]> Pileus Git - ~andy/linux/blob - fs/btrfs/ctree.c
Btrfs: determine level of old roots
[~andy/linux] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot,
42                     int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46                                           u32 blocksize, u64 parent_transid,
47                                           u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49                                                 u64 bytenr, u32 blocksize,
50                                                 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54         struct btrfs_path *path;
55         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56         return path;
57 }
58
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65         int i;
66         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67                 if (!p->nodes[i] || !p->locks[i])
68                         continue;
69                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70                 if (p->locks[i] == BTRFS_READ_LOCK)
71                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74         }
75 }
76
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86                                         struct extent_buffer *held, int held_rw)
87 {
88         int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91         /* lockdep really cares that we take all of these spinlocks
92          * in the right order.  If any of the locks in the path are not
93          * currently blocking, it is going to complain.  So, make really
94          * really sure by forcing the path to blocking before we clear
95          * the path blocking.
96          */
97         if (held) {
98                 btrfs_set_lock_blocking_rw(held, held_rw);
99                 if (held_rw == BTRFS_WRITE_LOCK)
100                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101                 else if (held_rw == BTRFS_READ_LOCK)
102                         held_rw = BTRFS_READ_LOCK_BLOCKING;
103         }
104         btrfs_set_path_blocking(p);
105 #endif
106
107         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108                 if (p->nodes[i] && p->locks[i]) {
109                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111                                 p->locks[i] = BTRFS_WRITE_LOCK;
112                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113                                 p->locks[i] = BTRFS_READ_LOCK;
114                 }
115         }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118         if (held)
119                 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126         if (!p)
127                 return;
128         btrfs_release_path(p);
129         kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140         int i;
141
142         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143                 p->slots[i] = 0;
144                 if (!p->nodes[i])
145                         continue;
146                 if (p->locks[i]) {
147                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148                         p->locks[i] = 0;
149                 }
150                 free_extent_buffer(p->nodes[i]);
151                 p->nodes[i] = NULL;
152         }
153 }
154
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167         struct extent_buffer *eb;
168
169         while (1) {
170                 rcu_read_lock();
171                 eb = rcu_dereference(root->node);
172
173                 /*
174                  * RCU really hurts here, we could free up the root node because
175                  * it was cow'ed but we may not get the new root node yet so do
176                  * the inc_not_zero dance and if it doesn't work then
177                  * synchronize_rcu and try again.
178                  */
179                 if (atomic_inc_not_zero(&eb->refs)) {
180                         rcu_read_unlock();
181                         break;
182                 }
183                 rcu_read_unlock();
184                 synchronize_rcu();
185         }
186         return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195         struct extent_buffer *eb;
196
197         while (1) {
198                 eb = btrfs_root_node(root);
199                 btrfs_tree_lock(eb);
200                 if (eb == root->node)
201                         break;
202                 btrfs_tree_unlock(eb);
203                 free_extent_buffer(eb);
204         }
205         return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214         struct extent_buffer *eb;
215
216         while (1) {
217                 eb = btrfs_root_node(root);
218                 btrfs_tree_read_lock(eb);
219                 if (eb == root->node)
220                         break;
221                 btrfs_tree_read_unlock(eb);
222                 free_extent_buffer(eb);
223         }
224         return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233         spin_lock(&root->fs_info->trans_lock);
234         if (root->track_dirty && list_empty(&root->dirty_list)) {
235                 list_add(&root->dirty_list,
236                          &root->fs_info->dirty_cowonly_roots);
237         }
238         spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247                       struct btrfs_root *root,
248                       struct extent_buffer *buf,
249                       struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251         struct extent_buffer *cow;
252         int ret = 0;
253         int level;
254         struct btrfs_disk_key disk_key;
255
256         WARN_ON(root->ref_cows && trans->transid !=
257                 root->fs_info->running_transaction->transid);
258         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260         level = btrfs_header_level(buf);
261         if (level == 0)
262                 btrfs_item_key(buf, &disk_key, 0);
263         else
264                 btrfs_node_key(buf, &disk_key, 0);
265
266         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267                                      new_root_objectid, &disk_key, level,
268                                      buf->start, 0);
269         if (IS_ERR(cow))
270                 return PTR_ERR(cow);
271
272         copy_extent_buffer(cow, buf, 0, 0, cow->len);
273         btrfs_set_header_bytenr(cow, cow->start);
274         btrfs_set_header_generation(cow, trans->transid);
275         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277                                      BTRFS_HEADER_FLAG_RELOC);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280         else
281                 btrfs_set_header_owner(cow, new_root_objectid);
282
283         write_extent_buffer(cow, root->fs_info->fsid,
284                             (unsigned long)btrfs_header_fsid(cow),
285                             BTRFS_FSID_SIZE);
286
287         WARN_ON(btrfs_header_generation(buf) > trans->transid);
288         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290         else
291                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293         if (ret)
294                 return ret;
295
296         btrfs_mark_buffer_dirty(cow);
297         *cow_ret = cow;
298         return 0;
299 }
300
301 enum mod_log_op {
302         MOD_LOG_KEY_REPLACE,
303         MOD_LOG_KEY_ADD,
304         MOD_LOG_KEY_REMOVE,
305         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307         MOD_LOG_MOVE_KEYS,
308         MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312         int dst_slot;
313         int nr_items;
314 };
315
316 struct tree_mod_root {
317         u64 logical;
318         u8 level;
319 };
320
321 struct tree_mod_elem {
322         struct rb_node node;
323         u64 index;              /* shifted logical */
324         u64 seq;
325         enum mod_log_op op;
326
327         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328         int slot;
329
330         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331         u64 generation;
332
333         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334         struct btrfs_disk_key key;
335         u64 blockptr;
336
337         /* this is used for op == MOD_LOG_MOVE_KEYS */
338         struct tree_mod_move move;
339
340         /* this is used for op == MOD_LOG_ROOT_REPLACE */
341         struct tree_mod_root old_root;
342 };
343
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 {
346         read_lock(&fs_info->tree_mod_log_lock);
347 }
348
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 {
351         read_unlock(&fs_info->tree_mod_log_lock);
352 }
353
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 {
356         write_lock(&fs_info->tree_mod_log_lock);
357 }
358
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 {
361         write_unlock(&fs_info->tree_mod_log_lock);
362 }
363
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373                            struct seq_list *elem)
374 {
375         u64 seq;
376
377         tree_mod_log_write_lock(fs_info);
378         spin_lock(&fs_info->tree_mod_seq_lock);
379         if (!elem->seq) {
380                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382         }
383         seq = btrfs_inc_tree_mod_seq(fs_info);
384         spin_unlock(&fs_info->tree_mod_seq_lock);
385         tree_mod_log_write_unlock(fs_info);
386
387         return seq;
388 }
389
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391                             struct seq_list *elem)
392 {
393         struct rb_root *tm_root;
394         struct rb_node *node;
395         struct rb_node *next;
396         struct seq_list *cur_elem;
397         struct tree_mod_elem *tm;
398         u64 min_seq = (u64)-1;
399         u64 seq_putting = elem->seq;
400
401         if (!seq_putting)
402                 return;
403
404         spin_lock(&fs_info->tree_mod_seq_lock);
405         list_del(&elem->list);
406         elem->seq = 0;
407
408         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409                 if (cur_elem->seq < min_seq) {
410                         if (seq_putting > cur_elem->seq) {
411                                 /*
412                                  * blocker with lower sequence number exists, we
413                                  * cannot remove anything from the log
414                                  */
415                                 spin_unlock(&fs_info->tree_mod_seq_lock);
416                                 return;
417                         }
418                         min_seq = cur_elem->seq;
419                 }
420         }
421         spin_unlock(&fs_info->tree_mod_seq_lock);
422
423         /*
424          * anything that's lower than the lowest existing (read: blocked)
425          * sequence number can be removed from the tree.
426          */
427         tree_mod_log_write_lock(fs_info);
428         tm_root = &fs_info->tree_mod_log;
429         for (node = rb_first(tm_root); node; node = next) {
430                 next = rb_next(node);
431                 tm = container_of(node, struct tree_mod_elem, node);
432                 if (tm->seq > min_seq)
433                         continue;
434                 rb_erase(node, tm_root);
435                 kfree(tm);
436         }
437         tree_mod_log_write_unlock(fs_info);
438 }
439
440 /*
441  * key order of the log:
442  *       index -> sequence
443  *
444  * the index is the shifted logical of the *new* root node for root replace
445  * operations, or the shifted logical of the affected block for all other
446  * operations.
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451         struct rb_root *tm_root;
452         struct rb_node **new;
453         struct rb_node *parent = NULL;
454         struct tree_mod_elem *cur;
455
456         BUG_ON(!tm || !tm->seq);
457
458         tm_root = &fs_info->tree_mod_log;
459         new = &tm_root->rb_node;
460         while (*new) {
461                 cur = container_of(*new, struct tree_mod_elem, node);
462                 parent = *new;
463                 if (cur->index < tm->index)
464                         new = &((*new)->rb_left);
465                 else if (cur->index > tm->index)
466                         new = &((*new)->rb_right);
467                 else if (cur->seq < tm->seq)
468                         new = &((*new)->rb_left);
469                 else if (cur->seq > tm->seq)
470                         new = &((*new)->rb_right);
471                 else {
472                         kfree(tm);
473                         return -EEXIST;
474                 }
475         }
476
477         rb_link_node(&tm->node, parent, new);
478         rb_insert_color(&tm->node, tm_root);
479         return 0;
480 }
481
482 /*
483  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484  * returns zero with the tree_mod_log_lock acquired. The caller must hold
485  * this until all tree mod log insertions are recorded in the rb tree and then
486  * call tree_mod_log_write_unlock() to release.
487  */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489                                     struct extent_buffer *eb) {
490         smp_mb();
491         if (list_empty(&(fs_info)->tree_mod_seq_list))
492                 return 1;
493         if (eb && btrfs_header_level(eb) == 0)
494                 return 1;
495
496         tree_mod_log_write_lock(fs_info);
497         if (list_empty(&fs_info->tree_mod_seq_list)) {
498                 /*
499                  * someone emptied the list while we were waiting for the lock.
500                  * we must not add to the list when no blocker exists.
501                  */
502                 tree_mod_log_write_unlock(fs_info);
503                 return 1;
504         }
505
506         return 0;
507 }
508
509 /*
510  * This allocates memory and gets a tree modification sequence number.
511  *
512  * Returns <0 on error.
513  * Returns >0 (the added sequence number) on success.
514  */
515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516                                  struct tree_mod_elem **tm_ret)
517 {
518         struct tree_mod_elem *tm;
519
520         /*
521          * once we switch from spin locks to something different, we should
522          * honor the flags parameter here.
523          */
524         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
525         if (!tm)
526                 return -ENOMEM;
527
528         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
529         return tm->seq;
530 }
531
532 static inline int
533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534                           struct extent_buffer *eb, int slot,
535                           enum mod_log_op op, gfp_t flags)
536 {
537         int ret;
538         struct tree_mod_elem *tm;
539
540         ret = tree_mod_alloc(fs_info, flags, &tm);
541         if (ret < 0)
542                 return ret;
543
544         tm->index = eb->start >> PAGE_CACHE_SHIFT;
545         if (op != MOD_LOG_KEY_ADD) {
546                 btrfs_node_key(eb, &tm->key, slot);
547                 tm->blockptr = btrfs_node_blockptr(eb, slot);
548         }
549         tm->op = op;
550         tm->slot = slot;
551         tm->generation = btrfs_node_ptr_generation(eb, slot);
552
553         return __tree_mod_log_insert(fs_info, tm);
554 }
555
556 static noinline int
557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558                              struct extent_buffer *eb, int slot,
559                              enum mod_log_op op, gfp_t flags)
560 {
561         int ret;
562
563         if (tree_mod_dont_log(fs_info, eb))
564                 return 0;
565
566         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567
568         tree_mod_log_write_unlock(fs_info);
569         return ret;
570 }
571
572 static noinline int
573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574                         int slot, enum mod_log_op op)
575 {
576         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
577 }
578
579 static noinline int
580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581                              struct extent_buffer *eb, int slot,
582                              enum mod_log_op op)
583 {
584         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
585 }
586
587 static noinline int
588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589                          struct extent_buffer *eb, int dst_slot, int src_slot,
590                          int nr_items, gfp_t flags)
591 {
592         struct tree_mod_elem *tm;
593         int ret;
594         int i;
595
596         if (tree_mod_dont_log(fs_info, eb))
597                 return 0;
598
599         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
601                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
602                 BUG_ON(ret < 0);
603         }
604
605         ret = tree_mod_alloc(fs_info, flags, &tm);
606         if (ret < 0)
607                 goto out;
608
609         tm->index = eb->start >> PAGE_CACHE_SHIFT;
610         tm->slot = src_slot;
611         tm->move.dst_slot = dst_slot;
612         tm->move.nr_items = nr_items;
613         tm->op = MOD_LOG_MOVE_KEYS;
614
615         ret = __tree_mod_log_insert(fs_info, tm);
616 out:
617         tree_mod_log_write_unlock(fs_info);
618         return ret;
619 }
620
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624         int i;
625         u32 nritems;
626         int ret;
627
628         if (btrfs_header_level(eb) == 0)
629                 return;
630
631         nritems = btrfs_header_nritems(eb);
632         for (i = nritems - 1; i >= 0; i--) {
633                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
634                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
635                 BUG_ON(ret < 0);
636         }
637 }
638
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641                          struct extent_buffer *old_root,
642                          struct extent_buffer *new_root, gfp_t flags)
643 {
644         struct tree_mod_elem *tm;
645         int ret;
646
647         if (tree_mod_dont_log(fs_info, NULL))
648                 return 0;
649
650         ret = tree_mod_alloc(fs_info, flags, &tm);
651         if (ret < 0)
652                 goto out;
653
654         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
655         tm->old_root.logical = old_root->start;
656         tm->old_root.level = btrfs_header_level(old_root);
657         tm->generation = btrfs_header_generation(old_root);
658         tm->op = MOD_LOG_ROOT_REPLACE;
659
660         ret = __tree_mod_log_insert(fs_info, tm);
661 out:
662         tree_mod_log_write_unlock(fs_info);
663         return ret;
664 }
665
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668                       int smallest)
669 {
670         struct rb_root *tm_root;
671         struct rb_node *node;
672         struct tree_mod_elem *cur = NULL;
673         struct tree_mod_elem *found = NULL;
674         u64 index = start >> PAGE_CACHE_SHIFT;
675
676         tree_mod_log_read_lock(fs_info);
677         tm_root = &fs_info->tree_mod_log;
678         node = tm_root->rb_node;
679         while (node) {
680                 cur = container_of(node, struct tree_mod_elem, node);
681                 if (cur->index < index) {
682                         node = node->rb_left;
683                 } else if (cur->index > index) {
684                         node = node->rb_right;
685                 } else if (cur->seq < min_seq) {
686                         node = node->rb_left;
687                 } else if (!smallest) {
688                         /* we want the node with the highest seq */
689                         if (found)
690                                 BUG_ON(found->seq > cur->seq);
691                         found = cur;
692                         node = node->rb_left;
693                 } else if (cur->seq > min_seq) {
694                         /* we want the node with the smallest seq */
695                         if (found)
696                                 BUG_ON(found->seq < cur->seq);
697                         found = cur;
698                         node = node->rb_right;
699                 } else {
700                         found = cur;
701                         break;
702                 }
703         }
704         tree_mod_log_read_unlock(fs_info);
705
706         return found;
707 }
708
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716                            u64 min_seq)
717 {
718         return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729         return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734                      struct extent_buffer *src, unsigned long dst_offset,
735                      unsigned long src_offset, int nr_items)
736 {
737         int ret;
738         int i;
739
740         if (tree_mod_dont_log(fs_info, NULL))
741                 return;
742
743         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
744                 tree_mod_log_write_unlock(fs_info);
745                 return;
746         }
747
748         for (i = 0; i < nr_items; i++) {
749                 ret = tree_mod_log_insert_key_locked(fs_info, src,
750                                                      i + src_offset,
751                                                      MOD_LOG_KEY_REMOVE);
752                 BUG_ON(ret < 0);
753                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
754                                                      i + dst_offset,
755                                                      MOD_LOG_KEY_ADD);
756                 BUG_ON(ret < 0);
757         }
758
759         tree_mod_log_write_unlock(fs_info);
760 }
761
762 static inline void
763 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
764                      int dst_offset, int src_offset, int nr_items)
765 {
766         int ret;
767         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
768                                        nr_items, GFP_NOFS);
769         BUG_ON(ret < 0);
770 }
771
772 static noinline void
773 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
774                           struct extent_buffer *eb,
775                           struct btrfs_disk_key *disk_key, int slot, int atomic)
776 {
777         int ret;
778
779         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
780                                            MOD_LOG_KEY_REPLACE,
781                                            atomic ? GFP_ATOMIC : GFP_NOFS);
782         BUG_ON(ret < 0);
783 }
784
785 static noinline void
786 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
787 {
788         if (tree_mod_dont_log(fs_info, eb))
789                 return;
790
791         __tree_mod_log_free_eb(fs_info, eb);
792
793         tree_mod_log_write_unlock(fs_info);
794 }
795
796 static noinline void
797 tree_mod_log_set_root_pointer(struct btrfs_root *root,
798                               struct extent_buffer *new_root_node)
799 {
800         int ret;
801         ret = tree_mod_log_insert_root(root->fs_info, root->node,
802                                        new_root_node, GFP_NOFS);
803         BUG_ON(ret < 0);
804 }
805
806 /*
807  * check if the tree block can be shared by multiple trees
808  */
809 int btrfs_block_can_be_shared(struct btrfs_root *root,
810                               struct extent_buffer *buf)
811 {
812         /*
813          * Tree blocks not in refernece counted trees and tree roots
814          * are never shared. If a block was allocated after the last
815          * snapshot and the block was not allocated by tree relocation,
816          * we know the block is not shared.
817          */
818         if (root->ref_cows &&
819             buf != root->node && buf != root->commit_root &&
820             (btrfs_header_generation(buf) <=
821              btrfs_root_last_snapshot(&root->root_item) ||
822              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
823                 return 1;
824 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
825         if (root->ref_cows &&
826             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
827                 return 1;
828 #endif
829         return 0;
830 }
831
832 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
833                                        struct btrfs_root *root,
834                                        struct extent_buffer *buf,
835                                        struct extent_buffer *cow,
836                                        int *last_ref)
837 {
838         u64 refs;
839         u64 owner;
840         u64 flags;
841         u64 new_flags = 0;
842         int ret;
843
844         /*
845          * Backrefs update rules:
846          *
847          * Always use full backrefs for extent pointers in tree block
848          * allocated by tree relocation.
849          *
850          * If a shared tree block is no longer referenced by its owner
851          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
852          * use full backrefs for extent pointers in tree block.
853          *
854          * If a tree block is been relocating
855          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
856          * use full backrefs for extent pointers in tree block.
857          * The reason for this is some operations (such as drop tree)
858          * are only allowed for blocks use full backrefs.
859          */
860
861         if (btrfs_block_can_be_shared(root, buf)) {
862                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
863                                                buf->len, &refs, &flags);
864                 if (ret)
865                         return ret;
866                 if (refs == 0) {
867                         ret = -EROFS;
868                         btrfs_std_error(root->fs_info, ret);
869                         return ret;
870                 }
871         } else {
872                 refs = 1;
873                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
874                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
875                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
876                 else
877                         flags = 0;
878         }
879
880         owner = btrfs_header_owner(buf);
881         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
882                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
883
884         if (refs > 1) {
885                 if ((owner == root->root_key.objectid ||
886                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
887                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
888                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
889                         BUG_ON(ret); /* -ENOMEM */
890
891                         if (root->root_key.objectid ==
892                             BTRFS_TREE_RELOC_OBJECTID) {
893                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
894                                 BUG_ON(ret); /* -ENOMEM */
895                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
896                                 BUG_ON(ret); /* -ENOMEM */
897                         }
898                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
899                 } else {
900
901                         if (root->root_key.objectid ==
902                             BTRFS_TREE_RELOC_OBJECTID)
903                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
904                         else
905                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
906                         BUG_ON(ret); /* -ENOMEM */
907                 }
908                 if (new_flags != 0) {
909                         ret = btrfs_set_disk_extent_flags(trans, root,
910                                                           buf->start,
911                                                           buf->len,
912                                                           new_flags, 0);
913                         if (ret)
914                                 return ret;
915                 }
916         } else {
917                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
918                         if (root->root_key.objectid ==
919                             BTRFS_TREE_RELOC_OBJECTID)
920                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
921                         else
922                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
923                         BUG_ON(ret); /* -ENOMEM */
924                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
925                         BUG_ON(ret); /* -ENOMEM */
926                 }
927                 tree_mod_log_free_eb(root->fs_info, buf);
928                 clean_tree_block(trans, root, buf);
929                 *last_ref = 1;
930         }
931         return 0;
932 }
933
934 /*
935  * does the dirty work in cow of a single block.  The parent block (if
936  * supplied) is updated to point to the new cow copy.  The new buffer is marked
937  * dirty and returned locked.  If you modify the block it needs to be marked
938  * dirty again.
939  *
940  * search_start -- an allocation hint for the new block
941  *
942  * empty_size -- a hint that you plan on doing more cow.  This is the size in
943  * bytes the allocator should try to find free next to the block it returns.
944  * This is just a hint and may be ignored by the allocator.
945  */
946 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
947                              struct btrfs_root *root,
948                              struct extent_buffer *buf,
949                              struct extent_buffer *parent, int parent_slot,
950                              struct extent_buffer **cow_ret,
951                              u64 search_start, u64 empty_size)
952 {
953         struct btrfs_disk_key disk_key;
954         struct extent_buffer *cow;
955         int level, ret;
956         int last_ref = 0;
957         int unlock_orig = 0;
958         u64 parent_start;
959
960         if (*cow_ret == buf)
961                 unlock_orig = 1;
962
963         btrfs_assert_tree_locked(buf);
964
965         WARN_ON(root->ref_cows && trans->transid !=
966                 root->fs_info->running_transaction->transid);
967         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
968
969         level = btrfs_header_level(buf);
970
971         if (level == 0)
972                 btrfs_item_key(buf, &disk_key, 0);
973         else
974                 btrfs_node_key(buf, &disk_key, 0);
975
976         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
977                 if (parent)
978                         parent_start = parent->start;
979                 else
980                         parent_start = 0;
981         } else
982                 parent_start = 0;
983
984         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
985                                      root->root_key.objectid, &disk_key,
986                                      level, search_start, empty_size);
987         if (IS_ERR(cow))
988                 return PTR_ERR(cow);
989
990         /* cow is set to blocking by btrfs_init_new_buffer */
991
992         copy_extent_buffer(cow, buf, 0, 0, cow->len);
993         btrfs_set_header_bytenr(cow, cow->start);
994         btrfs_set_header_generation(cow, trans->transid);
995         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
996         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
997                                      BTRFS_HEADER_FLAG_RELOC);
998         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
999                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1000         else
1001                 btrfs_set_header_owner(cow, root->root_key.objectid);
1002
1003         write_extent_buffer(cow, root->fs_info->fsid,
1004                             (unsigned long)btrfs_header_fsid(cow),
1005                             BTRFS_FSID_SIZE);
1006
1007         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1008         if (ret) {
1009                 btrfs_abort_transaction(trans, root, ret);
1010                 return ret;
1011         }
1012
1013         if (root->ref_cows)
1014                 btrfs_reloc_cow_block(trans, root, buf, cow);
1015
1016         if (buf == root->node) {
1017                 WARN_ON(parent && parent != buf);
1018                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1019                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1020                         parent_start = buf->start;
1021                 else
1022                         parent_start = 0;
1023
1024                 extent_buffer_get(cow);
1025                 tree_mod_log_set_root_pointer(root, cow);
1026                 rcu_assign_pointer(root->node, cow);
1027
1028                 btrfs_free_tree_block(trans, root, buf, parent_start,
1029                                       last_ref);
1030                 free_extent_buffer(buf);
1031                 add_root_to_dirty_list(root);
1032         } else {
1033                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1034                         parent_start = parent->start;
1035                 else
1036                         parent_start = 0;
1037
1038                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1039                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1040                                         MOD_LOG_KEY_REPLACE);
1041                 btrfs_set_node_blockptr(parent, parent_slot,
1042                                         cow->start);
1043                 btrfs_set_node_ptr_generation(parent, parent_slot,
1044                                               trans->transid);
1045                 btrfs_mark_buffer_dirty(parent);
1046                 btrfs_free_tree_block(trans, root, buf, parent_start,
1047                                       last_ref);
1048         }
1049         if (unlock_orig)
1050                 btrfs_tree_unlock(buf);
1051         free_extent_buffer_stale(buf);
1052         btrfs_mark_buffer_dirty(cow);
1053         *cow_ret = cow;
1054         return 0;
1055 }
1056
1057 /*
1058  * returns the logical address of the oldest predecessor of the given root.
1059  * entries older than time_seq are ignored.
1060  */
1061 static struct tree_mod_elem *
1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1063                            struct btrfs_root *root, u64 time_seq)
1064 {
1065         struct tree_mod_elem *tm;
1066         struct tree_mod_elem *found = NULL;
1067         u64 root_logical = root->node->start;
1068         int looped = 0;
1069
1070         if (!time_seq)
1071                 return 0;
1072
1073         /*
1074          * the very last operation that's logged for a root is the replacement
1075          * operation (if it is replaced at all). this has the index of the *new*
1076          * root, making it the very first operation that's logged for this root.
1077          */
1078         while (1) {
1079                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1080                                                 time_seq);
1081                 if (!looped && !tm)
1082                         return 0;
1083                 /*
1084                  * if there are no tree operation for the oldest root, we simply
1085                  * return it. this should only happen if that (old) root is at
1086                  * level 0.
1087                  */
1088                 if (!tm)
1089                         break;
1090
1091                 /*
1092                  * if there's an operation that's not a root replacement, we
1093                  * found the oldest version of our root. normally, we'll find a
1094                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1095                  */
1096                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1097                         break;
1098
1099                 found = tm;
1100                 root_logical = tm->old_root.logical;
1101                 BUG_ON(root_logical == root->node->start);
1102                 looped = 1;
1103         }
1104
1105         /* if there's no old root to return, return what we found instead */
1106         if (!found)
1107                 found = tm;
1108
1109         return found;
1110 }
1111
1112 /*
1113  * tm is a pointer to the first operation to rewind within eb. then, all
1114  * previous operations will be rewinded (until we reach something older than
1115  * time_seq).
1116  */
1117 static void
1118 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1119                       struct tree_mod_elem *first_tm)
1120 {
1121         u32 n;
1122         struct rb_node *next;
1123         struct tree_mod_elem *tm = first_tm;
1124         unsigned long o_dst;
1125         unsigned long o_src;
1126         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1127
1128         n = btrfs_header_nritems(eb);
1129         while (tm && tm->seq >= time_seq) {
1130                 /*
1131                  * all the operations are recorded with the operator used for
1132                  * the modification. as we're going backwards, we do the
1133                  * opposite of each operation here.
1134                  */
1135                 switch (tm->op) {
1136                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1137                         BUG_ON(tm->slot < n);
1138                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1139                 case MOD_LOG_KEY_REMOVE:
1140                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1141                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1142                         btrfs_set_node_ptr_generation(eb, tm->slot,
1143                                                       tm->generation);
1144                         n++;
1145                         break;
1146                 case MOD_LOG_KEY_REPLACE:
1147                         BUG_ON(tm->slot >= n);
1148                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1149                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1150                         btrfs_set_node_ptr_generation(eb, tm->slot,
1151                                                       tm->generation);
1152                         break;
1153                 case MOD_LOG_KEY_ADD:
1154                         /* if a move operation is needed it's in the log */
1155                         n--;
1156                         break;
1157                 case MOD_LOG_MOVE_KEYS:
1158                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1159                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1160                         memmove_extent_buffer(eb, o_dst, o_src,
1161                                               tm->move.nr_items * p_size);
1162                         break;
1163                 case MOD_LOG_ROOT_REPLACE:
1164                         /*
1165                          * this operation is special. for roots, this must be
1166                          * handled explicitly before rewinding.
1167                          * for non-roots, this operation may exist if the node
1168                          * was a root: root A -> child B; then A gets empty and
1169                          * B is promoted to the new root. in the mod log, we'll
1170                          * have a root-replace operation for B, a tree block
1171                          * that is no root. we simply ignore that operation.
1172                          */
1173                         break;
1174                 }
1175                 next = rb_next(&tm->node);
1176                 if (!next)
1177                         break;
1178                 tm = container_of(next, struct tree_mod_elem, node);
1179                 if (tm->index != first_tm->index)
1180                         break;
1181         }
1182         btrfs_set_header_nritems(eb, n);
1183 }
1184
1185 static struct extent_buffer *
1186 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1187                     u64 time_seq)
1188 {
1189         struct extent_buffer *eb_rewin;
1190         struct tree_mod_elem *tm;
1191
1192         if (!time_seq)
1193                 return eb;
1194
1195         if (btrfs_header_level(eb) == 0)
1196                 return eb;
1197
1198         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1199         if (!tm)
1200                 return eb;
1201
1202         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1203                 BUG_ON(tm->slot != 0);
1204                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1205                                                 fs_info->tree_root->nodesize);
1206                 BUG_ON(!eb_rewin);
1207                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1208                 btrfs_set_header_backref_rev(eb_rewin,
1209                                              btrfs_header_backref_rev(eb));
1210                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1211                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1212         } else {
1213                 eb_rewin = btrfs_clone_extent_buffer(eb);
1214                 BUG_ON(!eb_rewin);
1215         }
1216
1217         extent_buffer_get(eb_rewin);
1218         free_extent_buffer(eb);
1219
1220         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1221         WARN_ON(btrfs_header_nritems(eb_rewin) >
1222                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1223
1224         return eb_rewin;
1225 }
1226
1227 /*
1228  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1229  * value. If there are no changes, the current root->root_node is returned. If
1230  * anything changed in between, there's a fresh buffer allocated on which the
1231  * rewind operations are done. In any case, the returned buffer is read locked.
1232  * Returns NULL on error (with no locks held).
1233  */
1234 static inline struct extent_buffer *
1235 get_old_root(struct btrfs_root *root, u64 time_seq)
1236 {
1237         struct tree_mod_elem *tm;
1238         struct extent_buffer *eb;
1239         struct tree_mod_root *old_root = NULL;
1240         u64 old_generation = 0;
1241         u64 logical;
1242         u32 blocksize;
1243
1244         eb = btrfs_read_lock_root_node(root);
1245         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1246         if (!tm)
1247                 return root->node;
1248
1249         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1250                 old_root = &tm->old_root;
1251                 old_generation = tm->generation;
1252                 logical = old_root->logical;
1253         } else {
1254                 logical = root->node->start;
1255         }
1256
1257         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1258         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1259                 btrfs_tree_read_unlock(root->node);
1260                 free_extent_buffer(root->node);
1261                 blocksize = btrfs_level_size(root, old_root->level);
1262                 eb = read_tree_block(root, logical, blocksize, 0);
1263                 if (!eb) {
1264                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1265                                 logical);
1266                         WARN_ON(1);
1267                 } else {
1268                         eb = btrfs_clone_extent_buffer(eb);
1269                 }
1270         } else if (old_root) {
1271                 btrfs_tree_read_unlock(root->node);
1272                 free_extent_buffer(root->node);
1273                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1274         } else {
1275                 eb = btrfs_clone_extent_buffer(root->node);
1276                 btrfs_tree_read_unlock(root->node);
1277                 free_extent_buffer(root->node);
1278         }
1279
1280         if (!eb)
1281                 return NULL;
1282         btrfs_tree_read_lock(eb);
1283         if (old_root) {
1284                 btrfs_set_header_bytenr(eb, eb->start);
1285                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1286                 btrfs_set_header_owner(eb, root->root_key.objectid);
1287                 btrfs_set_header_level(eb, old_root->level);
1288                 btrfs_set_header_generation(eb, old_generation);
1289         }
1290         if (tm)
1291                 __tree_mod_log_rewind(eb, time_seq, tm);
1292         else
1293                 WARN_ON(btrfs_header_level(eb) != 0);
1294         extent_buffer_get(eb);
1295         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1296
1297         return eb;
1298 }
1299
1300 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1301 {
1302         struct tree_mod_elem *tm;
1303         int level;
1304
1305         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1306         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1307                 level = tm->old_root.level;
1308         } else {
1309                 rcu_read_lock();
1310                 level = btrfs_header_level(root->node);
1311                 rcu_read_unlock();
1312         }
1313
1314         return level;
1315 }
1316
1317 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1318                                    struct btrfs_root *root,
1319                                    struct extent_buffer *buf)
1320 {
1321         /* ensure we can see the force_cow */
1322         smp_rmb();
1323
1324         /*
1325          * We do not need to cow a block if
1326          * 1) this block is not created or changed in this transaction;
1327          * 2) this block does not belong to TREE_RELOC tree;
1328          * 3) the root is not forced COW.
1329          *
1330          * What is forced COW:
1331          *    when we create snapshot during commiting the transaction,
1332          *    after we've finished coping src root, we must COW the shared
1333          *    block to ensure the metadata consistency.
1334          */
1335         if (btrfs_header_generation(buf) == trans->transid &&
1336             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1337             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1338               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1339             !root->force_cow)
1340                 return 0;
1341         return 1;
1342 }
1343
1344 /*
1345  * cows a single block, see __btrfs_cow_block for the real work.
1346  * This version of it has extra checks so that a block isn't cow'd more than
1347  * once per transaction, as long as it hasn't been written yet
1348  */
1349 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1350                     struct btrfs_root *root, struct extent_buffer *buf,
1351                     struct extent_buffer *parent, int parent_slot,
1352                     struct extent_buffer **cow_ret)
1353 {
1354         u64 search_start;
1355         int ret;
1356
1357         if (trans->transaction != root->fs_info->running_transaction) {
1358                 printk(KERN_CRIT "trans %llu running %llu\n",
1359                        (unsigned long long)trans->transid,
1360                        (unsigned long long)
1361                        root->fs_info->running_transaction->transid);
1362                 WARN_ON(1);
1363         }
1364         if (trans->transid != root->fs_info->generation) {
1365                 printk(KERN_CRIT "trans %llu running %llu\n",
1366                        (unsigned long long)trans->transid,
1367                        (unsigned long long)root->fs_info->generation);
1368                 WARN_ON(1);
1369         }
1370
1371         if (!should_cow_block(trans, root, buf)) {
1372                 *cow_ret = buf;
1373                 return 0;
1374         }
1375
1376         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1377
1378         if (parent)
1379                 btrfs_set_lock_blocking(parent);
1380         btrfs_set_lock_blocking(buf);
1381
1382         ret = __btrfs_cow_block(trans, root, buf, parent,
1383                                  parent_slot, cow_ret, search_start, 0);
1384
1385         trace_btrfs_cow_block(root, buf, *cow_ret);
1386
1387         return ret;
1388 }
1389
1390 /*
1391  * helper function for defrag to decide if two blocks pointed to by a
1392  * node are actually close by
1393  */
1394 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1395 {
1396         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1397                 return 1;
1398         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1399                 return 1;
1400         return 0;
1401 }
1402
1403 /*
1404  * compare two keys in a memcmp fashion
1405  */
1406 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1407 {
1408         struct btrfs_key k1;
1409
1410         btrfs_disk_key_to_cpu(&k1, disk);
1411
1412         return btrfs_comp_cpu_keys(&k1, k2);
1413 }
1414
1415 /*
1416  * same as comp_keys only with two btrfs_key's
1417  */
1418 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1419 {
1420         if (k1->objectid > k2->objectid)
1421                 return 1;
1422         if (k1->objectid < k2->objectid)
1423                 return -1;
1424         if (k1->type > k2->type)
1425                 return 1;
1426         if (k1->type < k2->type)
1427                 return -1;
1428         if (k1->offset > k2->offset)
1429                 return 1;
1430         if (k1->offset < k2->offset)
1431                 return -1;
1432         return 0;
1433 }
1434
1435 /*
1436  * this is used by the defrag code to go through all the
1437  * leaves pointed to by a node and reallocate them so that
1438  * disk order is close to key order
1439  */
1440 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1441                        struct btrfs_root *root, struct extent_buffer *parent,
1442                        int start_slot, int cache_only, u64 *last_ret,
1443                        struct btrfs_key *progress)
1444 {
1445         struct extent_buffer *cur;
1446         u64 blocknr;
1447         u64 gen;
1448         u64 search_start = *last_ret;
1449         u64 last_block = 0;
1450         u64 other;
1451         u32 parent_nritems;
1452         int end_slot;
1453         int i;
1454         int err = 0;
1455         int parent_level;
1456         int uptodate;
1457         u32 blocksize;
1458         int progress_passed = 0;
1459         struct btrfs_disk_key disk_key;
1460
1461         parent_level = btrfs_header_level(parent);
1462         if (cache_only && parent_level != 1)
1463                 return 0;
1464
1465         if (trans->transaction != root->fs_info->running_transaction)
1466                 WARN_ON(1);
1467         if (trans->transid != root->fs_info->generation)
1468                 WARN_ON(1);
1469
1470         parent_nritems = btrfs_header_nritems(parent);
1471         blocksize = btrfs_level_size(root, parent_level - 1);
1472         end_slot = parent_nritems;
1473
1474         if (parent_nritems == 1)
1475                 return 0;
1476
1477         btrfs_set_lock_blocking(parent);
1478
1479         for (i = start_slot; i < end_slot; i++) {
1480                 int close = 1;
1481
1482                 btrfs_node_key(parent, &disk_key, i);
1483                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1484                         continue;
1485
1486                 progress_passed = 1;
1487                 blocknr = btrfs_node_blockptr(parent, i);
1488                 gen = btrfs_node_ptr_generation(parent, i);
1489                 if (last_block == 0)
1490                         last_block = blocknr;
1491
1492                 if (i > 0) {
1493                         other = btrfs_node_blockptr(parent, i - 1);
1494                         close = close_blocks(blocknr, other, blocksize);
1495                 }
1496                 if (!close && i < end_slot - 2) {
1497                         other = btrfs_node_blockptr(parent, i + 1);
1498                         close = close_blocks(blocknr, other, blocksize);
1499                 }
1500                 if (close) {
1501                         last_block = blocknr;
1502                         continue;
1503                 }
1504
1505                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1506                 if (cur)
1507                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1508                 else
1509                         uptodate = 0;
1510                 if (!cur || !uptodate) {
1511                         if (cache_only) {
1512                                 free_extent_buffer(cur);
1513                                 continue;
1514                         }
1515                         if (!cur) {
1516                                 cur = read_tree_block(root, blocknr,
1517                                                          blocksize, gen);
1518                                 if (!cur)
1519                                         return -EIO;
1520                         } else if (!uptodate) {
1521                                 err = btrfs_read_buffer(cur, gen);
1522                                 if (err) {
1523                                         free_extent_buffer(cur);
1524                                         return err;
1525                                 }
1526                         }
1527                 }
1528                 if (search_start == 0)
1529                         search_start = last_block;
1530
1531                 btrfs_tree_lock(cur);
1532                 btrfs_set_lock_blocking(cur);
1533                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1534                                         &cur, search_start,
1535                                         min(16 * blocksize,
1536                                             (end_slot - i) * blocksize));
1537                 if (err) {
1538                         btrfs_tree_unlock(cur);
1539                         free_extent_buffer(cur);
1540                         break;
1541                 }
1542                 search_start = cur->start;
1543                 last_block = cur->start;
1544                 *last_ret = search_start;
1545                 btrfs_tree_unlock(cur);
1546                 free_extent_buffer(cur);
1547         }
1548         return err;
1549 }
1550
1551 /*
1552  * The leaf data grows from end-to-front in the node.
1553  * this returns the address of the start of the last item,
1554  * which is the stop of the leaf data stack
1555  */
1556 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1557                                          struct extent_buffer *leaf)
1558 {
1559         u32 nr = btrfs_header_nritems(leaf);
1560         if (nr == 0)
1561                 return BTRFS_LEAF_DATA_SIZE(root);
1562         return btrfs_item_offset_nr(leaf, nr - 1);
1563 }
1564
1565
1566 /*
1567  * search for key in the extent_buffer.  The items start at offset p,
1568  * and they are item_size apart.  There are 'max' items in p.
1569  *
1570  * the slot in the array is returned via slot, and it points to
1571  * the place where you would insert key if it is not found in
1572  * the array.
1573  *
1574  * slot may point to max if the key is bigger than all of the keys
1575  */
1576 static noinline int generic_bin_search(struct extent_buffer *eb,
1577                                        unsigned long p,
1578                                        int item_size, struct btrfs_key *key,
1579                                        int max, int *slot)
1580 {
1581         int low = 0;
1582         int high = max;
1583         int mid;
1584         int ret;
1585         struct btrfs_disk_key *tmp = NULL;
1586         struct btrfs_disk_key unaligned;
1587         unsigned long offset;
1588         char *kaddr = NULL;
1589         unsigned long map_start = 0;
1590         unsigned long map_len = 0;
1591         int err;
1592
1593         while (low < high) {
1594                 mid = (low + high) / 2;
1595                 offset = p + mid * item_size;
1596
1597                 if (!kaddr || offset < map_start ||
1598                     (offset + sizeof(struct btrfs_disk_key)) >
1599                     map_start + map_len) {
1600
1601                         err = map_private_extent_buffer(eb, offset,
1602                                                 sizeof(struct btrfs_disk_key),
1603                                                 &kaddr, &map_start, &map_len);
1604
1605                         if (!err) {
1606                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1607                                                         map_start);
1608                         } else {
1609                                 read_extent_buffer(eb, &unaligned,
1610                                                    offset, sizeof(unaligned));
1611                                 tmp = &unaligned;
1612                         }
1613
1614                 } else {
1615                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1616                                                         map_start);
1617                 }
1618                 ret = comp_keys(tmp, key);
1619
1620                 if (ret < 0)
1621                         low = mid + 1;
1622                 else if (ret > 0)
1623                         high = mid;
1624                 else {
1625                         *slot = mid;
1626                         return 0;
1627                 }
1628         }
1629         *slot = low;
1630         return 1;
1631 }
1632
1633 /*
1634  * simple bin_search frontend that does the right thing for
1635  * leaves vs nodes
1636  */
1637 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1638                       int level, int *slot)
1639 {
1640         if (level == 0)
1641                 return generic_bin_search(eb,
1642                                           offsetof(struct btrfs_leaf, items),
1643                                           sizeof(struct btrfs_item),
1644                                           key, btrfs_header_nritems(eb),
1645                                           slot);
1646         else
1647                 return generic_bin_search(eb,
1648                                           offsetof(struct btrfs_node, ptrs),
1649                                           sizeof(struct btrfs_key_ptr),
1650                                           key, btrfs_header_nritems(eb),
1651                                           slot);
1652 }
1653
1654 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1655                      int level, int *slot)
1656 {
1657         return bin_search(eb, key, level, slot);
1658 }
1659
1660 static void root_add_used(struct btrfs_root *root, u32 size)
1661 {
1662         spin_lock(&root->accounting_lock);
1663         btrfs_set_root_used(&root->root_item,
1664                             btrfs_root_used(&root->root_item) + size);
1665         spin_unlock(&root->accounting_lock);
1666 }
1667
1668 static void root_sub_used(struct btrfs_root *root, u32 size)
1669 {
1670         spin_lock(&root->accounting_lock);
1671         btrfs_set_root_used(&root->root_item,
1672                             btrfs_root_used(&root->root_item) - size);
1673         spin_unlock(&root->accounting_lock);
1674 }
1675
1676 /* given a node and slot number, this reads the blocks it points to.  The
1677  * extent buffer is returned with a reference taken (but unlocked).
1678  * NULL is returned on error.
1679  */
1680 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1681                                    struct extent_buffer *parent, int slot)
1682 {
1683         int level = btrfs_header_level(parent);
1684         if (slot < 0)
1685                 return NULL;
1686         if (slot >= btrfs_header_nritems(parent))
1687                 return NULL;
1688
1689         BUG_ON(level == 0);
1690
1691         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1692                        btrfs_level_size(root, level - 1),
1693                        btrfs_node_ptr_generation(parent, slot));
1694 }
1695
1696 /*
1697  * node level balancing, used to make sure nodes are in proper order for
1698  * item deletion.  We balance from the top down, so we have to make sure
1699  * that a deletion won't leave an node completely empty later on.
1700  */
1701 static noinline int balance_level(struct btrfs_trans_handle *trans,
1702                          struct btrfs_root *root,
1703                          struct btrfs_path *path, int level)
1704 {
1705         struct extent_buffer *right = NULL;
1706         struct extent_buffer *mid;
1707         struct extent_buffer *left = NULL;
1708         struct extent_buffer *parent = NULL;
1709         int ret = 0;
1710         int wret;
1711         int pslot;
1712         int orig_slot = path->slots[level];
1713         u64 orig_ptr;
1714
1715         if (level == 0)
1716                 return 0;
1717
1718         mid = path->nodes[level];
1719
1720         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1721                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1722         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1723
1724         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1725
1726         if (level < BTRFS_MAX_LEVEL - 1) {
1727                 parent = path->nodes[level + 1];
1728                 pslot = path->slots[level + 1];
1729         }
1730
1731         /*
1732          * deal with the case where there is only one pointer in the root
1733          * by promoting the node below to a root
1734          */
1735         if (!parent) {
1736                 struct extent_buffer *child;
1737
1738                 if (btrfs_header_nritems(mid) != 1)
1739                         return 0;
1740
1741                 /* promote the child to a root */
1742                 child = read_node_slot(root, mid, 0);
1743                 if (!child) {
1744                         ret = -EROFS;
1745                         btrfs_std_error(root->fs_info, ret);
1746                         goto enospc;
1747                 }
1748
1749                 btrfs_tree_lock(child);
1750                 btrfs_set_lock_blocking(child);
1751                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1752                 if (ret) {
1753                         btrfs_tree_unlock(child);
1754                         free_extent_buffer(child);
1755                         goto enospc;
1756                 }
1757
1758                 tree_mod_log_free_eb(root->fs_info, root->node);
1759                 tree_mod_log_set_root_pointer(root, child);
1760                 rcu_assign_pointer(root->node, child);
1761
1762                 add_root_to_dirty_list(root);
1763                 btrfs_tree_unlock(child);
1764
1765                 path->locks[level] = 0;
1766                 path->nodes[level] = NULL;
1767                 clean_tree_block(trans, root, mid);
1768                 btrfs_tree_unlock(mid);
1769                 /* once for the path */
1770                 free_extent_buffer(mid);
1771
1772                 root_sub_used(root, mid->len);
1773                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1774                 /* once for the root ptr */
1775                 free_extent_buffer_stale(mid);
1776                 return 0;
1777         }
1778         if (btrfs_header_nritems(mid) >
1779             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1780                 return 0;
1781
1782         left = read_node_slot(root, parent, pslot - 1);
1783         if (left) {
1784                 btrfs_tree_lock(left);
1785                 btrfs_set_lock_blocking(left);
1786                 wret = btrfs_cow_block(trans, root, left,
1787                                        parent, pslot - 1, &left);
1788                 if (wret) {
1789                         ret = wret;
1790                         goto enospc;
1791                 }
1792         }
1793         right = read_node_slot(root, parent, pslot + 1);
1794         if (right) {
1795                 btrfs_tree_lock(right);
1796                 btrfs_set_lock_blocking(right);
1797                 wret = btrfs_cow_block(trans, root, right,
1798                                        parent, pslot + 1, &right);
1799                 if (wret) {
1800                         ret = wret;
1801                         goto enospc;
1802                 }
1803         }
1804
1805         /* first, try to make some room in the middle buffer */
1806         if (left) {
1807                 orig_slot += btrfs_header_nritems(left);
1808                 wret = push_node_left(trans, root, left, mid, 1);
1809                 if (wret < 0)
1810                         ret = wret;
1811         }
1812
1813         /*
1814          * then try to empty the right most buffer into the middle
1815          */
1816         if (right) {
1817                 wret = push_node_left(trans, root, mid, right, 1);
1818                 if (wret < 0 && wret != -ENOSPC)
1819                         ret = wret;
1820                 if (btrfs_header_nritems(right) == 0) {
1821                         clean_tree_block(trans, root, right);
1822                         btrfs_tree_unlock(right);
1823                         del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1824                         root_sub_used(root, right->len);
1825                         btrfs_free_tree_block(trans, root, right, 0, 1);
1826                         free_extent_buffer_stale(right);
1827                         right = NULL;
1828                 } else {
1829                         struct btrfs_disk_key right_key;
1830                         btrfs_node_key(right, &right_key, 0);
1831                         tree_mod_log_set_node_key(root->fs_info, parent,
1832                                                   &right_key, pslot + 1, 0);
1833                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1834                         btrfs_mark_buffer_dirty(parent);
1835                 }
1836         }
1837         if (btrfs_header_nritems(mid) == 1) {
1838                 /*
1839                  * we're not allowed to leave a node with one item in the
1840                  * tree during a delete.  A deletion from lower in the tree
1841                  * could try to delete the only pointer in this node.
1842                  * So, pull some keys from the left.
1843                  * There has to be a left pointer at this point because
1844                  * otherwise we would have pulled some pointers from the
1845                  * right
1846                  */
1847                 if (!left) {
1848                         ret = -EROFS;
1849                         btrfs_std_error(root->fs_info, ret);
1850                         goto enospc;
1851                 }
1852                 wret = balance_node_right(trans, root, mid, left);
1853                 if (wret < 0) {
1854                         ret = wret;
1855                         goto enospc;
1856                 }
1857                 if (wret == 1) {
1858                         wret = push_node_left(trans, root, left, mid, 1);
1859                         if (wret < 0)
1860                                 ret = wret;
1861                 }
1862                 BUG_ON(wret == 1);
1863         }
1864         if (btrfs_header_nritems(mid) == 0) {
1865                 clean_tree_block(trans, root, mid);
1866                 btrfs_tree_unlock(mid);
1867                 del_ptr(trans, root, path, level + 1, pslot, 1);
1868                 root_sub_used(root, mid->len);
1869                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1870                 free_extent_buffer_stale(mid);
1871                 mid = NULL;
1872         } else {
1873                 /* update the parent key to reflect our changes */
1874                 struct btrfs_disk_key mid_key;
1875                 btrfs_node_key(mid, &mid_key, 0);
1876                 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1877                                           pslot, 0);
1878                 btrfs_set_node_key(parent, &mid_key, pslot);
1879                 btrfs_mark_buffer_dirty(parent);
1880         }
1881
1882         /* update the path */
1883         if (left) {
1884                 if (btrfs_header_nritems(left) > orig_slot) {
1885                         extent_buffer_get(left);
1886                         /* left was locked after cow */
1887                         path->nodes[level] = left;
1888                         path->slots[level + 1] -= 1;
1889                         path->slots[level] = orig_slot;
1890                         if (mid) {
1891                                 btrfs_tree_unlock(mid);
1892                                 free_extent_buffer(mid);
1893                         }
1894                 } else {
1895                         orig_slot -= btrfs_header_nritems(left);
1896                         path->slots[level] = orig_slot;
1897                 }
1898         }
1899         /* double check we haven't messed things up */
1900         if (orig_ptr !=
1901             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1902                 BUG();
1903 enospc:
1904         if (right) {
1905                 btrfs_tree_unlock(right);
1906                 free_extent_buffer(right);
1907         }
1908         if (left) {
1909                 if (path->nodes[level] != left)
1910                         btrfs_tree_unlock(left);
1911                 free_extent_buffer(left);
1912         }
1913         return ret;
1914 }
1915
1916 /* Node balancing for insertion.  Here we only split or push nodes around
1917  * when they are completely full.  This is also done top down, so we
1918  * have to be pessimistic.
1919  */
1920 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1921                                           struct btrfs_root *root,
1922                                           struct btrfs_path *path, int level)
1923 {
1924         struct extent_buffer *right = NULL;
1925         struct extent_buffer *mid;
1926         struct extent_buffer *left = NULL;
1927         struct extent_buffer *parent = NULL;
1928         int ret = 0;
1929         int wret;
1930         int pslot;
1931         int orig_slot = path->slots[level];
1932
1933         if (level == 0)
1934                 return 1;
1935
1936         mid = path->nodes[level];
1937         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1938
1939         if (level < BTRFS_MAX_LEVEL - 1) {
1940                 parent = path->nodes[level + 1];
1941                 pslot = path->slots[level + 1];
1942         }
1943
1944         if (!parent)
1945                 return 1;
1946
1947         left = read_node_slot(root, parent, pslot - 1);
1948
1949         /* first, try to make some room in the middle buffer */
1950         if (left) {
1951                 u32 left_nr;
1952
1953                 btrfs_tree_lock(left);
1954                 btrfs_set_lock_blocking(left);
1955
1956                 left_nr = btrfs_header_nritems(left);
1957                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1958                         wret = 1;
1959                 } else {
1960                         ret = btrfs_cow_block(trans, root, left, parent,
1961                                               pslot - 1, &left);
1962                         if (ret)
1963                                 wret = 1;
1964                         else {
1965                                 wret = push_node_left(trans, root,
1966                                                       left, mid, 0);
1967                         }
1968                 }
1969                 if (wret < 0)
1970                         ret = wret;
1971                 if (wret == 0) {
1972                         struct btrfs_disk_key disk_key;
1973                         orig_slot += left_nr;
1974                         btrfs_node_key(mid, &disk_key, 0);
1975                         tree_mod_log_set_node_key(root->fs_info, parent,
1976                                                   &disk_key, pslot, 0);
1977                         btrfs_set_node_key(parent, &disk_key, pslot);
1978                         btrfs_mark_buffer_dirty(parent);
1979                         if (btrfs_header_nritems(left) > orig_slot) {
1980                                 path->nodes[level] = left;
1981                                 path->slots[level + 1] -= 1;
1982                                 path->slots[level] = orig_slot;
1983                                 btrfs_tree_unlock(mid);
1984                                 free_extent_buffer(mid);
1985                         } else {
1986                                 orig_slot -=
1987                                         btrfs_header_nritems(left);
1988                                 path->slots[level] = orig_slot;
1989                                 btrfs_tree_unlock(left);
1990                                 free_extent_buffer(left);
1991                         }
1992                         return 0;
1993                 }
1994                 btrfs_tree_unlock(left);
1995                 free_extent_buffer(left);
1996         }
1997         right = read_node_slot(root, parent, pslot + 1);
1998
1999         /*
2000          * then try to empty the right most buffer into the middle
2001          */
2002         if (right) {
2003                 u32 right_nr;
2004
2005                 btrfs_tree_lock(right);
2006                 btrfs_set_lock_blocking(right);
2007
2008                 right_nr = btrfs_header_nritems(right);
2009                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2010                         wret = 1;
2011                 } else {
2012                         ret = btrfs_cow_block(trans, root, right,
2013                                               parent, pslot + 1,
2014                                               &right);
2015                         if (ret)
2016                                 wret = 1;
2017                         else {
2018                                 wret = balance_node_right(trans, root,
2019                                                           right, mid);
2020                         }
2021                 }
2022                 if (wret < 0)
2023                         ret = wret;
2024                 if (wret == 0) {
2025                         struct btrfs_disk_key disk_key;
2026
2027                         btrfs_node_key(right, &disk_key, 0);
2028                         tree_mod_log_set_node_key(root->fs_info, parent,
2029                                                   &disk_key, pslot + 1, 0);
2030                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2031                         btrfs_mark_buffer_dirty(parent);
2032
2033                         if (btrfs_header_nritems(mid) <= orig_slot) {
2034                                 path->nodes[level] = right;
2035                                 path->slots[level + 1] += 1;
2036                                 path->slots[level] = orig_slot -
2037                                         btrfs_header_nritems(mid);
2038                                 btrfs_tree_unlock(mid);
2039                                 free_extent_buffer(mid);
2040                         } else {
2041                                 btrfs_tree_unlock(right);
2042                                 free_extent_buffer(right);
2043                         }
2044                         return 0;
2045                 }
2046                 btrfs_tree_unlock(right);
2047                 free_extent_buffer(right);
2048         }
2049         return 1;
2050 }
2051
2052 /*
2053  * readahead one full node of leaves, finding things that are close
2054  * to the block in 'slot', and triggering ra on them.
2055  */
2056 static void reada_for_search(struct btrfs_root *root,
2057                              struct btrfs_path *path,
2058                              int level, int slot, u64 objectid)
2059 {
2060         struct extent_buffer *node;
2061         struct btrfs_disk_key disk_key;
2062         u32 nritems;
2063         u64 search;
2064         u64 target;
2065         u64 nread = 0;
2066         u64 gen;
2067         int direction = path->reada;
2068         struct extent_buffer *eb;
2069         u32 nr;
2070         u32 blocksize;
2071         u32 nscan = 0;
2072
2073         if (level != 1)
2074                 return;
2075
2076         if (!path->nodes[level])
2077                 return;
2078
2079         node = path->nodes[level];
2080
2081         search = btrfs_node_blockptr(node, slot);
2082         blocksize = btrfs_level_size(root, level - 1);
2083         eb = btrfs_find_tree_block(root, search, blocksize);
2084         if (eb) {
2085                 free_extent_buffer(eb);
2086                 return;
2087         }
2088
2089         target = search;
2090
2091         nritems = btrfs_header_nritems(node);
2092         nr = slot;
2093
2094         while (1) {
2095                 if (direction < 0) {
2096                         if (nr == 0)
2097                                 break;
2098                         nr--;
2099                 } else if (direction > 0) {
2100                         nr++;
2101                         if (nr >= nritems)
2102                                 break;
2103                 }
2104                 if (path->reada < 0 && objectid) {
2105                         btrfs_node_key(node, &disk_key, nr);
2106                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2107                                 break;
2108                 }
2109                 search = btrfs_node_blockptr(node, nr);
2110                 if ((search <= target && target - search <= 65536) ||
2111                     (search > target && search - target <= 65536)) {
2112                         gen = btrfs_node_ptr_generation(node, nr);
2113                         readahead_tree_block(root, search, blocksize, gen);
2114                         nread += blocksize;
2115                 }
2116                 nscan++;
2117                 if ((nread > 65536 || nscan > 32))
2118                         break;
2119         }
2120 }
2121
2122 /*
2123  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2124  * cache
2125  */
2126 static noinline int reada_for_balance(struct btrfs_root *root,
2127                                       struct btrfs_path *path, int level)
2128 {
2129         int slot;
2130         int nritems;
2131         struct extent_buffer *parent;
2132         struct extent_buffer *eb;
2133         u64 gen;
2134         u64 block1 = 0;
2135         u64 block2 = 0;
2136         int ret = 0;
2137         int blocksize;
2138
2139         parent = path->nodes[level + 1];
2140         if (!parent)
2141                 return 0;
2142
2143         nritems = btrfs_header_nritems(parent);
2144         slot = path->slots[level + 1];
2145         blocksize = btrfs_level_size(root, level);
2146
2147         if (slot > 0) {
2148                 block1 = btrfs_node_blockptr(parent, slot - 1);
2149                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2150                 eb = btrfs_find_tree_block(root, block1, blocksize);
2151                 /*
2152                  * if we get -eagain from btrfs_buffer_uptodate, we
2153                  * don't want to return eagain here.  That will loop
2154                  * forever
2155                  */
2156                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2157                         block1 = 0;
2158                 free_extent_buffer(eb);
2159         }
2160         if (slot + 1 < nritems) {
2161                 block2 = btrfs_node_blockptr(parent, slot + 1);
2162                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2163                 eb = btrfs_find_tree_block(root, block2, blocksize);
2164                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2165                         block2 = 0;
2166                 free_extent_buffer(eb);
2167         }
2168         if (block1 || block2) {
2169                 ret = -EAGAIN;
2170
2171                 /* release the whole path */
2172                 btrfs_release_path(path);
2173
2174                 /* read the blocks */
2175                 if (block1)
2176                         readahead_tree_block(root, block1, blocksize, 0);
2177                 if (block2)
2178                         readahead_tree_block(root, block2, blocksize, 0);
2179
2180                 if (block1) {
2181                         eb = read_tree_block(root, block1, blocksize, 0);
2182                         free_extent_buffer(eb);
2183                 }
2184                 if (block2) {
2185                         eb = read_tree_block(root, block2, blocksize, 0);
2186                         free_extent_buffer(eb);
2187                 }
2188         }
2189         return ret;
2190 }
2191
2192
2193 /*
2194  * when we walk down the tree, it is usually safe to unlock the higher layers
2195  * in the tree.  The exceptions are when our path goes through slot 0, because
2196  * operations on the tree might require changing key pointers higher up in the
2197  * tree.
2198  *
2199  * callers might also have set path->keep_locks, which tells this code to keep
2200  * the lock if the path points to the last slot in the block.  This is part of
2201  * walking through the tree, and selecting the next slot in the higher block.
2202  *
2203  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2204  * if lowest_unlock is 1, level 0 won't be unlocked
2205  */
2206 static noinline void unlock_up(struct btrfs_path *path, int level,
2207                                int lowest_unlock, int min_write_lock_level,
2208                                int *write_lock_level)
2209 {
2210         int i;
2211         int skip_level = level;
2212         int no_skips = 0;
2213         struct extent_buffer *t;
2214
2215         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2216                 if (!path->nodes[i])
2217                         break;
2218                 if (!path->locks[i])
2219                         break;
2220                 if (!no_skips && path->slots[i] == 0) {
2221                         skip_level = i + 1;
2222                         continue;
2223                 }
2224                 if (!no_skips && path->keep_locks) {
2225                         u32 nritems;
2226                         t = path->nodes[i];
2227                         nritems = btrfs_header_nritems(t);
2228                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2229                                 skip_level = i + 1;
2230                                 continue;
2231                         }
2232                 }
2233                 if (skip_level < i && i >= lowest_unlock)
2234                         no_skips = 1;
2235
2236                 t = path->nodes[i];
2237                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2238                         btrfs_tree_unlock_rw(t, path->locks[i]);
2239                         path->locks[i] = 0;
2240                         if (write_lock_level &&
2241                             i > min_write_lock_level &&
2242                             i <= *write_lock_level) {
2243                                 *write_lock_level = i - 1;
2244                         }
2245                 }
2246         }
2247 }
2248
2249 /*
2250  * This releases any locks held in the path starting at level and
2251  * going all the way up to the root.
2252  *
2253  * btrfs_search_slot will keep the lock held on higher nodes in a few
2254  * corner cases, such as COW of the block at slot zero in the node.  This
2255  * ignores those rules, and it should only be called when there are no
2256  * more updates to be done higher up in the tree.
2257  */
2258 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2259 {
2260         int i;
2261
2262         if (path->keep_locks)
2263                 return;
2264
2265         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2266                 if (!path->nodes[i])
2267                         continue;
2268                 if (!path->locks[i])
2269                         continue;
2270                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2271                 path->locks[i] = 0;
2272         }
2273 }
2274
2275 /*
2276  * helper function for btrfs_search_slot.  The goal is to find a block
2277  * in cache without setting the path to blocking.  If we find the block
2278  * we return zero and the path is unchanged.
2279  *
2280  * If we can't find the block, we set the path blocking and do some
2281  * reada.  -EAGAIN is returned and the search must be repeated.
2282  */
2283 static int
2284 read_block_for_search(struct btrfs_trans_handle *trans,
2285                        struct btrfs_root *root, struct btrfs_path *p,
2286                        struct extent_buffer **eb_ret, int level, int slot,
2287                        struct btrfs_key *key, u64 time_seq)
2288 {
2289         u64 blocknr;
2290         u64 gen;
2291         u32 blocksize;
2292         struct extent_buffer *b = *eb_ret;
2293         struct extent_buffer *tmp;
2294         int ret;
2295
2296         blocknr = btrfs_node_blockptr(b, slot);
2297         gen = btrfs_node_ptr_generation(b, slot);
2298         blocksize = btrfs_level_size(root, level - 1);
2299
2300         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2301         if (tmp) {
2302                 /* first we do an atomic uptodate check */
2303                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2304                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2305                                 /*
2306                                  * we found an up to date block without
2307                                  * sleeping, return
2308                                  * right away
2309                                  */
2310                                 *eb_ret = tmp;
2311                                 return 0;
2312                         }
2313                         /* the pages were up to date, but we failed
2314                          * the generation number check.  Do a full
2315                          * read for the generation number that is correct.
2316                          * We must do this without dropping locks so
2317                          * we can trust our generation number
2318                          */
2319                         free_extent_buffer(tmp);
2320                         btrfs_set_path_blocking(p);
2321
2322                         /* now we're allowed to do a blocking uptodate check */
2323                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2324                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2325                                 *eb_ret = tmp;
2326                                 return 0;
2327                         }
2328                         free_extent_buffer(tmp);
2329                         btrfs_release_path(p);
2330                         return -EIO;
2331                 }
2332         }
2333
2334         /*
2335          * reduce lock contention at high levels
2336          * of the btree by dropping locks before
2337          * we read.  Don't release the lock on the current
2338          * level because we need to walk this node to figure
2339          * out which blocks to read.
2340          */
2341         btrfs_unlock_up_safe(p, level + 1);
2342         btrfs_set_path_blocking(p);
2343
2344         free_extent_buffer(tmp);
2345         if (p->reada)
2346                 reada_for_search(root, p, level, slot, key->objectid);
2347
2348         btrfs_release_path(p);
2349
2350         ret = -EAGAIN;
2351         tmp = read_tree_block(root, blocknr, blocksize, 0);
2352         if (tmp) {
2353                 /*
2354                  * If the read above didn't mark this buffer up to date,
2355                  * it will never end up being up to date.  Set ret to EIO now
2356                  * and give up so that our caller doesn't loop forever
2357                  * on our EAGAINs.
2358                  */
2359                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2360                         ret = -EIO;
2361                 free_extent_buffer(tmp);
2362         }
2363         return ret;
2364 }
2365
2366 /*
2367  * helper function for btrfs_search_slot.  This does all of the checks
2368  * for node-level blocks and does any balancing required based on
2369  * the ins_len.
2370  *
2371  * If no extra work was required, zero is returned.  If we had to
2372  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2373  * start over
2374  */
2375 static int
2376 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2377                        struct btrfs_root *root, struct btrfs_path *p,
2378                        struct extent_buffer *b, int level, int ins_len,
2379                        int *write_lock_level)
2380 {
2381         int ret;
2382         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2383             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2384                 int sret;
2385
2386                 if (*write_lock_level < level + 1) {
2387                         *write_lock_level = level + 1;
2388                         btrfs_release_path(p);
2389                         goto again;
2390                 }
2391
2392                 sret = reada_for_balance(root, p, level);
2393                 if (sret)
2394                         goto again;
2395
2396                 btrfs_set_path_blocking(p);
2397                 sret = split_node(trans, root, p, level);
2398                 btrfs_clear_path_blocking(p, NULL, 0);
2399
2400                 BUG_ON(sret > 0);
2401                 if (sret) {
2402                         ret = sret;
2403                         goto done;
2404                 }
2405                 b = p->nodes[level];
2406         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2407                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2408                 int sret;
2409
2410                 if (*write_lock_level < level + 1) {
2411                         *write_lock_level = level + 1;
2412                         btrfs_release_path(p);
2413                         goto again;
2414                 }
2415
2416                 sret = reada_for_balance(root, p, level);
2417                 if (sret)
2418                         goto again;
2419
2420                 btrfs_set_path_blocking(p);
2421                 sret = balance_level(trans, root, p, level);
2422                 btrfs_clear_path_blocking(p, NULL, 0);
2423
2424                 if (sret) {
2425                         ret = sret;
2426                         goto done;
2427                 }
2428                 b = p->nodes[level];
2429                 if (!b) {
2430                         btrfs_release_path(p);
2431                         goto again;
2432                 }
2433                 BUG_ON(btrfs_header_nritems(b) == 1);
2434         }
2435         return 0;
2436
2437 again:
2438         ret = -EAGAIN;
2439 done:
2440         return ret;
2441 }
2442
2443 /*
2444  * look for key in the tree.  path is filled in with nodes along the way
2445  * if key is found, we return zero and you can find the item in the leaf
2446  * level of the path (level 0)
2447  *
2448  * If the key isn't found, the path points to the slot where it should
2449  * be inserted, and 1 is returned.  If there are other errors during the
2450  * search a negative error number is returned.
2451  *
2452  * if ins_len > 0, nodes and leaves will be split as we walk down the
2453  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2454  * possible)
2455  */
2456 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2457                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2458                       ins_len, int cow)
2459 {
2460         struct extent_buffer *b;
2461         int slot;
2462         int ret;
2463         int err;
2464         int level;
2465         int lowest_unlock = 1;
2466         int root_lock;
2467         /* everything at write_lock_level or lower must be write locked */
2468         int write_lock_level = 0;
2469         u8 lowest_level = 0;
2470         int min_write_lock_level;
2471
2472         lowest_level = p->lowest_level;
2473         WARN_ON(lowest_level && ins_len > 0);
2474         WARN_ON(p->nodes[0] != NULL);
2475
2476         if (ins_len < 0) {
2477                 lowest_unlock = 2;
2478
2479                 /* when we are removing items, we might have to go up to level
2480                  * two as we update tree pointers  Make sure we keep write
2481                  * for those levels as well
2482                  */
2483                 write_lock_level = 2;
2484         } else if (ins_len > 0) {
2485                 /*
2486                  * for inserting items, make sure we have a write lock on
2487                  * level 1 so we can update keys
2488                  */
2489                 write_lock_level = 1;
2490         }
2491
2492         if (!cow)
2493                 write_lock_level = -1;
2494
2495         if (cow && (p->keep_locks || p->lowest_level))
2496                 write_lock_level = BTRFS_MAX_LEVEL;
2497
2498         min_write_lock_level = write_lock_level;
2499
2500 again:
2501         /*
2502          * we try very hard to do read locks on the root
2503          */
2504         root_lock = BTRFS_READ_LOCK;
2505         level = 0;
2506         if (p->search_commit_root) {
2507                 /*
2508                  * the commit roots are read only
2509                  * so we always do read locks
2510                  */
2511                 b = root->commit_root;
2512                 extent_buffer_get(b);
2513                 level = btrfs_header_level(b);
2514                 if (!p->skip_locking)
2515                         btrfs_tree_read_lock(b);
2516         } else {
2517                 if (p->skip_locking) {
2518                         b = btrfs_root_node(root);
2519                         level = btrfs_header_level(b);
2520                 } else {
2521                         /* we don't know the level of the root node
2522                          * until we actually have it read locked
2523                          */
2524                         b = btrfs_read_lock_root_node(root);
2525                         level = btrfs_header_level(b);
2526                         if (level <= write_lock_level) {
2527                                 /* whoops, must trade for write lock */
2528                                 btrfs_tree_read_unlock(b);
2529                                 free_extent_buffer(b);
2530                                 b = btrfs_lock_root_node(root);
2531                                 root_lock = BTRFS_WRITE_LOCK;
2532
2533                                 /* the level might have changed, check again */
2534                                 level = btrfs_header_level(b);
2535                         }
2536                 }
2537         }
2538         p->nodes[level] = b;
2539         if (!p->skip_locking)
2540                 p->locks[level] = root_lock;
2541
2542         while (b) {
2543                 level = btrfs_header_level(b);
2544
2545                 /*
2546                  * setup the path here so we can release it under lock
2547                  * contention with the cow code
2548                  */
2549                 if (cow) {
2550                         /*
2551                          * if we don't really need to cow this block
2552                          * then we don't want to set the path blocking,
2553                          * so we test it here
2554                          */
2555                         if (!should_cow_block(trans, root, b))
2556                                 goto cow_done;
2557
2558                         btrfs_set_path_blocking(p);
2559
2560                         /*
2561                          * must have write locks on this node and the
2562                          * parent
2563                          */
2564                         if (level + 1 > write_lock_level) {
2565                                 write_lock_level = level + 1;
2566                                 btrfs_release_path(p);
2567                                 goto again;
2568                         }
2569
2570                         err = btrfs_cow_block(trans, root, b,
2571                                               p->nodes[level + 1],
2572                                               p->slots[level + 1], &b);
2573                         if (err) {
2574                                 ret = err;
2575                                 goto done;
2576                         }
2577                 }
2578 cow_done:
2579                 BUG_ON(!cow && ins_len);
2580
2581                 p->nodes[level] = b;
2582                 btrfs_clear_path_blocking(p, NULL, 0);
2583
2584                 /*
2585                  * we have a lock on b and as long as we aren't changing
2586                  * the tree, there is no way to for the items in b to change.
2587                  * It is safe to drop the lock on our parent before we
2588                  * go through the expensive btree search on b.
2589                  *
2590                  * If cow is true, then we might be changing slot zero,
2591                  * which may require changing the parent.  So, we can't
2592                  * drop the lock until after we know which slot we're
2593                  * operating on.
2594                  */
2595                 if (!cow)
2596                         btrfs_unlock_up_safe(p, level + 1);
2597
2598                 ret = bin_search(b, key, level, &slot);
2599
2600                 if (level != 0) {
2601                         int dec = 0;
2602                         if (ret && slot > 0) {
2603                                 dec = 1;
2604                                 slot -= 1;
2605                         }
2606                         p->slots[level] = slot;
2607                         err = setup_nodes_for_search(trans, root, p, b, level,
2608                                              ins_len, &write_lock_level);
2609                         if (err == -EAGAIN)
2610                                 goto again;
2611                         if (err) {
2612                                 ret = err;
2613                                 goto done;
2614                         }
2615                         b = p->nodes[level];
2616                         slot = p->slots[level];
2617
2618                         /*
2619                          * slot 0 is special, if we change the key
2620                          * we have to update the parent pointer
2621                          * which means we must have a write lock
2622                          * on the parent
2623                          */
2624                         if (slot == 0 && cow &&
2625                             write_lock_level < level + 1) {
2626                                 write_lock_level = level + 1;
2627                                 btrfs_release_path(p);
2628                                 goto again;
2629                         }
2630
2631                         unlock_up(p, level, lowest_unlock,
2632                                   min_write_lock_level, &write_lock_level);
2633
2634                         if (level == lowest_level) {
2635                                 if (dec)
2636                                         p->slots[level]++;
2637                                 goto done;
2638                         }
2639
2640                         err = read_block_for_search(trans, root, p,
2641                                                     &b, level, slot, key, 0);
2642                         if (err == -EAGAIN)
2643                                 goto again;
2644                         if (err) {
2645                                 ret = err;
2646                                 goto done;
2647                         }
2648
2649                         if (!p->skip_locking) {
2650                                 level = btrfs_header_level(b);
2651                                 if (level <= write_lock_level) {
2652                                         err = btrfs_try_tree_write_lock(b);
2653                                         if (!err) {
2654                                                 btrfs_set_path_blocking(p);
2655                                                 btrfs_tree_lock(b);
2656                                                 btrfs_clear_path_blocking(p, b,
2657                                                                   BTRFS_WRITE_LOCK);
2658                                         }
2659                                         p->locks[level] = BTRFS_WRITE_LOCK;
2660                                 } else {
2661                                         err = btrfs_try_tree_read_lock(b);
2662                                         if (!err) {
2663                                                 btrfs_set_path_blocking(p);
2664                                                 btrfs_tree_read_lock(b);
2665                                                 btrfs_clear_path_blocking(p, b,
2666                                                                   BTRFS_READ_LOCK);
2667                                         }
2668                                         p->locks[level] = BTRFS_READ_LOCK;
2669                                 }
2670                                 p->nodes[level] = b;
2671                         }
2672                 } else {
2673                         p->slots[level] = slot;
2674                         if (ins_len > 0 &&
2675                             btrfs_leaf_free_space(root, b) < ins_len) {
2676                                 if (write_lock_level < 1) {
2677                                         write_lock_level = 1;
2678                                         btrfs_release_path(p);
2679                                         goto again;
2680                                 }
2681
2682                                 btrfs_set_path_blocking(p);
2683                                 err = split_leaf(trans, root, key,
2684                                                  p, ins_len, ret == 0);
2685                                 btrfs_clear_path_blocking(p, NULL, 0);
2686
2687                                 BUG_ON(err > 0);
2688                                 if (err) {
2689                                         ret = err;
2690                                         goto done;
2691                                 }
2692                         }
2693                         if (!p->search_for_split)
2694                                 unlock_up(p, level, lowest_unlock,
2695                                           min_write_lock_level, &write_lock_level);
2696                         goto done;
2697                 }
2698         }
2699         ret = 1;
2700 done:
2701         /*
2702          * we don't really know what they plan on doing with the path
2703          * from here on, so for now just mark it as blocking
2704          */
2705         if (!p->leave_spinning)
2706                 btrfs_set_path_blocking(p);
2707         if (ret < 0)
2708                 btrfs_release_path(p);
2709         return ret;
2710 }
2711
2712 /*
2713  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2714  * current state of the tree together with the operations recorded in the tree
2715  * modification log to search for the key in a previous version of this tree, as
2716  * denoted by the time_seq parameter.
2717  *
2718  * Naturally, there is no support for insert, delete or cow operations.
2719  *
2720  * The resulting path and return value will be set up as if we called
2721  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2722  */
2723 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2724                           struct btrfs_path *p, u64 time_seq)
2725 {
2726         struct extent_buffer *b;
2727         int slot;
2728         int ret;
2729         int err;
2730         int level;
2731         int lowest_unlock = 1;
2732         u8 lowest_level = 0;
2733
2734         lowest_level = p->lowest_level;
2735         WARN_ON(p->nodes[0] != NULL);
2736
2737         if (p->search_commit_root) {
2738                 BUG_ON(time_seq);
2739                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2740         }
2741
2742 again:
2743         b = get_old_root(root, time_seq);
2744         level = btrfs_header_level(b);
2745         p->locks[level] = BTRFS_READ_LOCK;
2746
2747         while (b) {
2748                 level = btrfs_header_level(b);
2749                 p->nodes[level] = b;
2750                 btrfs_clear_path_blocking(p, NULL, 0);
2751
2752                 /*
2753                  * we have a lock on b and as long as we aren't changing
2754                  * the tree, there is no way to for the items in b to change.
2755                  * It is safe to drop the lock on our parent before we
2756                  * go through the expensive btree search on b.
2757                  */
2758                 btrfs_unlock_up_safe(p, level + 1);
2759
2760                 ret = bin_search(b, key, level, &slot);
2761
2762                 if (level != 0) {
2763                         int dec = 0;
2764                         if (ret && slot > 0) {
2765                                 dec = 1;
2766                                 slot -= 1;
2767                         }
2768                         p->slots[level] = slot;
2769                         unlock_up(p, level, lowest_unlock, 0, NULL);
2770
2771                         if (level == lowest_level) {
2772                                 if (dec)
2773                                         p->slots[level]++;
2774                                 goto done;
2775                         }
2776
2777                         err = read_block_for_search(NULL, root, p, &b, level,
2778                                                     slot, key, time_seq);
2779                         if (err == -EAGAIN)
2780                                 goto again;
2781                         if (err) {
2782                                 ret = err;
2783                                 goto done;
2784                         }
2785
2786                         level = btrfs_header_level(b);
2787                         err = btrfs_try_tree_read_lock(b);
2788                         if (!err) {
2789                                 btrfs_set_path_blocking(p);
2790                                 btrfs_tree_read_lock(b);
2791                                 btrfs_clear_path_blocking(p, b,
2792                                                           BTRFS_READ_LOCK);
2793                         }
2794                         p->locks[level] = BTRFS_READ_LOCK;
2795                         p->nodes[level] = b;
2796                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2797                         if (b != p->nodes[level]) {
2798                                 btrfs_tree_unlock_rw(p->nodes[level],
2799                                                      p->locks[level]);
2800                                 p->locks[level] = 0;
2801                                 p->nodes[level] = b;
2802                         }
2803                 } else {
2804                         p->slots[level] = slot;
2805                         unlock_up(p, level, lowest_unlock, 0, NULL);
2806                         goto done;
2807                 }
2808         }
2809         ret = 1;
2810 done:
2811         if (!p->leave_spinning)
2812                 btrfs_set_path_blocking(p);
2813         if (ret < 0)
2814                 btrfs_release_path(p);
2815
2816         return ret;
2817 }
2818
2819 /*
2820  * helper to use instead of search slot if no exact match is needed but
2821  * instead the next or previous item should be returned.
2822  * When find_higher is true, the next higher item is returned, the next lower
2823  * otherwise.
2824  * When return_any and find_higher are both true, and no higher item is found,
2825  * return the next lower instead.
2826  * When return_any is true and find_higher is false, and no lower item is found,
2827  * return the next higher instead.
2828  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2829  * < 0 on error
2830  */
2831 int btrfs_search_slot_for_read(struct btrfs_root *root,
2832                                struct btrfs_key *key, struct btrfs_path *p,
2833                                int find_higher, int return_any)
2834 {
2835         int ret;
2836         struct extent_buffer *leaf;
2837
2838 again:
2839         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2840         if (ret <= 0)
2841                 return ret;
2842         /*
2843          * a return value of 1 means the path is at the position where the
2844          * item should be inserted. Normally this is the next bigger item,
2845          * but in case the previous item is the last in a leaf, path points
2846          * to the first free slot in the previous leaf, i.e. at an invalid
2847          * item.
2848          */
2849         leaf = p->nodes[0];
2850
2851         if (find_higher) {
2852                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2853                         ret = btrfs_next_leaf(root, p);
2854                         if (ret <= 0)
2855                                 return ret;
2856                         if (!return_any)
2857                                 return 1;
2858                         /*
2859                          * no higher item found, return the next
2860                          * lower instead
2861                          */
2862                         return_any = 0;
2863                         find_higher = 0;
2864                         btrfs_release_path(p);
2865                         goto again;
2866                 }
2867         } else {
2868                 if (p->slots[0] == 0) {
2869                         ret = btrfs_prev_leaf(root, p);
2870                         if (ret < 0)
2871                                 return ret;
2872                         if (!ret) {
2873                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2874                                 return 0;
2875                         }
2876                         if (!return_any)
2877                                 return 1;
2878                         /*
2879                          * no lower item found, return the next
2880                          * higher instead
2881                          */
2882                         return_any = 0;
2883                         find_higher = 1;
2884                         btrfs_release_path(p);
2885                         goto again;
2886                 } else {
2887                         --p->slots[0];
2888                 }
2889         }
2890         return 0;
2891 }
2892
2893 /*
2894  * adjust the pointers going up the tree, starting at level
2895  * making sure the right key of each node is points to 'key'.
2896  * This is used after shifting pointers to the left, so it stops
2897  * fixing up pointers when a given leaf/node is not in slot 0 of the
2898  * higher levels
2899  *
2900  */
2901 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2902                            struct btrfs_root *root, struct btrfs_path *path,
2903                            struct btrfs_disk_key *key, int level)
2904 {
2905         int i;
2906         struct extent_buffer *t;
2907
2908         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2909                 int tslot = path->slots[i];
2910                 if (!path->nodes[i])
2911                         break;
2912                 t = path->nodes[i];
2913                 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2914                 btrfs_set_node_key(t, key, tslot);
2915                 btrfs_mark_buffer_dirty(path->nodes[i]);
2916                 if (tslot != 0)
2917                         break;
2918         }
2919 }
2920
2921 /*
2922  * update item key.
2923  *
2924  * This function isn't completely safe. It's the caller's responsibility
2925  * that the new key won't break the order
2926  */
2927 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2928                              struct btrfs_root *root, struct btrfs_path *path,
2929                              struct btrfs_key *new_key)
2930 {
2931         struct btrfs_disk_key disk_key;
2932         struct extent_buffer *eb;
2933         int slot;
2934
2935         eb = path->nodes[0];
2936         slot = path->slots[0];
2937         if (slot > 0) {
2938                 btrfs_item_key(eb, &disk_key, slot - 1);
2939                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2940         }
2941         if (slot < btrfs_header_nritems(eb) - 1) {
2942                 btrfs_item_key(eb, &disk_key, slot + 1);
2943                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2944         }
2945
2946         btrfs_cpu_key_to_disk(&disk_key, new_key);
2947         btrfs_set_item_key(eb, &disk_key, slot);
2948         btrfs_mark_buffer_dirty(eb);
2949         if (slot == 0)
2950                 fixup_low_keys(trans, root, path, &disk_key, 1);
2951 }
2952
2953 /*
2954  * try to push data from one node into the next node left in the
2955  * tree.
2956  *
2957  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2958  * error, and > 0 if there was no room in the left hand block.
2959  */
2960 static int push_node_left(struct btrfs_trans_handle *trans,
2961                           struct btrfs_root *root, struct extent_buffer *dst,
2962                           struct extent_buffer *src, int empty)
2963 {
2964         int push_items = 0;
2965         int src_nritems;
2966         int dst_nritems;
2967         int ret = 0;
2968
2969         src_nritems = btrfs_header_nritems(src);
2970         dst_nritems = btrfs_header_nritems(dst);
2971         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2972         WARN_ON(btrfs_header_generation(src) != trans->transid);
2973         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2974
2975         if (!empty && src_nritems <= 8)
2976                 return 1;
2977
2978         if (push_items <= 0)
2979                 return 1;
2980
2981         if (empty) {
2982                 push_items = min(src_nritems, push_items);
2983                 if (push_items < src_nritems) {
2984                         /* leave at least 8 pointers in the node if
2985                          * we aren't going to empty it
2986                          */
2987                         if (src_nritems - push_items < 8) {
2988                                 if (push_items <= 8)
2989                                         return 1;
2990                                 push_items -= 8;
2991                         }
2992                 }
2993         } else
2994                 push_items = min(src_nritems - 8, push_items);
2995
2996         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2997                              push_items);
2998         copy_extent_buffer(dst, src,
2999                            btrfs_node_key_ptr_offset(dst_nritems),
3000                            btrfs_node_key_ptr_offset(0),
3001                            push_items * sizeof(struct btrfs_key_ptr));
3002
3003         if (push_items < src_nritems) {
3004                 /*
3005                  * don't call tree_mod_log_eb_move here, key removal was already
3006                  * fully logged by tree_mod_log_eb_copy above.
3007                  */
3008                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3009                                       btrfs_node_key_ptr_offset(push_items),
3010                                       (src_nritems - push_items) *
3011                                       sizeof(struct btrfs_key_ptr));
3012         }
3013         btrfs_set_header_nritems(src, src_nritems - push_items);
3014         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3015         btrfs_mark_buffer_dirty(src);
3016         btrfs_mark_buffer_dirty(dst);
3017
3018         return ret;
3019 }
3020
3021 /*
3022  * try to push data from one node into the next node right in the
3023  * tree.
3024  *
3025  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3026  * error, and > 0 if there was no room in the right hand block.
3027  *
3028  * this will  only push up to 1/2 the contents of the left node over
3029  */
3030 static int balance_node_right(struct btrfs_trans_handle *trans,
3031                               struct btrfs_root *root,
3032                               struct extent_buffer *dst,
3033                               struct extent_buffer *src)
3034 {
3035         int push_items = 0;
3036         int max_push;
3037         int src_nritems;
3038         int dst_nritems;
3039         int ret = 0;
3040
3041         WARN_ON(btrfs_header_generation(src) != trans->transid);
3042         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3043
3044         src_nritems = btrfs_header_nritems(src);
3045         dst_nritems = btrfs_header_nritems(dst);
3046         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3047         if (push_items <= 0)
3048                 return 1;
3049
3050         if (src_nritems < 4)
3051                 return 1;
3052
3053         max_push = src_nritems / 2 + 1;
3054         /* don't try to empty the node */
3055         if (max_push >= src_nritems)
3056                 return 1;
3057
3058         if (max_push < push_items)
3059                 push_items = max_push;
3060
3061         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3062         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3063                                       btrfs_node_key_ptr_offset(0),
3064                                       (dst_nritems) *
3065                                       sizeof(struct btrfs_key_ptr));
3066
3067         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3068                              src_nritems - push_items, push_items);
3069         copy_extent_buffer(dst, src,
3070                            btrfs_node_key_ptr_offset(0),
3071                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3072                            push_items * sizeof(struct btrfs_key_ptr));
3073
3074         btrfs_set_header_nritems(src, src_nritems - push_items);
3075         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3076
3077         btrfs_mark_buffer_dirty(src);
3078         btrfs_mark_buffer_dirty(dst);
3079
3080         return ret;
3081 }
3082
3083 /*
3084  * helper function to insert a new root level in the tree.
3085  * A new node is allocated, and a single item is inserted to
3086  * point to the existing root
3087  *
3088  * returns zero on success or < 0 on failure.
3089  */
3090 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3091                            struct btrfs_root *root,
3092                            struct btrfs_path *path, int level)
3093 {
3094         u64 lower_gen;
3095         struct extent_buffer *lower;
3096         struct extent_buffer *c;
3097         struct extent_buffer *old;
3098         struct btrfs_disk_key lower_key;
3099
3100         BUG_ON(path->nodes[level]);
3101         BUG_ON(path->nodes[level-1] != root->node);
3102
3103         lower = path->nodes[level-1];
3104         if (level == 1)
3105                 btrfs_item_key(lower, &lower_key, 0);
3106         else
3107                 btrfs_node_key(lower, &lower_key, 0);
3108
3109         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3110                                    root->root_key.objectid, &lower_key,
3111                                    level, root->node->start, 0);
3112         if (IS_ERR(c))
3113                 return PTR_ERR(c);
3114
3115         root_add_used(root, root->nodesize);
3116
3117         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3118         btrfs_set_header_nritems(c, 1);
3119         btrfs_set_header_level(c, level);
3120         btrfs_set_header_bytenr(c, c->start);
3121         btrfs_set_header_generation(c, trans->transid);
3122         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3123         btrfs_set_header_owner(c, root->root_key.objectid);
3124
3125         write_extent_buffer(c, root->fs_info->fsid,
3126                             (unsigned long)btrfs_header_fsid(c),
3127                             BTRFS_FSID_SIZE);
3128
3129         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3130                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3131                             BTRFS_UUID_SIZE);
3132
3133         btrfs_set_node_key(c, &lower_key, 0);
3134         btrfs_set_node_blockptr(c, 0, lower->start);
3135         lower_gen = btrfs_header_generation(lower);
3136         WARN_ON(lower_gen != trans->transid);
3137
3138         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3139
3140         btrfs_mark_buffer_dirty(c);
3141
3142         old = root->node;
3143         tree_mod_log_set_root_pointer(root, c);
3144         rcu_assign_pointer(root->node, c);
3145
3146         /* the super has an extra ref to root->node */
3147         free_extent_buffer(old);
3148
3149         add_root_to_dirty_list(root);
3150         extent_buffer_get(c);
3151         path->nodes[level] = c;
3152         path->locks[level] = BTRFS_WRITE_LOCK;
3153         path->slots[level] = 0;
3154         return 0;
3155 }
3156
3157 /*
3158  * worker function to insert a single pointer in a node.
3159  * the node should have enough room for the pointer already
3160  *
3161  * slot and level indicate where you want the key to go, and
3162  * blocknr is the block the key points to.
3163  */
3164 static void insert_ptr(struct btrfs_trans_handle *trans,
3165                        struct btrfs_root *root, struct btrfs_path *path,
3166                        struct btrfs_disk_key *key, u64 bytenr,
3167                        int slot, int level)
3168 {
3169         struct extent_buffer *lower;
3170         int nritems;
3171         int ret;
3172
3173         BUG_ON(!path->nodes[level]);
3174         btrfs_assert_tree_locked(path->nodes[level]);
3175         lower = path->nodes[level];
3176         nritems = btrfs_header_nritems(lower);
3177         BUG_ON(slot > nritems);
3178         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3179         if (slot != nritems) {
3180                 if (level)
3181                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3182                                              slot, nritems - slot);
3183                 memmove_extent_buffer(lower,
3184                               btrfs_node_key_ptr_offset(slot + 1),
3185                               btrfs_node_key_ptr_offset(slot),
3186                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3187         }
3188         if (level) {
3189                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3190                                               MOD_LOG_KEY_ADD);
3191                 BUG_ON(ret < 0);
3192         }
3193         btrfs_set_node_key(lower, key, slot);
3194         btrfs_set_node_blockptr(lower, slot, bytenr);
3195         WARN_ON(trans->transid == 0);
3196         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3197         btrfs_set_header_nritems(lower, nritems + 1);
3198         btrfs_mark_buffer_dirty(lower);
3199 }
3200
3201 /*
3202  * split the node at the specified level in path in two.
3203  * The path is corrected to point to the appropriate node after the split
3204  *
3205  * Before splitting this tries to make some room in the node by pushing
3206  * left and right, if either one works, it returns right away.
3207  *
3208  * returns 0 on success and < 0 on failure
3209  */
3210 static noinline int split_node(struct btrfs_trans_handle *trans,
3211                                struct btrfs_root *root,
3212                                struct btrfs_path *path, int level)
3213 {
3214         struct extent_buffer *c;
3215         struct extent_buffer *split;
3216         struct btrfs_disk_key disk_key;
3217         int mid;
3218         int ret;
3219         u32 c_nritems;
3220
3221         c = path->nodes[level];
3222         WARN_ON(btrfs_header_generation(c) != trans->transid);
3223         if (c == root->node) {
3224                 /* trying to split the root, lets make a new one */
3225                 ret = insert_new_root(trans, root, path, level + 1);
3226                 if (ret)
3227                         return ret;
3228         } else {
3229                 ret = push_nodes_for_insert(trans, root, path, level);
3230                 c = path->nodes[level];
3231                 if (!ret && btrfs_header_nritems(c) <
3232                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3233                         return 0;
3234                 if (ret < 0)
3235                         return ret;
3236         }
3237
3238         c_nritems = btrfs_header_nritems(c);
3239         mid = (c_nritems + 1) / 2;
3240         btrfs_node_key(c, &disk_key, mid);
3241
3242         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3243                                         root->root_key.objectid,
3244                                         &disk_key, level, c->start, 0);
3245         if (IS_ERR(split))
3246                 return PTR_ERR(split);
3247
3248         root_add_used(root, root->nodesize);
3249
3250         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3251         btrfs_set_header_level(split, btrfs_header_level(c));
3252         btrfs_set_header_bytenr(split, split->start);
3253         btrfs_set_header_generation(split, trans->transid);
3254         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3255         btrfs_set_header_owner(split, root->root_key.objectid);
3256         write_extent_buffer(split, root->fs_info->fsid,
3257                             (unsigned long)btrfs_header_fsid(split),
3258                             BTRFS_FSID_SIZE);
3259         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3260                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3261                             BTRFS_UUID_SIZE);
3262
3263         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3264         copy_extent_buffer(split, c,
3265                            btrfs_node_key_ptr_offset(0),
3266                            btrfs_node_key_ptr_offset(mid),
3267                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3268         btrfs_set_header_nritems(split, c_nritems - mid);
3269         btrfs_set_header_nritems(c, mid);
3270         ret = 0;
3271
3272         btrfs_mark_buffer_dirty(c);
3273         btrfs_mark_buffer_dirty(split);
3274
3275         insert_ptr(trans, root, path, &disk_key, split->start,
3276                    path->slots[level + 1] + 1, level + 1);
3277
3278         if (path->slots[level] >= mid) {
3279                 path->slots[level] -= mid;
3280                 btrfs_tree_unlock(c);
3281                 free_extent_buffer(c);
3282                 path->nodes[level] = split;
3283                 path->slots[level + 1] += 1;
3284         } else {
3285                 btrfs_tree_unlock(split);
3286                 free_extent_buffer(split);
3287         }
3288         return ret;
3289 }
3290
3291 /*
3292  * how many bytes are required to store the items in a leaf.  start
3293  * and nr indicate which items in the leaf to check.  This totals up the
3294  * space used both by the item structs and the item data
3295  */
3296 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3297 {
3298         int data_len;
3299         int nritems = btrfs_header_nritems(l);
3300         int end = min(nritems, start + nr) - 1;
3301
3302         if (!nr)
3303                 return 0;
3304         data_len = btrfs_item_end_nr(l, start);
3305         data_len = data_len - btrfs_item_offset_nr(l, end);
3306         data_len += sizeof(struct btrfs_item) * nr;
3307         WARN_ON(data_len < 0);
3308         return data_len;
3309 }
3310
3311 /*
3312  * The space between the end of the leaf items and
3313  * the start of the leaf data.  IOW, how much room
3314  * the leaf has left for both items and data
3315  */
3316 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3317                                    struct extent_buffer *leaf)
3318 {
3319         int nritems = btrfs_header_nritems(leaf);
3320         int ret;
3321         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3322         if (ret < 0) {
3323                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3324                        "used %d nritems %d\n",
3325                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3326                        leaf_space_used(leaf, 0, nritems), nritems);
3327         }
3328         return ret;
3329 }
3330
3331 /*
3332  * min slot controls the lowest index we're willing to push to the
3333  * right.  We'll push up to and including min_slot, but no lower
3334  */
3335 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3336                                       struct btrfs_root *root,
3337                                       struct btrfs_path *path,
3338                                       int data_size, int empty,
3339                                       struct extent_buffer *right,
3340                                       int free_space, u32 left_nritems,
3341                                       u32 min_slot)
3342 {
3343         struct extent_buffer *left = path->nodes[0];
3344         struct extent_buffer *upper = path->nodes[1];
3345         struct btrfs_map_token token;
3346         struct btrfs_disk_key disk_key;
3347         int slot;
3348         u32 i;
3349         int push_space = 0;
3350         int push_items = 0;
3351         struct btrfs_item *item;
3352         u32 nr;
3353         u32 right_nritems;
3354         u32 data_end;
3355         u32 this_item_size;
3356
3357         btrfs_init_map_token(&token);
3358
3359         if (empty)
3360                 nr = 0;
3361         else
3362                 nr = max_t(u32, 1, min_slot);
3363
3364         if (path->slots[0] >= left_nritems)
3365                 push_space += data_size;
3366
3367         slot = path->slots[1];
3368         i = left_nritems - 1;
3369         while (i >= nr) {
3370                 item = btrfs_item_nr(left, i);
3371
3372                 if (!empty && push_items > 0) {
3373                         if (path->slots[0] > i)
3374                                 break;
3375                         if (path->slots[0] == i) {
3376                                 int space = btrfs_leaf_free_space(root, left);
3377                                 if (space + push_space * 2 > free_space)
3378                                         break;
3379                         }
3380                 }
3381
3382                 if (path->slots[0] == i)
3383                         push_space += data_size;
3384
3385                 this_item_size = btrfs_item_size(left, item);
3386                 if (this_item_size + sizeof(*item) + push_space > free_space)
3387                         break;
3388
3389                 push_items++;
3390                 push_space += this_item_size + sizeof(*item);
3391                 if (i == 0)
3392                         break;
3393                 i--;
3394         }
3395
3396         if (push_items == 0)
3397                 goto out_unlock;
3398
3399         if (!empty && push_items == left_nritems)
3400                 WARN_ON(1);
3401
3402         /* push left to right */
3403         right_nritems = btrfs_header_nritems(right);
3404
3405         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3406         push_space -= leaf_data_end(root, left);
3407
3408         /* make room in the right data area */
3409         data_end = leaf_data_end(root, right);
3410         memmove_extent_buffer(right,
3411                               btrfs_leaf_data(right) + data_end - push_space,
3412                               btrfs_leaf_data(right) + data_end,
3413                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3414
3415         /* copy from the left data area */
3416         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3417                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3418                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3419                      push_space);
3420
3421         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3422                               btrfs_item_nr_offset(0),
3423                               right_nritems * sizeof(struct btrfs_item));
3424
3425         /* copy the items from left to right */
3426         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3427                    btrfs_item_nr_offset(left_nritems - push_items),
3428                    push_items * sizeof(struct btrfs_item));
3429
3430         /* update the item pointers */
3431         right_nritems += push_items;
3432         btrfs_set_header_nritems(right, right_nritems);
3433         push_space = BTRFS_LEAF_DATA_SIZE(root);
3434         for (i = 0; i < right_nritems; i++) {
3435                 item = btrfs_item_nr(right, i);
3436                 push_space -= btrfs_token_item_size(right, item, &token);
3437                 btrfs_set_token_item_offset(right, item, push_space, &token);
3438         }
3439
3440         left_nritems -= push_items;
3441         btrfs_set_header_nritems(left, left_nritems);
3442
3443         if (left_nritems)
3444                 btrfs_mark_buffer_dirty(left);
3445         else
3446                 clean_tree_block(trans, root, left);
3447
3448         btrfs_mark_buffer_dirty(right);
3449
3450         btrfs_item_key(right, &disk_key, 0);
3451         btrfs_set_node_key(upper, &disk_key, slot + 1);
3452         btrfs_mark_buffer_dirty(upper);
3453
3454         /* then fixup the leaf pointer in the path */
3455         if (path->slots[0] >= left_nritems) {
3456                 path->slots[0] -= left_nritems;
3457                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3458                         clean_tree_block(trans, root, path->nodes[0]);
3459                 btrfs_tree_unlock(path->nodes[0]);
3460                 free_extent_buffer(path->nodes[0]);
3461                 path->nodes[0] = right;
3462                 path->slots[1] += 1;
3463         } else {
3464                 btrfs_tree_unlock(right);
3465                 free_extent_buffer(right);
3466         }
3467         return 0;
3468
3469 out_unlock:
3470         btrfs_tree_unlock(right);
3471         free_extent_buffer(right);
3472         return 1;
3473 }
3474
3475 /*
3476  * push some data in the path leaf to the right, trying to free up at
3477  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3478  *
3479  * returns 1 if the push failed because the other node didn't have enough
3480  * room, 0 if everything worked out and < 0 if there were major errors.
3481  *
3482  * this will push starting from min_slot to the end of the leaf.  It won't
3483  * push any slot lower than min_slot
3484  */
3485 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3486                            *root, struct btrfs_path *path,
3487                            int min_data_size, int data_size,
3488                            int empty, u32 min_slot)
3489 {
3490         struct extent_buffer *left = path->nodes[0];
3491         struct extent_buffer *right;
3492         struct extent_buffer *upper;
3493         int slot;
3494         int free_space;
3495         u32 left_nritems;
3496         int ret;
3497
3498         if (!path->nodes[1])
3499                 return 1;
3500
3501         slot = path->slots[1];
3502         upper = path->nodes[1];
3503         if (slot >= btrfs_header_nritems(upper) - 1)
3504                 return 1;
3505
3506         btrfs_assert_tree_locked(path->nodes[1]);
3507
3508         right = read_node_slot(root, upper, slot + 1);
3509         if (right == NULL)
3510                 return 1;
3511
3512         btrfs_tree_lock(right);
3513         btrfs_set_lock_blocking(right);
3514
3515         free_space = btrfs_leaf_free_space(root, right);
3516         if (free_space < data_size)
3517                 goto out_unlock;
3518
3519         /* cow and double check */
3520         ret = btrfs_cow_block(trans, root, right, upper,
3521                               slot + 1, &right);
3522         if (ret)
3523                 goto out_unlock;
3524
3525         free_space = btrfs_leaf_free_space(root, right);
3526         if (free_space < data_size)
3527                 goto out_unlock;
3528
3529         left_nritems = btrfs_header_nritems(left);
3530         if (left_nritems == 0)
3531                 goto out_unlock;
3532
3533         return __push_leaf_right(trans, root, path, min_data_size, empty,
3534                                 right, free_space, left_nritems, min_slot);
3535 out_unlock:
3536         btrfs_tree_unlock(right);
3537         free_extent_buffer(right);
3538         return 1;
3539 }
3540
3541 /*
3542  * push some data in the path leaf to the left, trying to free up at
3543  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3544  *
3545  * max_slot can put a limit on how far into the leaf we'll push items.  The
3546  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3547  * items
3548  */
3549 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3550                                      struct btrfs_root *root,
3551                                      struct btrfs_path *path, int data_size,
3552                                      int empty, struct extent_buffer *left,
3553                                      int free_space, u32 right_nritems,
3554                                      u32 max_slot)
3555 {
3556         struct btrfs_disk_key disk_key;
3557         struct extent_buffer *right = path->nodes[0];
3558         int i;
3559         int push_space = 0;
3560         int push_items = 0;
3561         struct btrfs_item *item;
3562         u32 old_left_nritems;
3563         u32 nr;
3564         int ret = 0;
3565         u32 this_item_size;
3566         u32 old_left_item_size;
3567         struct btrfs_map_token token;
3568
3569         btrfs_init_map_token(&token);
3570
3571         if (empty)
3572                 nr = min(right_nritems, max_slot);
3573         else
3574                 nr = min(right_nritems - 1, max_slot);
3575
3576         for (i = 0; i < nr; i++) {
3577                 item = btrfs_item_nr(right, i);
3578
3579                 if (!empty && push_items > 0) {
3580                         if (path->slots[0] < i)
3581                                 break;
3582                         if (path->slots[0] == i) {
3583                                 int space = btrfs_leaf_free_space(root, right);
3584                                 if (space + push_space * 2 > free_space)
3585                                         break;
3586                         }
3587                 }
3588
3589                 if (path->slots[0] == i)
3590                         push_space += data_size;
3591
3592                 this_item_size = btrfs_item_size(right, item);
3593                 if (this_item_size + sizeof(*item) + push_space > free_space)
3594                         break;
3595
3596                 push_items++;
3597                 push_space += this_item_size + sizeof(*item);
3598         }
3599
3600         if (push_items == 0) {
3601                 ret = 1;
3602                 goto out;
3603         }
3604         if (!empty && push_items == btrfs_header_nritems(right))
3605                 WARN_ON(1);
3606
3607         /* push data from right to left */
3608         copy_extent_buffer(left, right,
3609                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3610                            btrfs_item_nr_offset(0),
3611                            push_items * sizeof(struct btrfs_item));
3612
3613         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3614                      btrfs_item_offset_nr(right, push_items - 1);
3615
3616         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3617                      leaf_data_end(root, left) - push_space,
3618                      btrfs_leaf_data(right) +
3619                      btrfs_item_offset_nr(right, push_items - 1),
3620                      push_space);
3621         old_left_nritems = btrfs_header_nritems(left);
3622         BUG_ON(old_left_nritems <= 0);
3623
3624         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3625         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3626                 u32 ioff;
3627
3628                 item = btrfs_item_nr(left, i);
3629
3630                 ioff = btrfs_token_item_offset(left, item, &token);
3631                 btrfs_set_token_item_offset(left, item,
3632                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3633                       &token);
3634         }
3635         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3636
3637         /* fixup right node */
3638         if (push_items > right_nritems) {
3639                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3640                        right_nritems);
3641                 WARN_ON(1);
3642         }
3643
3644         if (push_items < right_nritems) {
3645                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3646                                                   leaf_data_end(root, right);
3647                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3648                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3649                                       btrfs_leaf_data(right) +
3650                                       leaf_data_end(root, right), push_space);
3651
3652                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3653                               btrfs_item_nr_offset(push_items),
3654                              (btrfs_header_nritems(right) - push_items) *
3655                              sizeof(struct btrfs_item));
3656         }
3657         right_nritems -= push_items;
3658         btrfs_set_header_nritems(right, right_nritems);
3659         push_space = BTRFS_LEAF_DATA_SIZE(root);
3660         for (i = 0; i < right_nritems; i++) {
3661                 item = btrfs_item_nr(right, i);
3662
3663                 push_space = push_space - btrfs_token_item_size(right,
3664                                                                 item, &token);
3665                 btrfs_set_token_item_offset(right, item, push_space, &token);
3666         }
3667
3668         btrfs_mark_buffer_dirty(left);
3669         if (right_nritems)
3670                 btrfs_mark_buffer_dirty(right);
3671         else
3672                 clean_tree_block(trans, root, right);
3673
3674         btrfs_item_key(right, &disk_key, 0);
3675         fixup_low_keys(trans, root, path, &disk_key, 1);
3676
3677         /* then fixup the leaf pointer in the path */
3678         if (path->slots[0] < push_items) {
3679                 path->slots[0] += old_left_nritems;
3680                 btrfs_tree_unlock(path->nodes[0]);
3681                 free_extent_buffer(path->nodes[0]);
3682                 path->nodes[0] = left;
3683                 path->slots[1] -= 1;
3684         } else {
3685                 btrfs_tree_unlock(left);
3686                 free_extent_buffer(left);
3687                 path->slots[0] -= push_items;
3688         }
3689         BUG_ON(path->slots[0] < 0);
3690         return ret;
3691 out:
3692         btrfs_tree_unlock(left);
3693         free_extent_buffer(left);
3694         return ret;
3695 }
3696
3697 /*
3698  * push some data in the path leaf to the left, trying to free up at
3699  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3700  *
3701  * max_slot can put a limit on how far into the leaf we'll push items.  The
3702  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3703  * items
3704  */
3705 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3706                           *root, struct btrfs_path *path, int min_data_size,
3707                           int data_size, int empty, u32 max_slot)
3708 {
3709         struct extent_buffer *right = path->nodes[0];
3710         struct extent_buffer *left;
3711         int slot;
3712         int free_space;
3713         u32 right_nritems;
3714         int ret = 0;
3715
3716         slot = path->slots[1];
3717         if (slot == 0)
3718                 return 1;
3719         if (!path->nodes[1])
3720                 return 1;
3721
3722         right_nritems = btrfs_header_nritems(right);
3723         if (right_nritems == 0)
3724                 return 1;
3725
3726         btrfs_assert_tree_locked(path->nodes[1]);
3727
3728         left = read_node_slot(root, path->nodes[1], slot - 1);
3729         if (left == NULL)
3730                 return 1;
3731
3732         btrfs_tree_lock(left);
3733         btrfs_set_lock_blocking(left);
3734
3735         free_space = btrfs_leaf_free_space(root, left);
3736         if (free_space < data_size) {
3737                 ret = 1;
3738                 goto out;
3739         }
3740
3741         /* cow and double check */
3742         ret = btrfs_cow_block(trans, root, left,
3743                               path->nodes[1], slot - 1, &left);
3744         if (ret) {
3745                 /* we hit -ENOSPC, but it isn't fatal here */
3746                 if (ret == -ENOSPC)
3747                         ret = 1;
3748                 goto out;
3749         }
3750
3751         free_space = btrfs_leaf_free_space(root, left);
3752         if (free_space < data_size) {
3753                 ret = 1;
3754                 goto out;
3755         }
3756
3757         return __push_leaf_left(trans, root, path, min_data_size,
3758                                empty, left, free_space, right_nritems,
3759                                max_slot);
3760 out:
3761         btrfs_tree_unlock(left);
3762         free_extent_buffer(left);
3763         return ret;
3764 }
3765
3766 /*
3767  * split the path's leaf in two, making sure there is at least data_size
3768  * available for the resulting leaf level of the path.
3769  */
3770 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3771                                     struct btrfs_root *root,
3772                                     struct btrfs_path *path,
3773                                     struct extent_buffer *l,
3774                                     struct extent_buffer *right,
3775                                     int slot, int mid, int nritems)
3776 {
3777         int data_copy_size;
3778         int rt_data_off;
3779         int i;
3780         struct btrfs_disk_key disk_key;
3781         struct btrfs_map_token token;
3782
3783         btrfs_init_map_token(&token);
3784
3785         nritems = nritems - mid;
3786         btrfs_set_header_nritems(right, nritems);
3787         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3788
3789         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3790                            btrfs_item_nr_offset(mid),
3791                            nritems * sizeof(struct btrfs_item));
3792
3793         copy_extent_buffer(right, l,
3794                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3795                      data_copy_size, btrfs_leaf_data(l) +
3796                      leaf_data_end(root, l), data_copy_size);
3797
3798         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3799                       btrfs_item_end_nr(l, mid);
3800
3801         for (i = 0; i < nritems; i++) {
3802                 struct btrfs_item *item = btrfs_item_nr(right, i);
3803                 u32 ioff;
3804
3805                 ioff = btrfs_token_item_offset(right, item, &token);
3806                 btrfs_set_token_item_offset(right, item,
3807                                             ioff + rt_data_off, &token);
3808         }
3809
3810         btrfs_set_header_nritems(l, mid);
3811         btrfs_item_key(right, &disk_key, 0);
3812         insert_ptr(trans, root, path, &disk_key, right->start,
3813                    path->slots[1] + 1, 1);
3814
3815         btrfs_mark_buffer_dirty(right);
3816         btrfs_mark_buffer_dirty(l);
3817         BUG_ON(path->slots[0] != slot);
3818
3819         if (mid <= slot) {
3820                 btrfs_tree_unlock(path->nodes[0]);
3821                 free_extent_buffer(path->nodes[0]);
3822                 path->nodes[0] = right;
3823                 path->slots[0] -= mid;
3824                 path->slots[1] += 1;
3825         } else {
3826                 btrfs_tree_unlock(right);
3827                 free_extent_buffer(right);
3828         }
3829
3830         BUG_ON(path->slots[0] < 0);
3831 }
3832
3833 /*
3834  * double splits happen when we need to insert a big item in the middle
3835  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3836  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3837  *          A                 B                 C
3838  *
3839  * We avoid this by trying to push the items on either side of our target
3840  * into the adjacent leaves.  If all goes well we can avoid the double split
3841  * completely.
3842  */
3843 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3844                                           struct btrfs_root *root,
3845                                           struct btrfs_path *path,
3846                                           int data_size)
3847 {
3848         int ret;
3849         int progress = 0;
3850         int slot;
3851         u32 nritems;
3852
3853         slot = path->slots[0];
3854
3855         /*
3856          * try to push all the items after our slot into the
3857          * right leaf
3858          */
3859         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3860         if (ret < 0)
3861                 return ret;
3862
3863         if (ret == 0)
3864                 progress++;
3865
3866         nritems = btrfs_header_nritems(path->nodes[0]);
3867         /*
3868          * our goal is to get our slot at the start or end of a leaf.  If
3869          * we've done so we're done
3870          */
3871         if (path->slots[0] == 0 || path->slots[0] == nritems)
3872                 return 0;
3873
3874         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3875                 return 0;
3876
3877         /* try to push all the items before our slot into the next leaf */
3878         slot = path->slots[0];
3879         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3880         if (ret < 0)
3881                 return ret;
3882
3883         if (ret == 0)
3884                 progress++;
3885
3886         if (progress)
3887                 return 0;
3888         return 1;
3889 }
3890
3891 /*
3892  * split the path's leaf in two, making sure there is at least data_size
3893  * available for the resulting leaf level of the path.
3894  *
3895  * returns 0 if all went well and < 0 on failure.
3896  */
3897 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3898                                struct btrfs_root *root,
3899                                struct btrfs_key *ins_key,
3900                                struct btrfs_path *path, int data_size,
3901                                int extend)
3902 {
3903         struct btrfs_disk_key disk_key;
3904         struct extent_buffer *l;
3905         u32 nritems;
3906         int mid;
3907         int slot;
3908         struct extent_buffer *right;
3909         int ret = 0;
3910         int wret;
3911         int split;
3912         int num_doubles = 0;
3913         int tried_avoid_double = 0;
3914
3915         l = path->nodes[0];
3916         slot = path->slots[0];
3917         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3918             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3919                 return -EOVERFLOW;
3920
3921         /* first try to make some room by pushing left and right */
3922         if (data_size) {
3923                 wret = push_leaf_right(trans, root, path, data_size,
3924                                        data_size, 0, 0);
3925                 if (wret < 0)
3926                         return wret;
3927                 if (wret) {
3928                         wret = push_leaf_left(trans, root, path, data_size,
3929                                               data_size, 0, (u32)-1);
3930                         if (wret < 0)
3931                                 return wret;
3932                 }
3933                 l = path->nodes[0];
3934
3935                 /* did the pushes work? */
3936                 if (btrfs_leaf_free_space(root, l) >= data_size)
3937                         return 0;
3938         }
3939
3940         if (!path->nodes[1]) {
3941                 ret = insert_new_root(trans, root, path, 1);
3942                 if (ret)
3943                         return ret;
3944         }
3945 again:
3946         split = 1;
3947         l = path->nodes[0];
3948         slot = path->slots[0];
3949         nritems = btrfs_header_nritems(l);
3950         mid = (nritems + 1) / 2;
3951
3952         if (mid <= slot) {
3953                 if (nritems == 1 ||
3954                     leaf_space_used(l, mid, nritems - mid) + data_size >
3955                         BTRFS_LEAF_DATA_SIZE(root)) {
3956                         if (slot >= nritems) {
3957                                 split = 0;
3958                         } else {
3959                                 mid = slot;
3960                                 if (mid != nritems &&
3961                                     leaf_space_used(l, mid, nritems - mid) +
3962                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3963                                         if (data_size && !tried_avoid_double)
3964                                                 goto push_for_double;
3965                                         split = 2;
3966                                 }
3967                         }
3968                 }
3969         } else {
3970                 if (leaf_space_used(l, 0, mid) + data_size >
3971                         BTRFS_LEAF_DATA_SIZE(root)) {
3972                         if (!extend && data_size && slot == 0) {
3973                                 split = 0;
3974                         } else if ((extend || !data_size) && slot == 0) {
3975                                 mid = 1;
3976                         } else {
3977                                 mid = slot;
3978                                 if (mid != nritems &&
3979                                     leaf_space_used(l, mid, nritems - mid) +
3980                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3981                                         if (data_size && !tried_avoid_double)
3982                                                 goto push_for_double;
3983                                         split = 2 ;
3984                                 }
3985                         }
3986                 }
3987         }
3988
3989         if (split == 0)
3990                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3991         else
3992                 btrfs_item_key(l, &disk_key, mid);
3993
3994         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3995                                         root->root_key.objectid,
3996                                         &disk_key, 0, l->start, 0);
3997         if (IS_ERR(right))
3998                 return PTR_ERR(right);
3999
4000         root_add_used(root, root->leafsize);
4001
4002         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4003         btrfs_set_header_bytenr(right, right->start);
4004         btrfs_set_header_generation(right, trans->transid);
4005         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4006         btrfs_set_header_owner(right, root->root_key.objectid);
4007         btrfs_set_header_level(right, 0);
4008         write_extent_buffer(right, root->fs_info->fsid,
4009                             (unsigned long)btrfs_header_fsid(right),
4010                             BTRFS_FSID_SIZE);
4011
4012         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4013                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
4014                             BTRFS_UUID_SIZE);
4015
4016         if (split == 0) {
4017                 if (mid <= slot) {
4018                         btrfs_set_header_nritems(right, 0);
4019                         insert_ptr(trans, root, path, &disk_key, right->start,
4020                                    path->slots[1] + 1, 1);
4021                         btrfs_tree_unlock(path->nodes[0]);
4022                         free_extent_buffer(path->nodes[0]);
4023                         path->nodes[0] = right;
4024                         path->slots[0] = 0;
4025                         path->slots[1] += 1;
4026                 } else {
4027                         btrfs_set_header_nritems(right, 0);
4028                         insert_ptr(trans, root, path, &disk_key, right->start,
4029                                           path->slots[1], 1);
4030                         btrfs_tree_unlock(path->nodes[0]);
4031                         free_extent_buffer(path->nodes[0]);
4032                         path->nodes[0] = right;
4033                         path->slots[0] = 0;
4034                         if (path->slots[1] == 0)
4035                                 fixup_low_keys(trans, root, path,
4036                                                &disk_key, 1);
4037                 }
4038                 btrfs_mark_buffer_dirty(right);
4039                 return ret;
4040         }
4041
4042         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4043
4044         if (split == 2) {
4045                 BUG_ON(num_doubles != 0);
4046                 num_doubles++;
4047                 goto again;
4048         }
4049
4050         return 0;
4051
4052 push_for_double:
4053         push_for_double_split(trans, root, path, data_size);
4054         tried_avoid_double = 1;
4055         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4056                 return 0;
4057         goto again;
4058 }
4059
4060 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4061                                          struct btrfs_root *root,
4062                                          struct btrfs_path *path, int ins_len)
4063 {
4064         struct btrfs_key key;
4065         struct extent_buffer *leaf;
4066         struct btrfs_file_extent_item *fi;
4067         u64 extent_len = 0;
4068         u32 item_size;
4069         int ret;
4070
4071         leaf = path->nodes[0];
4072         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4073
4074         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4075                key.type != BTRFS_EXTENT_CSUM_KEY);
4076
4077         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4078                 return 0;
4079
4080         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4081         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4082                 fi = btrfs_item_ptr(leaf, path->slots[0],
4083                                     struct btrfs_file_extent_item);
4084                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4085         }
4086         btrfs_release_path(path);
4087
4088         path->keep_locks = 1;
4089         path->search_for_split = 1;
4090         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4091         path->search_for_split = 0;
4092         if (ret < 0)
4093                 goto err;
4094
4095         ret = -EAGAIN;
4096         leaf = path->nodes[0];
4097         /* if our item isn't there or got smaller, return now */
4098         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4099                 goto err;
4100
4101         /* the leaf has  changed, it now has room.  return now */
4102         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4103                 goto err;
4104
4105         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4106                 fi = btrfs_item_ptr(leaf, path->slots[0],
4107                                     struct btrfs_file_extent_item);
4108                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4109                         goto err;
4110         }
4111
4112         btrfs_set_path_blocking(path);
4113         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4114         if (ret)
4115                 goto err;
4116
4117         path->keep_locks = 0;
4118         btrfs_unlock_up_safe(path, 1);
4119         return 0;
4120 err:
4121         path->keep_locks = 0;
4122         return ret;
4123 }
4124
4125 static noinline int split_item(struct btrfs_trans_handle *trans,
4126                                struct btrfs_root *root,
4127                                struct btrfs_path *path,
4128                                struct btrfs_key *new_key,
4129                                unsigned long split_offset)
4130 {
4131         struct extent_buffer *leaf;
4132         struct btrfs_item *item;
4133         struct btrfs_item *new_item;
4134         int slot;
4135         char *buf;
4136         u32 nritems;
4137         u32 item_size;
4138         u32 orig_offset;
4139         struct btrfs_disk_key disk_key;
4140
4141         leaf = path->nodes[0];
4142         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4143
4144         btrfs_set_path_blocking(path);
4145
4146         item = btrfs_item_nr(leaf, path->slots[0]);
4147         orig_offset = btrfs_item_offset(leaf, item);
4148         item_size = btrfs_item_size(leaf, item);
4149
4150         buf = kmalloc(item_size, GFP_NOFS);
4151         if (!buf)
4152                 return -ENOMEM;
4153
4154         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4155                             path->slots[0]), item_size);
4156
4157         slot = path->slots[0] + 1;
4158         nritems = btrfs_header_nritems(leaf);
4159         if (slot != nritems) {
4160                 /* shift the items */
4161                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4162                                 btrfs_item_nr_offset(slot),
4163                                 (nritems - slot) * sizeof(struct btrfs_item));
4164         }
4165
4166         btrfs_cpu_key_to_disk(&disk_key, new_key);
4167         btrfs_set_item_key(leaf, &disk_key, slot);
4168
4169         new_item = btrfs_item_nr(leaf, slot);
4170
4171         btrfs_set_item_offset(leaf, new_item, orig_offset);
4172         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4173
4174         btrfs_set_item_offset(leaf, item,
4175                               orig_offset + item_size - split_offset);
4176         btrfs_set_item_size(leaf, item, split_offset);
4177
4178         btrfs_set_header_nritems(leaf, nritems + 1);
4179
4180         /* write the data for the start of the original item */
4181         write_extent_buffer(leaf, buf,
4182                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4183                             split_offset);
4184
4185         /* write the data for the new item */
4186         write_extent_buffer(leaf, buf + split_offset,
4187                             btrfs_item_ptr_offset(leaf, slot),
4188                             item_size - split_offset);
4189         btrfs_mark_buffer_dirty(leaf);
4190
4191         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4192         kfree(buf);
4193         return 0;
4194 }
4195
4196 /*
4197  * This function splits a single item into two items,
4198  * giving 'new_key' to the new item and splitting the
4199  * old one at split_offset (from the start of the item).
4200  *
4201  * The path may be released by this operation.  After
4202  * the split, the path is pointing to the old item.  The
4203  * new item is going to be in the same node as the old one.
4204  *
4205  * Note, the item being split must be smaller enough to live alone on
4206  * a tree block with room for one extra struct btrfs_item
4207  *
4208  * This allows us to split the item in place, keeping a lock on the
4209  * leaf the entire time.
4210  */
4211 int btrfs_split_item(struct btrfs_trans_handle *trans,
4212                      struct btrfs_root *root,
4213                      struct btrfs_path *path,
4214                      struct btrfs_key *new_key,
4215                      unsigned long split_offset)
4216 {
4217         int ret;
4218         ret = setup_leaf_for_split(trans, root, path,
4219                                    sizeof(struct btrfs_item));
4220         if (ret)
4221                 return ret;
4222
4223         ret = split_item(trans, root, path, new_key, split_offset);
4224         return ret;
4225 }
4226
4227 /*
4228  * This function duplicate a item, giving 'new_key' to the new item.
4229  * It guarantees both items live in the same tree leaf and the new item
4230  * is contiguous with the original item.
4231  *
4232  * This allows us to split file extent in place, keeping a lock on the
4233  * leaf the entire time.
4234  */
4235 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4236                          struct btrfs_root *root,
4237                          struct btrfs_path *path,
4238                          struct btrfs_key *new_key)
4239 {
4240         struct extent_buffer *leaf;
4241         int ret;
4242         u32 item_size;
4243
4244         leaf = path->nodes[0];
4245         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4246         ret = setup_leaf_for_split(trans, root, path,
4247                                    item_size + sizeof(struct btrfs_item));
4248         if (ret)
4249                 return ret;
4250
4251         path->slots[0]++;
4252         setup_items_for_insert(trans, root, path, new_key, &item_size,
4253                                item_size, item_size +
4254                                sizeof(struct btrfs_item), 1);
4255         leaf = path->nodes[0];
4256         memcpy_extent_buffer(leaf,
4257                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4258                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4259                              item_size);
4260         return 0;
4261 }
4262
4263 /*
4264  * make the item pointed to by the path smaller.  new_size indicates
4265  * how small to make it, and from_end tells us if we just chop bytes
4266  * off the end of the item or if we shift the item to chop bytes off
4267  * the front.
4268  */
4269 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4270                          struct btrfs_root *root,
4271                          struct btrfs_path *path,
4272                          u32 new_size, int from_end)
4273 {
4274         int slot;
4275         struct extent_buffer *leaf;
4276         struct btrfs_item *item;
4277         u32 nritems;
4278         unsigned int data_end;
4279         unsigned int old_data_start;
4280         unsigned int old_size;
4281         unsigned int size_diff;
4282         int i;
4283         struct btrfs_map_token token;
4284
4285         btrfs_init_map_token(&token);
4286
4287         leaf = path->nodes[0];
4288         slot = path->slots[0];
4289
4290         old_size = btrfs_item_size_nr(leaf, slot);
4291         if (old_size == new_size)
4292                 return;
4293
4294         nritems = btrfs_header_nritems(leaf);
4295         data_end = leaf_data_end(root, leaf);
4296
4297         old_data_start = btrfs_item_offset_nr(leaf, slot);
4298
4299         size_diff = old_size - new_size;
4300
4301         BUG_ON(slot < 0);
4302         BUG_ON(slot >= nritems);
4303
4304         /*
4305          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4306          */
4307         /* first correct the data pointers */
4308         for (i = slot; i < nritems; i++) {
4309                 u32 ioff;
4310                 item = btrfs_item_nr(leaf, i);
4311
4312                 ioff = btrfs_token_item_offset(leaf, item, &token);
4313                 btrfs_set_token_item_offset(leaf, item,
4314                                             ioff + size_diff, &token);
4315         }
4316
4317         /* shift the data */
4318         if (from_end) {
4319                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4320                               data_end + size_diff, btrfs_leaf_data(leaf) +
4321                               data_end, old_data_start + new_size - data_end);
4322         } else {
4323                 struct btrfs_disk_key disk_key;
4324                 u64 offset;
4325
4326                 btrfs_item_key(leaf, &disk_key, slot);
4327
4328                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4329                         unsigned long ptr;
4330                         struct btrfs_file_extent_item *fi;
4331
4332                         fi = btrfs_item_ptr(leaf, slot,
4333                                             struct btrfs_file_extent_item);
4334                         fi = (struct btrfs_file_extent_item *)(
4335                              (unsigned long)fi - size_diff);
4336
4337                         if (btrfs_file_extent_type(leaf, fi) ==
4338                             BTRFS_FILE_EXTENT_INLINE) {
4339                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4340                                 memmove_extent_buffer(leaf, ptr,
4341                                       (unsigned long)fi,
4342                                       offsetof(struct btrfs_file_extent_item,
4343                                                  disk_bytenr));
4344                         }
4345                 }
4346
4347                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4348                               data_end + size_diff, btrfs_leaf_data(leaf) +
4349                               data_end, old_data_start - data_end);
4350
4351                 offset = btrfs_disk_key_offset(&disk_key);
4352                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4353                 btrfs_set_item_key(leaf, &disk_key, slot);
4354                 if (slot == 0)
4355                         fixup_low_keys(trans, root, path, &disk_key, 1);
4356         }
4357
4358         item = btrfs_item_nr(leaf, slot);
4359         btrfs_set_item_size(leaf, item, new_size);
4360         btrfs_mark_buffer_dirty(leaf);
4361
4362         if (btrfs_leaf_free_space(root, leaf) < 0) {
4363                 btrfs_print_leaf(root, leaf);
4364                 BUG();
4365         }
4366 }
4367
4368 /*
4369  * make the item pointed to by the path bigger, data_size is the new size.
4370  */
4371 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4372                        struct btrfs_root *root, struct btrfs_path *path,
4373                        u32 data_size)
4374 {
4375         int slot;
4376         struct extent_buffer *leaf;
4377         struct btrfs_item *item;
4378         u32 nritems;
4379         unsigned int data_end;
4380         unsigned int old_data;
4381         unsigned int old_size;
4382         int i;
4383         struct btrfs_map_token token;
4384
4385         btrfs_init_map_token(&token);
4386
4387         leaf = path->nodes[0];
4388
4389         nritems = btrfs_header_nritems(leaf);
4390         data_end = leaf_data_end(root, leaf);
4391
4392         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4393                 btrfs_print_leaf(root, leaf);
4394                 BUG();
4395         }
4396         slot = path->slots[0];
4397         old_data = btrfs_item_end_nr(leaf, slot);
4398
4399         BUG_ON(slot < 0);
4400         if (slot >= nritems) {
4401                 btrfs_print_leaf(root, leaf);
4402                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4403                        slot, nritems);
4404                 BUG_ON(1);
4405         }
4406
4407         /*
4408          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4409          */
4410         /* first correct the data pointers */
4411         for (i = slot; i < nritems; i++) {
4412                 u32 ioff;
4413                 item = btrfs_item_nr(leaf, i);
4414
4415                 ioff = btrfs_token_item_offset(leaf, item, &token);
4416                 btrfs_set_token_item_offset(leaf, item,
4417                                             ioff - data_size, &token);
4418         }
4419
4420         /* shift the data */
4421         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4422                       data_end - data_size, btrfs_leaf_data(leaf) +
4423                       data_end, old_data - data_end);
4424
4425         data_end = old_data;
4426         old_size = btrfs_item_size_nr(leaf, slot);
4427         item = btrfs_item_nr(leaf, slot);
4428         btrfs_set_item_size(leaf, item, old_size + data_size);
4429         btrfs_mark_buffer_dirty(leaf);
4430
4431         if (btrfs_leaf_free_space(root, leaf) < 0) {
4432                 btrfs_print_leaf(root, leaf);
4433                 BUG();
4434         }
4435 }
4436
4437 /*
4438  * this is a helper for btrfs_insert_empty_items, the main goal here is
4439  * to save stack depth by doing the bulk of the work in a function
4440  * that doesn't call btrfs_search_slot
4441  */
4442 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4443                             struct btrfs_root *root, struct btrfs_path *path,
4444                             struct btrfs_key *cpu_key, u32 *data_size,
4445                             u32 total_data, u32 total_size, int nr)
4446 {
4447         struct btrfs_item *item;
4448         int i;
4449         u32 nritems;
4450         unsigned int data_end;
4451         struct btrfs_disk_key disk_key;
4452         struct extent_buffer *leaf;
4453         int slot;
4454         struct btrfs_map_token token;
4455
4456         btrfs_init_map_token(&token);
4457
4458         leaf = path->nodes[0];
4459         slot = path->slots[0];
4460
4461         nritems = btrfs_header_nritems(leaf);
4462         data_end = leaf_data_end(root, leaf);
4463
4464         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4465                 btrfs_print_leaf(root, leaf);
4466                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4467                        total_size, btrfs_leaf_free_space(root, leaf));
4468                 BUG();
4469         }
4470
4471         if (slot != nritems) {
4472                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4473
4474                 if (old_data < data_end) {
4475                         btrfs_print_leaf(root, leaf);
4476                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4477                                slot, old_data, data_end);
4478                         BUG_ON(1);
4479                 }
4480                 /*
4481                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4482                  */
4483                 /* first correct the data pointers */
4484                 for (i = slot; i < nritems; i++) {
4485                         u32 ioff;
4486
4487                         item = btrfs_item_nr(leaf, i);
4488                         ioff = btrfs_token_item_offset(leaf, item, &token);
4489                         btrfs_set_token_item_offset(leaf, item,
4490                                                     ioff - total_data, &token);
4491                 }
4492                 /* shift the items */
4493                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4494                               btrfs_item_nr_offset(slot),
4495                               (nritems - slot) * sizeof(struct btrfs_item));
4496
4497                 /* shift the data */
4498                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4499                               data_end - total_data, btrfs_leaf_data(leaf) +
4500                               data_end, old_data - data_end);
4501                 data_end = old_data;
4502         }
4503
4504         /* setup the item for the new data */
4505         for (i = 0; i < nr; i++) {
4506                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4507                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4508                 item = btrfs_item_nr(leaf, slot + i);
4509                 btrfs_set_token_item_offset(leaf, item,
4510                                             data_end - data_size[i], &token);
4511                 data_end -= data_size[i];
4512                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4513         }
4514
4515         btrfs_set_header_nritems(leaf, nritems + nr);
4516
4517         if (slot == 0) {
4518                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4519                 fixup_low_keys(trans, root, path, &disk_key, 1);
4520         }
4521         btrfs_unlock_up_safe(path, 1);
4522         btrfs_mark_buffer_dirty(leaf);
4523
4524         if (btrfs_leaf_free_space(root, leaf) < 0) {
4525                 btrfs_print_leaf(root, leaf);
4526                 BUG();
4527         }
4528 }
4529
4530 /*
4531  * Given a key and some data, insert items into the tree.
4532  * This does all the path init required, making room in the tree if needed.
4533  */
4534 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4535                             struct btrfs_root *root,
4536                             struct btrfs_path *path,
4537                             struct btrfs_key *cpu_key, u32 *data_size,
4538                             int nr)
4539 {
4540         int ret = 0;
4541         int slot;
4542         int i;
4543         u32 total_size = 0;
4544         u32 total_data = 0;
4545
4546         for (i = 0; i < nr; i++)
4547                 total_data += data_size[i];
4548
4549         total_size = total_data + (nr * sizeof(struct btrfs_item));
4550         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4551         if (ret == 0)
4552                 return -EEXIST;
4553         if (ret < 0)
4554                 return ret;
4555
4556         slot = path->slots[0];
4557         BUG_ON(slot < 0);
4558
4559         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4560                                total_data, total_size, nr);
4561         return 0;
4562 }
4563
4564 /*
4565  * Given a key and some data, insert an item into the tree.
4566  * This does all the path init required, making room in the tree if needed.
4567  */
4568 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4569                       *root, struct btrfs_key *cpu_key, void *data, u32
4570                       data_size)
4571 {
4572         int ret = 0;
4573         struct btrfs_path *path;
4574         struct extent_buffer *leaf;
4575         unsigned long ptr;
4576
4577         path = btrfs_alloc_path();
4578         if (!path)
4579                 return -ENOMEM;
4580         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4581         if (!ret) {
4582                 leaf = path->nodes[0];
4583                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4584                 write_extent_buffer(leaf, data, ptr, data_size);
4585                 btrfs_mark_buffer_dirty(leaf);
4586         }
4587         btrfs_free_path(path);
4588         return ret;
4589 }
4590
4591 /*
4592  * delete the pointer from a given node.
4593  *
4594  * the tree should have been previously balanced so the deletion does not
4595  * empty a node.
4596  */
4597 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4598                     struct btrfs_path *path, int level, int slot,
4599                     int tree_mod_log)
4600 {
4601         struct extent_buffer *parent = path->nodes[level];
4602         u32 nritems;
4603         int ret;
4604
4605         nritems = btrfs_header_nritems(parent);
4606         if (slot != nritems - 1) {
4607                 if (tree_mod_log && level)
4608                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4609                                              slot + 1, nritems - slot - 1);
4610                 memmove_extent_buffer(parent,
4611                               btrfs_node_key_ptr_offset(slot),
4612                               btrfs_node_key_ptr_offset(slot + 1),
4613                               sizeof(struct btrfs_key_ptr) *
4614                               (nritems - slot - 1));
4615         } else if (tree_mod_log && level) {
4616                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4617                                               MOD_LOG_KEY_REMOVE);
4618                 BUG_ON(ret < 0);
4619         }
4620
4621         nritems--;
4622         btrfs_set_header_nritems(parent, nritems);
4623         if (nritems == 0 && parent == root->node) {
4624                 BUG_ON(btrfs_header_level(root->node) != 1);
4625                 /* just turn the root into a leaf and break */
4626                 btrfs_set_header_level(root->node, 0);
4627         } else if (slot == 0) {
4628                 struct btrfs_disk_key disk_key;
4629
4630                 btrfs_node_key(parent, &disk_key, 0);
4631                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4632         }
4633         btrfs_mark_buffer_dirty(parent);
4634 }
4635
4636 /*
4637  * a helper function to delete the leaf pointed to by path->slots[1] and
4638  * path->nodes[1].
4639  *
4640  * This deletes the pointer in path->nodes[1] and frees the leaf
4641  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4642  *
4643  * The path must have already been setup for deleting the leaf, including
4644  * all the proper balancing.  path->nodes[1] must be locked.
4645  */
4646 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4647                                     struct btrfs_root *root,
4648                                     struct btrfs_path *path,
4649                                     struct extent_buffer *leaf)
4650 {
4651         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4652         del_ptr(trans, root, path, 1, path->slots[1], 1);
4653
4654         /*
4655          * btrfs_free_extent is expensive, we want to make sure we
4656          * aren't holding any locks when we call it
4657          */
4658         btrfs_unlock_up_safe(path, 0);
4659
4660         root_sub_used(root, leaf->len);
4661
4662         extent_buffer_get(leaf);
4663         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4664         free_extent_buffer_stale(leaf);
4665 }
4666 /*
4667  * delete the item at the leaf level in path.  If that empties
4668  * the leaf, remove it from the tree
4669  */
4670 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4671                     struct btrfs_path *path, int slot, int nr)
4672 {
4673         struct extent_buffer *leaf;
4674         struct btrfs_item *item;
4675         int last_off;
4676         int dsize = 0;
4677         int ret = 0;
4678         int wret;
4679         int i;
4680         u32 nritems;
4681         struct btrfs_map_token token;
4682
4683         btrfs_init_map_token(&token);
4684
4685         leaf = path->nodes[0];
4686         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4687
4688         for (i = 0; i < nr; i++)
4689                 dsize += btrfs_item_size_nr(leaf, slot + i);
4690
4691         nritems = btrfs_header_nritems(leaf);
4692
4693         if (slot + nr != nritems) {
4694                 int data_end = leaf_data_end(root, leaf);
4695
4696                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4697                               data_end + dsize,
4698                               btrfs_leaf_data(leaf) + data_end,
4699                               last_off - data_end);
4700
4701                 for (i = slot + nr; i < nritems; i++) {
4702                         u32 ioff;
4703
4704                         item = btrfs_item_nr(leaf, i);
4705                         ioff = btrfs_token_item_offset(leaf, item, &token);
4706                         btrfs_set_token_item_offset(leaf, item,
4707                                                     ioff + dsize, &token);
4708                 }
4709
4710                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4711                               btrfs_item_nr_offset(slot + nr),
4712                               sizeof(struct btrfs_item) *
4713                               (nritems - slot - nr));
4714         }
4715         btrfs_set_header_nritems(leaf, nritems - nr);
4716         nritems -= nr;
4717
4718         /* delete the leaf if we've emptied it */
4719         if (nritems == 0) {
4720                 if (leaf == root->node) {
4721                         btrfs_set_header_level(leaf, 0);
4722                 } else {
4723                         btrfs_set_path_blocking(path);
4724                         clean_tree_block(trans, root, leaf);
4725                         btrfs_del_leaf(trans, root, path, leaf);
4726                 }
4727         } else {
4728                 int used = leaf_space_used(leaf, 0, nritems);
4729                 if (slot == 0) {
4730                         struct btrfs_disk_key disk_key;
4731
4732                         btrfs_item_key(leaf, &disk_key, 0);
4733                         fixup_low_keys(trans, root, path, &disk_key, 1);
4734                 }
4735
4736                 /* delete the leaf if it is mostly empty */
4737                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4738                         /* push_leaf_left fixes the path.
4739                          * make sure the path still points to our leaf
4740                          * for possible call to del_ptr below
4741                          */
4742                         slot = path->slots[1];
4743                         extent_buffer_get(leaf);
4744
4745                         btrfs_set_path_blocking(path);
4746                         wret = push_leaf_left(trans, root, path, 1, 1,
4747                                               1, (u32)-1);
4748                         if (wret < 0 && wret != -ENOSPC)
4749                                 ret = wret;
4750
4751                         if (path->nodes[0] == leaf &&
4752                             btrfs_header_nritems(leaf)) {
4753                                 wret = push_leaf_right(trans, root, path, 1,
4754                                                        1, 1, 0);
4755                                 if (wret < 0 && wret != -ENOSPC)
4756                                         ret = wret;
4757                         }
4758
4759                         if (btrfs_header_nritems(leaf) == 0) {
4760                                 path->slots[1] = slot;
4761                                 btrfs_del_leaf(trans, root, path, leaf);
4762                                 free_extent_buffer(leaf);
4763                                 ret = 0;
4764                         } else {
4765                                 /* if we're still in the path, make sure
4766                                  * we're dirty.  Otherwise, one of the
4767                                  * push_leaf functions must have already
4768                                  * dirtied this buffer
4769                                  */
4770                                 if (path->nodes[0] == leaf)
4771                                         btrfs_mark_buffer_dirty(leaf);
4772                                 free_extent_buffer(leaf);
4773                         }
4774                 } else {
4775                         btrfs_mark_buffer_dirty(leaf);
4776                 }
4777         }
4778         return ret;
4779 }
4780
4781 /*
4782  * search the tree again to find a leaf with lesser keys
4783  * returns 0 if it found something or 1 if there are no lesser leaves.
4784  * returns < 0 on io errors.
4785  *
4786  * This may release the path, and so you may lose any locks held at the
4787  * time you call it.
4788  */
4789 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4790 {
4791         struct btrfs_key key;
4792         struct btrfs_disk_key found_key;
4793         int ret;
4794
4795         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4796
4797         if (key.offset > 0)
4798                 key.offset--;
4799         else if (key.type > 0)
4800                 key.type--;
4801         else if (key.objectid > 0)
4802                 key.objectid--;
4803         else
4804                 return 1;
4805
4806         btrfs_release_path(path);
4807         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4808         if (ret < 0)
4809                 return ret;
4810         btrfs_item_key(path->nodes[0], &found_key, 0);
4811         ret = comp_keys(&found_key, &key);
4812         if (ret < 0)
4813                 return 0;
4814         return 1;
4815 }
4816
4817 /*
4818  * A helper function to walk down the tree starting at min_key, and looking
4819  * for nodes or leaves that are either in cache or have a minimum
4820  * transaction id.  This is used by the btree defrag code, and tree logging
4821  *
4822  * This does not cow, but it does stuff the starting key it finds back
4823  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4824  * key and get a writable path.
4825  *
4826  * This does lock as it descends, and path->keep_locks should be set
4827  * to 1 by the caller.
4828  *
4829  * This honors path->lowest_level to prevent descent past a given level
4830  * of the tree.
4831  *
4832  * min_trans indicates the oldest transaction that you are interested
4833  * in walking through.  Any nodes or leaves older than min_trans are
4834  * skipped over (without reading them).
4835  *
4836  * returns zero if something useful was found, < 0 on error and 1 if there
4837  * was nothing in the tree that matched the search criteria.
4838  */
4839 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4840                          struct btrfs_key *max_key,
4841                          struct btrfs_path *path, int cache_only,
4842                          u64 min_trans)
4843 {
4844         struct extent_buffer *cur;
4845         struct btrfs_key found_key;
4846         int slot;
4847         int sret;
4848         u32 nritems;
4849         int level;
4850         int ret = 1;
4851
4852         WARN_ON(!path->keep_locks);
4853 again:
4854         cur = btrfs_read_lock_root_node(root);
4855         level = btrfs_header_level(cur);
4856         WARN_ON(path->nodes[level]);
4857         path->nodes[level] = cur;
4858         path->locks[level] = BTRFS_READ_LOCK;
4859
4860         if (btrfs_header_generation(cur) < min_trans) {
4861                 ret = 1;
4862                 goto out;
4863         }
4864         while (1) {
4865                 nritems = btrfs_header_nritems(cur);
4866                 level = btrfs_header_level(cur);
4867                 sret = bin_search(cur, min_key, level, &slot);
4868
4869                 /* at the lowest level, we're done, setup the path and exit */
4870                 if (level == path->lowest_level) {
4871                         if (slot >= nritems)
4872                                 goto find_next_key;
4873                         ret = 0;
4874                         path->slots[level] = slot;
4875                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4876                         goto out;
4877                 }
4878                 if (sret && slot > 0)
4879                         slot--;
4880                 /*
4881                  * check this node pointer against the cache_only and
4882                  * min_trans parameters.  If it isn't in cache or is too
4883                  * old, skip to the next one.
4884                  */
4885                 while (slot < nritems) {
4886                         u64 blockptr;
4887                         u64 gen;
4888                         struct extent_buffer *tmp;
4889                         struct btrfs_disk_key disk_key;
4890
4891                         blockptr = btrfs_node_blockptr(cur, slot);
4892                         gen = btrfs_node_ptr_generation(cur, slot);
4893                         if (gen < min_trans) {
4894                                 slot++;
4895                                 continue;
4896                         }
4897                         if (!cache_only)
4898                                 break;
4899
4900                         if (max_key) {
4901                                 btrfs_node_key(cur, &disk_key, slot);
4902                                 if (comp_keys(&disk_key, max_key) >= 0) {
4903                                         ret = 1;
4904                                         goto out;
4905                                 }
4906                         }
4907
4908                         tmp = btrfs_find_tree_block(root, blockptr,
4909                                             btrfs_level_size(root, level - 1));
4910
4911                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4912                                 free_extent_buffer(tmp);
4913                                 break;
4914                         }
4915                         if (tmp)
4916                                 free_extent_buffer(tmp);
4917                         slot++;
4918                 }
4919 find_next_key:
4920                 /*
4921                  * we didn't find a candidate key in this node, walk forward
4922                  * and find another one
4923                  */
4924                 if (slot >= nritems) {
4925                         path->slots[level] = slot;
4926                         btrfs_set_path_blocking(path);
4927                         sret = btrfs_find_next_key(root, path, min_key, level,
4928                                                   cache_only, min_trans);
4929                         if (sret == 0) {
4930                                 btrfs_release_path(path);
4931                                 goto again;
4932                         } else {
4933                                 goto out;
4934                         }
4935                 }
4936                 /* save our key for returning back */
4937                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4938                 path->slots[level] = slot;
4939                 if (level == path->lowest_level) {
4940                         ret = 0;
4941                         unlock_up(path, level, 1, 0, NULL);
4942                         goto out;
4943                 }
4944                 btrfs_set_path_blocking(path);
4945                 cur = read_node_slot(root, cur, slot);
4946                 BUG_ON(!cur); /* -ENOMEM */
4947
4948                 btrfs_tree_read_lock(cur);
4949
4950                 path->locks[level - 1] = BTRFS_READ_LOCK;
4951                 path->nodes[level - 1] = cur;
4952                 unlock_up(path, level, 1, 0, NULL);
4953                 btrfs_clear_path_blocking(path, NULL, 0);
4954         }
4955 out:
4956         if (ret == 0)
4957                 memcpy(min_key, &found_key, sizeof(found_key));
4958         btrfs_set_path_blocking(path);
4959         return ret;
4960 }
4961
4962 static void tree_move_down(struct btrfs_root *root,
4963                            struct btrfs_path *path,
4964                            int *level, int root_level)
4965 {
4966         BUG_ON(*level == 0);
4967         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4968                                         path->slots[*level]);
4969         path->slots[*level - 1] = 0;
4970         (*level)--;
4971 }
4972
4973 static int tree_move_next_or_upnext(struct btrfs_root *root,
4974                                     struct btrfs_path *path,
4975                                     int *level, int root_level)
4976 {
4977         int ret = 0;
4978         int nritems;
4979         nritems = btrfs_header_nritems(path->nodes[*level]);
4980
4981         path->slots[*level]++;
4982
4983         while (path->slots[*level] >= nritems) {
4984                 if (*level == root_level)
4985                         return -1;
4986
4987                 /* move upnext */
4988                 path->slots[*level] = 0;
4989                 free_extent_buffer(path->nodes[*level]);
4990                 path->nodes[*level] = NULL;
4991                 (*level)++;
4992                 path->slots[*level]++;
4993
4994                 nritems = btrfs_header_nritems(path->nodes[*level]);
4995                 ret = 1;
4996         }
4997         return ret;
4998 }
4999
5000 /*
5001  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5002  * or down.
5003  */
5004 static int tree_advance(struct btrfs_root *root,
5005                         struct btrfs_path *path,
5006                         int *level, int root_level,
5007                         int allow_down,
5008                         struct btrfs_key *key)
5009 {
5010         int ret;
5011
5012         if (*level == 0 || !allow_down) {
5013                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5014         } else {
5015                 tree_move_down(root, path, level, root_level);
5016                 ret = 0;
5017         }
5018         if (ret >= 0) {
5019                 if (*level == 0)
5020                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5021                                         path->slots[*level]);
5022                 else
5023                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5024                                         path->slots[*level]);
5025         }
5026         return ret;
5027 }
5028
5029 static int tree_compare_item(struct btrfs_root *left_root,
5030                              struct btrfs_path *left_path,
5031                              struct btrfs_path *right_path,
5032                              char *tmp_buf)
5033 {
5034         int cmp;
5035         int len1, len2;
5036         unsigned long off1, off2;
5037
5038         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5039         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5040         if (len1 != len2)
5041                 return 1;
5042
5043         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5044         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5045                                 right_path->slots[0]);
5046
5047         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5048
5049         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5050         if (cmp)
5051                 return 1;
5052         return 0;
5053 }
5054
5055 #define ADVANCE 1
5056 #define ADVANCE_ONLY_NEXT -1
5057
5058 /*
5059  * This function compares two trees and calls the provided callback for
5060  * every changed/new/deleted item it finds.
5061  * If shared tree blocks are encountered, whole subtrees are skipped, making
5062  * the compare pretty fast on snapshotted subvolumes.
5063  *
5064  * This currently works on commit roots only. As commit roots are read only,
5065  * we don't do any locking. The commit roots are protected with transactions.
5066  * Transactions are ended and rejoined when a commit is tried in between.
5067  *
5068  * This function checks for modifications done to the trees while comparing.
5069  * If it detects a change, it aborts immediately.
5070  */
5071 int btrfs_compare_trees(struct btrfs_root *left_root,
5072                         struct btrfs_root *right_root,
5073                         btrfs_changed_cb_t changed_cb, void *ctx)
5074 {
5075         int ret;
5076         int cmp;
5077         struct btrfs_trans_handle *trans = NULL;
5078         struct btrfs_path *left_path = NULL;
5079         struct btrfs_path *right_path = NULL;
5080         struct btrfs_key left_key;
5081         struct btrfs_key right_key;
5082         char *tmp_buf = NULL;
5083         int left_root_level;
5084         int right_root_level;
5085         int left_level;
5086         int right_level;
5087         int left_end_reached;
5088         int right_end_reached;
5089         int advance_left;
5090         int advance_right;
5091         u64 left_blockptr;
5092         u64 right_blockptr;
5093         u64 left_start_ctransid;
5094         u64 right_start_ctransid;
5095         u64 ctransid;
5096
5097         left_path = btrfs_alloc_path();
5098         if (!left_path) {
5099                 ret = -ENOMEM;
5100                 goto out;
5101         }
5102         right_path = btrfs_alloc_path();
5103         if (!right_path) {
5104                 ret = -ENOMEM;
5105                 goto out;
5106         }
5107
5108         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5109         if (!tmp_buf) {
5110                 ret = -ENOMEM;
5111                 goto out;
5112         }
5113
5114         left_path->search_commit_root = 1;
5115         left_path->skip_locking = 1;
5116         right_path->search_commit_root = 1;
5117         right_path->skip_locking = 1;
5118
5119         spin_lock(&left_root->root_times_lock);
5120         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5121         spin_unlock(&left_root->root_times_lock);
5122
5123         spin_lock(&right_root->root_times_lock);
5124         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5125         spin_unlock(&right_root->root_times_lock);
5126
5127         trans = btrfs_join_transaction(left_root);
5128         if (IS_ERR(trans)) {
5129                 ret = PTR_ERR(trans);
5130                 trans = NULL;
5131                 goto out;
5132         }
5133
5134         /*
5135          * Strategy: Go to the first items of both trees. Then do
5136          *
5137          * If both trees are at level 0
5138          *   Compare keys of current items
5139          *     If left < right treat left item as new, advance left tree
5140          *       and repeat
5141          *     If left > right treat right item as deleted, advance right tree
5142          *       and repeat
5143          *     If left == right do deep compare of items, treat as changed if
5144          *       needed, advance both trees and repeat
5145          * If both trees are at the same level but not at level 0
5146          *   Compare keys of current nodes/leafs
5147          *     If left < right advance left tree and repeat
5148          *     If left > right advance right tree and repeat
5149          *     If left == right compare blockptrs of the next nodes/leafs
5150          *       If they match advance both trees but stay at the same level
5151          *         and repeat
5152          *       If they don't match advance both trees while allowing to go
5153          *         deeper and repeat
5154          * If tree levels are different
5155          *   Advance the tree that needs it and repeat
5156          *
5157          * Advancing a tree means:
5158          *   If we are at level 0, try to go to the next slot. If that's not
5159          *   possible, go one level up and repeat. Stop when we found a level
5160          *   where we could go to the next slot. We may at this point be on a
5161          *   node or a leaf.
5162          *
5163          *   If we are not at level 0 and not on shared tree blocks, go one
5164          *   level deeper.
5165          *
5166          *   If we are not at level 0 and on shared tree blocks, go one slot to
5167          *   the right if possible or go up and right.
5168          */
5169
5170         left_level = btrfs_header_level(left_root->commit_root);
5171         left_root_level = left_level;
5172         left_path->nodes[left_level] = left_root->commit_root;
5173         extent_buffer_get(left_path->nodes[left_level]);
5174
5175         right_level = btrfs_header_level(right_root->commit_root);
5176         right_root_level = right_level;
5177         right_path->nodes[right_level] = right_root->commit_root;
5178         extent_buffer_get(right_path->nodes[right_level]);
5179
5180         if (left_level == 0)
5181                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5182                                 &left_key, left_path->slots[left_level]);
5183         else
5184                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5185                                 &left_key, left_path->slots[left_level]);
5186         if (right_level == 0)
5187                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5188                                 &right_key, right_path->slots[right_level]);
5189         else
5190                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5191                                 &right_key, right_path->slots[right_level]);
5192
5193         left_end_reached = right_end_reached = 0;
5194         advance_left = advance_right = 0;
5195
5196         while (1) {
5197                 /*
5198                  * We need to make sure the transaction does not get committed
5199                  * while we do anything on commit roots. This means, we need to
5200                  * join and leave transactions for every item that we process.
5201                  */
5202                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5203                         btrfs_release_path(left_path);
5204                         btrfs_release_path(right_path);
5205
5206                         ret = btrfs_end_transaction(trans, left_root);
5207                         trans = NULL;
5208                         if (ret < 0)
5209                                 goto out;
5210                 }
5211                 /* now rejoin the transaction */
5212                 if (!trans) {
5213                         trans = btrfs_join_transaction(left_root);
5214                         if (IS_ERR(trans)) {
5215                                 ret = PTR_ERR(trans);
5216                                 trans = NULL;
5217                                 goto out;
5218                         }
5219
5220                         spin_lock(&left_root->root_times_lock);
5221                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5222                         spin_unlock(&left_root->root_times_lock);
5223                         if (ctransid != left_start_ctransid)
5224                                 left_start_ctransid = 0;
5225
5226                         spin_lock(&right_root->root_times_lock);
5227                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5228                         spin_unlock(&right_root->root_times_lock);
5229                         if (ctransid != right_start_ctransid)
5230                                 right_start_ctransid = 0;
5231
5232                         if (!left_start_ctransid || !right_start_ctransid) {
5233                                 WARN(1, KERN_WARNING
5234                                         "btrfs: btrfs_compare_tree detected "
5235                                         "a change in one of the trees while "
5236                                         "iterating. This is probably a "
5237                                         "bug.\n");
5238                                 ret = -EIO;
5239                                 goto out;
5240                         }
5241
5242                         /*
5243                          * the commit root may have changed, so start again
5244                          * where we stopped
5245                          */
5246                         left_path->lowest_level = left_level;
5247                         right_path->lowest_level = right_level;
5248                         ret = btrfs_search_slot(NULL, left_root,
5249                                         &left_key, left_path, 0, 0);
5250                         if (ret < 0)
5251                                 goto out;
5252                         ret = btrfs_search_slot(NULL, right_root,
5253                                         &right_key, right_path, 0, 0);
5254                         if (ret < 0)
5255                                 goto out;
5256                 }
5257
5258                 if (advance_left && !left_end_reached) {
5259                         ret = tree_advance(left_root, left_path, &left_level,
5260                                         left_root_level,
5261                                         advance_left != ADVANCE_ONLY_NEXT,
5262                                         &left_key);
5263                         if (ret < 0)
5264                                 left_end_reached = ADVANCE;
5265                         advance_left = 0;
5266                 }
5267                 if (advance_right && !right_end_reached) {
5268                         ret = tree_advance(right_root, right_path, &right_level,
5269                                         right_root_level,
5270                                         advance_right != ADVANCE_ONLY_NEXT,
5271                                         &right_key);
5272                         if (ret < 0)
5273                                 right_end_reached = ADVANCE;
5274                         advance_right = 0;
5275                 }
5276
5277                 if (left_end_reached && right_end_reached) {
5278                         ret = 0;
5279                         goto out;
5280                 } else if (left_end_reached) {
5281                         if (right_level == 0) {
5282                                 ret = changed_cb(left_root, right_root,
5283                                                 left_path, right_path,
5284                                                 &right_key,
5285                                                 BTRFS_COMPARE_TREE_DELETED,
5286                                                 ctx);
5287                                 if (ret < 0)
5288                                         goto out;
5289                         }
5290                         advance_right = ADVANCE;
5291                         continue;
5292                 } else if (right_end_reached) {
5293                         if (left_level == 0) {
5294                                 ret = changed_cb(left_root, right_root,
5295                                                 left_path, right_path,
5296                                                 &left_key,
5297                                                 BTRFS_COMPARE_TREE_NEW,
5298                                                 ctx);
5299                                 if (ret < 0)
5300                                         goto out;
5301                         }
5302                         advance_left = ADVANCE;
5303                         continue;
5304                 }
5305
5306                 if (left_level == 0 && right_level == 0) {
5307                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5308                         if (cmp < 0) {
5309                                 ret = changed_cb(left_root, right_root,
5310                                                 left_path, right_path,
5311                                                 &left_key,
5312                                                 BTRFS_COMPARE_TREE_NEW,
5313                                                 ctx);
5314                                 if (ret < 0)
5315                                         goto out;
5316                                 advance_left = ADVANCE;
5317                         } else if (cmp > 0) {
5318                                 ret = changed_cb(left_root, right_root,
5319                                                 left_path, right_path,
5320                                                 &right_key,
5321                                                 BTRFS_COMPARE_TREE_DELETED,
5322                                                 ctx);
5323                                 if (ret < 0)
5324                                         goto out;
5325                                 advance_right = ADVANCE;
5326                         } else {
5327                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5328                                 ret = tree_compare_item(left_root, left_path,
5329                                                 right_path, tmp_buf);
5330                                 if (ret) {
5331                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5332                                         ret = changed_cb(left_root, right_root,
5333                                                 left_path, right_path,
5334                                                 &left_key,
5335                                                 BTRFS_COMPARE_TREE_CHANGED,
5336                                                 ctx);
5337                                         if (ret < 0)
5338                                                 goto out;
5339                                 }
5340                                 advance_left = ADVANCE;
5341                                 advance_right = ADVANCE;
5342                         }
5343                 } else if (left_level == right_level) {
5344                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5345                         if (cmp < 0) {
5346                                 advance_left = ADVANCE;
5347                         } else if (cmp > 0) {
5348                                 advance_right = ADVANCE;
5349                         } else {
5350                                 left_blockptr = btrfs_node_blockptr(
5351                                                 left_path->nodes[left_level],
5352                                                 left_path->slots[left_level]);
5353                                 right_blockptr = btrfs_node_blockptr(
5354                                                 right_path->nodes[right_level],
5355                                                 right_path->slots[right_level]);
5356                                 if (left_blockptr == right_blockptr) {
5357                                         /*
5358                                          * As we're on a shared block, don't
5359                                          * allow to go deeper.
5360                                          */
5361                                         advance_left = ADVANCE_ONLY_NEXT;
5362                                         advance_right = ADVANCE_ONLY_NEXT;
5363                                 } else {
5364                                         advance_left = ADVANCE;
5365                                         advance_right = ADVANCE;
5366                                 }
5367                         }
5368                 } else if (left_level < right_level) {
5369                         advance_right = ADVANCE;
5370                 } else {
5371                         advance_left = ADVANCE;
5372                 }
5373         }
5374
5375 out:
5376         btrfs_free_path(left_path);
5377         btrfs_free_path(right_path);
5378         kfree(tmp_buf);
5379
5380         if (trans) {
5381                 if (!ret)
5382                         ret = btrfs_end_transaction(trans, left_root);
5383                 else
5384                         btrfs_end_transaction(trans, left_root);
5385         }
5386
5387         return ret;
5388 }
5389
5390 /*
5391  * this is similar to btrfs_next_leaf, but does not try to preserve
5392  * and fixup the path.  It looks for and returns the next key in the
5393  * tree based on the current path and the cache_only and min_trans
5394  * parameters.
5395  *
5396  * 0 is returned if another key is found, < 0 if there are any errors
5397  * and 1 is returned if there are no higher keys in the tree
5398  *
5399  * path->keep_locks should be set to 1 on the search made before
5400  * calling this function.
5401  */
5402 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5403                         struct btrfs_key *key, int level,
5404                         int cache_only, u64 min_trans)
5405 {
5406         int slot;
5407         struct extent_buffer *c;
5408
5409         WARN_ON(!path->keep_locks);
5410         while (level < BTRFS_MAX_LEVEL) {
5411                 if (!path->nodes[level])
5412                         return 1;
5413
5414                 slot = path->slots[level] + 1;
5415                 c = path->nodes[level];
5416 next:
5417                 if (slot >= btrfs_header_nritems(c)) {
5418                         int ret;
5419                         int orig_lowest;
5420                         struct btrfs_key cur_key;
5421                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5422                             !path->nodes[level + 1])
5423                                 return 1;
5424
5425                         if (path->locks[level + 1]) {
5426                                 level++;
5427                                 continue;
5428                         }
5429
5430                         slot = btrfs_header_nritems(c) - 1;
5431                         if (level == 0)
5432                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5433                         else
5434                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5435
5436                         orig_lowest = path->lowest_level;
5437                         btrfs_release_path(path);
5438                         path->lowest_level = level;
5439                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5440                                                 0, 0);
5441                         path->lowest_level = orig_lowest;
5442                         if (ret < 0)
5443                                 return ret;
5444
5445                         c = path->nodes[level];
5446                         slot = path->slots[level];
5447                         if (ret == 0)
5448                                 slot++;
5449                         goto next;
5450                 }
5451
5452                 if (level == 0)
5453                         btrfs_item_key_to_cpu(c, key, slot);
5454                 else {
5455                         u64 blockptr = btrfs_node_blockptr(c, slot);
5456                         u64 gen = btrfs_node_ptr_generation(c, slot);
5457
5458                         if (cache_only) {
5459                                 struct extent_buffer *cur;
5460                                 cur = btrfs_find_tree_block(root, blockptr,
5461                                             btrfs_level_size(root, level - 1));
5462                                 if (!cur ||
5463                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5464                                         slot++;
5465                                         if (cur)
5466                                                 free_extent_buffer(cur);
5467                                         goto next;
5468                                 }
5469                                 free_extent_buffer(cur);
5470                         }
5471                         if (gen < min_trans) {
5472                                 slot++;
5473                                 goto next;
5474                         }
5475                         btrfs_node_key_to_cpu(c, key, slot);
5476                 }
5477                 return 0;
5478         }
5479         return 1;
5480 }
5481
5482 /*
5483  * search the tree again to find a leaf with greater keys
5484  * returns 0 if it found something or 1 if there are no greater leaves.
5485  * returns < 0 on io errors.
5486  */
5487 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5488 {
5489         return btrfs_next_old_leaf(root, path, 0);
5490 }
5491
5492 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5493                         u64 time_seq)
5494 {
5495         int slot;
5496         int level;
5497         struct extent_buffer *c;
5498         struct extent_buffer *next;
5499         struct btrfs_key key;
5500         u32 nritems;
5501         int ret;
5502         int old_spinning = path->leave_spinning;
5503         int next_rw_lock = 0;
5504
5505         nritems = btrfs_header_nritems(path->nodes[0]);
5506         if (nritems == 0)
5507                 return 1;
5508
5509         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5510 again:
5511         level = 1;
5512         next = NULL;
5513         next_rw_lock = 0;
5514         btrfs_release_path(path);
5515
5516         path->keep_locks = 1;
5517         path->leave_spinning = 1;
5518
5519         if (time_seq)
5520                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5521         else
5522                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5523         path->keep_locks = 0;
5524
5525         if (ret < 0)
5526                 return ret;
5527
5528         nritems = btrfs_header_nritems(path->nodes[0]);
5529         /*
5530          * by releasing the path above we dropped all our locks.  A balance
5531          * could have added more items next to the key that used to be
5532          * at the very end of the block.  So, check again here and
5533          * advance the path if there are now more items available.
5534          */
5535         if (nritems > 0 && path->slots[0] < nritems - 1) {
5536                 if (ret == 0)
5537                         path->slots[0]++;
5538                 ret = 0;
5539                 goto done;
5540         }
5541
5542         while (level < BTRFS_MAX_LEVEL) {
5543                 if (!path->nodes[level]) {
5544                         ret = 1;
5545                         goto done;
5546                 }
5547
5548                 slot = path->slots[level] + 1;
5549                 c = path->nodes[level];
5550                 if (slot >= btrfs_header_nritems(c)) {
5551                         level++;
5552                         if (level == BTRFS_MAX_LEVEL) {
5553                                 ret = 1;
5554                                 goto done;
5555                         }
5556                         continue;
5557                 }
5558
5559                 if (next) {
5560                         btrfs_tree_unlock_rw(next, next_rw_lock);
5561                         free_extent_buffer(next);
5562                 }
5563
5564                 next = c;
5565                 next_rw_lock = path->locks[level];
5566                 ret = read_block_for_search(NULL, root, path, &next, level,
5567                                             slot, &key, 0);
5568                 if (ret == -EAGAIN)
5569                         goto again;
5570
5571                 if (ret < 0) {
5572                         btrfs_release_path(path);
5573                         goto done;
5574                 }
5575
5576                 if (!path->skip_locking) {
5577                         ret = btrfs_try_tree_read_lock(next);
5578                         if (!ret && time_seq) {
5579                                 /*
5580                                  * If we don't get the lock, we may be racing
5581                                  * with push_leaf_left, holding that lock while
5582                                  * itself waiting for the leaf we've currently
5583                                  * locked. To solve this situation, we give up
5584                                  * on our lock and cycle.
5585                                  */
5586                                 free_extent_buffer(next);
5587                                 btrfs_release_path(path);
5588                                 cond_resched();
5589                                 goto again;
5590                         }
5591                         if (!ret) {
5592                                 btrfs_set_path_blocking(path);
5593                                 btrfs_tree_read_lock(next);
5594                                 btrfs_clear_path_blocking(path, next,
5595                                                           BTRFS_READ_LOCK);
5596                         }
5597                         next_rw_lock = BTRFS_READ_LOCK;
5598                 }
5599                 break;
5600         }
5601         path->slots[level] = slot;
5602         while (1) {
5603                 level--;
5604                 c = path->nodes[level];
5605                 if (path->locks[level])
5606                         btrfs_tree_unlock_rw(c, path->locks[level]);
5607
5608                 free_extent_buffer(c);
5609                 path->nodes[level] = next;
5610                 path->slots[level] = 0;
5611                 if (!path->skip_locking)
5612                         path->locks[level] = next_rw_lock;
5613                 if (!level)
5614                         break;
5615
5616                 ret = read_block_for_search(NULL, root, path, &next, level,
5617                                             0, &key, 0);
5618                 if (ret == -EAGAIN)
5619                         goto again;
5620
5621                 if (ret < 0) {
5622                         btrfs_release_path(path);
5623                         goto done;
5624                 }
5625
5626                 if (!path->skip_locking) {
5627                         ret = btrfs_try_tree_read_lock(next);
5628                         if (!ret) {
5629                                 btrfs_set_path_blocking(path);
5630                                 btrfs_tree_read_lock(next);
5631                                 btrfs_clear_path_blocking(path, next,
5632                                                           BTRFS_READ_LOCK);
5633                         }
5634                         next_rw_lock = BTRFS_READ_LOCK;
5635                 }
5636         }
5637         ret = 0;
5638 done:
5639         unlock_up(path, 0, 1, 0, NULL);
5640         path->leave_spinning = old_spinning;
5641         if (!old_spinning)
5642                 btrfs_set_path_blocking(path);
5643
5644         return ret;
5645 }
5646
5647 /*
5648  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5649  * searching until it gets past min_objectid or finds an item of 'type'
5650  *
5651  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5652  */
5653 int btrfs_previous_item(struct btrfs_root *root,
5654                         struct btrfs_path *path, u64 min_objectid,
5655                         int type)
5656 {
5657         struct btrfs_key found_key;
5658         struct extent_buffer *leaf;
5659         u32 nritems;
5660         int ret;
5661
5662         while (1) {
5663                 if (path->slots[0] == 0) {
5664                         btrfs_set_path_blocking(path);
5665                         ret = btrfs_prev_leaf(root, path);
5666                         if (ret != 0)
5667                                 return ret;
5668                 } else {
5669                         path->slots[0]--;
5670                 }
5671                 leaf = path->nodes[0];
5672                 nritems = btrfs_header_nritems(leaf);
5673                 if (nritems == 0)
5674                         return 1;
5675                 if (path->slots[0] == nritems)
5676                         path->slots[0]--;
5677
5678                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5679                 if (found_key.objectid < min_objectid)
5680                         break;
5681                 if (found_key.type == type)
5682                         return 0;
5683                 if (found_key.objectid == min_objectid &&
5684                     found_key.type < type)
5685                         break;
5686         }
5687         return 1;
5688 }