]> Pileus Git - ~andy/linux/blob - fs/btrfs/ctree.c
btrfs: expand btrfs_find_item() to include find_root_ref functionality
[~andy/linux] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84         /* lockdep really cares that we take all of these spinlocks
85          * in the right order.  If any of the locks in the path are not
86          * currently blocking, it is going to complain.  So, make really
87          * really sure by forcing the path to blocking before we clear
88          * the path blocking.
89          */
90         if (held) {
91                 btrfs_set_lock_blocking_rw(held, held_rw);
92                 if (held_rw == BTRFS_WRITE_LOCK)
93                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94                 else if (held_rw == BTRFS_READ_LOCK)
95                         held_rw = BTRFS_READ_LOCK_BLOCKING;
96         }
97         btrfs_set_path_blocking(p);
98 #endif
99
100         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101                 if (p->nodes[i] && p->locks[i]) {
102                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104                                 p->locks[i] = BTRFS_WRITE_LOCK;
105                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106                                 p->locks[i] = BTRFS_READ_LOCK;
107                 }
108         }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111         if (held)
112                 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119         if (!p)
120                 return;
121         btrfs_release_path(p);
122         kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126  * path release drops references on the extent buffers in the path
127  * and it drops any locks held by this path
128  *
129  * It is safe to call this on paths that no locks or extent buffers held.
130  */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133         int i;
134
135         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136                 p->slots[i] = 0;
137                 if (!p->nodes[i])
138                         continue;
139                 if (p->locks[i]) {
140                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141                         p->locks[i] = 0;
142                 }
143                 free_extent_buffer(p->nodes[i]);
144                 p->nodes[i] = NULL;
145         }
146 }
147
148 /*
149  * safely gets a reference on the root node of a tree.  A lock
150  * is not taken, so a concurrent writer may put a different node
151  * at the root of the tree.  See btrfs_lock_root_node for the
152  * looping required.
153  *
154  * The extent buffer returned by this has a reference taken, so
155  * it won't disappear.  It may stop being the root of the tree
156  * at any time because there are no locks held.
157  */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160         struct extent_buffer *eb;
161
162         while (1) {
163                 rcu_read_lock();
164                 eb = rcu_dereference(root->node);
165
166                 /*
167                  * RCU really hurts here, we could free up the root node because
168                  * it was cow'ed but we may not get the new root node yet so do
169                  * the inc_not_zero dance and if it doesn't work then
170                  * synchronize_rcu and try again.
171                  */
172                 if (atomic_inc_not_zero(&eb->refs)) {
173                         rcu_read_unlock();
174                         break;
175                 }
176                 rcu_read_unlock();
177                 synchronize_rcu();
178         }
179         return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183  * tree until you end up with a lock on the root.  A locked buffer
184  * is returned, with a reference held.
185  */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188         struct extent_buffer *eb;
189
190         while (1) {
191                 eb = btrfs_root_node(root);
192                 btrfs_tree_lock(eb);
193                 if (eb == root->node)
194                         break;
195                 btrfs_tree_unlock(eb);
196                 free_extent_buffer(eb);
197         }
198         return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202  * tree until you end up with a lock on the root.  A locked buffer
203  * is returned, with a reference held.
204  */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207         struct extent_buffer *eb;
208
209         while (1) {
210                 eb = btrfs_root_node(root);
211                 btrfs_tree_read_lock(eb);
212                 if (eb == root->node)
213                         break;
214                 btrfs_tree_read_unlock(eb);
215                 free_extent_buffer(eb);
216         }
217         return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221  * put onto a simple dirty list.  transaction.c walks this to make sure they
222  * get properly updated on disk.
223  */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226         spin_lock(&root->fs_info->trans_lock);
227         if (root->track_dirty && list_empty(&root->dirty_list)) {
228                 list_add(&root->dirty_list,
229                          &root->fs_info->dirty_cowonly_roots);
230         }
231         spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240                       struct btrfs_root *root,
241                       struct extent_buffer *buf,
242                       struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244         struct extent_buffer *cow;
245         int ret = 0;
246         int level;
247         struct btrfs_disk_key disk_key;
248
249         WARN_ON(root->ref_cows && trans->transid !=
250                 root->fs_info->running_transaction->transid);
251         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
252
253         level = btrfs_header_level(buf);
254         if (level == 0)
255                 btrfs_item_key(buf, &disk_key, 0);
256         else
257                 btrfs_node_key(buf, &disk_key, 0);
258
259         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
260                                      new_root_objectid, &disk_key, level,
261                                      buf->start, 0);
262         if (IS_ERR(cow))
263                 return PTR_ERR(cow);
264
265         copy_extent_buffer(cow, buf, 0, 0, cow->len);
266         btrfs_set_header_bytenr(cow, cow->start);
267         btrfs_set_header_generation(cow, trans->transid);
268         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270                                      BTRFS_HEADER_FLAG_RELOC);
271         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273         else
274                 btrfs_set_header_owner(cow, new_root_objectid);
275
276         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277                             BTRFS_FSID_SIZE);
278
279         WARN_ON(btrfs_header_generation(buf) > trans->transid);
280         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
282         else
283                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
284
285         if (ret)
286                 return ret;
287
288         btrfs_mark_buffer_dirty(cow);
289         *cow_ret = cow;
290         return 0;
291 }
292
293 enum mod_log_op {
294         MOD_LOG_KEY_REPLACE,
295         MOD_LOG_KEY_ADD,
296         MOD_LOG_KEY_REMOVE,
297         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299         MOD_LOG_MOVE_KEYS,
300         MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304         int dst_slot;
305         int nr_items;
306 };
307
308 struct tree_mod_root {
309         u64 logical;
310         u8 level;
311 };
312
313 struct tree_mod_elem {
314         struct rb_node node;
315         u64 index;              /* shifted logical */
316         u64 seq;
317         enum mod_log_op op;
318
319         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320         int slot;
321
322         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323         u64 generation;
324
325         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326         struct btrfs_disk_key key;
327         u64 blockptr;
328
329         /* this is used for op == MOD_LOG_MOVE_KEYS */
330         struct tree_mod_move move;
331
332         /* this is used for op == MOD_LOG_ROOT_REPLACE */
333         struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338         read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343         read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348         write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353         write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357  * Increment the upper half of tree_mod_seq, set lower half zero.
358  *
359  * Must be called with fs_info->tree_mod_seq_lock held.
360  */
361 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
362 {
363         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
364         seq &= 0xffffffff00000000ull;
365         seq += 1ull << 32;
366         atomic64_set(&fs_info->tree_mod_seq, seq);
367         return seq;
368 }
369
370 /*
371  * Increment the lower half of tree_mod_seq.
372  *
373  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
374  * are generated should not technically require a spin lock here. (Rationale:
375  * incrementing the minor while incrementing the major seq number is between its
376  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
377  * just returns a unique sequence number as usual.) We have decided to leave
378  * that requirement in here and rethink it once we notice it really imposes a
379  * problem on some workload.
380  */
381 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
382 {
383         return atomic64_inc_return(&fs_info->tree_mod_seq);
384 }
385
386 /*
387  * return the last minor in the previous major tree_mod_seq number
388  */
389 u64 btrfs_tree_mod_seq_prev(u64 seq)
390 {
391         return (seq & 0xffffffff00000000ull) - 1ull;
392 }
393
394 /*
395  * This adds a new blocker to the tree mod log's blocker list if the @elem
396  * passed does not already have a sequence number set. So when a caller expects
397  * to record tree modifications, it should ensure to set elem->seq to zero
398  * before calling btrfs_get_tree_mod_seq.
399  * Returns a fresh, unused tree log modification sequence number, even if no new
400  * blocker was added.
401  */
402 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
403                            struct seq_list *elem)
404 {
405         u64 seq;
406
407         tree_mod_log_write_lock(fs_info);
408         spin_lock(&fs_info->tree_mod_seq_lock);
409         if (!elem->seq) {
410                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
411                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
412         }
413         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
414         spin_unlock(&fs_info->tree_mod_seq_lock);
415         tree_mod_log_write_unlock(fs_info);
416
417         return seq;
418 }
419
420 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
421                             struct seq_list *elem)
422 {
423         struct rb_root *tm_root;
424         struct rb_node *node;
425         struct rb_node *next;
426         struct seq_list *cur_elem;
427         struct tree_mod_elem *tm;
428         u64 min_seq = (u64)-1;
429         u64 seq_putting = elem->seq;
430
431         if (!seq_putting)
432                 return;
433
434         spin_lock(&fs_info->tree_mod_seq_lock);
435         list_del(&elem->list);
436         elem->seq = 0;
437
438         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
439                 if (cur_elem->seq < min_seq) {
440                         if (seq_putting > cur_elem->seq) {
441                                 /*
442                                  * blocker with lower sequence number exists, we
443                                  * cannot remove anything from the log
444                                  */
445                                 spin_unlock(&fs_info->tree_mod_seq_lock);
446                                 return;
447                         }
448                         min_seq = cur_elem->seq;
449                 }
450         }
451         spin_unlock(&fs_info->tree_mod_seq_lock);
452
453         /*
454          * anything that's lower than the lowest existing (read: blocked)
455          * sequence number can be removed from the tree.
456          */
457         tree_mod_log_write_lock(fs_info);
458         tm_root = &fs_info->tree_mod_log;
459         for (node = rb_first(tm_root); node; node = next) {
460                 next = rb_next(node);
461                 tm = container_of(node, struct tree_mod_elem, node);
462                 if (tm->seq > min_seq)
463                         continue;
464                 rb_erase(node, tm_root);
465                 kfree(tm);
466         }
467         tree_mod_log_write_unlock(fs_info);
468 }
469
470 /*
471  * key order of the log:
472  *       index -> sequence
473  *
474  * the index is the shifted logical of the *new* root node for root replace
475  * operations, or the shifted logical of the affected block for all other
476  * operations.
477  */
478 static noinline int
479 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
480 {
481         struct rb_root *tm_root;
482         struct rb_node **new;
483         struct rb_node *parent = NULL;
484         struct tree_mod_elem *cur;
485         int ret = 0;
486
487         BUG_ON(!tm);
488
489         tree_mod_log_write_lock(fs_info);
490         if (list_empty(&fs_info->tree_mod_seq_list)) {
491                 tree_mod_log_write_unlock(fs_info);
492                 /*
493                  * Ok we no longer care about logging modifications, free up tm
494                  * and return 0.  Any callers shouldn't be using tm after
495                  * calling tree_mod_log_insert, but if they do we can just
496                  * change this to return a special error code to let the callers
497                  * do their own thing.
498                  */
499                 kfree(tm);
500                 return 0;
501         }
502
503         spin_lock(&fs_info->tree_mod_seq_lock);
504         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
505         spin_unlock(&fs_info->tree_mod_seq_lock);
506
507         tm_root = &fs_info->tree_mod_log;
508         new = &tm_root->rb_node;
509         while (*new) {
510                 cur = container_of(*new, struct tree_mod_elem, node);
511                 parent = *new;
512                 if (cur->index < tm->index)
513                         new = &((*new)->rb_left);
514                 else if (cur->index > tm->index)
515                         new = &((*new)->rb_right);
516                 else if (cur->seq < tm->seq)
517                         new = &((*new)->rb_left);
518                 else if (cur->seq > tm->seq)
519                         new = &((*new)->rb_right);
520                 else {
521                         ret = -EEXIST;
522                         kfree(tm);
523                         goto out;
524                 }
525         }
526
527         rb_link_node(&tm->node, parent, new);
528         rb_insert_color(&tm->node, tm_root);
529 out:
530         tree_mod_log_write_unlock(fs_info);
531         return ret;
532 }
533
534 /*
535  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
536  * returns zero with the tree_mod_log_lock acquired. The caller must hold
537  * this until all tree mod log insertions are recorded in the rb tree and then
538  * call tree_mod_log_write_unlock() to release.
539  */
540 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
541                                     struct extent_buffer *eb) {
542         smp_mb();
543         if (list_empty(&(fs_info)->tree_mod_seq_list))
544                 return 1;
545         if (eb && btrfs_header_level(eb) == 0)
546                 return 1;
547         return 0;
548 }
549
550 static inline int
551 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
552                           struct extent_buffer *eb, int slot,
553                           enum mod_log_op op, gfp_t flags)
554 {
555         struct tree_mod_elem *tm;
556
557         tm = kzalloc(sizeof(*tm), flags);
558         if (!tm)
559                 return -ENOMEM;
560
561         tm->index = eb->start >> PAGE_CACHE_SHIFT;
562         if (op != MOD_LOG_KEY_ADD) {
563                 btrfs_node_key(eb, &tm->key, slot);
564                 tm->blockptr = btrfs_node_blockptr(eb, slot);
565         }
566         tm->op = op;
567         tm->slot = slot;
568         tm->generation = btrfs_node_ptr_generation(eb, slot);
569
570         return __tree_mod_log_insert(fs_info, tm);
571 }
572
573 static noinline int
574 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
575                         struct extent_buffer *eb, int slot,
576                         enum mod_log_op op, gfp_t flags)
577 {
578         if (tree_mod_dont_log(fs_info, eb))
579                 return 0;
580
581         return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
582 }
583
584 static noinline int
585 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
586                          struct extent_buffer *eb, int dst_slot, int src_slot,
587                          int nr_items, gfp_t flags)
588 {
589         struct tree_mod_elem *tm;
590         int ret;
591         int i;
592
593         if (tree_mod_dont_log(fs_info, eb))
594                 return 0;
595
596         /*
597          * When we override something during the move, we log these removals.
598          * This can only happen when we move towards the beginning of the
599          * buffer, i.e. dst_slot < src_slot.
600          */
601         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
602                 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
603                                 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
604                 BUG_ON(ret < 0);
605         }
606
607         tm = kzalloc(sizeof(*tm), flags);
608         if (!tm)
609                 return -ENOMEM;
610
611         tm->index = eb->start >> PAGE_CACHE_SHIFT;
612         tm->slot = src_slot;
613         tm->move.dst_slot = dst_slot;
614         tm->move.nr_items = nr_items;
615         tm->op = MOD_LOG_MOVE_KEYS;
616
617         return __tree_mod_log_insert(fs_info, tm);
618 }
619
620 static inline void
621 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
622 {
623         int i;
624         u32 nritems;
625         int ret;
626
627         if (btrfs_header_level(eb) == 0)
628                 return;
629
630         nritems = btrfs_header_nritems(eb);
631         for (i = nritems - 1; i >= 0; i--) {
632                 ret = __tree_mod_log_insert_key(fs_info, eb, i,
633                                 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
634                 BUG_ON(ret < 0);
635         }
636 }
637
638 static noinline int
639 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
640                          struct extent_buffer *old_root,
641                          struct extent_buffer *new_root, gfp_t flags,
642                          int log_removal)
643 {
644         struct tree_mod_elem *tm;
645
646         if (tree_mod_dont_log(fs_info, NULL))
647                 return 0;
648
649         if (log_removal)
650                 __tree_mod_log_free_eb(fs_info, old_root);
651
652         tm = kzalloc(sizeof(*tm), flags);
653         if (!tm)
654                 return -ENOMEM;
655
656         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
657         tm->old_root.logical = old_root->start;
658         tm->old_root.level = btrfs_header_level(old_root);
659         tm->generation = btrfs_header_generation(old_root);
660         tm->op = MOD_LOG_ROOT_REPLACE;
661
662         return __tree_mod_log_insert(fs_info, tm);
663 }
664
665 static struct tree_mod_elem *
666 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
667                       int smallest)
668 {
669         struct rb_root *tm_root;
670         struct rb_node *node;
671         struct tree_mod_elem *cur = NULL;
672         struct tree_mod_elem *found = NULL;
673         u64 index = start >> PAGE_CACHE_SHIFT;
674
675         tree_mod_log_read_lock(fs_info);
676         tm_root = &fs_info->tree_mod_log;
677         node = tm_root->rb_node;
678         while (node) {
679                 cur = container_of(node, struct tree_mod_elem, node);
680                 if (cur->index < index) {
681                         node = node->rb_left;
682                 } else if (cur->index > index) {
683                         node = node->rb_right;
684                 } else if (cur->seq < min_seq) {
685                         node = node->rb_left;
686                 } else if (!smallest) {
687                         /* we want the node with the highest seq */
688                         if (found)
689                                 BUG_ON(found->seq > cur->seq);
690                         found = cur;
691                         node = node->rb_left;
692                 } else if (cur->seq > min_seq) {
693                         /* we want the node with the smallest seq */
694                         if (found)
695                                 BUG_ON(found->seq < cur->seq);
696                         found = cur;
697                         node = node->rb_right;
698                 } else {
699                         found = cur;
700                         break;
701                 }
702         }
703         tree_mod_log_read_unlock(fs_info);
704
705         return found;
706 }
707
708 /*
709  * this returns the element from the log with the smallest time sequence
710  * value that's in the log (the oldest log item). any element with a time
711  * sequence lower than min_seq will be ignored.
712  */
713 static struct tree_mod_elem *
714 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
715                            u64 min_seq)
716 {
717         return __tree_mod_log_search(fs_info, start, min_seq, 1);
718 }
719
720 /*
721  * this returns the element from the log with the largest time sequence
722  * value that's in the log (the most recent log item). any element with
723  * a time sequence lower than min_seq will be ignored.
724  */
725 static struct tree_mod_elem *
726 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
727 {
728         return __tree_mod_log_search(fs_info, start, min_seq, 0);
729 }
730
731 static noinline void
732 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
733                      struct extent_buffer *src, unsigned long dst_offset,
734                      unsigned long src_offset, int nr_items)
735 {
736         int ret;
737         int i;
738
739         if (tree_mod_dont_log(fs_info, NULL))
740                 return;
741
742         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
743                 return;
744
745         for (i = 0; i < nr_items; i++) {
746                 ret = __tree_mod_log_insert_key(fs_info, src,
747                                                 i + src_offset,
748                                                 MOD_LOG_KEY_REMOVE, GFP_NOFS);
749                 BUG_ON(ret < 0);
750                 ret = __tree_mod_log_insert_key(fs_info, dst,
751                                                      i + dst_offset,
752                                                      MOD_LOG_KEY_ADD,
753                                                      GFP_NOFS);
754                 BUG_ON(ret < 0);
755         }
756 }
757
758 static inline void
759 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
760                      int dst_offset, int src_offset, int nr_items)
761 {
762         int ret;
763         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
764                                        nr_items, GFP_NOFS);
765         BUG_ON(ret < 0);
766 }
767
768 static noinline void
769 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
770                           struct extent_buffer *eb, int slot, int atomic)
771 {
772         int ret;
773
774         ret = __tree_mod_log_insert_key(fs_info, eb, slot,
775                                         MOD_LOG_KEY_REPLACE,
776                                         atomic ? GFP_ATOMIC : GFP_NOFS);
777         BUG_ON(ret < 0);
778 }
779
780 static noinline void
781 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
782 {
783         if (tree_mod_dont_log(fs_info, eb))
784                 return;
785         __tree_mod_log_free_eb(fs_info, eb);
786 }
787
788 static noinline void
789 tree_mod_log_set_root_pointer(struct btrfs_root *root,
790                               struct extent_buffer *new_root_node,
791                               int log_removal)
792 {
793         int ret;
794         ret = tree_mod_log_insert_root(root->fs_info, root->node,
795                                        new_root_node, GFP_NOFS, log_removal);
796         BUG_ON(ret < 0);
797 }
798
799 /*
800  * check if the tree block can be shared by multiple trees
801  */
802 int btrfs_block_can_be_shared(struct btrfs_root *root,
803                               struct extent_buffer *buf)
804 {
805         /*
806          * Tree blocks not in refernece counted trees and tree roots
807          * are never shared. If a block was allocated after the last
808          * snapshot and the block was not allocated by tree relocation,
809          * we know the block is not shared.
810          */
811         if (root->ref_cows &&
812             buf != root->node && buf != root->commit_root &&
813             (btrfs_header_generation(buf) <=
814              btrfs_root_last_snapshot(&root->root_item) ||
815              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
816                 return 1;
817 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
818         if (root->ref_cows &&
819             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
820                 return 1;
821 #endif
822         return 0;
823 }
824
825 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
826                                        struct btrfs_root *root,
827                                        struct extent_buffer *buf,
828                                        struct extent_buffer *cow,
829                                        int *last_ref)
830 {
831         u64 refs;
832         u64 owner;
833         u64 flags;
834         u64 new_flags = 0;
835         int ret;
836
837         /*
838          * Backrefs update rules:
839          *
840          * Always use full backrefs for extent pointers in tree block
841          * allocated by tree relocation.
842          *
843          * If a shared tree block is no longer referenced by its owner
844          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
845          * use full backrefs for extent pointers in tree block.
846          *
847          * If a tree block is been relocating
848          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
849          * use full backrefs for extent pointers in tree block.
850          * The reason for this is some operations (such as drop tree)
851          * are only allowed for blocks use full backrefs.
852          */
853
854         if (btrfs_block_can_be_shared(root, buf)) {
855                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
856                                                btrfs_header_level(buf), 1,
857                                                &refs, &flags);
858                 if (ret)
859                         return ret;
860                 if (refs == 0) {
861                         ret = -EROFS;
862                         btrfs_std_error(root->fs_info, ret);
863                         return ret;
864                 }
865         } else {
866                 refs = 1;
867                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
868                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
869                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
870                 else
871                         flags = 0;
872         }
873
874         owner = btrfs_header_owner(buf);
875         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
876                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
877
878         if (refs > 1) {
879                 if ((owner == root->root_key.objectid ||
880                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
881                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
882                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
883                         BUG_ON(ret); /* -ENOMEM */
884
885                         if (root->root_key.objectid ==
886                             BTRFS_TREE_RELOC_OBJECTID) {
887                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
888                                 BUG_ON(ret); /* -ENOMEM */
889                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
890                                 BUG_ON(ret); /* -ENOMEM */
891                         }
892                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
893                 } else {
894
895                         if (root->root_key.objectid ==
896                             BTRFS_TREE_RELOC_OBJECTID)
897                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
898                         else
899                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
900                         BUG_ON(ret); /* -ENOMEM */
901                 }
902                 if (new_flags != 0) {
903                         int level = btrfs_header_level(buf);
904
905                         ret = btrfs_set_disk_extent_flags(trans, root,
906                                                           buf->start,
907                                                           buf->len,
908                                                           new_flags, level, 0);
909                         if (ret)
910                                 return ret;
911                 }
912         } else {
913                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
914                         if (root->root_key.objectid ==
915                             BTRFS_TREE_RELOC_OBJECTID)
916                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
917                         else
918                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
919                         BUG_ON(ret); /* -ENOMEM */
920                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
921                         BUG_ON(ret); /* -ENOMEM */
922                 }
923                 clean_tree_block(trans, root, buf);
924                 *last_ref = 1;
925         }
926         return 0;
927 }
928
929 /*
930  * does the dirty work in cow of a single block.  The parent block (if
931  * supplied) is updated to point to the new cow copy.  The new buffer is marked
932  * dirty and returned locked.  If you modify the block it needs to be marked
933  * dirty again.
934  *
935  * search_start -- an allocation hint for the new block
936  *
937  * empty_size -- a hint that you plan on doing more cow.  This is the size in
938  * bytes the allocator should try to find free next to the block it returns.
939  * This is just a hint and may be ignored by the allocator.
940  */
941 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
942                              struct btrfs_root *root,
943                              struct extent_buffer *buf,
944                              struct extent_buffer *parent, int parent_slot,
945                              struct extent_buffer **cow_ret,
946                              u64 search_start, u64 empty_size)
947 {
948         struct btrfs_disk_key disk_key;
949         struct extent_buffer *cow;
950         int level, ret;
951         int last_ref = 0;
952         int unlock_orig = 0;
953         u64 parent_start;
954
955         if (*cow_ret == buf)
956                 unlock_orig = 1;
957
958         btrfs_assert_tree_locked(buf);
959
960         WARN_ON(root->ref_cows && trans->transid !=
961                 root->fs_info->running_transaction->transid);
962         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
963
964         level = btrfs_header_level(buf);
965
966         if (level == 0)
967                 btrfs_item_key(buf, &disk_key, 0);
968         else
969                 btrfs_node_key(buf, &disk_key, 0);
970
971         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
972                 if (parent)
973                         parent_start = parent->start;
974                 else
975                         parent_start = 0;
976         } else
977                 parent_start = 0;
978
979         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
980                                      root->root_key.objectid, &disk_key,
981                                      level, search_start, empty_size);
982         if (IS_ERR(cow))
983                 return PTR_ERR(cow);
984
985         /* cow is set to blocking by btrfs_init_new_buffer */
986
987         copy_extent_buffer(cow, buf, 0, 0, cow->len);
988         btrfs_set_header_bytenr(cow, cow->start);
989         btrfs_set_header_generation(cow, trans->transid);
990         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
991         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
992                                      BTRFS_HEADER_FLAG_RELOC);
993         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
994                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
995         else
996                 btrfs_set_header_owner(cow, root->root_key.objectid);
997
998         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
999                             BTRFS_FSID_SIZE);
1000
1001         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1002         if (ret) {
1003                 btrfs_abort_transaction(trans, root, ret);
1004                 return ret;
1005         }
1006
1007         if (root->ref_cows) {
1008                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1009                 if (ret)
1010                         return ret;
1011         }
1012
1013         if (buf == root->node) {
1014                 WARN_ON(parent && parent != buf);
1015                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1016                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1017                         parent_start = buf->start;
1018                 else
1019                         parent_start = 0;
1020
1021                 extent_buffer_get(cow);
1022                 tree_mod_log_set_root_pointer(root, cow, 1);
1023                 rcu_assign_pointer(root->node, cow);
1024
1025                 btrfs_free_tree_block(trans, root, buf, parent_start,
1026                                       last_ref);
1027                 free_extent_buffer(buf);
1028                 add_root_to_dirty_list(root);
1029         } else {
1030                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1031                         parent_start = parent->start;
1032                 else
1033                         parent_start = 0;
1034
1035                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1036                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1037                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1038                 btrfs_set_node_blockptr(parent, parent_slot,
1039                                         cow->start);
1040                 btrfs_set_node_ptr_generation(parent, parent_slot,
1041                                               trans->transid);
1042                 btrfs_mark_buffer_dirty(parent);
1043                 if (last_ref)
1044                         tree_mod_log_free_eb(root->fs_info, buf);
1045                 btrfs_free_tree_block(trans, root, buf, parent_start,
1046                                       last_ref);
1047         }
1048         if (unlock_orig)
1049                 btrfs_tree_unlock(buf);
1050         free_extent_buffer_stale(buf);
1051         btrfs_mark_buffer_dirty(cow);
1052         *cow_ret = cow;
1053         return 0;
1054 }
1055
1056 /*
1057  * returns the logical address of the oldest predecessor of the given root.
1058  * entries older than time_seq are ignored.
1059  */
1060 static struct tree_mod_elem *
1061 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1062                            struct extent_buffer *eb_root, u64 time_seq)
1063 {
1064         struct tree_mod_elem *tm;
1065         struct tree_mod_elem *found = NULL;
1066         u64 root_logical = eb_root->start;
1067         int looped = 0;
1068
1069         if (!time_seq)
1070                 return NULL;
1071
1072         /*
1073          * the very last operation that's logged for a root is the replacement
1074          * operation (if it is replaced at all). this has the index of the *new*
1075          * root, making it the very first operation that's logged for this root.
1076          */
1077         while (1) {
1078                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1079                                                 time_seq);
1080                 if (!looped && !tm)
1081                         return NULL;
1082                 /*
1083                  * if there are no tree operation for the oldest root, we simply
1084                  * return it. this should only happen if that (old) root is at
1085                  * level 0.
1086                  */
1087                 if (!tm)
1088                         break;
1089
1090                 /*
1091                  * if there's an operation that's not a root replacement, we
1092                  * found the oldest version of our root. normally, we'll find a
1093                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1094                  */
1095                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1096                         break;
1097
1098                 found = tm;
1099                 root_logical = tm->old_root.logical;
1100                 looped = 1;
1101         }
1102
1103         /* if there's no old root to return, return what we found instead */
1104         if (!found)
1105                 found = tm;
1106
1107         return found;
1108 }
1109
1110 /*
1111  * tm is a pointer to the first operation to rewind within eb. then, all
1112  * previous operations will be rewinded (until we reach something older than
1113  * time_seq).
1114  */
1115 static void
1116 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1117                       u64 time_seq, struct tree_mod_elem *first_tm)
1118 {
1119         u32 n;
1120         struct rb_node *next;
1121         struct tree_mod_elem *tm = first_tm;
1122         unsigned long o_dst;
1123         unsigned long o_src;
1124         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1125
1126         n = btrfs_header_nritems(eb);
1127         tree_mod_log_read_lock(fs_info);
1128         while (tm && tm->seq >= time_seq) {
1129                 /*
1130                  * all the operations are recorded with the operator used for
1131                  * the modification. as we're going backwards, we do the
1132                  * opposite of each operation here.
1133                  */
1134                 switch (tm->op) {
1135                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1136                         BUG_ON(tm->slot < n);
1137                         /* Fallthrough */
1138                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1139                 case MOD_LOG_KEY_REMOVE:
1140                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1141                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1142                         btrfs_set_node_ptr_generation(eb, tm->slot,
1143                                                       tm->generation);
1144                         n++;
1145                         break;
1146                 case MOD_LOG_KEY_REPLACE:
1147                         BUG_ON(tm->slot >= n);
1148                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1149                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1150                         btrfs_set_node_ptr_generation(eb, tm->slot,
1151                                                       tm->generation);
1152                         break;
1153                 case MOD_LOG_KEY_ADD:
1154                         /* if a move operation is needed it's in the log */
1155                         n--;
1156                         break;
1157                 case MOD_LOG_MOVE_KEYS:
1158                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1159                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1160                         memmove_extent_buffer(eb, o_dst, o_src,
1161                                               tm->move.nr_items * p_size);
1162                         break;
1163                 case MOD_LOG_ROOT_REPLACE:
1164                         /*
1165                          * this operation is special. for roots, this must be
1166                          * handled explicitly before rewinding.
1167                          * for non-roots, this operation may exist if the node
1168                          * was a root: root A -> child B; then A gets empty and
1169                          * B is promoted to the new root. in the mod log, we'll
1170                          * have a root-replace operation for B, a tree block
1171                          * that is no root. we simply ignore that operation.
1172                          */
1173                         break;
1174                 }
1175                 next = rb_next(&tm->node);
1176                 if (!next)
1177                         break;
1178                 tm = container_of(next, struct tree_mod_elem, node);
1179                 if (tm->index != first_tm->index)
1180                         break;
1181         }
1182         tree_mod_log_read_unlock(fs_info);
1183         btrfs_set_header_nritems(eb, n);
1184 }
1185
1186 /*
1187  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1188  * is returned. If rewind operations happen, a fresh buffer is returned. The
1189  * returned buffer is always read-locked. If the returned buffer is not the
1190  * input buffer, the lock on the input buffer is released and the input buffer
1191  * is freed (its refcount is decremented).
1192  */
1193 static struct extent_buffer *
1194 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1195                     struct extent_buffer *eb, u64 time_seq)
1196 {
1197         struct extent_buffer *eb_rewin;
1198         struct tree_mod_elem *tm;
1199
1200         if (!time_seq)
1201                 return eb;
1202
1203         if (btrfs_header_level(eb) == 0)
1204                 return eb;
1205
1206         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1207         if (!tm)
1208                 return eb;
1209
1210         btrfs_set_path_blocking(path);
1211         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1212
1213         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1214                 BUG_ON(tm->slot != 0);
1215                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1216                                                 fs_info->tree_root->nodesize);
1217                 if (!eb_rewin) {
1218                         btrfs_tree_read_unlock_blocking(eb);
1219                         free_extent_buffer(eb);
1220                         return NULL;
1221                 }
1222                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1223                 btrfs_set_header_backref_rev(eb_rewin,
1224                                              btrfs_header_backref_rev(eb));
1225                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1226                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1227         } else {
1228                 eb_rewin = btrfs_clone_extent_buffer(eb);
1229                 if (!eb_rewin) {
1230                         btrfs_tree_read_unlock_blocking(eb);
1231                         free_extent_buffer(eb);
1232                         return NULL;
1233                 }
1234         }
1235
1236         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1237         btrfs_tree_read_unlock_blocking(eb);
1238         free_extent_buffer(eb);
1239
1240         extent_buffer_get(eb_rewin);
1241         btrfs_tree_read_lock(eb_rewin);
1242         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1243         WARN_ON(btrfs_header_nritems(eb_rewin) >
1244                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1245
1246         return eb_rewin;
1247 }
1248
1249 /*
1250  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1251  * value. If there are no changes, the current root->root_node is returned. If
1252  * anything changed in between, there's a fresh buffer allocated on which the
1253  * rewind operations are done. In any case, the returned buffer is read locked.
1254  * Returns NULL on error (with no locks held).
1255  */
1256 static inline struct extent_buffer *
1257 get_old_root(struct btrfs_root *root, u64 time_seq)
1258 {
1259         struct tree_mod_elem *tm;
1260         struct extent_buffer *eb = NULL;
1261         struct extent_buffer *eb_root;
1262         struct extent_buffer *old;
1263         struct tree_mod_root *old_root = NULL;
1264         u64 old_generation = 0;
1265         u64 logical;
1266         u32 blocksize;
1267
1268         eb_root = btrfs_read_lock_root_node(root);
1269         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1270         if (!tm)
1271                 return eb_root;
1272
1273         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1274                 old_root = &tm->old_root;
1275                 old_generation = tm->generation;
1276                 logical = old_root->logical;
1277         } else {
1278                 logical = eb_root->start;
1279         }
1280
1281         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1282         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1283                 btrfs_tree_read_unlock(eb_root);
1284                 free_extent_buffer(eb_root);
1285                 blocksize = btrfs_level_size(root, old_root->level);
1286                 old = read_tree_block(root, logical, blocksize, 0);
1287                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1288                         free_extent_buffer(old);
1289                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1290                                 logical);
1291                 } else {
1292                         eb = btrfs_clone_extent_buffer(old);
1293                         free_extent_buffer(old);
1294                 }
1295         } else if (old_root) {
1296                 btrfs_tree_read_unlock(eb_root);
1297                 free_extent_buffer(eb_root);
1298                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1299         } else {
1300                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1301                 eb = btrfs_clone_extent_buffer(eb_root);
1302                 btrfs_tree_read_unlock_blocking(eb_root);
1303                 free_extent_buffer(eb_root);
1304         }
1305
1306         if (!eb)
1307                 return NULL;
1308         extent_buffer_get(eb);
1309         btrfs_tree_read_lock(eb);
1310         if (old_root) {
1311                 btrfs_set_header_bytenr(eb, eb->start);
1312                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1313                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1314                 btrfs_set_header_level(eb, old_root->level);
1315                 btrfs_set_header_generation(eb, old_generation);
1316         }
1317         if (tm)
1318                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1319         else
1320                 WARN_ON(btrfs_header_level(eb) != 0);
1321         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1322
1323         return eb;
1324 }
1325
1326 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1327 {
1328         struct tree_mod_elem *tm;
1329         int level;
1330         struct extent_buffer *eb_root = btrfs_root_node(root);
1331
1332         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1333         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1334                 level = tm->old_root.level;
1335         } else {
1336                 level = btrfs_header_level(eb_root);
1337         }
1338         free_extent_buffer(eb_root);
1339
1340         return level;
1341 }
1342
1343 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1344                                    struct btrfs_root *root,
1345                                    struct extent_buffer *buf)
1346 {
1347         /* ensure we can see the force_cow */
1348         smp_rmb();
1349
1350         /*
1351          * We do not need to cow a block if
1352          * 1) this block is not created or changed in this transaction;
1353          * 2) this block does not belong to TREE_RELOC tree;
1354          * 3) the root is not forced COW.
1355          *
1356          * What is forced COW:
1357          *    when we create snapshot during commiting the transaction,
1358          *    after we've finished coping src root, we must COW the shared
1359          *    block to ensure the metadata consistency.
1360          */
1361         if (btrfs_header_generation(buf) == trans->transid &&
1362             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1363             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1364               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1365             !root->force_cow)
1366                 return 0;
1367         return 1;
1368 }
1369
1370 /*
1371  * cows a single block, see __btrfs_cow_block for the real work.
1372  * This version of it has extra checks so that a block isn't cow'd more than
1373  * once per transaction, as long as it hasn't been written yet
1374  */
1375 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1376                     struct btrfs_root *root, struct extent_buffer *buf,
1377                     struct extent_buffer *parent, int parent_slot,
1378                     struct extent_buffer **cow_ret)
1379 {
1380         u64 search_start;
1381         int ret;
1382
1383         if (trans->transaction != root->fs_info->running_transaction)
1384                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1385                        trans->transid,
1386                        root->fs_info->running_transaction->transid);
1387
1388         if (trans->transid != root->fs_info->generation)
1389                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1390                        trans->transid, root->fs_info->generation);
1391
1392         if (!should_cow_block(trans, root, buf)) {
1393                 *cow_ret = buf;
1394                 return 0;
1395         }
1396
1397         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1398
1399         if (parent)
1400                 btrfs_set_lock_blocking(parent);
1401         btrfs_set_lock_blocking(buf);
1402
1403         ret = __btrfs_cow_block(trans, root, buf, parent,
1404                                  parent_slot, cow_ret, search_start, 0);
1405
1406         trace_btrfs_cow_block(root, buf, *cow_ret);
1407
1408         return ret;
1409 }
1410
1411 /*
1412  * helper function for defrag to decide if two blocks pointed to by a
1413  * node are actually close by
1414  */
1415 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1416 {
1417         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1418                 return 1;
1419         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1420                 return 1;
1421         return 0;
1422 }
1423
1424 /*
1425  * compare two keys in a memcmp fashion
1426  */
1427 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1428 {
1429         struct btrfs_key k1;
1430
1431         btrfs_disk_key_to_cpu(&k1, disk);
1432
1433         return btrfs_comp_cpu_keys(&k1, k2);
1434 }
1435
1436 /*
1437  * same as comp_keys only with two btrfs_key's
1438  */
1439 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1440 {
1441         if (k1->objectid > k2->objectid)
1442                 return 1;
1443         if (k1->objectid < k2->objectid)
1444                 return -1;
1445         if (k1->type > k2->type)
1446                 return 1;
1447         if (k1->type < k2->type)
1448                 return -1;
1449         if (k1->offset > k2->offset)
1450                 return 1;
1451         if (k1->offset < k2->offset)
1452                 return -1;
1453         return 0;
1454 }
1455
1456 /*
1457  * this is used by the defrag code to go through all the
1458  * leaves pointed to by a node and reallocate them so that
1459  * disk order is close to key order
1460  */
1461 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1462                        struct btrfs_root *root, struct extent_buffer *parent,
1463                        int start_slot, u64 *last_ret,
1464                        struct btrfs_key *progress)
1465 {
1466         struct extent_buffer *cur;
1467         u64 blocknr;
1468         u64 gen;
1469         u64 search_start = *last_ret;
1470         u64 last_block = 0;
1471         u64 other;
1472         u32 parent_nritems;
1473         int end_slot;
1474         int i;
1475         int err = 0;
1476         int parent_level;
1477         int uptodate;
1478         u32 blocksize;
1479         int progress_passed = 0;
1480         struct btrfs_disk_key disk_key;
1481
1482         parent_level = btrfs_header_level(parent);
1483
1484         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1485         WARN_ON(trans->transid != root->fs_info->generation);
1486
1487         parent_nritems = btrfs_header_nritems(parent);
1488         blocksize = btrfs_level_size(root, parent_level - 1);
1489         end_slot = parent_nritems;
1490
1491         if (parent_nritems == 1)
1492                 return 0;
1493
1494         btrfs_set_lock_blocking(parent);
1495
1496         for (i = start_slot; i < end_slot; i++) {
1497                 int close = 1;
1498
1499                 btrfs_node_key(parent, &disk_key, i);
1500                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1501                         continue;
1502
1503                 progress_passed = 1;
1504                 blocknr = btrfs_node_blockptr(parent, i);
1505                 gen = btrfs_node_ptr_generation(parent, i);
1506                 if (last_block == 0)
1507                         last_block = blocknr;
1508
1509                 if (i > 0) {
1510                         other = btrfs_node_blockptr(parent, i - 1);
1511                         close = close_blocks(blocknr, other, blocksize);
1512                 }
1513                 if (!close && i < end_slot - 2) {
1514                         other = btrfs_node_blockptr(parent, i + 1);
1515                         close = close_blocks(blocknr, other, blocksize);
1516                 }
1517                 if (close) {
1518                         last_block = blocknr;
1519                         continue;
1520                 }
1521
1522                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1523                 if (cur)
1524                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1525                 else
1526                         uptodate = 0;
1527                 if (!cur || !uptodate) {
1528                         if (!cur) {
1529                                 cur = read_tree_block(root, blocknr,
1530                                                          blocksize, gen);
1531                                 if (!cur || !extent_buffer_uptodate(cur)) {
1532                                         free_extent_buffer(cur);
1533                                         return -EIO;
1534                                 }
1535                         } else if (!uptodate) {
1536                                 err = btrfs_read_buffer(cur, gen);
1537                                 if (err) {
1538                                         free_extent_buffer(cur);
1539                                         return err;
1540                                 }
1541                         }
1542                 }
1543                 if (search_start == 0)
1544                         search_start = last_block;
1545
1546                 btrfs_tree_lock(cur);
1547                 btrfs_set_lock_blocking(cur);
1548                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1549                                         &cur, search_start,
1550                                         min(16 * blocksize,
1551                                             (end_slot - i) * blocksize));
1552                 if (err) {
1553                         btrfs_tree_unlock(cur);
1554                         free_extent_buffer(cur);
1555                         break;
1556                 }
1557                 search_start = cur->start;
1558                 last_block = cur->start;
1559                 *last_ret = search_start;
1560                 btrfs_tree_unlock(cur);
1561                 free_extent_buffer(cur);
1562         }
1563         return err;
1564 }
1565
1566 /*
1567  * The leaf data grows from end-to-front in the node.
1568  * this returns the address of the start of the last item,
1569  * which is the stop of the leaf data stack
1570  */
1571 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1572                                          struct extent_buffer *leaf)
1573 {
1574         u32 nr = btrfs_header_nritems(leaf);
1575         if (nr == 0)
1576                 return BTRFS_LEAF_DATA_SIZE(root);
1577         return btrfs_item_offset_nr(leaf, nr - 1);
1578 }
1579
1580
1581 /*
1582  * search for key in the extent_buffer.  The items start at offset p,
1583  * and they are item_size apart.  There are 'max' items in p.
1584  *
1585  * the slot in the array is returned via slot, and it points to
1586  * the place where you would insert key if it is not found in
1587  * the array.
1588  *
1589  * slot may point to max if the key is bigger than all of the keys
1590  */
1591 static noinline int generic_bin_search(struct extent_buffer *eb,
1592                                        unsigned long p,
1593                                        int item_size, struct btrfs_key *key,
1594                                        int max, int *slot)
1595 {
1596         int low = 0;
1597         int high = max;
1598         int mid;
1599         int ret;
1600         struct btrfs_disk_key *tmp = NULL;
1601         struct btrfs_disk_key unaligned;
1602         unsigned long offset;
1603         char *kaddr = NULL;
1604         unsigned long map_start = 0;
1605         unsigned long map_len = 0;
1606         int err;
1607
1608         while (low < high) {
1609                 mid = (low + high) / 2;
1610                 offset = p + mid * item_size;
1611
1612                 if (!kaddr || offset < map_start ||
1613                     (offset + sizeof(struct btrfs_disk_key)) >
1614                     map_start + map_len) {
1615
1616                         err = map_private_extent_buffer(eb, offset,
1617                                                 sizeof(struct btrfs_disk_key),
1618                                                 &kaddr, &map_start, &map_len);
1619
1620                         if (!err) {
1621                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1622                                                         map_start);
1623                         } else {
1624                                 read_extent_buffer(eb, &unaligned,
1625                                                    offset, sizeof(unaligned));
1626                                 tmp = &unaligned;
1627                         }
1628
1629                 } else {
1630                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1631                                                         map_start);
1632                 }
1633                 ret = comp_keys(tmp, key);
1634
1635                 if (ret < 0)
1636                         low = mid + 1;
1637                 else if (ret > 0)
1638                         high = mid;
1639                 else {
1640                         *slot = mid;
1641                         return 0;
1642                 }
1643         }
1644         *slot = low;
1645         return 1;
1646 }
1647
1648 /*
1649  * simple bin_search frontend that does the right thing for
1650  * leaves vs nodes
1651  */
1652 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1653                       int level, int *slot)
1654 {
1655         if (level == 0)
1656                 return generic_bin_search(eb,
1657                                           offsetof(struct btrfs_leaf, items),
1658                                           sizeof(struct btrfs_item),
1659                                           key, btrfs_header_nritems(eb),
1660                                           slot);
1661         else
1662                 return generic_bin_search(eb,
1663                                           offsetof(struct btrfs_node, ptrs),
1664                                           sizeof(struct btrfs_key_ptr),
1665                                           key, btrfs_header_nritems(eb),
1666                                           slot);
1667 }
1668
1669 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1670                      int level, int *slot)
1671 {
1672         return bin_search(eb, key, level, slot);
1673 }
1674
1675 static void root_add_used(struct btrfs_root *root, u32 size)
1676 {
1677         spin_lock(&root->accounting_lock);
1678         btrfs_set_root_used(&root->root_item,
1679                             btrfs_root_used(&root->root_item) + size);
1680         spin_unlock(&root->accounting_lock);
1681 }
1682
1683 static void root_sub_used(struct btrfs_root *root, u32 size)
1684 {
1685         spin_lock(&root->accounting_lock);
1686         btrfs_set_root_used(&root->root_item,
1687                             btrfs_root_used(&root->root_item) - size);
1688         spin_unlock(&root->accounting_lock);
1689 }
1690
1691 /* given a node and slot number, this reads the blocks it points to.  The
1692  * extent buffer is returned with a reference taken (but unlocked).
1693  * NULL is returned on error.
1694  */
1695 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1696                                    struct extent_buffer *parent, int slot)
1697 {
1698         int level = btrfs_header_level(parent);
1699         struct extent_buffer *eb;
1700
1701         if (slot < 0)
1702                 return NULL;
1703         if (slot >= btrfs_header_nritems(parent))
1704                 return NULL;
1705
1706         BUG_ON(level == 0);
1707
1708         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1709                              btrfs_level_size(root, level - 1),
1710                              btrfs_node_ptr_generation(parent, slot));
1711         if (eb && !extent_buffer_uptodate(eb)) {
1712                 free_extent_buffer(eb);
1713                 eb = NULL;
1714         }
1715
1716         return eb;
1717 }
1718
1719 /*
1720  * node level balancing, used to make sure nodes are in proper order for
1721  * item deletion.  We balance from the top down, so we have to make sure
1722  * that a deletion won't leave an node completely empty later on.
1723  */
1724 static noinline int balance_level(struct btrfs_trans_handle *trans,
1725                          struct btrfs_root *root,
1726                          struct btrfs_path *path, int level)
1727 {
1728         struct extent_buffer *right = NULL;
1729         struct extent_buffer *mid;
1730         struct extent_buffer *left = NULL;
1731         struct extent_buffer *parent = NULL;
1732         int ret = 0;
1733         int wret;
1734         int pslot;
1735         int orig_slot = path->slots[level];
1736         u64 orig_ptr;
1737
1738         if (level == 0)
1739                 return 0;
1740
1741         mid = path->nodes[level];
1742
1743         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1744                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1745         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1746
1747         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1748
1749         if (level < BTRFS_MAX_LEVEL - 1) {
1750                 parent = path->nodes[level + 1];
1751                 pslot = path->slots[level + 1];
1752         }
1753
1754         /*
1755          * deal with the case where there is only one pointer in the root
1756          * by promoting the node below to a root
1757          */
1758         if (!parent) {
1759                 struct extent_buffer *child;
1760
1761                 if (btrfs_header_nritems(mid) != 1)
1762                         return 0;
1763
1764                 /* promote the child to a root */
1765                 child = read_node_slot(root, mid, 0);
1766                 if (!child) {
1767                         ret = -EROFS;
1768                         btrfs_std_error(root->fs_info, ret);
1769                         goto enospc;
1770                 }
1771
1772                 btrfs_tree_lock(child);
1773                 btrfs_set_lock_blocking(child);
1774                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1775                 if (ret) {
1776                         btrfs_tree_unlock(child);
1777                         free_extent_buffer(child);
1778                         goto enospc;
1779                 }
1780
1781                 tree_mod_log_set_root_pointer(root, child, 1);
1782                 rcu_assign_pointer(root->node, child);
1783
1784                 add_root_to_dirty_list(root);
1785                 btrfs_tree_unlock(child);
1786
1787                 path->locks[level] = 0;
1788                 path->nodes[level] = NULL;
1789                 clean_tree_block(trans, root, mid);
1790                 btrfs_tree_unlock(mid);
1791                 /* once for the path */
1792                 free_extent_buffer(mid);
1793
1794                 root_sub_used(root, mid->len);
1795                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1796                 /* once for the root ptr */
1797                 free_extent_buffer_stale(mid);
1798                 return 0;
1799         }
1800         if (btrfs_header_nritems(mid) >
1801             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1802                 return 0;
1803
1804         left = read_node_slot(root, parent, pslot - 1);
1805         if (left) {
1806                 btrfs_tree_lock(left);
1807                 btrfs_set_lock_blocking(left);
1808                 wret = btrfs_cow_block(trans, root, left,
1809                                        parent, pslot - 1, &left);
1810                 if (wret) {
1811                         ret = wret;
1812                         goto enospc;
1813                 }
1814         }
1815         right = read_node_slot(root, parent, pslot + 1);
1816         if (right) {
1817                 btrfs_tree_lock(right);
1818                 btrfs_set_lock_blocking(right);
1819                 wret = btrfs_cow_block(trans, root, right,
1820                                        parent, pslot + 1, &right);
1821                 if (wret) {
1822                         ret = wret;
1823                         goto enospc;
1824                 }
1825         }
1826
1827         /* first, try to make some room in the middle buffer */
1828         if (left) {
1829                 orig_slot += btrfs_header_nritems(left);
1830                 wret = push_node_left(trans, root, left, mid, 1);
1831                 if (wret < 0)
1832                         ret = wret;
1833         }
1834
1835         /*
1836          * then try to empty the right most buffer into the middle
1837          */
1838         if (right) {
1839                 wret = push_node_left(trans, root, mid, right, 1);
1840                 if (wret < 0 && wret != -ENOSPC)
1841                         ret = wret;
1842                 if (btrfs_header_nritems(right) == 0) {
1843                         clean_tree_block(trans, root, right);
1844                         btrfs_tree_unlock(right);
1845                         del_ptr(root, path, level + 1, pslot + 1);
1846                         root_sub_used(root, right->len);
1847                         btrfs_free_tree_block(trans, root, right, 0, 1);
1848                         free_extent_buffer_stale(right);
1849                         right = NULL;
1850                 } else {
1851                         struct btrfs_disk_key right_key;
1852                         btrfs_node_key(right, &right_key, 0);
1853                         tree_mod_log_set_node_key(root->fs_info, parent,
1854                                                   pslot + 1, 0);
1855                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1856                         btrfs_mark_buffer_dirty(parent);
1857                 }
1858         }
1859         if (btrfs_header_nritems(mid) == 1) {
1860                 /*
1861                  * we're not allowed to leave a node with one item in the
1862                  * tree during a delete.  A deletion from lower in the tree
1863                  * could try to delete the only pointer in this node.
1864                  * So, pull some keys from the left.
1865                  * There has to be a left pointer at this point because
1866                  * otherwise we would have pulled some pointers from the
1867                  * right
1868                  */
1869                 if (!left) {
1870                         ret = -EROFS;
1871                         btrfs_std_error(root->fs_info, ret);
1872                         goto enospc;
1873                 }
1874                 wret = balance_node_right(trans, root, mid, left);
1875                 if (wret < 0) {
1876                         ret = wret;
1877                         goto enospc;
1878                 }
1879                 if (wret == 1) {
1880                         wret = push_node_left(trans, root, left, mid, 1);
1881                         if (wret < 0)
1882                                 ret = wret;
1883                 }
1884                 BUG_ON(wret == 1);
1885         }
1886         if (btrfs_header_nritems(mid) == 0) {
1887                 clean_tree_block(trans, root, mid);
1888                 btrfs_tree_unlock(mid);
1889                 del_ptr(root, path, level + 1, pslot);
1890                 root_sub_used(root, mid->len);
1891                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1892                 free_extent_buffer_stale(mid);
1893                 mid = NULL;
1894         } else {
1895                 /* update the parent key to reflect our changes */
1896                 struct btrfs_disk_key mid_key;
1897                 btrfs_node_key(mid, &mid_key, 0);
1898                 tree_mod_log_set_node_key(root->fs_info, parent,
1899                                           pslot, 0);
1900                 btrfs_set_node_key(parent, &mid_key, pslot);
1901                 btrfs_mark_buffer_dirty(parent);
1902         }
1903
1904         /* update the path */
1905         if (left) {
1906                 if (btrfs_header_nritems(left) > orig_slot) {
1907                         extent_buffer_get(left);
1908                         /* left was locked after cow */
1909                         path->nodes[level] = left;
1910                         path->slots[level + 1] -= 1;
1911                         path->slots[level] = orig_slot;
1912                         if (mid) {
1913                                 btrfs_tree_unlock(mid);
1914                                 free_extent_buffer(mid);
1915                         }
1916                 } else {
1917                         orig_slot -= btrfs_header_nritems(left);
1918                         path->slots[level] = orig_slot;
1919                 }
1920         }
1921         /* double check we haven't messed things up */
1922         if (orig_ptr !=
1923             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1924                 BUG();
1925 enospc:
1926         if (right) {
1927                 btrfs_tree_unlock(right);
1928                 free_extent_buffer(right);
1929         }
1930         if (left) {
1931                 if (path->nodes[level] != left)
1932                         btrfs_tree_unlock(left);
1933                 free_extent_buffer(left);
1934         }
1935         return ret;
1936 }
1937
1938 /* Node balancing for insertion.  Here we only split or push nodes around
1939  * when they are completely full.  This is also done top down, so we
1940  * have to be pessimistic.
1941  */
1942 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1943                                           struct btrfs_root *root,
1944                                           struct btrfs_path *path, int level)
1945 {
1946         struct extent_buffer *right = NULL;
1947         struct extent_buffer *mid;
1948         struct extent_buffer *left = NULL;
1949         struct extent_buffer *parent = NULL;
1950         int ret = 0;
1951         int wret;
1952         int pslot;
1953         int orig_slot = path->slots[level];
1954
1955         if (level == 0)
1956                 return 1;
1957
1958         mid = path->nodes[level];
1959         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1960
1961         if (level < BTRFS_MAX_LEVEL - 1) {
1962                 parent = path->nodes[level + 1];
1963                 pslot = path->slots[level + 1];
1964         }
1965
1966         if (!parent)
1967                 return 1;
1968
1969         left = read_node_slot(root, parent, pslot - 1);
1970
1971         /* first, try to make some room in the middle buffer */
1972         if (left) {
1973                 u32 left_nr;
1974
1975                 btrfs_tree_lock(left);
1976                 btrfs_set_lock_blocking(left);
1977
1978                 left_nr = btrfs_header_nritems(left);
1979                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1980                         wret = 1;
1981                 } else {
1982                         ret = btrfs_cow_block(trans, root, left, parent,
1983                                               pslot - 1, &left);
1984                         if (ret)
1985                                 wret = 1;
1986                         else {
1987                                 wret = push_node_left(trans, root,
1988                                                       left, mid, 0);
1989                         }
1990                 }
1991                 if (wret < 0)
1992                         ret = wret;
1993                 if (wret == 0) {
1994                         struct btrfs_disk_key disk_key;
1995                         orig_slot += left_nr;
1996                         btrfs_node_key(mid, &disk_key, 0);
1997                         tree_mod_log_set_node_key(root->fs_info, parent,
1998                                                   pslot, 0);
1999                         btrfs_set_node_key(parent, &disk_key, pslot);
2000                         btrfs_mark_buffer_dirty(parent);
2001                         if (btrfs_header_nritems(left) > orig_slot) {
2002                                 path->nodes[level] = left;
2003                                 path->slots[level + 1] -= 1;
2004                                 path->slots[level] = orig_slot;
2005                                 btrfs_tree_unlock(mid);
2006                                 free_extent_buffer(mid);
2007                         } else {
2008                                 orig_slot -=
2009                                         btrfs_header_nritems(left);
2010                                 path->slots[level] = orig_slot;
2011                                 btrfs_tree_unlock(left);
2012                                 free_extent_buffer(left);
2013                         }
2014                         return 0;
2015                 }
2016                 btrfs_tree_unlock(left);
2017                 free_extent_buffer(left);
2018         }
2019         right = read_node_slot(root, parent, pslot + 1);
2020
2021         /*
2022          * then try to empty the right most buffer into the middle
2023          */
2024         if (right) {
2025                 u32 right_nr;
2026
2027                 btrfs_tree_lock(right);
2028                 btrfs_set_lock_blocking(right);
2029
2030                 right_nr = btrfs_header_nritems(right);
2031                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2032                         wret = 1;
2033                 } else {
2034                         ret = btrfs_cow_block(trans, root, right,
2035                                               parent, pslot + 1,
2036                                               &right);
2037                         if (ret)
2038                                 wret = 1;
2039                         else {
2040                                 wret = balance_node_right(trans, root,
2041                                                           right, mid);
2042                         }
2043                 }
2044                 if (wret < 0)
2045                         ret = wret;
2046                 if (wret == 0) {
2047                         struct btrfs_disk_key disk_key;
2048
2049                         btrfs_node_key(right, &disk_key, 0);
2050                         tree_mod_log_set_node_key(root->fs_info, parent,
2051                                                   pslot + 1, 0);
2052                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2053                         btrfs_mark_buffer_dirty(parent);
2054
2055                         if (btrfs_header_nritems(mid) <= orig_slot) {
2056                                 path->nodes[level] = right;
2057                                 path->slots[level + 1] += 1;
2058                                 path->slots[level] = orig_slot -
2059                                         btrfs_header_nritems(mid);
2060                                 btrfs_tree_unlock(mid);
2061                                 free_extent_buffer(mid);
2062                         } else {
2063                                 btrfs_tree_unlock(right);
2064                                 free_extent_buffer(right);
2065                         }
2066                         return 0;
2067                 }
2068                 btrfs_tree_unlock(right);
2069                 free_extent_buffer(right);
2070         }
2071         return 1;
2072 }
2073
2074 /*
2075  * readahead one full node of leaves, finding things that are close
2076  * to the block in 'slot', and triggering ra on them.
2077  */
2078 static void reada_for_search(struct btrfs_root *root,
2079                              struct btrfs_path *path,
2080                              int level, int slot, u64 objectid)
2081 {
2082         struct extent_buffer *node;
2083         struct btrfs_disk_key disk_key;
2084         u32 nritems;
2085         u64 search;
2086         u64 target;
2087         u64 nread = 0;
2088         u64 gen;
2089         int direction = path->reada;
2090         struct extent_buffer *eb;
2091         u32 nr;
2092         u32 blocksize;
2093         u32 nscan = 0;
2094
2095         if (level != 1)
2096                 return;
2097
2098         if (!path->nodes[level])
2099                 return;
2100
2101         node = path->nodes[level];
2102
2103         search = btrfs_node_blockptr(node, slot);
2104         blocksize = btrfs_level_size(root, level - 1);
2105         eb = btrfs_find_tree_block(root, search, blocksize);
2106         if (eb) {
2107                 free_extent_buffer(eb);
2108                 return;
2109         }
2110
2111         target = search;
2112
2113         nritems = btrfs_header_nritems(node);
2114         nr = slot;
2115
2116         while (1) {
2117                 if (direction < 0) {
2118                         if (nr == 0)
2119                                 break;
2120                         nr--;
2121                 } else if (direction > 0) {
2122                         nr++;
2123                         if (nr >= nritems)
2124                                 break;
2125                 }
2126                 if (path->reada < 0 && objectid) {
2127                         btrfs_node_key(node, &disk_key, nr);
2128                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2129                                 break;
2130                 }
2131                 search = btrfs_node_blockptr(node, nr);
2132                 if ((search <= target && target - search <= 65536) ||
2133                     (search > target && search - target <= 65536)) {
2134                         gen = btrfs_node_ptr_generation(node, nr);
2135                         readahead_tree_block(root, search, blocksize, gen);
2136                         nread += blocksize;
2137                 }
2138                 nscan++;
2139                 if ((nread > 65536 || nscan > 32))
2140                         break;
2141         }
2142 }
2143
2144 static noinline void reada_for_balance(struct btrfs_root *root,
2145                                        struct btrfs_path *path, int level)
2146 {
2147         int slot;
2148         int nritems;
2149         struct extent_buffer *parent;
2150         struct extent_buffer *eb;
2151         u64 gen;
2152         u64 block1 = 0;
2153         u64 block2 = 0;
2154         int blocksize;
2155
2156         parent = path->nodes[level + 1];
2157         if (!parent)
2158                 return;
2159
2160         nritems = btrfs_header_nritems(parent);
2161         slot = path->slots[level + 1];
2162         blocksize = btrfs_level_size(root, level);
2163
2164         if (slot > 0) {
2165                 block1 = btrfs_node_blockptr(parent, slot - 1);
2166                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2167                 eb = btrfs_find_tree_block(root, block1, blocksize);
2168                 /*
2169                  * if we get -eagain from btrfs_buffer_uptodate, we
2170                  * don't want to return eagain here.  That will loop
2171                  * forever
2172                  */
2173                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2174                         block1 = 0;
2175                 free_extent_buffer(eb);
2176         }
2177         if (slot + 1 < nritems) {
2178                 block2 = btrfs_node_blockptr(parent, slot + 1);
2179                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2180                 eb = btrfs_find_tree_block(root, block2, blocksize);
2181                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2182                         block2 = 0;
2183                 free_extent_buffer(eb);
2184         }
2185
2186         if (block1)
2187                 readahead_tree_block(root, block1, blocksize, 0);
2188         if (block2)
2189                 readahead_tree_block(root, block2, blocksize, 0);
2190 }
2191
2192
2193 /*
2194  * when we walk down the tree, it is usually safe to unlock the higher layers
2195  * in the tree.  The exceptions are when our path goes through slot 0, because
2196  * operations on the tree might require changing key pointers higher up in the
2197  * tree.
2198  *
2199  * callers might also have set path->keep_locks, which tells this code to keep
2200  * the lock if the path points to the last slot in the block.  This is part of
2201  * walking through the tree, and selecting the next slot in the higher block.
2202  *
2203  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2204  * if lowest_unlock is 1, level 0 won't be unlocked
2205  */
2206 static noinline void unlock_up(struct btrfs_path *path, int level,
2207                                int lowest_unlock, int min_write_lock_level,
2208                                int *write_lock_level)
2209 {
2210         int i;
2211         int skip_level = level;
2212         int no_skips = 0;
2213         struct extent_buffer *t;
2214
2215         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2216                 if (!path->nodes[i])
2217                         break;
2218                 if (!path->locks[i])
2219                         break;
2220                 if (!no_skips && path->slots[i] == 0) {
2221                         skip_level = i + 1;
2222                         continue;
2223                 }
2224                 if (!no_skips && path->keep_locks) {
2225                         u32 nritems;
2226                         t = path->nodes[i];
2227                         nritems = btrfs_header_nritems(t);
2228                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2229                                 skip_level = i + 1;
2230                                 continue;
2231                         }
2232                 }
2233                 if (skip_level < i && i >= lowest_unlock)
2234                         no_skips = 1;
2235
2236                 t = path->nodes[i];
2237                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2238                         btrfs_tree_unlock_rw(t, path->locks[i]);
2239                         path->locks[i] = 0;
2240                         if (write_lock_level &&
2241                             i > min_write_lock_level &&
2242                             i <= *write_lock_level) {
2243                                 *write_lock_level = i - 1;
2244                         }
2245                 }
2246         }
2247 }
2248
2249 /*
2250  * This releases any locks held in the path starting at level and
2251  * going all the way up to the root.
2252  *
2253  * btrfs_search_slot will keep the lock held on higher nodes in a few
2254  * corner cases, such as COW of the block at slot zero in the node.  This
2255  * ignores those rules, and it should only be called when there are no
2256  * more updates to be done higher up in the tree.
2257  */
2258 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2259 {
2260         int i;
2261
2262         if (path->keep_locks)
2263                 return;
2264
2265         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2266                 if (!path->nodes[i])
2267                         continue;
2268                 if (!path->locks[i])
2269                         continue;
2270                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2271                 path->locks[i] = 0;
2272         }
2273 }
2274
2275 /*
2276  * helper function for btrfs_search_slot.  The goal is to find a block
2277  * in cache without setting the path to blocking.  If we find the block
2278  * we return zero and the path is unchanged.
2279  *
2280  * If we can't find the block, we set the path blocking and do some
2281  * reada.  -EAGAIN is returned and the search must be repeated.
2282  */
2283 static int
2284 read_block_for_search(struct btrfs_trans_handle *trans,
2285                        struct btrfs_root *root, struct btrfs_path *p,
2286                        struct extent_buffer **eb_ret, int level, int slot,
2287                        struct btrfs_key *key, u64 time_seq)
2288 {
2289         u64 blocknr;
2290         u64 gen;
2291         u32 blocksize;
2292         struct extent_buffer *b = *eb_ret;
2293         struct extent_buffer *tmp;
2294         int ret;
2295
2296         blocknr = btrfs_node_blockptr(b, slot);
2297         gen = btrfs_node_ptr_generation(b, slot);
2298         blocksize = btrfs_level_size(root, level - 1);
2299
2300         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2301         if (tmp) {
2302                 /* first we do an atomic uptodate check */
2303                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2304                         *eb_ret = tmp;
2305                         return 0;
2306                 }
2307
2308                 /* the pages were up to date, but we failed
2309                  * the generation number check.  Do a full
2310                  * read for the generation number that is correct.
2311                  * We must do this without dropping locks so
2312                  * we can trust our generation number
2313                  */
2314                 btrfs_set_path_blocking(p);
2315
2316                 /* now we're allowed to do a blocking uptodate check */
2317                 ret = btrfs_read_buffer(tmp, gen);
2318                 if (!ret) {
2319                         *eb_ret = tmp;
2320                         return 0;
2321                 }
2322                 free_extent_buffer(tmp);
2323                 btrfs_release_path(p);
2324                 return -EIO;
2325         }
2326
2327         /*
2328          * reduce lock contention at high levels
2329          * of the btree by dropping locks before
2330          * we read.  Don't release the lock on the current
2331          * level because we need to walk this node to figure
2332          * out which blocks to read.
2333          */
2334         btrfs_unlock_up_safe(p, level + 1);
2335         btrfs_set_path_blocking(p);
2336
2337         free_extent_buffer(tmp);
2338         if (p->reada)
2339                 reada_for_search(root, p, level, slot, key->objectid);
2340
2341         btrfs_release_path(p);
2342
2343         ret = -EAGAIN;
2344         tmp = read_tree_block(root, blocknr, blocksize, 0);
2345         if (tmp) {
2346                 /*
2347                  * If the read above didn't mark this buffer up to date,
2348                  * it will never end up being up to date.  Set ret to EIO now
2349                  * and give up so that our caller doesn't loop forever
2350                  * on our EAGAINs.
2351                  */
2352                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2353                         ret = -EIO;
2354                 free_extent_buffer(tmp);
2355         }
2356         return ret;
2357 }
2358
2359 /*
2360  * helper function for btrfs_search_slot.  This does all of the checks
2361  * for node-level blocks and does any balancing required based on
2362  * the ins_len.
2363  *
2364  * If no extra work was required, zero is returned.  If we had to
2365  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2366  * start over
2367  */
2368 static int
2369 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2370                        struct btrfs_root *root, struct btrfs_path *p,
2371                        struct extent_buffer *b, int level, int ins_len,
2372                        int *write_lock_level)
2373 {
2374         int ret;
2375         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2376             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2377                 int sret;
2378
2379                 if (*write_lock_level < level + 1) {
2380                         *write_lock_level = level + 1;
2381                         btrfs_release_path(p);
2382                         goto again;
2383                 }
2384
2385                 btrfs_set_path_blocking(p);
2386                 reada_for_balance(root, p, level);
2387                 sret = split_node(trans, root, p, level);
2388                 btrfs_clear_path_blocking(p, NULL, 0);
2389
2390                 BUG_ON(sret > 0);
2391                 if (sret) {
2392                         ret = sret;
2393                         goto done;
2394                 }
2395                 b = p->nodes[level];
2396         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2397                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2398                 int sret;
2399
2400                 if (*write_lock_level < level + 1) {
2401                         *write_lock_level = level + 1;
2402                         btrfs_release_path(p);
2403                         goto again;
2404                 }
2405
2406                 btrfs_set_path_blocking(p);
2407                 reada_for_balance(root, p, level);
2408                 sret = balance_level(trans, root, p, level);
2409                 btrfs_clear_path_blocking(p, NULL, 0);
2410
2411                 if (sret) {
2412                         ret = sret;
2413                         goto done;
2414                 }
2415                 b = p->nodes[level];
2416                 if (!b) {
2417                         btrfs_release_path(p);
2418                         goto again;
2419                 }
2420                 BUG_ON(btrfs_header_nritems(b) == 1);
2421         }
2422         return 0;
2423
2424 again:
2425         ret = -EAGAIN;
2426 done:
2427         return ret;
2428 }
2429
2430 static void key_search_validate(struct extent_buffer *b,
2431                                 struct btrfs_key *key,
2432                                 int level)
2433 {
2434 #ifdef CONFIG_BTRFS_ASSERT
2435         struct btrfs_disk_key disk_key;
2436
2437         btrfs_cpu_key_to_disk(&disk_key, key);
2438
2439         if (level == 0)
2440                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2441                     offsetof(struct btrfs_leaf, items[0].key),
2442                     sizeof(disk_key)));
2443         else
2444                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2445                     offsetof(struct btrfs_node, ptrs[0].key),
2446                     sizeof(disk_key)));
2447 #endif
2448 }
2449
2450 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2451                       int level, int *prev_cmp, int *slot)
2452 {
2453         if (*prev_cmp != 0) {
2454                 *prev_cmp = bin_search(b, key, level, slot);
2455                 return *prev_cmp;
2456         }
2457
2458         key_search_validate(b, key, level);
2459         *slot = 0;
2460
2461         return 0;
2462 }
2463
2464 /* Proposed generic search function, meant to take the place of the
2465 * various small search helper functions throughout the code and standardize
2466 * the search interface. Right now, it only replaces the former __inode_info
2467 * in backref.c, and the former btrfs_find_root_ref in root-tree.c.
2468 *
2469 * If a null key is passed, it returns immediately after running
2470 * btrfs_search_slot, leaving the path filled as it is and passing its
2471 * return value upward. If a real key is passed, it will set the caller's
2472 * path to point to the first item in the tree after its specified
2473 * objectid, type, and offset for which objectid and type match the input.
2474 */
2475 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2476                 u64 iobjectid, u64 ioff, u8 key_type,
2477                 struct btrfs_key *found_key)
2478 {
2479         int ret;
2480         struct btrfs_key key;
2481         struct extent_buffer *eb;
2482
2483         key.type = key_type;
2484         key.objectid = iobjectid;
2485         key.offset = ioff;
2486
2487         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2488         if ((ret < 0) || (found_key == NULL))
2489                 return ret;
2490
2491         eb = path->nodes[0];
2492         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2493                 ret = btrfs_next_leaf(fs_root, path);
2494                 if (ret)
2495                         return ret;
2496                 eb = path->nodes[0];
2497         }
2498
2499         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2500         if (found_key->type != key.type ||
2501                         found_key->objectid != key.objectid)
2502                 return 1;
2503
2504         return 0;
2505 }
2506
2507 /*
2508  * look for key in the tree.  path is filled in with nodes along the way
2509  * if key is found, we return zero and you can find the item in the leaf
2510  * level of the path (level 0)
2511  *
2512  * If the key isn't found, the path points to the slot where it should
2513  * be inserted, and 1 is returned.  If there are other errors during the
2514  * search a negative error number is returned.
2515  *
2516  * if ins_len > 0, nodes and leaves will be split as we walk down the
2517  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2518  * possible)
2519  */
2520 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2521                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2522                       ins_len, int cow)
2523 {
2524         struct extent_buffer *b;
2525         int slot;
2526         int ret;
2527         int err;
2528         int level;
2529         int lowest_unlock = 1;
2530         int root_lock;
2531         /* everything at write_lock_level or lower must be write locked */
2532         int write_lock_level = 0;
2533         u8 lowest_level = 0;
2534         int min_write_lock_level;
2535         int prev_cmp;
2536
2537         lowest_level = p->lowest_level;
2538         WARN_ON(lowest_level && ins_len > 0);
2539         WARN_ON(p->nodes[0] != NULL);
2540
2541         if (ins_len < 0) {
2542                 lowest_unlock = 2;
2543
2544                 /* when we are removing items, we might have to go up to level
2545                  * two as we update tree pointers  Make sure we keep write
2546                  * for those levels as well
2547                  */
2548                 write_lock_level = 2;
2549         } else if (ins_len > 0) {
2550                 /*
2551                  * for inserting items, make sure we have a write lock on
2552                  * level 1 so we can update keys
2553                  */
2554                 write_lock_level = 1;
2555         }
2556
2557         if (!cow)
2558                 write_lock_level = -1;
2559
2560         if (cow && (p->keep_locks || p->lowest_level))
2561                 write_lock_level = BTRFS_MAX_LEVEL;
2562
2563         min_write_lock_level = write_lock_level;
2564
2565 again:
2566         prev_cmp = -1;
2567         /*
2568          * we try very hard to do read locks on the root
2569          */
2570         root_lock = BTRFS_READ_LOCK;
2571         level = 0;
2572         if (p->search_commit_root) {
2573                 /*
2574                  * the commit roots are read only
2575                  * so we always do read locks
2576                  */
2577                 b = root->commit_root;
2578                 extent_buffer_get(b);
2579                 level = btrfs_header_level(b);
2580                 if (!p->skip_locking)
2581                         btrfs_tree_read_lock(b);
2582         } else {
2583                 if (p->skip_locking) {
2584                         b = btrfs_root_node(root);
2585                         level = btrfs_header_level(b);
2586                 } else {
2587                         /* we don't know the level of the root node
2588                          * until we actually have it read locked
2589                          */
2590                         b = btrfs_read_lock_root_node(root);
2591                         level = btrfs_header_level(b);
2592                         if (level <= write_lock_level) {
2593                                 /* whoops, must trade for write lock */
2594                                 btrfs_tree_read_unlock(b);
2595                                 free_extent_buffer(b);
2596                                 b = btrfs_lock_root_node(root);
2597                                 root_lock = BTRFS_WRITE_LOCK;
2598
2599                                 /* the level might have changed, check again */
2600                                 level = btrfs_header_level(b);
2601                         }
2602                 }
2603         }
2604         p->nodes[level] = b;
2605         if (!p->skip_locking)
2606                 p->locks[level] = root_lock;
2607
2608         while (b) {
2609                 level = btrfs_header_level(b);
2610
2611                 /*
2612                  * setup the path here so we can release it under lock
2613                  * contention with the cow code
2614                  */
2615                 if (cow) {
2616                         /*
2617                          * if we don't really need to cow this block
2618                          * then we don't want to set the path blocking,
2619                          * so we test it here
2620                          */
2621                         if (!should_cow_block(trans, root, b))
2622                                 goto cow_done;
2623
2624                         btrfs_set_path_blocking(p);
2625
2626                         /*
2627                          * must have write locks on this node and the
2628                          * parent
2629                          */
2630                         if (level > write_lock_level ||
2631                             (level + 1 > write_lock_level &&
2632                             level + 1 < BTRFS_MAX_LEVEL &&
2633                             p->nodes[level + 1])) {
2634                                 write_lock_level = level + 1;
2635                                 btrfs_release_path(p);
2636                                 goto again;
2637                         }
2638
2639                         err = btrfs_cow_block(trans, root, b,
2640                                               p->nodes[level + 1],
2641                                               p->slots[level + 1], &b);
2642                         if (err) {
2643                                 ret = err;
2644                                 goto done;
2645                         }
2646                 }
2647 cow_done:
2648                 BUG_ON(!cow && ins_len);
2649
2650                 p->nodes[level] = b;
2651                 btrfs_clear_path_blocking(p, NULL, 0);
2652
2653                 /*
2654                  * we have a lock on b and as long as we aren't changing
2655                  * the tree, there is no way to for the items in b to change.
2656                  * It is safe to drop the lock on our parent before we
2657                  * go through the expensive btree search on b.
2658                  *
2659                  * If cow is true, then we might be changing slot zero,
2660                  * which may require changing the parent.  So, we can't
2661                  * drop the lock until after we know which slot we're
2662                  * operating on.
2663                  */
2664                 if (!cow)
2665                         btrfs_unlock_up_safe(p, level + 1);
2666
2667                 ret = key_search(b, key, level, &prev_cmp, &slot);
2668
2669                 if (level != 0) {
2670                         int dec = 0;
2671                         if (ret && slot > 0) {
2672                                 dec = 1;
2673                                 slot -= 1;
2674                         }
2675                         p->slots[level] = slot;
2676                         err = setup_nodes_for_search(trans, root, p, b, level,
2677                                              ins_len, &write_lock_level);
2678                         if (err == -EAGAIN)
2679                                 goto again;
2680                         if (err) {
2681                                 ret = err;
2682                                 goto done;
2683                         }
2684                         b = p->nodes[level];
2685                         slot = p->slots[level];
2686
2687                         /*
2688                          * slot 0 is special, if we change the key
2689                          * we have to update the parent pointer
2690                          * which means we must have a write lock
2691                          * on the parent
2692                          */
2693                         if (slot == 0 && cow &&
2694                             write_lock_level < level + 1) {
2695                                 write_lock_level = level + 1;
2696                                 btrfs_release_path(p);
2697                                 goto again;
2698                         }
2699
2700                         unlock_up(p, level, lowest_unlock,
2701                                   min_write_lock_level, &write_lock_level);
2702
2703                         if (level == lowest_level) {
2704                                 if (dec)
2705                                         p->slots[level]++;
2706                                 goto done;
2707                         }
2708
2709                         err = read_block_for_search(trans, root, p,
2710                                                     &b, level, slot, key, 0);
2711                         if (err == -EAGAIN)
2712                                 goto again;
2713                         if (err) {
2714                                 ret = err;
2715                                 goto done;
2716                         }
2717
2718                         if (!p->skip_locking) {
2719                                 level = btrfs_header_level(b);
2720                                 if (level <= write_lock_level) {
2721                                         err = btrfs_try_tree_write_lock(b);
2722                                         if (!err) {
2723                                                 btrfs_set_path_blocking(p);
2724                                                 btrfs_tree_lock(b);
2725                                                 btrfs_clear_path_blocking(p, b,
2726                                                                   BTRFS_WRITE_LOCK);
2727                                         }
2728                                         p->locks[level] = BTRFS_WRITE_LOCK;
2729                                 } else {
2730                                         err = btrfs_try_tree_read_lock(b);
2731                                         if (!err) {
2732                                                 btrfs_set_path_blocking(p);
2733                                                 btrfs_tree_read_lock(b);
2734                                                 btrfs_clear_path_blocking(p, b,
2735                                                                   BTRFS_READ_LOCK);
2736                                         }
2737                                         p->locks[level] = BTRFS_READ_LOCK;
2738                                 }
2739                                 p->nodes[level] = b;
2740                         }
2741                 } else {
2742                         p->slots[level] = slot;
2743                         if (ins_len > 0 &&
2744                             btrfs_leaf_free_space(root, b) < ins_len) {
2745                                 if (write_lock_level < 1) {
2746                                         write_lock_level = 1;
2747                                         btrfs_release_path(p);
2748                                         goto again;
2749                                 }
2750
2751                                 btrfs_set_path_blocking(p);
2752                                 err = split_leaf(trans, root, key,
2753                                                  p, ins_len, ret == 0);
2754                                 btrfs_clear_path_blocking(p, NULL, 0);
2755
2756                                 BUG_ON(err > 0);
2757                                 if (err) {
2758                                         ret = err;
2759                                         goto done;
2760                                 }
2761                         }
2762                         if (!p->search_for_split)
2763                                 unlock_up(p, level, lowest_unlock,
2764                                           min_write_lock_level, &write_lock_level);
2765                         goto done;
2766                 }
2767         }
2768         ret = 1;
2769 done:
2770         /*
2771          * we don't really know what they plan on doing with the path
2772          * from here on, so for now just mark it as blocking
2773          */
2774         if (!p->leave_spinning)
2775                 btrfs_set_path_blocking(p);
2776         if (ret < 0)
2777                 btrfs_release_path(p);
2778         return ret;
2779 }
2780
2781 /*
2782  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2783  * current state of the tree together with the operations recorded in the tree
2784  * modification log to search for the key in a previous version of this tree, as
2785  * denoted by the time_seq parameter.
2786  *
2787  * Naturally, there is no support for insert, delete or cow operations.
2788  *
2789  * The resulting path and return value will be set up as if we called
2790  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2791  */
2792 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2793                           struct btrfs_path *p, u64 time_seq)
2794 {
2795         struct extent_buffer *b;
2796         int slot;
2797         int ret;
2798         int err;
2799         int level;
2800         int lowest_unlock = 1;
2801         u8 lowest_level = 0;
2802         int prev_cmp = -1;
2803
2804         lowest_level = p->lowest_level;
2805         WARN_ON(p->nodes[0] != NULL);
2806
2807         if (p->search_commit_root) {
2808                 BUG_ON(time_seq);
2809                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2810         }
2811
2812 again:
2813         b = get_old_root(root, time_seq);
2814         level = btrfs_header_level(b);
2815         p->locks[level] = BTRFS_READ_LOCK;
2816
2817         while (b) {
2818                 level = btrfs_header_level(b);
2819                 p->nodes[level] = b;
2820                 btrfs_clear_path_blocking(p, NULL, 0);
2821
2822                 /*
2823                  * we have a lock on b and as long as we aren't changing
2824                  * the tree, there is no way to for the items in b to change.
2825                  * It is safe to drop the lock on our parent before we
2826                  * go through the expensive btree search on b.
2827                  */
2828                 btrfs_unlock_up_safe(p, level + 1);
2829
2830                 /*
2831                  * Since we can unwind eb's we want to do a real search every
2832                  * time.
2833                  */
2834                 prev_cmp = -1;
2835                 ret = key_search(b, key, level, &prev_cmp, &slot);
2836
2837                 if (level != 0) {
2838                         int dec = 0;
2839                         if (ret && slot > 0) {
2840                                 dec = 1;
2841                                 slot -= 1;
2842                         }
2843                         p->slots[level] = slot;
2844                         unlock_up(p, level, lowest_unlock, 0, NULL);
2845
2846                         if (level == lowest_level) {
2847                                 if (dec)
2848                                         p->slots[level]++;
2849                                 goto done;
2850                         }
2851
2852                         err = read_block_for_search(NULL, root, p, &b, level,
2853                                                     slot, key, time_seq);
2854                         if (err == -EAGAIN)
2855                                 goto again;
2856                         if (err) {
2857                                 ret = err;
2858                                 goto done;
2859                         }
2860
2861                         level = btrfs_header_level(b);
2862                         err = btrfs_try_tree_read_lock(b);
2863                         if (!err) {
2864                                 btrfs_set_path_blocking(p);
2865                                 btrfs_tree_read_lock(b);
2866                                 btrfs_clear_path_blocking(p, b,
2867                                                           BTRFS_READ_LOCK);
2868                         }
2869                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
2870                         if (!b) {
2871                                 ret = -ENOMEM;
2872                                 goto done;
2873                         }
2874                         p->locks[level] = BTRFS_READ_LOCK;
2875                         p->nodes[level] = b;
2876                 } else {
2877                         p->slots[level] = slot;
2878                         unlock_up(p, level, lowest_unlock, 0, NULL);
2879                         goto done;
2880                 }
2881         }
2882         ret = 1;
2883 done:
2884         if (!p->leave_spinning)
2885                 btrfs_set_path_blocking(p);
2886         if (ret < 0)
2887                 btrfs_release_path(p);
2888
2889         return ret;
2890 }
2891
2892 /*
2893  * helper to use instead of search slot if no exact match is needed but
2894  * instead the next or previous item should be returned.
2895  * When find_higher is true, the next higher item is returned, the next lower
2896  * otherwise.
2897  * When return_any and find_higher are both true, and no higher item is found,
2898  * return the next lower instead.
2899  * When return_any is true and find_higher is false, and no lower item is found,
2900  * return the next higher instead.
2901  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2902  * < 0 on error
2903  */
2904 int btrfs_search_slot_for_read(struct btrfs_root *root,
2905                                struct btrfs_key *key, struct btrfs_path *p,
2906                                int find_higher, int return_any)
2907 {
2908         int ret;
2909         struct extent_buffer *leaf;
2910
2911 again:
2912         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2913         if (ret <= 0)
2914                 return ret;
2915         /*
2916          * a return value of 1 means the path is at the position where the
2917          * item should be inserted. Normally this is the next bigger item,
2918          * but in case the previous item is the last in a leaf, path points
2919          * to the first free slot in the previous leaf, i.e. at an invalid
2920          * item.
2921          */
2922         leaf = p->nodes[0];
2923
2924         if (find_higher) {
2925                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2926                         ret = btrfs_next_leaf(root, p);
2927                         if (ret <= 0)
2928                                 return ret;
2929                         if (!return_any)
2930                                 return 1;
2931                         /*
2932                          * no higher item found, return the next
2933                          * lower instead
2934                          */
2935                         return_any = 0;
2936                         find_higher = 0;
2937                         btrfs_release_path(p);
2938                         goto again;
2939                 }
2940         } else {
2941                 if (p->slots[0] == 0) {
2942                         ret = btrfs_prev_leaf(root, p);
2943                         if (ret < 0)
2944                                 return ret;
2945                         if (!ret) {
2946                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2947                                 return 0;
2948                         }
2949                         if (!return_any)
2950                                 return 1;
2951                         /*
2952                          * no lower item found, return the next
2953                          * higher instead
2954                          */
2955                         return_any = 0;
2956                         find_higher = 1;
2957                         btrfs_release_path(p);
2958                         goto again;
2959                 } else {
2960                         --p->slots[0];
2961                 }
2962         }
2963         return 0;
2964 }
2965
2966 /*
2967  * adjust the pointers going up the tree, starting at level
2968  * making sure the right key of each node is points to 'key'.
2969  * This is used after shifting pointers to the left, so it stops
2970  * fixing up pointers when a given leaf/node is not in slot 0 of the
2971  * higher levels
2972  *
2973  */
2974 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2975                            struct btrfs_disk_key *key, int level)
2976 {
2977         int i;
2978         struct extent_buffer *t;
2979
2980         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2981                 int tslot = path->slots[i];
2982                 if (!path->nodes[i])
2983                         break;
2984                 t = path->nodes[i];
2985                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2986                 btrfs_set_node_key(t, key, tslot);
2987                 btrfs_mark_buffer_dirty(path->nodes[i]);
2988                 if (tslot != 0)
2989                         break;
2990         }
2991 }
2992
2993 /*
2994  * update item key.
2995  *
2996  * This function isn't completely safe. It's the caller's responsibility
2997  * that the new key won't break the order
2998  */
2999 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3000                              struct btrfs_key *new_key)
3001 {
3002         struct btrfs_disk_key disk_key;
3003         struct extent_buffer *eb;
3004         int slot;
3005
3006         eb = path->nodes[0];
3007         slot = path->slots[0];
3008         if (slot > 0) {
3009                 btrfs_item_key(eb, &disk_key, slot - 1);
3010                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3011         }
3012         if (slot < btrfs_header_nritems(eb) - 1) {
3013                 btrfs_item_key(eb, &disk_key, slot + 1);
3014                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3015         }
3016
3017         btrfs_cpu_key_to_disk(&disk_key, new_key);
3018         btrfs_set_item_key(eb, &disk_key, slot);
3019         btrfs_mark_buffer_dirty(eb);
3020         if (slot == 0)
3021                 fixup_low_keys(root, path, &disk_key, 1);
3022 }
3023
3024 /*
3025  * try to push data from one node into the next node left in the
3026  * tree.
3027  *
3028  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3029  * error, and > 0 if there was no room in the left hand block.
3030  */
3031 static int push_node_left(struct btrfs_trans_handle *trans,
3032                           struct btrfs_root *root, struct extent_buffer *dst,
3033                           struct extent_buffer *src, int empty)
3034 {
3035         int push_items = 0;
3036         int src_nritems;
3037         int dst_nritems;
3038         int ret = 0;
3039
3040         src_nritems = btrfs_header_nritems(src);
3041         dst_nritems = btrfs_header_nritems(dst);
3042         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3043         WARN_ON(btrfs_header_generation(src) != trans->transid);
3044         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3045
3046         if (!empty && src_nritems <= 8)
3047                 return 1;
3048
3049         if (push_items <= 0)
3050                 return 1;
3051
3052         if (empty) {
3053                 push_items = min(src_nritems, push_items);
3054                 if (push_items < src_nritems) {
3055                         /* leave at least 8 pointers in the node if
3056                          * we aren't going to empty it
3057                          */
3058                         if (src_nritems - push_items < 8) {
3059                                 if (push_items <= 8)
3060                                         return 1;
3061                                 push_items -= 8;
3062                         }
3063                 }
3064         } else
3065                 push_items = min(src_nritems - 8, push_items);
3066
3067         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3068                              push_items);
3069         copy_extent_buffer(dst, src,
3070                            btrfs_node_key_ptr_offset(dst_nritems),
3071                            btrfs_node_key_ptr_offset(0),
3072                            push_items * sizeof(struct btrfs_key_ptr));
3073
3074         if (push_items < src_nritems) {
3075                 /*
3076                  * don't call tree_mod_log_eb_move here, key removal was already
3077                  * fully logged by tree_mod_log_eb_copy above.
3078                  */
3079                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3080                                       btrfs_node_key_ptr_offset(push_items),
3081                                       (src_nritems - push_items) *
3082                                       sizeof(struct btrfs_key_ptr));
3083         }
3084         btrfs_set_header_nritems(src, src_nritems - push_items);
3085         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3086         btrfs_mark_buffer_dirty(src);
3087         btrfs_mark_buffer_dirty(dst);
3088
3089         return ret;
3090 }
3091
3092 /*
3093  * try to push data from one node into the next node right in the
3094  * tree.
3095  *
3096  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3097  * error, and > 0 if there was no room in the right hand block.
3098  *
3099  * this will  only push up to 1/2 the contents of the left node over
3100  */
3101 static int balance_node_right(struct btrfs_trans_handle *trans,
3102                               struct btrfs_root *root,
3103                               struct extent_buffer *dst,
3104                               struct extent_buffer *src)
3105 {
3106         int push_items = 0;
3107         int max_push;
3108         int src_nritems;
3109         int dst_nritems;
3110         int ret = 0;
3111
3112         WARN_ON(btrfs_header_generation(src) != trans->transid);
3113         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3114
3115         src_nritems = btrfs_header_nritems(src);
3116         dst_nritems = btrfs_header_nritems(dst);
3117         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3118         if (push_items <= 0)
3119                 return 1;
3120
3121         if (src_nritems < 4)
3122                 return 1;
3123
3124         max_push = src_nritems / 2 + 1;
3125         /* don't try to empty the node */
3126         if (max_push >= src_nritems)
3127                 return 1;
3128
3129         if (max_push < push_items)
3130                 push_items = max_push;
3131
3132         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3133         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3134                                       btrfs_node_key_ptr_offset(0),
3135                                       (dst_nritems) *
3136                                       sizeof(struct btrfs_key_ptr));
3137
3138         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3139                              src_nritems - push_items, push_items);
3140         copy_extent_buffer(dst, src,
3141                            btrfs_node_key_ptr_offset(0),
3142                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3143                            push_items * sizeof(struct btrfs_key_ptr));
3144
3145         btrfs_set_header_nritems(src, src_nritems - push_items);
3146         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3147
3148         btrfs_mark_buffer_dirty(src);
3149         btrfs_mark_buffer_dirty(dst);
3150
3151         return ret;
3152 }
3153
3154 /*
3155  * helper function to insert a new root level in the tree.
3156  * A new node is allocated, and a single item is inserted to
3157  * point to the existing root
3158  *
3159  * returns zero on success or < 0 on failure.
3160  */
3161 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3162                            struct btrfs_root *root,
3163                            struct btrfs_path *path, int level)
3164 {
3165         u64 lower_gen;
3166         struct extent_buffer *lower;
3167         struct extent_buffer *c;
3168         struct extent_buffer *old;
3169         struct btrfs_disk_key lower_key;
3170
3171         BUG_ON(path->nodes[level]);
3172         BUG_ON(path->nodes[level-1] != root->node);
3173
3174         lower = path->nodes[level-1];
3175         if (level == 1)
3176                 btrfs_item_key(lower, &lower_key, 0);
3177         else
3178                 btrfs_node_key(lower, &lower_key, 0);
3179
3180         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3181                                    root->root_key.objectid, &lower_key,
3182                                    level, root->node->start, 0);
3183         if (IS_ERR(c))
3184                 return PTR_ERR(c);
3185
3186         root_add_used(root, root->nodesize);
3187
3188         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3189         btrfs_set_header_nritems(c, 1);
3190         btrfs_set_header_level(c, level);
3191         btrfs_set_header_bytenr(c, c->start);
3192         btrfs_set_header_generation(c, trans->transid);
3193         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3194         btrfs_set_header_owner(c, root->root_key.objectid);
3195
3196         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3197                             BTRFS_FSID_SIZE);
3198
3199         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3200                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3201
3202         btrfs_set_node_key(c, &lower_key, 0);
3203         btrfs_set_node_blockptr(c, 0, lower->start);
3204         lower_gen = btrfs_header_generation(lower);
3205         WARN_ON(lower_gen != trans->transid);
3206
3207         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3208
3209         btrfs_mark_buffer_dirty(c);
3210
3211         old = root->node;
3212         tree_mod_log_set_root_pointer(root, c, 0);
3213         rcu_assign_pointer(root->node, c);
3214
3215         /* the super has an extra ref to root->node */
3216         free_extent_buffer(old);
3217
3218         add_root_to_dirty_list(root);
3219         extent_buffer_get(c);
3220         path->nodes[level] = c;
3221         path->locks[level] = BTRFS_WRITE_LOCK;
3222         path->slots[level] = 0;
3223         return 0;
3224 }
3225
3226 /*
3227  * worker function to insert a single pointer in a node.
3228  * the node should have enough room for the pointer already
3229  *
3230  * slot and level indicate where you want the key to go, and
3231  * blocknr is the block the key points to.
3232  */
3233 static void insert_ptr(struct btrfs_trans_handle *trans,
3234                        struct btrfs_root *root, struct btrfs_path *path,
3235                        struct btrfs_disk_key *key, u64 bytenr,
3236                        int slot, int level)
3237 {
3238         struct extent_buffer *lower;
3239         int nritems;
3240         int ret;
3241
3242         BUG_ON(!path->nodes[level]);
3243         btrfs_assert_tree_locked(path->nodes[level]);
3244         lower = path->nodes[level];
3245         nritems = btrfs_header_nritems(lower);
3246         BUG_ON(slot > nritems);
3247         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3248         if (slot != nritems) {
3249                 if (level)
3250                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3251                                              slot, nritems - slot);
3252                 memmove_extent_buffer(lower,
3253                               btrfs_node_key_ptr_offset(slot + 1),
3254                               btrfs_node_key_ptr_offset(slot),
3255                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3256         }
3257         if (level) {
3258                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3259                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3260                 BUG_ON(ret < 0);
3261         }
3262         btrfs_set_node_key(lower, key, slot);
3263         btrfs_set_node_blockptr(lower, slot, bytenr);
3264         WARN_ON(trans->transid == 0);
3265         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3266         btrfs_set_header_nritems(lower, nritems + 1);
3267         btrfs_mark_buffer_dirty(lower);
3268 }
3269
3270 /*
3271  * split the node at the specified level in path in two.
3272  * The path is corrected to point to the appropriate node after the split
3273  *
3274  * Before splitting this tries to make some room in the node by pushing
3275  * left and right, if either one works, it returns right away.
3276  *
3277  * returns 0 on success and < 0 on failure
3278  */
3279 static noinline int split_node(struct btrfs_trans_handle *trans,
3280                                struct btrfs_root *root,
3281                                struct btrfs_path *path, int level)
3282 {
3283         struct extent_buffer *c;
3284         struct extent_buffer *split;
3285         struct btrfs_disk_key disk_key;
3286         int mid;
3287         int ret;
3288         u32 c_nritems;
3289
3290         c = path->nodes[level];
3291         WARN_ON(btrfs_header_generation(c) != trans->transid);
3292         if (c == root->node) {
3293                 /*
3294                  * trying to split the root, lets make a new one
3295                  *
3296                  * tree mod log: We don't log_removal old root in
3297                  * insert_new_root, because that root buffer will be kept as a
3298                  * normal node. We are going to log removal of half of the
3299                  * elements below with tree_mod_log_eb_copy. We're holding a
3300                  * tree lock on the buffer, which is why we cannot race with
3301                  * other tree_mod_log users.
3302                  */
3303                 ret = insert_new_root(trans, root, path, level + 1);
3304                 if (ret)
3305                         return ret;
3306         } else {
3307                 ret = push_nodes_for_insert(trans, root, path, level);
3308                 c = path->nodes[level];
3309                 if (!ret && btrfs_header_nritems(c) <
3310                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3311                         return 0;
3312                 if (ret < 0)
3313                         return ret;
3314         }
3315
3316         c_nritems = btrfs_header_nritems(c);
3317         mid = (c_nritems + 1) / 2;
3318         btrfs_node_key(c, &disk_key, mid);
3319
3320         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3321                                         root->root_key.objectid,
3322                                         &disk_key, level, c->start, 0);
3323         if (IS_ERR(split))
3324                 return PTR_ERR(split);
3325
3326         root_add_used(root, root->nodesize);
3327
3328         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3329         btrfs_set_header_level(split, btrfs_header_level(c));
3330         btrfs_set_header_bytenr(split, split->start);
3331         btrfs_set_header_generation(split, trans->transid);
3332         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3333         btrfs_set_header_owner(split, root->root_key.objectid);
3334         write_extent_buffer(split, root->fs_info->fsid,
3335                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3336         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3337                             btrfs_header_chunk_tree_uuid(split),
3338                             BTRFS_UUID_SIZE);
3339
3340         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3341         copy_extent_buffer(split, c,
3342                            btrfs_node_key_ptr_offset(0),
3343                            btrfs_node_key_ptr_offset(mid),
3344                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3345         btrfs_set_header_nritems(split, c_nritems - mid);
3346         btrfs_set_header_nritems(c, mid);
3347         ret = 0;
3348
3349         btrfs_mark_buffer_dirty(c);
3350         btrfs_mark_buffer_dirty(split);
3351
3352         insert_ptr(trans, root, path, &disk_key, split->start,
3353                    path->slots[level + 1] + 1, level + 1);
3354
3355         if (path->slots[level] >= mid) {
3356                 path->slots[level] -= mid;
3357                 btrfs_tree_unlock(c);
3358                 free_extent_buffer(c);
3359                 path->nodes[level] = split;
3360                 path->slots[level + 1] += 1;
3361         } else {
3362                 btrfs_tree_unlock(split);
3363                 free_extent_buffer(split);
3364         }
3365         return ret;
3366 }
3367
3368 /*
3369  * how many bytes are required to store the items in a leaf.  start
3370  * and nr indicate which items in the leaf to check.  This totals up the
3371  * space used both by the item structs and the item data
3372  */
3373 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3374 {
3375         struct btrfs_item *start_item;
3376         struct btrfs_item *end_item;
3377         struct btrfs_map_token token;
3378         int data_len;
3379         int nritems = btrfs_header_nritems(l);
3380         int end = min(nritems, start + nr) - 1;
3381
3382         if (!nr)
3383                 return 0;
3384         btrfs_init_map_token(&token);
3385         start_item = btrfs_item_nr(start);
3386         end_item = btrfs_item_nr(end);
3387         data_len = btrfs_token_item_offset(l, start_item, &token) +
3388                 btrfs_token_item_size(l, start_item, &token);
3389         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3390         data_len += sizeof(struct btrfs_item) * nr;
3391         WARN_ON(data_len < 0);
3392         return data_len;
3393 }
3394
3395 /*
3396  * The space between the end of the leaf items and
3397  * the start of the leaf data.  IOW, how much room
3398  * the leaf has left for both items and data
3399  */
3400 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3401                                    struct extent_buffer *leaf)
3402 {
3403         int nritems = btrfs_header_nritems(leaf);
3404         int ret;
3405         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3406         if (ret < 0) {
3407                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3408                        "used %d nritems %d\n",
3409                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3410                        leaf_space_used(leaf, 0, nritems), nritems);
3411         }
3412         return ret;
3413 }
3414
3415 /*
3416  * min slot controls the lowest index we're willing to push to the
3417  * right.  We'll push up to and including min_slot, but no lower
3418  */
3419 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3420                                       struct btrfs_root *root,
3421                                       struct btrfs_path *path,
3422                                       int data_size, int empty,
3423                                       struct extent_buffer *right,
3424                                       int free_space, u32 left_nritems,
3425                                       u32 min_slot)
3426 {
3427         struct extent_buffer *left = path->nodes[0];
3428         struct extent_buffer *upper = path->nodes[1];
3429         struct btrfs_map_token token;
3430         struct btrfs_disk_key disk_key;
3431         int slot;
3432         u32 i;
3433         int push_space = 0;
3434         int push_items = 0;
3435         struct btrfs_item *item;
3436         u32 nr;
3437         u32 right_nritems;
3438         u32 data_end;
3439         u32 this_item_size;
3440
3441         btrfs_init_map_token(&token);
3442
3443         if (empty)
3444                 nr = 0;
3445         else
3446                 nr = max_t(u32, 1, min_slot);
3447
3448         if (path->slots[0] >= left_nritems)
3449                 push_space += data_size;
3450
3451         slot = path->slots[1];
3452         i = left_nritems - 1;
3453         while (i >= nr) {
3454                 item = btrfs_item_nr(i);
3455
3456                 if (!empty && push_items > 0) {
3457                         if (path->slots[0] > i)
3458                                 break;
3459                         if (path->slots[0] == i) {
3460                                 int space = btrfs_leaf_free_space(root, left);
3461                                 if (space + push_space * 2 > free_space)
3462                                         break;
3463                         }
3464                 }
3465
3466                 if (path->slots[0] == i)
3467                         push_space += data_size;
3468
3469                 this_item_size = btrfs_item_size(left, item);
3470                 if (this_item_size + sizeof(*item) + push_space > free_space)
3471                         break;
3472
3473                 push_items++;
3474                 push_space += this_item_size + sizeof(*item);
3475                 if (i == 0)
3476                         break;
3477                 i--;
3478         }
3479
3480         if (push_items == 0)
3481                 goto out_unlock;
3482
3483         WARN_ON(!empty && push_items == left_nritems);
3484
3485         /* push left to right */
3486         right_nritems = btrfs_header_nritems(right);
3487
3488         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3489         push_space -= leaf_data_end(root, left);
3490
3491         /* make room in the right data area */
3492         data_end = leaf_data_end(root, right);
3493         memmove_extent_buffer(right,
3494                               btrfs_leaf_data(right) + data_end - push_space,
3495                               btrfs_leaf_data(right) + data_end,
3496                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3497
3498         /* copy from the left data area */
3499         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3500                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3501                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3502                      push_space);
3503
3504         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3505                               btrfs_item_nr_offset(0),
3506                               right_nritems * sizeof(struct btrfs_item));
3507
3508         /* copy the items from left to right */
3509         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3510                    btrfs_item_nr_offset(left_nritems - push_items),
3511                    push_items * sizeof(struct btrfs_item));
3512
3513         /* update the item pointers */
3514         right_nritems += push_items;
3515         btrfs_set_header_nritems(right, right_nritems);
3516         push_space = BTRFS_LEAF_DATA_SIZE(root);
3517         for (i = 0; i < right_nritems; i++) {
3518                 item = btrfs_item_nr(i);
3519                 push_space -= btrfs_token_item_size(right, item, &token);
3520                 btrfs_set_token_item_offset(right, item, push_space, &token);
3521         }
3522
3523         left_nritems -= push_items;
3524         btrfs_set_header_nritems(left, left_nritems);
3525
3526         if (left_nritems)
3527                 btrfs_mark_buffer_dirty(left);
3528         else
3529                 clean_tree_block(trans, root, left);
3530
3531         btrfs_mark_buffer_dirty(right);
3532
3533         btrfs_item_key(right, &disk_key, 0);
3534         btrfs_set_node_key(upper, &disk_key, slot + 1);
3535         btrfs_mark_buffer_dirty(upper);
3536
3537         /* then fixup the leaf pointer in the path */
3538         if (path->slots[0] >= left_nritems) {
3539                 path->slots[0] -= left_nritems;
3540                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3541                         clean_tree_block(trans, root, path->nodes[0]);
3542                 btrfs_tree_unlock(path->nodes[0]);
3543                 free_extent_buffer(path->nodes[0]);
3544                 path->nodes[0] = right;
3545                 path->slots[1] += 1;
3546         } else {
3547                 btrfs_tree_unlock(right);
3548                 free_extent_buffer(right);
3549         }
3550         return 0;
3551
3552 out_unlock:
3553         btrfs_tree_unlock(right);
3554         free_extent_buffer(right);
3555         return 1;
3556 }
3557
3558 /*
3559  * push some data in the path leaf to the right, trying to free up at
3560  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3561  *
3562  * returns 1 if the push failed because the other node didn't have enough
3563  * room, 0 if everything worked out and < 0 if there were major errors.
3564  *
3565  * this will push starting from min_slot to the end of the leaf.  It won't
3566  * push any slot lower than min_slot
3567  */
3568 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3569                            *root, struct btrfs_path *path,
3570                            int min_data_size, int data_size,
3571                            int empty, u32 min_slot)
3572 {
3573         struct extent_buffer *left = path->nodes[0];
3574         struct extent_buffer *right;
3575         struct extent_buffer *upper;
3576         int slot;
3577         int free_space;
3578         u32 left_nritems;
3579         int ret;
3580
3581         if (!path->nodes[1])
3582                 return 1;
3583
3584         slot = path->slots[1];
3585         upper = path->nodes[1];
3586         if (slot >= btrfs_header_nritems(upper) - 1)
3587                 return 1;
3588
3589         btrfs_assert_tree_locked(path->nodes[1]);
3590
3591         right = read_node_slot(root, upper, slot + 1);
3592         if (right == NULL)
3593                 return 1;
3594
3595         btrfs_tree_lock(right);
3596         btrfs_set_lock_blocking(right);
3597
3598         free_space = btrfs_leaf_free_space(root, right);
3599         if (free_space < data_size)
3600                 goto out_unlock;
3601
3602         /* cow and double check */
3603         ret = btrfs_cow_block(trans, root, right, upper,
3604                               slot + 1, &right);
3605         if (ret)
3606                 goto out_unlock;
3607
3608         free_space = btrfs_leaf_free_space(root, right);
3609         if (free_space < data_size)
3610                 goto out_unlock;
3611
3612         left_nritems = btrfs_header_nritems(left);
3613         if (left_nritems == 0)
3614                 goto out_unlock;
3615
3616         return __push_leaf_right(trans, root, path, min_data_size, empty,
3617                                 right, free_space, left_nritems, min_slot);
3618 out_unlock:
3619         btrfs_tree_unlock(right);
3620         free_extent_buffer(right);
3621         return 1;
3622 }
3623
3624 /*
3625  * push some data in the path leaf to the left, trying to free up at
3626  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3627  *
3628  * max_slot can put a limit on how far into the leaf we'll push items.  The
3629  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3630  * items
3631  */
3632 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3633                                      struct btrfs_root *root,
3634                                      struct btrfs_path *path, int data_size,
3635                                      int empty, struct extent_buffer *left,
3636                                      int free_space, u32 right_nritems,
3637                                      u32 max_slot)
3638 {
3639         struct btrfs_disk_key disk_key;
3640         struct extent_buffer *right = path->nodes[0];
3641         int i;
3642         int push_space = 0;
3643         int push_items = 0;
3644         struct btrfs_item *item;
3645         u32 old_left_nritems;
3646         u32 nr;
3647         int ret = 0;
3648         u32 this_item_size;
3649         u32 old_left_item_size;
3650         struct btrfs_map_token token;
3651
3652         btrfs_init_map_token(&token);
3653
3654         if (empty)
3655                 nr = min(right_nritems, max_slot);
3656         else
3657                 nr = min(right_nritems - 1, max_slot);
3658
3659         for (i = 0; i < nr; i++) {
3660                 item = btrfs_item_nr(i);
3661
3662                 if (!empty && push_items > 0) {
3663                         if (path->slots[0] < i)
3664                                 break;
3665                         if (path->slots[0] == i) {
3666                                 int space = btrfs_leaf_free_space(root, right);
3667                                 if (space + push_space * 2 > free_space)
3668                                         break;
3669                         }
3670                 }
3671
3672                 if (path->slots[0] == i)
3673                         push_space += data_size;
3674
3675                 this_item_size = btrfs_item_size(right, item);
3676                 if (this_item_size + sizeof(*item) + push_space > free_space)
3677                         break;
3678
3679                 push_items++;
3680                 push_space += this_item_size + sizeof(*item);
3681         }
3682
3683         if (push_items == 0) {
3684                 ret = 1;
3685                 goto out;
3686         }
3687         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3688
3689         /* push data from right to left */
3690         copy_extent_buffer(left, right,
3691                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3692                            btrfs_item_nr_offset(0),
3693                            push_items * sizeof(struct btrfs_item));
3694
3695         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3696                      btrfs_item_offset_nr(right, push_items - 1);
3697
3698         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3699                      leaf_data_end(root, left) - push_space,
3700                      btrfs_leaf_data(right) +
3701                      btrfs_item_offset_nr(right, push_items - 1),
3702                      push_space);
3703         old_left_nritems = btrfs_header_nritems(left);
3704         BUG_ON(old_left_nritems <= 0);
3705
3706         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3707         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3708                 u32 ioff;
3709
3710                 item = btrfs_item_nr(i);
3711
3712                 ioff = btrfs_token_item_offset(left, item, &token);
3713                 btrfs_set_token_item_offset(left, item,
3714                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3715                       &token);
3716         }
3717         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3718
3719         /* fixup right node */
3720         if (push_items > right_nritems)
3721                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3722                        right_nritems);
3723
3724         if (push_items < right_nritems) {
3725                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3726                                                   leaf_data_end(root, right);
3727                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3728                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3729                                       btrfs_leaf_data(right) +
3730                                       leaf_data_end(root, right), push_space);
3731
3732                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3733                               btrfs_item_nr_offset(push_items),
3734                              (btrfs_header_nritems(right) - push_items) *
3735                              sizeof(struct btrfs_item));
3736         }
3737         right_nritems -= push_items;
3738         btrfs_set_header_nritems(right, right_nritems);
3739         push_space = BTRFS_LEAF_DATA_SIZE(root);
3740         for (i = 0; i < right_nritems; i++) {
3741                 item = btrfs_item_nr(i);
3742
3743                 push_space = push_space - btrfs_token_item_size(right,
3744                                                                 item, &token);
3745                 btrfs_set_token_item_offset(right, item, push_space, &token);
3746         }
3747
3748         btrfs_mark_buffer_dirty(left);
3749         if (right_nritems)
3750                 btrfs_mark_buffer_dirty(right);
3751         else
3752                 clean_tree_block(trans, root, right);
3753
3754         btrfs_item_key(right, &disk_key, 0);
3755         fixup_low_keys(root, path, &disk_key, 1);
3756
3757         /* then fixup the leaf pointer in the path */
3758         if (path->slots[0] < push_items) {
3759                 path->slots[0] += old_left_nritems;
3760                 btrfs_tree_unlock(path->nodes[0]);
3761                 free_extent_buffer(path->nodes[0]);
3762                 path->nodes[0] = left;
3763                 path->slots[1] -= 1;
3764         } else {
3765                 btrfs_tree_unlock(left);
3766                 free_extent_buffer(left);
3767                 path->slots[0] -= push_items;
3768         }
3769         BUG_ON(path->slots[0] < 0);
3770         return ret;
3771 out:
3772         btrfs_tree_unlock(left);
3773         free_extent_buffer(left);
3774         return ret;
3775 }
3776
3777 /*
3778  * push some data in the path leaf to the left, trying to free up at
3779  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3780  *
3781  * max_slot can put a limit on how far into the leaf we'll push items.  The
3782  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3783  * items
3784  */
3785 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3786                           *root, struct btrfs_path *path, int min_data_size,
3787                           int data_size, int empty, u32 max_slot)
3788 {
3789         struct extent_buffer *right = path->nodes[0];
3790         struct extent_buffer *left;
3791         int slot;
3792         int free_space;
3793         u32 right_nritems;
3794         int ret = 0;
3795
3796         slot = path->slots[1];
3797         if (slot == 0)
3798                 return 1;
3799         if (!path->nodes[1])
3800                 return 1;
3801
3802         right_nritems = btrfs_header_nritems(right);
3803         if (right_nritems == 0)
3804                 return 1;
3805
3806         btrfs_assert_tree_locked(path->nodes[1]);
3807
3808         left = read_node_slot(root, path->nodes[1], slot - 1);
3809         if (left == NULL)
3810                 return 1;
3811
3812         btrfs_tree_lock(left);
3813         btrfs_set_lock_blocking(left);
3814
3815         free_space = btrfs_leaf_free_space(root, left);
3816         if (free_space < data_size) {
3817                 ret = 1;
3818                 goto out;
3819         }
3820
3821         /* cow and double check */
3822         ret = btrfs_cow_block(trans, root, left,
3823                               path->nodes[1], slot - 1, &left);
3824         if (ret) {
3825                 /* we hit -ENOSPC, but it isn't fatal here */
3826                 if (ret == -ENOSPC)
3827                         ret = 1;
3828                 goto out;
3829         }
3830
3831         free_space = btrfs_leaf_free_space(root, left);
3832         if (free_space < data_size) {
3833                 ret = 1;
3834                 goto out;
3835         }
3836
3837         return __push_leaf_left(trans, root, path, min_data_size,
3838                                empty, left, free_space, right_nritems,
3839                                max_slot);
3840 out:
3841         btrfs_tree_unlock(left);
3842         free_extent_buffer(left);
3843         return ret;
3844 }
3845
3846 /*
3847  * split the path's leaf in two, making sure there is at least data_size
3848  * available for the resulting leaf level of the path.
3849  */
3850 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3851                                     struct btrfs_root *root,
3852                                     struct btrfs_path *path,
3853                                     struct extent_buffer *l,
3854                                     struct extent_buffer *right,
3855                                     int slot, int mid, int nritems)
3856 {
3857         int data_copy_size;
3858         int rt_data_off;
3859         int i;
3860         struct btrfs_disk_key disk_key;
3861         struct btrfs_map_token token;
3862
3863         btrfs_init_map_token(&token);
3864
3865         nritems = nritems - mid;
3866         btrfs_set_header_nritems(right, nritems);
3867         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3868
3869         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3870                            btrfs_item_nr_offset(mid),
3871                            nritems * sizeof(struct btrfs_item));
3872
3873         copy_extent_buffer(right, l,
3874                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3875                      data_copy_size, btrfs_leaf_data(l) +
3876                      leaf_data_end(root, l), data_copy_size);
3877
3878         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3879                       btrfs_item_end_nr(l, mid);
3880
3881         for (i = 0; i < nritems; i++) {
3882                 struct btrfs_item *item = btrfs_item_nr(i);
3883                 u32 ioff;
3884
3885                 ioff = btrfs_token_item_offset(right, item, &token);
3886                 btrfs_set_token_item_offset(right, item,
3887                                             ioff + rt_data_off, &token);
3888         }
3889
3890         btrfs_set_header_nritems(l, mid);
3891         btrfs_item_key(right, &disk_key, 0);
3892         insert_ptr(trans, root, path, &disk_key, right->start,
3893                    path->slots[1] + 1, 1);
3894
3895         btrfs_mark_buffer_dirty(right);
3896         btrfs_mark_buffer_dirty(l);
3897         BUG_ON(path->slots[0] != slot);
3898
3899         if (mid <= slot) {
3900                 btrfs_tree_unlock(path->nodes[0]);
3901                 free_extent_buffer(path->nodes[0]);
3902                 path->nodes[0] = right;
3903                 path->slots[0] -= mid;
3904                 path->slots[1] += 1;
3905         } else {
3906                 btrfs_tree_unlock(right);
3907                 free_extent_buffer(right);
3908         }
3909
3910         BUG_ON(path->slots[0] < 0);
3911 }
3912
3913 /*
3914  * double splits happen when we need to insert a big item in the middle
3915  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3916  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3917  *          A                 B                 C
3918  *
3919  * We avoid this by trying to push the items on either side of our target
3920  * into the adjacent leaves.  If all goes well we can avoid the double split
3921  * completely.
3922  */
3923 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3924                                           struct btrfs_root *root,
3925                                           struct btrfs_path *path,
3926                                           int data_size)
3927 {
3928         int ret;
3929         int progress = 0;
3930         int slot;
3931         u32 nritems;
3932
3933         slot = path->slots[0];
3934
3935         /*
3936          * try to push all the items after our slot into the
3937          * right leaf
3938          */
3939         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3940         if (ret < 0)
3941                 return ret;
3942
3943         if (ret == 0)
3944                 progress++;
3945
3946         nritems = btrfs_header_nritems(path->nodes[0]);
3947         /*
3948          * our goal is to get our slot at the start or end of a leaf.  If
3949          * we've done so we're done
3950          */
3951         if (path->slots[0] == 0 || path->slots[0] == nritems)
3952                 return 0;
3953
3954         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3955                 return 0;
3956
3957         /* try to push all the items before our slot into the next leaf */
3958         slot = path->slots[0];
3959         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3960         if (ret < 0)
3961                 return ret;
3962
3963         if (ret == 0)
3964                 progress++;
3965
3966         if (progress)
3967                 return 0;
3968         return 1;
3969 }
3970
3971 /*
3972  * split the path's leaf in two, making sure there is at least data_size
3973  * available for the resulting leaf level of the path.
3974  *
3975  * returns 0 if all went well and < 0 on failure.
3976  */
3977 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3978                                struct btrfs_root *root,
3979                                struct btrfs_key *ins_key,
3980                                struct btrfs_path *path, int data_size,
3981                                int extend)
3982 {
3983         struct btrfs_disk_key disk_key;
3984         struct extent_buffer *l;
3985         u32 nritems;
3986         int mid;
3987         int slot;
3988         struct extent_buffer *right;
3989         int ret = 0;
3990         int wret;
3991         int split;
3992         int num_doubles = 0;
3993         int tried_avoid_double = 0;
3994
3995         l = path->nodes[0];
3996         slot = path->slots[0];
3997         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3998             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3999                 return -EOVERFLOW;
4000
4001         /* first try to make some room by pushing left and right */
4002         if (data_size && path->nodes[1]) {
4003                 wret = push_leaf_right(trans, root, path, data_size,
4004                                        data_size, 0, 0);
4005                 if (wret < 0)
4006                         return wret;
4007                 if (wret) {
4008                         wret = push_leaf_left(trans, root, path, data_size,
4009                                               data_size, 0, (u32)-1);
4010                         if (wret < 0)
4011                                 return wret;
4012                 }
4013                 l = path->nodes[0];
4014
4015                 /* did the pushes work? */
4016                 if (btrfs_leaf_free_space(root, l) >= data_size)
4017                         return 0;
4018         }
4019
4020         if (!path->nodes[1]) {
4021                 ret = insert_new_root(trans, root, path, 1);
4022                 if (ret)
4023                         return ret;
4024         }
4025 again:
4026         split = 1;
4027         l = path->nodes[0];
4028         slot = path->slots[0];
4029         nritems = btrfs_header_nritems(l);
4030         mid = (nritems + 1) / 2;
4031
4032         if (mid <= slot) {
4033                 if (nritems == 1 ||
4034                     leaf_space_used(l, mid, nritems - mid) + data_size >
4035                         BTRFS_LEAF_DATA_SIZE(root)) {
4036                         if (slot >= nritems) {
4037                                 split = 0;
4038                         } else {
4039                                 mid = slot;
4040                                 if (mid != nritems &&
4041                                     leaf_space_used(l, mid, nritems - mid) +
4042                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4043                                         if (data_size && !tried_avoid_double)
4044                                                 goto push_for_double;
4045                                         split = 2;
4046                                 }
4047                         }
4048                 }
4049         } else {
4050                 if (leaf_space_used(l, 0, mid) + data_size >
4051                         BTRFS_LEAF_DATA_SIZE(root)) {
4052                         if (!extend && data_size && slot == 0) {
4053                                 split = 0;
4054                         } else if ((extend || !data_size) && slot == 0) {
4055                                 mid = 1;
4056                         } else {
4057                                 mid = slot;
4058                                 if (mid != nritems &&
4059                                     leaf_space_used(l, mid, nritems - mid) +
4060                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4061                                         if (data_size && !tried_avoid_double)
4062                                                 goto push_for_double;
4063                                         split = 2;
4064                                 }
4065                         }
4066                 }
4067         }
4068
4069         if (split == 0)
4070                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4071         else
4072                 btrfs_item_key(l, &disk_key, mid);
4073
4074         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4075                                         root->root_key.objectid,
4076                                         &disk_key, 0, l->start, 0);
4077         if (IS_ERR(right))
4078                 return PTR_ERR(right);
4079
4080         root_add_used(root, root->leafsize);
4081
4082         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4083         btrfs_set_header_bytenr(right, right->start);
4084         btrfs_set_header_generation(right, trans->transid);
4085         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4086         btrfs_set_header_owner(right, root->root_key.objectid);
4087         btrfs_set_header_level(right, 0);
4088         write_extent_buffer(right, root->fs_info->fsid,
4089                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4090
4091         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4092                             btrfs_header_chunk_tree_uuid(right),
4093                             BTRFS_UUID_SIZE);
4094
4095         if (split == 0) {
4096                 if (mid <= slot) {
4097                         btrfs_set_header_nritems(right, 0);
4098                         insert_ptr(trans, root, path, &disk_key, right->start,
4099                                    path->slots[1] + 1, 1);
4100                         btrfs_tree_unlock(path->nodes[0]);
4101                         free_extent_buffer(path->nodes[0]);
4102                         path->nodes[0] = right;
4103                         path->slots[0] = 0;
4104                         path->slots[1] += 1;
4105                 } else {
4106                         btrfs_set_header_nritems(right, 0);
4107                         insert_ptr(trans, root, path, &disk_key, right->start,
4108                                           path->slots[1], 1);
4109                         btrfs_tree_unlock(path->nodes[0]);
4110                         free_extent_buffer(path->nodes[0]);
4111                         path->nodes[0] = right;
4112                         path->slots[0] = 0;
4113                         if (path->slots[1] == 0)
4114                                 fixup_low_keys(root, path, &disk_key, 1);
4115                 }
4116                 btrfs_mark_buffer_dirty(right);
4117                 return ret;
4118         }
4119
4120         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4121
4122         if (split == 2) {
4123                 BUG_ON(num_doubles != 0);
4124                 num_doubles++;
4125                 goto again;
4126         }
4127
4128         return 0;
4129
4130 push_for_double:
4131         push_for_double_split(trans, root, path, data_size);
4132         tried_avoid_double = 1;
4133         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4134                 return 0;
4135         goto again;
4136 }
4137
4138 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4139                                          struct btrfs_root *root,
4140                                          struct btrfs_path *path, int ins_len)
4141 {
4142         struct btrfs_key key;
4143         struct extent_buffer *leaf;
4144         struct btrfs_file_extent_item *fi;
4145         u64 extent_len = 0;
4146         u32 item_size;
4147         int ret;
4148
4149         leaf = path->nodes[0];
4150         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4151
4152         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4153                key.type != BTRFS_EXTENT_CSUM_KEY);
4154
4155         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4156                 return 0;
4157
4158         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4159         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4160                 fi = btrfs_item_ptr(leaf, path->slots[0],
4161                                     struct btrfs_file_extent_item);
4162                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4163         }
4164         btrfs_release_path(path);
4165
4166         path->keep_locks = 1;
4167         path->search_for_split = 1;
4168         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4169         path->search_for_split = 0;
4170         if (ret < 0)
4171                 goto err;
4172
4173         ret = -EAGAIN;
4174         leaf = path->nodes[0];
4175         /* if our item isn't there or got smaller, return now */
4176         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4177                 goto err;
4178
4179         /* the leaf has  changed, it now has room.  return now */
4180         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4181                 goto err;
4182
4183         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4184                 fi = btrfs_item_ptr(leaf, path->slots[0],
4185                                     struct btrfs_file_extent_item);
4186                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4187                         goto err;
4188         }
4189
4190         btrfs_set_path_blocking(path);
4191         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4192         if (ret)
4193                 goto err;
4194
4195         path->keep_locks = 0;
4196         btrfs_unlock_up_safe(path, 1);
4197         return 0;
4198 err:
4199         path->keep_locks = 0;
4200         return ret;
4201 }
4202
4203 static noinline int split_item(struct btrfs_trans_handle *trans,
4204                                struct btrfs_root *root,
4205                                struct btrfs_path *path,
4206                                struct btrfs_key *new_key,
4207                                unsigned long split_offset)
4208 {
4209         struct extent_buffer *leaf;
4210         struct btrfs_item *item;
4211         struct btrfs_item *new_item;
4212         int slot;
4213         char *buf;
4214         u32 nritems;
4215         u32 item_size;
4216         u32 orig_offset;
4217         struct btrfs_disk_key disk_key;
4218
4219         leaf = path->nodes[0];
4220         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4221
4222         btrfs_set_path_blocking(path);
4223
4224         item = btrfs_item_nr(path->slots[0]);
4225         orig_offset = btrfs_item_offset(leaf, item);
4226         item_size = btrfs_item_size(leaf, item);
4227
4228         buf = kmalloc(item_size, GFP_NOFS);
4229         if (!buf)
4230                 return -ENOMEM;
4231
4232         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4233                             path->slots[0]), item_size);
4234
4235         slot = path->slots[0] + 1;
4236         nritems = btrfs_header_nritems(leaf);
4237         if (slot != nritems) {
4238                 /* shift the items */
4239                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4240                                 btrfs_item_nr_offset(slot),
4241                                 (nritems - slot) * sizeof(struct btrfs_item));
4242         }
4243
4244         btrfs_cpu_key_to_disk(&disk_key, new_key);
4245         btrfs_set_item_key(leaf, &disk_key, slot);
4246
4247         new_item = btrfs_item_nr(slot);
4248
4249         btrfs_set_item_offset(leaf, new_item, orig_offset);
4250         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4251
4252         btrfs_set_item_offset(leaf, item,
4253                               orig_offset + item_size - split_offset);
4254         btrfs_set_item_size(leaf, item, split_offset);
4255
4256         btrfs_set_header_nritems(leaf, nritems + 1);
4257
4258         /* write the data for the start of the original item */
4259         write_extent_buffer(leaf, buf,
4260                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4261                             split_offset);
4262
4263         /* write the data for the new item */
4264         write_extent_buffer(leaf, buf + split_offset,
4265                             btrfs_item_ptr_offset(leaf, slot),
4266                             item_size - split_offset);
4267         btrfs_mark_buffer_dirty(leaf);
4268
4269         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4270         kfree(buf);
4271         return 0;
4272 }
4273
4274 /*
4275  * This function splits a single item into two items,
4276  * giving 'new_key' to the new item and splitting the
4277  * old one at split_offset (from the start of the item).
4278  *
4279  * The path may be released by this operation.  After
4280  * the split, the path is pointing to the old item.  The
4281  * new item is going to be in the same node as the old one.
4282  *
4283  * Note, the item being split must be smaller enough to live alone on
4284  * a tree block with room for one extra struct btrfs_item
4285  *
4286  * This allows us to split the item in place, keeping a lock on the
4287  * leaf the entire time.
4288  */
4289 int btrfs_split_item(struct btrfs_trans_handle *trans,
4290                      struct btrfs_root *root,
4291                      struct btrfs_path *path,
4292                      struct btrfs_key *new_key,
4293                      unsigned long split_offset)
4294 {
4295         int ret;
4296         ret = setup_leaf_for_split(trans, root, path,
4297                                    sizeof(struct btrfs_item));
4298         if (ret)
4299                 return ret;
4300
4301         ret = split_item(trans, root, path, new_key, split_offset);
4302         return ret;
4303 }
4304
4305 /*
4306  * This function duplicate a item, giving 'new_key' to the new item.
4307  * It guarantees both items live in the same tree leaf and the new item
4308  * is contiguous with the original item.
4309  *
4310  * This allows us to split file extent in place, keeping a lock on the
4311  * leaf the entire time.
4312  */
4313 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4314                          struct btrfs_root *root,
4315                          struct btrfs_path *path,
4316                          struct btrfs_key *new_key)
4317 {
4318         struct extent_buffer *leaf;
4319         int ret;
4320         u32 item_size;
4321
4322         leaf = path->nodes[0];
4323         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4324         ret = setup_leaf_for_split(trans, root, path,
4325                                    item_size + sizeof(struct btrfs_item));
4326         if (ret)
4327                 return ret;
4328
4329         path->slots[0]++;
4330         setup_items_for_insert(root, path, new_key, &item_size,
4331                                item_size, item_size +
4332                                sizeof(struct btrfs_item), 1);
4333         leaf = path->nodes[0];
4334         memcpy_extent_buffer(leaf,
4335                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4336                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4337                              item_size);
4338         return 0;
4339 }
4340
4341 /*
4342  * make the item pointed to by the path smaller.  new_size indicates
4343  * how small to make it, and from_end tells us if we just chop bytes
4344  * off the end of the item or if we shift the item to chop bytes off
4345  * the front.
4346  */
4347 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4348                          u32 new_size, int from_end)
4349 {
4350         int slot;
4351         struct extent_buffer *leaf;
4352         struct btrfs_item *item;
4353         u32 nritems;
4354         unsigned int data_end;
4355         unsigned int old_data_start;
4356         unsigned int old_size;
4357         unsigned int size_diff;
4358         int i;
4359         struct btrfs_map_token token;
4360
4361         btrfs_init_map_token(&token);
4362
4363         leaf = path->nodes[0];
4364         slot = path->slots[0];
4365
4366         old_size = btrfs_item_size_nr(leaf, slot);
4367         if (old_size == new_size)
4368                 return;
4369
4370         nritems = btrfs_header_nritems(leaf);
4371         data_end = leaf_data_end(root, leaf);
4372
4373         old_data_start = btrfs_item_offset_nr(leaf, slot);
4374
4375         size_diff = old_size - new_size;
4376
4377         BUG_ON(slot < 0);
4378         BUG_ON(slot >= nritems);
4379
4380         /*
4381          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4382          */
4383         /* first correct the data pointers */
4384         for (i = slot; i < nritems; i++) {
4385                 u32 ioff;
4386                 item = btrfs_item_nr(i);
4387
4388                 ioff = btrfs_token_item_offset(leaf, item, &token);
4389                 btrfs_set_token_item_offset(leaf, item,
4390                                             ioff + size_diff, &token);
4391         }
4392
4393         /* shift the data */
4394         if (from_end) {
4395                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4396                               data_end + size_diff, btrfs_leaf_data(leaf) +
4397                               data_end, old_data_start + new_size - data_end);
4398         } else {
4399                 struct btrfs_disk_key disk_key;
4400                 u64 offset;
4401
4402                 btrfs_item_key(leaf, &disk_key, slot);
4403
4404                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4405                         unsigned long ptr;
4406                         struct btrfs_file_extent_item *fi;
4407
4408                         fi = btrfs_item_ptr(leaf, slot,
4409                                             struct btrfs_file_extent_item);
4410                         fi = (struct btrfs_file_extent_item *)(
4411                              (unsigned long)fi - size_diff);
4412
4413                         if (btrfs_file_extent_type(leaf, fi) ==
4414                             BTRFS_FILE_EXTENT_INLINE) {
4415                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4416                                 memmove_extent_buffer(leaf, ptr,
4417                                       (unsigned long)fi,
4418                                       offsetof(struct btrfs_file_extent_item,
4419                                                  disk_bytenr));
4420                         }
4421                 }
4422
4423                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4424                               data_end + size_diff, btrfs_leaf_data(leaf) +
4425                               data_end, old_data_start - data_end);
4426
4427                 offset = btrfs_disk_key_offset(&disk_key);
4428                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4429                 btrfs_set_item_key(leaf, &disk_key, slot);
4430                 if (slot == 0)
4431                         fixup_low_keys(root, path, &disk_key, 1);
4432         }
4433
4434         item = btrfs_item_nr(slot);
4435         btrfs_set_item_size(leaf, item, new_size);
4436         btrfs_mark_buffer_dirty(leaf);
4437
4438         if (btrfs_leaf_free_space(root, leaf) < 0) {
4439                 btrfs_print_leaf(root, leaf);
4440                 BUG();
4441         }
4442 }
4443
4444 /*
4445  * make the item pointed to by the path bigger, data_size is the added size.
4446  */
4447 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4448                        u32 data_size)
4449 {
4450         int slot;
4451         struct extent_buffer *leaf;
4452         struct btrfs_item *item;
4453         u32 nritems;
4454         unsigned int data_end;
4455         unsigned int old_data;
4456         unsigned int old_size;
4457         int i;
4458         struct btrfs_map_token token;
4459
4460         btrfs_init_map_token(&token);
4461
4462         leaf = path->nodes[0];
4463
4464         nritems = btrfs_header_nritems(leaf);
4465         data_end = leaf_data_end(root, leaf);
4466
4467         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4468                 btrfs_print_leaf(root, leaf);
4469                 BUG();
4470         }
4471         slot = path->slots[0];
4472         old_data = btrfs_item_end_nr(leaf, slot);
4473
4474         BUG_ON(slot < 0);
4475         if (slot >= nritems) {
4476                 btrfs_print_leaf(root, leaf);
4477                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4478                        slot, nritems);
4479                 BUG_ON(1);
4480         }
4481
4482         /*
4483          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4484          */
4485         /* first correct the data pointers */
4486         for (i = slot; i < nritems; i++) {
4487                 u32 ioff;
4488                 item = btrfs_item_nr(i);
4489
4490                 ioff = btrfs_token_item_offset(leaf, item, &token);
4491                 btrfs_set_token_item_offset(leaf, item,
4492                                             ioff - data_size, &token);
4493         }
4494
4495         /* shift the data */
4496         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4497                       data_end - data_size, btrfs_leaf_data(leaf) +
4498                       data_end, old_data - data_end);
4499
4500         data_end = old_data;
4501         old_size = btrfs_item_size_nr(leaf, slot);
4502         item = btrfs_item_nr(slot);
4503         btrfs_set_item_size(leaf, item, old_size + data_size);
4504         btrfs_mark_buffer_dirty(leaf);
4505
4506         if (btrfs_leaf_free_space(root, leaf) < 0) {
4507                 btrfs_print_leaf(root, leaf);
4508                 BUG();
4509         }
4510 }
4511
4512 /*
4513  * this is a helper for btrfs_insert_empty_items, the main goal here is
4514  * to save stack depth by doing the bulk of the work in a function
4515  * that doesn't call btrfs_search_slot
4516  */
4517 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4518                             struct btrfs_key *cpu_key, u32 *data_size,
4519                             u32 total_data, u32 total_size, int nr)
4520 {
4521         struct btrfs_item *item;
4522         int i;
4523         u32 nritems;
4524         unsigned int data_end;
4525         struct btrfs_disk_key disk_key;
4526         struct extent_buffer *leaf;
4527         int slot;
4528         struct btrfs_map_token token;
4529
4530         btrfs_init_map_token(&token);
4531
4532         leaf = path->nodes[0];
4533         slot = path->slots[0];
4534
4535         nritems = btrfs_header_nritems(leaf);
4536         data_end = leaf_data_end(root, leaf);
4537
4538         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4539                 btrfs_print_leaf(root, leaf);
4540                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4541                        total_size, btrfs_leaf_free_space(root, leaf));
4542                 BUG();
4543         }
4544
4545         if (slot != nritems) {
4546                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4547
4548                 if (old_data < data_end) {
4549                         btrfs_print_leaf(root, leaf);
4550                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4551                                slot, old_data, data_end);
4552                         BUG_ON(1);
4553                 }
4554                 /*
4555                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4556                  */
4557                 /* first correct the data pointers */
4558                 for (i = slot; i < nritems; i++) {
4559                         u32 ioff;
4560
4561                         item = btrfs_item_nr( i);
4562                         ioff = btrfs_token_item_offset(leaf, item, &token);
4563                         btrfs_set_token_item_offset(leaf, item,
4564                                                     ioff - total_data, &token);
4565                 }
4566                 /* shift the items */
4567                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4568                               btrfs_item_nr_offset(slot),
4569                               (nritems - slot) * sizeof(struct btrfs_item));
4570
4571                 /* shift the data */
4572                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4573                               data_end - total_data, btrfs_leaf_data(leaf) +
4574                               data_end, old_data - data_end);
4575                 data_end = old_data;
4576         }
4577
4578         /* setup the item for the new data */
4579         for (i = 0; i < nr; i++) {
4580                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4581                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4582                 item = btrfs_item_nr(slot + i);
4583                 btrfs_set_token_item_offset(leaf, item,
4584                                             data_end - data_size[i], &token);
4585                 data_end -= data_size[i];
4586                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4587         }
4588
4589         btrfs_set_header_nritems(leaf, nritems + nr);
4590
4591         if (slot == 0) {
4592                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4593                 fixup_low_keys(root, path, &disk_key, 1);
4594         }
4595         btrfs_unlock_up_safe(path, 1);
4596         btrfs_mark_buffer_dirty(leaf);
4597
4598         if (btrfs_leaf_free_space(root, leaf) < 0) {
4599                 btrfs_print_leaf(root, leaf);
4600                 BUG();
4601         }
4602 }
4603
4604 /*
4605  * Given a key and some data, insert items into the tree.
4606  * This does all the path init required, making room in the tree if needed.
4607  */
4608 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4609                             struct btrfs_root *root,
4610                             struct btrfs_path *path,
4611                             struct btrfs_key *cpu_key, u32 *data_size,
4612                             int nr)
4613 {
4614         int ret = 0;
4615         int slot;
4616         int i;
4617         u32 total_size = 0;
4618         u32 total_data = 0;
4619
4620         for (i = 0; i < nr; i++)
4621                 total_data += data_size[i];
4622
4623         total_size = total_data + (nr * sizeof(struct btrfs_item));
4624         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4625         if (ret == 0)
4626                 return -EEXIST;
4627         if (ret < 0)
4628                 return ret;
4629
4630         slot = path->slots[0];
4631         BUG_ON(slot < 0);
4632
4633         setup_items_for_insert(root, path, cpu_key, data_size,
4634                                total_data, total_size, nr);
4635         return 0;
4636 }
4637
4638 /*
4639  * Given a key and some data, insert an item into the tree.
4640  * This does all the path init required, making room in the tree if needed.
4641  */
4642 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4643                       *root, struct btrfs_key *cpu_key, void *data, u32
4644                       data_size)
4645 {
4646         int ret = 0;
4647         struct btrfs_path *path;
4648         struct extent_buffer *leaf;
4649         unsigned long ptr;
4650
4651         path = btrfs_alloc_path();
4652         if (!path)
4653                 return -ENOMEM;
4654         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4655         if (!ret) {
4656                 leaf = path->nodes[0];
4657                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4658                 write_extent_buffer(leaf, data, ptr, data_size);
4659                 btrfs_mark_buffer_dirty(leaf);
4660         }
4661         btrfs_free_path(path);
4662         return ret;
4663 }
4664
4665 /*
4666  * delete the pointer from a given node.
4667  *
4668  * the tree should have been previously balanced so the deletion does not
4669  * empty a node.
4670  */
4671 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4672                     int level, int slot)
4673 {
4674         struct extent_buffer *parent = path->nodes[level];
4675         u32 nritems;
4676         int ret;
4677
4678         nritems = btrfs_header_nritems(parent);
4679         if (slot != nritems - 1) {
4680                 if (level)
4681                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4682                                              slot + 1, nritems - slot - 1);
4683                 memmove_extent_buffer(parent,
4684                               btrfs_node_key_ptr_offset(slot),
4685                               btrfs_node_key_ptr_offset(slot + 1),
4686                               sizeof(struct btrfs_key_ptr) *
4687                               (nritems - slot - 1));
4688         } else if (level) {
4689                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4690                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4691                 BUG_ON(ret < 0);
4692         }
4693
4694         nritems--;
4695         btrfs_set_header_nritems(parent, nritems);
4696         if (nritems == 0 && parent == root->node) {
4697                 BUG_ON(btrfs_header_level(root->node) != 1);
4698                 /* just turn the root into a leaf and break */
4699                 btrfs_set_header_level(root->node, 0);
4700         } else if (slot == 0) {
4701                 struct btrfs_disk_key disk_key;
4702
4703                 btrfs_node_key(parent, &disk_key, 0);
4704                 fixup_low_keys(root, path, &disk_key, level + 1);
4705         }
4706         btrfs_mark_buffer_dirty(parent);
4707 }
4708
4709 /*
4710  * a helper function to delete the leaf pointed to by path->slots[1] and
4711  * path->nodes[1].
4712  *
4713  * This deletes the pointer in path->nodes[1] and frees the leaf
4714  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4715  *
4716  * The path must have already been setup for deleting the leaf, including
4717  * all the proper balancing.  path->nodes[1] must be locked.
4718  */
4719 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4720                                     struct btrfs_root *root,
4721                                     struct btrfs_path *path,
4722                                     struct extent_buffer *leaf)
4723 {
4724         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4725         del_ptr(root, path, 1, path->slots[1]);
4726
4727         /*
4728          * btrfs_free_extent is expensive, we want to make sure we
4729          * aren't holding any locks when we call it
4730          */
4731         btrfs_unlock_up_safe(path, 0);
4732
4733         root_sub_used(root, leaf->len);
4734
4735         extent_buffer_get(leaf);
4736         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4737         free_extent_buffer_stale(leaf);
4738 }
4739 /*
4740  * delete the item at the leaf level in path.  If that empties
4741  * the leaf, remove it from the tree
4742  */
4743 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4744                     struct btrfs_path *path, int slot, int nr)
4745 {
4746         struct extent_buffer *leaf;
4747         struct btrfs_item *item;
4748         int last_off;
4749         int dsize = 0;
4750         int ret = 0;
4751         int wret;
4752         int i;
4753         u32 nritems;
4754         struct btrfs_map_token token;
4755
4756         btrfs_init_map_token(&token);
4757
4758         leaf = path->nodes[0];
4759         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4760
4761         for (i = 0; i < nr; i++)
4762                 dsize += btrfs_item_size_nr(leaf, slot + i);
4763
4764         nritems = btrfs_header_nritems(leaf);
4765
4766         if (slot + nr != nritems) {
4767                 int data_end = leaf_data_end(root, leaf);
4768
4769                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4770                               data_end + dsize,
4771                               btrfs_leaf_data(leaf) + data_end,
4772                               last_off - data_end);
4773
4774                 for (i = slot + nr; i < nritems; i++) {
4775                         u32 ioff;
4776
4777                         item = btrfs_item_nr(i);
4778                         ioff = btrfs_token_item_offset(leaf, item, &token);
4779                         btrfs_set_token_item_offset(leaf, item,
4780                                                     ioff + dsize, &token);
4781                 }
4782
4783                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4784                               btrfs_item_nr_offset(slot + nr),
4785                               sizeof(struct btrfs_item) *
4786                               (nritems - slot - nr));
4787         }
4788         btrfs_set_header_nritems(leaf, nritems - nr);
4789         nritems -= nr;
4790
4791         /* delete the leaf if we've emptied it */
4792         if (nritems == 0) {
4793                 if (leaf == root->node) {
4794                         btrfs_set_header_level(leaf, 0);
4795                 } else {
4796                         btrfs_set_path_blocking(path);
4797                         clean_tree_block(trans, root, leaf);
4798                         btrfs_del_leaf(trans, root, path, leaf);
4799                 }
4800         } else {
4801                 int used = leaf_space_used(leaf, 0, nritems);
4802                 if (slot == 0) {
4803                         struct btrfs_disk_key disk_key;
4804
4805                         btrfs_item_key(leaf, &disk_key, 0);
4806                         fixup_low_keys(root, path, &disk_key, 1);
4807                 }
4808
4809                 /* delete the leaf if it is mostly empty */
4810                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4811                         /* push_leaf_left fixes the path.
4812                          * make sure the path still points to our leaf
4813                          * for possible call to del_ptr below
4814                          */
4815                         slot = path->slots[1];
4816                         extent_buffer_get(leaf);
4817
4818                         btrfs_set_path_blocking(path);
4819                         wret = push_leaf_left(trans, root, path, 1, 1,
4820                                               1, (u32)-1);
4821                         if (wret < 0 && wret != -ENOSPC)
4822                                 ret = wret;
4823
4824                         if (path->nodes[0] == leaf &&
4825                             btrfs_header_nritems(leaf)) {
4826                                 wret = push_leaf_right(trans, root, path, 1,
4827                                                        1, 1, 0);
4828                                 if (wret < 0 && wret != -ENOSPC)
4829                                         ret = wret;
4830                         }
4831
4832                         if (btrfs_header_nritems(leaf) == 0) {
4833                                 path->slots[1] = slot;
4834                                 btrfs_del_leaf(trans, root, path, leaf);
4835                                 free_extent_buffer(leaf);
4836                                 ret = 0;
4837                         } else {
4838                                 /* if we're still in the path, make sure
4839                                  * we're dirty.  Otherwise, one of the
4840                                  * push_leaf functions must have already
4841                                  * dirtied this buffer
4842                                  */
4843                                 if (path->nodes[0] == leaf)
4844                                         btrfs_mark_buffer_dirty(leaf);
4845                                 free_extent_buffer(leaf);
4846                         }
4847                 } else {
4848                         btrfs_mark_buffer_dirty(leaf);
4849                 }
4850         }
4851         return ret;
4852 }
4853
4854 /*
4855  * search the tree again to find a leaf with lesser keys
4856  * returns 0 if it found something or 1 if there are no lesser leaves.
4857  * returns < 0 on io errors.
4858  *
4859  * This may release the path, and so you may lose any locks held at the
4860  * time you call it.
4861  */
4862 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4863 {
4864         struct btrfs_key key;
4865         struct btrfs_disk_key found_key;
4866         int ret;
4867
4868         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4869
4870         if (key.offset > 0) {
4871                 key.offset--;
4872         } else if (key.type > 0) {
4873                 key.type--;
4874                 key.offset = (u64)-1;
4875         } else if (key.objectid > 0) {
4876                 key.objectid--;
4877                 key.type = (u8)-1;
4878                 key.offset = (u64)-1;
4879         } else {
4880                 return 1;
4881         }
4882
4883         btrfs_release_path(path);
4884         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4885         if (ret < 0)
4886                 return ret;
4887         btrfs_item_key(path->nodes[0], &found_key, 0);
4888         ret = comp_keys(&found_key, &key);
4889         if (ret < 0)
4890                 return 0;
4891         return 1;
4892 }
4893
4894 /*
4895  * A helper function to walk down the tree starting at min_key, and looking
4896  * for nodes or leaves that are have a minimum transaction id.
4897  * This is used by the btree defrag code, and tree logging
4898  *
4899  * This does not cow, but it does stuff the starting key it finds back
4900  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4901  * key and get a writable path.
4902  *
4903  * This does lock as it descends, and path->keep_locks should be set
4904  * to 1 by the caller.
4905  *
4906  * This honors path->lowest_level to prevent descent past a given level
4907  * of the tree.
4908  *
4909  * min_trans indicates the oldest transaction that you are interested
4910  * in walking through.  Any nodes or leaves older than min_trans are
4911  * skipped over (without reading them).
4912  *
4913  * returns zero if something useful was found, < 0 on error and 1 if there
4914  * was nothing in the tree that matched the search criteria.
4915  */
4916 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4917                          struct btrfs_path *path,
4918                          u64 min_trans)
4919 {
4920         struct extent_buffer *cur;
4921         struct btrfs_key found_key;
4922         int slot;
4923         int sret;
4924         u32 nritems;
4925         int level;
4926         int ret = 1;
4927
4928         WARN_ON(!path->keep_locks);
4929 again:
4930         cur = btrfs_read_lock_root_node(root);
4931         level = btrfs_header_level(cur);
4932         WARN_ON(path->nodes[level]);
4933         path->nodes[level] = cur;
4934         path->locks[level] = BTRFS_READ_LOCK;
4935
4936         if (btrfs_header_generation(cur) < min_trans) {
4937                 ret = 1;
4938                 goto out;
4939         }
4940         while (1) {
4941                 nritems = btrfs_header_nritems(cur);
4942                 level = btrfs_header_level(cur);
4943                 sret = bin_search(cur, min_key, level, &slot);
4944
4945                 /* at the lowest level, we're done, setup the path and exit */
4946                 if (level == path->lowest_level) {
4947                         if (slot >= nritems)
4948                                 goto find_next_key;
4949                         ret = 0;
4950                         path->slots[level] = slot;
4951                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4952                         goto out;
4953                 }
4954                 if (sret && slot > 0)
4955                         slot--;
4956                 /*
4957                  * check this node pointer against the min_trans parameters.
4958                  * If it is too old, old, skip to the next one.
4959                  */
4960                 while (slot < nritems) {
4961                         u64 gen;
4962
4963                         gen = btrfs_node_ptr_generation(cur, slot);
4964                         if (gen < min_trans) {
4965                                 slot++;
4966                                 continue;
4967                         }
4968                         break;
4969                 }
4970 find_next_key:
4971                 /*
4972                  * we didn't find a candidate key in this node, walk forward
4973                  * and find another one
4974                  */
4975                 if (slot >= nritems) {
4976                         path->slots[level] = slot;
4977                         btrfs_set_path_blocking(path);
4978                         sret = btrfs_find_next_key(root, path, min_key, level,
4979                                                   min_trans);
4980                         if (sret == 0) {
4981                                 btrfs_release_path(path);
4982                                 goto again;
4983                         } else {
4984                                 goto out;
4985                         }
4986                 }
4987                 /* save our key for returning back */
4988                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4989                 path->slots[level] = slot;
4990                 if (level == path->lowest_level) {
4991                         ret = 0;
4992                         unlock_up(path, level, 1, 0, NULL);
4993                         goto out;
4994                 }
4995                 btrfs_set_path_blocking(path);
4996                 cur = read_node_slot(root, cur, slot);
4997                 BUG_ON(!cur); /* -ENOMEM */
4998
4999                 btrfs_tree_read_lock(cur);
5000
5001                 path->locks[level - 1] = BTRFS_READ_LOCK;
5002                 path->nodes[level - 1] = cur;
5003                 unlock_up(path, level, 1, 0, NULL);
5004                 btrfs_clear_path_blocking(path, NULL, 0);
5005         }
5006 out:
5007         if (ret == 0)
5008                 memcpy(min_key, &found_key, sizeof(found_key));
5009         btrfs_set_path_blocking(path);
5010         return ret;
5011 }
5012
5013 static void tree_move_down(struct btrfs_root *root,
5014                            struct btrfs_path *path,
5015                            int *level, int root_level)
5016 {
5017         BUG_ON(*level == 0);
5018         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5019                                         path->slots[*level]);
5020         path->slots[*level - 1] = 0;
5021         (*level)--;
5022 }
5023
5024 static int tree_move_next_or_upnext(struct btrfs_root *root,
5025                                     struct btrfs_path *path,
5026                                     int *level, int root_level)
5027 {
5028         int ret = 0;
5029         int nritems;
5030         nritems = btrfs_header_nritems(path->nodes[*level]);
5031
5032         path->slots[*level]++;
5033
5034         while (path->slots[*level] >= nritems) {
5035                 if (*level == root_level)
5036                         return -1;
5037
5038                 /* move upnext */
5039                 path->slots[*level] = 0;
5040                 free_extent_buffer(path->nodes[*level]);
5041                 path->nodes[*level] = NULL;
5042                 (*level)++;
5043                 path->slots[*level]++;
5044
5045                 nritems = btrfs_header_nritems(path->nodes[*level]);
5046                 ret = 1;
5047         }
5048         return ret;
5049 }
5050
5051 /*
5052  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5053  * or down.
5054  */
5055 static int tree_advance(struct btrfs_root *root,
5056                         struct btrfs_path *path,
5057                         int *level, int root_level,
5058                         int allow_down,
5059                         struct btrfs_key *key)
5060 {
5061         int ret;
5062
5063         if (*level == 0 || !allow_down) {
5064                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5065         } else {
5066                 tree_move_down(root, path, level, root_level);
5067                 ret = 0;
5068         }
5069         if (ret >= 0) {
5070                 if (*level == 0)
5071                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5072                                         path->slots[*level]);
5073                 else
5074                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5075                                         path->slots[*level]);
5076         }
5077         return ret;
5078 }
5079
5080 static int tree_compare_item(struct btrfs_root *left_root,
5081                              struct btrfs_path *left_path,
5082                              struct btrfs_path *right_path,
5083                              char *tmp_buf)
5084 {
5085         int cmp;
5086         int len1, len2;
5087         unsigned long off1, off2;
5088
5089         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5090         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5091         if (len1 != len2)
5092                 return 1;
5093
5094         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5095         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5096                                 right_path->slots[0]);
5097
5098         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5099
5100         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5101         if (cmp)
5102                 return 1;
5103         return 0;
5104 }
5105
5106 #define ADVANCE 1
5107 #define ADVANCE_ONLY_NEXT -1
5108
5109 /*
5110  * This function compares two trees and calls the provided callback for
5111  * every changed/new/deleted item it finds.
5112  * If shared tree blocks are encountered, whole subtrees are skipped, making
5113  * the compare pretty fast on snapshotted subvolumes.
5114  *
5115  * This currently works on commit roots only. As commit roots are read only,
5116  * we don't do any locking. The commit roots are protected with transactions.
5117  * Transactions are ended and rejoined when a commit is tried in between.
5118  *
5119  * This function checks for modifications done to the trees while comparing.
5120  * If it detects a change, it aborts immediately.
5121  */
5122 int btrfs_compare_trees(struct btrfs_root *left_root,
5123                         struct btrfs_root *right_root,
5124                         btrfs_changed_cb_t changed_cb, void *ctx)
5125 {
5126         int ret;
5127         int cmp;
5128         struct btrfs_trans_handle *trans = NULL;
5129         struct btrfs_path *left_path = NULL;
5130         struct btrfs_path *right_path = NULL;
5131         struct btrfs_key left_key;
5132         struct btrfs_key right_key;
5133         char *tmp_buf = NULL;
5134         int left_root_level;
5135         int right_root_level;
5136         int left_level;
5137         int right_level;
5138         int left_end_reached;
5139         int right_end_reached;
5140         int advance_left;
5141         int advance_right;
5142         u64 left_blockptr;
5143         u64 right_blockptr;
5144         u64 left_start_ctransid;
5145         u64 right_start_ctransid;
5146         u64 ctransid;
5147
5148         left_path = btrfs_alloc_path();
5149         if (!left_path) {
5150                 ret = -ENOMEM;
5151                 goto out;
5152         }
5153         right_path = btrfs_alloc_path();
5154         if (!right_path) {
5155                 ret = -ENOMEM;
5156                 goto out;
5157         }
5158
5159         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5160         if (!tmp_buf) {
5161                 ret = -ENOMEM;
5162                 goto out;
5163         }
5164
5165         left_path->search_commit_root = 1;
5166         left_path->skip_locking = 1;
5167         right_path->search_commit_root = 1;
5168         right_path->skip_locking = 1;
5169
5170         spin_lock(&left_root->root_item_lock);
5171         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5172         spin_unlock(&left_root->root_item_lock);
5173
5174         spin_lock(&right_root->root_item_lock);
5175         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5176         spin_unlock(&right_root->root_item_lock);
5177
5178         trans = btrfs_join_transaction(left_root);
5179         if (IS_ERR(trans)) {
5180                 ret = PTR_ERR(trans);
5181                 trans = NULL;
5182                 goto out;
5183         }
5184
5185         /*
5186          * Strategy: Go to the first items of both trees. Then do
5187          *
5188          * If both trees are at level 0
5189          *   Compare keys of current items
5190          *     If left < right treat left item as new, advance left tree
5191          *       and repeat
5192          *     If left > right treat right item as deleted, advance right tree
5193          *       and repeat
5194          *     If left == right do deep compare of items, treat as changed if
5195          *       needed, advance both trees and repeat
5196          * If both trees are at the same level but not at level 0
5197          *   Compare keys of current nodes/leafs
5198          *     If left < right advance left tree and repeat
5199          *     If left > right advance right tree and repeat
5200          *     If left == right compare blockptrs of the next nodes/leafs
5201          *       If they match advance both trees but stay at the same level
5202          *         and repeat
5203          *       If they don't match advance both trees while allowing to go
5204          *         deeper and repeat
5205          * If tree levels are different
5206          *   Advance the tree that needs it and repeat
5207          *
5208          * Advancing a tree means:
5209          *   If we are at level 0, try to go to the next slot. If that's not
5210          *   possible, go one level up and repeat. Stop when we found a level
5211          *   where we could go to the next slot. We may at this point be on a
5212          *   node or a leaf.
5213          *
5214          *   If we are not at level 0 and not on shared tree blocks, go one
5215          *   level deeper.
5216          *
5217          *   If we are not at level 0 and on shared tree blocks, go one slot to
5218          *   the right if possible or go up and right.
5219          */
5220
5221         left_level = btrfs_header_level(left_root->commit_root);
5222         left_root_level = left_level;
5223         left_path->nodes[left_level] = left_root->commit_root;
5224         extent_buffer_get(left_path->nodes[left_level]);
5225
5226         right_level = btrfs_header_level(right_root->commit_root);
5227         right_root_level = right_level;
5228         right_path->nodes[right_level] = right_root->commit_root;
5229         extent_buffer_get(right_path->nodes[right_level]);
5230
5231         if (left_level == 0)
5232                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5233                                 &left_key, left_path->slots[left_level]);
5234         else
5235                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5236                                 &left_key, left_path->slots[left_level]);
5237         if (right_level == 0)
5238                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5239                                 &right_key, right_path->slots[right_level]);
5240         else
5241                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5242                                 &right_key, right_path->slots[right_level]);
5243
5244         left_end_reached = right_end_reached = 0;
5245         advance_left = advance_right = 0;
5246
5247         while (1) {
5248                 /*
5249                  * We need to make sure the transaction does not get committed
5250                  * while we do anything on commit roots. This means, we need to
5251                  * join and leave transactions for every item that we process.
5252                  */
5253                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5254                         btrfs_release_path(left_path);
5255                         btrfs_release_path(right_path);
5256
5257                         ret = btrfs_end_transaction(trans, left_root);
5258                         trans = NULL;
5259                         if (ret < 0)
5260                                 goto out;
5261                 }
5262                 /* now rejoin the transaction */
5263                 if (!trans) {
5264                         trans = btrfs_join_transaction(left_root);
5265                         if (IS_ERR(trans)) {
5266                                 ret = PTR_ERR(trans);
5267                                 trans = NULL;
5268                                 goto out;
5269                         }
5270
5271                         spin_lock(&left_root->root_item_lock);
5272                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5273                         spin_unlock(&left_root->root_item_lock);
5274                         if (ctransid != left_start_ctransid)
5275                                 left_start_ctransid = 0;
5276
5277                         spin_lock(&right_root->root_item_lock);
5278                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5279                         spin_unlock(&right_root->root_item_lock);
5280                         if (ctransid != right_start_ctransid)
5281                                 right_start_ctransid = 0;
5282
5283                         if (!left_start_ctransid || !right_start_ctransid) {
5284                                 WARN(1, KERN_WARNING
5285                                         "btrfs: btrfs_compare_tree detected "
5286                                         "a change in one of the trees while "
5287                                         "iterating. This is probably a "
5288                                         "bug.\n");
5289                                 ret = -EIO;
5290                                 goto out;
5291                         }
5292
5293                         /*
5294                          * the commit root may have changed, so start again
5295                          * where we stopped
5296                          */
5297                         left_path->lowest_level = left_level;
5298                         right_path->lowest_level = right_level;
5299                         ret = btrfs_search_slot(NULL, left_root,
5300                                         &left_key, left_path, 0, 0);
5301                         if (ret < 0)
5302                                 goto out;
5303                         ret = btrfs_search_slot(NULL, right_root,
5304                                         &right_key, right_path, 0, 0);
5305                         if (ret < 0)
5306                                 goto out;
5307                 }
5308
5309                 if (advance_left && !left_end_reached) {
5310                         ret = tree_advance(left_root, left_path, &left_level,
5311                                         left_root_level,
5312                                         advance_left != ADVANCE_ONLY_NEXT,
5313                                         &left_key);
5314                         if (ret < 0)
5315                                 left_end_reached = ADVANCE;
5316                         advance_left = 0;
5317                 }
5318                 if (advance_right && !right_end_reached) {
5319                         ret = tree_advance(right_root, right_path, &right_level,
5320                                         right_root_level,
5321                                         advance_right != ADVANCE_ONLY_NEXT,
5322                                         &right_key);
5323                         if (ret < 0)
5324                                 right_end_reached = ADVANCE;
5325                         advance_right = 0;
5326                 }
5327
5328                 if (left_end_reached && right_end_reached) {
5329                         ret = 0;
5330                         goto out;
5331                 } else if (left_end_reached) {
5332                         if (right_level == 0) {
5333                                 ret = changed_cb(left_root, right_root,
5334                                                 left_path, right_path,
5335                                                 &right_key,
5336                                                 BTRFS_COMPARE_TREE_DELETED,
5337                                                 ctx);
5338                                 if (ret < 0)
5339                                         goto out;
5340                         }
5341                         advance_right = ADVANCE;
5342                         continue;
5343                 } else if (right_end_reached) {
5344                         if (left_level == 0) {
5345                                 ret = changed_cb(left_root, right_root,
5346                                                 left_path, right_path,
5347                                                 &left_key,
5348                                                 BTRFS_COMPARE_TREE_NEW,
5349                                                 ctx);
5350                                 if (ret < 0)
5351                                         goto out;
5352                         }
5353                         advance_left = ADVANCE;
5354                         continue;
5355                 }
5356
5357                 if (left_level == 0 && right_level == 0) {
5358                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5359                         if (cmp < 0) {
5360                                 ret = changed_cb(left_root, right_root,
5361                                                 left_path, right_path,
5362                                                 &left_key,
5363                                                 BTRFS_COMPARE_TREE_NEW,
5364                                                 ctx);
5365                                 if (ret < 0)
5366                                         goto out;
5367                                 advance_left = ADVANCE;
5368                         } else if (cmp > 0) {
5369                                 ret = changed_cb(left_root, right_root,
5370                                                 left_path, right_path,
5371                                                 &right_key,
5372                                                 BTRFS_COMPARE_TREE_DELETED,
5373                                                 ctx);
5374                                 if (ret < 0)
5375                                         goto out;
5376                                 advance_right = ADVANCE;
5377                         } else {
5378                                 enum btrfs_compare_tree_result cmp;
5379
5380                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5381                                 ret = tree_compare_item(left_root, left_path,
5382                                                 right_path, tmp_buf);
5383                                 if (ret)
5384                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5385                                 else
5386                                         cmp = BTRFS_COMPARE_TREE_SAME;
5387                                 ret = changed_cb(left_root, right_root,
5388                                                  left_path, right_path,
5389                                                  &left_key, cmp, ctx);
5390                                 if (ret < 0)
5391                                         goto out;
5392                                 advance_left = ADVANCE;
5393                                 advance_right = ADVANCE;
5394                         }
5395                 } else if (left_level == right_level) {
5396                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5397                         if (cmp < 0) {
5398                                 advance_left = ADVANCE;
5399                         } else if (cmp > 0) {
5400                                 advance_right = ADVANCE;
5401                         } else {
5402                                 left_blockptr = btrfs_node_blockptr(
5403                                                 left_path->nodes[left_level],
5404                                                 left_path->slots[left_level]);
5405                                 right_blockptr = btrfs_node_blockptr(
5406                                                 right_path->nodes[right_level],
5407                                                 right_path->slots[right_level]);
5408                                 if (left_blockptr == right_blockptr) {
5409                                         /*
5410                                          * As we're on a shared block, don't
5411                                          * allow to go deeper.
5412                                          */
5413                                         advance_left = ADVANCE_ONLY_NEXT;
5414                                         advance_right = ADVANCE_ONLY_NEXT;
5415                                 } else {
5416                                         advance_left = ADVANCE;
5417                                         advance_right = ADVANCE;
5418                                 }
5419                         }
5420                 } else if (left_level < right_level) {
5421                         advance_right = ADVANCE;
5422                 } else {
5423                         advance_left = ADVANCE;
5424                 }
5425         }
5426
5427 out:
5428         btrfs_free_path(left_path);
5429         btrfs_free_path(right_path);
5430         kfree(tmp_buf);
5431
5432         if (trans) {
5433                 if (!ret)
5434                         ret = btrfs_end_transaction(trans, left_root);
5435                 else
5436                         btrfs_end_transaction(trans, left_root);
5437         }
5438
5439         return ret;
5440 }
5441
5442 /*
5443  * this is similar to btrfs_next_leaf, but does not try to preserve
5444  * and fixup the path.  It looks for and returns the next key in the
5445  * tree based on the current path and the min_trans parameters.
5446  *
5447  * 0 is returned if another key is found, < 0 if there are any errors
5448  * and 1 is returned if there are no higher keys in the tree
5449  *
5450  * path->keep_locks should be set to 1 on the search made before
5451  * calling this function.
5452  */
5453 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5454                         struct btrfs_key *key, int level, u64 min_trans)
5455 {
5456         int slot;
5457         struct extent_buffer *c;
5458
5459         WARN_ON(!path->keep_locks);
5460         while (level < BTRFS_MAX_LEVEL) {
5461                 if (!path->nodes[level])
5462                         return 1;
5463
5464                 slot = path->slots[level] + 1;
5465                 c = path->nodes[level];
5466 next:
5467                 if (slot >= btrfs_header_nritems(c)) {
5468                         int ret;
5469                         int orig_lowest;
5470                         struct btrfs_key cur_key;
5471                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5472                             !path->nodes[level + 1])
5473                                 return 1;
5474
5475                         if (path->locks[level + 1]) {
5476                                 level++;
5477                                 continue;
5478                         }
5479
5480                         slot = btrfs_header_nritems(c) - 1;
5481                         if (level == 0)
5482                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5483                         else
5484                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5485
5486                         orig_lowest = path->lowest_level;
5487                         btrfs_release_path(path);
5488                         path->lowest_level = level;
5489                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5490                                                 0, 0);
5491                         path->lowest_level = orig_lowest;
5492                         if (ret < 0)
5493                                 return ret;
5494
5495                         c = path->nodes[level];
5496                         slot = path->slots[level];
5497                         if (ret == 0)
5498                                 slot++;
5499                         goto next;
5500                 }
5501
5502                 if (level == 0)
5503                         btrfs_item_key_to_cpu(c, key, slot);
5504                 else {
5505                         u64 gen = btrfs_node_ptr_generation(c, slot);
5506
5507                         if (gen < min_trans) {
5508                                 slot++;
5509                                 goto next;
5510                         }
5511                         btrfs_node_key_to_cpu(c, key, slot);
5512                 }
5513                 return 0;
5514         }
5515         return 1;
5516 }
5517
5518 /*
5519  * search the tree again to find a leaf with greater keys
5520  * returns 0 if it found something or 1 if there are no greater leaves.
5521  * returns < 0 on io errors.
5522  */
5523 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5524 {
5525         return btrfs_next_old_leaf(root, path, 0);
5526 }
5527
5528 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5529                         u64 time_seq)
5530 {
5531         int slot;
5532         int level;
5533         struct extent_buffer *c;
5534         struct extent_buffer *next;
5535         struct btrfs_key key;
5536         u32 nritems;
5537         int ret;
5538         int old_spinning = path->leave_spinning;
5539         int next_rw_lock = 0;
5540
5541         nritems = btrfs_header_nritems(path->nodes[0]);
5542         if (nritems == 0)
5543                 return 1;
5544
5545         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5546 again:
5547         level = 1;
5548         next = NULL;
5549         next_rw_lock = 0;
5550         btrfs_release_path(path);
5551
5552         path->keep_locks = 1;
5553         path->leave_spinning = 1;
5554
5555         if (time_seq)
5556                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5557         else
5558                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5559         path->keep_locks = 0;
5560
5561         if (ret < 0)
5562                 return ret;
5563
5564         nritems = btrfs_header_nritems(path->nodes[0]);
5565         /*
5566          * by releasing the path above we dropped all our locks.  A balance
5567          * could have added more items next to the key that used to be
5568          * at the very end of the block.  So, check again here and
5569          * advance the path if there are now more items available.
5570          */
5571         if (nritems > 0 && path->slots[0] < nritems - 1) {
5572                 if (ret == 0)
5573                         path->slots[0]++;
5574                 ret = 0;
5575                 goto done;
5576         }
5577
5578         while (level < BTRFS_MAX_LEVEL) {
5579                 if (!path->nodes[level]) {
5580                         ret = 1;
5581                         goto done;
5582                 }
5583
5584                 slot = path->slots[level] + 1;
5585                 c = path->nodes[level];
5586                 if (slot >= btrfs_header_nritems(c)) {
5587                         level++;
5588                         if (level == BTRFS_MAX_LEVEL) {
5589                                 ret = 1;
5590                                 goto done;
5591                         }
5592                         continue;
5593                 }
5594
5595                 if (next) {
5596                         btrfs_tree_unlock_rw(next, next_rw_lock);
5597                         free_extent_buffer(next);
5598                 }
5599
5600                 next = c;
5601                 next_rw_lock = path->locks[level];
5602                 ret = read_block_for_search(NULL, root, path, &next, level,
5603                                             slot, &key, 0);
5604                 if (ret == -EAGAIN)
5605                         goto again;
5606
5607                 if (ret < 0) {
5608                         btrfs_release_path(path);
5609                         goto done;
5610                 }
5611
5612                 if (!path->skip_locking) {
5613                         ret = btrfs_try_tree_read_lock(next);
5614                         if (!ret && time_seq) {
5615                                 /*
5616                                  * If we don't get the lock, we may be racing
5617                                  * with push_leaf_left, holding that lock while
5618                                  * itself waiting for the leaf we've currently
5619                                  * locked. To solve this situation, we give up
5620                                  * on our lock and cycle.
5621                                  */
5622                                 free_extent_buffer(next);
5623                                 btrfs_release_path(path);
5624                                 cond_resched();
5625                                 goto again;
5626                         }
5627                         if (!ret) {
5628                                 btrfs_set_path_blocking(path);
5629                                 btrfs_tree_read_lock(next);
5630                                 btrfs_clear_path_blocking(path, next,
5631                                                           BTRFS_READ_LOCK);
5632                         }
5633                         next_rw_lock = BTRFS_READ_LOCK;
5634                 }
5635                 break;
5636         }
5637         path->slots[level] = slot;
5638         while (1) {
5639                 level--;
5640                 c = path->nodes[level];
5641                 if (path->locks[level])
5642                         btrfs_tree_unlock_rw(c, path->locks[level]);
5643
5644                 free_extent_buffer(c);
5645                 path->nodes[level] = next;
5646                 path->slots[level] = 0;
5647                 if (!path->skip_locking)
5648                         path->locks[level] = next_rw_lock;
5649                 if (!level)
5650                         break;
5651
5652                 ret = read_block_for_search(NULL, root, path, &next, level,
5653                                             0, &key, 0);
5654                 if (ret == -EAGAIN)
5655                         goto again;
5656
5657                 if (ret < 0) {
5658                         btrfs_release_path(path);
5659                         goto done;
5660                 }
5661
5662                 if (!path->skip_locking) {
5663                         ret = btrfs_try_tree_read_lock(next);
5664                         if (!ret) {
5665                                 btrfs_set_path_blocking(path);
5666                                 btrfs_tree_read_lock(next);
5667                                 btrfs_clear_path_blocking(path, next,
5668                                                           BTRFS_READ_LOCK);
5669                         }
5670                         next_rw_lock = BTRFS_READ_LOCK;
5671                 }
5672         }
5673         ret = 0;
5674 done:
5675         unlock_up(path, 0, 1, 0, NULL);
5676         path->leave_spinning = old_spinning;
5677         if (!old_spinning)
5678                 btrfs_set_path_blocking(path);
5679
5680         return ret;
5681 }
5682
5683 /*
5684  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5685  * searching until it gets past min_objectid or finds an item of 'type'
5686  *
5687  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5688  */
5689 int btrfs_previous_item(struct btrfs_root *root,
5690                         struct btrfs_path *path, u64 min_objectid,
5691                         int type)
5692 {
5693         struct btrfs_key found_key;
5694         struct extent_buffer *leaf;
5695         u32 nritems;
5696         int ret;
5697
5698         while (1) {
5699                 if (path->slots[0] == 0) {
5700                         btrfs_set_path_blocking(path);
5701                         ret = btrfs_prev_leaf(root, path);
5702                         if (ret != 0)
5703                                 return ret;
5704                 } else {
5705                         path->slots[0]--;
5706                 }
5707                 leaf = path->nodes[0];
5708                 nritems = btrfs_header_nritems(leaf);
5709                 if (nritems == 0)
5710                         return 1;
5711                 if (path->slots[0] == nritems)
5712                         path->slots[0]--;
5713
5714                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5715                 if (found_key.objectid < min_objectid)
5716                         break;
5717                 if (found_key.type == type)
5718                         return 0;
5719                 if (found_key.objectid == min_objectid &&
5720                     found_key.type < type)
5721                         break;
5722         }
5723         return 1;
5724 }