super));
2256                 err = -EINVAL;
2257                 goto fail_alloc;
2258         }
2259         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2260                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2261                        "blocksize (%d) was too large\n",
2262                        btrfs_super_leafsize(disk_super));
2263                 err = -EINVAL;
2264                 goto fail_alloc;
2265         }
2266
2267         features = btrfs_super_incompat_flags(disk_super);
2268         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2269         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2270                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2271
2272         /*
2273          * flag our filesystem as having big metadata blocks if
2274          * they are bigger than the page size
2275          */
2276         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2277                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2278                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2279                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2280         }
2281
2282         nodesize = btrfs_super_nodesize(disk_super);
2283         leafsize = btrfs_super_leafsize(disk_super);
2284         sectorsize = btrfs_super_sectorsize(disk_super);
2285         stripesize = btrfs_super_stripesize(disk_super);
2286
2287         /*
2288          * mixed block groups end up with duplicate but slightly offset
2289          * extent buffers for the same range.  It leads to corruptions
2290          */
2291         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2292             (sectorsize != leafsize)) {
2293                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2294                                 "are not allowed for mixed block groups on %s\n",
2295                                 sb->s_id);
2296                 goto fail_alloc;
2297         }
2298
2299         btrfs_set_super_incompat_flags(disk_super, features);
2300
2301         features = btrfs_super_compat_ro_flags(disk_super) &
2302                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2303         if (!(sb->s_flags & MS_RDONLY) && features) {
2304                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2305                        "unsupported option features (%Lx).\n",
2306                        (unsigned long long)features);
2307                 err = -EINVAL;
2308                 goto fail_alloc;
2309         }
2310
2311         btrfs_init_workers(&fs_info->generic_worker,
2312                            "genwork", 1, NULL);
2313
2314         btrfs_init_workers(&fs_info->workers, "worker",
2315                            fs_info->thread_pool_size,
2316                            &fs_info->generic_worker);
2317
2318         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2319                            fs_info->thread_pool_size,
2320                            &fs_info->generic_worker);
2321
2322         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2323                            fs_info->thread_pool_size,
2324                            &fs_info->generic_worker);
2325
2326         btrfs_init_workers(&fs_info->submit_workers, "submit",
2327                            min_t(u64, fs_devices->num_devices,
2328                            fs_info->thread_pool_size),
2329                            &fs_info->generic_worker);
2330
2331         btrfs_init_workers(&fs_info->caching_workers, "cache",
2332                            2, &fs_info->generic_worker);
2333
2334         /* a higher idle thresh on the submit workers makes it much more
2335          * likely that bios will be send down in a sane order to the
2336          * devices
2337          */
2338         fs_info->submit_workers.idle_thresh = 64;
2339
2340         fs_info->workers.idle_thresh = 16;
2341         fs_info->workers.ordered = 1;
2342
2343         fs_info->delalloc_workers.idle_thresh = 2;
2344         fs_info->delalloc_workers.ordered = 1;
2345
2346         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2347                            &fs_info->generic_worker);
2348         btrfs_init_workers(&fs_info->endio_workers, "endio",
2349                            fs_info->thread_pool_size,
2350                            &fs_info->generic_worker);
2351         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2352                            fs_info->thread_pool_size,
2353                            &fs_info->generic_worker);
2354         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2355                            "endio-meta-write", fs_info->thread_pool_size,
2356                            &fs_info->generic_worker);
2357         btrfs_init_workers(&fs_info->endio_raid56_workers,
2358                            "endio-raid56", fs_info->thread_pool_size,
2359                            &fs_info->generic_worker);
2360         btrfs_init_workers(&fs_info->rmw_workers,
2361                            "rmw", fs_info->thread_pool_size,
2362                            &fs_info->generic_worker);
2363         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2364                            fs_info->thread_pool_size,
2365                            &fs_info->generic_worker);
2366         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2367                            1, &fs_info->generic_worker);
2368         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2369                            fs_info->thread_pool_size,
2370                            &fs_info->generic_worker);
2371         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2372                            fs_info->thread_pool_size,
2373                            &fs_info->generic_worker);
2374
2375         /*
2376          * endios are largely parallel and should have a very
2377          * low idle thresh
2378          */
2379         fs_info->endio_workers.idle_thresh = 4;
2380         fs_info->endio_meta_workers.idle_thresh = 4;
2381         fs_info->endio_raid56_workers.idle_thresh = 4;
2382         fs_info->rmw_workers.idle_thresh = 2;
2383
2384         fs_info->endio_write_workers.idle_thresh = 2;
2385         fs_info->endio_meta_write_workers.idle_thresh = 2;
2386         fs_info->readahead_workers.idle_thresh = 2;
2387
2388         /*
2389          * btrfs_start_workers can really only fail because of ENOMEM so just
2390          * return -ENOMEM if any of these fail.
2391          */
2392         ret = btrfs_start_workers(&fs_info->workers);
2393         ret |= btrfs_start_workers(&fs_info->generic_worker);
2394         ret |= btrfs_start_workers(&fs_info->submit_workers);
2395         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2396         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2397         ret |= btrfs_start_workers(&fs_info->endio_workers);
2398         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2399         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2400         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2401         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2402         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2403         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2404         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2405         ret |= btrfs_start_workers(&fs_info->caching_workers);
2406         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2407         ret |= btrfs_start_workers(&fs_info->flush_workers);
2408         if (ret) {
2409                 err = -ENOMEM;
2410                 goto fail_sb_buffer;
2411         }
2412
2413         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2414         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2415                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2416
2417         tree_root->nodesize = nodesize;
2418         tree_root->leafsize = leafsize;
2419         tree_root->sectorsize = sectorsize;
2420         tree_root->stripesize = stripesize;
2421
2422         sb->s_blocksize = sectorsize;
2423         sb->s_blocksize_bits = blksize_bits(sectorsize);
2424
2425         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2426                     sizeof(disk_super->magic))) {
2427                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2428                 goto fail_sb_buffer;
2429         }
2430
2431         if (sectorsize != PAGE_SIZE) {
2432                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2433                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2434                 goto fail_sb_buffer;
2435         }
2436
2437         mutex_lock(&fs_info->chunk_mutex);
2438         ret = btrfs_read_sys_array(tree_root);
2439         mutex_unlock(&fs_info->chunk_mutex);
2440         if (ret) {
2441                 printk(KERN_WARNING "btrfs: failed to read the system "
2442                        "array on %s\n", sb->s_id);
2443                 goto fail_sb_buffer;
2444         }
2445
2446         blocksize = btrfs_level_size(tree_root,
2447                                      btrfs_super_chunk_root_level(disk_super));
2448         generation = btrfs_super_chunk_root_generation(disk_super);
2449
2450         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2451                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2452
2453         chunk_root->node = read_tree_block(chunk_root,
2454                                            btrfs_super_chunk_root(disk_super),
2455                                            blocksize, generation);
2456         BUG_ON(!chunk_root->node); /* -ENOMEM */
2457         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2458                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2459                        sb->s_id);
2460                 goto fail_tree_roots;
2461         }
2462         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2463         chunk_root->commit_root = btrfs_root_node(chunk_root);
2464
2465         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2466            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2467            BTRFS_UUID_SIZE);
2468
2469         ret = btrfs_read_chunk_tree(chunk_root);
2470         if (ret) {
2471                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2472                        sb->s_id);
2473                 goto fail_tree_roots;
2474         }
2475
2476         /*
2477          * keep the device that is marked to be the target device for the
2478          * dev_replace procedure
2479          */
2480         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2481
2482         if (!fs_devices->latest_bdev) {
2483                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2484                        sb->s_id);
2485                 goto fail_tree_roots;
2486         }
2487
2488 retry_root_backup:
2489         blocksize = btrfs_level_size(tree_root,
2490                                      btrfs_super_root_level(disk_super));
2491         generation = btrfs_super_generation(disk_super);
2492
2493         tree_root->node = read_tree_block(tree_root,
2494                                           btrfs_super_root(disk_super),
2495                                           blocksize, generation);
2496         if (!tree_root->node ||
2497             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2498                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2499                        sb->s_id);
2500
2501                 goto recovery_tree_root;
2502         }
2503
2504         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2505         tree_root->commit_root = btrfs_root_node(tree_root);
2506
2507         ret = find_and_setup_root(tree_root, fs_info,
2508                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2509         if (ret)
2510                 goto recovery_tree_root;
2511         extent_root->track_dirty = 1;
2512
2513         ret = find_and_setup_root(tree_root, fs_info,
2514                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2515         if (ret)
2516                 goto recovery_tree_root;
2517         dev_root->track_dirty = 1;
2518
2519         ret = find_and_setup_root(tree_root, fs_info,
2520                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2521         if (ret)
2522                 goto recovery_tree_root;
2523         csum_root->track_dirty = 1;
2524
2525         ret = find_and_setup_root(tree_root, fs_info,
2526                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2527         if (ret) {
2528                 kfree(quota_root);
2529                 quota_root = fs_info->quota_root = NULL;
2530         } else {
2531                 quota_root->track_dirty = 1;
2532                 fs_info->quota_enabled = 1;
2533                 fs_info->pending_quota_state = 1;
2534         }
2535
2536         fs_info->generation = generation;
2537         fs_info->last_trans_committed = generation;
2538
2539         ret = btrfs_recover_balance(fs_info);
2540         if (ret) {
2541                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2542                 goto fail_block_groups;
2543         }
2544
2545         ret = btrfs_init_dev_stats(fs_info);
2546         if (ret) {
2547                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2548                        ret);
2549                 goto fail_block_groups;
2550         }
2551
2552         ret = btrfs_init_dev_replace(fs_info);
2553         if (ret) {
2554                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2555                 goto fail_block_groups;
2556         }
2557
2558         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2559
2560         ret = btrfs_init_space_info(fs_info);
2561         if (ret) {
2562                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2563                 goto fail_block_groups;
2564         }
2565
2566         ret = btrfs_read_block_groups(extent_root);
2567         if (ret) {
2568                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2569                 goto fail_block_groups;
2570         }
2571         fs_info->num_tolerated_disk_barrier_failures =
2572                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2573         if (fs_info->fs_devices->missing_devices >
2574              fs_info->num_tolerated_disk_barrier_failures &&
2575             !(sb->s_flags & MS_RDONLY)) {
2576                 printk(KERN_WARNING
2577                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2578                 goto fail_block_groups;
2579         }
2580
2581         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2582                                                "btrfs-cleaner");
2583         if (IS_ERR(fs_info->cleaner_kthread))
2584                 goto fail_block_groups;
2585
2586         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2587                                                    tree_root,
2588                                                    "btrfs-transaction");
2589         if (IS_ERR(fs_info->transaction_kthread))
2590                 goto fail_cleaner;
2591
2592         if (!btrfs_test_opt(tree_root, SSD) &&
2593             !btrfs_test_opt(tree_root, NOSSD) &&
2594             !fs_info->fs_devices->rotating) {
2595                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2596                        "mode\n");
2597                 btrfs_set_opt(fs_info->mount_opt, SSD);
2598         }
2599
2600 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2601         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2602                 ret = btrfsic_mount(tree_root, fs_devices,
2603                                     btrfs_test_opt(tree_root,
2604                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2605                                     1 : 0,
2606                                     fs_info->check_integrity_print_mask);
2607                 if (ret)
2608                         printk(KERN_WARNING "btrfs: failed to initialize"
2609                                " integrity check module %s\n", sb->s_id);
2610         }
2611 #endif
2612         ret = btrfs_read_qgroup_config(fs_info);
2613         if (ret)
2614                 goto fail_trans_kthread;
2615
2616         /* do not make disk changes in broken FS */
2617         if (btrfs_super_log_root(disk_super) != 0) {
2618                 u64 bytenr = btrfs_super_log_root(disk_super);
2619
2620                 if (fs_devices->rw_devices == 0) {
2621                         printk(KERN_WARNING "Btrfs log replay required "
2622                                "on RO media\n");
2623                         err = -EIO;
2624                         goto fail_qgroup;
2625                 }
2626                 blocksize =
2627                      btrfs_level_size(tree_root,
2628                                       btrfs_super_log_root_level(disk_super));
2629
2630                 log_tree_root = btrfs_alloc_root(fs_info);
2631                 if (!log_tree_root) {
2632                         err = -ENOMEM;
2633                         goto fail_qgroup;
2634                 }
2635
2636                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2637                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2638
2639                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2640                                                       blocksize,
2641                                                       generation + 1);
2642                 /* returns with log_tree_root freed on success */
2643                 ret = btrfs_recover_log_trees(log_tree_root);
2644                 if (ret) {
2645                         btrfs_error(tree_root->fs_info, ret,
2646                                     "Failed to recover log tree");
2647                         free_extent_buffer(log_tree_root->node);
2648                         kfree(log_tree_root);
2649                         goto fail_trans_kthread;
2650                 }
2651
2652                 if (sb->s_flags & MS_RDONLY) {
2653                         ret = btrfs_commit_super(tree_root);
2654                         if (ret)
2655                                 goto fail_trans_kthread;
2656                 }
2657         }
2658
2659         ret = btrfs_find_orphan_roots(tree_root);
2660         if (ret)
2661                 goto fail_trans_kthread;
2662
2663         if (!(sb->s_flags & MS_RDONLY)) {
2664                 ret = btrfs_cleanup_fs_roots(fs_info);
2665                 if (ret)
2666                         goto fail_trans_kthread;
2667
2668                 ret = btrfs_recover_relocation(tree_root);
2669                 if (ret < 0) {
2670                         printk(KERN_WARNING
2671                                "btrfs: failed to recover relocation\n");
2672                         err = -EINVAL;
2673                         goto fail_qgroup;
2674                 }
2675         }
2676
2677         location.objectid = BTRFS_FS_TREE_OBJECTID;
2678         location.type = BTRFS_ROOT_ITEM_KEY;
2679         location.offset = (u64)-1;
2680
2681         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2682         if (!fs_info->fs_root)
2683                 goto fail_qgroup;
2684         if (IS_ERR(fs_info->fs_root)) {
2685                 err = PTR_ERR(fs_info->fs_root);
2686                 goto fail_qgroup;
2687         }
2688
2689         if (sb->s_flags & MS_RDONLY)
2690                 return 0;
2691
2692         down_read(&fs_info->cleanup_work_sem);
2693         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2694             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2695                 up_read(&fs_info->cleanup_work_sem);
2696                 close_ctree(tree_root);
2697                 return ret;
2698         }
2699         up_read(&fs_info->cleanup_work_sem);
2700
2701         ret = btrfs_resume_balance_async(fs_info);
2702         if (ret) {
2703                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2704                 close_ctree(tree_root);
2705                 return ret;
2706         }
2707
2708         ret = btrfs_resume_dev_replace_async(fs_info);
2709         if (ret) {
2710                 pr_warn("btrfs: failed to resume dev_replace\n");
2711                 close_ctree(tree_root);
2712                 return ret;
2713         }
2714
2715         return 0;
2716
2717 fail_qgroup:
2718         btrfs_free_qgroup_config(fs_info);
2719 fail_trans_kthread:
2720         kthread_stop(fs_info->transaction_kthread);
2721 fail_cleaner:
2722         kthread_stop(fs_info->cleaner_kthread);
2723
2724         /*
2725          * make sure we're done with the btree inode before we stop our
2726          * kthreads
2727          */
2728         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2729         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2730
2731 fail_block_groups:
2732         btrfs_free_block_groups(fs_info);
2733
2734 fail_tree_roots:
2735         free_root_pointers(fs_info, 1);
2736
2737 fail_sb_buffer:
2738         btrfs_stop_workers(&fs_info->generic_worker);
2739         btrfs_stop_workers(&fs_info->readahead_workers);
2740         btrfs_stop_workers(&fs_info->fixup_workers);
2741         btrfs_stop_workers(&fs_info->delalloc_workers);
2742         btrfs_stop_workers(&fs_info->workers);
2743         btrfs_stop_workers(&fs_info->endio_workers);
2744         btrfs_stop_workers(&fs_info->endio_meta_workers);
2745         btrfs_stop_workers(&fs_info->endio_raid56_workers);
2746         btrfs_stop_workers(&fs_info->rmw_workers);
2747         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2748         btrfs_stop_workers(&fs_info->endio_write_workers);
2749         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2750         btrfs_stop_workers(&fs_info->submit_workers);
2751         btrfs_stop_workers(&fs_info->delayed_workers);
2752         btrfs_stop_workers(&fs_info->caching_workers);
2753         btrfs_stop_workers(&fs_info->flush_workers);
2754 fail_alloc:
2755 fail_iput:
2756         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2757
2758         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2759         iput(fs_info->btree_inode);
2760 fail_bdi:
2761         bdi_destroy(&fs_info->bdi);
2762 fail_srcu:
2763         cleanup_srcu_struct(&fs_info->subvol_srcu);
2764 fail:
2765         btrfs_free_stripe_hash_table(fs_info);
2766         btrfs_close_devices(fs_info->fs_devices);
2767         return err;
2768
2769 recovery_tree_root:
2770         if (!btrfs_test_opt(tree_root, RECOVERY))
2771                 goto fail_tree_roots;
2772
2773         free_root_pointers(fs_info, 0);
2774
2775         /* don't use the log in recovery mode, it won't be valid */
2776         btrfs_set_super_log_root(disk_super, 0);
2777
2778         /* we can't trust the free space cache either */
2779         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2780
2781         ret = next_root_backup(fs_info, fs_info->super_copy,
2782                                &num_backups_tried, &backup_index);
2783         if (ret == -1)
2784                 goto fail_block_groups;
2785         goto retry_root_backup;
2786 }
2787
2788 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2789 {
2790         if (uptodate) {
2791                 set_buffer_uptodate(bh);
2792         } else {
2793                 struct btrfs_device *device = (struct btrfs_device *)
2794                         bh->b_private;
2795
2796                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2797                                           "I/O error on %s\n",
2798                                           rcu_str_deref(device->name));
2799                 /* note, we dont' set_buffer_write_io_error because we have
2800                  * our own ways of dealing with the IO errors
2801                  */
2802                 clear_buffer_uptodate(bh);
2803                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2804         }
2805         unlock_buffer(bh);
2806         put_bh(bh);
2807 }
2808
2809 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2810 {
2811         struct buffer_head *bh;
2812         struct buffer_head *latest = NULL;
2813         struct btrfs_super_block *super;
2814         int i;
2815         u64 transid = 0;
2816         u64 bytenr;
2817
2818         /* we would like to check all the supers, but that would make
2819          * a btrfs mount succeed after a mkfs from a different FS.
2820          * So, we need to add a special mount option to scan for
2821          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2822          */
2823         for (i = 0; i < 1; i++) {
2824                 bytenr = btrfs_sb_offset(i);
2825                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2826                         break;
2827                 bh = __bread(bdev, bytenr / 4096, 4096);
2828                 if (!bh)
2829                         continue;
2830
2831                 super = (struct btrfs_super_block *)bh->b_data;
2832                 if (btrfs_super_bytenr(super) != bytenr ||
2833                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2834                             sizeof(super->magic))) {
2835                         brelse(bh);
2836                         continue;
2837                 }
2838
2839                 if (!latest || btrfs_super_generation(super) > transid) {
2840                         brelse(latest);
2841                         latest = bh;
2842                         transid = btrfs_super_generation(super);
2843                 } else {
2844                         brelse(bh);
2845                 }
2846         }
2847         return latest;
2848 }
2849
2850 /*
2851  * this should be called twice, once with wait == 0 and
2852  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2853  * we write are pinned.
2854  *
2855  * They are released when wait == 1 is done.
2856  * max_mirrors must be the same for both runs, and it indicates how
2857  * many supers on this one device should be written.
2858  *
2859  * max_mirrors == 0 means to write them all.
2860  */
2861 static int write_dev_supers(struct btrfs_device *device,
2862                             struct btrfs_super_block *sb,
2863                             int do_barriers, int wait, int max_mirrors)
2864 {
2865         struct buffer_head *bh;
2866         int i;
2867         int ret;
2868         int errors = 0;
2869         u32 crc;
2870         u64 bytenr;
2871
2872         if (max_mirrors == 0)
2873                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2874
2875         for (i = 0; i < max_mirrors; i++) {
2876                 bytenr = btrfs_sb_offset(i);
2877                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2878                         break;
2879
2880                 if (wait) {
2881                         bh = __find_get_block(device->bdev, bytenr / 4096,
2882                                               BTRFS_SUPER_INFO_SIZE);
2883                         BUG_ON(!bh);
2884                         wait_on_buffer(bh);
2885                         if (!buffer_uptodate(bh))
2886                                 errors++;
2887
2888                         /* drop our reference */
2889                         brelse(bh);
2890
2891                         /* drop the reference from the wait == 0 run */
2892                         brelse(bh);
2893                         continue;
2894                 } else {
2895                         btrfs_set_super_bytenr(sb, bytenr);
2896
2897                         crc = ~(u32)0;
2898                         crc = btrfs_csum_data(NULL, (char *)sb +
2899                                               BTRFS_CSUM_SIZE, crc,
2900                                               BTRFS_SUPER_INFO_SIZE -
2901                                               BTRFS_CSUM_SIZE);
2902                         btrfs_csum_final(crc, sb->csum);
2903
2904                         /*
2905                          * one reference for us, and we leave it for the
2906                          * caller
2907                          */
2908                         bh = __getblk(device->bdev, bytenr / 4096,
2909                                       BTRFS_SUPER_INFO_SIZE);
2910                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2911
2912                         /* one reference for submit_bh */
2913                         get_bh(bh);
2914
2915                         set_buffer_uptodate(bh);
2916                         lock_buffer(bh);
2917                         bh->b_end_io = btrfs_end_buffer_write_sync;
2918                         bh->b_private = device;
2919                 }
2920
2921                 /*
2922                  * we fua the first super.  The others we allow
2923                  * to go down lazy.
2924                  */
2925                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2926                 if (ret)
2927                         errors++;
2928         }
2929         return errors < i ? 0 : -1;
2930 }
2931
2932 /*
2933  * endio for the write_dev_flush, this will wake anyone waiting
2934  * for the barrier when it is done
2935  */
2936 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2937 {
2938         if (err) {
2939                 if (err == -EOPNOTSUPP)
2940                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2941                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2942         }
2943         if (bio->bi_private)
2944                 complete(bio->bi_private);
2945         bio_put(bio);
2946 }
2947
2948 /*
2949  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2950  * sent down.  With wait == 1, it waits for the previous flush.
2951  *
2952  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2953  * capable
2954  */
2955 static int write_dev_flush(struct btrfs_device *device, int wait)
2956 {
2957         struct bio *bio;
2958         int ret = 0;
2959
2960         if (device->nobarriers)
2961                 return 0;
2962
2963         if (wait) {
2964                 bio = device->flush_bio;
2965                 if (!bio)
2966                         return 0;
2967
2968                 wait_for_completion(&device->flush_wait);
2969
2970                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2971                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2972                                       rcu_str_deref(device->name));
2973                         device->nobarriers = 1;
2974                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2975                         ret = -EIO;
2976                         btrfs_dev_stat_inc_and_print(device,
2977                                 BTRFS_DEV_STAT_FLUSH_ERRS);
2978                 }
2979
2980                 /* drop the reference from the wait == 0 run */
2981                 bio_put(bio);
2982                 device->flush_bio = NULL;
2983
2984                 return ret;
2985         }
2986
2987         /*
2988          * one reference for us, and we leave it for the
2989          * caller
2990          */
2991         device->flush_bio = NULL;
2992         bio = bio_alloc(GFP_NOFS, 0);
2993         if (!bio)
2994                 return -ENOMEM;
2995
2996         bio->bi_end_io = btrfs_end_empty_barrier;
2997         bio->bi_bdev = device->bdev;
2998         init_completion(&device->flush_wait);
2999         bio->bi_private = &device->flush_wait;
3000         device->flush_bio = bio;
3001
3002         bio_get(bio);
3003         btrfsic_submit_bio(WRITE_FLUSH, bio);
3004
3005         return 0;
3006 }
3007
3008 /*
3009  * send an empty flush down to each device in parallel,
3010  * then wait for them
3011  */
3012 static int barrier_all_devices(struct btrfs_fs_info *info)
3013 {
3014         struct list_head *head;
3015         struct btrfs_device *dev;
3016         int errors_send = 0;
3017         int errors_wait = 0;
3018         int ret;
3019
3020         /* send down all the barriers */
3021         head = &info->fs_devices->devices;
3022         list_for_each_entry_rcu(dev, head, dev_list) {
3023                 if (!dev->bdev) {
3024                         errors_send++;
3025                         continue;
3026                 }
3027                 if (!dev->in_fs_metadata || !dev->writeable)
3028                         continue;
3029
3030                 ret = write_dev_flush(dev, 0);
3031                 if (ret)
3032                         errors_send++;
3033         }
3034
3035         /* wait for all the barriers */
3036         list_for_each_entry_rcu(dev, head, dev_list) {
3037                 if (!dev->bdev) {
3038                         errors_wait++;
3039                         continue;
3040                 }
3041                 if (!dev->in_fs_metadata || !dev->writeable)
3042                         continue;
3043
3044                 ret = write_dev_flush(dev, 1);
3045                 if (ret)
3046                         errors_wait++;
3047         }
3048         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3049             errors_wait > info->num_tolerated_disk_barrier_failures)
3050                 return -EIO;
3051         return 0;
3052 }
3053
3054 int btrfs_calc_num_tolerated_disk_barrier_failures(
3055         struct btrfs_fs_info *fs_info)
3056 {
3057         struct btrfs_ioctl_space_info space;
3058         struct btrfs_space_info *sinfo;
3059         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3060                        BTRFS_BLOCK_GROUP_SYSTEM,
3061                        BTRFS_BLOCK_GROUP_METADATA,
3062                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3063         int num_types = 4;
3064         int i;
3065         int c;
3066         int num_tolerated_disk_barrier_failures =
3067                 (int)fs_info->fs_devices->num_devices;
3068
3069         for (i = 0; i < num_types; i++) {
3070                 struct btrfs_space_info *tmp;
3071
3072                 sinfo = NULL;
3073                 rcu_read_lock();
3074                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3075                         if (tmp->flags == types[i]) {
3076                                 sinfo = tmp;
3077                                 break;
3078                         }
3079                 }
3080                 rcu_read_unlock();
3081
3082                 if (!sinfo)
3083                         continue;
3084
3085                 down_read(&sinfo->groups_sem);
3086                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3087                         if (!list_empty(&sinfo->block_groups[c])) {
3088                                 u64 flags;
3089
3090                                 btrfs_get_block_group_info(
3091                                         &sinfo->block_groups[c], &space);
3092                                 if (space.total_bytes == 0 ||
3093                                     space.used_bytes == 0)
3094                                         continue;
3095                                 flags = space.flags;
3096                                 /*
3097                                  * return
3098                                  * 0: if dup, single or RAID0 is configured for
3099                                  *    any of metadata, system or data, else
3100                                  * 1: if RAID5 is configured, or if RAID1 or
3101                                  *    RAID10 is configured and only two mirrors
3102                                  *    are used, else
3103                                  * 2: if RAID6 is configured, else
3104                                  * num_mirrors - 1: if RAID1 or RAID10 is
3105                                  *                  configured and more than
3106                                  *                  2 mirrors are used.
3107                                  */
3108                                 if (num_tolerated_disk_barrier_failures > 0 &&
3109                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3110                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3111                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3112                                       == 0)))
3113                                         num_tolerated_disk_barrier_failures = 0;
3114                                 else if (num_tolerated_disk_barrier_failures > 1) {
3115                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3116                                             BTRFS_BLOCK_GROUP_RAID5 |
3117                                             BTRFS_BLOCK_GROUP_RAID10)) {
3118                                                 num_tolerated_disk_barrier_failures = 1;
3119                                         } else if (flags &
3120                                                    BTRFS_BLOCK_GROUP_RAID5) {
3121                                                 num_tolerated_disk_barrier_failures = 2;
3122                                         }
3123                                 }
3124                         }
3125                 }
3126                 up_read(&sinfo->groups_sem);
3127         }
3128
3129         return num_tolerated_disk_barrier_failures;
3130 }
3131
3132 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3133 {
3134         struct list_head *head;
3135         struct btrfs_device *dev;
3136         struct btrfs_super_block *sb;
3137         struct btrfs_dev_item *dev_item;
3138         int ret;
3139         int do_barriers;
3140         int max_errors;
3141         int total_errors = 0;
3142         u64 flags;
3143
3144         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3145         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3146         backup_super_roots(root->fs_info);
3147
3148         sb = root->fs_info->super_for_commit;
3149         dev_item = &sb->dev_item;
3150
3151         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3152         head = &root->fs_info->fs_devices->devices;
3153
3154         if (do_barriers) {
3155                 ret = barrier_all_devices(root->fs_info);
3156                 if (ret) {
3157                         mutex_unlock(
3158                                 &root->fs_info->fs_devices->device_list_mutex);
3159                         btrfs_error(root->fs_info, ret,
3160                                     "errors while submitting device barriers.");
3161                         return ret;
3162                 }
3163         }
3164
3165         list_for_each_entry_rcu(dev, head, dev_list) {
3166                 if (!dev->bdev) {
3167                         total_errors++;
3168                         continue;
3169                 }
3170                 if (!dev->in_fs_metadata || !dev->writeable)
3171                         continue;
3172
3173                 btrfs_set_stack_device_generation(dev_item, 0);
3174                 btrfs_set_stack_device_type(dev_item, dev->type);
3175                 btrfs_set_stack_device_id(dev_item, dev->devid);
3176                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3177                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3178                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3179                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3180                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3181                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3182                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3183
3184                 flags = btrfs_super_flags(sb);
3185                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3186
3187                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3188                 if (ret)
3189                         total_errors++;
3190         }
3191         if (total_errors > max_errors) {
3192                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3193                        total_errors);
3194
3195                 /* This shouldn't happen. FUA is masked off if unsupported */
3196                 BUG();
3197         }
3198
3199         total_errors = 0;
3200         list_for_each_entry_rcu(dev, head, dev_list) {
3201                 if (!dev->bdev)
3202                         continue;
3203                 if (!dev->in_fs_metadata || !dev->writeable)
3204                         continue;
3205
3206                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3207                 if (ret)
3208                         total_errors++;
3209         }
3210         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3211         if (total_errors > max_errors) {
3212                 btrfs_error(root->fs_info, -EIO,
3213                             "%d errors while writing supers", total_errors);
3214                 return -EIO;
3215         }
3216         return 0;
3217 }
3218
3219 int write_ctree_super(struct btrfs_trans_handle *trans,
3220                       struct btrfs_root *root, int max_mirrors)
3221 {
3222         int ret;
3223
3224         ret = write_all_supers(root, max_mirrors);
3225         return ret;
3226 }
3227
3228 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3229 {
3230         spin_lock(&fs_info->fs_roots_radix_lock);
3231         radix_tree_delete(&fs_info->fs_roots_radix,
3232                           (unsigned long)root->root_key.objectid);
3233         spin_unlock(&fs_info->fs_roots_radix_lock);
3234
3235         if (btrfs_root_refs(&root->root_item) == 0)
3236                 synchronize_srcu(&fs_info->subvol_srcu);
3237
3238         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3239         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3240         free_fs_root(root);
3241 }
3242
3243 static void free_fs_root(struct btrfs_root *root)
3244 {
3245         iput(root->cache_inode);
3246         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3247         if (root->anon_dev)
3248                 free_anon_bdev(root->anon_dev);
3249         free_extent_buffer(root->node);
3250         free_extent_buffer(root->commit_root);
3251         kfree(root->free_ino_ctl);
3252         kfree(root->free_ino_pinned);
3253         kfree(root->name);
3254         kfree(root);
3255 }
3256
3257 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3258 {
3259         int ret;
3260         struct btrfs_root *gang[8];
3261         int i;
3262
3263         while (!list_empty(&fs_info->dead_roots)) {
3264                 gang[0] = list_entry(fs_info->dead_roots.next,
3265                                      struct btrfs_root, root_list);
3266                 list_del(&gang[0]->root_list);
3267
3268                 if (gang[0]->in_radix) {
3269                         btrfs_free_fs_root(fs_info, gang[0]);
3270                 } else {
3271                         free_extent_buffer(gang[0]->node);
3272                         free_extent_buffer(gang[0]->commit_root);
3273                         kfree(gang[0]);
3274                 }
3275         }
3276
3277         while (1) {
3278                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3279                                              (void **)gang, 0,
3280                                              ARRAY_SIZE(gang));
3281                 if (!ret)
3282                         break;
3283                 for (i = 0; i < ret; i++)
3284                         btrfs_free_fs_root(fs_info, gang[i]);
3285         }
3286 }
3287
3288 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3289 {
3290         u64 root_objectid = 0;
3291         struct btrfs_root *gang[8];
3292         int i;
3293         int ret;
3294
3295         while (1) {
3296                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3297                                              (void **)gang, root_objectid,
3298                                              ARRAY_SIZE(gang));
3299                 if (!ret)
3300                         break;
3301
3302                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3303                 for (i = 0; i < ret; i++) {
3304                         int err;
3305
3306                         root_objectid = gang[i]->root_key.objectid;
3307                         err = btrfs_orphan_cleanup(gang[i]);
3308                         if (err)
3309                                 return err;
3310                 }
3311                 root_objectid++;
3312         }
3313         return 0;
3314 }
3315
3316 int btrfs_commit_super(struct btrfs_root *root)
3317 {
3318         struct btrfs_trans_handle *trans;
3319         int ret;
3320
3321         mutex_lock(&root->fs_info->cleaner_mutex);
3322         btrfs_run_delayed_iputs(root);
3323         btrfs_clean_old_snapshots(root);
3324         mutex_unlock(&root->fs_info->cleaner_mutex);
3325
3326         /* wait until ongoing cleanup work done */
3327         down_write(&root->fs_info->cleanup_work_sem);
3328         up_write(&root->fs_info->cleanup_work_sem);
3329
3330         trans = btrfs_join_transaction(root);
3331         if (IS_ERR(trans))
3332                 return PTR_ERR(trans);
3333         ret = btrfs_commit_transaction(trans, root);
3334         if (ret)
3335                 return ret;
3336         /* run commit again to drop the original snapshot */
3337         trans = btrfs_join_transaction(root);
3338         if (IS_ERR(trans))
3339                 return PTR_ERR(trans);
3340         ret = btrfs_commit_transaction(trans, root);
3341         if (ret)
3342                 return ret;
3343         ret = btrfs_write_and_wait_transaction(NULL, root);
3344         if (ret) {
3345                 btrfs_error(root->fs_info, ret,
3346                             "Failed to sync btree inode to disk.");
3347                 return ret;
3348         }
3349
3350         ret = write_ctree_super(NULL, root, 0);
3351         return ret;
3352 }
3353
3354 int close_ctree(struct btrfs_root *root)
3355 {
3356         struct btrfs_fs_info *fs_info = root->fs_info;
3357         int ret;
3358
3359         fs_info->closing = 1;
3360         smp_mb();
3361
3362         /* pause restriper - we want to resume on mount */
3363         btrfs_pause_balance(fs_info);
3364
3365         btrfs_dev_replace_suspend_for_unmount(fs_info);
3366
3367         btrfs_scrub_cancel(fs_info);
3368
3369         /* wait for any defraggers to finish */
3370         wait_event(fs_info->transaction_wait,
3371                    (atomic_read(&fs_info->defrag_running) == 0));
3372
3373         /* clear out the rbtree of defraggable inodes */
3374         btrfs_cleanup_defrag_inodes(fs_info);
3375
3376         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3377                 ret = btrfs_commit_super(root);
3378                 if (ret)
3379                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3380         }
3381
3382         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3383                 btrfs_error_commit_super(root);
3384
3385         btrfs_put_block_group_cache(fs_info);
3386
3387         kthread_stop(fs_info->transaction_kthread);
3388         kthread_stop(fs_info->cleaner_kthread);
3389
3390         fs_info->closing = 2;
3391         smp_mb();
3392
3393         btrfs_free_qgroup_config(root->fs_info);
3394
3395         if (fs_info->delalloc_bytes) {
3396                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3397                        (unsigned long long)fs_info->delalloc_bytes);
3398         }
3399
3400         free_extent_buffer(fs_info->extent_root->node);
3401         free_extent_buffer(fs_info->extent_root->commit_root);
3402         free_extent_buffer(fs_info->tree_root->node);
3403         free_extent_buffer(fs_info->tree_root->commit_root);
3404         free_extent_buffer(fs_info->chunk_root->node);
3405         free_extent_buffer(fs_info->chunk_root->commit_root);
3406         free_extent_buffer(fs_info->dev_root->node);
3407         free_extent_buffer(fs_info->dev_root->commit_root);
3408         free_extent_buffer(fs_info->csum_root->node);
3409         free_extent_buffer(fs_info->csum_root->commit_root);
3410         if (fs_info->quota_root) {
3411                 free_extent_buffer(fs_info->quota_root->node);
3412                 free_extent_buffer(fs_info->quota_root->commit_root);
3413         }
3414
3415         btrfs_free_block_groups(fs_info);
3416
3417         del_fs_roots(fs_info);
3418
3419         iput(fs_info->btree_inode);
3420
3421         btrfs_stop_workers(&fs_info->generic_worker);
3422         btrfs_stop_workers(&fs_info->fixup_workers);
3423         btrfs_stop_workers(&fs_info->delalloc_workers);
3424         btrfs_stop_workers(&fs_info->workers);
3425         btrfs_stop_workers(&fs_info->endio_workers);
3426         btrfs_stop_workers(&fs_info->endio_meta_workers);
3427         btrfs_stop_workers(&fs_info->endio_raid56_workers);
3428         btrfs_stop_workers(&fs_info->rmw_workers);
3429         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3430         btrfs_stop_workers(&fs_info->endio_write_workers);
3431         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3432         btrfs_stop_workers(&fs_info->submit_workers);
3433         btrfs_stop_workers(&fs_info->delayed_workers);
3434         btrfs_stop_workers(&fs_info->caching_workers);
3435         btrfs_stop_workers(&fs_info->readahead_workers);
3436         btrfs_stop_workers(&fs_info->flush_workers);
3437
3438 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3439         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3440                 btrfsic_unmount(root, fs_info->fs_devices);
3441 #endif
3442
3443         btrfs_close_devices(fs_info->fs_devices);
3444         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3445
3446         bdi_destroy(&fs_info->bdi);
3447         cleanup_srcu_struct(&fs_info->subvol_srcu);
3448
3449         btrfs_free_stripe_hash_table(fs_info);
3450
3451         return 0;
3452 }
3453
3454 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3455                           int atomic)
3456 {
3457         int ret;
3458         struct inode *btree_inode = buf->pages[0]->mapping->host;
3459
3460         ret = extent_buffer_uptodate(buf);
3461         if (!ret)
3462                 return ret;
3463
3464         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3465                                     parent_transid, atomic);
3466         if (ret == -EAGAIN)
3467                 return ret;
3468         return !ret;
3469 }
3470
3471 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3472 {
3473         return set_extent_buffer_uptodate(buf);
3474 }
3475
3476 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3477 {
3478         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3479         u64 transid = btrfs_header_generation(buf);
3480         int was_dirty;
3481
3482         btrfs_assert_tree_locked(buf);
3483         if (transid != root->fs_info->generation)
3484                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3485                        "found %llu running %llu\n",
3486                         (unsigned long long)buf->start,
3487                         (unsigned long long)transid,
3488                         (unsigned long long)root->fs_info->generation);
3489         was_dirty = set_extent_buffer_dirty(buf);
3490         if (!was_dirty) {
3491                 spin_lock(&root->fs_info->delalloc_lock);
3492                 root->fs_info->dirty_metadata_bytes += buf->len;
3493                 spin_unlock(&root->fs_info->delalloc_lock);
3494         }
3495 }
3496
3497 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3498                                         int flush_delayed)
3499 {
3500         /*
3501          * looks as though older kernels can get into trouble with
3502          * this code, they end up stuck in balance_dirty_pages forever
3503          */
3504         u64 num_dirty;
3505         unsigned long thresh = 32 * 1024 * 1024;
3506
3507         if (current->flags & PF_MEMALLOC)
3508                 return;
3509
3510         if (flush_delayed)
3511                 btrfs_balance_delayed_items(root);
3512
3513         num_dirty = root->fs_info->dirty_metadata_bytes;
3514
3515         if (num_dirty > thresh) {
3516                 balance_dirty_pages_ratelimited_nr(
3517                                    root->fs_info->btree_inode->i_mapping, 1);
3518         }
3519         return;
3520 }
3521
3522 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3523 {
3524         __btrfs_btree_balance_dirty(root, 1);
3525 }
3526
3527 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3528 {
3529         __btrfs_btree_balance_dirty(root, 0);
3530 }
3531
3532 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3533 {
3534         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3535         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3536 }
3537
3538 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3539                               int read_only)
3540 {
3541         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3542                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3543                 return -EINVAL;
3544         }
3545
3546         if (read_only)
3547                 return 0;
3548
3549         return 0;
3550 }
3551
3552 void btrfs_error_commit_super(struct btrfs_root *root)
3553 {
3554         mutex_lock(&root->fs_info->cleaner_mutex);
3555         btrfs_run_delayed_iputs(root);
3556         mutex_unlock(&root->fs_info->cleaner_mutex);
3557
3558         down_write(&root->fs_info->cleanup_work_sem);
3559         up_write(&root->fs_info->cleanup_work_sem);
3560
3561         /* cleanup FS via transaction */
3562         btrfs_cleanup_transaction(root);
3563 }
3564
3565 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3566 {
3567         struct btrfs_inode *btrfs_inode;
3568         struct list_head splice;
3569
3570         INIT_LIST_HEAD(&splice);
3571
3572         mutex_lock(&root->fs_info->ordered_operations_mutex);
3573         spin_lock(&root->fs_info->ordered_extent_lock);
3574
3575         list_splice_init(&root->fs_info->ordered_operations, &splice);
3576         while (!list_empty(&splice)) {
3577                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3578                                          ordered_operations);
3579
3580                 list_del_init(&btrfs_inode->ordered_operations);
3581
3582                 btrfs_invalidate_inodes(btrfs_inode->root);
3583         }
3584
3585         spin_unlock(&root->fs_info->ordered_extent_lock);
3586         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3587 }
3588
3589 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3590 {
3591         struct list_head splice;
3592         struct btrfs_ordered_extent *ordered;
3593         struct inode *inode;
3594
3595         INIT_LIST_HEAD(&splice);
3596
3597         spin_lock(&root->fs_info->ordered_extent_lock);
3598
3599         list_splice_init(&root->fs_info->ordered_extents, &splice);
3600         while (!list_empty(&splice)) {
3601                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3602                                      root_extent_list);
3603
3604                 list_del_init(&ordered->root_extent_list);
3605                 atomic_inc(&ordered->refs);
3606
3607                 /* the inode may be getting freed (in sys_unlink path). */
3608                 inode = igrab(ordered->inode);
3609
3610                 spin_unlock(&root->fs_info->ordered_extent_lock);
3611                 if (inode)
3612                         iput(inode);
3613
3614                 atomic_set(&ordered->refs, 1);
3615                 btrfs_put_ordered_extent(ordered);
3616
3617                 spin_lock(&root->fs_info->ordered_extent_lock);
3618         }
3619
3620         spin_unlock(&root->fs_info->ordered_extent_lock);
3621 }
3622
3623 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3624                                struct btrfs_root *root)
3625 {
3626         struct rb_node *node;
3627         struct btrfs_delayed_ref_root *delayed_refs;
3628         struct btrfs_delayed_ref_node *ref;
3629         int ret = 0;
3630
3631         delayed_refs = &trans->delayed_refs;
3632
3633         spin_lock(&delayed_refs->lock);
3634         if (delayed_refs->num_entries == 0) {
3635                 spin_unlock(&delayed_refs->lock);
3636                 printk(KERN_INFO "delayed_refs has NO entry\n");
3637                 return ret;
3638         }
3639
3640         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3641                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3642
3643                 atomic_set(&ref->refs, 1);
3644                 if (btrfs_delayed_ref_is_head(ref)) {
3645                         struct btrfs_delayed_ref_head *head;
3646
3647                         head = btrfs_delayed_node_to_head(ref);
3648                         if (!mutex_trylock(&head->mutex)) {
3649                                 atomic_inc(&ref->refs);
3650                                 spin_unlock(&delayed_refs->lock);
3651
3652                                 /* Need to wait for the delayed ref to run */
3653                                 mutex_lock(&head->mutex);
3654                                 mutex_unlock(&head->mutex);
3655                                 btrfs_put_delayed_ref(ref);
3656
3657                                 spin_lock(&delayed_refs->lock);
3658                                 continue;
3659                         }
3660
3661                         kfree(head->extent_op);
3662                         delayed_refs->num_heads--;
3663                         if (list_empty(&head->cluster))
3664                                 delayed_refs->num_heads_ready--;
3665                         list_del_init(&head->cluster);
3666                 }
3667                 ref->in_tree = 0;
3668                 rb_erase(&ref->rb_node, &delayed_refs->root);
3669                 delayed_refs->num_entries--;
3670
3671                 spin_unlock(&delayed_refs->lock);
3672                 btrfs_put_delayed_ref(ref);
3673
3674                 cond_resched();
3675                 spin_lock(&delayed_refs->lock);
3676         }
3677
3678         spin_unlock(&delayed_refs->lock);
3679
3680         return ret;
3681 }
3682
3683 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3684 {
3685         struct btrfs_pending_snapshot *snapshot;
3686         struct list_head splice;
3687
3688         INIT_LIST_HEAD(&splice);
3689
3690         list_splice_init(&t->pending_snapshots, &splice);
3691
3692         while (!list_empty(&splice)) {
3693                 snapshot = list_entry(splice.next,
3694                                       struct btrfs_pending_snapshot,
3695                                       list);
3696
3697                 list_del_init(&snapshot->list);
3698
3699                 kfree(snapshot);
3700         }
3701 }
3702
3703 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3704 {
3705         struct btrfs_inode *btrfs_inode;
3706         struct list_head splice;
3707
3708         INIT_LIST_HEAD(&splice);
3709
3710         spin_lock(&root->fs_info->delalloc_lock);
3711         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3712
3713         while (!list_empty(&splice)) {
3714                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3715                                     delalloc_inodes);
3716
3717                 list_del_init(&btrfs_inode->delalloc_inodes);
3718
3719                 btrfs_invalidate_inodes(btrfs_inode->root);
3720         }
3721
3722         spin_unlock(&root->fs_info->delalloc_lock);
3723 }
3724
3725 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3726                                         struct extent_io_tree *dirty_pages,
3727                                         int mark)
3728 {
3729         int ret;
3730         struct page *page;
3731         struct inode *btree_inode = root->fs_info->btree_inode;
3732         struct extent_buffer *eb;
3733         u64 start = 0;
3734         u64 end;
3735         u64 offset;
3736         unsigned long index;
3737
3738         while (1) {
3739                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3740                                             mark, NULL);
3741                 if (ret)
3742                         break;
3743
3744                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3745                 while (start <= end) {
3746                         index = start >> PAGE_CACHE_SHIFT;
3747                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3748                         page = find_get_page(btree_inode->i_mapping, index);
3749                         if (!page)
3750                                 continue;
3751                         offset = page_offset(page);
3752
3753                         spin_lock(&dirty_pages->buffer_lock);
3754                         eb = radix_tree_lookup(
3755                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3756                                                offset >> PAGE_CACHE_SHIFT);
3757                         spin_unlock(&dirty_pages->buffer_lock);
3758                         if (eb)
3759                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3760                                                          &eb->bflags);
3761                         if (PageWriteback(page))
3762                                 end_page_writeback(page);
3763
3764                         lock_page(page);
3765                         if (PageDirty(page)) {
3766                                 clear_page_dirty_for_io(page);
3767                                 spin_lock_irq(&page->mapping->tree_lock);
3768                                 radix_tree_tag_clear(&page->mapping->page_tree,
3769                                                         page_index(page),
3770                                                         PAGECACHE_TAG_DIRTY);
3771                                 spin_unlock_irq(&page->mapping->tree_lock);
3772                         }
3773
3774                         unlock_page(page);
3775                         page_cache_release(page);
3776                 }
3777         }
3778
3779         return ret;
3780 }
3781
3782 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3783                                        struct extent_io_tree *pinned_extents)
3784 {
3785         struct extent_io_tree *unpin;
3786         u64 start;
3787         u64 end;
3788         int ret;
3789         bool loop = true;
3790
3791         unpin = pinned_extents;
3792 again:
3793         while (1) {
3794                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3795                                             EXTENT_DIRTY, NULL);
3796                 if (ret)
3797                         break;
3798
3799                 /* opt_discard */
3800                 if (btrfs_test_opt(root, DISCARD))
3801                         ret = btrfs_error_discard_extent(root, start,
3802                                                          end + 1 - start,
3803                                                          NULL);
3804
3805                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3806                 btrfs_error_unpin_extent_range(root, start, end);
3807                 cond_resched();
3808         }
3809
3810         if (loop) {
3811                 if (unpin == &root->fs_info->freed_extents[0])
3812                         unpin = &root->fs_info->freed_extents[1];
3813                 else
3814                         unpin = &root->fs_info->freed_extents[0];
3815                 loop = false;
3816                 goto again;
3817         }
3818
3819         return 0;
3820 }
3821
3822 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3823                                    struct btrfs_root *root)
3824 {
3825         btrfs_destroy_delayed_refs(cur_trans, root);
3826         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3827                                 cur_trans->dirty_pages.dirty_bytes);
3828
3829         /* FIXME: cleanup wait for commit */
3830         cur_trans->in_commit = 1;
3831         cur_trans->blocked = 1;
3832         wake_up(&root->fs_info->transaction_blocked_wait);
3833
3834         cur_trans->blocked = 0;
3835         wake_up(&root->fs_info->transaction_wait);
3836
3837         cur_trans->commit_done = 1;
3838         wake_up(&cur_trans->commit_wait);
3839
3840         btrfs_destroy_delayed_inodes(root);
3841         btrfs_assert_delayed_root_empty(root);
3842
3843         btrfs_destroy_pending_snapshots(cur_trans);
3844
3845         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3846                                      EXTENT_DIRTY);
3847         btrfs_destroy_pinned_extent(root,
3848                                     root->fs_info->pinned_extents);
3849
3850         /*
3851         memset(cur_trans, 0, sizeof(*cur_trans));
3852         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3853         */
3854 }
3855
3856 int btrfs_cleanup_transaction(struct btrfs_root *root)
3857 {
3858         struct btrfs_transaction *t;
3859         LIST_HEAD(list);
3860
3861         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3862
3863         spin_lock(&root->fs_info->trans_lock);
3864         list_splice_init(&root->fs_info->trans_list, &list);
3865         root->fs_info->trans_no_join = 1;
3866         spin_unlock(&root->fs_info->trans_lock);
3867
3868         while (!list_empty(&list)) {
3869                 t = list_entry(list.next, struct btrfs_transaction, list);
3870                 if (!t)
3871                         break;
3872
3873                 btrfs_destroy_ordered_operations(root);
3874
3875                 btrfs_destroy_ordered_extents(root);
3876
3877                 btrfs_destroy_delayed_refs(t, root);
3878
3879                 btrfs_block_rsv_release(root,
3880                                         &root->fs_info->trans_block_rsv,
3881                                         t->dirty_pages.dirty_bytes);
3882
3883                 /* FIXME: cleanup wait for commit */
3884                 t->in_commit = 1;
3885                 t->blocked = 1;
3886                 smp_mb();
3887                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3888                         wake_up(&root->fs_info->transaction_blocked_wait);
3889
3890                 t->blocked = 0;
3891                 smp_mb();
3892                 if (waitqueue_active(&root->fs_info->transaction_wait))
3893                         wake_up(&root->fs_info->transaction_wait);
3894
3895                 t->commit_done = 1;
3896                 smp_mb();
3897                 if (waitqueue_active(&t->commit_wait))
3898                         wake_up(&t->commit_wait);
3899
3900                 btrfs_destroy_delayed_inodes(root);
3901                 btrfs_assert_delayed_root_empty(root);
3902
3903                 btrfs_destroy_pending_snapshots(t);
3904
3905                 btrfs_destroy_delalloc_inodes(root);
3906
3907                 spin_lock(&root->fs_info->trans_lock);
3908                 root->fs_info->running_transaction = NULL;
3909                 spin_unlock(&root->fs_info->trans_lock);
3910
3911                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3912                                              EXTENT_DIRTY);
3913
3914                 btrfs_destroy_pinned_extent(root,
3915                                             root->fs_info->pinned_extents);
3916
3917                 atomic_set(&t->use_count, 0);
3918                 list_del_init(&t->list);
3919                 memset(t, 0, sizeof(*t));
3920                 kmem_cache_free(btrfs_transaction_cachep, t);
3921         }
3922
3923         spin_lock(&root->fs_info->trans_lock);
3924         root->fs_info->trans_no_join = 0;
3925         spin_unlock(&root->fs_info->trans_lock);
3926         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3927
3928         return 0;
3929 }
3930
3931 static struct extent_io_ops btree_extent_io_ops = {
3932         .readpage_end_io_hook = btree_readpage_end_io_hook,
3933         .readpage_io_failed_hook = btree_io_failed_hook,
3934         .submit_bio_hook = btree_submit_bio_hook,
3935         /* note we're sharing with inode.c for the merge bio hook */
3936         .merge_bio_hook = btrfs_merge_bio_hook,
3937 };