]> Pileus Git - ~andy/linux/blob - fs/btrfs/disk-io.c
Btrfs: use bit operation for ->fs_state
[~andy/linux] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49
50 #ifdef CONFIG_X86
51 #include <asm/cpufeature.h>
52 #endif
53
54 static struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void free_fs_root(struct btrfs_root *root);
57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58                                     int read_only);
59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62                                       struct btrfs_root *root);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66                                         struct extent_io_tree *dirty_pages,
67                                         int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69                                        struct extent_io_tree *pinned_extents);
70
71 /*
72  * end_io_wq structs are used to do processing in task context when an IO is
73  * complete.  This is used during reads to verify checksums, and it is used
74  * by writes to insert metadata for new file extents after IO is complete.
75  */
76 struct end_io_wq {
77         struct bio *bio;
78         bio_end_io_t *end_io;
79         void *private;
80         struct btrfs_fs_info *info;
81         int error;
82         int metadata;
83         struct list_head list;
84         struct btrfs_work work;
85 };
86
87 /*
88  * async submit bios are used to offload expensive checksumming
89  * onto the worker threads.  They checksum file and metadata bios
90  * just before they are sent down the IO stack.
91  */
92 struct async_submit_bio {
93         struct inode *inode;
94         struct bio *bio;
95         struct list_head list;
96         extent_submit_bio_hook_t *submit_bio_start;
97         extent_submit_bio_hook_t *submit_bio_done;
98         int rw;
99         int mirror_num;
100         unsigned long bio_flags;
101         /*
102          * bio_offset is optional, can be used if the pages in the bio
103          * can't tell us where in the file the bio should go
104          */
105         u64 bio_offset;
106         struct btrfs_work work;
107         int error;
108 };
109
110 /*
111  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
112  * eb, the lockdep key is determined by the btrfs_root it belongs to and
113  * the level the eb occupies in the tree.
114  *
115  * Different roots are used for different purposes and may nest inside each
116  * other and they require separate keysets.  As lockdep keys should be
117  * static, assign keysets according to the purpose of the root as indicated
118  * by btrfs_root->objectid.  This ensures that all special purpose roots
119  * have separate keysets.
120  *
121  * Lock-nesting across peer nodes is always done with the immediate parent
122  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
123  * subclass to avoid triggering lockdep warning in such cases.
124  *
125  * The key is set by the readpage_end_io_hook after the buffer has passed
126  * csum validation but before the pages are unlocked.  It is also set by
127  * btrfs_init_new_buffer on freshly allocated blocks.
128  *
129  * We also add a check to make sure the highest level of the tree is the
130  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
131  * needs update as well.
132  */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
135 #  error
136 # endif
137
138 static struct btrfs_lockdep_keyset {
139         u64                     id;             /* root objectid */
140         const char              *name_stem;     /* lock name stem */
141         char                    names[BTRFS_MAX_LEVEL + 1][20];
142         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
143 } btrfs_lockdep_keysets[] = {
144         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
145         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
146         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
147         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
148         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
149         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
150         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
151         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
152         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
153         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
154         { .id = 0,                              .name_stem = "tree"     },
155 };
156
157 void __init btrfs_init_lockdep(void)
158 {
159         int i, j;
160
161         /* initialize lockdep class names */
162         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166                         snprintf(ks->names[j], sizeof(ks->names[j]),
167                                  "btrfs-%s-%02d", ks->name_stem, j);
168         }
169 }
170
171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172                                     int level)
173 {
174         struct btrfs_lockdep_keyset *ks;
175
176         BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178         /* find the matching keyset, id 0 is the default entry */
179         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180                 if (ks->id == objectid)
181                         break;
182
183         lockdep_set_class_and_name(&eb->lock,
184                                    &ks->keys[level], ks->names[level]);
185 }
186
187 #endif
188
189 /*
190  * extents on the btree inode are pretty simple, there's one extent
191  * that covers the entire device
192  */
193 static struct extent_map *btree_get_extent(struct inode *inode,
194                 struct page *page, size_t pg_offset, u64 start, u64 len,
195                 int create)
196 {
197         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198         struct extent_map *em;
199         int ret;
200
201         read_lock(&em_tree->lock);
202         em = lookup_extent_mapping(em_tree, start, len);
203         if (em) {
204                 em->bdev =
205                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
206                 read_unlock(&em_tree->lock);
207                 goto out;
208         }
209         read_unlock(&em_tree->lock);
210
211         em = alloc_extent_map();
212         if (!em) {
213                 em = ERR_PTR(-ENOMEM);
214                 goto out;
215         }
216         em->start = 0;
217         em->len = (u64)-1;
218         em->block_len = (u64)-1;
219         em->block_start = 0;
220         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221
222         write_lock(&em_tree->lock);
223         ret = add_extent_mapping(em_tree, em);
224         if (ret == -EEXIST) {
225                 free_extent_map(em);
226                 em = lookup_extent_mapping(em_tree, start, len);
227                 if (!em)
228                         em = ERR_PTR(-EIO);
229         } else if (ret) {
230                 free_extent_map(em);
231                 em = ERR_PTR(ret);
232         }
233         write_unlock(&em_tree->lock);
234
235 out:
236         return em;
237 }
238
239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 {
241         return crc32c(seed, data, len);
242 }
243
244 void btrfs_csum_final(u32 crc, char *result)
245 {
246         put_unaligned_le32(~crc, result);
247 }
248
249 /*
250  * compute the csum for a btree block, and either verify it or write it
251  * into the csum field of the block.
252  */
253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254                            int verify)
255 {
256         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
257         char *result = NULL;
258         unsigned long len;
259         unsigned long cur_len;
260         unsigned long offset = BTRFS_CSUM_SIZE;
261         char *kaddr;
262         unsigned long map_start;
263         unsigned long map_len;
264         int err;
265         u32 crc = ~(u32)0;
266         unsigned long inline_result;
267
268         len = buf->len - offset;
269         while (len > 0) {
270                 err = map_private_extent_buffer(buf, offset, 32,
271                                         &kaddr, &map_start, &map_len);
272                 if (err)
273                         return 1;
274                 cur_len = min(len, map_len - (offset - map_start));
275                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276                                       crc, cur_len);
277                 len -= cur_len;
278                 offset += cur_len;
279         }
280         if (csum_size > sizeof(inline_result)) {
281                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282                 if (!result)
283                         return 1;
284         } else {
285                 result = (char *)&inline_result;
286         }
287
288         btrfs_csum_final(crc, result);
289
290         if (verify) {
291                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
292                         u32 val;
293                         u32 found = 0;
294                         memcpy(&found, result, csum_size);
295
296                         read_extent_buffer(buf, &val, 0, csum_size);
297                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
298                                        "failed on %llu wanted %X found %X "
299                                        "level %d\n",
300                                        root->fs_info->sb->s_id,
301                                        (unsigned long long)buf->start, val, found,
302                                        btrfs_header_level(buf));
303                         if (result != (char *)&inline_result)
304                                 kfree(result);
305                         return 1;
306                 }
307         } else {
308                 write_extent_buffer(buf, result, 0, csum_size);
309         }
310         if (result != (char *)&inline_result)
311                 kfree(result);
312         return 0;
313 }
314
315 /*
316  * we can't consider a given block up to date unless the transid of the
317  * block matches the transid in the parent node's pointer.  This is how we
318  * detect blocks that either didn't get written at all or got written
319  * in the wrong place.
320  */
321 static int verify_parent_transid(struct extent_io_tree *io_tree,
322                                  struct extent_buffer *eb, u64 parent_transid,
323                                  int atomic)
324 {
325         struct extent_state *cached_state = NULL;
326         int ret;
327
328         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329                 return 0;
330
331         if (atomic)
332                 return -EAGAIN;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state);
336         if (extent_buffer_uptodate(eb) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(eb);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int failed = 0;
364         int ret;
365         int num_copies = 0;
366         int mirror_num = 0;
367         int failed_mirror = 0;
368
369         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371         while (1) {
372                 ret = read_extent_buffer_pages(io_tree, eb, start,
373                                                WAIT_COMPLETE,
374                                                btree_get_extent, mirror_num);
375                 if (!ret) {
376                         if (!verify_parent_transid(io_tree, eb,
377                                                    parent_transid, 0))
378                                 break;
379                         else
380                                 ret = -EIO;
381                 }
382
383                 /*
384                  * This buffer's crc is fine, but its contents are corrupted, so
385                  * there is no reason to read the other copies, they won't be
386                  * any less wrong.
387                  */
388                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389                         break;
390
391                 num_copies = btrfs_num_copies(root->fs_info,
392                                               eb->start, eb->len);
393                 if (num_copies == 1)
394                         break;
395
396                 if (!failed_mirror) {
397                         failed = 1;
398                         failed_mirror = eb->read_mirror;
399                 }
400
401                 mirror_num++;
402                 if (mirror_num == failed_mirror)
403                         mirror_num++;
404
405                 if (mirror_num > num_copies)
406                         break;
407         }
408
409         if (failed && !ret && failed_mirror)
410                 repair_eb_io_failure(root, eb, failed_mirror);
411
412         return ret;
413 }
414
415 /*
416  * checksum a dirty tree block before IO.  This has extra checks to make sure
417  * we only fill in the checksum field in the first page of a multi-page block
418  */
419
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422         struct extent_io_tree *tree;
423         u64 start = page_offset(page);
424         u64 found_start;
425         struct extent_buffer *eb;
426
427         tree = &BTRFS_I(page->mapping->host)->io_tree;
428
429         eb = (struct extent_buffer *)page->private;
430         if (page != eb->pages[0])
431                 return 0;
432         found_start = btrfs_header_bytenr(eb);
433         if (found_start != start) {
434                 WARN_ON(1);
435                 return 0;
436         }
437         if (!PageUptodate(page)) {
438                 WARN_ON(1);
439                 return 0;
440         }
441         csum_tree_block(root, eb, 0);
442         return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446                                  struct extent_buffer *eb)
447 {
448         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449         u8 fsid[BTRFS_UUID_SIZE];
450         int ret = 1;
451
452         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453                            BTRFS_FSID_SIZE);
454         while (fs_devices) {
455                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456                         ret = 0;
457                         break;
458                 }
459                 fs_devices = fs_devices->seed;
460         }
461         return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot)                         \
465         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466                "root=%llu, slot=%d\n", reason,                  \
467                (unsigned long long)btrfs_header_bytenr(eb),     \
468                (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471                                struct extent_buffer *leaf)
472 {
473         struct btrfs_key key;
474         struct btrfs_key leaf_key;
475         u32 nritems = btrfs_header_nritems(leaf);
476         int slot;
477
478         if (nritems == 0)
479                 return 0;
480
481         /* Check the 0 item */
482         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483             BTRFS_LEAF_DATA_SIZE(root)) {
484                 CORRUPT("invalid item offset size pair", leaf, root, 0);
485                 return -EIO;
486         }
487
488         /*
489          * Check to make sure each items keys are in the correct order and their
490          * offsets make sense.  We only have to loop through nritems-1 because
491          * we check the current slot against the next slot, which verifies the
492          * next slot's offset+size makes sense and that the current's slot
493          * offset is correct.
494          */
495         for (slot = 0; slot < nritems - 1; slot++) {
496                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499                 /* Make sure the keys are in the right order */
500                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501                         CORRUPT("bad key order", leaf, root, slot);
502                         return -EIO;
503                 }
504
505                 /*
506                  * Make sure the offset and ends are right, remember that the
507                  * item data starts at the end of the leaf and grows towards the
508                  * front.
509                  */
510                 if (btrfs_item_offset_nr(leaf, slot) !=
511                         btrfs_item_end_nr(leaf, slot + 1)) {
512                         CORRUPT("slot offset bad", leaf, root, slot);
513                         return -EIO;
514                 }
515
516                 /*
517                  * Check to make sure that we don't point outside of the leaf,
518                  * just incase all the items are consistent to eachother, but
519                  * all point outside of the leaf.
520                  */
521                 if (btrfs_item_end_nr(leaf, slot) >
522                     BTRFS_LEAF_DATA_SIZE(root)) {
523                         CORRUPT("slot end outside of leaf", leaf, root, slot);
524                         return -EIO;
525                 }
526         }
527
528         return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532                                        struct page *page, int max_walk)
533 {
534         struct extent_buffer *eb;
535         u64 start = page_offset(page);
536         u64 target = start;
537         u64 min_start;
538
539         if (start < max_walk)
540                 min_start = 0;
541         else
542                 min_start = start - max_walk;
543
544         while (start >= min_start) {
545                 eb = find_extent_buffer(tree, start, 0);
546                 if (eb) {
547                         /*
548                          * we found an extent buffer and it contains our page
549                          * horray!
550                          */
551                         if (eb->start <= target &&
552                             eb->start + eb->len > target)
553                                 return eb;
554
555                         /* we found an extent buffer that wasn't for us */
556                         free_extent_buffer(eb);
557                         return NULL;
558                 }
559                 if (start == 0)
560                         break;
561                 start -= PAGE_CACHE_SIZE;
562         }
563         return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567                                struct extent_state *state, int mirror)
568 {
569         struct extent_io_tree *tree;
570         u64 found_start;
571         int found_level;
572         struct extent_buffer *eb;
573         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574         int ret = 0;
575         int reads_done;
576
577         if (!page->private)
578                 goto out;
579
580         tree = &BTRFS_I(page->mapping->host)->io_tree;
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601                                "%llu %llu\n",
602                                (unsigned long long)found_start,
603                                (unsigned long long)eb->start);
604                 ret = -EIO;
605                 goto err;
606         }
607         if (check_tree_block_fsid(root, eb)) {
608                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
609                                (unsigned long long)eb->start);
610                 ret = -EIO;
611                 goto err;
612         }
613         found_level = btrfs_header_level(eb);
614
615         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616                                        eb, found_level);
617
618         ret = csum_tree_block(root, eb, 1);
619         if (ret) {
620                 ret = -EIO;
621                 goto err;
622         }
623
624         /*
625          * If this is a leaf block and it is corrupt, set the corrupt bit so
626          * that we don't try and read the other copies of this block, just
627          * return -EIO.
628          */
629         if (found_level == 0 && check_leaf(root, eb)) {
630                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631                 ret = -EIO;
632         }
633
634         if (!ret)
635                 set_extent_buffer_uptodate(eb);
636 err:
637         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639                 btree_readahead_hook(root, eb, eb->start, ret);
640         }
641
642         if (ret)
643                 clear_extent_buffer_uptodate(eb);
644         free_extent_buffer(eb);
645 out:
646         return ret;
647 }
648
649 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 {
651         struct extent_buffer *eb;
652         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
654         eb = (struct extent_buffer *)page->private;
655         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656         eb->read_mirror = failed_mirror;
657         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658                 btree_readahead_hook(root, eb, eb->start, -EIO);
659         return -EIO;    /* we fixed nothing */
660 }
661
662 static void end_workqueue_bio(struct bio *bio, int err)
663 {
664         struct end_io_wq *end_io_wq = bio->bi_private;
665         struct btrfs_fs_info *fs_info;
666
667         fs_info = end_io_wq->info;
668         end_io_wq->error = err;
669         end_io_wq->work.func = end_workqueue_fn;
670         end_io_wq->work.flags = 0;
671
672         if (bio->bi_rw & REQ_WRITE) {
673                 if (end_io_wq->metadata == 1)
674                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675                                            &end_io_wq->work);
676                 else if (end_io_wq->metadata == 2)
677                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
678                                            &end_io_wq->work);
679                 else
680                         btrfs_queue_worker(&fs_info->endio_write_workers,
681                                            &end_io_wq->work);
682         } else {
683                 if (end_io_wq->metadata)
684                         btrfs_queue_worker(&fs_info->endio_meta_workers,
685                                            &end_io_wq->work);
686                 else
687                         btrfs_queue_worker(&fs_info->endio_workers,
688                                            &end_io_wq->work);
689         }
690 }
691
692 /*
693  * For the metadata arg you want
694  *
695  * 0 - if data
696  * 1 - if normal metadta
697  * 2 - if writing to the free space cache area
698  */
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700                         int metadata)
701 {
702         struct end_io_wq *end_io_wq;
703         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704         if (!end_io_wq)
705                 return -ENOMEM;
706
707         end_io_wq->private = bio->bi_private;
708         end_io_wq->end_io = bio->bi_end_io;
709         end_io_wq->info = info;
710         end_io_wq->error = 0;
711         end_io_wq->bio = bio;
712         end_io_wq->metadata = metadata;
713
714         bio->bi_private = end_io_wq;
715         bio->bi_end_io = end_workqueue_bio;
716         return 0;
717 }
718
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 {
721         unsigned long limit = min_t(unsigned long,
722                                     info->workers.max_workers,
723                                     info->fs_devices->open_devices);
724         return 256 * limit;
725 }
726
727 static void run_one_async_start(struct btrfs_work *work)
728 {
729         struct async_submit_bio *async;
730         int ret;
731
732         async = container_of(work, struct  async_submit_bio, work);
733         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734                                       async->mirror_num, async->bio_flags,
735                                       async->bio_offset);
736         if (ret)
737                 async->error = ret;
738 }
739
740 static void run_one_async_done(struct btrfs_work *work)
741 {
742         struct btrfs_fs_info *fs_info;
743         struct async_submit_bio *async;
744         int limit;
745
746         async = container_of(work, struct  async_submit_bio, work);
747         fs_info = BTRFS_I(async->inode)->root->fs_info;
748
749         limit = btrfs_async_submit_limit(fs_info);
750         limit = limit * 2 / 3;
751
752         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
753             waitqueue_active(&fs_info->async_submit_wait))
754                 wake_up(&fs_info->async_submit_wait);
755
756         /* If an error occured we just want to clean up the bio and move on */
757         if (async->error) {
758                 bio_endio(async->bio, async->error);
759                 return;
760         }
761
762         async->submit_bio_done(async->inode, async->rw, async->bio,
763                                async->mirror_num, async->bio_flags,
764                                async->bio_offset);
765 }
766
767 static void run_one_async_free(struct btrfs_work *work)
768 {
769         struct async_submit_bio *async;
770
771         async = container_of(work, struct  async_submit_bio, work);
772         kfree(async);
773 }
774
775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776                         int rw, struct bio *bio, int mirror_num,
777                         unsigned long bio_flags,
778                         u64 bio_offset,
779                         extent_submit_bio_hook_t *submit_bio_start,
780                         extent_submit_bio_hook_t *submit_bio_done)
781 {
782         struct async_submit_bio *async;
783
784         async = kmalloc(sizeof(*async), GFP_NOFS);
785         if (!async)
786                 return -ENOMEM;
787
788         async->inode = inode;
789         async->rw = rw;
790         async->bio = bio;
791         async->mirror_num = mirror_num;
792         async->submit_bio_start = submit_bio_start;
793         async->submit_bio_done = submit_bio_done;
794
795         async->work.func = run_one_async_start;
796         async->work.ordered_func = run_one_async_done;
797         async->work.ordered_free = run_one_async_free;
798
799         async->work.flags = 0;
800         async->bio_flags = bio_flags;
801         async->bio_offset = bio_offset;
802
803         async->error = 0;
804
805         atomic_inc(&fs_info->nr_async_submits);
806
807         if (rw & REQ_SYNC)
808                 btrfs_set_work_high_prio(&async->work);
809
810         btrfs_queue_worker(&fs_info->workers, &async->work);
811
812         while (atomic_read(&fs_info->async_submit_draining) &&
813               atomic_read(&fs_info->nr_async_submits)) {
814                 wait_event(fs_info->async_submit_wait,
815                            (atomic_read(&fs_info->nr_async_submits) == 0));
816         }
817
818         return 0;
819 }
820
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823         struct bio_vec *bvec = bio->bi_io_vec;
824         int bio_index = 0;
825         struct btrfs_root *root;
826         int ret = 0;
827
828         WARN_ON(bio->bi_vcnt <= 0);
829         while (bio_index < bio->bi_vcnt) {
830                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
831                 ret = csum_dirty_buffer(root, bvec->bv_page);
832                 if (ret)
833                         break;
834                 bio_index++;
835                 bvec++;
836         }
837         return ret;
838 }
839
840 static int __btree_submit_bio_start(struct inode *inode, int rw,
841                                     struct bio *bio, int mirror_num,
842                                     unsigned long bio_flags,
843                                     u64 bio_offset)
844 {
845         /*
846          * when we're called for a write, we're already in the async
847          * submission context.  Just jump into btrfs_map_bio
848          */
849         return btree_csum_one_bio(bio);
850 }
851
852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
853                                  int mirror_num, unsigned long bio_flags,
854                                  u64 bio_offset)
855 {
856         int ret;
857
858         /*
859          * when we're called for a write, we're already in the async
860          * submission context.  Just jump into btrfs_map_bio
861          */
862         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863         if (ret)
864                 bio_endio(bio, ret);
865         return ret;
866 }
867
868 static int check_async_write(struct inode *inode, unsigned long bio_flags)
869 {
870         if (bio_flags & EXTENT_BIO_TREE_LOG)
871                 return 0;
872 #ifdef CONFIG_X86
873         if (cpu_has_xmm4_2)
874                 return 0;
875 #endif
876         return 1;
877 }
878
879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
880                                  int mirror_num, unsigned long bio_flags,
881                                  u64 bio_offset)
882 {
883         int async = check_async_write(inode, bio_flags);
884         int ret;
885
886         if (!(rw & REQ_WRITE)) {
887                 /*
888                  * called for a read, do the setup so that checksum validation
889                  * can happen in the async kernel threads
890                  */
891                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892                                           bio, 1);
893                 if (ret)
894                         goto out_w_error;
895                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896                                     mirror_num, 0);
897         } else if (!async) {
898                 ret = btree_csum_one_bio(bio);
899                 if (ret)
900                         goto out_w_error;
901                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902                                     mirror_num, 0);
903         } else {
904                 /*
905                  * kthread helpers are used to submit writes so that
906                  * checksumming can happen in parallel across all CPUs
907                  */
908                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909                                           inode, rw, bio, mirror_num, 0,
910                                           bio_offset,
911                                           __btree_submit_bio_start,
912                                           __btree_submit_bio_done);
913         }
914
915         if (ret) {
916 out_w_error:
917                 bio_endio(bio, ret);
918         }
919         return ret;
920 }
921
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space *mapping,
924                         struct page *newpage, struct page *page,
925                         enum migrate_mode mode)
926 {
927         /*
928          * we can't safely write a btree page from here,
929          * we haven't done the locking hook
930          */
931         if (PageDirty(page))
932                 return -EAGAIN;
933         /*
934          * Buffers may be managed in a filesystem specific way.
935          * We must have no buffers or drop them.
936          */
937         if (page_has_private(page) &&
938             !try_to_release_page(page, GFP_KERNEL))
939                 return -EAGAIN;
940         return migrate_page(mapping, newpage, page, mode);
941 }
942 #endif
943
944
945 static int btree_writepages(struct address_space *mapping,
946                             struct writeback_control *wbc)
947 {
948         struct extent_io_tree *tree;
949         struct btrfs_fs_info *fs_info;
950         int ret;
951
952         tree = &BTRFS_I(mapping->host)->io_tree;
953         if (wbc->sync_mode == WB_SYNC_NONE) {
954
955                 if (wbc->for_kupdate)
956                         return 0;
957
958                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
959                 /* this is a bit racy, but that's ok */
960                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
961                                              BTRFS_DIRTY_METADATA_THRESH);
962                 if (ret < 0)
963                         return 0;
964         }
965         return btree_write_cache_pages(mapping, wbc);
966 }
967
968 static int btree_readpage(struct file *file, struct page *page)
969 {
970         struct extent_io_tree *tree;
971         tree = &BTRFS_I(page->mapping->host)->io_tree;
972         return extent_read_full_page(tree, page, btree_get_extent, 0);
973 }
974
975 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
976 {
977         if (PageWriteback(page) || PageDirty(page))
978                 return 0;
979         /*
980          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
981          * slab allocation from alloc_extent_state down the callchain where
982          * it'd hit a BUG_ON as those flags are not allowed.
983          */
984         gfp_flags &= ~GFP_SLAB_BUG_MASK;
985
986         return try_release_extent_buffer(page, gfp_flags);
987 }
988
989 static void btree_invalidatepage(struct page *page, unsigned long offset)
990 {
991         struct extent_io_tree *tree;
992         tree = &BTRFS_I(page->mapping->host)->io_tree;
993         extent_invalidatepage(tree, page, offset);
994         btree_releasepage(page, GFP_NOFS);
995         if (PagePrivate(page)) {
996                 printk(KERN_WARNING "btrfs warning page private not zero "
997                        "on page %llu\n", (unsigned long long)page_offset(page));
998                 ClearPagePrivate(page);
999                 set_page_private(page, 0);
1000                 page_cache_release(page);
1001         }
1002 }
1003
1004 static int btree_set_page_dirty(struct page *page)
1005 {
1006 #ifdef DEBUG
1007         struct extent_buffer *eb;
1008
1009         BUG_ON(!PagePrivate(page));
1010         eb = (struct extent_buffer *)page->private;
1011         BUG_ON(!eb);
1012         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013         BUG_ON(!atomic_read(&eb->refs));
1014         btrfs_assert_tree_locked(eb);
1015 #endif
1016         return __set_page_dirty_nobuffers(page);
1017 }
1018
1019 static const struct address_space_operations btree_aops = {
1020         .readpage       = btree_readpage,
1021         .writepages     = btree_writepages,
1022         .releasepage    = btree_releasepage,
1023         .invalidatepage = btree_invalidatepage,
1024 #ifdef CONFIG_MIGRATION
1025         .migratepage    = btree_migratepage,
1026 #endif
1027         .set_page_dirty = btree_set_page_dirty,
1028 };
1029
1030 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1031                          u64 parent_transid)
1032 {
1033         struct extent_buffer *buf = NULL;
1034         struct inode *btree_inode = root->fs_info->btree_inode;
1035         int ret = 0;
1036
1037         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1038         if (!buf)
1039                 return 0;
1040         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1041                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1042         free_extent_buffer(buf);
1043         return ret;
1044 }
1045
1046 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1047                          int mirror_num, struct extent_buffer **eb)
1048 {
1049         struct extent_buffer *buf = NULL;
1050         struct inode *btree_inode = root->fs_info->btree_inode;
1051         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1052         int ret;
1053
1054         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055         if (!buf)
1056                 return 0;
1057
1058         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1059
1060         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1061                                        btree_get_extent, mirror_num);
1062         if (ret) {
1063                 free_extent_buffer(buf);
1064                 return ret;
1065         }
1066
1067         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1068                 free_extent_buffer(buf);
1069                 return -EIO;
1070         } else if (extent_buffer_uptodate(buf)) {
1071                 *eb = buf;
1072         } else {
1073                 free_extent_buffer(buf);
1074         }
1075         return 0;
1076 }
1077
1078 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1079                                             u64 bytenr, u32 blocksize)
1080 {
1081         struct inode *btree_inode = root->fs_info->btree_inode;
1082         struct extent_buffer *eb;
1083         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1084                                 bytenr, blocksize);
1085         return eb;
1086 }
1087
1088 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1089                                                  u64 bytenr, u32 blocksize)
1090 {
1091         struct inode *btree_inode = root->fs_info->btree_inode;
1092         struct extent_buffer *eb;
1093
1094         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1095                                  bytenr, blocksize);
1096         return eb;
1097 }
1098
1099
1100 int btrfs_write_tree_block(struct extent_buffer *buf)
1101 {
1102         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1103                                         buf->start + buf->len - 1);
1104 }
1105
1106 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1107 {
1108         return filemap_fdatawait_range(buf->pages[0]->mapping,
1109                                        buf->start, buf->start + buf->len - 1);
1110 }
1111
1112 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1113                                       u32 blocksize, u64 parent_transid)
1114 {
1115         struct extent_buffer *buf = NULL;
1116         int ret;
1117
1118         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1119         if (!buf)
1120                 return NULL;
1121
1122         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1123         return buf;
1124
1125 }
1126
1127 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1128                       struct extent_buffer *buf)
1129 {
1130         struct btrfs_fs_info *fs_info = root->fs_info;
1131
1132         if (btrfs_header_generation(buf) ==
1133             fs_info->running_transaction->transid) {
1134                 btrfs_assert_tree_locked(buf);
1135
1136                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1137                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1138                                              -buf->len,
1139                                              fs_info->dirty_metadata_batch);
1140                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1141                         btrfs_set_lock_blocking(buf);
1142                         clear_extent_buffer_dirty(buf);
1143                 }
1144         }
1145 }
1146
1147 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1148                          u32 stripesize, struct btrfs_root *root,
1149                          struct btrfs_fs_info *fs_info,
1150                          u64 objectid)
1151 {
1152         root->node = NULL;
1153         root->commit_root = NULL;
1154         root->sectorsize = sectorsize;
1155         root->nodesize = nodesize;
1156         root->leafsize = leafsize;
1157         root->stripesize = stripesize;
1158         root->ref_cows = 0;
1159         root->track_dirty = 0;
1160         root->in_radix = 0;
1161         root->orphan_item_inserted = 0;
1162         root->orphan_cleanup_state = 0;
1163
1164         root->objectid = objectid;
1165         root->last_trans = 0;
1166         root->highest_objectid = 0;
1167         root->name = NULL;
1168         root->inode_tree = RB_ROOT;
1169         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1170         root->block_rsv = NULL;
1171         root->orphan_block_rsv = NULL;
1172
1173         INIT_LIST_HEAD(&root->dirty_list);
1174         INIT_LIST_HEAD(&root->root_list);
1175         INIT_LIST_HEAD(&root->logged_list[0]);
1176         INIT_LIST_HEAD(&root->logged_list[1]);
1177         spin_lock_init(&root->orphan_lock);
1178         spin_lock_init(&root->inode_lock);
1179         spin_lock_init(&root->accounting_lock);
1180         spin_lock_init(&root->log_extents_lock[0]);
1181         spin_lock_init(&root->log_extents_lock[1]);
1182         mutex_init(&root->objectid_mutex);
1183         mutex_init(&root->log_mutex);
1184         init_waitqueue_head(&root->log_writer_wait);
1185         init_waitqueue_head(&root->log_commit_wait[0]);
1186         init_waitqueue_head(&root->log_commit_wait[1]);
1187         atomic_set(&root->log_commit[0], 0);
1188         atomic_set(&root->log_commit[1], 0);
1189         atomic_set(&root->log_writers, 0);
1190         atomic_set(&root->log_batch, 0);
1191         atomic_set(&root->orphan_inodes, 0);
1192         root->log_transid = 0;
1193         root->last_log_commit = 0;
1194         extent_io_tree_init(&root->dirty_log_pages,
1195                              fs_info->btree_inode->i_mapping);
1196
1197         memset(&root->root_key, 0, sizeof(root->root_key));
1198         memset(&root->root_item, 0, sizeof(root->root_item));
1199         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1200         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1201         root->defrag_trans_start = fs_info->generation;
1202         init_completion(&root->kobj_unregister);
1203         root->defrag_running = 0;
1204         root->root_key.objectid = objectid;
1205         root->anon_dev = 0;
1206
1207         spin_lock_init(&root->root_item_lock);
1208 }
1209
1210 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1211                                             struct btrfs_fs_info *fs_info,
1212                                             u64 objectid,
1213                                             struct btrfs_root *root)
1214 {
1215         int ret;
1216         u32 blocksize;
1217         u64 generation;
1218
1219         __setup_root(tree_root->nodesize, tree_root->leafsize,
1220                      tree_root->sectorsize, tree_root->stripesize,
1221                      root, fs_info, objectid);
1222         ret = btrfs_find_last_root(tree_root, objectid,
1223                                    &root->root_item, &root->root_key);
1224         if (ret > 0)
1225                 return -ENOENT;
1226         else if (ret < 0)
1227                 return ret;
1228
1229         generation = btrfs_root_generation(&root->root_item);
1230         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1231         root->commit_root = NULL;
1232         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1233                                      blocksize, generation);
1234         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1235                 free_extent_buffer(root->node);
1236                 root->node = NULL;
1237                 return -EIO;
1238         }
1239         root->commit_root = btrfs_root_node(root);
1240         return 0;
1241 }
1242
1243 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1244 {
1245         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1246         if (root)
1247                 root->fs_info = fs_info;
1248         return root;
1249 }
1250
1251 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1252                                      struct btrfs_fs_info *fs_info,
1253                                      u64 objectid)
1254 {
1255         struct extent_buffer *leaf;
1256         struct btrfs_root *tree_root = fs_info->tree_root;
1257         struct btrfs_root *root;
1258         struct btrfs_key key;
1259         int ret = 0;
1260         u64 bytenr;
1261
1262         root = btrfs_alloc_root(fs_info);
1263         if (!root)
1264                 return ERR_PTR(-ENOMEM);
1265
1266         __setup_root(tree_root->nodesize, tree_root->leafsize,
1267                      tree_root->sectorsize, tree_root->stripesize,
1268                      root, fs_info, objectid);
1269         root->root_key.objectid = objectid;
1270         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271         root->root_key.offset = 0;
1272
1273         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1274                                       0, objectid, NULL, 0, 0, 0);
1275         if (IS_ERR(leaf)) {
1276                 ret = PTR_ERR(leaf);
1277                 goto fail;
1278         }
1279
1280         bytenr = leaf->start;
1281         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1282         btrfs_set_header_bytenr(leaf, leaf->start);
1283         btrfs_set_header_generation(leaf, trans->transid);
1284         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1285         btrfs_set_header_owner(leaf, objectid);
1286         root->node = leaf;
1287
1288         write_extent_buffer(leaf, fs_info->fsid,
1289                             (unsigned long)btrfs_header_fsid(leaf),
1290                             BTRFS_FSID_SIZE);
1291         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1292                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1293                             BTRFS_UUID_SIZE);
1294         btrfs_mark_buffer_dirty(leaf);
1295
1296         root->commit_root = btrfs_root_node(root);
1297         root->track_dirty = 1;
1298
1299
1300         root->root_item.flags = 0;
1301         root->root_item.byte_limit = 0;
1302         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303         btrfs_set_root_generation(&root->root_item, trans->transid);
1304         btrfs_set_root_level(&root->root_item, 0);
1305         btrfs_set_root_refs(&root->root_item, 1);
1306         btrfs_set_root_used(&root->root_item, leaf->len);
1307         btrfs_set_root_last_snapshot(&root->root_item, 0);
1308         btrfs_set_root_dirid(&root->root_item, 0);
1309         root->root_item.drop_level = 0;
1310
1311         key.objectid = objectid;
1312         key.type = BTRFS_ROOT_ITEM_KEY;
1313         key.offset = 0;
1314         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1315         if (ret)
1316                 goto fail;
1317
1318         btrfs_tree_unlock(leaf);
1319
1320 fail:
1321         if (ret)
1322                 return ERR_PTR(ret);
1323
1324         return root;
1325 }
1326
1327 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1328                                          struct btrfs_fs_info *fs_info)
1329 {
1330         struct btrfs_root *root;
1331         struct btrfs_root *tree_root = fs_info->tree_root;
1332         struct extent_buffer *leaf;
1333
1334         root = btrfs_alloc_root(fs_info);
1335         if (!root)
1336                 return ERR_PTR(-ENOMEM);
1337
1338         __setup_root(tree_root->nodesize, tree_root->leafsize,
1339                      tree_root->sectorsize, tree_root->stripesize,
1340                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1341
1342         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1343         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1345         /*
1346          * log trees do not get reference counted because they go away
1347          * before a real commit is actually done.  They do store pointers
1348          * to file data extents, and those reference counts still get
1349          * updated (along with back refs to the log tree).
1350          */
1351         root->ref_cows = 0;
1352
1353         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1354                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1355                                       0, 0, 0);
1356         if (IS_ERR(leaf)) {
1357                 kfree(root);
1358                 return ERR_CAST(leaf);
1359         }
1360
1361         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1362         btrfs_set_header_bytenr(leaf, leaf->start);
1363         btrfs_set_header_generation(leaf, trans->transid);
1364         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1366         root->node = leaf;
1367
1368         write_extent_buffer(root->node, root->fs_info->fsid,
1369                             (unsigned long)btrfs_header_fsid(root->node),
1370                             BTRFS_FSID_SIZE);
1371         btrfs_mark_buffer_dirty(root->node);
1372         btrfs_tree_unlock(root->node);
1373         return root;
1374 }
1375
1376 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1377                              struct btrfs_fs_info *fs_info)
1378 {
1379         struct btrfs_root *log_root;
1380
1381         log_root = alloc_log_tree(trans, fs_info);
1382         if (IS_ERR(log_root))
1383                 return PTR_ERR(log_root);
1384         WARN_ON(fs_info->log_root_tree);
1385         fs_info->log_root_tree = log_root;
1386         return 0;
1387 }
1388
1389 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1390                        struct btrfs_root *root)
1391 {
1392         struct btrfs_root *log_root;
1393         struct btrfs_inode_item *inode_item;
1394
1395         log_root = alloc_log_tree(trans, root->fs_info);
1396         if (IS_ERR(log_root))
1397                 return PTR_ERR(log_root);
1398
1399         log_root->last_trans = trans->transid;
1400         log_root->root_key.offset = root->root_key.objectid;
1401
1402         inode_item = &log_root->root_item.inode;
1403         inode_item->generation = cpu_to_le64(1);
1404         inode_item->size = cpu_to_le64(3);
1405         inode_item->nlink = cpu_to_le32(1);
1406         inode_item->nbytes = cpu_to_le64(root->leafsize);
1407         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1408
1409         btrfs_set_root_node(&log_root->root_item, log_root->node);
1410
1411         WARN_ON(root->log_root);
1412         root->log_root = log_root;
1413         root->log_transid = 0;
1414         root->last_log_commit = 0;
1415         return 0;
1416 }
1417
1418 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1419                                                struct btrfs_key *location)
1420 {
1421         struct btrfs_root *root;
1422         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1423         struct btrfs_path *path;
1424         struct extent_buffer *l;
1425         u64 generation;
1426         u32 blocksize;
1427         int ret = 0;
1428         int slot;
1429
1430         root = btrfs_alloc_root(fs_info);
1431         if (!root)
1432                 return ERR_PTR(-ENOMEM);
1433         if (location->offset == (u64)-1) {
1434                 ret = find_and_setup_root(tree_root, fs_info,
1435                                           location->objectid, root);
1436                 if (ret) {
1437                         kfree(root);
1438                         return ERR_PTR(ret);
1439                 }
1440                 goto out;
1441         }
1442
1443         __setup_root(tree_root->nodesize, tree_root->leafsize,
1444                      tree_root->sectorsize, tree_root->stripesize,
1445                      root, fs_info, location->objectid);
1446
1447         path = btrfs_alloc_path();
1448         if (!path) {
1449                 kfree(root);
1450                 return ERR_PTR(-ENOMEM);
1451         }
1452         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1453         if (ret == 0) {
1454                 l = path->nodes[0];
1455                 slot = path->slots[0];
1456                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1457                 memcpy(&root->root_key, location, sizeof(*location));
1458         }
1459         btrfs_free_path(path);
1460         if (ret) {
1461                 kfree(root);
1462                 if (ret > 0)
1463                         ret = -ENOENT;
1464                 return ERR_PTR(ret);
1465         }
1466
1467         generation = btrfs_root_generation(&root->root_item);
1468         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1469         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1470                                      blocksize, generation);
1471         root->commit_root = btrfs_root_node(root);
1472         BUG_ON(!root->node); /* -ENOMEM */
1473 out:
1474         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1475                 root->ref_cows = 1;
1476                 btrfs_check_and_init_root_item(&root->root_item);
1477         }
1478
1479         return root;
1480 }
1481
1482 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1483                                               struct btrfs_key *location)
1484 {
1485         struct btrfs_root *root;
1486         int ret;
1487
1488         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1489                 return fs_info->tree_root;
1490         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1491                 return fs_info->extent_root;
1492         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1493                 return fs_info->chunk_root;
1494         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1495                 return fs_info->dev_root;
1496         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1497                 return fs_info->csum_root;
1498         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1499                 return fs_info->quota_root ? fs_info->quota_root :
1500                                              ERR_PTR(-ENOENT);
1501 again:
1502         spin_lock(&fs_info->fs_roots_radix_lock);
1503         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1504                                  (unsigned long)location->objectid);
1505         spin_unlock(&fs_info->fs_roots_radix_lock);
1506         if (root)
1507                 return root;
1508
1509         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1510         if (IS_ERR(root))
1511                 return root;
1512
1513         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1514         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1515                                         GFP_NOFS);
1516         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1517                 ret = -ENOMEM;
1518                 goto fail;
1519         }
1520
1521         btrfs_init_free_ino_ctl(root);
1522         mutex_init(&root->fs_commit_mutex);
1523         spin_lock_init(&root->cache_lock);
1524         init_waitqueue_head(&root->cache_wait);
1525
1526         ret = get_anon_bdev(&root->anon_dev);
1527         if (ret)
1528                 goto fail;
1529
1530         if (btrfs_root_refs(&root->root_item) == 0) {
1531                 ret = -ENOENT;
1532                 goto fail;
1533         }
1534
1535         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1536         if (ret < 0)
1537                 goto fail;
1538         if (ret == 0)
1539                 root->orphan_item_inserted = 1;
1540
1541         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1542         if (ret)
1543                 goto fail;
1544
1545         spin_lock(&fs_info->fs_roots_radix_lock);
1546         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1547                                 (unsigned long)root->root_key.objectid,
1548                                 root);
1549         if (ret == 0)
1550                 root->in_radix = 1;
1551
1552         spin_unlock(&fs_info->fs_roots_radix_lock);
1553         radix_tree_preload_end();
1554         if (ret) {
1555                 if (ret == -EEXIST) {
1556                         free_fs_root(root);
1557                         goto again;
1558                 }
1559                 goto fail;
1560         }
1561
1562         ret = btrfs_find_dead_roots(fs_info->tree_root,
1563                                     root->root_key.objectid);
1564         WARN_ON(ret);
1565         return root;
1566 fail:
1567         free_fs_root(root);
1568         return ERR_PTR(ret);
1569 }
1570
1571 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1572 {
1573         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1574         int ret = 0;
1575         struct btrfs_device *device;
1576         struct backing_dev_info *bdi;
1577
1578         rcu_read_lock();
1579         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1580                 if (!device->bdev)
1581                         continue;
1582                 bdi = blk_get_backing_dev_info(device->bdev);
1583                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1584                         ret = 1;
1585                         break;
1586                 }
1587         }
1588         rcu_read_unlock();
1589         return ret;
1590 }
1591
1592 /*
1593  * If this fails, caller must call bdi_destroy() to get rid of the
1594  * bdi again.
1595  */
1596 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1597 {
1598         int err;
1599
1600         bdi->capabilities = BDI_CAP_MAP_COPY;
1601         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1602         if (err)
1603                 return err;
1604
1605         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1606         bdi->congested_fn       = btrfs_congested_fn;
1607         bdi->congested_data     = info;
1608         return 0;
1609 }
1610
1611 /*
1612  * called by the kthread helper functions to finally call the bio end_io
1613  * functions.  This is where read checksum verification actually happens
1614  */
1615 static void end_workqueue_fn(struct btrfs_work *work)
1616 {
1617         struct bio *bio;
1618         struct end_io_wq *end_io_wq;
1619         struct btrfs_fs_info *fs_info;
1620         int error;
1621
1622         end_io_wq = container_of(work, struct end_io_wq, work);
1623         bio = end_io_wq->bio;
1624         fs_info = end_io_wq->info;
1625
1626         error = end_io_wq->error;
1627         bio->bi_private = end_io_wq->private;
1628         bio->bi_end_io = end_io_wq->end_io;
1629         kfree(end_io_wq);
1630         bio_endio(bio, error);
1631 }
1632
1633 static int cleaner_kthread(void *arg)
1634 {
1635         struct btrfs_root *root = arg;
1636
1637         do {
1638                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1639                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1640                         btrfs_run_delayed_iputs(root);
1641                         btrfs_clean_old_snapshots(root);
1642                         mutex_unlock(&root->fs_info->cleaner_mutex);
1643                         btrfs_run_defrag_inodes(root->fs_info);
1644                 }
1645
1646                 if (!try_to_freeze()) {
1647                         set_current_state(TASK_INTERRUPTIBLE);
1648                         if (!kthread_should_stop())
1649                                 schedule();
1650                         __set_current_state(TASK_RUNNING);
1651                 }
1652         } while (!kthread_should_stop());
1653         return 0;
1654 }
1655
1656 static int transaction_kthread(void *arg)
1657 {
1658         struct btrfs_root *root = arg;
1659         struct btrfs_trans_handle *trans;
1660         struct btrfs_transaction *cur;
1661         u64 transid;
1662         unsigned long now;
1663         unsigned long delay;
1664         bool cannot_commit;
1665
1666         do {
1667                 cannot_commit = false;
1668                 delay = HZ * 30;
1669                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1670
1671                 spin_lock(&root->fs_info->trans_lock);
1672                 cur = root->fs_info->running_transaction;
1673                 if (!cur) {
1674                         spin_unlock(&root->fs_info->trans_lock);
1675                         goto sleep;
1676                 }
1677
1678                 now = get_seconds();
1679                 if (!cur->blocked &&
1680                     (now < cur->start_time || now - cur->start_time < 30)) {
1681                         spin_unlock(&root->fs_info->trans_lock);
1682                         delay = HZ * 5;
1683                         goto sleep;
1684                 }
1685                 transid = cur->transid;
1686                 spin_unlock(&root->fs_info->trans_lock);
1687
1688                 /* If the file system is aborted, this will always fail. */
1689                 trans = btrfs_attach_transaction(root);
1690                 if (IS_ERR(trans)) {
1691                         if (PTR_ERR(trans) != -ENOENT)
1692                                 cannot_commit = true;
1693                         goto sleep;
1694                 }
1695                 if (transid == trans->transid) {
1696                         btrfs_commit_transaction(trans, root);
1697                 } else {
1698                         btrfs_end_transaction(trans, root);
1699                 }
1700 sleep:
1701                 wake_up_process(root->fs_info->cleaner_kthread);
1702                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1703
1704                 if (!try_to_freeze()) {
1705                         set_current_state(TASK_INTERRUPTIBLE);
1706                         if (!kthread_should_stop() &&
1707                             (!btrfs_transaction_blocked(root->fs_info) ||
1708                              cannot_commit))
1709                                 schedule_timeout(delay);
1710                         __set_current_state(TASK_RUNNING);
1711                 }
1712         } while (!kthread_should_stop());
1713         return 0;
1714 }
1715
1716 /*
1717  * this will find the highest generation in the array of
1718  * root backups.  The index of the highest array is returned,
1719  * or -1 if we can't find anything.
1720  *
1721  * We check to make sure the array is valid by comparing the
1722  * generation of the latest  root in the array with the generation
1723  * in the super block.  If they don't match we pitch it.
1724  */
1725 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1726 {
1727         u64 cur;
1728         int newest_index = -1;
1729         struct btrfs_root_backup *root_backup;
1730         int i;
1731
1732         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1733                 root_backup = info->super_copy->super_roots + i;
1734                 cur = btrfs_backup_tree_root_gen(root_backup);
1735                 if (cur == newest_gen)
1736                         newest_index = i;
1737         }
1738
1739         /* check to see if we actually wrapped around */
1740         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1741                 root_backup = info->super_copy->super_roots;
1742                 cur = btrfs_backup_tree_root_gen(root_backup);
1743                 if (cur == newest_gen)
1744                         newest_index = 0;
1745         }
1746         return newest_index;
1747 }
1748
1749
1750 /*
1751  * find the oldest backup so we know where to store new entries
1752  * in the backup array.  This will set the backup_root_index
1753  * field in the fs_info struct
1754  */
1755 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1756                                      u64 newest_gen)
1757 {
1758         int newest_index = -1;
1759
1760         newest_index = find_newest_super_backup(info, newest_gen);
1761         /* if there was garbage in there, just move along */
1762         if (newest_index == -1) {
1763                 info->backup_root_index = 0;
1764         } else {
1765                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1766         }
1767 }
1768
1769 /*
1770  * copy all the root pointers into the super backup array.
1771  * this will bump the backup pointer by one when it is
1772  * done
1773  */
1774 static void backup_super_roots(struct btrfs_fs_info *info)
1775 {
1776         int next_backup;
1777         struct btrfs_root_backup *root_backup;
1778         int last_backup;
1779
1780         next_backup = info->backup_root_index;
1781         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1782                 BTRFS_NUM_BACKUP_ROOTS;
1783
1784         /*
1785          * just overwrite the last backup if we're at the same generation
1786          * this happens only at umount
1787          */
1788         root_backup = info->super_for_commit->super_roots + last_backup;
1789         if (btrfs_backup_tree_root_gen(root_backup) ==
1790             btrfs_header_generation(info->tree_root->node))
1791                 next_backup = last_backup;
1792
1793         root_backup = info->super_for_commit->super_roots + next_backup;
1794
1795         /*
1796          * make sure all of our padding and empty slots get zero filled
1797          * regardless of which ones we use today
1798          */
1799         memset(root_backup, 0, sizeof(*root_backup));
1800
1801         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1802
1803         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1804         btrfs_set_backup_tree_root_gen(root_backup,
1805                                btrfs_header_generation(info->tree_root->node));
1806
1807         btrfs_set_backup_tree_root_level(root_backup,
1808                                btrfs_header_level(info->tree_root->node));
1809
1810         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1811         btrfs_set_backup_chunk_root_gen(root_backup,
1812                                btrfs_header_generation(info->chunk_root->node));
1813         btrfs_set_backup_chunk_root_level(root_backup,
1814                                btrfs_header_level(info->chunk_root->node));
1815
1816         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1817         btrfs_set_backup_extent_root_gen(root_backup,
1818                                btrfs_header_generation(info->extent_root->node));
1819         btrfs_set_backup_extent_root_level(root_backup,
1820                                btrfs_header_level(info->extent_root->node));
1821
1822         /*
1823          * we might commit during log recovery, which happens before we set
1824          * the fs_root.  Make sure it is valid before we fill it in.
1825          */
1826         if (info->fs_root && info->fs_root->node) {
1827                 btrfs_set_backup_fs_root(root_backup,
1828                                          info->fs_root->node->start);
1829                 btrfs_set_backup_fs_root_gen(root_backup,
1830                                btrfs_header_generation(info->fs_root->node));
1831                 btrfs_set_backup_fs_root_level(root_backup,
1832                                btrfs_header_level(info->fs_root->node));
1833         }
1834
1835         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1836         btrfs_set_backup_dev_root_gen(root_backup,
1837                                btrfs_header_generation(info->dev_root->node));
1838         btrfs_set_backup_dev_root_level(root_backup,
1839                                        btrfs_header_level(info->dev_root->node));
1840
1841         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1842         btrfs_set_backup_csum_root_gen(root_backup,
1843                                btrfs_header_generation(info->csum_root->node));
1844         btrfs_set_backup_csum_root_level(root_backup,
1845                                btrfs_header_level(info->csum_root->node));
1846
1847         btrfs_set_backup_total_bytes(root_backup,
1848                              btrfs_super_total_bytes(info->super_copy));
1849         btrfs_set_backup_bytes_used(root_backup,
1850                              btrfs_super_bytes_used(info->super_copy));
1851         btrfs_set_backup_num_devices(root_backup,
1852                              btrfs_super_num_devices(info->super_copy));
1853
1854         /*
1855          * if we don't copy this out to the super_copy, it won't get remembered
1856          * for the next commit
1857          */
1858         memcpy(&info->super_copy->super_roots,
1859                &info->super_for_commit->super_roots,
1860                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1861 }
1862
1863 /*
1864  * this copies info out of the root backup array and back into
1865  * the in-memory super block.  It is meant to help iterate through
1866  * the array, so you send it the number of backups you've already
1867  * tried and the last backup index you used.
1868  *
1869  * this returns -1 when it has tried all the backups
1870  */
1871 static noinline int next_root_backup(struct btrfs_fs_info *info,
1872                                      struct btrfs_super_block *super,
1873                                      int *num_backups_tried, int *backup_index)
1874 {
1875         struct btrfs_root_backup *root_backup;
1876         int newest = *backup_index;
1877
1878         if (*num_backups_tried == 0) {
1879                 u64 gen = btrfs_super_generation(super);
1880
1881                 newest = find_newest_super_backup(info, gen);
1882                 if (newest == -1)
1883                         return -1;
1884
1885                 *backup_index = newest;
1886                 *num_backups_tried = 1;
1887         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1888                 /* we've tried all the backups, all done */
1889                 return -1;
1890         } else {
1891                 /* jump to the next oldest backup */
1892                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1893                         BTRFS_NUM_BACKUP_ROOTS;
1894                 *backup_index = newest;
1895                 *num_backups_tried += 1;
1896         }
1897         root_backup = super->super_roots + newest;
1898
1899         btrfs_set_super_generation(super,
1900                                    btrfs_backup_tree_root_gen(root_backup));
1901         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1902         btrfs_set_super_root_level(super,
1903                                    btrfs_backup_tree_root_level(root_backup));
1904         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1905
1906         /*
1907          * fixme: the total bytes and num_devices need to match or we should
1908          * need a fsck
1909          */
1910         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1911         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1912         return 0;
1913 }
1914
1915 /* helper to cleanup tree roots */
1916 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1917 {
1918         free_extent_buffer(info->tree_root->node);
1919         free_extent_buffer(info->tree_root->commit_root);
1920         free_extent_buffer(info->dev_root->node);
1921         free_extent_buffer(info->dev_root->commit_root);
1922         free_extent_buffer(info->extent_root->node);
1923         free_extent_buffer(info->extent_root->commit_root);
1924         free_extent_buffer(info->csum_root->node);
1925         free_extent_buffer(info->csum_root->commit_root);
1926         if (info->quota_root) {
1927                 free_extent_buffer(info->quota_root->node);
1928                 free_extent_buffer(info->quota_root->commit_root);
1929         }
1930
1931         info->tree_root->node = NULL;
1932         info->tree_root->commit_root = NULL;
1933         info->dev_root->node = NULL;
1934         info->dev_root->commit_root = NULL;
1935         info->extent_root->node = NULL;
1936         info->extent_root->commit_root = NULL;
1937         info->csum_root->node = NULL;
1938         info->csum_root->commit_root = NULL;
1939         if (info->quota_root) {
1940                 info->quota_root->node = NULL;
1941                 info->quota_root->commit_root = NULL;
1942         }
1943
1944         if (chunk_root) {
1945                 free_extent_buffer(info->chunk_root->node);
1946                 free_extent_buffer(info->chunk_root->commit_root);
1947                 info->chunk_root->node = NULL;
1948                 info->chunk_root->commit_root = NULL;
1949         }
1950 }
1951
1952
1953 int open_ctree(struct super_block *sb,
1954                struct btrfs_fs_devices *fs_devices,
1955                char *options)
1956 {
1957         u32 sectorsize;
1958         u32 nodesize;
1959         u32 leafsize;
1960         u32 blocksize;
1961         u32 stripesize;
1962         u64 generation;
1963         u64 features;
1964         struct btrfs_key location;
1965         struct buffer_head *bh;
1966         struct btrfs_super_block *disk_super;
1967         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1968         struct btrfs_root *tree_root;
1969         struct btrfs_root *extent_root;
1970         struct btrfs_root *csum_root;
1971         struct btrfs_root *chunk_root;
1972         struct btrfs_root *dev_root;
1973         struct btrfs_root *quota_root;
1974         struct btrfs_root *log_tree_root;
1975         int ret;
1976         int err = -EINVAL;
1977         int num_backups_tried = 0;
1978         int backup_index = 0;
1979
1980         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1981         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1982         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1983         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1984         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1985         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1986
1987         if (!tree_root || !extent_root || !csum_root ||
1988             !chunk_root || !dev_root || !quota_root) {
1989                 err = -ENOMEM;
1990                 goto fail;
1991         }
1992
1993         ret = init_srcu_struct(&fs_info->subvol_srcu);
1994         if (ret) {
1995                 err = ret;
1996                 goto fail;
1997         }
1998
1999         ret = setup_bdi(fs_info, &fs_info->bdi);
2000         if (ret) {
2001                 err = ret;
2002                 goto fail_srcu;
2003         }
2004
2005         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2006         if (ret) {
2007                 err = ret;
2008                 goto fail_bdi;
2009         }
2010         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2011                                         (1 + ilog2(nr_cpu_ids));
2012
2013         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2014         if (ret) {
2015                 err = ret;
2016                 goto fail_dirty_metadata_bytes;
2017         }
2018
2019         fs_info->btree_inode = new_inode(sb);
2020         if (!fs_info->btree_inode) {
2021                 err = -ENOMEM;
2022                 goto fail_delalloc_bytes;
2023         }
2024
2025         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2026
2027         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2028         INIT_LIST_HEAD(&fs_info->trans_list);
2029         INIT_LIST_HEAD(&fs_info->dead_roots);
2030         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2031         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2032         INIT_LIST_HEAD(&fs_info->ordered_operations);
2033         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2034         spin_lock_init(&fs_info->delalloc_lock);
2035         spin_lock_init(&fs_info->trans_lock);
2036         spin_lock_init(&fs_info->fs_roots_radix_lock);
2037         spin_lock_init(&fs_info->delayed_iput_lock);
2038         spin_lock_init(&fs_info->defrag_inodes_lock);
2039         spin_lock_init(&fs_info->free_chunk_lock);
2040         spin_lock_init(&fs_info->tree_mod_seq_lock);
2041         rwlock_init(&fs_info->tree_mod_log_lock);
2042         mutex_init(&fs_info->reloc_mutex);
2043         seqlock_init(&fs_info->profiles_lock);
2044
2045         init_completion(&fs_info->kobj_unregister);
2046         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2047         INIT_LIST_HEAD(&fs_info->space_info);
2048         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2049         btrfs_mapping_init(&fs_info->mapping_tree);
2050         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2051                              BTRFS_BLOCK_RSV_GLOBAL);
2052         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2053                              BTRFS_BLOCK_RSV_DELALLOC);
2054         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2055         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2056         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2057         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2058                              BTRFS_BLOCK_RSV_DELOPS);
2059         atomic_set(&fs_info->nr_async_submits, 0);
2060         atomic_set(&fs_info->async_delalloc_pages, 0);
2061         atomic_set(&fs_info->async_submit_draining, 0);
2062         atomic_set(&fs_info->nr_async_bios, 0);
2063         atomic_set(&fs_info->defrag_running, 0);
2064         atomic_set(&fs_info->tree_mod_seq, 0);
2065         fs_info->sb = sb;
2066         fs_info->max_inline = 8192 * 1024;
2067         fs_info->metadata_ratio = 0;
2068         fs_info->defrag_inodes = RB_ROOT;
2069         fs_info->trans_no_join = 0;
2070         fs_info->free_chunk_space = 0;
2071         fs_info->tree_mod_log = RB_ROOT;
2072
2073         /* readahead state */
2074         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2075         spin_lock_init(&fs_info->reada_lock);
2076
2077         fs_info->thread_pool_size = min_t(unsigned long,
2078                                           num_online_cpus() + 2, 8);
2079
2080         INIT_LIST_HEAD(&fs_info->ordered_extents);
2081         spin_lock_init(&fs_info->ordered_extent_lock);
2082         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2083                                         GFP_NOFS);
2084         if (!fs_info->delayed_root) {
2085                 err = -ENOMEM;
2086                 goto fail_iput;
2087         }
2088         btrfs_init_delayed_root(fs_info->delayed_root);
2089
2090         mutex_init(&fs_info->scrub_lock);
2091         atomic_set(&fs_info->scrubs_running, 0);
2092         atomic_set(&fs_info->scrub_pause_req, 0);
2093         atomic_set(&fs_info->scrubs_paused, 0);
2094         atomic_set(&fs_info->scrub_cancel_req, 0);
2095         init_waitqueue_head(&fs_info->scrub_pause_wait);
2096         init_rwsem(&fs_info->scrub_super_lock);
2097         fs_info->scrub_workers_refcnt = 0;
2098 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2099         fs_info->check_integrity_print_mask = 0;
2100 #endif
2101
2102         spin_lock_init(&fs_info->balance_lock);
2103         mutex_init(&fs_info->balance_mutex);
2104         atomic_set(&fs_info->balance_running, 0);
2105         atomic_set(&fs_info->balance_pause_req, 0);
2106         atomic_set(&fs_info->balance_cancel_req, 0);
2107         fs_info->balance_ctl = NULL;
2108         init_waitqueue_head(&fs_info->balance_wait_q);
2109
2110         sb->s_blocksize = 4096;
2111         sb->s_blocksize_bits = blksize_bits(4096);
2112         sb->s_bdi = &fs_info->bdi;
2113
2114         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2115         set_nlink(fs_info->btree_inode, 1);
2116         /*
2117          * we set the i_size on the btree inode to the max possible int.
2118          * the real end of the address space is determined by all of
2119          * the devices in the system
2120          */
2121         fs_info->btree_inode->i_size = OFFSET_MAX;
2122         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2123         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2124
2125         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2126         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2127                              fs_info->btree_inode->i_mapping);
2128         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2129         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2130
2131         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2132
2133         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2134         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2135                sizeof(struct btrfs_key));
2136         set_bit(BTRFS_INODE_DUMMY,
2137                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2138         insert_inode_hash(fs_info->btree_inode);
2139
2140         spin_lock_init(&fs_info->block_group_cache_lock);
2141         fs_info->block_group_cache_tree = RB_ROOT;
2142         fs_info->first_logical_byte = (u64)-1;
2143
2144         extent_io_tree_init(&fs_info->freed_extents[0],
2145                              fs_info->btree_inode->i_mapping);
2146         extent_io_tree_init(&fs_info->freed_extents[1],
2147                              fs_info->btree_inode->i_mapping);
2148         fs_info->pinned_extents = &fs_info->freed_extents[0];
2149         fs_info->do_barriers = 1;
2150
2151
2152         mutex_init(&fs_info->ordered_operations_mutex);
2153         mutex_init(&fs_info->tree_log_mutex);
2154         mutex_init(&fs_info->chunk_mutex);
2155         mutex_init(&fs_info->transaction_kthread_mutex);
2156         mutex_init(&fs_info->cleaner_mutex);
2157         mutex_init(&fs_info->volume_mutex);
2158         init_rwsem(&fs_info->extent_commit_sem);
2159         init_rwsem(&fs_info->cleanup_work_sem);
2160         init_rwsem(&fs_info->subvol_sem);
2161         fs_info->dev_replace.lock_owner = 0;
2162         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2163         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2164         mutex_init(&fs_info->dev_replace.lock_management_lock);
2165         mutex_init(&fs_info->dev_replace.lock);
2166
2167         spin_lock_init(&fs_info->qgroup_lock);
2168         fs_info->qgroup_tree = RB_ROOT;
2169         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2170         fs_info->qgroup_seq = 1;
2171         fs_info->quota_enabled = 0;
2172         fs_info->pending_quota_state = 0;
2173
2174         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2175         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2176
2177         init_waitqueue_head(&fs_info->transaction_throttle);
2178         init_waitqueue_head(&fs_info->transaction_wait);
2179         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2180         init_waitqueue_head(&fs_info->async_submit_wait);
2181
2182         __setup_root(4096, 4096, 4096, 4096, tree_root,
2183                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2184
2185         invalidate_bdev(fs_devices->latest_bdev);
2186         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2187         if (!bh) {
2188                 err = -EINVAL;
2189                 goto fail_alloc;
2190         }
2191
2192         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2193         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2194                sizeof(*fs_info->super_for_commit));
2195         brelse(bh);
2196
2197         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2198
2199         disk_super = fs_info->super_copy;
2200         if (!btrfs_super_root(disk_super))
2201                 goto fail_alloc;
2202
2203         /* check FS state, whether FS is broken. */
2204         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2205                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2206
2207         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2208         if (ret) {
2209                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2210                 err = ret;
2211                 goto fail_alloc;
2212         }
2213
2214         /*
2215          * run through our array of backup supers and setup
2216          * our ring pointer to the oldest one
2217          */
2218         generation = btrfs_super_generation(disk_super);
2219         find_oldest_super_backup(fs_info, generation);
2220
2221         /*
2222          * In the long term, we'll store the compression type in the super
2223          * block, and it'll be used for per file compression control.
2224          */
2225         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2226
2227         ret = btrfs_parse_options(tree_root, options);
2228         if (ret) {
2229                 err = ret;
2230                 goto fail_alloc;
2231         }
2232
2233         features = btrfs_super_incompat_flags(disk_super) &
2234                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2235         if (features) {
2236                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2237                        "unsupported optional features (%Lx).\n",
2238                        (unsigned long long)features);
2239                 err = -EINVAL;
2240                 goto fail_alloc;
2241         }
2242
2243         if (btrfs_super_leafsize(disk_super) !=
2244             btrfs_super_nodesize(disk_super)) {
2245                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2246                        "blocksizes don't match.  node %d leaf %d\n",
2247                        btrfs_super_nodesize(disk_super),
2248                        btrfs_super_leafsize(disk_super));
2249                 err = -EINVAL;
2250                 goto fail_alloc;
2251         }
2252         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2253                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2254                        "blocksize (%d) was too large\n",
2255                        btrfs_super_leafsize(disk_super));
2256                 err = -EINVAL;
2257                 goto fail_alloc;
2258         }
2259
2260         features = btrfs_super_incompat_flags(disk_super);
2261         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2262         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2263                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2264
2265         /*
2266          * flag our filesystem as having big metadata blocks if
2267          * they are bigger than the page size
2268          */
2269         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2270                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2271                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2272                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2273         }
2274
2275         nodesize = btrfs_super_nodesize(disk_super);
2276         leafsize = btrfs_super_leafsize(disk_super);
2277         sectorsize = btrfs_super_sectorsize(disk_super);
2278         stripesize = btrfs_super_stripesize(disk_super);
2279         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2280         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2281
2282         /*
2283          * mixed block groups end up with duplicate but slightly offset
2284          * extent buffers for the same range.  It leads to corruptions
2285          */
2286         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2287             (sectorsize != leafsize)) {
2288                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2289                                 "are not allowed for mixed block groups on %s\n",
2290                                 sb->s_id);
2291                 goto fail_alloc;
2292         }
2293
2294         btrfs_set_super_incompat_flags(disk_super, features);
2295
2296         features = btrfs_super_compat_ro_flags(disk_super) &
2297                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2298         if (!(sb->s_flags & MS_RDONLY) && features) {
2299                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2300                        "unsupported option features (%Lx).\n",
2301                        (unsigned long long)features);
2302                 err = -EINVAL;
2303                 goto fail_alloc;
2304         }
2305
2306         btrfs_init_workers(&fs_info->generic_worker,
2307                            "genwork", 1, NULL);
2308
2309         btrfs_init_workers(&fs_info->workers, "worker",
2310                            fs_info->thread_pool_size,
2311                            &fs_info->generic_worker);
2312
2313         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2314                            fs_info->thread_pool_size,
2315                            &fs_info->generic_worker);
2316
2317         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2318                            fs_info->thread_pool_size,
2319                            &fs_info->generic_worker);
2320
2321         btrfs_init_workers(&fs_info->submit_workers, "submit",
2322                            min_t(u64, fs_devices->num_devices,
2323                            fs_info->thread_pool_size),
2324                            &fs_info->generic_worker);
2325
2326         btrfs_init_workers(&fs_info->caching_workers, "cache",
2327                            2, &fs_info->generic_worker);
2328
2329         /* a higher idle thresh on the submit workers makes it much more
2330          * likely that bios will be send down in a sane order to the
2331          * devices
2332          */
2333         fs_info->submit_workers.idle_thresh = 64;
2334
2335         fs_info->workers.idle_thresh = 16;
2336         fs_info->workers.ordered = 1;
2337
2338         fs_info->delalloc_workers.idle_thresh = 2;
2339         fs_info->delalloc_workers.ordered = 1;
2340
2341         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2342                            &fs_info->generic_worker);
2343         btrfs_init_workers(&fs_info->endio_workers, "endio",
2344                            fs_info->thread_pool_size,
2345                            &fs_info->generic_worker);
2346         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2347                            fs_info->thread_pool_size,
2348                            &fs_info->generic_worker);
2349         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2350                            "endio-meta-write", fs_info->thread_pool_size,
2351                            &fs_info->generic_worker);
2352         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2353                            fs_info->thread_pool_size,
2354                            &fs_info->generic_worker);
2355         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2356                            1, &fs_info->generic_worker);
2357         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2358                            fs_info->thread_pool_size,
2359                            &fs_info->generic_worker);
2360         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2361                            fs_info->thread_pool_size,
2362                            &fs_info->generic_worker);
2363
2364         /*
2365          * endios are largely parallel and should have a very
2366          * low idle thresh
2367          */
2368         fs_info->endio_workers.idle_thresh = 4;
2369         fs_info->endio_meta_workers.idle_thresh = 4;
2370
2371         fs_info->endio_write_workers.idle_thresh = 2;
2372         fs_info->endio_meta_write_workers.idle_thresh = 2;
2373         fs_info->readahead_workers.idle_thresh = 2;
2374
2375         /*
2376          * btrfs_start_workers can really only fail because of ENOMEM so just
2377          * return -ENOMEM if any of these fail.
2378          */
2379         ret = btrfs_start_workers(&fs_info->workers);
2380         ret |= btrfs_start_workers(&fs_info->generic_worker);
2381         ret |= btrfs_start_workers(&fs_info->submit_workers);
2382         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2383         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2384         ret |= btrfs_start_workers(&fs_info->endio_workers);
2385         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2386         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2387         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2388         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2389         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2390         ret |= btrfs_start_workers(&fs_info->caching_workers);
2391         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2392         ret |= btrfs_start_workers(&fs_info->flush_workers);
2393         if (ret) {
2394                 err = -ENOMEM;
2395                 goto fail_sb_buffer;
2396         }
2397
2398         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2399         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2400                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2401
2402         tree_root->nodesize = nodesize;
2403         tree_root->leafsize = leafsize;
2404         tree_root->sectorsize = sectorsize;
2405         tree_root->stripesize = stripesize;
2406
2407         sb->s_blocksize = sectorsize;
2408         sb->s_blocksize_bits = blksize_bits(sectorsize);
2409
2410         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2411                     sizeof(disk_super->magic))) {
2412                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2413                 goto fail_sb_buffer;
2414         }
2415
2416         if (sectorsize != PAGE_SIZE) {
2417                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2418                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2419                 goto fail_sb_buffer;
2420         }
2421
2422         mutex_lock(&fs_info->chunk_mutex);
2423         ret = btrfs_read_sys_array(tree_root);
2424         mutex_unlock(&fs_info->chunk_mutex);
2425         if (ret) {
2426                 printk(KERN_WARNING "btrfs: failed to read the system "
2427                        "array on %s\n", sb->s_id);
2428                 goto fail_sb_buffer;
2429         }
2430
2431         blocksize = btrfs_level_size(tree_root,
2432                                      btrfs_super_chunk_root_level(disk_super));
2433         generation = btrfs_super_chunk_root_generation(disk_super);
2434
2435         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2436                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2437
2438         chunk_root->node = read_tree_block(chunk_root,
2439                                            btrfs_super_chunk_root(disk_super),
2440                                            blocksize, generation);
2441         BUG_ON(!chunk_root->node); /* -ENOMEM */
2442         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2443                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2444                        sb->s_id);
2445                 goto fail_tree_roots;
2446         }
2447         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2448         chunk_root->commit_root = btrfs_root_node(chunk_root);
2449
2450         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2451            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2452            BTRFS_UUID_SIZE);
2453
2454         ret = btrfs_read_chunk_tree(chunk_root);
2455         if (ret) {
2456                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2457                        sb->s_id);
2458                 goto fail_tree_roots;
2459         }
2460
2461         /*
2462          * keep the device that is marked to be the target device for the
2463          * dev_replace procedure
2464          */
2465         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2466
2467         if (!fs_devices->latest_bdev) {
2468                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2469                        sb->s_id);
2470                 goto fail_tree_roots;
2471         }
2472
2473 retry_root_backup:
2474         blocksize = btrfs_level_size(tree_root,
2475                                      btrfs_super_root_level(disk_super));
2476         generation = btrfs_super_generation(disk_super);
2477
2478         tree_root->node = read_tree_block(tree_root,
2479                                           btrfs_super_root(disk_super),
2480                                           blocksize, generation);
2481         if (!tree_root->node ||
2482             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2483                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2484                        sb->s_id);
2485
2486                 goto recovery_tree_root;
2487         }
2488
2489         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2490         tree_root->commit_root = btrfs_root_node(tree_root);
2491
2492         ret = find_and_setup_root(tree_root, fs_info,
2493                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2494         if (ret)
2495                 goto recovery_tree_root;
2496         extent_root->track_dirty = 1;
2497
2498         ret = find_and_setup_root(tree_root, fs_info,
2499                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2500         if (ret)
2501                 goto recovery_tree_root;
2502         dev_root->track_dirty = 1;
2503
2504         ret = find_and_setup_root(tree_root, fs_info,
2505                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2506         if (ret)
2507                 goto recovery_tree_root;
2508         csum_root->track_dirty = 1;
2509
2510         ret = find_and_setup_root(tree_root, fs_info,
2511                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2512         if (ret) {
2513                 kfree(quota_root);
2514                 quota_root = fs_info->quota_root = NULL;
2515         } else {
2516                 quota_root->track_dirty = 1;
2517                 fs_info->quota_enabled = 1;
2518                 fs_info->pending_quota_state = 1;
2519         }
2520
2521         fs_info->generation = generation;
2522         fs_info->last_trans_committed = generation;
2523
2524         ret = btrfs_recover_balance(fs_info);
2525         if (ret) {
2526                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2527                 goto fail_block_groups;
2528         }
2529
2530         ret = btrfs_init_dev_stats(fs_info);
2531         if (ret) {
2532                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2533                        ret);
2534                 goto fail_block_groups;
2535         }
2536
2537         ret = btrfs_init_dev_replace(fs_info);
2538         if (ret) {
2539                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2540                 goto fail_block_groups;
2541         }
2542
2543         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2544
2545         ret = btrfs_init_space_info(fs_info);
2546         if (ret) {
2547                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2548                 goto fail_block_groups;
2549         }
2550
2551         ret = btrfs_read_block_groups(extent_root);
2552         if (ret) {
2553                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2554                 goto fail_block_groups;
2555         }
2556         fs_info->num_tolerated_disk_barrier_failures =
2557                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2558         if (fs_info->fs_devices->missing_devices >
2559              fs_info->num_tolerated_disk_barrier_failures &&
2560             !(sb->s_flags & MS_RDONLY)) {
2561                 printk(KERN_WARNING
2562                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2563                 goto fail_block_groups;
2564         }
2565
2566         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2567                                                "btrfs-cleaner");
2568         if (IS_ERR(fs_info->cleaner_kthread))
2569                 goto fail_block_groups;
2570
2571         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2572                                                    tree_root,
2573                                                    "btrfs-transaction");
2574         if (IS_ERR(fs_info->transaction_kthread))
2575                 goto fail_cleaner;
2576
2577         if (!btrfs_test_opt(tree_root, SSD) &&
2578             !btrfs_test_opt(tree_root, NOSSD) &&
2579             !fs_info->fs_devices->rotating) {
2580                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2581                        "mode\n");
2582                 btrfs_set_opt(fs_info->mount_opt, SSD);
2583         }
2584
2585 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2586         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2587                 ret = btrfsic_mount(tree_root, fs_devices,
2588                                     btrfs_test_opt(tree_root,
2589                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2590                                     1 : 0,
2591                                     fs_info->check_integrity_print_mask);
2592                 if (ret)
2593                         printk(KERN_WARNING "btrfs: failed to initialize"
2594                                " integrity check module %s\n", sb->s_id);
2595         }
2596 #endif
2597         ret = btrfs_read_qgroup_config(fs_info);
2598         if (ret)
2599                 goto fail_trans_kthread;
2600
2601         /* do not make disk changes in broken FS */
2602         if (btrfs_super_log_root(disk_super) != 0) {
2603                 u64 bytenr = btrfs_super_log_root(disk_super);
2604
2605                 if (fs_devices->rw_devices == 0) {
2606                         printk(KERN_WARNING "Btrfs log replay required "
2607                                "on RO media\n");
2608                         err = -EIO;
2609                         goto fail_qgroup;
2610                 }
2611                 blocksize =
2612                      btrfs_level_size(tree_root,
2613                                       btrfs_super_log_root_level(disk_super));
2614
2615                 log_tree_root = btrfs_alloc_root(fs_info);
2616                 if (!log_tree_root) {
2617                         err = -ENOMEM;
2618                         goto fail_qgroup;
2619                 }
2620
2621                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2622                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2623
2624                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2625                                                       blocksize,
2626                                                       generation + 1);
2627                 /* returns with log_tree_root freed on success */
2628                 ret = btrfs_recover_log_trees(log_tree_root);
2629                 if (ret) {
2630                         btrfs_error(tree_root->fs_info, ret,
2631                                     "Failed to recover log tree");
2632                         free_extent_buffer(log_tree_root->node);
2633                         kfree(log_tree_root);
2634                         goto fail_trans_kthread;
2635                 }
2636
2637                 if (sb->s_flags & MS_RDONLY) {
2638                         ret = btrfs_commit_super(tree_root);
2639                         if (ret)
2640                                 goto fail_trans_kthread;
2641                 }
2642         }
2643
2644         ret = btrfs_find_orphan_roots(tree_root);
2645         if (ret)
2646                 goto fail_trans_kthread;
2647
2648         if (!(sb->s_flags & MS_RDONLY)) {
2649                 ret = btrfs_cleanup_fs_roots(fs_info);
2650                 if (ret)
2651                         goto fail_trans_kthread;
2652
2653                 ret = btrfs_recover_relocation(tree_root);
2654                 if (ret < 0) {
2655                         printk(KERN_WARNING
2656                                "btrfs: failed to recover relocation\n");
2657                         err = -EINVAL;
2658                         goto fail_qgroup;
2659                 }
2660         }
2661
2662         location.objectid = BTRFS_FS_TREE_OBJECTID;
2663         location.type = BTRFS_ROOT_ITEM_KEY;
2664         location.offset = (u64)-1;
2665
2666         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2667         if (!fs_info->fs_root)
2668                 goto fail_qgroup;
2669         if (IS_ERR(fs_info->fs_root)) {
2670                 err = PTR_ERR(fs_info->fs_root);
2671                 goto fail_qgroup;
2672         }
2673
2674         if (sb->s_flags & MS_RDONLY)
2675                 return 0;
2676
2677         down_read(&fs_info->cleanup_work_sem);
2678         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2679             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2680                 up_read(&fs_info->cleanup_work_sem);
2681                 close_ctree(tree_root);
2682                 return ret;
2683         }
2684         up_read(&fs_info->cleanup_work_sem);
2685
2686         ret = btrfs_resume_balance_async(fs_info);
2687         if (ret) {
2688                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2689                 close_ctree(tree_root);
2690                 return ret;
2691         }
2692
2693         ret = btrfs_resume_dev_replace_async(fs_info);
2694         if (ret) {
2695                 pr_warn("btrfs: failed to resume dev_replace\n");
2696                 close_ctree(tree_root);
2697                 return ret;
2698         }
2699
2700         return 0;
2701
2702 fail_qgroup:
2703         btrfs_free_qgroup_config(fs_info);
2704 fail_trans_kthread:
2705         kthread_stop(fs_info->transaction_kthread);
2706 fail_cleaner:
2707         kthread_stop(fs_info->cleaner_kthread);
2708
2709         /*
2710          * make sure we're done with the btree inode before we stop our
2711          * kthreads
2712          */
2713         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2714         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2715
2716 fail_block_groups:
2717         btrfs_free_block_groups(fs_info);
2718
2719 fail_tree_roots:
2720         free_root_pointers(fs_info, 1);
2721
2722 fail_sb_buffer:
2723         btrfs_stop_workers(&fs_info->generic_worker);
2724         btrfs_stop_workers(&fs_info->readahead_workers);
2725         btrfs_stop_workers(&fs_info->fixup_workers);
2726         btrfs_stop_workers(&fs_info->delalloc_workers);
2727         btrfs_stop_workers(&fs_info->workers);
2728         btrfs_stop_workers(&fs_info->endio_workers);
2729         btrfs_stop_workers(&fs_info->endio_meta_workers);
2730         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2731         btrfs_stop_workers(&fs_info->endio_write_workers);
2732         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2733         btrfs_stop_workers(&fs_info->submit_workers);
2734         btrfs_stop_workers(&fs_info->delayed_workers);
2735         btrfs_stop_workers(&fs_info->caching_workers);
2736         btrfs_stop_workers(&fs_info->flush_workers);
2737 fail_alloc:
2738 fail_iput:
2739         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2740
2741         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2742         iput(fs_info->btree_inode);
2743 fail_delalloc_bytes:
2744         percpu_counter_destroy(&fs_info->delalloc_bytes);
2745 fail_dirty_metadata_bytes:
2746         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2747 fail_bdi:
2748         bdi_destroy(&fs_info->bdi);
2749 fail_srcu:
2750         cleanup_srcu_struct(&fs_info->subvol_srcu);
2751 fail:
2752         btrfs_close_devices(fs_info->fs_devices);
2753         return err;
2754
2755 recovery_tree_root:
2756         if (!btrfs_test_opt(tree_root, RECOVERY))
2757                 goto fail_tree_roots;
2758
2759         free_root_pointers(fs_info, 0);
2760
2761         /* don't use the log in recovery mode, it won't be valid */
2762         btrfs_set_super_log_root(disk_super, 0);
2763
2764         /* we can't trust the free space cache either */
2765         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2766
2767         ret = next_root_backup(fs_info, fs_info->super_copy,
2768                                &num_backups_tried, &backup_index);
2769         if (ret == -1)
2770                 goto fail_block_groups;
2771         goto retry_root_backup;
2772 }
2773
2774 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2775 {
2776         if (uptodate) {
2777                 set_buffer_uptodate(bh);
2778         } else {
2779                 struct btrfs_device *device = (struct btrfs_device *)
2780                         bh->b_private;
2781
2782                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2783                                           "I/O error on %s\n",
2784                                           rcu_str_deref(device->name));
2785                 /* note, we dont' set_buffer_write_io_error because we have
2786                  * our own ways of dealing with the IO errors
2787                  */
2788                 clear_buffer_uptodate(bh);
2789                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2790         }
2791         unlock_buffer(bh);
2792         put_bh(bh);
2793 }
2794
2795 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2796 {
2797         struct buffer_head *bh;
2798         struct buffer_head *latest = NULL;
2799         struct btrfs_super_block *super;
2800         int i;
2801         u64 transid = 0;
2802         u64 bytenr;
2803
2804         /* we would like to check all the supers, but that would make
2805          * a btrfs mount succeed after a mkfs from a different FS.
2806          * So, we need to add a special mount option to scan for
2807          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2808          */
2809         for (i = 0; i < 1; i++) {
2810                 bytenr = btrfs_sb_offset(i);
2811                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2812                         break;
2813                 bh = __bread(bdev, bytenr / 4096, 4096);
2814                 if (!bh)
2815                         continue;
2816
2817                 super = (struct btrfs_super_block *)bh->b_data;
2818                 if (btrfs_super_bytenr(super) != bytenr ||
2819                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2820                             sizeof(super->magic))) {
2821                         brelse(bh);
2822                         continue;
2823                 }
2824
2825                 if (!latest || btrfs_super_generation(super) > transid) {
2826                         brelse(latest);
2827                         latest = bh;
2828                         transid = btrfs_super_generation(super);
2829                 } else {
2830                         brelse(bh);
2831                 }
2832         }
2833         return latest;
2834 }
2835
2836 /*
2837  * this should be called twice, once with wait == 0 and
2838  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2839  * we write are pinned.
2840  *
2841  * They are released when wait == 1 is done.
2842  * max_mirrors must be the same for both runs, and it indicates how
2843  * many supers on this one device should be written.
2844  *
2845  * max_mirrors == 0 means to write them all.
2846  */
2847 static int write_dev_supers(struct btrfs_device *device,
2848                             struct btrfs_super_block *sb,
2849                             int do_barriers, int wait, int max_mirrors)
2850 {
2851         struct buffer_head *bh;
2852         int i;
2853         int ret;
2854         int errors = 0;
2855         u32 crc;
2856         u64 bytenr;
2857
2858         if (max_mirrors == 0)
2859                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2860
2861         for (i = 0; i < max_mirrors; i++) {
2862                 bytenr = btrfs_sb_offset(i);
2863                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2864                         break;
2865
2866                 if (wait) {
2867                         bh = __find_get_block(device->bdev, bytenr / 4096,
2868                                               BTRFS_SUPER_INFO_SIZE);
2869                         BUG_ON(!bh);
2870                         wait_on_buffer(bh);
2871                         if (!buffer_uptodate(bh))
2872                                 errors++;
2873
2874                         /* drop our reference */
2875                         brelse(bh);
2876
2877                         /* drop the reference from the wait == 0 run */
2878                         brelse(bh);
2879                         continue;
2880                 } else {
2881                         btrfs_set_super_bytenr(sb, bytenr);
2882
2883                         crc = ~(u32)0;
2884                         crc = btrfs_csum_data(NULL, (char *)sb +
2885                                               BTRFS_CSUM_SIZE, crc,
2886                                               BTRFS_SUPER_INFO_SIZE -
2887                                               BTRFS_CSUM_SIZE);
2888                         btrfs_csum_final(crc, sb->csum);
2889
2890                         /*
2891                          * one reference for us, and we leave it for the
2892                          * caller
2893                          */
2894                         bh = __getblk(device->bdev, bytenr / 4096,
2895                                       BTRFS_SUPER_INFO_SIZE);
2896                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2897
2898                         /* one reference for submit_bh */
2899                         get_bh(bh);
2900
2901                         set_buffer_uptodate(bh);
2902                         lock_buffer(bh);
2903                         bh->b_end_io = btrfs_end_buffer_write_sync;
2904                         bh->b_private = device;
2905                 }
2906
2907                 /*
2908                  * we fua the first super.  The others we allow
2909                  * to go down lazy.
2910                  */
2911                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2912                 if (ret)
2913                         errors++;
2914         }
2915         return errors < i ? 0 : -1;
2916 }
2917
2918 /*
2919  * endio for the write_dev_flush, this will wake anyone waiting
2920  * for the barrier when it is done
2921  */
2922 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2923 {
2924         if (err) {
2925                 if (err == -EOPNOTSUPP)
2926                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2927                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2928         }
2929         if (bio->bi_private)
2930                 complete(bio->bi_private);
2931         bio_put(bio);
2932 }
2933
2934 /*
2935  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2936  * sent down.  With wait == 1, it waits for the previous flush.
2937  *
2938  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2939  * capable
2940  */
2941 static int write_dev_flush(struct btrfs_device *device, int wait)
2942 {
2943         struct bio *bio;
2944         int ret = 0;
2945
2946         if (device->nobarriers)
2947                 return 0;
2948
2949         if (wait) {
2950                 bio = device->flush_bio;
2951                 if (!bio)
2952                         return 0;
2953
2954                 wait_for_completion(&device->flush_wait);
2955
2956                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2957                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2958                                       rcu_str_deref(device->name));
2959                         device->nobarriers = 1;
2960                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2961                         ret = -EIO;
2962                         btrfs_dev_stat_inc_and_print(device,
2963                                 BTRFS_DEV_STAT_FLUSH_ERRS);
2964                 }
2965
2966                 /* drop the reference from the wait == 0 run */
2967                 bio_put(bio);
2968                 device->flush_bio = NULL;
2969
2970                 return ret;
2971         }
2972
2973         /*
2974          * one reference for us, and we leave it for the
2975          * caller
2976          */
2977         device->flush_bio = NULL;
2978         bio = bio_alloc(GFP_NOFS, 0);
2979         if (!bio)
2980                 return -ENOMEM;
2981
2982         bio->bi_end_io = btrfs_end_empty_barrier;
2983         bio->bi_bdev = device->bdev;
2984         init_completion(&device->flush_wait);
2985         bio->bi_private = &device->flush_wait;
2986         device->flush_bio = bio;
2987
2988         bio_get(bio);
2989         btrfsic_submit_bio(WRITE_FLUSH, bio);
2990
2991         return 0;
2992 }
2993
2994 /*
2995  * send an empty flush down to each device in parallel,
2996  * then wait for them
2997  */
2998 static int barrier_all_devices(struct btrfs_fs_info *info)
2999 {
3000         struct list_head *head;
3001         struct btrfs_device *dev;
3002         int errors_send = 0;
3003         int errors_wait = 0;
3004         int ret;
3005
3006         /* send down all the barriers */
3007         head = &info->fs_devices->devices;
3008         list_for_each_entry_rcu(dev, head, dev_list) {
3009                 if (!dev->bdev) {
3010                         errors_send++;
3011                         continue;
3012                 }
3013                 if (!dev->in_fs_metadata || !dev->writeable)
3014                         continue;
3015
3016                 ret = write_dev_flush(dev, 0);
3017                 if (ret)
3018                         errors_send++;
3019         }
3020
3021         /* wait for all the barriers */
3022         list_for_each_entry_rcu(dev, head, dev_list) {
3023                 if (!dev->bdev) {
3024                         errors_wait++;
3025                         continue;
3026                 }
3027                 if (!dev->in_fs_metadata || !dev->writeable)
3028                         continue;
3029
3030                 ret = write_dev_flush(dev, 1);
3031                 if (ret)
3032                         errors_wait++;
3033         }
3034         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3035             errors_wait > info->num_tolerated_disk_barrier_failures)
3036                 return -EIO;
3037         return 0;
3038 }
3039
3040 int btrfs_calc_num_tolerated_disk_barrier_failures(
3041         struct btrfs_fs_info *fs_info)
3042 {
3043         struct btrfs_ioctl_space_info space;
3044         struct btrfs_space_info *sinfo;
3045         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3046                        BTRFS_BLOCK_GROUP_SYSTEM,
3047                        BTRFS_BLOCK_GROUP_METADATA,
3048                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3049         int num_types = 4;
3050         int i;
3051         int c;
3052         int num_tolerated_disk_barrier_failures =
3053                 (int)fs_info->fs_devices->num_devices;
3054
3055         for (i = 0; i < num_types; i++) {
3056                 struct btrfs_space_info *tmp;
3057
3058                 sinfo = NULL;
3059                 rcu_read_lock();
3060                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3061                         if (tmp->flags == types[i]) {
3062                                 sinfo = tmp;
3063                                 break;
3064                         }
3065                 }
3066                 rcu_read_unlock();
3067
3068                 if (!sinfo)
3069                         continue;
3070
3071                 down_read(&sinfo->groups_sem);
3072                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3073                         if (!list_empty(&sinfo->block_groups[c])) {
3074                                 u64 flags;
3075
3076                                 btrfs_get_block_group_info(
3077                                         &sinfo->block_groups[c], &space);
3078                                 if (space.total_bytes == 0 ||
3079                                     space.used_bytes == 0)
3080                                         continue;
3081                                 flags = space.flags;
3082                                 /*
3083                                  * return
3084                                  * 0: if dup, single or RAID0 is configured for
3085                                  *    any of metadata, system or data, else
3086                                  * 1: if RAID5 is configured, or if RAID1 or
3087                                  *    RAID10 is configured and only two mirrors
3088                                  *    are used, else
3089                                  * 2: if RAID6 is configured, else
3090                                  * num_mirrors - 1: if RAID1 or RAID10 is
3091                                  *                  configured and more than
3092                                  *                  2 mirrors are used.
3093                                  */
3094                                 if (num_tolerated_disk_barrier_failures > 0 &&
3095                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3096                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3097                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3098                                       == 0)))
3099                                         num_tolerated_disk_barrier_failures = 0;
3100                                 else if (num_tolerated_disk_barrier_failures > 1
3101                                          &&
3102                                          (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3103                                                    BTRFS_BLOCK_GROUP_RAID10)))
3104                                         num_tolerated_disk_barrier_failures = 1;
3105                         }
3106                 }
3107                 up_read(&sinfo->groups_sem);
3108         }
3109
3110         return num_tolerated_disk_barrier_failures;
3111 }
3112
3113 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3114 {
3115         struct list_head *head;
3116         struct btrfs_device *dev;
3117         struct btrfs_super_block *sb;
3118         struct btrfs_dev_item *dev_item;
3119         int ret;
3120         int do_barriers;
3121         int max_errors;
3122         int total_errors = 0;
3123         u64 flags;
3124
3125         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3126         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3127         backup_super_roots(root->fs_info);
3128
3129         sb = root->fs_info->super_for_commit;
3130         dev_item = &sb->dev_item;
3131
3132         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3133         head = &root->fs_info->fs_devices->devices;
3134
3135         if (do_barriers) {
3136                 ret = barrier_all_devices(root->fs_info);
3137                 if (ret) {
3138                         mutex_unlock(
3139                                 &root->fs_info->fs_devices->device_list_mutex);
3140                         btrfs_error(root->fs_info, ret,
3141                                     "errors while submitting device barriers.");
3142                         return ret;
3143                 }
3144         }
3145
3146         list_for_each_entry_rcu(dev, head, dev_list) {
3147                 if (!dev->bdev) {
3148                         total_errors++;
3149                         continue;
3150                 }
3151                 if (!dev->in_fs_metadata || !dev->writeable)
3152                         continue;
3153
3154                 btrfs_set_stack_device_generation(dev_item, 0);
3155                 btrfs_set_stack_device_type(dev_item, dev->type);
3156                 btrfs_set_stack_device_id(dev_item, dev->devid);
3157                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3158                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3159                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3160                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3161                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3162                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3163                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3164
3165                 flags = btrfs_super_flags(sb);
3166                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3167
3168                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3169                 if (ret)
3170                         total_errors++;
3171         }
3172         if (total_errors > max_errors) {
3173                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3174                        total_errors);
3175
3176                 /* This shouldn't happen. FUA is masked off if unsupported */
3177                 BUG();
3178         }
3179
3180         total_errors = 0;
3181         list_for_each_entry_rcu(dev, head, dev_list) {
3182                 if (!dev->bdev)
3183                         continue;
3184                 if (!dev->in_fs_metadata || !dev->writeable)
3185                         continue;
3186
3187                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3188                 if (ret)
3189                         total_errors++;
3190         }
3191         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3192         if (total_errors > max_errors) {
3193                 btrfs_error(root->fs_info, -EIO,
3194                             "%d errors while writing supers", total_errors);
3195                 return -EIO;
3196         }
3197         return 0;
3198 }
3199
3200 int write_ctree_super(struct btrfs_trans_handle *trans,
3201                       struct btrfs_root *root, int max_mirrors)
3202 {
3203         int ret;
3204
3205         ret = write_all_supers(root, max_mirrors);
3206         return ret;
3207 }
3208
3209 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3210 {
3211         spin_lock(&fs_info->fs_roots_radix_lock);
3212         radix_tree_delete(&fs_info->fs_roots_radix,
3213                           (unsigned long)root->root_key.objectid);
3214         spin_unlock(&fs_info->fs_roots_radix_lock);
3215
3216         if (btrfs_root_refs(&root->root_item) == 0)
3217                 synchronize_srcu(&fs_info->subvol_srcu);
3218
3219         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3220         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3221         free_fs_root(root);
3222 }
3223
3224 static void free_fs_root(struct btrfs_root *root)
3225 {
3226         iput(root->cache_inode);
3227         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3228         if (root->anon_dev)
3229                 free_anon_bdev(root->anon_dev);
3230         free_extent_buffer(root->node);
3231         free_extent_buffer(root->commit_root);
3232         kfree(root->free_ino_ctl);
3233         kfree(root->free_ino_pinned);
3234         kfree(root->name);
3235         kfree(root);
3236 }
3237
3238 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3239 {
3240         int ret;
3241         struct btrfs_root *gang[8];
3242         int i;
3243
3244         while (!list_empty(&fs_info->dead_roots)) {
3245                 gang[0] = list_entry(fs_info->dead_roots.next,
3246                                      struct btrfs_root, root_list);
3247                 list_del(&gang[0]->root_list);
3248
3249                 if (gang[0]->in_radix) {
3250                         btrfs_free_fs_root(fs_info, gang[0]);
3251                 } else {
3252                         free_extent_buffer(gang[0]->node);
3253                         free_extent_buffer(gang[0]->commit_root);
3254                         kfree(gang[0]);
3255                 }
3256         }
3257
3258         while (1) {
3259                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3260                                              (void **)gang, 0,
3261                                              ARRAY_SIZE(gang));
3262                 if (!ret)
3263                         break;
3264                 for (i = 0; i < ret; i++)
3265                         btrfs_free_fs_root(fs_info, gang[i]);
3266         }
3267 }
3268
3269 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3270 {
3271         u64 root_objectid = 0;
3272         struct btrfs_root *gang[8];
3273         int i;
3274         int ret;
3275
3276         while (1) {
3277                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3278                                              (void **)gang, root_objectid,
3279                                              ARRAY_SIZE(gang));
3280                 if (!ret)
3281                         break;
3282
3283                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3284                 for (i = 0; i < ret; i++) {
3285                         int err;
3286
3287                         root_objectid = gang[i]->root_key.objectid;
3288                         err = btrfs_orphan_cleanup(gang[i]);
3289                         if (err)
3290                                 return err;
3291                 }
3292                 root_objectid++;
3293         }
3294         return 0;
3295 }
3296
3297 int btrfs_commit_super(struct btrfs_root *root)
3298 {
3299         struct btrfs_trans_handle *trans;
3300         int ret;
3301
3302         mutex_lock(&root->fs_info->cleaner_mutex);
3303         btrfs_run_delayed_iputs(root);
3304         btrfs_clean_old_snapshots(root);
3305         mutex_unlock(&root->fs_info->cleaner_mutex);
3306
3307         /* wait until ongoing cleanup work done */
3308         down_write(&root->fs_info->cleanup_work_sem);
3309         up_write(&root->fs_info->cleanup_work_sem);
3310
3311         trans = btrfs_join_transaction(root);
3312         if (IS_ERR(trans))
3313                 return PTR_ERR(trans);
3314         ret = btrfs_commit_transaction(trans, root);
3315         if (ret)
3316                 return ret;
3317         /* run commit again to drop the original snapshot */
3318         trans = btrfs_join_transaction(root);
3319         if (IS_ERR(trans))
3320                 return PTR_ERR(trans);
3321         ret = btrfs_commit_transaction(trans, root);
3322         if (ret)
3323                 return ret;
3324         ret = btrfs_write_and_wait_transaction(NULL, root);
3325         if (ret) {
3326                 btrfs_error(root->fs_info, ret,
3327                             "Failed to sync btree inode to disk.");
3328                 return ret;
3329         }
3330
3331         ret = write_ctree_super(NULL, root, 0);
3332         return ret;
3333 }
3334
3335 int close_ctree(struct btrfs_root *root)
3336 {
3337         struct btrfs_fs_info *fs_info = root->fs_info;
3338         int ret;
3339
3340         fs_info->closing = 1;
3341         smp_mb();
3342
3343         /* pause restriper - we want to resume on mount */
3344         btrfs_pause_balance(fs_info);
3345
3346         btrfs_dev_replace_suspend_for_unmount(fs_info);
3347
3348         btrfs_scrub_cancel(fs_info);
3349
3350         /* wait for any defraggers to finish */
3351         wait_event(fs_info->transaction_wait,
3352                    (atomic_read(&fs_info->defrag_running) == 0));
3353
3354         /* clear out the rbtree of defraggable inodes */
3355         btrfs_cleanup_defrag_inodes(fs_info);
3356
3357         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3358                 ret = btrfs_commit_super(root);
3359                 if (ret)
3360                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3361         }
3362
3363         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3364                 btrfs_error_commit_super(root);
3365
3366         btrfs_put_block_group_cache(fs_info);
3367
3368         kthread_stop(fs_info->transaction_kthread);
3369         kthread_stop(fs_info->cleaner_kthread);
3370
3371         fs_info->closing = 2;
3372         smp_mb();
3373
3374         btrfs_free_qgroup_config(root->fs_info);
3375
3376         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3377                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3378                        percpu_counter_sum(&fs_info->delalloc_bytes));
3379         }
3380
3381         free_extent_buffer(fs_info->extent_root->node);
3382         free_extent_buffer(fs_info->extent_root->commit_root);
3383         free_extent_buffer(fs_info->tree_root->node);
3384         free_extent_buffer(fs_info->tree_root->commit_root);
3385         free_extent_buffer(fs_info->chunk_root->node);
3386         free_extent_buffer(fs_info->chunk_root->commit_root);
3387         free_extent_buffer(fs_info->dev_root->node);
3388         free_extent_buffer(fs_info->dev_root->commit_root);
3389         free_extent_buffer(fs_info->csum_root->node);
3390         free_extent_buffer(fs_info->csum_root->commit_root);
3391         if (fs_info->quota_root) {
3392                 free_extent_buffer(fs_info->quota_root->node);
3393                 free_extent_buffer(fs_info->quota_root->commit_root);
3394         }
3395
3396         btrfs_free_block_groups(fs_info);
3397
3398         del_fs_roots(fs_info);
3399
3400         iput(fs_info->btree_inode);
3401
3402         btrfs_stop_workers(&fs_info->generic_worker);
3403         btrfs_stop_workers(&fs_info->fixup_workers);
3404         btrfs_stop_workers(&fs_info->delalloc_workers);
3405         btrfs_stop_workers(&fs_info->workers);
3406         btrfs_stop_workers(&fs_info->endio_workers);
3407         btrfs_stop_workers(&fs_info->endio_meta_workers);
3408         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3409         btrfs_stop_workers(&fs_info->endio_write_workers);
3410         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3411         btrfs_stop_workers(&fs_info->submit_workers);
3412         btrfs_stop_workers(&fs_info->delayed_workers);
3413         btrfs_stop_workers(&fs_info->caching_workers);
3414         btrfs_stop_workers(&fs_info->readahead_workers);
3415         btrfs_stop_workers(&fs_info->flush_workers);
3416
3417 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3418         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3419                 btrfsic_unmount(root, fs_info->fs_devices);
3420 #endif
3421
3422         btrfs_close_devices(fs_info->fs_devices);
3423         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3424
3425         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3426         percpu_counter_destroy(&fs_info->delalloc_bytes);
3427         bdi_destroy(&fs_info->bdi);
3428         cleanup_srcu_struct(&fs_info->subvol_srcu);
3429
3430         return 0;
3431 }
3432
3433 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3434                           int atomic)
3435 {
3436         int ret;
3437         struct inode *btree_inode = buf->pages[0]->mapping->host;
3438
3439         ret = extent_buffer_uptodate(buf);
3440         if (!ret)
3441                 return ret;
3442
3443         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3444                                     parent_transid, atomic);
3445         if (ret == -EAGAIN)
3446                 return ret;
3447         return !ret;
3448 }
3449
3450 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3451 {
3452         return set_extent_buffer_uptodate(buf);
3453 }
3454
3455 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3456 {
3457         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3458         u64 transid = btrfs_header_generation(buf);
3459         int was_dirty;
3460
3461         btrfs_assert_tree_locked(buf);
3462         if (transid != root->fs_info->generation)
3463                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3464                        "found %llu running %llu\n",
3465                         (unsigned long long)buf->start,
3466                         (unsigned long long)transid,
3467                         (unsigned long long)root->fs_info->generation);
3468         was_dirty = set_extent_buffer_dirty(buf);
3469         if (!was_dirty)
3470                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3471                                      buf->len,
3472                                      root->fs_info->dirty_metadata_batch);
3473 }
3474
3475 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3476                                         int flush_delayed)
3477 {
3478         /*
3479          * looks as though older kernels can get into trouble with
3480          * this code, they end up stuck in balance_dirty_pages forever
3481          */
3482         int ret;
3483
3484         if (current->flags & PF_MEMALLOC)
3485                 return;
3486
3487         if (flush_delayed)
3488                 btrfs_balance_delayed_items(root);
3489
3490         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3491                                      BTRFS_DIRTY_METADATA_THRESH);
3492         if (ret > 0) {
3493                 balance_dirty_pages_ratelimited_nr(
3494                                    root->fs_info->btree_inode->i_mapping, 1);
3495         }
3496         return;
3497 }
3498
3499 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3500 {
3501         __btrfs_btree_balance_dirty(root, 1);
3502 }
3503
3504 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3505 {
3506         __btrfs_btree_balance_dirty(root, 0);
3507 }
3508
3509 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3510 {
3511         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3512         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3513 }
3514
3515 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3516                               int read_only)
3517 {
3518         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3519                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3520                 return -EINVAL;
3521         }
3522
3523         if (read_only)
3524                 return 0;
3525
3526         return 0;
3527 }
3528
3529 void btrfs_error_commit_super(struct btrfs_root *root)
3530 {
3531         mutex_lock(&root->fs_info->cleaner_mutex);
3532         btrfs_run_delayed_iputs(root);
3533         mutex_unlock(&root->fs_info->cleaner_mutex);
3534
3535         down_write(&root->fs_info->cleanup_work_sem);
3536         up_write(&root->fs_info->cleanup_work_sem);
3537
3538         /* cleanup FS via transaction */
3539         btrfs_cleanup_transaction(root);
3540 }
3541
3542 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3543 {
3544         struct btrfs_inode *btrfs_inode;
3545         struct list_head splice;
3546
3547         INIT_LIST_HEAD(&splice);
3548
3549         mutex_lock(&root->fs_info->ordered_operations_mutex);
3550         spin_lock(&root->fs_info->ordered_extent_lock);
3551
3552         list_splice_init(&root->fs_info->ordered_operations, &splice);
3553         while (!list_empty(&splice)) {
3554                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3555                                          ordered_operations);
3556
3557                 list_del_init(&btrfs_inode->ordered_operations);
3558
3559                 btrfs_invalidate_inodes(btrfs_inode->root);
3560         }
3561
3562         spin_unlock(&root->fs_info->ordered_extent_lock);
3563         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3564 }
3565
3566 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3567 {
3568         struct list_head splice;
3569         struct btrfs_ordered_extent *ordered;
3570         struct inode *inode;
3571
3572         INIT_LIST_HEAD(&splice);
3573
3574         spin_lock(&root->fs_info->ordered_extent_lock);
3575
3576         list_splice_init(&root->fs_info->ordered_extents, &splice);
3577         while (!list_empty(&splice)) {
3578                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3579                                      root_extent_list);
3580
3581                 list_del_init(&ordered->root_extent_list);
3582                 atomic_inc(&ordered->refs);
3583
3584                 /* the inode may be getting freed (in sys_unlink path). */
3585                 inode = igrab(ordered->inode);
3586
3587                 spin_unlock(&root->fs_info->ordered_extent_lock);
3588                 if (inode)
3589                         iput(inode);
3590
3591                 atomic_set(&ordered->refs, 1);
3592                 btrfs_put_ordered_extent(ordered);
3593
3594                 spin_lock(&root->fs_info->ordered_extent_lock);
3595         }
3596
3597         spin_unlock(&root->fs_info->ordered_extent_lock);
3598 }
3599
3600 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3601                                struct btrfs_root *root)
3602 {
3603         struct rb_node *node;
3604         struct btrfs_delayed_ref_root *delayed_refs;
3605         struct btrfs_delayed_ref_node *ref;
3606         int ret = 0;
3607
3608         delayed_refs = &trans->delayed_refs;
3609
3610         spin_lock(&delayed_refs->lock);
3611         if (delayed_refs->num_entries == 0) {
3612                 spin_unlock(&delayed_refs->lock);
3613                 printk(KERN_INFO "delayed_refs has NO entry\n");
3614                 return ret;
3615         }
3616
3617         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3618                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3619
3620                 atomic_set(&ref->refs, 1);
3621                 if (btrfs_delayed_ref_is_head(ref)) {
3622                         struct btrfs_delayed_ref_head *head;
3623
3624                         head = btrfs_delayed_node_to_head(ref);
3625                         if (!mutex_trylock(&head->mutex)) {
3626                                 atomic_inc(&ref->refs);
3627                                 spin_unlock(&delayed_refs->lock);
3628
3629                                 /* Need to wait for the delayed ref to run */
3630                                 mutex_lock(&head->mutex);
3631                                 mutex_unlock(&head->mutex);
3632                                 btrfs_put_delayed_ref(ref);
3633
3634                                 spin_lock(&delayed_refs->lock);
3635                                 continue;
3636                         }
3637
3638                         btrfs_free_delayed_extent_op(head->extent_op);
3639                         delayed_refs->num_heads--;
3640                         if (list_empty(&head->cluster))
3641                                 delayed_refs->num_heads_ready--;
3642                         list_del_init(&head->cluster);
3643                 }
3644                 ref->in_tree = 0;
3645                 rb_erase(&ref->rb_node, &delayed_refs->root);
3646                 delayed_refs->num_entries--;
3647
3648                 spin_unlock(&delayed_refs->lock);
3649                 btrfs_put_delayed_ref(ref);
3650
3651                 cond_resched();
3652                 spin_lock(&delayed_refs->lock);
3653         }
3654
3655         spin_unlock(&delayed_refs->lock);
3656
3657         return ret;
3658 }
3659
3660 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3661 {
3662         struct btrfs_pending_snapshot *snapshot;
3663         struct list_head splice;
3664
3665         INIT_LIST_HEAD(&splice);
3666
3667         list_splice_init(&t->pending_snapshots, &splice);
3668
3669         while (!list_empty(&splice)) {
3670                 snapshot = list_entry(splice.next,
3671                                       struct btrfs_pending_snapshot,
3672                                       list);
3673
3674                 list_del_init(&snapshot->list);
3675
3676                 kfree(snapshot);
3677         }
3678 }
3679
3680 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3681 {
3682         struct btrfs_inode *btrfs_inode;
3683         struct list_head splice;
3684
3685         INIT_LIST_HEAD(&splice);
3686
3687         spin_lock(&root->fs_info->delalloc_lock);
3688         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3689
3690         while (!list_empty(&splice)) {
3691                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3692                                     delalloc_inodes);
3693
3694                 list_del_init(&btrfs_inode->delalloc_inodes);
3695                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3696                           &btrfs_inode->runtime_flags);
3697
3698                 btrfs_invalidate_inodes(btrfs_inode->root);
3699         }
3700
3701         spin_unlock(&root->fs_info->delalloc_lock);
3702 }
3703
3704 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3705                                         struct extent_io_tree *dirty_pages,
3706                                         int mark)
3707 {
3708         int ret;
3709         struct page *page;
3710         struct inode *btree_inode = root->fs_info->btree_inode;
3711         struct extent_buffer *eb;
3712         u64 start = 0;
3713         u64 end;
3714         u64 offset;
3715         unsigned long index;
3716
3717         while (1) {
3718                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3719                                             mark, NULL);
3720                 if (ret)
3721                         break;
3722
3723                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3724                 while (start <= end) {
3725                         index = start >> PAGE_CACHE_SHIFT;
3726                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3727                         page = find_get_page(btree_inode->i_mapping, index);
3728                         if (!page)
3729                                 continue;
3730                         offset = page_offset(page);
3731
3732                         spin_lock(&dirty_pages->buffer_lock);
3733                         eb = radix_tree_lookup(
3734                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3735                                                offset >> PAGE_CACHE_SHIFT);
3736                         spin_unlock(&dirty_pages->buffer_lock);
3737                         if (eb)
3738                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3739                                                          &eb->bflags);
3740                         if (PageWriteback(page))
3741                                 end_page_writeback(page);
3742
3743                         lock_page(page);
3744                         if (PageDirty(page)) {
3745                                 clear_page_dirty_for_io(page);
3746                                 spin_lock_irq(&page->mapping->tree_lock);
3747                                 radix_tree_tag_clear(&page->mapping->page_tree,
3748                                                         page_index(page),
3749                                                         PAGECACHE_TAG_DIRTY);
3750                                 spin_unlock_irq(&page->mapping->tree_lock);
3751                         }
3752
3753                         unlock_page(page);
3754                         page_cache_release(page);
3755                 }
3756         }
3757
3758         return ret;
3759 }
3760
3761 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3762                                        struct extent_io_tree *pinned_extents)
3763 {
3764         struct extent_io_tree *unpin;
3765         u64 start;
3766         u64 end;
3767         int ret;
3768         bool loop = true;
3769
3770         unpin = pinned_extents;
3771 again:
3772         while (1) {
3773                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3774                                             EXTENT_DIRTY, NULL);
3775                 if (ret)
3776                         break;
3777
3778                 /* opt_discard */
3779                 if (btrfs_test_opt(root, DISCARD))
3780                         ret = btrfs_error_discard_extent(root, start,
3781                                                          end + 1 - start,
3782                                                          NULL);
3783
3784                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3785                 btrfs_error_unpin_extent_range(root, start, end);
3786                 cond_resched();
3787         }
3788
3789         if (loop) {
3790                 if (unpin == &root->fs_info->freed_extents[0])
3791                         unpin = &root->fs_info->freed_extents[1];
3792                 else
3793                         unpin = &root->fs_info->freed_extents[0];
3794                 loop = false;
3795                 goto again;
3796         }
3797
3798         return 0;
3799 }
3800
3801 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3802                                    struct btrfs_root *root)
3803 {
3804         btrfs_destroy_delayed_refs(cur_trans, root);
3805         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3806                                 cur_trans->dirty_pages.dirty_bytes);
3807
3808         /* FIXME: cleanup wait for commit */
3809         cur_trans->in_commit = 1;
3810         cur_trans->blocked = 1;
3811         wake_up(&root->fs_info->transaction_blocked_wait);
3812
3813         cur_trans->blocked = 0;
3814         wake_up(&root->fs_info->transaction_wait);
3815
3816         cur_trans->commit_done = 1;
3817         wake_up(&cur_trans->commit_wait);
3818
3819         btrfs_destroy_delayed_inodes(root);
3820         btrfs_assert_delayed_root_empty(root);
3821
3822         btrfs_destroy_pending_snapshots(cur_trans);
3823
3824         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3825                                      EXTENT_DIRTY);
3826         btrfs_destroy_pinned_extent(root,
3827                                     root->fs_info->pinned_extents);
3828
3829         /*
3830         memset(cur_trans, 0, sizeof(*cur_trans));
3831         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3832         */
3833 }
3834
3835 int btrfs_cleanup_transaction(struct btrfs_root *root)
3836 {
3837         struct btrfs_transaction *t;
3838         LIST_HEAD(list);
3839
3840         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3841
3842         spin_lock(&root->fs_info->trans_lock);
3843         list_splice_init(&root->fs_info->trans_list, &list);
3844         root->fs_info->trans_no_join = 1;
3845         spin_unlock(&root->fs_info->trans_lock);
3846
3847         while (!list_empty(&list)) {
3848                 t = list_entry(list.next, struct btrfs_transaction, list);
3849                 if (!t)
3850                         break;
3851
3852                 btrfs_destroy_ordered_operations(root);
3853
3854                 btrfs_destroy_ordered_extents(root);
3855
3856                 btrfs_destroy_delayed_refs(t, root);
3857
3858                 btrfs_block_rsv_release(root,
3859                                         &root->fs_info->trans_block_rsv,
3860                                         t->dirty_pages.dirty_bytes);
3861
3862                 /* FIXME: cleanup wait for commit */
3863                 t->in_commit = 1;
3864                 t->blocked = 1;
3865                 smp_mb();
3866                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3867                         wake_up(&root->fs_info->transaction_blocked_wait);
3868
3869                 t->blocked = 0;
3870                 smp_mb();
3871                 if (waitqueue_active(&root->fs_info->transaction_wait))
3872                         wake_up(&root->fs_info->transaction_wait);
3873
3874                 t->commit_done = 1;
3875                 smp_mb();
3876                 if (waitqueue_active(&t->commit_wait))
3877                         wake_up(&t->commit_wait);
3878
3879                 btrfs_destroy_delayed_inodes(root);
3880                 btrfs_assert_delayed_root_empty(root);
3881
3882                 btrfs_destroy_pending_snapshots(t);
3883
3884                 btrfs_destroy_delalloc_inodes(root);
3885
3886                 spin_lock(&root->fs_info->trans_lock);
3887                 root->fs_info->running_transaction = NULL;
3888                 spin_unlock(&root->fs_info->trans_lock);
3889
3890                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3891                                              EXTENT_DIRTY);
3892
3893                 btrfs_destroy_pinned_extent(root,
3894                                             root->fs_info->pinned_extents);
3895
3896                 atomic_set(&t->use_count, 0);
3897                 list_del_init(&t->list);
3898                 memset(t, 0, sizeof(*t));
3899                 kmem_cache_free(btrfs_transaction_cachep, t);
3900         }
3901
3902         spin_lock(&root->fs_info->trans_lock);
3903         root->fs_info->trans_no_join = 0;
3904         spin_unlock(&root->fs_info->trans_lock);
3905         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3906
3907         return 0;
3908 }
3909
3910 static struct extent_io_ops btree_extent_io_ops = {
3911         .readpage_end_io_hook = btree_readpage_end_io_hook,
3912         .readpage_io_failed_hook = btree_io_failed_hook,
3913         .submit_bio_hook = btree_submit_bio_hook,
3914         /* note we're sharing with inode.c for the merge bio hook */
3915         .merge_bio_hook = btrfs_merge_bio_hook,
3916 };