]> Pileus Git - ~andy/linux/blob - fs/btrfs/ctree.c
Merge branch 'for-3.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[~andy/linux] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47         struct btrfs_path *path;
48         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49         return path;
50 }
51
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58         int i;
59         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60                 if (!p->nodes[i] || !p->locks[i])
61                         continue;
62                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63                 if (p->locks[i] == BTRFS_READ_LOCK)
64                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79                                         struct extent_buffer *held, int held_rw)
80 {
81         int i;
82
83 #ifdef CONFIG_DEBUG_LOCK_ALLOC
84         /* lockdep really cares that we take all of these spinlocks
85          * in the right order.  If any of the locks in the path are not
86          * currently blocking, it is going to complain.  So, make really
87          * really sure by forcing the path to blocking before we clear
88          * the path blocking.
89          */
90         if (held) {
91                 btrfs_set_lock_blocking_rw(held, held_rw);
92                 if (held_rw == BTRFS_WRITE_LOCK)
93                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
94                 else if (held_rw == BTRFS_READ_LOCK)
95                         held_rw = BTRFS_READ_LOCK_BLOCKING;
96         }
97         btrfs_set_path_blocking(p);
98 #endif
99
100         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
101                 if (p->nodes[i] && p->locks[i]) {
102                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
103                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
104                                 p->locks[i] = BTRFS_WRITE_LOCK;
105                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
106                                 p->locks[i] = BTRFS_READ_LOCK;
107                 }
108         }
109
110 #ifdef CONFIG_DEBUG_LOCK_ALLOC
111         if (held)
112                 btrfs_clear_lock_blocking_rw(held, held_rw);
113 #endif
114 }
115
116 /* this also releases the path */
117 void btrfs_free_path(struct btrfs_path *p)
118 {
119         if (!p)
120                 return;
121         btrfs_release_path(p);
122         kmem_cache_free(btrfs_path_cachep, p);
123 }
124
125 /*
126  * path release drops references on the extent buffers in the path
127  * and it drops any locks held by this path
128  *
129  * It is safe to call this on paths that no locks or extent buffers held.
130  */
131 noinline void btrfs_release_path(struct btrfs_path *p)
132 {
133         int i;
134
135         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
136                 p->slots[i] = 0;
137                 if (!p->nodes[i])
138                         continue;
139                 if (p->locks[i]) {
140                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
141                         p->locks[i] = 0;
142                 }
143                 free_extent_buffer(p->nodes[i]);
144                 p->nodes[i] = NULL;
145         }
146 }
147
148 /*
149  * safely gets a reference on the root node of a tree.  A lock
150  * is not taken, so a concurrent writer may put a different node
151  * at the root of the tree.  See btrfs_lock_root_node for the
152  * looping required.
153  *
154  * The extent buffer returned by this has a reference taken, so
155  * it won't disappear.  It may stop being the root of the tree
156  * at any time because there are no locks held.
157  */
158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
159 {
160         struct extent_buffer *eb;
161
162         while (1) {
163                 rcu_read_lock();
164                 eb = rcu_dereference(root->node);
165
166                 /*
167                  * RCU really hurts here, we could free up the root node because
168                  * it was cow'ed but we may not get the new root node yet so do
169                  * the inc_not_zero dance and if it doesn't work then
170                  * synchronize_rcu and try again.
171                  */
172                 if (atomic_inc_not_zero(&eb->refs)) {
173                         rcu_read_unlock();
174                         break;
175                 }
176                 rcu_read_unlock();
177                 synchronize_rcu();
178         }
179         return eb;
180 }
181
182 /* loop around taking references on and locking the root node of the
183  * tree until you end up with a lock on the root.  A locked buffer
184  * is returned, with a reference held.
185  */
186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
187 {
188         struct extent_buffer *eb;
189
190         while (1) {
191                 eb = btrfs_root_node(root);
192                 btrfs_tree_lock(eb);
193                 if (eb == root->node)
194                         break;
195                 btrfs_tree_unlock(eb);
196                 free_extent_buffer(eb);
197         }
198         return eb;
199 }
200
201 /* loop around taking references on and locking the root node of the
202  * tree until you end up with a lock on the root.  A locked buffer
203  * is returned, with a reference held.
204  */
205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
206 {
207         struct extent_buffer *eb;
208
209         while (1) {
210                 eb = btrfs_root_node(root);
211                 btrfs_tree_read_lock(eb);
212                 if (eb == root->node)
213                         break;
214                 btrfs_tree_read_unlock(eb);
215                 free_extent_buffer(eb);
216         }
217         return eb;
218 }
219
220 /* cowonly root (everything not a reference counted cow subvolume), just get
221  * put onto a simple dirty list.  transaction.c walks this to make sure they
222  * get properly updated on disk.
223  */
224 static void add_root_to_dirty_list(struct btrfs_root *root)
225 {
226         spin_lock(&root->fs_info->trans_lock);
227         if (root->track_dirty && list_empty(&root->dirty_list)) {
228                 list_add(&root->dirty_list,
229                          &root->fs_info->dirty_cowonly_roots);
230         }
231         spin_unlock(&root->fs_info->trans_lock);
232 }
233
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240                       struct btrfs_root *root,
241                       struct extent_buffer *buf,
242                       struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244         struct extent_buffer *cow;
245         int ret = 0;
246         int level;
247         struct btrfs_disk_key disk_key;
248
249         WARN_ON(root->ref_cows && trans->transid !=
250                 root->fs_info->running_transaction->transid);
251         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
252
253         level = btrfs_header_level(buf);
254         if (level == 0)
255                 btrfs_item_key(buf, &disk_key, 0);
256         else
257                 btrfs_node_key(buf, &disk_key, 0);
258
259         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
260                                      new_root_objectid, &disk_key, level,
261                                      buf->start, 0);
262         if (IS_ERR(cow))
263                 return PTR_ERR(cow);
264
265         copy_extent_buffer(cow, buf, 0, 0, cow->len);
266         btrfs_set_header_bytenr(cow, cow->start);
267         btrfs_set_header_generation(cow, trans->transid);
268         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270                                      BTRFS_HEADER_FLAG_RELOC);
271         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273         else
274                 btrfs_set_header_owner(cow, new_root_objectid);
275
276         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277                             BTRFS_FSID_SIZE);
278
279         WARN_ON(btrfs_header_generation(buf) > trans->transid);
280         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
282         else
283                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
284
285         if (ret)
286                 return ret;
287
288         btrfs_mark_buffer_dirty(cow);
289         *cow_ret = cow;
290         return 0;
291 }
292
293 enum mod_log_op {
294         MOD_LOG_KEY_REPLACE,
295         MOD_LOG_KEY_ADD,
296         MOD_LOG_KEY_REMOVE,
297         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299         MOD_LOG_MOVE_KEYS,
300         MOD_LOG_ROOT_REPLACE,
301 };
302
303 struct tree_mod_move {
304         int dst_slot;
305         int nr_items;
306 };
307
308 struct tree_mod_root {
309         u64 logical;
310         u8 level;
311 };
312
313 struct tree_mod_elem {
314         struct rb_node node;
315         u64 index;              /* shifted logical */
316         u64 seq;
317         enum mod_log_op op;
318
319         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320         int slot;
321
322         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323         u64 generation;
324
325         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326         struct btrfs_disk_key key;
327         u64 blockptr;
328
329         /* this is used for op == MOD_LOG_MOVE_KEYS */
330         struct tree_mod_move move;
331
332         /* this is used for op == MOD_LOG_ROOT_REPLACE */
333         struct tree_mod_root old_root;
334 };
335
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338         read_lock(&fs_info->tree_mod_log_lock);
339 }
340
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343         read_unlock(&fs_info->tree_mod_log_lock);
344 }
345
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348         write_lock(&fs_info->tree_mod_log_lock);
349 }
350
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353         write_unlock(&fs_info->tree_mod_log_lock);
354 }
355
356 /*
357  * Increment the upper half of tree_mod_seq, set lower half zero.
358  *
359  * Must be called with fs_info->tree_mod_seq_lock held.
360  */
361 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
362 {
363         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
364         seq &= 0xffffffff00000000ull;
365         seq += 1ull << 32;
366         atomic64_set(&fs_info->tree_mod_seq, seq);
367         return seq;
368 }
369
370 /*
371  * Increment the lower half of tree_mod_seq.
372  *
373  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
374  * are generated should not technically require a spin lock here. (Rationale:
375  * incrementing the minor while incrementing the major seq number is between its
376  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
377  * just returns a unique sequence number as usual.) We have decided to leave
378  * that requirement in here and rethink it once we notice it really imposes a
379  * problem on some workload.
380  */
381 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
382 {
383         return atomic64_inc_return(&fs_info->tree_mod_seq);
384 }
385
386 /*
387  * return the last minor in the previous major tree_mod_seq number
388  */
389 u64 btrfs_tree_mod_seq_prev(u64 seq)
390 {
391         return (seq & 0xffffffff00000000ull) - 1ull;
392 }
393
394 /*
395  * This adds a new blocker to the tree mod log's blocker list if the @elem
396  * passed does not already have a sequence number set. So when a caller expects
397  * to record tree modifications, it should ensure to set elem->seq to zero
398  * before calling btrfs_get_tree_mod_seq.
399  * Returns a fresh, unused tree log modification sequence number, even if no new
400  * blocker was added.
401  */
402 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
403                            struct seq_list *elem)
404 {
405         u64 seq;
406
407         tree_mod_log_write_lock(fs_info);
408         spin_lock(&fs_info->tree_mod_seq_lock);
409         if (!elem->seq) {
410                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
411                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
412         }
413         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
414         spin_unlock(&fs_info->tree_mod_seq_lock);
415         tree_mod_log_write_unlock(fs_info);
416
417         return seq;
418 }
419
420 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
421                             struct seq_list *elem)
422 {
423         struct rb_root *tm_root;
424         struct rb_node *node;
425         struct rb_node *next;
426         struct seq_list *cur_elem;
427         struct tree_mod_elem *tm;
428         u64 min_seq = (u64)-1;
429         u64 seq_putting = elem->seq;
430
431         if (!seq_putting)
432                 return;
433
434         spin_lock(&fs_info->tree_mod_seq_lock);
435         list_del(&elem->list);
436         elem->seq = 0;
437
438         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
439                 if (cur_elem->seq < min_seq) {
440                         if (seq_putting > cur_elem->seq) {
441                                 /*
442                                  * blocker with lower sequence number exists, we
443                                  * cannot remove anything from the log
444                                  */
445                                 spin_unlock(&fs_info->tree_mod_seq_lock);
446                                 return;
447                         }
448                         min_seq = cur_elem->seq;
449                 }
450         }
451         spin_unlock(&fs_info->tree_mod_seq_lock);
452
453         /*
454          * anything that's lower than the lowest existing (read: blocked)
455          * sequence number can be removed from the tree.
456          */
457         tree_mod_log_write_lock(fs_info);
458         tm_root = &fs_info->tree_mod_log;
459         for (node = rb_first(tm_root); node; node = next) {
460                 next = rb_next(node);
461                 tm = container_of(node, struct tree_mod_elem, node);
462                 if (tm->seq > min_seq)
463                         continue;
464                 rb_erase(node, tm_root);
465                 kfree(tm);
466         }
467         tree_mod_log_write_unlock(fs_info);
468 }
469
470 /*
471  * key order of the log:
472  *       index -> sequence
473  *
474  * the index is the shifted logical of the *new* root node for root replace
475  * operations, or the shifted logical of the affected block for all other
476  * operations.
477  *
478  * Note: must be called with write lock (tree_mod_log_write_lock).
479  */
480 static noinline int
481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
482 {
483         struct rb_root *tm_root;
484         struct rb_node **new;
485         struct rb_node *parent = NULL;
486         struct tree_mod_elem *cur;
487
488         BUG_ON(!tm);
489
490         spin_lock(&fs_info->tree_mod_seq_lock);
491         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
492         spin_unlock(&fs_info->tree_mod_seq_lock);
493
494         tm_root = &fs_info->tree_mod_log;
495         new = &tm_root->rb_node;
496         while (*new) {
497                 cur = container_of(*new, struct tree_mod_elem, node);
498                 parent = *new;
499                 if (cur->index < tm->index)
500                         new = &((*new)->rb_left);
501                 else if (cur->index > tm->index)
502                         new = &((*new)->rb_right);
503                 else if (cur->seq < tm->seq)
504                         new = &((*new)->rb_left);
505                 else if (cur->seq > tm->seq)
506                         new = &((*new)->rb_right);
507                 else
508                         return -EEXIST;
509         }
510
511         rb_link_node(&tm->node, parent, new);
512         rb_insert_color(&tm->node, tm_root);
513         return 0;
514 }
515
516 /*
517  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
518  * returns zero with the tree_mod_log_lock acquired. The caller must hold
519  * this until all tree mod log insertions are recorded in the rb tree and then
520  * call tree_mod_log_write_unlock() to release.
521  */
522 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
523                                     struct extent_buffer *eb) {
524         smp_mb();
525         if (list_empty(&(fs_info)->tree_mod_seq_list))
526                 return 1;
527         if (eb && btrfs_header_level(eb) == 0)
528                 return 1;
529
530         tree_mod_log_write_lock(fs_info);
531         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
532                 tree_mod_log_write_unlock(fs_info);
533                 return 1;
534         }
535
536         return 0;
537 }
538
539 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
540 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
541                                     struct extent_buffer *eb)
542 {
543         smp_mb();
544         if (list_empty(&(fs_info)->tree_mod_seq_list))
545                 return 0;
546         if (eb && btrfs_header_level(eb) == 0)
547                 return 0;
548
549         return 1;
550 }
551
552 static struct tree_mod_elem *
553 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
554                     enum mod_log_op op, gfp_t flags)
555 {
556         struct tree_mod_elem *tm;
557
558         tm = kzalloc(sizeof(*tm), flags);
559         if (!tm)
560                 return NULL;
561
562         tm->index = eb->start >> PAGE_CACHE_SHIFT;
563         if (op != MOD_LOG_KEY_ADD) {
564                 btrfs_node_key(eb, &tm->key, slot);
565                 tm->blockptr = btrfs_node_blockptr(eb, slot);
566         }
567         tm->op = op;
568         tm->slot = slot;
569         tm->generation = btrfs_node_ptr_generation(eb, slot);
570         RB_CLEAR_NODE(&tm->node);
571
572         return tm;
573 }
574
575 static noinline int
576 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
577                         struct extent_buffer *eb, int slot,
578                         enum mod_log_op op, gfp_t flags)
579 {
580         struct tree_mod_elem *tm;
581         int ret;
582
583         if (!tree_mod_need_log(fs_info, eb))
584                 return 0;
585
586         tm = alloc_tree_mod_elem(eb, slot, op, flags);
587         if (!tm)
588                 return -ENOMEM;
589
590         if (tree_mod_dont_log(fs_info, eb)) {
591                 kfree(tm);
592                 return 0;
593         }
594
595         ret = __tree_mod_log_insert(fs_info, tm);
596         tree_mod_log_write_unlock(fs_info);
597         if (ret)
598                 kfree(tm);
599
600         return ret;
601 }
602
603 static noinline int
604 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
605                          struct extent_buffer *eb, int dst_slot, int src_slot,
606                          int nr_items, gfp_t flags)
607 {
608         struct tree_mod_elem *tm = NULL;
609         struct tree_mod_elem **tm_list = NULL;
610         int ret = 0;
611         int i;
612         int locked = 0;
613
614         if (!tree_mod_need_log(fs_info, eb))
615                 return 0;
616
617         tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags);
618         if (!tm_list)
619                 return -ENOMEM;
620
621         tm = kzalloc(sizeof(*tm), flags);
622         if (!tm) {
623                 ret = -ENOMEM;
624                 goto free_tms;
625         }
626
627         tm->index = eb->start >> PAGE_CACHE_SHIFT;
628         tm->slot = src_slot;
629         tm->move.dst_slot = dst_slot;
630         tm->move.nr_items = nr_items;
631         tm->op = MOD_LOG_MOVE_KEYS;
632
633         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
634                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
635                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
636                 if (!tm_list[i]) {
637                         ret = -ENOMEM;
638                         goto free_tms;
639                 }
640         }
641
642         if (tree_mod_dont_log(fs_info, eb))
643                 goto free_tms;
644         locked = 1;
645
646         /*
647          * When we override something during the move, we log these removals.
648          * This can only happen when we move towards the beginning of the
649          * buffer, i.e. dst_slot < src_slot.
650          */
651         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
652                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653                 if (ret)
654                         goto free_tms;
655         }
656
657         ret = __tree_mod_log_insert(fs_info, tm);
658         if (ret)
659                 goto free_tms;
660         tree_mod_log_write_unlock(fs_info);
661         kfree(tm_list);
662
663         return 0;
664 free_tms:
665         for (i = 0; i < nr_items; i++) {
666                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
667                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
668                 kfree(tm_list[i]);
669         }
670         if (locked)
671                 tree_mod_log_write_unlock(fs_info);
672         kfree(tm_list);
673         kfree(tm);
674
675         return ret;
676 }
677
678 static inline int
679 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
680                        struct tree_mod_elem **tm_list,
681                        int nritems)
682 {
683         int i, j;
684         int ret;
685
686         for (i = nritems - 1; i >= 0; i--) {
687                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
688                 if (ret) {
689                         for (j = nritems - 1; j > i; j--)
690                                 rb_erase(&tm_list[j]->node,
691                                          &fs_info->tree_mod_log);
692                         return ret;
693                 }
694         }
695
696         return 0;
697 }
698
699 static noinline int
700 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
701                          struct extent_buffer *old_root,
702                          struct extent_buffer *new_root, gfp_t flags,
703                          int log_removal)
704 {
705         struct tree_mod_elem *tm = NULL;
706         struct tree_mod_elem **tm_list = NULL;
707         int nritems = 0;
708         int ret = 0;
709         int i;
710
711         if (!tree_mod_need_log(fs_info, NULL))
712                 return 0;
713
714         if (log_removal && btrfs_header_level(old_root) > 0) {
715                 nritems = btrfs_header_nritems(old_root);
716                 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
717                                   flags);
718                 if (!tm_list) {
719                         ret = -ENOMEM;
720                         goto free_tms;
721                 }
722                 for (i = 0; i < nritems; i++) {
723                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
724                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
725                         if (!tm_list[i]) {
726                                 ret = -ENOMEM;
727                                 goto free_tms;
728                         }
729                 }
730         }
731
732         tm = kzalloc(sizeof(*tm), flags);
733         if (!tm) {
734                 ret = -ENOMEM;
735                 goto free_tms;
736         }
737
738         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
739         tm->old_root.logical = old_root->start;
740         tm->old_root.level = btrfs_header_level(old_root);
741         tm->generation = btrfs_header_generation(old_root);
742         tm->op = MOD_LOG_ROOT_REPLACE;
743
744         if (tree_mod_dont_log(fs_info, NULL))
745                 goto free_tms;
746
747         if (tm_list)
748                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
749         if (!ret)
750                 ret = __tree_mod_log_insert(fs_info, tm);
751
752         tree_mod_log_write_unlock(fs_info);
753         if (ret)
754                 goto free_tms;
755         kfree(tm_list);
756
757         return ret;
758
759 free_tms:
760         if (tm_list) {
761                 for (i = 0; i < nritems; i++)
762                         kfree(tm_list[i]);
763                 kfree(tm_list);
764         }
765         kfree(tm);
766
767         return ret;
768 }
769
770 static struct tree_mod_elem *
771 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
772                       int smallest)
773 {
774         struct rb_root *tm_root;
775         struct rb_node *node;
776         struct tree_mod_elem *cur = NULL;
777         struct tree_mod_elem *found = NULL;
778         u64 index = start >> PAGE_CACHE_SHIFT;
779
780         tree_mod_log_read_lock(fs_info);
781         tm_root = &fs_info->tree_mod_log;
782         node = tm_root->rb_node;
783         while (node) {
784                 cur = container_of(node, struct tree_mod_elem, node);
785                 if (cur->index < index) {
786                         node = node->rb_left;
787                 } else if (cur->index > index) {
788                         node = node->rb_right;
789                 } else if (cur->seq < min_seq) {
790                         node = node->rb_left;
791                 } else if (!smallest) {
792                         /* we want the node with the highest seq */
793                         if (found)
794                                 BUG_ON(found->seq > cur->seq);
795                         found = cur;
796                         node = node->rb_left;
797                 } else if (cur->seq > min_seq) {
798                         /* we want the node with the smallest seq */
799                         if (found)
800                                 BUG_ON(found->seq < cur->seq);
801                         found = cur;
802                         node = node->rb_right;
803                 } else {
804                         found = cur;
805                         break;
806                 }
807         }
808         tree_mod_log_read_unlock(fs_info);
809
810         return found;
811 }
812
813 /*
814  * this returns the element from the log with the smallest time sequence
815  * value that's in the log (the oldest log item). any element with a time
816  * sequence lower than min_seq will be ignored.
817  */
818 static struct tree_mod_elem *
819 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
820                            u64 min_seq)
821 {
822         return __tree_mod_log_search(fs_info, start, min_seq, 1);
823 }
824
825 /*
826  * this returns the element from the log with the largest time sequence
827  * value that's in the log (the most recent log item). any element with
828  * a time sequence lower than min_seq will be ignored.
829  */
830 static struct tree_mod_elem *
831 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
832 {
833         return __tree_mod_log_search(fs_info, start, min_seq, 0);
834 }
835
836 static noinline int
837 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
838                      struct extent_buffer *src, unsigned long dst_offset,
839                      unsigned long src_offset, int nr_items)
840 {
841         int ret = 0;
842         struct tree_mod_elem **tm_list = NULL;
843         struct tree_mod_elem **tm_list_add, **tm_list_rem;
844         int i;
845         int locked = 0;
846
847         if (!tree_mod_need_log(fs_info, NULL))
848                 return 0;
849
850         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
851                 return 0;
852
853         tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *),
854                           GFP_NOFS);
855         if (!tm_list)
856                 return -ENOMEM;
857
858         tm_list_add = tm_list;
859         tm_list_rem = tm_list + nr_items;
860         for (i = 0; i < nr_items; i++) {
861                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
862                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
863                 if (!tm_list_rem[i]) {
864                         ret = -ENOMEM;
865                         goto free_tms;
866                 }
867
868                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
869                     MOD_LOG_KEY_ADD, GFP_NOFS);
870                 if (!tm_list_add[i]) {
871                         ret = -ENOMEM;
872                         goto free_tms;
873                 }
874         }
875
876         if (tree_mod_dont_log(fs_info, NULL))
877                 goto free_tms;
878         locked = 1;
879
880         for (i = 0; i < nr_items; i++) {
881                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
882                 if (ret)
883                         goto free_tms;
884                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
885                 if (ret)
886                         goto free_tms;
887         }
888
889         tree_mod_log_write_unlock(fs_info);
890         kfree(tm_list);
891
892         return 0;
893
894 free_tms:
895         for (i = 0; i < nr_items * 2; i++) {
896                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
897                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
898                 kfree(tm_list[i]);
899         }
900         if (locked)
901                 tree_mod_log_write_unlock(fs_info);
902         kfree(tm_list);
903
904         return ret;
905 }
906
907 static inline void
908 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
909                      int dst_offset, int src_offset, int nr_items)
910 {
911         int ret;
912         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
913                                        nr_items, GFP_NOFS);
914         BUG_ON(ret < 0);
915 }
916
917 static noinline void
918 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
919                           struct extent_buffer *eb, int slot, int atomic)
920 {
921         int ret;
922
923         ret = tree_mod_log_insert_key(fs_info, eb, slot,
924                                         MOD_LOG_KEY_REPLACE,
925                                         atomic ? GFP_ATOMIC : GFP_NOFS);
926         BUG_ON(ret < 0);
927 }
928
929 static noinline int
930 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
931 {
932         struct tree_mod_elem **tm_list = NULL;
933         int nritems = 0;
934         int i;
935         int ret = 0;
936
937         if (btrfs_header_level(eb) == 0)
938                 return 0;
939
940         if (!tree_mod_need_log(fs_info, NULL))
941                 return 0;
942
943         nritems = btrfs_header_nritems(eb);
944         tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *),
945                           GFP_NOFS);
946         if (!tm_list)
947                 return -ENOMEM;
948
949         for (i = 0; i < nritems; i++) {
950                 tm_list[i] = alloc_tree_mod_elem(eb, i,
951                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
952                 if (!tm_list[i]) {
953                         ret = -ENOMEM;
954                         goto free_tms;
955                 }
956         }
957
958         if (tree_mod_dont_log(fs_info, eb))
959                 goto free_tms;
960
961         ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
962         tree_mod_log_write_unlock(fs_info);
963         if (ret)
964                 goto free_tms;
965         kfree(tm_list);
966
967         return 0;
968
969 free_tms:
970         for (i = 0; i < nritems; i++)
971                 kfree(tm_list[i]);
972         kfree(tm_list);
973
974         return ret;
975 }
976
977 static noinline void
978 tree_mod_log_set_root_pointer(struct btrfs_root *root,
979                               struct extent_buffer *new_root_node,
980                               int log_removal)
981 {
982         int ret;
983         ret = tree_mod_log_insert_root(root->fs_info, root->node,
984                                        new_root_node, GFP_NOFS, log_removal);
985         BUG_ON(ret < 0);
986 }
987
988 /*
989  * check if the tree block can be shared by multiple trees
990  */
991 int btrfs_block_can_be_shared(struct btrfs_root *root,
992                               struct extent_buffer *buf)
993 {
994         /*
995          * Tree blocks not in refernece counted trees and tree roots
996          * are never shared. If a block was allocated after the last
997          * snapshot and the block was not allocated by tree relocation,
998          * we know the block is not shared.
999          */
1000         if (root->ref_cows &&
1001             buf != root->node && buf != root->commit_root &&
1002             (btrfs_header_generation(buf) <=
1003              btrfs_root_last_snapshot(&root->root_item) ||
1004              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
1005                 return 1;
1006 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1007         if (root->ref_cows &&
1008             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1009                 return 1;
1010 #endif
1011         return 0;
1012 }
1013
1014 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
1015                                        struct btrfs_root *root,
1016                                        struct extent_buffer *buf,
1017                                        struct extent_buffer *cow,
1018                                        int *last_ref)
1019 {
1020         u64 refs;
1021         u64 owner;
1022         u64 flags;
1023         u64 new_flags = 0;
1024         int ret;
1025
1026         /*
1027          * Backrefs update rules:
1028          *
1029          * Always use full backrefs for extent pointers in tree block
1030          * allocated by tree relocation.
1031          *
1032          * If a shared tree block is no longer referenced by its owner
1033          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
1034          * use full backrefs for extent pointers in tree block.
1035          *
1036          * If a tree block is been relocating
1037          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1038          * use full backrefs for extent pointers in tree block.
1039          * The reason for this is some operations (such as drop tree)
1040          * are only allowed for blocks use full backrefs.
1041          */
1042
1043         if (btrfs_block_can_be_shared(root, buf)) {
1044                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1045                                                btrfs_header_level(buf), 1,
1046                                                &refs, &flags);
1047                 if (ret)
1048                         return ret;
1049                 if (refs == 0) {
1050                         ret = -EROFS;
1051                         btrfs_std_error(root->fs_info, ret);
1052                         return ret;
1053                 }
1054         } else {
1055                 refs = 1;
1056                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1057                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1058                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1059                 else
1060                         flags = 0;
1061         }
1062
1063         owner = btrfs_header_owner(buf);
1064         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1065                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1066
1067         if (refs > 1) {
1068                 if ((owner == root->root_key.objectid ||
1069                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1070                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1071                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
1072                         BUG_ON(ret); /* -ENOMEM */
1073
1074                         if (root->root_key.objectid ==
1075                             BTRFS_TREE_RELOC_OBJECTID) {
1076                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
1077                                 BUG_ON(ret); /* -ENOMEM */
1078                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1079                                 BUG_ON(ret); /* -ENOMEM */
1080                         }
1081                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1082                 } else {
1083
1084                         if (root->root_key.objectid ==
1085                             BTRFS_TREE_RELOC_OBJECTID)
1086                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1087                         else
1088                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1089                         BUG_ON(ret); /* -ENOMEM */
1090                 }
1091                 if (new_flags != 0) {
1092                         int level = btrfs_header_level(buf);
1093
1094                         ret = btrfs_set_disk_extent_flags(trans, root,
1095                                                           buf->start,
1096                                                           buf->len,
1097                                                           new_flags, level, 0);
1098                         if (ret)
1099                                 return ret;
1100                 }
1101         } else {
1102                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1103                         if (root->root_key.objectid ==
1104                             BTRFS_TREE_RELOC_OBJECTID)
1105                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
1106                         else
1107                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
1108                         BUG_ON(ret); /* -ENOMEM */
1109                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
1110                         BUG_ON(ret); /* -ENOMEM */
1111                 }
1112                 clean_tree_block(trans, root, buf);
1113                 *last_ref = 1;
1114         }
1115         return 0;
1116 }
1117
1118 /*
1119  * does the dirty work in cow of a single block.  The parent block (if
1120  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1121  * dirty and returned locked.  If you modify the block it needs to be marked
1122  * dirty again.
1123  *
1124  * search_start -- an allocation hint for the new block
1125  *
1126  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1127  * bytes the allocator should try to find free next to the block it returns.
1128  * This is just a hint and may be ignored by the allocator.
1129  */
1130 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1131                              struct btrfs_root *root,
1132                              struct extent_buffer *buf,
1133                              struct extent_buffer *parent, int parent_slot,
1134                              struct extent_buffer **cow_ret,
1135                              u64 search_start, u64 empty_size)
1136 {
1137         struct btrfs_disk_key disk_key;
1138         struct extent_buffer *cow;
1139         int level, ret;
1140         int last_ref = 0;
1141         int unlock_orig = 0;
1142         u64 parent_start;
1143
1144         if (*cow_ret == buf)
1145                 unlock_orig = 1;
1146
1147         btrfs_assert_tree_locked(buf);
1148
1149         WARN_ON(root->ref_cows && trans->transid !=
1150                 root->fs_info->running_transaction->transid);
1151         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
1152
1153         level = btrfs_header_level(buf);
1154
1155         if (level == 0)
1156                 btrfs_item_key(buf, &disk_key, 0);
1157         else
1158                 btrfs_node_key(buf, &disk_key, 0);
1159
1160         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1161                 if (parent)
1162                         parent_start = parent->start;
1163                 else
1164                         parent_start = 0;
1165         } else
1166                 parent_start = 0;
1167
1168         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
1169                                      root->root_key.objectid, &disk_key,
1170                                      level, search_start, empty_size);
1171         if (IS_ERR(cow))
1172                 return PTR_ERR(cow);
1173
1174         /* cow is set to blocking by btrfs_init_new_buffer */
1175
1176         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1177         btrfs_set_header_bytenr(cow, cow->start);
1178         btrfs_set_header_generation(cow, trans->transid);
1179         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1180         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1181                                      BTRFS_HEADER_FLAG_RELOC);
1182         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1183                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1184         else
1185                 btrfs_set_header_owner(cow, root->root_key.objectid);
1186
1187         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1188                             BTRFS_FSID_SIZE);
1189
1190         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1191         if (ret) {
1192                 btrfs_abort_transaction(trans, root, ret);
1193                 return ret;
1194         }
1195
1196         if (root->ref_cows) {
1197                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1198                 if (ret)
1199                         return ret;
1200         }
1201
1202         if (buf == root->node) {
1203                 WARN_ON(parent && parent != buf);
1204                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1205                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1206                         parent_start = buf->start;
1207                 else
1208                         parent_start = 0;
1209
1210                 extent_buffer_get(cow);
1211                 tree_mod_log_set_root_pointer(root, cow, 1);
1212                 rcu_assign_pointer(root->node, cow);
1213
1214                 btrfs_free_tree_block(trans, root, buf, parent_start,
1215                                       last_ref);
1216                 free_extent_buffer(buf);
1217                 add_root_to_dirty_list(root);
1218         } else {
1219                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1220                         parent_start = parent->start;
1221                 else
1222                         parent_start = 0;
1223
1224                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1225                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1226                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1227                 btrfs_set_node_blockptr(parent, parent_slot,
1228                                         cow->start);
1229                 btrfs_set_node_ptr_generation(parent, parent_slot,
1230                                               trans->transid);
1231                 btrfs_mark_buffer_dirty(parent);
1232                 if (last_ref) {
1233                         ret = tree_mod_log_free_eb(root->fs_info, buf);
1234                         if (ret) {
1235                                 btrfs_abort_transaction(trans, root, ret);
1236                                 return ret;
1237                         }
1238                 }
1239                 btrfs_free_tree_block(trans, root, buf, parent_start,
1240                                       last_ref);
1241         }
1242         if (unlock_orig)
1243                 btrfs_tree_unlock(buf);
1244         free_extent_buffer_stale(buf);
1245         btrfs_mark_buffer_dirty(cow);
1246         *cow_ret = cow;
1247         return 0;
1248 }
1249
1250 /*
1251  * returns the logical address of the oldest predecessor of the given root.
1252  * entries older than time_seq are ignored.
1253  */
1254 static struct tree_mod_elem *
1255 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1256                            struct extent_buffer *eb_root, u64 time_seq)
1257 {
1258         struct tree_mod_elem *tm;
1259         struct tree_mod_elem *found = NULL;
1260         u64 root_logical = eb_root->start;
1261         int looped = 0;
1262
1263         if (!time_seq)
1264                 return NULL;
1265
1266         /*
1267          * the very last operation that's logged for a root is the replacement
1268          * operation (if it is replaced at all). this has the index of the *new*
1269          * root, making it the very first operation that's logged for this root.
1270          */
1271         while (1) {
1272                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1273                                                 time_seq);
1274                 if (!looped && !tm)
1275                         return NULL;
1276                 /*
1277                  * if there are no tree operation for the oldest root, we simply
1278                  * return it. this should only happen if that (old) root is at
1279                  * level 0.
1280                  */
1281                 if (!tm)
1282                         break;
1283
1284                 /*
1285                  * if there's an operation that's not a root replacement, we
1286                  * found the oldest version of our root. normally, we'll find a
1287                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1288                  */
1289                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1290                         break;
1291
1292                 found = tm;
1293                 root_logical = tm->old_root.logical;
1294                 looped = 1;
1295         }
1296
1297         /* if there's no old root to return, return what we found instead */
1298         if (!found)
1299                 found = tm;
1300
1301         return found;
1302 }
1303
1304 /*
1305  * tm is a pointer to the first operation to rewind within eb. then, all
1306  * previous operations will be rewinded (until we reach something older than
1307  * time_seq).
1308  */
1309 static void
1310 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1311                       u64 time_seq, struct tree_mod_elem *first_tm)
1312 {
1313         u32 n;
1314         struct rb_node *next;
1315         struct tree_mod_elem *tm = first_tm;
1316         unsigned long o_dst;
1317         unsigned long o_src;
1318         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1319
1320         n = btrfs_header_nritems(eb);
1321         tree_mod_log_read_lock(fs_info);
1322         while (tm && tm->seq >= time_seq) {
1323                 /*
1324                  * all the operations are recorded with the operator used for
1325                  * the modification. as we're going backwards, we do the
1326                  * opposite of each operation here.
1327                  */
1328                 switch (tm->op) {
1329                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1330                         BUG_ON(tm->slot < n);
1331                         /* Fallthrough */
1332                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1333                 case MOD_LOG_KEY_REMOVE:
1334                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1335                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1336                         btrfs_set_node_ptr_generation(eb, tm->slot,
1337                                                       tm->generation);
1338                         n++;
1339                         break;
1340                 case MOD_LOG_KEY_REPLACE:
1341                         BUG_ON(tm->slot >= n);
1342                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1343                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1344                         btrfs_set_node_ptr_generation(eb, tm->slot,
1345                                                       tm->generation);
1346                         break;
1347                 case MOD_LOG_KEY_ADD:
1348                         /* if a move operation is needed it's in the log */
1349                         n--;
1350                         break;
1351                 case MOD_LOG_MOVE_KEYS:
1352                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1353                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1354                         memmove_extent_buffer(eb, o_dst, o_src,
1355                                               tm->move.nr_items * p_size);
1356                         break;
1357                 case MOD_LOG_ROOT_REPLACE:
1358                         /*
1359                          * this operation is special. for roots, this must be
1360                          * handled explicitly before rewinding.
1361                          * for non-roots, this operation may exist if the node
1362                          * was a root: root A -> child B; then A gets empty and
1363                          * B is promoted to the new root. in the mod log, we'll
1364                          * have a root-replace operation for B, a tree block
1365                          * that is no root. we simply ignore that operation.
1366                          */
1367                         break;
1368                 }
1369                 next = rb_next(&tm->node);
1370                 if (!next)
1371                         break;
1372                 tm = container_of(next, struct tree_mod_elem, node);
1373                 if (tm->index != first_tm->index)
1374                         break;
1375         }
1376         tree_mod_log_read_unlock(fs_info);
1377         btrfs_set_header_nritems(eb, n);
1378 }
1379
1380 /*
1381  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1382  * is returned. If rewind operations happen, a fresh buffer is returned. The
1383  * returned buffer is always read-locked. If the returned buffer is not the
1384  * input buffer, the lock on the input buffer is released and the input buffer
1385  * is freed (its refcount is decremented).
1386  */
1387 static struct extent_buffer *
1388 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1389                     struct extent_buffer *eb, u64 time_seq)
1390 {
1391         struct extent_buffer *eb_rewin;
1392         struct tree_mod_elem *tm;
1393
1394         if (!time_seq)
1395                 return eb;
1396
1397         if (btrfs_header_level(eb) == 0)
1398                 return eb;
1399
1400         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1401         if (!tm)
1402                 return eb;
1403
1404         btrfs_set_path_blocking(path);
1405         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1406
1407         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1408                 BUG_ON(tm->slot != 0);
1409                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1410                                                 fs_info->tree_root->nodesize);
1411                 if (!eb_rewin) {
1412                         btrfs_tree_read_unlock_blocking(eb);
1413                         free_extent_buffer(eb);
1414                         return NULL;
1415                 }
1416                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1417                 btrfs_set_header_backref_rev(eb_rewin,
1418                                              btrfs_header_backref_rev(eb));
1419                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1420                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1421         } else {
1422                 eb_rewin = btrfs_clone_extent_buffer(eb);
1423                 if (!eb_rewin) {
1424                         btrfs_tree_read_unlock_blocking(eb);
1425                         free_extent_buffer(eb);
1426                         return NULL;
1427                 }
1428         }
1429
1430         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1431         btrfs_tree_read_unlock_blocking(eb);
1432         free_extent_buffer(eb);
1433
1434         extent_buffer_get(eb_rewin);
1435         btrfs_tree_read_lock(eb_rewin);
1436         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1437         WARN_ON(btrfs_header_nritems(eb_rewin) >
1438                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1439
1440         return eb_rewin;
1441 }
1442
1443 /*
1444  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1445  * value. If there are no changes, the current root->root_node is returned. If
1446  * anything changed in between, there's a fresh buffer allocated on which the
1447  * rewind operations are done. In any case, the returned buffer is read locked.
1448  * Returns NULL on error (with no locks held).
1449  */
1450 static inline struct extent_buffer *
1451 get_old_root(struct btrfs_root *root, u64 time_seq)
1452 {
1453         struct tree_mod_elem *tm;
1454         struct extent_buffer *eb = NULL;
1455         struct extent_buffer *eb_root;
1456         struct extent_buffer *old;
1457         struct tree_mod_root *old_root = NULL;
1458         u64 old_generation = 0;
1459         u64 logical;
1460         u32 blocksize;
1461
1462         eb_root = btrfs_read_lock_root_node(root);
1463         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1464         if (!tm)
1465                 return eb_root;
1466
1467         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1468                 old_root = &tm->old_root;
1469                 old_generation = tm->generation;
1470                 logical = old_root->logical;
1471         } else {
1472                 logical = eb_root->start;
1473         }
1474
1475         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1476         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1477                 btrfs_tree_read_unlock(eb_root);
1478                 free_extent_buffer(eb_root);
1479                 blocksize = btrfs_level_size(root, old_root->level);
1480                 old = read_tree_block(root, logical, blocksize, 0);
1481                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1482                         free_extent_buffer(old);
1483                         btrfs_warn(root->fs_info,
1484                                 "failed to read tree block %llu from get_old_root", logical);
1485                 } else {
1486                         eb = btrfs_clone_extent_buffer(old);
1487                         free_extent_buffer(old);
1488                 }
1489         } else if (old_root) {
1490                 btrfs_tree_read_unlock(eb_root);
1491                 free_extent_buffer(eb_root);
1492                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1493         } else {
1494                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1495                 eb = btrfs_clone_extent_buffer(eb_root);
1496                 btrfs_tree_read_unlock_blocking(eb_root);
1497                 free_extent_buffer(eb_root);
1498         }
1499
1500         if (!eb)
1501                 return NULL;
1502         extent_buffer_get(eb);
1503         btrfs_tree_read_lock(eb);
1504         if (old_root) {
1505                 btrfs_set_header_bytenr(eb, eb->start);
1506                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1507                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1508                 btrfs_set_header_level(eb, old_root->level);
1509                 btrfs_set_header_generation(eb, old_generation);
1510         }
1511         if (tm)
1512                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1513         else
1514                 WARN_ON(btrfs_header_level(eb) != 0);
1515         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1516
1517         return eb;
1518 }
1519
1520 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1521 {
1522         struct tree_mod_elem *tm;
1523         int level;
1524         struct extent_buffer *eb_root = btrfs_root_node(root);
1525
1526         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1527         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1528                 level = tm->old_root.level;
1529         } else {
1530                 level = btrfs_header_level(eb_root);
1531         }
1532         free_extent_buffer(eb_root);
1533
1534         return level;
1535 }
1536
1537 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1538                                    struct btrfs_root *root,
1539                                    struct extent_buffer *buf)
1540 {
1541         /* ensure we can see the force_cow */
1542         smp_rmb();
1543
1544         /*
1545          * We do not need to cow a block if
1546          * 1) this block is not created or changed in this transaction;
1547          * 2) this block does not belong to TREE_RELOC tree;
1548          * 3) the root is not forced COW.
1549          *
1550          * What is forced COW:
1551          *    when we create snapshot during commiting the transaction,
1552          *    after we've finished coping src root, we must COW the shared
1553          *    block to ensure the metadata consistency.
1554          */
1555         if (btrfs_header_generation(buf) == trans->transid &&
1556             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1557             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1558               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1559             !root->force_cow)
1560                 return 0;
1561         return 1;
1562 }
1563
1564 /*
1565  * cows a single block, see __btrfs_cow_block for the real work.
1566  * This version of it has extra checks so that a block isn't cow'd more than
1567  * once per transaction, as long as it hasn't been written yet
1568  */
1569 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1570                     struct btrfs_root *root, struct extent_buffer *buf,
1571                     struct extent_buffer *parent, int parent_slot,
1572                     struct extent_buffer **cow_ret)
1573 {
1574         u64 search_start;
1575         int ret;
1576
1577         if (trans->transaction != root->fs_info->running_transaction)
1578                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1579                        trans->transid,
1580                        root->fs_info->running_transaction->transid);
1581
1582         if (trans->transid != root->fs_info->generation)
1583                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1584                        trans->transid, root->fs_info->generation);
1585
1586         if (!should_cow_block(trans, root, buf)) {
1587                 *cow_ret = buf;
1588                 return 0;
1589         }
1590
1591         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1592
1593         if (parent)
1594                 btrfs_set_lock_blocking(parent);
1595         btrfs_set_lock_blocking(buf);
1596
1597         ret = __btrfs_cow_block(trans, root, buf, parent,
1598                                  parent_slot, cow_ret, search_start, 0);
1599
1600         trace_btrfs_cow_block(root, buf, *cow_ret);
1601
1602         return ret;
1603 }
1604
1605 /*
1606  * helper function for defrag to decide if two blocks pointed to by a
1607  * node are actually close by
1608  */
1609 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1610 {
1611         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1612                 return 1;
1613         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1614                 return 1;
1615         return 0;
1616 }
1617
1618 /*
1619  * compare two keys in a memcmp fashion
1620  */
1621 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1622 {
1623         struct btrfs_key k1;
1624
1625         btrfs_disk_key_to_cpu(&k1, disk);
1626
1627         return btrfs_comp_cpu_keys(&k1, k2);
1628 }
1629
1630 /*
1631  * same as comp_keys only with two btrfs_key's
1632  */
1633 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1634 {
1635         if (k1->objectid > k2->objectid)
1636                 return 1;
1637         if (k1->objectid < k2->objectid)
1638                 return -1;
1639         if (k1->type > k2->type)
1640                 return 1;
1641         if (k1->type < k2->type)
1642                 return -1;
1643         if (k1->offset > k2->offset)
1644                 return 1;
1645         if (k1->offset < k2->offset)
1646                 return -1;
1647         return 0;
1648 }
1649
1650 /*
1651  * this is used by the defrag code to go through all the
1652  * leaves pointed to by a node and reallocate them so that
1653  * disk order is close to key order
1654  */
1655 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1656                        struct btrfs_root *root, struct extent_buffer *parent,
1657                        int start_slot, u64 *last_ret,
1658                        struct btrfs_key *progress)
1659 {
1660         struct extent_buffer *cur;
1661         u64 blocknr;
1662         u64 gen;
1663         u64 search_start = *last_ret;
1664         u64 last_block = 0;
1665         u64 other;
1666         u32 parent_nritems;
1667         int end_slot;
1668         int i;
1669         int err = 0;
1670         int parent_level;
1671         int uptodate;
1672         u32 blocksize;
1673         int progress_passed = 0;
1674         struct btrfs_disk_key disk_key;
1675
1676         parent_level = btrfs_header_level(parent);
1677
1678         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1679         WARN_ON(trans->transid != root->fs_info->generation);
1680
1681         parent_nritems = btrfs_header_nritems(parent);
1682         blocksize = btrfs_level_size(root, parent_level - 1);
1683         end_slot = parent_nritems;
1684
1685         if (parent_nritems == 1)
1686                 return 0;
1687
1688         btrfs_set_lock_blocking(parent);
1689
1690         for (i = start_slot; i < end_slot; i++) {
1691                 int close = 1;
1692
1693                 btrfs_node_key(parent, &disk_key, i);
1694                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1695                         continue;
1696
1697                 progress_passed = 1;
1698                 blocknr = btrfs_node_blockptr(parent, i);
1699                 gen = btrfs_node_ptr_generation(parent, i);
1700                 if (last_block == 0)
1701                         last_block = blocknr;
1702
1703                 if (i > 0) {
1704                         other = btrfs_node_blockptr(parent, i - 1);
1705                         close = close_blocks(blocknr, other, blocksize);
1706                 }
1707                 if (!close && i < end_slot - 2) {
1708                         other = btrfs_node_blockptr(parent, i + 1);
1709                         close = close_blocks(blocknr, other, blocksize);
1710                 }
1711                 if (close) {
1712                         last_block = blocknr;
1713                         continue;
1714                 }
1715
1716                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1717                 if (cur)
1718                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1719                 else
1720                         uptodate = 0;
1721                 if (!cur || !uptodate) {
1722                         if (!cur) {
1723                                 cur = read_tree_block(root, blocknr,
1724                                                          blocksize, gen);
1725                                 if (!cur || !extent_buffer_uptodate(cur)) {
1726                                         free_extent_buffer(cur);
1727                                         return -EIO;
1728                                 }
1729                         } else if (!uptodate) {
1730                                 err = btrfs_read_buffer(cur, gen);
1731                                 if (err) {
1732                                         free_extent_buffer(cur);
1733                                         return err;
1734                                 }
1735                         }
1736                 }
1737                 if (search_start == 0)
1738                         search_start = last_block;
1739
1740                 btrfs_tree_lock(cur);
1741                 btrfs_set_lock_blocking(cur);
1742                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1743                                         &cur, search_start,
1744                                         min(16 * blocksize,
1745                                             (end_slot - i) * blocksize));
1746                 if (err) {
1747                         btrfs_tree_unlock(cur);
1748                         free_extent_buffer(cur);
1749                         break;
1750                 }
1751                 search_start = cur->start;
1752                 last_block = cur->start;
1753                 *last_ret = search_start;
1754                 btrfs_tree_unlock(cur);
1755                 free_extent_buffer(cur);
1756         }
1757         return err;
1758 }
1759
1760 /*
1761  * The leaf data grows from end-to-front in the node.
1762  * this returns the address of the start of the last item,
1763  * which is the stop of the leaf data stack
1764  */
1765 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1766                                          struct extent_buffer *leaf)
1767 {
1768         u32 nr = btrfs_header_nritems(leaf);
1769         if (nr == 0)
1770                 return BTRFS_LEAF_DATA_SIZE(root);
1771         return btrfs_item_offset_nr(leaf, nr - 1);
1772 }
1773
1774
1775 /*
1776  * search for key in the extent_buffer.  The items start at offset p,
1777  * and they are item_size apart.  There are 'max' items in p.
1778  *
1779  * the slot in the array is returned via slot, and it points to
1780  * the place where you would insert key if it is not found in
1781  * the array.
1782  *
1783  * slot may point to max if the key is bigger than all of the keys
1784  */
1785 static noinline int generic_bin_search(struct extent_buffer *eb,
1786                                        unsigned long p,
1787                                        int item_size, struct btrfs_key *key,
1788                                        int max, int *slot)
1789 {
1790         int low = 0;
1791         int high = max;
1792         int mid;
1793         int ret;
1794         struct btrfs_disk_key *tmp = NULL;
1795         struct btrfs_disk_key unaligned;
1796         unsigned long offset;
1797         char *kaddr = NULL;
1798         unsigned long map_start = 0;
1799         unsigned long map_len = 0;
1800         int err;
1801
1802         while (low < high) {
1803                 mid = (low + high) / 2;
1804                 offset = p + mid * item_size;
1805
1806                 if (!kaddr || offset < map_start ||
1807                     (offset + sizeof(struct btrfs_disk_key)) >
1808                     map_start + map_len) {
1809
1810                         err = map_private_extent_buffer(eb, offset,
1811                                                 sizeof(struct btrfs_disk_key),
1812                                                 &kaddr, &map_start, &map_len);
1813
1814                         if (!err) {
1815                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1816                                                         map_start);
1817                         } else {
1818                                 read_extent_buffer(eb, &unaligned,
1819                                                    offset, sizeof(unaligned));
1820                                 tmp = &unaligned;
1821                         }
1822
1823                 } else {
1824                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1825                                                         map_start);
1826                 }
1827                 ret = comp_keys(tmp, key);
1828
1829                 if (ret < 0)
1830                         low = mid + 1;
1831                 else if (ret > 0)
1832                         high = mid;
1833                 else {
1834                         *slot = mid;
1835                         return 0;
1836                 }
1837         }
1838         *slot = low;
1839         return 1;
1840 }
1841
1842 /*
1843  * simple bin_search frontend that does the right thing for
1844  * leaves vs nodes
1845  */
1846 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1847                       int level, int *slot)
1848 {
1849         if (level == 0)
1850                 return generic_bin_search(eb,
1851                                           offsetof(struct btrfs_leaf, items),
1852                                           sizeof(struct btrfs_item),
1853                                           key, btrfs_header_nritems(eb),
1854                                           slot);
1855         else
1856                 return generic_bin_search(eb,
1857                                           offsetof(struct btrfs_node, ptrs),
1858                                           sizeof(struct btrfs_key_ptr),
1859                                           key, btrfs_header_nritems(eb),
1860                                           slot);
1861 }
1862
1863 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1864                      int level, int *slot)
1865 {
1866         return bin_search(eb, key, level, slot);
1867 }
1868
1869 static void root_add_used(struct btrfs_root *root, u32 size)
1870 {
1871         spin_lock(&root->accounting_lock);
1872         btrfs_set_root_used(&root->root_item,
1873                             btrfs_root_used(&root->root_item) + size);
1874         spin_unlock(&root->accounting_lock);
1875 }
1876
1877 static void root_sub_used(struct btrfs_root *root, u32 size)
1878 {
1879         spin_lock(&root->accounting_lock);
1880         btrfs_set_root_used(&root->root_item,
1881                             btrfs_root_used(&root->root_item) - size);
1882         spin_unlock(&root->accounting_lock);
1883 }
1884
1885 /* given a node and slot number, this reads the blocks it points to.  The
1886  * extent buffer is returned with a reference taken (but unlocked).
1887  * NULL is returned on error.
1888  */
1889 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1890                                    struct extent_buffer *parent, int slot)
1891 {
1892         int level = btrfs_header_level(parent);
1893         struct extent_buffer *eb;
1894
1895         if (slot < 0)
1896                 return NULL;
1897         if (slot >= btrfs_header_nritems(parent))
1898                 return NULL;
1899
1900         BUG_ON(level == 0);
1901
1902         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1903                              btrfs_level_size(root, level - 1),
1904                              btrfs_node_ptr_generation(parent, slot));
1905         if (eb && !extent_buffer_uptodate(eb)) {
1906                 free_extent_buffer(eb);
1907                 eb = NULL;
1908         }
1909
1910         return eb;
1911 }
1912
1913 /*
1914  * node level balancing, used to make sure nodes are in proper order for
1915  * item deletion.  We balance from the top down, so we have to make sure
1916  * that a deletion won't leave an node completely empty later on.
1917  */
1918 static noinline int balance_level(struct btrfs_trans_handle *trans,
1919                          struct btrfs_root *root,
1920                          struct btrfs_path *path, int level)
1921 {
1922         struct extent_buffer *right = NULL;
1923         struct extent_buffer *mid;
1924         struct extent_buffer *left = NULL;
1925         struct extent_buffer *parent = NULL;
1926         int ret = 0;
1927         int wret;
1928         int pslot;
1929         int orig_slot = path->slots[level];
1930         u64 orig_ptr;
1931
1932         if (level == 0)
1933                 return 0;
1934
1935         mid = path->nodes[level];
1936
1937         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1938                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1939         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1940
1941         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1942
1943         if (level < BTRFS_MAX_LEVEL - 1) {
1944                 parent = path->nodes[level + 1];
1945                 pslot = path->slots[level + 1];
1946         }
1947
1948         /*
1949          * deal with the case where there is only one pointer in the root
1950          * by promoting the node below to a root
1951          */
1952         if (!parent) {
1953                 struct extent_buffer *child;
1954
1955                 if (btrfs_header_nritems(mid) != 1)
1956                         return 0;
1957
1958                 /* promote the child to a root */
1959                 child = read_node_slot(root, mid, 0);
1960                 if (!child) {
1961                         ret = -EROFS;
1962                         btrfs_std_error(root->fs_info, ret);
1963                         goto enospc;
1964                 }
1965
1966                 btrfs_tree_lock(child);
1967                 btrfs_set_lock_blocking(child);
1968                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1969                 if (ret) {
1970                         btrfs_tree_unlock(child);
1971                         free_extent_buffer(child);
1972                         goto enospc;
1973                 }
1974
1975                 tree_mod_log_set_root_pointer(root, child, 1);
1976                 rcu_assign_pointer(root->node, child);
1977
1978                 add_root_to_dirty_list(root);
1979                 btrfs_tree_unlock(child);
1980
1981                 path->locks[level] = 0;
1982                 path->nodes[level] = NULL;
1983                 clean_tree_block(trans, root, mid);
1984                 btrfs_tree_unlock(mid);
1985                 /* once for the path */
1986                 free_extent_buffer(mid);
1987
1988                 root_sub_used(root, mid->len);
1989                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1990                 /* once for the root ptr */
1991                 free_extent_buffer_stale(mid);
1992                 return 0;
1993         }
1994         if (btrfs_header_nritems(mid) >
1995             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1996                 return 0;
1997
1998         left = read_node_slot(root, parent, pslot - 1);
1999         if (left) {
2000                 btrfs_tree_lock(left);
2001                 btrfs_set_lock_blocking(left);
2002                 wret = btrfs_cow_block(trans, root, left,
2003                                        parent, pslot - 1, &left);
2004                 if (wret) {
2005                         ret = wret;
2006                         goto enospc;
2007                 }
2008         }
2009         right = read_node_slot(root, parent, pslot + 1);
2010         if (right) {
2011                 btrfs_tree_lock(right);
2012                 btrfs_set_lock_blocking(right);
2013                 wret = btrfs_cow_block(trans, root, right,
2014                                        parent, pslot + 1, &right);
2015                 if (wret) {
2016                         ret = wret;
2017                         goto enospc;
2018                 }
2019         }
2020
2021         /* first, try to make some room in the middle buffer */
2022         if (left) {
2023                 orig_slot += btrfs_header_nritems(left);
2024                 wret = push_node_left(trans, root, left, mid, 1);
2025                 if (wret < 0)
2026                         ret = wret;
2027         }
2028
2029         /*
2030          * then try to empty the right most buffer into the middle
2031          */
2032         if (right) {
2033                 wret = push_node_left(trans, root, mid, right, 1);
2034                 if (wret < 0 && wret != -ENOSPC)
2035                         ret = wret;
2036                 if (btrfs_header_nritems(right) == 0) {
2037                         clean_tree_block(trans, root, right);
2038                         btrfs_tree_unlock(right);
2039                         del_ptr(root, path, level + 1, pslot + 1);
2040                         root_sub_used(root, right->len);
2041                         btrfs_free_tree_block(trans, root, right, 0, 1);
2042                         free_extent_buffer_stale(right);
2043                         right = NULL;
2044                 } else {
2045                         struct btrfs_disk_key right_key;
2046                         btrfs_node_key(right, &right_key, 0);
2047                         tree_mod_log_set_node_key(root->fs_info, parent,
2048                                                   pslot + 1, 0);
2049                         btrfs_set_node_key(parent, &right_key, pslot + 1);
2050                         btrfs_mark_buffer_dirty(parent);
2051                 }
2052         }
2053         if (btrfs_header_nritems(mid) == 1) {
2054                 /*
2055                  * we're not allowed to leave a node with one item in the
2056                  * tree during a delete.  A deletion from lower in the tree
2057                  * could try to delete the only pointer in this node.
2058                  * So, pull some keys from the left.
2059                  * There has to be a left pointer at this point because
2060                  * otherwise we would have pulled some pointers from the
2061                  * right
2062                  */
2063                 if (!left) {
2064                         ret = -EROFS;
2065                         btrfs_std_error(root->fs_info, ret);
2066                         goto enospc;
2067                 }
2068                 wret = balance_node_right(trans, root, mid, left);
2069                 if (wret < 0) {
2070                         ret = wret;
2071                         goto enospc;
2072                 }
2073                 if (wret == 1) {
2074                         wret = push_node_left(trans, root, left, mid, 1);
2075                         if (wret < 0)
2076                                 ret = wret;
2077                 }
2078                 BUG_ON(wret == 1);
2079         }
2080         if (btrfs_header_nritems(mid) == 0) {
2081                 clean_tree_block(trans, root, mid);
2082                 btrfs_tree_unlock(mid);
2083                 del_ptr(root, path, level + 1, pslot);
2084                 root_sub_used(root, mid->len);
2085                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2086                 free_extent_buffer_stale(mid);
2087                 mid = NULL;
2088         } else {
2089                 /* update the parent key to reflect our changes */
2090                 struct btrfs_disk_key mid_key;
2091                 btrfs_node_key(mid, &mid_key, 0);
2092                 tree_mod_log_set_node_key(root->fs_info, parent,
2093                                           pslot, 0);
2094                 btrfs_set_node_key(parent, &mid_key, pslot);
2095                 btrfs_mark_buffer_dirty(parent);
2096         }
2097
2098         /* update the path */
2099         if (left) {
2100                 if (btrfs_header_nritems(left) > orig_slot) {
2101                         extent_buffer_get(left);
2102                         /* left was locked after cow */
2103                         path->nodes[level] = left;
2104                         path->slots[level + 1] -= 1;
2105                         path->slots[level] = orig_slot;
2106                         if (mid) {
2107                                 btrfs_tree_unlock(mid);
2108                                 free_extent_buffer(mid);
2109                         }
2110                 } else {
2111                         orig_slot -= btrfs_header_nritems(left);
2112                         path->slots[level] = orig_slot;
2113                 }
2114         }
2115         /* double check we haven't messed things up */
2116         if (orig_ptr !=
2117             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2118                 BUG();
2119 enospc:
2120         if (right) {
2121                 btrfs_tree_unlock(right);
2122                 free_extent_buffer(right);
2123         }
2124         if (left) {
2125                 if (path->nodes[level] != left)
2126                         btrfs_tree_unlock(left);
2127                 free_extent_buffer(left);
2128         }
2129         return ret;
2130 }
2131
2132 /* Node balancing for insertion.  Here we only split or push nodes around
2133  * when they are completely full.  This is also done top down, so we
2134  * have to be pessimistic.
2135  */
2136 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2137                                           struct btrfs_root *root,
2138                                           struct btrfs_path *path, int level)
2139 {
2140         struct extent_buffer *right = NULL;
2141         struct extent_buffer *mid;
2142         struct extent_buffer *left = NULL;
2143         struct extent_buffer *parent = NULL;
2144         int ret = 0;
2145         int wret;
2146         int pslot;
2147         int orig_slot = path->slots[level];
2148
2149         if (level == 0)
2150                 return 1;
2151
2152         mid = path->nodes[level];
2153         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2154
2155         if (level < BTRFS_MAX_LEVEL - 1) {
2156                 parent = path->nodes[level + 1];
2157                 pslot = path->slots[level + 1];
2158         }
2159
2160         if (!parent)
2161                 return 1;
2162
2163         left = read_node_slot(root, parent, pslot - 1);
2164
2165         /* first, try to make some room in the middle buffer */
2166         if (left) {
2167                 u32 left_nr;
2168
2169                 btrfs_tree_lock(left);
2170                 btrfs_set_lock_blocking(left);
2171
2172                 left_nr = btrfs_header_nritems(left);
2173                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2174                         wret = 1;
2175                 } else {
2176                         ret = btrfs_cow_block(trans, root, left, parent,
2177                                               pslot - 1, &left);
2178                         if (ret)
2179                                 wret = 1;
2180                         else {
2181                                 wret = push_node_left(trans, root,
2182                                                       left, mid, 0);
2183                         }
2184                 }
2185                 if (wret < 0)
2186                         ret = wret;
2187                 if (wret == 0) {
2188                         struct btrfs_disk_key disk_key;
2189                         orig_slot += left_nr;
2190                         btrfs_node_key(mid, &disk_key, 0);
2191                         tree_mod_log_set_node_key(root->fs_info, parent,
2192                                                   pslot, 0);
2193                         btrfs_set_node_key(parent, &disk_key, pslot);
2194                         btrfs_mark_buffer_dirty(parent);
2195                         if (btrfs_header_nritems(left) > orig_slot) {
2196                                 path->nodes[level] = left;
2197                                 path->slots[level + 1] -= 1;
2198                                 path->slots[level] = orig_slot;
2199                                 btrfs_tree_unlock(mid);
2200                                 free_extent_buffer(mid);
2201                         } else {
2202                                 orig_slot -=
2203                                         btrfs_header_nritems(left);
2204                                 path->slots[level] = orig_slot;
2205                                 btrfs_tree_unlock(left);
2206                                 free_extent_buffer(left);
2207                         }
2208                         return 0;
2209                 }
2210                 btrfs_tree_unlock(left);
2211                 free_extent_buffer(left);
2212         }
2213         right = read_node_slot(root, parent, pslot + 1);
2214
2215         /*
2216          * then try to empty the right most buffer into the middle
2217          */
2218         if (right) {
2219                 u32 right_nr;
2220
2221                 btrfs_tree_lock(right);
2222                 btrfs_set_lock_blocking(right);
2223
2224                 right_nr = btrfs_header_nritems(right);
2225                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2226                         wret = 1;
2227                 } else {
2228                         ret = btrfs_cow_block(trans, root, right,
2229                                               parent, pslot + 1,
2230                                               &right);
2231                         if (ret)
2232                                 wret = 1;
2233                         else {
2234                                 wret = balance_node_right(trans, root,
2235                                                           right, mid);
2236                         }
2237                 }
2238                 if (wret < 0)
2239                         ret = wret;
2240                 if (wret == 0) {
2241                         struct btrfs_disk_key disk_key;
2242
2243                         btrfs_node_key(right, &disk_key, 0);
2244                         tree_mod_log_set_node_key(root->fs_info, parent,
2245                                                   pslot + 1, 0);
2246                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2247                         btrfs_mark_buffer_dirty(parent);
2248
2249                         if (btrfs_header_nritems(mid) <= orig_slot) {
2250                                 path->nodes[level] = right;
2251                                 path->slots[level + 1] += 1;
2252                                 path->slots[level] = orig_slot -
2253                                         btrfs_header_nritems(mid);
2254                                 btrfs_tree_unlock(mid);
2255                                 free_extent_buffer(mid);
2256                         } else {
2257                                 btrfs_tree_unlock(right);
2258                                 free_extent_buffer(right);
2259                         }
2260                         return 0;
2261                 }
2262                 btrfs_tree_unlock(right);
2263                 free_extent_buffer(right);
2264         }
2265         return 1;
2266 }
2267
2268 /*
2269  * readahead one full node of leaves, finding things that are close
2270  * to the block in 'slot', and triggering ra on them.
2271  */
2272 static void reada_for_search(struct btrfs_root *root,
2273                              struct btrfs_path *path,
2274                              int level, int slot, u64 objectid)
2275 {
2276         struct extent_buffer *node;
2277         struct btrfs_disk_key disk_key;
2278         u32 nritems;
2279         u64 search;
2280         u64 target;
2281         u64 nread = 0;
2282         u64 gen;
2283         int direction = path->reada;
2284         struct extent_buffer *eb;
2285         u32 nr;
2286         u32 blocksize;
2287         u32 nscan = 0;
2288
2289         if (level != 1)
2290                 return;
2291
2292         if (!path->nodes[level])
2293                 return;
2294
2295         node = path->nodes[level];
2296
2297         search = btrfs_node_blockptr(node, slot);
2298         blocksize = btrfs_level_size(root, level - 1);
2299         eb = btrfs_find_tree_block(root, search, blocksize);
2300         if (eb) {
2301                 free_extent_buffer(eb);
2302                 return;
2303         }
2304
2305         target = search;
2306
2307         nritems = btrfs_header_nritems(node);
2308         nr = slot;
2309
2310         while (1) {
2311                 if (direction < 0) {
2312                         if (nr == 0)
2313                                 break;
2314                         nr--;
2315                 } else if (direction > 0) {
2316                         nr++;
2317                         if (nr >= nritems)
2318                                 break;
2319                 }
2320                 if (path->reada < 0 && objectid) {
2321                         btrfs_node_key(node, &disk_key, nr);
2322                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2323                                 break;
2324                 }
2325                 search = btrfs_node_blockptr(node, nr);
2326                 if ((search <= target && target - search <= 65536) ||
2327                     (search > target && search - target <= 65536)) {
2328                         gen = btrfs_node_ptr_generation(node, nr);
2329                         readahead_tree_block(root, search, blocksize, gen);
2330                         nread += blocksize;
2331                 }
2332                 nscan++;
2333                 if ((nread > 65536 || nscan > 32))
2334                         break;
2335         }
2336 }
2337
2338 static noinline void reada_for_balance(struct btrfs_root *root,
2339                                        struct btrfs_path *path, int level)
2340 {
2341         int slot;
2342         int nritems;
2343         struct extent_buffer *parent;
2344         struct extent_buffer *eb;
2345         u64 gen;
2346         u64 block1 = 0;
2347         u64 block2 = 0;
2348         int blocksize;
2349
2350         parent = path->nodes[level + 1];
2351         if (!parent)
2352                 return;
2353
2354         nritems = btrfs_header_nritems(parent);
2355         slot = path->slots[level + 1];
2356         blocksize = btrfs_level_size(root, level);
2357
2358         if (slot > 0) {
2359                 block1 = btrfs_node_blockptr(parent, slot - 1);
2360                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2361                 eb = btrfs_find_tree_block(root, block1, blocksize);
2362                 /*
2363                  * if we get -eagain from btrfs_buffer_uptodate, we
2364                  * don't want to return eagain here.  That will loop
2365                  * forever
2366                  */
2367                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2368                         block1 = 0;
2369                 free_extent_buffer(eb);
2370         }
2371         if (slot + 1 < nritems) {
2372                 block2 = btrfs_node_blockptr(parent, slot + 1);
2373                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2374                 eb = btrfs_find_tree_block(root, block2, blocksize);
2375                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2376                         block2 = 0;
2377                 free_extent_buffer(eb);
2378         }
2379
2380         if (block1)
2381                 readahead_tree_block(root, block1, blocksize, 0);
2382         if (block2)
2383                 readahead_tree_block(root, block2, blocksize, 0);
2384 }
2385
2386
2387 /*
2388  * when we walk down the tree, it is usually safe to unlock the higher layers
2389  * in the tree.  The exceptions are when our path goes through slot 0, because
2390  * operations on the tree might require changing key pointers higher up in the
2391  * tree.
2392  *
2393  * callers might also have set path->keep_locks, which tells this code to keep
2394  * the lock if the path points to the last slot in the block.  This is part of
2395  * walking through the tree, and selecting the next slot in the higher block.
2396  *
2397  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2398  * if lowest_unlock is 1, level 0 won't be unlocked
2399  */
2400 static noinline void unlock_up(struct btrfs_path *path, int level,
2401                                int lowest_unlock, int min_write_lock_level,
2402                                int *write_lock_level)
2403 {
2404         int i;
2405         int skip_level = level;
2406         int no_skips = 0;
2407         struct extent_buffer *t;
2408
2409         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2410                 if (!path->nodes[i])
2411                         break;
2412                 if (!path->locks[i])
2413                         break;
2414                 if (!no_skips && path->slots[i] == 0) {
2415                         skip_level = i + 1;
2416                         continue;
2417                 }
2418                 if (!no_skips && path->keep_locks) {
2419                         u32 nritems;
2420                         t = path->nodes[i];
2421                         nritems = btrfs_header_nritems(t);
2422                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2423                                 skip_level = i + 1;
2424                                 continue;
2425                         }
2426                 }
2427                 if (skip_level < i && i >= lowest_unlock)
2428                         no_skips = 1;
2429
2430                 t = path->nodes[i];
2431                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2432                         btrfs_tree_unlock_rw(t, path->locks[i]);
2433                         path->locks[i] = 0;
2434                         if (write_lock_level &&
2435                             i > min_write_lock_level &&
2436                             i <= *write_lock_level) {
2437                                 *write_lock_level = i - 1;
2438                         }
2439                 }
2440         }
2441 }
2442
2443 /*
2444  * This releases any locks held in the path starting at level and
2445  * going all the way up to the root.
2446  *
2447  * btrfs_search_slot will keep the lock held on higher nodes in a few
2448  * corner cases, such as COW of the block at slot zero in the node.  This
2449  * ignores those rules, and it should only be called when there are no
2450  * more updates to be done higher up in the tree.
2451  */
2452 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2453 {
2454         int i;
2455
2456         if (path->keep_locks)
2457                 return;
2458
2459         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2460                 if (!path->nodes[i])
2461                         continue;
2462                 if (!path->locks[i])
2463                         continue;
2464                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2465                 path->locks[i] = 0;
2466         }
2467 }
2468
2469 /*
2470  * helper function for btrfs_search_slot.  The goal is to find a block
2471  * in cache without setting the path to blocking.  If we find the block
2472  * we return zero and the path is unchanged.
2473  *
2474  * If we can't find the block, we set the path blocking and do some
2475  * reada.  -EAGAIN is returned and the search must be repeated.
2476  */
2477 static int
2478 read_block_for_search(struct btrfs_trans_handle *trans,
2479                        struct btrfs_root *root, struct btrfs_path *p,
2480                        struct extent_buffer **eb_ret, int level, int slot,
2481                        struct btrfs_key *key, u64 time_seq)
2482 {
2483         u64 blocknr;
2484         u64 gen;
2485         u32 blocksize;
2486         struct extent_buffer *b = *eb_ret;
2487         struct extent_buffer *tmp;
2488         int ret;
2489
2490         blocknr = btrfs_node_blockptr(b, slot);
2491         gen = btrfs_node_ptr_generation(b, slot);
2492         blocksize = btrfs_level_size(root, level - 1);
2493
2494         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2495         if (tmp) {
2496                 /* first we do an atomic uptodate check */
2497                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2498                         *eb_ret = tmp;
2499                         return 0;
2500                 }
2501
2502                 /* the pages were up to date, but we failed
2503                  * the generation number check.  Do a full
2504                  * read for the generation number that is correct.
2505                  * We must do this without dropping locks so
2506                  * we can trust our generation number
2507                  */
2508                 btrfs_set_path_blocking(p);
2509
2510                 /* now we're allowed to do a blocking uptodate check */
2511                 ret = btrfs_read_buffer(tmp, gen);
2512                 if (!ret) {
2513                         *eb_ret = tmp;
2514                         return 0;
2515                 }
2516                 free_extent_buffer(tmp);
2517                 btrfs_release_path(p);
2518                 return -EIO;
2519         }
2520
2521         /*
2522          * reduce lock contention at high levels
2523          * of the btree by dropping locks before
2524          * we read.  Don't release the lock on the current
2525          * level because we need to walk this node to figure
2526          * out which blocks to read.
2527          */
2528         btrfs_unlock_up_safe(p, level + 1);
2529         btrfs_set_path_blocking(p);
2530
2531         free_extent_buffer(tmp);
2532         if (p->reada)
2533                 reada_for_search(root, p, level, slot, key->objectid);
2534
2535         btrfs_release_path(p);
2536
2537         ret = -EAGAIN;
2538         tmp = read_tree_block(root, blocknr, blocksize, 0);
2539         if (tmp) {
2540                 /*
2541                  * If the read above didn't mark this buffer up to date,
2542                  * it will never end up being up to date.  Set ret to EIO now
2543                  * and give up so that our caller doesn't loop forever
2544                  * on our EAGAINs.
2545                  */
2546                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2547                         ret = -EIO;
2548                 free_extent_buffer(tmp);
2549         }
2550         return ret;
2551 }
2552
2553 /*
2554  * helper function for btrfs_search_slot.  This does all of the checks
2555  * for node-level blocks and does any balancing required based on
2556  * the ins_len.
2557  *
2558  * If no extra work was required, zero is returned.  If we had to
2559  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2560  * start over
2561  */
2562 static int
2563 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2564                        struct btrfs_root *root, struct btrfs_path *p,
2565                        struct extent_buffer *b, int level, int ins_len,
2566                        int *write_lock_level)
2567 {
2568         int ret;
2569         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2570             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2571                 int sret;
2572
2573                 if (*write_lock_level < level + 1) {
2574                         *write_lock_level = level + 1;
2575                         btrfs_release_path(p);
2576                         goto again;
2577                 }
2578
2579                 btrfs_set_path_blocking(p);
2580                 reada_for_balance(root, p, level);
2581                 sret = split_node(trans, root, p, level);
2582                 btrfs_clear_path_blocking(p, NULL, 0);
2583
2584                 BUG_ON(sret > 0);
2585                 if (sret) {
2586                         ret = sret;
2587                         goto done;
2588                 }
2589                 b = p->nodes[level];
2590         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2591                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2592                 int sret;
2593
2594                 if (*write_lock_level < level + 1) {
2595                         *write_lock_level = level + 1;
2596                         btrfs_release_path(p);
2597                         goto again;
2598                 }
2599
2600                 btrfs_set_path_blocking(p);
2601                 reada_for_balance(root, p, level);
2602                 sret = balance_level(trans, root, p, level);
2603                 btrfs_clear_path_blocking(p, NULL, 0);
2604
2605                 if (sret) {
2606                         ret = sret;
2607                         goto done;
2608                 }
2609                 b = p->nodes[level];
2610                 if (!b) {
2611                         btrfs_release_path(p);
2612                         goto again;
2613                 }
2614                 BUG_ON(btrfs_header_nritems(b) == 1);
2615         }
2616         return 0;
2617
2618 again:
2619         ret = -EAGAIN;
2620 done:
2621         return ret;
2622 }
2623
2624 static void key_search_validate(struct extent_buffer *b,
2625                                 struct btrfs_key *key,
2626                                 int level)
2627 {
2628 #ifdef CONFIG_BTRFS_ASSERT
2629         struct btrfs_disk_key disk_key;
2630
2631         btrfs_cpu_key_to_disk(&disk_key, key);
2632
2633         if (level == 0)
2634                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2635                     offsetof(struct btrfs_leaf, items[0].key),
2636                     sizeof(disk_key)));
2637         else
2638                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2639                     offsetof(struct btrfs_node, ptrs[0].key),
2640                     sizeof(disk_key)));
2641 #endif
2642 }
2643
2644 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2645                       int level, int *prev_cmp, int *slot)
2646 {
2647         if (*prev_cmp != 0) {
2648                 *prev_cmp = bin_search(b, key, level, slot);
2649                 return *prev_cmp;
2650         }
2651
2652         key_search_validate(b, key, level);
2653         *slot = 0;
2654
2655         return 0;
2656 }
2657
2658 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
2659                 u64 iobjectid, u64 ioff, u8 key_type,
2660                 struct btrfs_key *found_key)
2661 {
2662         int ret;
2663         struct btrfs_key key;
2664         struct extent_buffer *eb;
2665         struct btrfs_path *path;
2666
2667         key.type = key_type;
2668         key.objectid = iobjectid;
2669         key.offset = ioff;
2670
2671         if (found_path == NULL) {
2672                 path = btrfs_alloc_path();
2673                 if (!path)
2674                         return -ENOMEM;
2675         } else
2676                 path = found_path;
2677
2678         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2679         if ((ret < 0) || (found_key == NULL)) {
2680                 if (path != found_path)
2681                         btrfs_free_path(path);
2682                 return ret;
2683         }
2684
2685         eb = path->nodes[0];
2686         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2687                 ret = btrfs_next_leaf(fs_root, path);
2688                 if (ret)
2689                         return ret;
2690                 eb = path->nodes[0];
2691         }
2692
2693         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2694         if (found_key->type != key.type ||
2695                         found_key->objectid != key.objectid)
2696                 return 1;
2697
2698         return 0;
2699 }
2700
2701 /*
2702  * look for key in the tree.  path is filled in with nodes along the way
2703  * if key is found, we return zero and you can find the item in the leaf
2704  * level of the path (level 0)
2705  *
2706  * If the key isn't found, the path points to the slot where it should
2707  * be inserted, and 1 is returned.  If there are other errors during the
2708  * search a negative error number is returned.
2709  *
2710  * if ins_len > 0, nodes and leaves will be split as we walk down the
2711  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2712  * possible)
2713  */
2714 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2715                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2716                       ins_len, int cow)
2717 {
2718         struct extent_buffer *b;
2719         int slot;
2720         int ret;
2721         int err;
2722         int level;
2723         int lowest_unlock = 1;
2724         int root_lock;
2725         /* everything at write_lock_level or lower must be write locked */
2726         int write_lock_level = 0;
2727         u8 lowest_level = 0;
2728         int min_write_lock_level;
2729         int prev_cmp;
2730
2731         lowest_level = p->lowest_level;
2732         WARN_ON(lowest_level && ins_len > 0);
2733         WARN_ON(p->nodes[0] != NULL);
2734         BUG_ON(!cow && ins_len);
2735
2736         if (ins_len < 0) {
2737                 lowest_unlock = 2;
2738
2739                 /* when we are removing items, we might have to go up to level
2740                  * two as we update tree pointers  Make sure we keep write
2741                  * for those levels as well
2742                  */
2743                 write_lock_level = 2;
2744         } else if (ins_len > 0) {
2745                 /*
2746                  * for inserting items, make sure we have a write lock on
2747                  * level 1 so we can update keys
2748                  */
2749                 write_lock_level = 1;
2750         }
2751
2752         if (!cow)
2753                 write_lock_level = -1;
2754
2755         if (cow && (p->keep_locks || p->lowest_level))
2756                 write_lock_level = BTRFS_MAX_LEVEL;
2757
2758         min_write_lock_level = write_lock_level;
2759
2760 again:
2761         prev_cmp = -1;
2762         /*
2763          * we try very hard to do read locks on the root
2764          */
2765         root_lock = BTRFS_READ_LOCK;
2766         level = 0;
2767         if (p->search_commit_root) {
2768                 /*
2769                  * the commit roots are read only
2770                  * so we always do read locks
2771                  */
2772                 b = root->commit_root;
2773                 extent_buffer_get(b);
2774                 level = btrfs_header_level(b);
2775                 if (!p->skip_locking)
2776                         btrfs_tree_read_lock(b);
2777         } else {
2778                 if (p->skip_locking) {
2779                         b = btrfs_root_node(root);
2780                         level = btrfs_header_level(b);
2781                 } else {
2782                         /* we don't know the level of the root node
2783                          * until we actually have it read locked
2784                          */
2785                         b = btrfs_read_lock_root_node(root);
2786                         level = btrfs_header_level(b);
2787                         if (level <= write_lock_level) {
2788                                 /* whoops, must trade for write lock */
2789                                 btrfs_tree_read_unlock(b);
2790                                 free_extent_buffer(b);
2791                                 b = btrfs_lock_root_node(root);
2792                                 root_lock = BTRFS_WRITE_LOCK;
2793
2794                                 /* the level might have changed, check again */
2795                                 level = btrfs_header_level(b);
2796                         }
2797                 }
2798         }
2799         p->nodes[level] = b;
2800         if (!p->skip_locking)
2801                 p->locks[level] = root_lock;
2802
2803         while (b) {
2804                 level = btrfs_header_level(b);
2805
2806                 /*
2807                  * setup the path here so we can release it under lock
2808                  * contention with the cow code
2809                  */
2810                 if (cow) {
2811                         /*
2812                          * if we don't really need to cow this block
2813                          * then we don't want to set the path blocking,
2814                          * so we test it here
2815                          */
2816                         if (!should_cow_block(trans, root, b))
2817                                 goto cow_done;
2818
2819                         btrfs_set_path_blocking(p);
2820
2821                         /*
2822                          * must have write locks on this node and the
2823                          * parent
2824                          */
2825                         if (level > write_lock_level ||
2826                             (level + 1 > write_lock_level &&
2827                             level + 1 < BTRFS_MAX_LEVEL &&
2828                             p->nodes[level + 1])) {
2829                                 write_lock_level = level + 1;
2830                                 btrfs_release_path(p);
2831                                 goto again;
2832                         }
2833
2834                         err = btrfs_cow_block(trans, root, b,
2835                                               p->nodes[level + 1],
2836                                               p->slots[level + 1], &b);
2837                         if (err) {
2838                                 ret = err;
2839                                 goto done;
2840                         }
2841                 }
2842 cow_done:
2843                 p->nodes[level] = b;
2844                 btrfs_clear_path_blocking(p, NULL, 0);
2845
2846                 /*
2847                  * we have a lock on b and as long as we aren't changing
2848                  * the tree, there is no way to for the items in b to change.
2849                  * It is safe to drop the lock on our parent before we
2850                  * go through the expensive btree search on b.
2851                  *
2852                  * If we're inserting or deleting (ins_len != 0), then we might
2853                  * be changing slot zero, which may require changing the parent.
2854                  * So, we can't drop the lock until after we know which slot
2855                  * we're operating on.
2856                  */
2857                 if (!ins_len && !p->keep_locks) {
2858                         int u = level + 1;
2859
2860                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2861                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2862                                 p->locks[u] = 0;
2863                         }
2864                 }
2865
2866                 ret = key_search(b, key, level, &prev_cmp, &slot);
2867
2868                 if (level != 0) {
2869                         int dec = 0;
2870                         if (ret && slot > 0) {
2871                                 dec = 1;
2872                                 slot -= 1;
2873                         }
2874                         p->slots[level] = slot;
2875                         err = setup_nodes_for_search(trans, root, p, b, level,
2876                                              ins_len, &write_lock_level);
2877                         if (err == -EAGAIN)
2878                                 goto again;
2879                         if (err) {
2880                                 ret = err;
2881                                 goto done;
2882                         }
2883                         b = p->nodes[level];
2884                         slot = p->slots[level];
2885
2886                         /*
2887                          * slot 0 is special, if we change the key
2888                          * we have to update the parent pointer
2889                          * which means we must have a write lock
2890                          * on the parent
2891                          */
2892                         if (slot == 0 && ins_len &&
2893                             write_lock_level < level + 1) {
2894                                 write_lock_level = level + 1;
2895                                 btrfs_release_path(p);
2896                                 goto again;
2897                         }
2898
2899                         unlock_up(p, level, lowest_unlock,
2900                                   min_write_lock_level, &write_lock_level);
2901
2902                         if (level == lowest_level) {
2903                                 if (dec)
2904                                         p->slots[level]++;
2905                                 goto done;
2906                         }
2907
2908                         err = read_block_for_search(trans, root, p,
2909                                                     &b, level, slot, key, 0);
2910                         if (err == -EAGAIN)
2911                                 goto again;
2912                         if (err) {
2913                                 ret = err;
2914                                 goto done;
2915                         }
2916
2917                         if (!p->skip_locking) {
2918                                 level = btrfs_header_level(b);
2919                                 if (level <= write_lock_level) {
2920                                         err = btrfs_try_tree_write_lock(b);
2921                                         if (!err) {
2922                                                 btrfs_set_path_blocking(p);
2923                                                 btrfs_tree_lock(b);
2924                                                 btrfs_clear_path_blocking(p, b,
2925                                                                   BTRFS_WRITE_LOCK);
2926                                         }
2927                                         p->locks[level] = BTRFS_WRITE_LOCK;
2928                                 } else {
2929                                         err = btrfs_try_tree_read_lock(b);
2930                                         if (!err) {
2931                                                 btrfs_set_path_blocking(p);
2932                                                 btrfs_tree_read_lock(b);
2933                                                 btrfs_clear_path_blocking(p, b,
2934                                                                   BTRFS_READ_LOCK);
2935                                         }
2936                                         p->locks[level] = BTRFS_READ_LOCK;
2937                                 }
2938                                 p->nodes[level] = b;
2939                         }
2940                 } else {
2941                         p->slots[level] = slot;
2942                         if (ins_len > 0 &&
2943                             btrfs_leaf_free_space(root, b) < ins_len) {
2944                                 if (write_lock_level < 1) {
2945                                         write_lock_level = 1;
2946                                         btrfs_release_path(p);
2947                                         goto again;
2948                                 }
2949
2950                                 btrfs_set_path_blocking(p);
2951                                 err = split_leaf(trans, root, key,
2952                                                  p, ins_len, ret == 0);
2953                                 btrfs_clear_path_blocking(p, NULL, 0);
2954
2955                                 BUG_ON(err > 0);
2956                                 if (err) {
2957                                         ret = err;
2958                                         goto done;
2959                                 }
2960                         }
2961                         if (!p->search_for_split)
2962                                 unlock_up(p, level, lowest_unlock,
2963                                           min_write_lock_level, &write_lock_level);
2964                         goto done;
2965                 }
2966         }
2967         ret = 1;
2968 done:
2969         /*
2970          * we don't really know what they plan on doing with the path
2971          * from here on, so for now just mark it as blocking
2972          */
2973         if (!p->leave_spinning)
2974                 btrfs_set_path_blocking(p);
2975         if (ret < 0)
2976                 btrfs_release_path(p);
2977         return ret;
2978 }
2979
2980 /*
2981  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2982  * current state of the tree together with the operations recorded in the tree
2983  * modification log to search for the key in a previous version of this tree, as
2984  * denoted by the time_seq parameter.
2985  *
2986  * Naturally, there is no support for insert, delete or cow operations.
2987  *
2988  * The resulting path and return value will be set up as if we called
2989  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2990  */
2991 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2992                           struct btrfs_path *p, u64 time_seq)
2993 {
2994         struct extent_buffer *b;
2995         int slot;
2996         int ret;
2997         int err;
2998         int level;
2999         int lowest_unlock = 1;
3000         u8 lowest_level = 0;
3001         int prev_cmp = -1;
3002
3003         lowest_level = p->lowest_level;
3004         WARN_ON(p->nodes[0] != NULL);
3005
3006         if (p->search_commit_root) {
3007                 BUG_ON(time_seq);
3008                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
3009         }
3010
3011 again:
3012         b = get_old_root(root, time_seq);
3013         level = btrfs_header_level(b);
3014         p->locks[level] = BTRFS_READ_LOCK;
3015
3016         while (b) {
3017                 level = btrfs_header_level(b);
3018                 p->nodes[level] = b;
3019                 btrfs_clear_path_blocking(p, NULL, 0);
3020
3021                 /*
3022                  * we have a lock on b and as long as we aren't changing
3023                  * the tree, there is no way to for the items in b to change.
3024                  * It is safe to drop the lock on our parent before we
3025                  * go through the expensive btree search on b.
3026                  */
3027                 btrfs_unlock_up_safe(p, level + 1);
3028
3029                 /*
3030                  * Since we can unwind eb's we want to do a real search every
3031                  * time.
3032                  */
3033                 prev_cmp = -1;
3034                 ret = key_search(b, key, level, &prev_cmp, &slot);
3035
3036                 if (level != 0) {
3037                         int dec = 0;
3038                         if (ret && slot > 0) {
3039                                 dec = 1;
3040                                 slot -= 1;
3041                         }
3042                         p->slots[level] = slot;
3043                         unlock_up(p, level, lowest_unlock, 0, NULL);
3044
3045                         if (level == lowest_level) {
3046                                 if (dec)
3047                                         p->slots[level]++;
3048                                 goto done;
3049                         }
3050
3051                         err = read_block_for_search(NULL, root, p, &b, level,
3052                                                     slot, key, time_seq);
3053                         if (err == -EAGAIN)
3054                                 goto again;
3055                         if (err) {
3056                                 ret = err;
3057                                 goto done;
3058                         }
3059
3060                         level = btrfs_header_level(b);
3061                         err = btrfs_try_tree_read_lock(b);
3062                         if (!err) {
3063                                 btrfs_set_path_blocking(p);
3064                                 btrfs_tree_read_lock(b);
3065                                 btrfs_clear_path_blocking(p, b,
3066                                                           BTRFS_READ_LOCK);
3067                         }
3068                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3069                         if (!b) {
3070                                 ret = -ENOMEM;
3071                                 goto done;
3072                         }
3073                         p->locks[level] = BTRFS_READ_LOCK;
3074                         p->nodes[level] = b;
3075                 } else {
3076                         p->slots[level] = slot;
3077                         unlock_up(p, level, lowest_unlock, 0, NULL);
3078                         goto done;
3079                 }
3080         }
3081         ret = 1;
3082 done:
3083         if (!p->leave_spinning)
3084                 btrfs_set_path_blocking(p);
3085         if (ret < 0)
3086                 btrfs_release_path(p);
3087
3088         return ret;
3089 }
3090
3091 /*
3092  * helper to use instead of search slot if no exact match is needed but
3093  * instead the next or previous item should be returned.
3094  * When find_higher is true, the next higher item is returned, the next lower
3095  * otherwise.
3096  * When return_any and find_higher are both true, and no higher item is found,
3097  * return the next lower instead.
3098  * When return_any is true and find_higher is false, and no lower item is found,
3099  * return the next higher instead.
3100  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3101  * < 0 on error
3102  */
3103 int btrfs_search_slot_for_read(struct btrfs_root *root,
3104                                struct btrfs_key *key, struct btrfs_path *p,
3105                                int find_higher, int return_any)
3106 {
3107         int ret;
3108         struct extent_buffer *leaf;
3109
3110 again:
3111         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3112         if (ret <= 0)
3113                 return ret;
3114         /*
3115          * a return value of 1 means the path is at the position where the
3116          * item should be inserted. Normally this is the next bigger item,
3117          * but in case the previous item is the last in a leaf, path points
3118          * to the first free slot in the previous leaf, i.e. at an invalid
3119          * item.
3120          */
3121         leaf = p->nodes[0];
3122
3123         if (find_higher) {
3124                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3125                         ret = btrfs_next_leaf(root, p);
3126                         if (ret <= 0)
3127                                 return ret;
3128                         if (!return_any)
3129                                 return 1;
3130                         /*
3131                          * no higher item found, return the next
3132                          * lower instead
3133                          */
3134                         return_any = 0;
3135                         find_higher = 0;
3136                         btrfs_release_path(p);
3137                         goto again;
3138                 }
3139         } else {
3140                 if (p->slots[0] == 0) {
3141                         ret = btrfs_prev_leaf(root, p);
3142                         if (ret < 0)
3143                                 return ret;
3144                         if (!ret) {
3145                                 leaf = p->nodes[0];
3146                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3147                                         p->slots[0]--;
3148                                 return 0;
3149                         }
3150                         if (!return_any)
3151                                 return 1;
3152                         /*
3153                          * no lower item found, return the next
3154                          * higher instead
3155                          */
3156                         return_any = 0;
3157                         find_higher = 1;
3158                         btrfs_release_path(p);
3159                         goto again;
3160                 } else {
3161                         --p->slots[0];
3162                 }
3163         }
3164         return 0;
3165 }
3166
3167 /*
3168  * adjust the pointers going up the tree, starting at level
3169  * making sure the right key of each node is points to 'key'.
3170  * This is used after shifting pointers to the left, so it stops
3171  * fixing up pointers when a given leaf/node is not in slot 0 of the
3172  * higher levels
3173  *
3174  */
3175 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
3176                            struct btrfs_disk_key *key, int level)
3177 {
3178         int i;
3179         struct extent_buffer *t;
3180
3181         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3182                 int tslot = path->slots[i];
3183                 if (!path->nodes[i])
3184                         break;
3185                 t = path->nodes[i];
3186                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
3187                 btrfs_set_node_key(t, key, tslot);
3188                 btrfs_mark_buffer_dirty(path->nodes[i]);
3189                 if (tslot != 0)
3190                         break;
3191         }
3192 }
3193
3194 /*
3195  * update item key.
3196  *
3197  * This function isn't completely safe. It's the caller's responsibility
3198  * that the new key won't break the order
3199  */
3200 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
3201                              struct btrfs_key *new_key)
3202 {
3203         struct btrfs_disk_key disk_key;
3204         struct extent_buffer *eb;
3205         int slot;
3206
3207         eb = path->nodes[0];
3208         slot = path->slots[0];
3209         if (slot > 0) {
3210                 btrfs_item_key(eb, &disk_key, slot - 1);
3211                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3212         }
3213         if (slot < btrfs_header_nritems(eb) - 1) {
3214                 btrfs_item_key(eb, &disk_key, slot + 1);
3215                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3216         }
3217
3218         btrfs_cpu_key_to_disk(&disk_key, new_key);
3219         btrfs_set_item_key(eb, &disk_key, slot);
3220         btrfs_mark_buffer_dirty(eb);
3221         if (slot == 0)
3222                 fixup_low_keys(root, path, &disk_key, 1);
3223 }
3224
3225 /*
3226  * try to push data from one node into the next node left in the
3227  * tree.
3228  *
3229  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3230  * error, and > 0 if there was no room in the left hand block.
3231  */
3232 static int push_node_left(struct btrfs_trans_handle *trans,
3233                           struct btrfs_root *root, struct extent_buffer *dst,
3234                           struct extent_buffer *src, int empty)
3235 {
3236         int push_items = 0;
3237         int src_nritems;
3238         int dst_nritems;
3239         int ret = 0;
3240
3241         src_nritems = btrfs_header_nritems(src);
3242         dst_nritems = btrfs_header_nritems(dst);
3243         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3244         WARN_ON(btrfs_header_generation(src) != trans->transid);
3245         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3246
3247         if (!empty && src_nritems <= 8)
3248                 return 1;
3249
3250         if (push_items <= 0)
3251                 return 1;
3252
3253         if (empty) {
3254                 push_items = min(src_nritems, push_items);
3255                 if (push_items < src_nritems) {
3256                         /* leave at least 8 pointers in the node if
3257                          * we aren't going to empty it
3258                          */
3259                         if (src_nritems - push_items < 8) {
3260                                 if (push_items <= 8)
3261                                         return 1;
3262                                 push_items -= 8;
3263                         }
3264                 }
3265         } else
3266                 push_items = min(src_nritems - 8, push_items);
3267
3268         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3269                                    push_items);
3270         if (ret) {
3271                 btrfs_abort_transaction(trans, root, ret);
3272                 return ret;
3273         }
3274         copy_extent_buffer(dst, src,
3275                            btrfs_node_key_ptr_offset(dst_nritems),
3276                            btrfs_node_key_ptr_offset(0),
3277                            push_items * sizeof(struct btrfs_key_ptr));
3278
3279         if (push_items < src_nritems) {
3280                 /*
3281                  * don't call tree_mod_log_eb_move here, key removal was already
3282                  * fully logged by tree_mod_log_eb_copy above.
3283                  */
3284                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3285                                       btrfs_node_key_ptr_offset(push_items),
3286                                       (src_nritems - push_items) *
3287                                       sizeof(struct btrfs_key_ptr));
3288         }
3289         btrfs_set_header_nritems(src, src_nritems - push_items);
3290         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3291         btrfs_mark_buffer_dirty(src);
3292         btrfs_mark_buffer_dirty(dst);
3293
3294         return ret;
3295 }
3296
3297 /*
3298  * try to push data from one node into the next node right in the
3299  * tree.
3300  *
3301  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3302  * error, and > 0 if there was no room in the right hand block.
3303  *
3304  * this will  only push up to 1/2 the contents of the left node over
3305  */
3306 static int balance_node_right(struct btrfs_trans_handle *trans,
3307                               struct btrfs_root *root,
3308                               struct extent_buffer *dst,
3309                               struct extent_buffer *src)
3310 {
3311         int push_items = 0;
3312         int max_push;
3313         int src_nritems;
3314         int dst_nritems;
3315         int ret = 0;
3316
3317         WARN_ON(btrfs_header_generation(src) != trans->transid);
3318         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3319
3320         src_nritems = btrfs_header_nritems(src);
3321         dst_nritems = btrfs_header_nritems(dst);
3322         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3323         if (push_items <= 0)
3324                 return 1;
3325
3326         if (src_nritems < 4)
3327                 return 1;
3328
3329         max_push = src_nritems / 2 + 1;
3330         /* don't try to empty the node */
3331         if (max_push >= src_nritems)
3332                 return 1;
3333
3334         if (max_push < push_items)
3335                 push_items = max_push;
3336
3337         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3338         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3339                                       btrfs_node_key_ptr_offset(0),
3340                                       (dst_nritems) *
3341                                       sizeof(struct btrfs_key_ptr));
3342
3343         ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3344                                    src_nritems - push_items, push_items);
3345         if (ret) {
3346                 btrfs_abort_transaction(trans, root, ret);
3347                 return ret;
3348         }
3349         copy_extent_buffer(dst, src,
3350                            btrfs_node_key_ptr_offset(0),
3351                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3352                            push_items * sizeof(struct btrfs_key_ptr));
3353
3354         btrfs_set_header_nritems(src, src_nritems - push_items);
3355         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3356
3357         btrfs_mark_buffer_dirty(src);
3358         btrfs_mark_buffer_dirty(dst);
3359
3360         return ret;
3361 }
3362
3363 /*
3364  * helper function to insert a new root level in the tree.
3365  * A new node is allocated, and a single item is inserted to
3366  * point to the existing root
3367  *
3368  * returns zero on success or < 0 on failure.
3369  */
3370 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3371                            struct btrfs_root *root,
3372                            struct btrfs_path *path, int level)
3373 {
3374         u64 lower_gen;
3375         struct extent_buffer *lower;
3376         struct extent_buffer *c;
3377         struct extent_buffer *old;
3378         struct btrfs_disk_key lower_key;
3379
3380         BUG_ON(path->nodes[level]);
3381         BUG_ON(path->nodes[level-1] != root->node);
3382
3383         lower = path->nodes[level-1];
3384         if (level == 1)
3385                 btrfs_item_key(lower, &lower_key, 0);
3386         else
3387                 btrfs_node_key(lower, &lower_key, 0);
3388
3389         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3390                                    root->root_key.objectid, &lower_key,
3391                                    level, root->node->start, 0);
3392         if (IS_ERR(c))
3393                 return PTR_ERR(c);
3394
3395         root_add_used(root, root->nodesize);
3396
3397         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3398         btrfs_set_header_nritems(c, 1);
3399         btrfs_set_header_level(c, level);
3400         btrfs_set_header_bytenr(c, c->start);
3401         btrfs_set_header_generation(c, trans->transid);
3402         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3403         btrfs_set_header_owner(c, root->root_key.objectid);
3404
3405         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3406                             BTRFS_FSID_SIZE);
3407
3408         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3409                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3410
3411         btrfs_set_node_key(c, &lower_key, 0);
3412         btrfs_set_node_blockptr(c, 0, lower->start);
3413         lower_gen = btrfs_header_generation(lower);
3414         WARN_ON(lower_gen != trans->transid);
3415
3416         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3417
3418         btrfs_mark_buffer_dirty(c);
3419
3420         old = root->node;
3421         tree_mod_log_set_root_pointer(root, c, 0);
3422         rcu_assign_pointer(root->node, c);
3423
3424         /* the super has an extra ref to root->node */
3425         free_extent_buffer(old);
3426
3427         add_root_to_dirty_list(root);
3428         extent_buffer_get(c);
3429         path->nodes[level] = c;
3430         path->locks[level] = BTRFS_WRITE_LOCK;
3431         path->slots[level] = 0;
3432         return 0;
3433 }
3434
3435 /*
3436  * worker function to insert a single pointer in a node.
3437  * the node should have enough room for the pointer already
3438  *
3439  * slot and level indicate where you want the key to go, and
3440  * blocknr is the block the key points to.
3441  */
3442 static void insert_ptr(struct btrfs_trans_handle *trans,
3443                        struct btrfs_root *root, struct btrfs_path *path,
3444                        struct btrfs_disk_key *key, u64 bytenr,
3445                        int slot, int level)
3446 {
3447         struct extent_buffer *lower;
3448         int nritems;
3449         int ret;
3450
3451         BUG_ON(!path->nodes[level]);
3452         btrfs_assert_tree_locked(path->nodes[level]);
3453         lower = path->nodes[level];
3454         nritems = btrfs_header_nritems(lower);
3455         BUG_ON(slot > nritems);
3456         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3457         if (slot != nritems) {
3458                 if (level)
3459                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3460                                              slot, nritems - slot);
3461                 memmove_extent_buffer(lower,
3462                               btrfs_node_key_ptr_offset(slot + 1),
3463                               btrfs_node_key_ptr_offset(slot),
3464                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3465         }
3466         if (level) {
3467                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3468                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3469                 BUG_ON(ret < 0);
3470         }
3471         btrfs_set_node_key(lower, key, slot);
3472         btrfs_set_node_blockptr(lower, slot, bytenr);
3473         WARN_ON(trans->transid == 0);
3474         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3475         btrfs_set_header_nritems(lower, nritems + 1);
3476         btrfs_mark_buffer_dirty(lower);
3477 }
3478
3479 /*
3480  * split the node at the specified level in path in two.
3481  * The path is corrected to point to the appropriate node after the split
3482  *
3483  * Before splitting this tries to make some room in the node by pushing
3484  * left and right, if either one works, it returns right away.
3485  *
3486  * returns 0 on success and < 0 on failure
3487  */
3488 static noinline int split_node(struct btrfs_trans_handle *trans,
3489                                struct btrfs_root *root,
3490                                struct btrfs_path *path, int level)
3491 {
3492         struct extent_buffer *c;
3493         struct extent_buffer *split;
3494         struct btrfs_disk_key disk_key;
3495         int mid;
3496         int ret;
3497         u32 c_nritems;
3498
3499         c = path->nodes[level];
3500         WARN_ON(btrfs_header_generation(c) != trans->transid);
3501         if (c == root->node) {
3502                 /*
3503                  * trying to split the root, lets make a new one
3504                  *
3505                  * tree mod log: We don't log_removal old root in
3506                  * insert_new_root, because that root buffer will be kept as a
3507                  * normal node. We are going to log removal of half of the
3508                  * elements below with tree_mod_log_eb_copy. We're holding a
3509                  * tree lock on the buffer, which is why we cannot race with
3510                  * other tree_mod_log users.
3511                  */
3512                 ret = insert_new_root(trans, root, path, level + 1);
3513                 if (ret)
3514                         return ret;
3515         } else {
3516                 ret = push_nodes_for_insert(trans, root, path, level);
3517                 c = path->nodes[level];
3518                 if (!ret && btrfs_header_nritems(c) <
3519                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3520                         return 0;
3521                 if (ret < 0)
3522                         return ret;
3523         }
3524
3525         c_nritems = btrfs_header_nritems(c);
3526         mid = (c_nritems + 1) / 2;
3527         btrfs_node_key(c, &disk_key, mid);
3528
3529         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3530                                         root->root_key.objectid,
3531                                         &disk_key, level, c->start, 0);
3532         if (IS_ERR(split))
3533                 return PTR_ERR(split);
3534
3535         root_add_used(root, root->nodesize);
3536
3537         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3538         btrfs_set_header_level(split, btrfs_header_level(c));
3539         btrfs_set_header_bytenr(split, split->start);
3540         btrfs_set_header_generation(split, trans->transid);
3541         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3542         btrfs_set_header_owner(split, root->root_key.objectid);
3543         write_extent_buffer(split, root->fs_info->fsid,
3544                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3545         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3546                             btrfs_header_chunk_tree_uuid(split),
3547                             BTRFS_UUID_SIZE);
3548
3549         ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3550                                    mid, c_nritems - mid);
3551         if (ret) {
3552                 btrfs_abort_transaction(trans, root, ret);
3553                 return ret;
3554         }
3555         copy_extent_buffer(split, c,
3556                            btrfs_node_key_ptr_offset(0),
3557                            btrfs_node_key_ptr_offset(mid),
3558                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3559         btrfs_set_header_nritems(split, c_nritems - mid);
3560         btrfs_set_header_nritems(c, mid);
3561         ret = 0;
3562
3563         btrfs_mark_buffer_dirty(c);
3564         btrfs_mark_buffer_dirty(split);
3565
3566         insert_ptr(trans, root, path, &disk_key, split->start,
3567                    path->slots[level + 1] + 1, level + 1);
3568
3569         if (path->slots[level] >= mid) {
3570                 path->slots[level] -= mid;
3571                 btrfs_tree_unlock(c);
3572                 free_extent_buffer(c);
3573                 path->nodes[level] = split;
3574                 path->slots[level + 1] += 1;
3575         } else {
3576                 btrfs_tree_unlock(split);
3577                 free_extent_buffer(split);
3578         }
3579         return ret;
3580 }
3581
3582 /*
3583  * how many bytes are required to store the items in a leaf.  start
3584  * and nr indicate which items in the leaf to check.  This totals up the
3585  * space used both by the item structs and the item data
3586  */
3587 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3588 {
3589         struct btrfs_item *start_item;
3590         struct btrfs_item *end_item;
3591         struct btrfs_map_token token;
3592         int data_len;
3593         int nritems = btrfs_header_nritems(l);
3594         int end = min(nritems, start + nr) - 1;
3595
3596         if (!nr)
3597                 return 0;
3598         btrfs_init_map_token(&token);
3599         start_item = btrfs_item_nr(start);
3600         end_item = btrfs_item_nr(end);
3601         data_len = btrfs_token_item_offset(l, start_item, &token) +
3602                 btrfs_token_item_size(l, start_item, &token);
3603         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3604         data_len += sizeof(struct btrfs_item) * nr;
3605         WARN_ON(data_len < 0);
3606         return data_len;
3607 }
3608
3609 /*
3610  * The space between the end of the leaf items and
3611  * the start of the leaf data.  IOW, how much room
3612  * the leaf has left for both items and data
3613  */
3614 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3615                                    struct extent_buffer *leaf)
3616 {
3617         int nritems = btrfs_header_nritems(leaf);
3618         int ret;
3619         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3620         if (ret < 0) {
3621                 btrfs_crit(root->fs_info,
3622                         "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3623                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3624                        leaf_space_used(leaf, 0, nritems), nritems);
3625         }
3626         return ret;
3627 }
3628
3629 /*
3630  * min slot controls the lowest index we're willing to push to the
3631  * right.  We'll push up to and including min_slot, but no lower
3632  */
3633 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3634                                       struct btrfs_root *root,
3635                                       struct btrfs_path *path,
3636                                       int data_size, int empty,
3637                                       struct extent_buffer *right,
3638                                       int free_space, u32 left_nritems,
3639                                       u32 min_slot)
3640 {
3641         struct extent_buffer *left = path->nodes[0];
3642         struct extent_buffer *upper = path->nodes[1];
3643         struct btrfs_map_token token;
3644         struct btrfs_disk_key disk_key;
3645         int slot;
3646         u32 i;
3647         int push_space = 0;
3648         int push_items = 0;
3649         struct btrfs_item *item;
3650         u32 nr;
3651         u32 right_nritems;
3652         u32 data_end;
3653         u32 this_item_size;
3654
3655         btrfs_init_map_token(&token);
3656
3657         if (empty)
3658                 nr = 0;
3659         else
3660                 nr = max_t(u32, 1, min_slot);
3661
3662         if (path->slots[0] >= left_nritems)
3663                 push_space += data_size;
3664
3665         slot = path->slots[1];
3666         i = left_nritems - 1;
3667         while (i >= nr) {
3668                 item = btrfs_item_nr(i);
3669
3670                 if (!empty && push_items > 0) {
3671                         if (path->slots[0] > i)
3672                                 break;
3673                         if (path->slots[0] == i) {
3674                                 int space = btrfs_leaf_free_space(root, left);
3675                                 if (space + push_space * 2 > free_space)
3676                                         break;
3677                         }
3678                 }
3679
3680                 if (path->slots[0] == i)
3681                         push_space += data_size;
3682
3683                 this_item_size = btrfs_item_size(left, item);
3684                 if (this_item_size + sizeof(*item) + push_space > free_space)
3685                         break;
3686
3687                 push_items++;
3688                 push_space += this_item_size + sizeof(*item);
3689                 if (i == 0)
3690                         break;
3691                 i--;
3692         }
3693
3694         if (push_items == 0)
3695                 goto out_unlock;
3696
3697         WARN_ON(!empty && push_items == left_nritems);
3698
3699         /* push left to right */
3700         right_nritems = btrfs_header_nritems(right);
3701
3702         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3703         push_space -= leaf_data_end(root, left);
3704
3705         /* make room in the right data area */
3706         data_end = leaf_data_end(root, right);
3707         memmove_extent_buffer(right,
3708                               btrfs_leaf_data(right) + data_end - push_space,
3709                               btrfs_leaf_data(right) + data_end,
3710                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3711
3712         /* copy from the left data area */
3713         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3714                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3715                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3716                      push_space);
3717
3718         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3719                               btrfs_item_nr_offset(0),
3720                               right_nritems * sizeof(struct btrfs_item));
3721
3722         /* copy the items from left to right */
3723         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3724                    btrfs_item_nr_offset(left_nritems - push_items),
3725                    push_items * sizeof(struct btrfs_item));
3726
3727         /* update the item pointers */
3728         right_nritems += push_items;
3729         btrfs_set_header_nritems(right, right_nritems);
3730         push_space = BTRFS_LEAF_DATA_SIZE(root);
3731         for (i = 0; i < right_nritems; i++) {
3732                 item = btrfs_item_nr(i);
3733                 push_space -= btrfs_token_item_size(right, item, &token);
3734                 btrfs_set_token_item_offset(right, item, push_space, &token);
3735         }
3736
3737         left_nritems -= push_items;
3738         btrfs_set_header_nritems(left, left_nritems);
3739
3740         if (left_nritems)
3741                 btrfs_mark_buffer_dirty(left);
3742         else
3743                 clean_tree_block(trans, root, left);
3744
3745         btrfs_mark_buffer_dirty(right);
3746
3747         btrfs_item_key(right, &disk_key, 0);
3748         btrfs_set_node_key(upper, &disk_key, slot + 1);
3749         btrfs_mark_buffer_dirty(upper);
3750
3751         /* then fixup the leaf pointer in the path */
3752         if (path->slots[0] >= left_nritems) {
3753                 path->slots[0] -= left_nritems;
3754                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3755                         clean_tree_block(trans, root, path->nodes[0]);
3756                 btrfs_tree_unlock(path->nodes[0]);
3757                 free_extent_buffer(path->nodes[0]);
3758                 path->nodes[0] = right;
3759                 path->slots[1] += 1;
3760         } else {
3761                 btrfs_tree_unlock(right);
3762                 free_extent_buffer(right);
3763         }
3764         return 0;
3765
3766 out_unlock:
3767         btrfs_tree_unlock(right);
3768         free_extent_buffer(right);
3769         return 1;
3770 }
3771
3772 /*
3773  * push some data in the path leaf to the right, trying to free up at
3774  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3775  *
3776  * returns 1 if the push failed because the other node didn't have enough
3777  * room, 0 if everything worked out and < 0 if there were major errors.
3778  *
3779  * this will push starting from min_slot to the end of the leaf.  It won't
3780  * push any slot lower than min_slot
3781  */
3782 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3783                            *root, struct btrfs_path *path,
3784                            int min_data_size, int data_size,
3785                            int empty, u32 min_slot)
3786 {
3787         struct extent_buffer *left = path->nodes[0];
3788         struct extent_buffer *right;
3789         struct extent_buffer *upper;
3790         int slot;
3791         int free_space;
3792         u32 left_nritems;
3793         int ret;
3794
3795         if (!path->nodes[1])
3796                 return 1;
3797
3798         slot = path->slots[1];
3799         upper = path->nodes[1];
3800         if (slot >= btrfs_header_nritems(upper) - 1)
3801                 return 1;
3802
3803         btrfs_assert_tree_locked(path->nodes[1]);
3804
3805         right = read_node_slot(root, upper, slot + 1);
3806         if (right == NULL)
3807                 return 1;
3808
3809         btrfs_tree_lock(right);
3810         btrfs_set_lock_blocking(right);
3811
3812         free_space = btrfs_leaf_free_space(root, right);
3813         if (free_space < data_size)
3814                 goto out_unlock;
3815
3816         /* cow and double check */
3817         ret = btrfs_cow_block(trans, root, right, upper,
3818                               slot + 1, &right);
3819         if (ret)
3820                 goto out_unlock;
3821
3822         free_space = btrfs_leaf_free_space(root, right);
3823         if (free_space < data_size)
3824                 goto out_unlock;
3825
3826         left_nritems = btrfs_header_nritems(left);
3827         if (left_nritems == 0)
3828                 goto out_unlock;
3829
3830         if (path->slots[0] == left_nritems && !empty) {
3831                 /* Key greater than all keys in the leaf, right neighbor has
3832                  * enough room for it and we're not emptying our leaf to delete
3833                  * it, therefore use right neighbor to insert the new item and
3834                  * no need to touch/dirty our left leaft. */
3835                 btrfs_tree_unlock(left);
3836                 free_extent_buffer(left);
3837                 path->nodes[0] = right;
3838                 path->slots[0] = 0;
3839                 path->slots[1]++;
3840                 return 0;
3841         }
3842
3843         return __push_leaf_right(trans, root, path, min_data_size, empty,
3844                                 right, free_space, left_nritems, min_slot);
3845 out_unlock:
3846         btrfs_tree_unlock(right);
3847         free_extent_buffer(right);
3848         return 1;
3849 }
3850
3851 /*
3852  * push some data in the path leaf to the left, trying to free up at
3853  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3854  *
3855  * max_slot can put a limit on how far into the leaf we'll push items.  The
3856  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3857  * items
3858  */
3859 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3860                                      struct btrfs_root *root,
3861                                      struct btrfs_path *path, int data_size,
3862                                      int empty, struct extent_buffer *left,
3863                                      int free_space, u32 right_nritems,
3864                                      u32 max_slot)
3865 {
3866         struct btrfs_disk_key disk_key;
3867         struct extent_buffer *right = path->nodes[0];
3868         int i;
3869         int push_space = 0;
3870         int push_items = 0;
3871         struct btrfs_item *item;
3872         u32 old_left_nritems;
3873         u32 nr;
3874         int ret = 0;
3875         u32 this_item_size;
3876         u32 old_left_item_size;
3877         struct btrfs_map_token token;
3878
3879         btrfs_init_map_token(&token);
3880
3881         if (empty)
3882                 nr = min(right_nritems, max_slot);
3883         else
3884                 nr = min(right_nritems - 1, max_slot);
3885
3886         for (i = 0; i < nr; i++) {
3887                 item = btrfs_item_nr(i);
3888
3889                 if (!empty && push_items > 0) {
3890                         if (path->slots[0] < i)
3891                                 break;
3892                         if (path->slots[0] == i) {
3893                                 int space = btrfs_leaf_free_space(root, right);
3894                                 if (space + push_space * 2 > free_space)
3895                                         break;
3896                         }
3897                 }
3898
3899                 if (path->slots[0] == i)
3900                         push_space += data_size;
3901
3902                 this_item_size = btrfs_item_size(right, item);
3903                 if (this_item_size + sizeof(*item) + push_space > free_space)
3904                         break;
3905
3906                 push_items++;
3907                 push_space += this_item_size + sizeof(*item);
3908         }
3909
3910         if (push_items == 0) {
3911                 ret = 1;
3912                 goto out;
3913         }
3914         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3915
3916         /* push data from right to left */
3917         copy_extent_buffer(left, right,
3918                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3919                            btrfs_item_nr_offset(0),
3920                            push_items * sizeof(struct btrfs_item));
3921
3922         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3923                      btrfs_item_offset_nr(right, push_items - 1);
3924
3925         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3926                      leaf_data_end(root, left) - push_space,
3927                      btrfs_leaf_data(right) +
3928                      btrfs_item_offset_nr(right, push_items - 1),
3929                      push_space);
3930         old_left_nritems = btrfs_header_nritems(left);
3931         BUG_ON(old_left_nritems <= 0);
3932
3933         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3934         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3935                 u32 ioff;
3936
3937                 item = btrfs_item_nr(i);
3938
3939                 ioff = btrfs_token_item_offset(left, item, &token);
3940                 btrfs_set_token_item_offset(left, item,
3941                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3942                       &token);
3943         }
3944         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3945
3946         /* fixup right node */
3947         if (push_items > right_nritems)
3948                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3949                        right_nritems);
3950
3951         if (push_items < right_nritems) {
3952                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3953                                                   leaf_data_end(root, right);
3954                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3955                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3956                                       btrfs_leaf_data(right) +
3957                                       leaf_data_end(root, right), push_space);
3958
3959                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3960                               btrfs_item_nr_offset(push_items),
3961                              (btrfs_header_nritems(right) - push_items) *
3962                              sizeof(struct btrfs_item));
3963         }
3964         right_nritems -= push_items;
3965         btrfs_set_header_nritems(right, right_nritems);
3966         push_space = BTRFS_LEAF_DATA_SIZE(root);
3967         for (i = 0; i < right_nritems; i++) {
3968                 item = btrfs_item_nr(i);
3969
3970                 push_space = push_space - btrfs_token_item_size(right,
3971                                                                 item, &token);
3972                 btrfs_set_token_item_offset(right, item, push_space, &token);
3973         }
3974
3975         btrfs_mark_buffer_dirty(left);
3976         if (right_nritems)
3977                 btrfs_mark_buffer_dirty(right);
3978         else
3979                 clean_tree_block(trans, root, right);
3980
3981         btrfs_item_key(right, &disk_key, 0);
3982         fixup_low_keys(root, path, &disk_key, 1);
3983
3984         /* then fixup the leaf pointer in the path */
3985         if (path->slots[0] < push_items) {
3986                 path->slots[0] += old_left_nritems;
3987                 btrfs_tree_unlock(path->nodes[0]);
3988                 free_extent_buffer(path->nodes[0]);
3989                 path->nodes[0] = left;
3990                 path->slots[1] -= 1;
3991         } else {
3992                 btrfs_tree_unlock(left);
3993                 free_extent_buffer(left);
3994                 path->slots[0] -= push_items;
3995         }
3996         BUG_ON(path->slots[0] < 0);
3997         return ret;
3998 out:
3999         btrfs_tree_unlock(left);
4000         free_extent_buffer(left);
4001         return ret;
4002 }
4003
4004 /*
4005  * push some data in the path leaf to the left, trying to free up at
4006  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4007  *
4008  * max_slot can put a limit on how far into the leaf we'll push items.  The
4009  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4010  * items
4011  */
4012 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4013                           *root, struct btrfs_path *path, int min_data_size,
4014                           int data_size, int empty, u32 max_slot)
4015 {
4016         struct extent_buffer *right = path->nodes[0];
4017         struct extent_buffer *left;
4018         int slot;
4019         int free_space;
4020         u32 right_nritems;
4021         int ret = 0;
4022
4023         slot = path->slots[1];
4024         if (slot == 0)
4025                 return 1;
4026         if (!path->nodes[1])
4027                 return 1;
4028
4029         right_nritems = btrfs_header_nritems(right);
4030         if (right_nritems == 0)
4031                 return 1;
4032
4033         btrfs_assert_tree_locked(path->nodes[1]);
4034
4035         left = read_node_slot(root, path->nodes[1], slot - 1);
4036         if (left == NULL)
4037                 return 1;
4038
4039         btrfs_tree_lock(left);
4040         btrfs_set_lock_blocking(left);
4041
4042         free_space = btrfs_leaf_free_space(root, left);
4043         if (free_space < data_size) {
4044                 ret = 1;
4045                 goto out;
4046         }
4047
4048         /* cow and double check */
4049         ret = btrfs_cow_block(trans, root, left,
4050                               path->nodes[1], slot - 1, &left);
4051         if (ret) {
4052                 /* we hit -ENOSPC, but it isn't fatal here */
4053                 if (ret == -ENOSPC)
4054                         ret = 1;
4055                 goto out;
4056         }
4057
4058         free_space = btrfs_leaf_free_space(root, left);
4059         if (free_space < data_size) {
4060                 ret = 1;
4061                 goto out;
4062         }
4063
4064         return __push_leaf_left(trans, root, path, min_data_size,
4065                                empty, left, free_space, right_nritems,
4066                                max_slot);
4067 out:
4068         btrfs_tree_unlock(left);
4069         free_extent_buffer(left);
4070         return ret;
4071 }
4072
4073 /*
4074  * split the path's leaf in two, making sure there is at least data_size
4075  * available for the resulting leaf level of the path.
4076  */
4077 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4078                                     struct btrfs_root *root,
4079                                     struct btrfs_path *path,
4080                                     struct extent_buffer *l,
4081                                     struct extent_buffer *right,
4082                                     int slot, int mid, int nritems)
4083 {
4084         int data_copy_size;
4085         int rt_data_off;
4086         int i;
4087         struct btrfs_disk_key disk_key;
4088         struct btrfs_map_token token;
4089
4090         btrfs_init_map_token(&token);
4091
4092         nritems = nritems - mid;
4093         btrfs_set_header_nritems(right, nritems);
4094         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4095
4096         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4097                            btrfs_item_nr_offset(mid),
4098                            nritems * sizeof(struct btrfs_item));
4099
4100         copy_extent_buffer(right, l,
4101                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4102                      data_copy_size, btrfs_leaf_data(l) +
4103                      leaf_data_end(root, l), data_copy_size);
4104
4105         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4106                       btrfs_item_end_nr(l, mid);
4107
4108         for (i = 0; i < nritems; i++) {
4109                 struct btrfs_item *item = btrfs_item_nr(i);
4110                 u32 ioff;
4111
4112                 ioff = btrfs_token_item_offset(right, item, &token);
4113                 btrfs_set_token_item_offset(right, item,
4114                                             ioff + rt_data_off, &token);
4115         }
4116
4117         btrfs_set_header_nritems(l, mid);
4118         btrfs_item_key(right, &disk_key, 0);
4119         insert_ptr(trans, root, path, &disk_key, right->start,
4120                    path->slots[1] + 1, 1);
4121
4122         btrfs_mark_buffer_dirty(right);
4123         btrfs_mark_buffer_dirty(l);
4124         BUG_ON(path->slots[0] != slot);
4125
4126         if (mid <= slot) {
4127                 btrfs_tree_unlock(path->nodes[0]);
4128                 free_extent_buffer(path->nodes[0]);
4129                 path->nodes[0] = right;
4130                 path->slots[0] -= mid;
4131                 path->slots[1] += 1;
4132         } else {
4133                 btrfs_tree_unlock(right);
4134                 free_extent_buffer(right);
4135         }
4136
4137         BUG_ON(path->slots[0] < 0);
4138 }
4139
4140 /*
4141  * double splits happen when we need to insert a big item in the middle
4142  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4143  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4144  *          A                 B                 C
4145  *
4146  * We avoid this by trying to push the items on either side of our target
4147  * into the adjacent leaves.  If all goes well we can avoid the double split
4148  * completely.
4149  */
4150 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4151                                           struct btrfs_root *root,
4152                                           struct btrfs_path *path,
4153                                           int data_size)
4154 {
4155         int ret;
4156         int progress = 0;
4157         int slot;
4158         u32 nritems;
4159         int space_needed = data_size;
4160
4161         slot = path->slots[0];
4162         if (slot < btrfs_header_nritems(path->nodes[0]))
4163                 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4164
4165         /*
4166          * try to push all the items after our slot into the
4167          * right leaf
4168          */
4169         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4170         if (ret < 0)
4171                 return ret;
4172
4173         if (ret == 0)
4174                 progress++;
4175
4176         nritems = btrfs_header_nritems(path->nodes[0]);
4177         /*
4178          * our goal is to get our slot at the start or end of a leaf.  If
4179          * we've done so we're done
4180          */
4181         if (path->slots[0] == 0 || path->slots[0] == nritems)
4182                 return 0;
4183
4184         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4185                 return 0;
4186
4187         /* try to push all the items before our slot into the next leaf */
4188         slot = path->slots[0];
4189         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4190         if (ret < 0)
4191                 return ret;
4192
4193         if (ret == 0)
4194                 progress++;
4195
4196         if (progress)
4197                 return 0;
4198         return 1;
4199 }
4200
4201 /*
4202  * split the path's leaf in two, making sure there is at least data_size
4203  * available for the resulting leaf level of the path.
4204  *
4205  * returns 0 if all went well and < 0 on failure.
4206  */
4207 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4208                                struct btrfs_root *root,
4209                                struct btrfs_key *ins_key,
4210                                struct btrfs_path *path, int data_size,
4211                                int extend)
4212 {
4213         struct btrfs_disk_key disk_key;
4214         struct extent_buffer *l;
4215         u32 nritems;
4216         int mid;
4217         int slot;
4218         struct extent_buffer *right;
4219         int ret = 0;
4220         int wret;
4221         int split;
4222         int num_doubles = 0;
4223         int tried_avoid_double = 0;
4224
4225         l = path->nodes[0];
4226         slot = path->slots[0];
4227         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4228             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4229                 return -EOVERFLOW;
4230
4231         /* first try to make some room by pushing left and right */
4232         if (data_size && path->nodes[1]) {
4233                 int space_needed = data_size;
4234
4235                 if (slot < btrfs_header_nritems(l))
4236                         space_needed -= btrfs_leaf_free_space(root, l);
4237
4238                 wret = push_leaf_right(trans, root, path, space_needed,
4239                                        space_needed, 0, 0);
4240                 if (wret < 0)
4241                         return wret;
4242                 if (wret) {
4243                         wret = push_leaf_left(trans, root, path, space_needed,
4244                                               space_needed, 0, (u32)-1);
4245                         if (wret < 0)
4246                                 return wret;
4247                 }
4248                 l = path->nodes[0];
4249
4250                 /* did the pushes work? */
4251                 if (btrfs_leaf_free_space(root, l) >= data_size)
4252                         return 0;
4253         }
4254
4255         if (!path->nodes[1]) {
4256                 ret = insert_new_root(trans, root, path, 1);
4257                 if (ret)
4258                         return ret;
4259         }
4260 again:
4261         split = 1;
4262         l = path->nodes[0];
4263         slot = path->slots[0];
4264         nritems = btrfs_header_nritems(l);
4265         mid = (nritems + 1) / 2;
4266
4267         if (mid <= slot) {
4268                 if (nritems == 1 ||
4269                     leaf_space_used(l, mid, nritems - mid) + data_size >
4270                         BTRFS_LEAF_DATA_SIZE(root)) {
4271                         if (slot >= nritems) {
4272                                 split = 0;
4273                         } else {
4274                                 mid = slot;
4275                                 if (mid != nritems &&
4276                                     leaf_space_used(l, mid, nritems - mid) +
4277                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4278                                         if (data_size && !tried_avoid_double)
4279                                                 goto push_for_double;
4280                                         split = 2;
4281                                 }
4282                         }
4283                 }
4284         } else {
4285                 if (leaf_space_used(l, 0, mid) + data_size >
4286                         BTRFS_LEAF_DATA_SIZE(root)) {
4287                         if (!extend && data_size && slot == 0) {
4288                                 split = 0;
4289                         } else if ((extend || !data_size) && slot == 0) {
4290                                 mid = 1;
4291                         } else {
4292                                 mid = slot;
4293                                 if (mid != nritems &&
4294                                     leaf_space_used(l, mid, nritems - mid) +
4295                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4296                                         if (data_size && !tried_avoid_double)
4297                                                 goto push_for_double;
4298                                         split = 2;
4299                                 }
4300                         }
4301                 }
4302         }
4303
4304         if (split == 0)
4305                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4306         else
4307                 btrfs_item_key(l, &disk_key, mid);
4308
4309         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4310                                         root->root_key.objectid,
4311                                         &disk_key, 0, l->start, 0);
4312         if (IS_ERR(right))
4313                 return PTR_ERR(right);
4314
4315         root_add_used(root, root->leafsize);
4316
4317         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4318         btrfs_set_header_bytenr(right, right->start);
4319         btrfs_set_header_generation(right, trans->transid);
4320         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4321         btrfs_set_header_owner(right, root->root_key.objectid);
4322         btrfs_set_header_level(right, 0);
4323         write_extent_buffer(right, root->fs_info->fsid,
4324                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4325
4326         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4327                             btrfs_header_chunk_tree_uuid(right),
4328                             BTRFS_UUID_SIZE);
4329
4330         if (split == 0) {
4331                 if (mid <= slot) {
4332                         btrfs_set_header_nritems(right, 0);
4333                         insert_ptr(trans, root, path, &disk_key, right->start,
4334                                    path->slots[1] + 1, 1);
4335                         btrfs_tree_unlock(path->nodes[0]);
4336                         free_extent_buffer(path->nodes[0]);
4337                         path->nodes[0] = right;
4338                         path->slots[0] = 0;
4339                         path->slots[1] += 1;
4340                 } else {
4341                         btrfs_set_header_nritems(right, 0);
4342                         insert_ptr(trans, root, path, &disk_key, right->start,
4343                                           path->slots[1], 1);
4344                         btrfs_tree_unlock(path->nodes[0]);
4345                         free_extent_buffer(path->nodes[0]);
4346                         path->nodes[0] = right;
4347                         path->slots[0] = 0;
4348                         if (path->slots[1] == 0)
4349                                 fixup_low_keys(root, path, &disk_key, 1);
4350                 }
4351                 btrfs_mark_buffer_dirty(right);
4352                 return ret;
4353         }
4354
4355         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4356
4357         if (split == 2) {
4358                 BUG_ON(num_doubles != 0);
4359                 num_doubles++;
4360                 goto again;
4361         }
4362
4363         return 0;
4364
4365 push_for_double:
4366         push_for_double_split(trans, root, path, data_size);
4367         tried_avoid_double = 1;
4368         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4369                 return 0;
4370         goto again;
4371 }
4372
4373 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4374                                          struct btrfs_root *root,
4375                                          struct btrfs_path *path, int ins_len)
4376 {
4377         struct btrfs_key key;
4378         struct extent_buffer *leaf;
4379         struct btrfs_file_extent_item *fi;
4380         u64 extent_len = 0;
4381         u32 item_size;
4382         int ret;
4383
4384         leaf = path->nodes[0];
4385         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4386
4387         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4388                key.type != BTRFS_EXTENT_CSUM_KEY);
4389
4390         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4391                 return 0;
4392
4393         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4394         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4395                 fi = btrfs_item_ptr(leaf, path->slots[0],
4396                                     struct btrfs_file_extent_item);
4397                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4398         }
4399         btrfs_release_path(path);
4400
4401         path->keep_locks = 1;
4402         path->search_for_split = 1;
4403         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4404         path->search_for_split = 0;
4405         if (ret < 0)
4406                 goto err;
4407
4408         ret = -EAGAIN;
4409         leaf = path->nodes[0];
4410         /* if our item isn't there or got smaller, return now */
4411         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4412                 goto err;
4413
4414         /* the leaf has  changed, it now has room.  return now */
4415         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4416                 goto err;
4417
4418         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4419                 fi = btrfs_item_ptr(leaf, path->slots[0],
4420                                     struct btrfs_file_extent_item);
4421                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4422                         goto err;
4423         }
4424
4425         btrfs_set_path_blocking(path);
4426         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4427         if (ret)
4428                 goto err;
4429
4430         path->keep_locks = 0;
4431         btrfs_unlock_up_safe(path, 1);
4432         return 0;
4433 err:
4434         path->keep_locks = 0;
4435         return ret;
4436 }
4437
4438 static noinline int split_item(struct btrfs_trans_handle *trans,
4439                                struct btrfs_root *root,
4440                                struct btrfs_path *path,
4441                                struct btrfs_key *new_key,
4442                                unsigned long split_offset)
4443 {
4444         struct extent_buffer *leaf;
4445         struct btrfs_item *item;
4446         struct btrfs_item *new_item;
4447         int slot;
4448         char *buf;
4449         u32 nritems;
4450         u32 item_size;
4451         u32 orig_offset;
4452         struct btrfs_disk_key disk_key;
4453
4454         leaf = path->nodes[0];
4455         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4456
4457         btrfs_set_path_blocking(path);
4458
4459         item = btrfs_item_nr(path->slots[0]);
4460         orig_offset = btrfs_item_offset(leaf, item);
4461         item_size = btrfs_item_size(leaf, item);
4462
4463         buf = kmalloc(item_size, GFP_NOFS);
4464         if (!buf)
4465                 return -ENOMEM;
4466
4467         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4468                             path->slots[0]), item_size);
4469
4470         slot = path->slots[0] + 1;
4471         nritems = btrfs_header_nritems(leaf);
4472         if (slot != nritems) {
4473                 /* shift the items */
4474                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4475                                 btrfs_item_nr_offset(slot),
4476                                 (nritems - slot) * sizeof(struct btrfs_item));
4477         }
4478
4479         btrfs_cpu_key_to_disk(&disk_key, new_key);
4480         btrfs_set_item_key(leaf, &disk_key, slot);
4481
4482         new_item = btrfs_item_nr(slot);
4483
4484         btrfs_set_item_offset(leaf, new_item, orig_offset);
4485         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4486
4487         btrfs_set_item_offset(leaf, item,
4488                               orig_offset + item_size - split_offset);
4489         btrfs_set_item_size(leaf, item, split_offset);
4490
4491         btrfs_set_header_nritems(leaf, nritems + 1);
4492
4493         /* write the data for the start of the original item */
4494         write_extent_buffer(leaf, buf,
4495                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4496                             split_offset);
4497
4498         /* write the data for the new item */
4499         write_extent_buffer(leaf, buf + split_offset,
4500                             btrfs_item_ptr_offset(leaf, slot),
4501                             item_size - split_offset);
4502         btrfs_mark_buffer_dirty(leaf);
4503
4504         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4505         kfree(buf);
4506         return 0;
4507 }
4508
4509 /*
4510  * This function splits a single item into two items,
4511  * giving 'new_key' to the new item and splitting the
4512  * old one at split_offset (from the start of the item).
4513  *
4514  * The path may be released by this operation.  After
4515  * the split, the path is pointing to the old item.  The
4516  * new item is going to be in the same node as the old one.
4517  *
4518  * Note, the item being split must be smaller enough to live alone on
4519  * a tree block with room for one extra struct btrfs_item
4520  *
4521  * This allows us to split the item in place, keeping a lock on the
4522  * leaf the entire time.
4523  */
4524 int btrfs_split_item(struct btrfs_trans_handle *trans,
4525                      struct btrfs_root *root,
4526                      struct btrfs_path *path,
4527                      struct btrfs_key *new_key,
4528                      unsigned long split_offset)
4529 {
4530         int ret;
4531         ret = setup_leaf_for_split(trans, root, path,
4532                                    sizeof(struct btrfs_item));
4533         if (ret)
4534                 return ret;
4535
4536         ret = split_item(trans, root, path, new_key, split_offset);
4537         return ret;
4538 }
4539
4540 /*
4541  * This function duplicate a item, giving 'new_key' to the new item.
4542  * It guarantees both items live in the same tree leaf and the new item
4543  * is contiguous with the original item.
4544  *
4545  * This allows us to split file extent in place, keeping a lock on the
4546  * leaf the entire time.
4547  */
4548 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4549                          struct btrfs_root *root,
4550                          struct btrfs_path *path,
4551                          struct btrfs_key *new_key)
4552 {
4553         struct extent_buffer *leaf;
4554         int ret;
4555         u32 item_size;
4556
4557         leaf = path->nodes[0];
4558         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4559         ret = setup_leaf_for_split(trans, root, path,
4560                                    item_size + sizeof(struct btrfs_item));
4561         if (ret)
4562                 return ret;
4563
4564         path->slots[0]++;
4565         setup_items_for_insert(root, path, new_key, &item_size,
4566                                item_size, item_size +
4567                                sizeof(struct btrfs_item), 1);
4568         leaf = path->nodes[0];
4569         memcpy_extent_buffer(leaf,
4570                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4571                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4572                              item_size);
4573         return 0;
4574 }
4575
4576 /*
4577  * make the item pointed to by the path smaller.  new_size indicates
4578  * how small to make it, and from_end tells us if we just chop bytes
4579  * off the end of the item or if we shift the item to chop bytes off
4580  * the front.
4581  */
4582 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4583                          u32 new_size, int from_end)
4584 {
4585         int slot;
4586         struct extent_buffer *leaf;
4587         struct btrfs_item *item;
4588         u32 nritems;
4589         unsigned int data_end;
4590         unsigned int old_data_start;
4591         unsigned int old_size;
4592         unsigned int size_diff;
4593         int i;
4594         struct btrfs_map_token token;
4595
4596         btrfs_init_map_token(&token);
4597
4598         leaf = path->nodes[0];
4599         slot = path->slots[0];
4600
4601         old_size = btrfs_item_size_nr(leaf, slot);
4602         if (old_size == new_size)
4603                 return;
4604
4605         nritems = btrfs_header_nritems(leaf);
4606         data_end = leaf_data_end(root, leaf);
4607
4608         old_data_start = btrfs_item_offset_nr(leaf, slot);
4609
4610         size_diff = old_size - new_size;
4611
4612         BUG_ON(slot < 0);
4613         BUG_ON(slot >= nritems);
4614
4615         /*
4616          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4617          */
4618         /* first correct the data pointers */
4619         for (i = slot; i < nritems; i++) {
4620                 u32 ioff;
4621                 item = btrfs_item_nr(i);
4622
4623                 ioff = btrfs_token_item_offset(leaf, item, &token);
4624                 btrfs_set_token_item_offset(leaf, item,
4625                                             ioff + size_diff, &token);
4626         }
4627
4628         /* shift the data */
4629         if (from_end) {
4630                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4631                               data_end + size_diff, btrfs_leaf_data(leaf) +
4632                               data_end, old_data_start + new_size - data_end);
4633         } else {
4634                 struct btrfs_disk_key disk_key;
4635                 u64 offset;
4636
4637                 btrfs_item_key(leaf, &disk_key, slot);
4638
4639                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4640                         unsigned long ptr;
4641                         struct btrfs_file_extent_item *fi;
4642
4643                         fi = btrfs_item_ptr(leaf, slot,
4644                                             struct btrfs_file_extent_item);
4645                         fi = (struct btrfs_file_extent_item *)(
4646                              (unsigned long)fi - size_diff);
4647
4648                         if (btrfs_file_extent_type(leaf, fi) ==
4649                             BTRFS_FILE_EXTENT_INLINE) {
4650                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4651                                 memmove_extent_buffer(leaf, ptr,
4652                                       (unsigned long)fi,
4653                                       offsetof(struct btrfs_file_extent_item,
4654                                                  disk_bytenr));
4655                         }
4656                 }
4657
4658                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4659                               data_end + size_diff, btrfs_leaf_data(leaf) +
4660                               data_end, old_data_start - data_end);
4661
4662                 offset = btrfs_disk_key_offset(&disk_key);
4663                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4664                 btrfs_set_item_key(leaf, &disk_key, slot);
4665                 if (slot == 0)
4666                         fixup_low_keys(root, path, &disk_key, 1);
4667         }
4668
4669         item = btrfs_item_nr(slot);
4670         btrfs_set_item_size(leaf, item, new_size);
4671         btrfs_mark_buffer_dirty(leaf);
4672
4673         if (btrfs_leaf_free_space(root, leaf) < 0) {
4674                 btrfs_print_leaf(root, leaf);
4675                 BUG();
4676         }
4677 }
4678
4679 /*
4680  * make the item pointed to by the path bigger, data_size is the added size.
4681  */
4682 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4683                        u32 data_size)
4684 {
4685         int slot;
4686         struct extent_buffer *leaf;
4687         struct btrfs_item *item;
4688         u32 nritems;
4689         unsigned int data_end;
4690         unsigned int old_data;
4691         unsigned int old_size;
4692         int i;
4693         struct btrfs_map_token token;
4694
4695         btrfs_init_map_token(&token);
4696
4697         leaf = path->nodes[0];
4698
4699         nritems = btrfs_header_nritems(leaf);
4700         data_end = leaf_data_end(root, leaf);
4701
4702         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4703                 btrfs_print_leaf(root, leaf);
4704                 BUG();
4705         }
4706         slot = path->slots[0];
4707         old_data = btrfs_item_end_nr(leaf, slot);
4708
4709         BUG_ON(slot < 0);
4710         if (slot >= nritems) {
4711                 btrfs_print_leaf(root, leaf);
4712                 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4713                        slot, nritems);
4714                 BUG_ON(1);
4715         }
4716
4717         /*
4718          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4719          */
4720         /* first correct the data pointers */
4721         for (i = slot; i < nritems; i++) {
4722                 u32 ioff;
4723                 item = btrfs_item_nr(i);
4724
4725                 ioff = btrfs_token_item_offset(leaf, item, &token);
4726                 btrfs_set_token_item_offset(leaf, item,
4727                                             ioff - data_size, &token);
4728         }
4729
4730         /* shift the data */
4731         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4732                       data_end - data_size, btrfs_leaf_data(leaf) +
4733                       data_end, old_data - data_end);
4734
4735         data_end = old_data;
4736         old_size = btrfs_item_size_nr(leaf, slot);
4737         item = btrfs_item_nr(slot);
4738         btrfs_set_item_size(leaf, item, old_size + data_size);
4739         btrfs_mark_buffer_dirty(leaf);
4740
4741         if (btrfs_leaf_free_space(root, leaf) < 0) {
4742                 btrfs_print_leaf(root, leaf);
4743                 BUG();
4744         }
4745 }
4746
4747 /*
4748  * this is a helper for btrfs_insert_empty_items, the main goal here is
4749  * to save stack depth by doing the bulk of the work in a function
4750  * that doesn't call btrfs_search_slot
4751  */
4752 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4753                             struct btrfs_key *cpu_key, u32 *data_size,
4754                             u32 total_data, u32 total_size, int nr)
4755 {
4756         struct btrfs_item *item;
4757         int i;
4758         u32 nritems;
4759         unsigned int data_end;
4760         struct btrfs_disk_key disk_key;
4761         struct extent_buffer *leaf;
4762         int slot;
4763         struct btrfs_map_token token;
4764
4765         btrfs_init_map_token(&token);
4766
4767         leaf = path->nodes[0];
4768         slot = path->slots[0];
4769
4770         nritems = btrfs_header_nritems(leaf);
4771         data_end = leaf_data_end(root, leaf);
4772
4773         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4774                 btrfs_print_leaf(root, leaf);
4775                 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4776                        total_size, btrfs_leaf_free_space(root, leaf));
4777                 BUG();
4778         }
4779
4780         if (slot != nritems) {
4781                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4782
4783                 if (old_data < data_end) {
4784                         btrfs_print_leaf(root, leaf);
4785                         btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4786                                slot, old_data, data_end);
4787                         BUG_ON(1);
4788                 }
4789                 /*
4790                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4791                  */
4792                 /* first correct the data pointers */
4793                 for (i = slot; i < nritems; i++) {
4794                         u32 ioff;
4795
4796                         item = btrfs_item_nr( i);
4797                         ioff = btrfs_token_item_offset(leaf, item, &token);
4798                         btrfs_set_token_item_offset(leaf, item,
4799                                                     ioff - total_data, &token);
4800                 }
4801                 /* shift the items */
4802                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4803                               btrfs_item_nr_offset(slot),
4804                               (nritems - slot) * sizeof(struct btrfs_item));
4805
4806                 /* shift the data */
4807                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4808                               data_end - total_data, btrfs_leaf_data(leaf) +
4809                               data_end, old_data - data_end);
4810                 data_end = old_data;
4811         }
4812
4813         /* setup the item for the new data */
4814         for (i = 0; i < nr; i++) {
4815                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4816                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4817                 item = btrfs_item_nr(slot + i);
4818                 btrfs_set_token_item_offset(leaf, item,
4819                                             data_end - data_size[i], &token);
4820                 data_end -= data_size[i];
4821                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4822         }
4823
4824         btrfs_set_header_nritems(leaf, nritems + nr);
4825
4826         if (slot == 0) {
4827                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4828                 fixup_low_keys(root, path, &disk_key, 1);
4829         }
4830         btrfs_unlock_up_safe(path, 1);
4831         btrfs_mark_buffer_dirty(leaf);
4832
4833         if (btrfs_leaf_free_space(root, leaf) < 0) {
4834                 btrfs_print_leaf(root, leaf);
4835                 BUG();
4836         }
4837 }
4838
4839 /*
4840  * Given a key and some data, insert items into the tree.
4841  * This does all the path init required, making room in the tree if needed.
4842  */
4843 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4844                             struct btrfs_root *root,
4845                             struct btrfs_path *path,
4846                             struct btrfs_key *cpu_key, u32 *data_size,
4847                             int nr)
4848 {
4849         int ret = 0;
4850         int slot;
4851         int i;
4852         u32 total_size = 0;
4853         u32 total_data = 0;
4854
4855         for (i = 0; i < nr; i++)
4856                 total_data += data_size[i];
4857
4858         total_size = total_data + (nr * sizeof(struct btrfs_item));
4859         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4860         if (ret == 0)
4861                 return -EEXIST;
4862         if (ret < 0)
4863                 return ret;
4864
4865         slot = path->slots[0];
4866         BUG_ON(slot < 0);
4867
4868         setup_items_for_insert(root, path, cpu_key, data_size,
4869                                total_data, total_size, nr);
4870         return 0;
4871 }
4872
4873 /*
4874  * Given a key and some data, insert an item into the tree.
4875  * This does all the path init required, making room in the tree if needed.
4876  */
4877 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4878                       *root, struct btrfs_key *cpu_key, void *data, u32
4879                       data_size)
4880 {
4881         int ret = 0;
4882         struct btrfs_path *path;
4883         struct extent_buffer *leaf;
4884         unsigned long ptr;
4885
4886         path = btrfs_alloc_path();
4887         if (!path)
4888                 return -ENOMEM;
4889         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4890         if (!ret) {
4891                 leaf = path->nodes[0];
4892                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4893                 write_extent_buffer(leaf, data, ptr, data_size);
4894                 btrfs_mark_buffer_dirty(leaf);
4895         }
4896         btrfs_free_path(path);
4897         return ret;
4898 }
4899
4900 /*
4901  * delete the pointer from a given node.
4902  *
4903  * the tree should have been previously balanced so the deletion does not
4904  * empty a node.
4905  */
4906 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4907                     int level, int slot)
4908 {
4909         struct extent_buffer *parent = path->nodes[level];
4910         u32 nritems;
4911         int ret;
4912
4913         nritems = btrfs_header_nritems(parent);
4914         if (slot != nritems - 1) {
4915                 if (level)
4916                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4917                                              slot + 1, nritems - slot - 1);
4918                 memmove_extent_buffer(parent,
4919                               btrfs_node_key_ptr_offset(slot),
4920                               btrfs_node_key_ptr_offset(slot + 1),
4921                               sizeof(struct btrfs_key_ptr) *
4922                               (nritems - slot - 1));
4923         } else if (level) {
4924                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4925                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4926                 BUG_ON(ret < 0);
4927         }
4928
4929         nritems--;
4930         btrfs_set_header_nritems(parent, nritems);
4931         if (nritems == 0 && parent == root->node) {
4932                 BUG_ON(btrfs_header_level(root->node) != 1);
4933                 /* just turn the root into a leaf and break */
4934                 btrfs_set_header_level(root->node, 0);
4935         } else if (slot == 0) {
4936                 struct btrfs_disk_key disk_key;
4937
4938                 btrfs_node_key(parent, &disk_key, 0);
4939                 fixup_low_keys(root, path, &disk_key, level + 1);
4940         }
4941         btrfs_mark_buffer_dirty(parent);
4942 }
4943
4944 /*
4945  * a helper function to delete the leaf pointed to by path->slots[1] and
4946  * path->nodes[1].
4947  *
4948  * This deletes the pointer in path->nodes[1] and frees the leaf
4949  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4950  *
4951  * The path must have already been setup for deleting the leaf, including
4952  * all the proper balancing.  path->nodes[1] must be locked.
4953  */
4954 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4955                                     struct btrfs_root *root,
4956                                     struct btrfs_path *path,
4957                                     struct extent_buffer *leaf)
4958 {
4959         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4960         del_ptr(root, path, 1, path->slots[1]);
4961
4962         /*
4963          * btrfs_free_extent is expensive, we want to make sure we
4964          * aren't holding any locks when we call it
4965          */
4966         btrfs_unlock_up_safe(path, 0);
4967
4968         root_sub_used(root, leaf->len);
4969
4970         extent_buffer_get(leaf);
4971         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4972         free_extent_buffer_stale(leaf);
4973 }
4974 /*
4975  * delete the item at the leaf level in path.  If that empties
4976  * the leaf, remove it from the tree
4977  */
4978 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4979                     struct btrfs_path *path, int slot, int nr)
4980 {
4981         struct extent_buffer *leaf;
4982         struct btrfs_item *item;
4983         int last_off;
4984         int dsize = 0;
4985         int ret = 0;
4986         int wret;
4987         int i;
4988         u32 nritems;
4989         struct btrfs_map_token token;
4990
4991         btrfs_init_map_token(&token);
4992
4993         leaf = path->nodes[0];
4994         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4995
4996         for (i = 0; i < nr; i++)
4997                 dsize += btrfs_item_size_nr(leaf, slot + i);
4998
4999         nritems = btrfs_header_nritems(leaf);
5000
5001         if (slot + nr != nritems) {
5002                 int data_end = leaf_data_end(root, leaf);
5003
5004                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
5005                               data_end + dsize,
5006                               btrfs_leaf_data(leaf) + data_end,
5007                               last_off - data_end);
5008
5009                 for (i = slot + nr; i < nritems; i++) {
5010                         u32 ioff;
5011
5012                         item = btrfs_item_nr(i);
5013                         ioff = btrfs_token_item_offset(leaf, item, &token);
5014                         btrfs_set_token_item_offset(leaf, item,
5015                                                     ioff + dsize, &token);
5016                 }
5017
5018                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5019                               btrfs_item_nr_offset(slot + nr),
5020                               sizeof(struct btrfs_item) *
5021                               (nritems - slot - nr));
5022         }
5023         btrfs_set_header_nritems(leaf, nritems - nr);
5024         nritems -= nr;
5025
5026         /* delete the leaf if we've emptied it */
5027         if (nritems == 0) {
5028                 if (leaf == root->node) {
5029                         btrfs_set_header_level(leaf, 0);
5030                 } else {
5031                         btrfs_set_path_blocking(path);
5032                         clean_tree_block(trans, root, leaf);
5033                         btrfs_del_leaf(trans, root, path, leaf);
5034                 }
5035         } else {
5036                 int used = leaf_space_used(leaf, 0, nritems);
5037                 if (slot == 0) {
5038                         struct btrfs_disk_key disk_key;
5039
5040                         btrfs_item_key(leaf, &disk_key, 0);
5041                         fixup_low_keys(root, path, &disk_key, 1);
5042                 }
5043
5044                 /* delete the leaf if it is mostly empty */
5045                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5046                         /* push_leaf_left fixes the path.
5047                          * make sure the path still points to our leaf
5048                          * for possible call to del_ptr below
5049                          */
5050                         slot = path->slots[1];
5051                         extent_buffer_get(leaf);
5052
5053                         btrfs_set_path_blocking(path);
5054                         wret = push_leaf_left(trans, root, path, 1, 1,
5055                                               1, (u32)-1);
5056                         if (wret < 0 && wret != -ENOSPC)
5057                                 ret = wret;
5058
5059                         if (path->nodes[0] == leaf &&
5060                             btrfs_header_nritems(leaf)) {
5061                                 wret = push_leaf_right(trans, root, path, 1,
5062                                                        1, 1, 0);
5063                                 if (wret < 0 && wret != -ENOSPC)
5064                                         ret = wret;
5065                         }
5066
5067                         if (btrfs_header_nritems(leaf) == 0) {
5068                                 path->slots[1] = slot;
5069                                 btrfs_del_leaf(trans, root, path, leaf);
5070                                 free_extent_buffer(leaf);
5071                                 ret = 0;
5072                         } else {
5073                                 /* if we're still in the path, make sure
5074                                  * we're dirty.  Otherwise, one of the
5075                                  * push_leaf functions must have already
5076                                  * dirtied this buffer
5077                                  */
5078                                 if (path->nodes[0] == leaf)
5079                                         btrfs_mark_buffer_dirty(leaf);
5080                                 free_extent_buffer(leaf);
5081                         }
5082                 } else {
5083                         btrfs_mark_buffer_dirty(leaf);
5084                 }
5085         }
5086         return ret;
5087 }
5088
5089 /*
5090  * search the tree again to find a leaf with lesser keys
5091  * returns 0 if it found something or 1 if there are no lesser leaves.
5092  * returns < 0 on io errors.
5093  *
5094  * This may release the path, and so you may lose any locks held at the
5095  * time you call it.
5096  */
5097 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5098 {
5099         struct btrfs_key key;
5100         struct btrfs_disk_key found_key;
5101         int ret;
5102
5103         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5104
5105         if (key.offset > 0) {
5106                 key.offset--;
5107         } else if (key.type > 0) {
5108                 key.type--;
5109                 key.offset = (u64)-1;
5110         } else if (key.objectid > 0) {
5111                 key.objectid--;
5112                 key.type = (u8)-1;
5113                 key.offset = (u64)-1;
5114         } else {
5115                 return 1;
5116         }
5117
5118         btrfs_release_path(path);
5119         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5120         if (ret < 0)
5121                 return ret;
5122         btrfs_item_key(path->nodes[0], &found_key, 0);
5123         ret = comp_keys(&found_key, &key);
5124         if (ret < 0)
5125                 return 0;
5126         return 1;
5127 }
5128
5129 /*
5130  * A helper function to walk down the tree starting at min_key, and looking
5131  * for nodes or leaves that are have a minimum transaction id.
5132  * This is used by the btree defrag code, and tree logging
5133  *
5134  * This does not cow, but it does stuff the starting key it finds back
5135  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5136  * key and get a writable path.
5137  *
5138  * This does lock as it descends, and path->keep_locks should be set
5139  * to 1 by the caller.
5140  *
5141  * This honors path->lowest_level to prevent descent past a given level
5142  * of the tree.
5143  *
5144  * min_trans indicates the oldest transaction that you are interested
5145  * in walking through.  Any nodes or leaves older than min_trans are
5146  * skipped over (without reading them).
5147  *
5148  * returns zero if something useful was found, < 0 on error and 1 if there
5149  * was nothing in the tree that matched the search criteria.
5150  */
5151 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5152                          struct btrfs_path *path,
5153                          u64 min_trans)
5154 {
5155         struct extent_buffer *cur;
5156         struct btrfs_key found_key;
5157         int slot;
5158         int sret;
5159         u32 nritems;
5160         int level;
5161         int ret = 1;
5162
5163         WARN_ON(!path->keep_locks);
5164 again:
5165         cur = btrfs_read_lock_root_node(root);
5166         level = btrfs_header_level(cur);
5167         WARN_ON(path->nodes[level]);
5168         path->nodes[level] = cur;
5169         path->locks[level] = BTRFS_READ_LOCK;
5170
5171         if (btrfs_header_generation(cur) < min_trans) {
5172                 ret = 1;
5173                 goto out;
5174         }
5175         while (1) {
5176                 nritems = btrfs_header_nritems(cur);
5177                 level = btrfs_header_level(cur);
5178                 sret = bin_search(cur, min_key, level, &slot);
5179
5180                 /* at the lowest level, we're done, setup the path and exit */
5181                 if (level == path->lowest_level) {
5182                         if (slot >= nritems)
5183                                 goto find_next_key;
5184                         ret = 0;
5185                         path->slots[level] = slot;
5186                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5187                         goto out;
5188                 }
5189                 if (sret && slot > 0)
5190                         slot--;
5191                 /*
5192                  * check this node pointer against the min_trans parameters.
5193                  * If it is too old, old, skip to the next one.
5194                  */
5195                 while (slot < nritems) {
5196                         u64 gen;
5197
5198                         gen = btrfs_node_ptr_generation(cur, slot);
5199                         if (gen < min_trans) {
5200                                 slot++;
5201                                 continue;
5202                         }
5203                         break;
5204                 }
5205 find_next_key:
5206                 /*
5207                  * we didn't find a candidate key in this node, walk forward
5208                  * and find another one
5209                  */
5210                 if (slot >= nritems) {
5211                         path->slots[level] = slot;
5212                         btrfs_set_path_blocking(path);
5213                         sret = btrfs_find_next_key(root, path, min_key, level,
5214                                                   min_trans);
5215                         if (sret == 0) {
5216                                 btrfs_release_path(path);
5217                                 goto again;
5218                         } else {
5219                                 goto out;
5220                         }
5221                 }
5222                 /* save our key for returning back */
5223                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5224                 path->slots[level] = slot;
5225                 if (level == path->lowest_level) {
5226                         ret = 0;
5227                         unlock_up(path, level, 1, 0, NULL);
5228                         goto out;
5229                 }
5230                 btrfs_set_path_blocking(path);
5231                 cur = read_node_slot(root, cur, slot);
5232                 BUG_ON(!cur); /* -ENOMEM */
5233
5234                 btrfs_tree_read_lock(cur);
5235
5236                 path->locks[level - 1] = BTRFS_READ_LOCK;
5237                 path->nodes[level - 1] = cur;
5238                 unlock_up(path, level, 1, 0, NULL);
5239                 btrfs_clear_path_blocking(path, NULL, 0);
5240         }
5241 out:
5242         if (ret == 0)
5243                 memcpy(min_key, &found_key, sizeof(found_key));
5244         btrfs_set_path_blocking(path);
5245         return ret;
5246 }
5247
5248 static void tree_move_down(struct btrfs_root *root,
5249                            struct btrfs_path *path,
5250                            int *level, int root_level)
5251 {
5252         BUG_ON(*level == 0);
5253         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5254                                         path->slots[*level]);
5255         path->slots[*level - 1] = 0;
5256         (*level)--;
5257 }
5258
5259 static int tree_move_next_or_upnext(struct btrfs_root *root,
5260                                     struct btrfs_path *path,
5261                                     int *level, int root_level)
5262 {
5263         int ret = 0;
5264         int nritems;
5265         nritems = btrfs_header_nritems(path->nodes[*level]);
5266
5267         path->slots[*level]++;
5268
5269         while (path->slots[*level] >= nritems) {
5270                 if (*level == root_level)
5271                         return -1;
5272
5273                 /* move upnext */
5274                 path->slots[*level] = 0;
5275                 free_extent_buffer(path->nodes[*level]);
5276                 path->nodes[*level] = NULL;
5277                 (*level)++;
5278                 path->slots[*level]++;
5279
5280                 nritems = btrfs_header_nritems(path->nodes[*level]);
5281                 ret = 1;
5282         }
5283         return ret;
5284 }
5285
5286 /*
5287  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5288  * or down.
5289  */
5290 static int tree_advance(struct btrfs_root *root,
5291                         struct btrfs_path *path,
5292                         int *level, int root_level,
5293                         int allow_down,
5294                         struct btrfs_key *key)
5295 {
5296         int ret;
5297
5298         if (*level == 0 || !allow_down) {
5299                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5300         } else {
5301                 tree_move_down(root, path, level, root_level);
5302                 ret = 0;
5303         }
5304         if (ret >= 0) {
5305                 if (*level == 0)
5306                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5307                                         path->slots[*level]);
5308                 else
5309                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5310                                         path->slots[*level]);
5311         }
5312         return ret;
5313 }
5314
5315 static int tree_compare_item(struct btrfs_root *left_root,
5316                              struct btrfs_path *left_path,
5317                              struct btrfs_path *right_path,
5318                              char *tmp_buf)
5319 {
5320         int cmp;
5321         int len1, len2;
5322         unsigned long off1, off2;
5323
5324         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5325         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5326         if (len1 != len2)
5327                 return 1;
5328
5329         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5330         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5331                                 right_path->slots[0]);
5332
5333         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5334
5335         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5336         if (cmp)
5337                 return 1;
5338         return 0;
5339 }
5340
5341 #define ADVANCE 1
5342 #define ADVANCE_ONLY_NEXT -1
5343
5344 /*
5345  * This function compares two trees and calls the provided callback for
5346  * every changed/new/deleted item it finds.
5347  * If shared tree blocks are encountered, whole subtrees are skipped, making
5348  * the compare pretty fast on snapshotted subvolumes.
5349  *
5350  * This currently works on commit roots only. As commit roots are read only,
5351  * we don't do any locking. The commit roots are protected with transactions.
5352  * Transactions are ended and rejoined when a commit is tried in between.
5353  *
5354  * This function checks for modifications done to the trees while comparing.
5355  * If it detects a change, it aborts immediately.
5356  */
5357 int btrfs_compare_trees(struct btrfs_root *left_root,
5358                         struct btrfs_root *right_root,
5359                         btrfs_changed_cb_t changed_cb, void *ctx)
5360 {
5361         int ret;
5362         int cmp;
5363         struct btrfs_trans_handle *trans = NULL;
5364         struct btrfs_path *left_path = NULL;
5365         struct btrfs_path *right_path = NULL;
5366         struct btrfs_key left_key;
5367         struct btrfs_key right_key;
5368         char *tmp_buf = NULL;
5369         int left_root_level;
5370         int right_root_level;
5371         int left_level;
5372         int right_level;
5373         int left_end_reached;
5374         int right_end_reached;
5375         int advance_left;
5376         int advance_right;
5377         u64 left_blockptr;
5378         u64 right_blockptr;
5379         u64 left_start_ctransid;
5380         u64 right_start_ctransid;
5381         u64 ctransid;
5382
5383         left_path = btrfs_alloc_path();
5384         if (!left_path) {
5385                 ret = -ENOMEM;
5386                 goto out;
5387         }
5388         right_path = btrfs_alloc_path();
5389         if (!right_path) {
5390                 ret = -ENOMEM;
5391                 goto out;
5392         }
5393
5394         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5395         if (!tmp_buf) {
5396                 ret = -ENOMEM;
5397                 goto out;
5398         }
5399
5400         left_path->search_commit_root = 1;
5401         left_path->skip_locking = 1;
5402         right_path->search_commit_root = 1;
5403         right_path->skip_locking = 1;
5404
5405         spin_lock(&left_root->root_item_lock);
5406         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5407         spin_unlock(&left_root->root_item_lock);
5408
5409         spin_lock(&right_root->root_item_lock);
5410         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5411         spin_unlock(&right_root->root_item_lock);
5412
5413         trans = btrfs_join_transaction(left_root);
5414         if (IS_ERR(trans)) {
5415                 ret = PTR_ERR(trans);
5416                 trans = NULL;
5417                 goto out;
5418         }
5419
5420         /*
5421          * Strategy: Go to the first items of both trees. Then do
5422          *
5423          * If both trees are at level 0
5424          *   Compare keys of current items
5425          *     If left < right treat left item as new, advance left tree
5426          *       and repeat
5427          *     If left > right treat right item as deleted, advance right tree
5428          *       and repeat
5429          *     If left == right do deep compare of items, treat as changed if
5430          *       needed, advance both trees and repeat
5431          * If both trees are at the same level but not at level 0
5432          *   Compare keys of current nodes/leafs
5433          *     If left < right advance left tree and repeat
5434          *     If left > right advance right tree and repeat
5435          *     If left == right compare blockptrs of the next nodes/leafs
5436          *       If they match advance both trees but stay at the same level
5437          *         and repeat
5438          *       If they don't match advance both trees while allowing to go
5439          *         deeper and repeat
5440          * If tree levels are different
5441          *   Advance the tree that needs it and repeat
5442          *
5443          * Advancing a tree means:
5444          *   If we are at level 0, try to go to the next slot. If that's not
5445          *   possible, go one level up and repeat. Stop when we found a level
5446          *   where we could go to the next slot. We may at this point be on a
5447          *   node or a leaf.
5448          *
5449          *   If we are not at level 0 and not on shared tree blocks, go one
5450          *   level deeper.
5451          *
5452          *   If we are not at level 0 and on shared tree blocks, go one slot to
5453          *   the right if possible or go up and right.
5454          */
5455
5456         left_level = btrfs_header_level(left_root->commit_root);
5457         left_root_level = left_level;
5458         left_path->nodes[left_level] = left_root->commit_root;
5459         extent_buffer_get(left_path->nodes[left_level]);
5460
5461         right_level = btrfs_header_level(right_root->commit_root);
5462         right_root_level = right_level;
5463         right_path->nodes[right_level] = right_root->commit_root;
5464         extent_buffer_get(right_path->nodes[right_level]);
5465
5466         if (left_level == 0)
5467                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5468                                 &left_key, left_path->slots[left_level]);
5469         else
5470                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5471                                 &left_key, left_path->slots[left_level]);
5472         if (right_level == 0)
5473                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5474                                 &right_key, right_path->slots[right_level]);
5475         else
5476                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5477                                 &right_key, right_path->slots[right_level]);
5478
5479         left_end_reached = right_end_reached = 0;
5480         advance_left = advance_right = 0;
5481
5482         while (1) {
5483                 /*
5484                  * We need to make sure the transaction does not get committed
5485                  * while we do anything on commit roots. This means, we need to
5486                  * join and leave transactions for every item that we process.
5487                  */
5488                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5489                         btrfs_release_path(left_path);
5490                         btrfs_release_path(right_path);
5491
5492                         ret = btrfs_end_transaction(trans, left_root);
5493                         trans = NULL;
5494                         if (ret < 0)
5495                                 goto out;
5496                 }
5497                 /* now rejoin the transaction */
5498                 if (!trans) {
5499                         trans = btrfs_join_transaction(left_root);
5500                         if (IS_ERR(trans)) {
5501                                 ret = PTR_ERR(trans);
5502                                 trans = NULL;
5503                                 goto out;
5504                         }
5505
5506                         spin_lock(&left_root->root_item_lock);
5507                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5508                         spin_unlock(&left_root->root_item_lock);
5509                         if (ctransid != left_start_ctransid)
5510                                 left_start_ctransid = 0;
5511
5512                         spin_lock(&right_root->root_item_lock);
5513                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5514                         spin_unlock(&right_root->root_item_lock);
5515                         if (ctransid != right_start_ctransid)
5516                                 right_start_ctransid = 0;
5517
5518                         if (!left_start_ctransid || !right_start_ctransid) {
5519                                 WARN(1, KERN_WARNING
5520                                         "BTRFS: btrfs_compare_tree detected "
5521                                         "a change in one of the trees while "
5522                                         "iterating. This is probably a "
5523                                         "bug.\n");
5524                                 ret = -EIO;
5525                                 goto out;
5526                         }
5527
5528                         /*
5529                          * the commit root may have changed, so start again
5530                          * where we stopped
5531                          */
5532                         left_path->lowest_level = left_level;
5533                         right_path->lowest_level = right_level;
5534                         ret = btrfs_search_slot(NULL, left_root,
5535                                         &left_key, left_path, 0, 0);
5536                         if (ret < 0)
5537                                 goto out;
5538                         ret = btrfs_search_slot(NULL, right_root,
5539                                         &right_key, right_path, 0, 0);
5540                         if (ret < 0)
5541                                 goto out;
5542                 }
5543
5544                 if (advance_left && !left_end_reached) {
5545                         ret = tree_advance(left_root, left_path, &left_level,
5546                                         left_root_level,
5547                                         advance_left != ADVANCE_ONLY_NEXT,
5548                                         &left_key);
5549                         if (ret < 0)
5550                                 left_end_reached = ADVANCE;
5551                         advance_left = 0;
5552                 }
5553                 if (advance_right && !right_end_reached) {
5554                         ret = tree_advance(right_root, right_path, &right_level,
5555                                         right_root_level,
5556                                         advance_right != ADVANCE_ONLY_NEXT,
5557                                         &right_key);
5558                         if (ret < 0)
5559                                 right_end_reached = ADVANCE;
5560                         advance_right = 0;
5561                 }
5562
5563                 if (left_end_reached && right_end_reached) {
5564                         ret = 0;
5565                         goto out;
5566                 } else if (left_end_reached) {
5567                         if (right_level == 0) {
5568                                 ret = changed_cb(left_root, right_root,
5569                                                 left_path, right_path,
5570                                                 &right_key,
5571                                                 BTRFS_COMPARE_TREE_DELETED,
5572                                                 ctx);
5573                                 if (ret < 0)
5574                                         goto out;
5575                         }
5576                         advance_right = ADVANCE;
5577                         continue;
5578                 } else if (right_end_reached) {
5579                         if (left_level == 0) {
5580                                 ret = changed_cb(left_root, right_root,
5581                                                 left_path, right_path,
5582                                                 &left_key,
5583                                                 BTRFS_COMPARE_TREE_NEW,
5584                                                 ctx);
5585                                 if (ret < 0)
5586                                         goto out;
5587                         }
5588                         advance_left = ADVANCE;
5589                         continue;
5590                 }
5591
5592                 if (left_level == 0 && right_level == 0) {
5593                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5594                         if (cmp < 0) {
5595                                 ret = changed_cb(left_root, right_root,
5596                                                 left_path, right_path,
5597                                                 &left_key,
5598                                                 BTRFS_COMPARE_TREE_NEW,
5599                                                 ctx);
5600                                 if (ret < 0)
5601                                         goto out;
5602                                 advance_left = ADVANCE;
5603                         } else if (cmp > 0) {
5604                                 ret = changed_cb(left_root, right_root,
5605                                                 left_path, right_path,
5606                                                 &right_key,
5607                                                 BTRFS_COMPARE_TREE_DELETED,
5608                                                 ctx);
5609                                 if (ret < 0)
5610                                         goto out;
5611                                 advance_right = ADVANCE;
5612                         } else {
5613                                 enum btrfs_compare_tree_result cmp;
5614
5615                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5616                                 ret = tree_compare_item(left_root, left_path,
5617                                                 right_path, tmp_buf);
5618                                 if (ret)
5619                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5620                                 else
5621                                         cmp = BTRFS_COMPARE_TREE_SAME;
5622                                 ret = changed_cb(left_root, right_root,
5623                                                  left_path, right_path,
5624                                                  &left_key, cmp, ctx);
5625                                 if (ret < 0)
5626                                         goto out;
5627                                 advance_left = ADVANCE;
5628                                 advance_right = ADVANCE;
5629                         }
5630                 } else if (left_level == right_level) {
5631                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5632                         if (cmp < 0) {
5633                                 advance_left = ADVANCE;
5634                         } else if (cmp > 0) {
5635                                 advance_right = ADVANCE;
5636                         } else {
5637                                 left_blockptr = btrfs_node_blockptr(
5638                                                 left_path->nodes[left_level],
5639                                                 left_path->slots[left_level]);
5640                                 right_blockptr = btrfs_node_blockptr(
5641                                                 right_path->nodes[right_level],
5642                                                 right_path->slots[right_level]);
5643                                 if (left_blockptr == right_blockptr) {
5644                                         /*
5645                                          * As we're on a shared block, don't
5646                                          * allow to go deeper.
5647                                          */
5648                                         advance_left = ADVANCE_ONLY_NEXT;
5649                                         advance_right = ADVANCE_ONLY_NEXT;
5650                                 } else {
5651                                         advance_left = ADVANCE;
5652                                         advance_right = ADVANCE;
5653                                 }
5654                         }
5655                 } else if (left_level < right_level) {
5656                         advance_right = ADVANCE;
5657                 } else {
5658                         advance_left = ADVANCE;
5659                 }
5660         }
5661
5662 out:
5663         btrfs_free_path(left_path);
5664         btrfs_free_path(right_path);
5665         kfree(tmp_buf);
5666
5667         if (trans) {
5668                 if (!ret)
5669                         ret = btrfs_end_transaction(trans, left_root);
5670                 else
5671                         btrfs_end_transaction(trans, left_root);
5672         }
5673
5674         return ret;
5675 }
5676
5677 /*
5678  * this is similar to btrfs_next_leaf, but does not try to preserve
5679  * and fixup the path.  It looks for and returns the next key in the
5680  * tree based on the current path and the min_trans parameters.
5681  *
5682  * 0 is returned if another key is found, < 0 if there are any errors
5683  * and 1 is returned if there are no higher keys in the tree
5684  *
5685  * path->keep_locks should be set to 1 on the search made before
5686  * calling this function.
5687  */
5688 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5689                         struct btrfs_key *key, int level, u64 min_trans)
5690 {
5691         int slot;
5692         struct extent_buffer *c;
5693
5694         WARN_ON(!path->keep_locks);
5695         while (level < BTRFS_MAX_LEVEL) {
5696                 if (!path->nodes[level])
5697                         return 1;
5698
5699                 slot = path->slots[level] + 1;
5700                 c = path->nodes[level];
5701 next:
5702                 if (slot >= btrfs_header_nritems(c)) {
5703                         int ret;
5704                         int orig_lowest;
5705                         struct btrfs_key cur_key;
5706                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5707                             !path->nodes[level + 1])
5708                                 return 1;
5709
5710                         if (path->locks[level + 1]) {
5711                                 level++;
5712                                 continue;
5713                         }
5714
5715                         slot = btrfs_header_nritems(c) - 1;
5716                         if (level == 0)
5717                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5718                         else
5719                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5720
5721                         orig_lowest = path->lowest_level;
5722                         btrfs_release_path(path);
5723                         path->lowest_level = level;
5724                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5725                                                 0, 0);
5726                         path->lowest_level = orig_lowest;
5727                         if (ret < 0)
5728                                 return ret;
5729
5730                         c = path->nodes[level];
5731                         slot = path->slots[level];
5732                         if (ret == 0)
5733                                 slot++;
5734                         goto next;
5735                 }
5736
5737                 if (level == 0)
5738                         btrfs_item_key_to_cpu(c, key, slot);
5739                 else {
5740                         u64 gen = btrfs_node_ptr_generation(c, slot);
5741
5742                         if (gen < min_trans) {
5743                                 slot++;
5744                                 goto next;
5745                         }
5746                         btrfs_node_key_to_cpu(c, key, slot);
5747                 }
5748                 return 0;
5749         }
5750         return 1;
5751 }
5752
5753 /*
5754  * search the tree again to find a leaf with greater keys
5755  * returns 0 if it found something or 1 if there are no greater leaves.
5756  * returns < 0 on io errors.
5757  */
5758 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5759 {
5760         return btrfs_next_old_leaf(root, path, 0);
5761 }
5762
5763 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5764                         u64 time_seq)
5765 {
5766         int slot;
5767         int level;
5768         struct extent_buffer *c;
5769         struct extent_buffer *next;
5770         struct btrfs_key key;
5771         u32 nritems;
5772         int ret;
5773         int old_spinning = path->leave_spinning;
5774         int next_rw_lock = 0;
5775
5776         nritems = btrfs_header_nritems(path->nodes[0]);
5777         if (nritems == 0)
5778                 return 1;
5779
5780         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5781 again:
5782         level = 1;
5783         next = NULL;
5784         next_rw_lock = 0;
5785         btrfs_release_path(path);
5786
5787         path->keep_locks = 1;
5788         path->leave_spinning = 1;
5789
5790         if (time_seq)
5791                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5792         else
5793                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5794         path->keep_locks = 0;
5795
5796         if (ret < 0)
5797                 return ret;
5798
5799         nritems = btrfs_header_nritems(path->nodes[0]);
5800         /*
5801          * by releasing the path above we dropped all our locks.  A balance
5802          * could have added more items next to the key that used to be
5803          * at the very end of the block.  So, check again here and
5804          * advance the path if there are now more items available.
5805          */
5806         if (nritems > 0 && path->slots[0] < nritems - 1) {
5807                 if (ret == 0)
5808                         path->slots[0]++;
5809                 ret = 0;
5810                 goto done;
5811         }
5812
5813         while (level < BTRFS_MAX_LEVEL) {
5814                 if (!path->nodes[level]) {
5815                         ret = 1;
5816                         goto done;
5817                 }
5818
5819                 slot = path->slots[level] + 1;
5820                 c = path->nodes[level];
5821                 if (slot >= btrfs_header_nritems(c)) {
5822                         level++;
5823                         if (level == BTRFS_MAX_LEVEL) {
5824                                 ret = 1;
5825                                 goto done;
5826                         }
5827                         continue;
5828                 }
5829
5830                 if (next) {
5831                         btrfs_tree_unlock_rw(next, next_rw_lock);
5832                         free_extent_buffer(next);
5833                 }
5834
5835                 next = c;
5836                 next_rw_lock = path->locks[level];
5837                 ret = read_block_for_search(NULL, root, path, &next, level,
5838                                             slot, &key, 0);
5839                 if (ret == -EAGAIN)
5840                         goto again;
5841
5842                 if (ret < 0) {
5843                         btrfs_release_path(path);
5844                         goto done;
5845                 }
5846
5847                 if (!path->skip_locking) {
5848                         ret = btrfs_try_tree_read_lock(next);
5849                         if (!ret && time_seq) {
5850                                 /*
5851                                  * If we don't get the lock, we may be racing
5852                                  * with push_leaf_left, holding that lock while
5853                                  * itself waiting for the leaf we've currently
5854                                  * locked. To solve this situation, we give up
5855                                  * on our lock and cycle.
5856                                  */
5857                                 free_extent_buffer(next);
5858                                 btrfs_release_path(path);
5859                                 cond_resched();
5860                                 goto again;
5861                         }
5862                         if (!ret) {
5863                                 btrfs_set_path_blocking(path);
5864                                 btrfs_tree_read_lock(next);
5865                                 btrfs_clear_path_blocking(path, next,
5866                                                           BTRFS_READ_LOCK);
5867                         }
5868                         next_rw_lock = BTRFS_READ_LOCK;
5869                 }
5870                 break;
5871         }
5872         path->slots[level] = slot;
5873         while (1) {
5874                 level--;
5875                 c = path->nodes[level];
5876                 if (path->locks[level])
5877                         btrfs_tree_unlock_rw(c, path->locks[level]);
5878
5879                 free_extent_buffer(c);
5880                 path->nodes[level] = next;
5881                 path->slots[level] = 0;
5882                 if (!path->skip_locking)
5883                         path->locks[level] = next_rw_lock;
5884                 if (!level)
5885                         break;
5886
5887                 ret = read_block_for_search(NULL, root, path, &next, level,
5888                                             0, &key, 0);
5889                 if (ret == -EAGAIN)
5890                         goto again;
5891
5892                 if (ret < 0) {
5893                         btrfs_release_path(path);
5894                         goto done;
5895                 }
5896
5897                 if (!path->skip_locking) {
5898                         ret = btrfs_try_tree_read_lock(next);
5899                         if (!ret) {
5900                                 btrfs_set_path_blocking(path);
5901                                 btrfs_tree_read_lock(next);
5902                                 btrfs_clear_path_blocking(path, next,
5903                                                           BTRFS_READ_LOCK);
5904                         }
5905                         next_rw_lock = BTRFS_READ_LOCK;
5906                 }
5907         }
5908         ret = 0;
5909 done:
5910         unlock_up(path, 0, 1, 0, NULL);
5911         path->leave_spinning = old_spinning;
5912         if (!old_spinning)
5913                 btrfs_set_path_blocking(path);
5914
5915         return ret;
5916 }
5917
5918 /*
5919  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5920  * searching until it gets past min_objectid or finds an item of 'type'
5921  *
5922  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5923  */
5924 int btrfs_previous_item(struct btrfs_root *root,
5925                         struct btrfs_path *path, u64 min_objectid,
5926                         int type)
5927 {
5928         struct btrfs_key found_key;
5929         struct extent_buffer *leaf;
5930         u32 nritems;
5931         int ret;
5932
5933         while (1) {
5934                 if (path->slots[0] == 0) {
5935                         btrfs_set_path_blocking(path);
5936                         ret = btrfs_prev_leaf(root, path);
5937                         if (ret != 0)
5938                                 return ret;
5939                 } else {
5940                         path->slots[0]--;
5941                 }
5942                 leaf = path->nodes[0];
5943                 nritems = btrfs_header_nritems(leaf);
5944                 if (nritems == 0)
5945                         return 1;
5946                 if (path->slots[0] == nritems)
5947                         path->slots[0]--;
5948
5949                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5950                 if (found_key.objectid < min_objectid)
5951                         break;
5952                 if (found_key.type == type)
5953                         return 0;
5954                 if (found_key.objectid == min_objectid &&
5955                     found_key.type < type)
5956                         break;
5957         }
5958         return 1;
5959 }
5960
5961 /*
5962  * search in extent tree to find a previous Metadata/Data extent item with
5963  * min objecitd.
5964  *
5965  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5966  */
5967 int btrfs_previous_extent_item(struct btrfs_root *root,
5968                         struct btrfs_path *path, u64 min_objectid)
5969 {
5970         struct btrfs_key found_key;
5971         struct extent_buffer *leaf;
5972         u32 nritems;
5973         int ret;
5974
5975         while (1) {
5976                 if (path->slots[0] == 0) {
5977                         btrfs_set_path_blocking(path);
5978                         ret = btrfs_prev_leaf(root, path);
5979                         if (ret != 0)
5980                                 return ret;
5981                 } else {
5982                         path->slots[0]--;
5983                 }
5984                 leaf = path->nodes[0];
5985                 nritems = btrfs_header_nritems(leaf);
5986                 if (nritems == 0)
5987                         return 1;
5988                 if (path->slots[0] == nritems)
5989                         path->slots[0]--;
5990
5991                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5992                 if (found_key.objectid < min_objectid)
5993                         break;
5994                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5995                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5996                         return 0;
5997                 if (found_key.objectid == min_objectid &&
5998                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5999                         break;
6000         }
6001         return 1;
6002 }