]> Pileus Git - ~andy/linux/blob - fs/btrfs/ctree.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[~andy/linux] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot,
42                     int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46                                           u32 blocksize, u64 parent_transid,
47                                           u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49                                                 u64 bytenr, u32 blocksize,
50                                                 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54         struct btrfs_path *path;
55         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56         return path;
57 }
58
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65         int i;
66         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67                 if (!p->nodes[i] || !p->locks[i])
68                         continue;
69                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70                 if (p->locks[i] == BTRFS_READ_LOCK)
71                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74         }
75 }
76
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86                                         struct extent_buffer *held, int held_rw)
87 {
88         int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91         /* lockdep really cares that we take all of these spinlocks
92          * in the right order.  If any of the locks in the path are not
93          * currently blocking, it is going to complain.  So, make really
94          * really sure by forcing the path to blocking before we clear
95          * the path blocking.
96          */
97         if (held) {
98                 btrfs_set_lock_blocking_rw(held, held_rw);
99                 if (held_rw == BTRFS_WRITE_LOCK)
100                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101                 else if (held_rw == BTRFS_READ_LOCK)
102                         held_rw = BTRFS_READ_LOCK_BLOCKING;
103         }
104         btrfs_set_path_blocking(p);
105 #endif
106
107         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108                 if (p->nodes[i] && p->locks[i]) {
109                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111                                 p->locks[i] = BTRFS_WRITE_LOCK;
112                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113                                 p->locks[i] = BTRFS_READ_LOCK;
114                 }
115         }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118         if (held)
119                 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126         if (!p)
127                 return;
128         btrfs_release_path(p);
129         kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140         int i;
141
142         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143                 p->slots[i] = 0;
144                 if (!p->nodes[i])
145                         continue;
146                 if (p->locks[i]) {
147                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148                         p->locks[i] = 0;
149                 }
150                 free_extent_buffer(p->nodes[i]);
151                 p->nodes[i] = NULL;
152         }
153 }
154
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167         struct extent_buffer *eb;
168
169         while (1) {
170                 rcu_read_lock();
171                 eb = rcu_dereference(root->node);
172
173                 /*
174                  * RCU really hurts here, we could free up the root node because
175                  * it was cow'ed but we may not get the new root node yet so do
176                  * the inc_not_zero dance and if it doesn't work then
177                  * synchronize_rcu and try again.
178                  */
179                 if (atomic_inc_not_zero(&eb->refs)) {
180                         rcu_read_unlock();
181                         break;
182                 }
183                 rcu_read_unlock();
184                 synchronize_rcu();
185         }
186         return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195         struct extent_buffer *eb;
196
197         while (1) {
198                 eb = btrfs_root_node(root);
199                 btrfs_tree_lock(eb);
200                 if (eb == root->node)
201                         break;
202                 btrfs_tree_unlock(eb);
203                 free_extent_buffer(eb);
204         }
205         return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214         struct extent_buffer *eb;
215
216         while (1) {
217                 eb = btrfs_root_node(root);
218                 btrfs_tree_read_lock(eb);
219                 if (eb == root->node)
220                         break;
221                 btrfs_tree_read_unlock(eb);
222                 free_extent_buffer(eb);
223         }
224         return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233         spin_lock(&root->fs_info->trans_lock);
234         if (root->track_dirty && list_empty(&root->dirty_list)) {
235                 list_add(&root->dirty_list,
236                          &root->fs_info->dirty_cowonly_roots);
237         }
238         spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247                       struct btrfs_root *root,
248                       struct extent_buffer *buf,
249                       struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251         struct extent_buffer *cow;
252         int ret = 0;
253         int level;
254         struct btrfs_disk_key disk_key;
255
256         WARN_ON(root->ref_cows && trans->transid !=
257                 root->fs_info->running_transaction->transid);
258         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260         level = btrfs_header_level(buf);
261         if (level == 0)
262                 btrfs_item_key(buf, &disk_key, 0);
263         else
264                 btrfs_node_key(buf, &disk_key, 0);
265
266         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267                                      new_root_objectid, &disk_key, level,
268                                      buf->start, 0);
269         if (IS_ERR(cow))
270                 return PTR_ERR(cow);
271
272         copy_extent_buffer(cow, buf, 0, 0, cow->len);
273         btrfs_set_header_bytenr(cow, cow->start);
274         btrfs_set_header_generation(cow, trans->transid);
275         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277                                      BTRFS_HEADER_FLAG_RELOC);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280         else
281                 btrfs_set_header_owner(cow, new_root_objectid);
282
283         write_extent_buffer(cow, root->fs_info->fsid,
284                             (unsigned long)btrfs_header_fsid(cow),
285                             BTRFS_FSID_SIZE);
286
287         WARN_ON(btrfs_header_generation(buf) > trans->transid);
288         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290         else
291                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293         if (ret)
294                 return ret;
295
296         btrfs_mark_buffer_dirty(cow);
297         *cow_ret = cow;
298         return 0;
299 }
300
301 enum mod_log_op {
302         MOD_LOG_KEY_REPLACE,
303         MOD_LOG_KEY_ADD,
304         MOD_LOG_KEY_REMOVE,
305         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307         MOD_LOG_MOVE_KEYS,
308         MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312         int dst_slot;
313         int nr_items;
314 };
315
316 struct tree_mod_root {
317         u64 logical;
318         u8 level;
319 };
320
321 struct tree_mod_elem {
322         struct rb_node node;
323         u64 index;              /* shifted logical */
324         u64 seq;
325         enum mod_log_op op;
326
327         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328         int slot;
329
330         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331         u64 generation;
332
333         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334         struct btrfs_disk_key key;
335         u64 blockptr;
336
337         /* this is used for op == MOD_LOG_MOVE_KEYS */
338         struct tree_mod_move move;
339
340         /* this is used for op == MOD_LOG_ROOT_REPLACE */
341         struct tree_mod_root old_root;
342 };
343
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 {
346         read_lock(&fs_info->tree_mod_log_lock);
347 }
348
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 {
351         read_unlock(&fs_info->tree_mod_log_lock);
352 }
353
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 {
356         write_lock(&fs_info->tree_mod_log_lock);
357 }
358
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 {
361         write_unlock(&fs_info->tree_mod_log_lock);
362 }
363
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373                            struct seq_list *elem)
374 {
375         u64 seq;
376
377         tree_mod_log_write_lock(fs_info);
378         spin_lock(&fs_info->tree_mod_seq_lock);
379         if (!elem->seq) {
380                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382         }
383         seq = btrfs_inc_tree_mod_seq(fs_info);
384         spin_unlock(&fs_info->tree_mod_seq_lock);
385         tree_mod_log_write_unlock(fs_info);
386
387         return seq;
388 }
389
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391                             struct seq_list *elem)
392 {
393         struct rb_root *tm_root;
394         struct rb_node *node;
395         struct rb_node *next;
396         struct seq_list *cur_elem;
397         struct tree_mod_elem *tm;
398         u64 min_seq = (u64)-1;
399         u64 seq_putting = elem->seq;
400
401         if (!seq_putting)
402                 return;
403
404         spin_lock(&fs_info->tree_mod_seq_lock);
405         list_del(&elem->list);
406         elem->seq = 0;
407
408         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409                 if (cur_elem->seq < min_seq) {
410                         if (seq_putting > cur_elem->seq) {
411                                 /*
412                                  * blocker with lower sequence number exists, we
413                                  * cannot remove anything from the log
414                                  */
415                                 spin_unlock(&fs_info->tree_mod_seq_lock);
416                                 return;
417                         }
418                         min_seq = cur_elem->seq;
419                 }
420         }
421         spin_unlock(&fs_info->tree_mod_seq_lock);
422
423         /*
424          * anything that's lower than the lowest existing (read: blocked)
425          * sequence number can be removed from the tree.
426          */
427         tree_mod_log_write_lock(fs_info);
428         tm_root = &fs_info->tree_mod_log;
429         for (node = rb_first(tm_root); node; node = next) {
430                 next = rb_next(node);
431                 tm = container_of(node, struct tree_mod_elem, node);
432                 if (tm->seq > min_seq)
433                         continue;
434                 rb_erase(node, tm_root);
435                 kfree(tm);
436         }
437         tree_mod_log_write_unlock(fs_info);
438 }
439
440 /*
441  * key order of the log:
442  *       index -> sequence
443  *
444  * the index is the shifted logical of the *new* root node for root replace
445  * operations, or the shifted logical of the affected block for all other
446  * operations.
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451         struct rb_root *tm_root;
452         struct rb_node **new;
453         struct rb_node *parent = NULL;
454         struct tree_mod_elem *cur;
455
456         BUG_ON(!tm || !tm->seq);
457
458         tm_root = &fs_info->tree_mod_log;
459         new = &tm_root->rb_node;
460         while (*new) {
461                 cur = container_of(*new, struct tree_mod_elem, node);
462                 parent = *new;
463                 if (cur->index < tm->index)
464                         new = &((*new)->rb_left);
465                 else if (cur->index > tm->index)
466                         new = &((*new)->rb_right);
467                 else if (cur->seq < tm->seq)
468                         new = &((*new)->rb_left);
469                 else if (cur->seq > tm->seq)
470                         new = &((*new)->rb_right);
471                 else {
472                         kfree(tm);
473                         return -EEXIST;
474                 }
475         }
476
477         rb_link_node(&tm->node, parent, new);
478         rb_insert_color(&tm->node, tm_root);
479         return 0;
480 }
481
482 /*
483  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484  * returns zero with the tree_mod_log_lock acquired. The caller must hold
485  * this until all tree mod log insertions are recorded in the rb tree and then
486  * call tree_mod_log_write_unlock() to release.
487  */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489                                     struct extent_buffer *eb) {
490         smp_mb();
491         if (list_empty(&(fs_info)->tree_mod_seq_list))
492                 return 1;
493         if (eb && btrfs_header_level(eb) == 0)
494                 return 1;
495
496         tree_mod_log_write_lock(fs_info);
497         if (list_empty(&fs_info->tree_mod_seq_list)) {
498                 /*
499                  * someone emptied the list while we were waiting for the lock.
500                  * we must not add to the list when no blocker exists.
501                  */
502                 tree_mod_log_write_unlock(fs_info);
503                 return 1;
504         }
505
506         return 0;
507 }
508
509 /*
510  * This allocates memory and gets a tree modification sequence number.
511  *
512  * Returns <0 on error.
513  * Returns >0 (the added sequence number) on success.
514  */
515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516                                  struct tree_mod_elem **tm_ret)
517 {
518         struct tree_mod_elem *tm;
519
520         /*
521          * once we switch from spin locks to something different, we should
522          * honor the flags parameter here.
523          */
524         tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
525         if (!tm)
526                 return -ENOMEM;
527
528         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
529         return tm->seq;
530 }
531
532 static inline int
533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534                           struct extent_buffer *eb, int slot,
535                           enum mod_log_op op, gfp_t flags)
536 {
537         int ret;
538         struct tree_mod_elem *tm;
539
540         ret = tree_mod_alloc(fs_info, flags, &tm);
541         if (ret < 0)
542                 return ret;
543
544         tm->index = eb->start >> PAGE_CACHE_SHIFT;
545         if (op != MOD_LOG_KEY_ADD) {
546                 btrfs_node_key(eb, &tm->key, slot);
547                 tm->blockptr = btrfs_node_blockptr(eb, slot);
548         }
549         tm->op = op;
550         tm->slot = slot;
551         tm->generation = btrfs_node_ptr_generation(eb, slot);
552
553         return __tree_mod_log_insert(fs_info, tm);
554 }
555
556 static noinline int
557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558                              struct extent_buffer *eb, int slot,
559                              enum mod_log_op op, gfp_t flags)
560 {
561         int ret;
562
563         if (tree_mod_dont_log(fs_info, eb))
564                 return 0;
565
566         ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567
568         tree_mod_log_write_unlock(fs_info);
569         return ret;
570 }
571
572 static noinline int
573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574                         int slot, enum mod_log_op op)
575 {
576         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
577 }
578
579 static noinline int
580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581                              struct extent_buffer *eb, int slot,
582                              enum mod_log_op op)
583 {
584         return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
585 }
586
587 static noinline int
588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589                          struct extent_buffer *eb, int dst_slot, int src_slot,
590                          int nr_items, gfp_t flags)
591 {
592         struct tree_mod_elem *tm;
593         int ret;
594         int i;
595
596         if (tree_mod_dont_log(fs_info, eb))
597                 return 0;
598
599         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
601                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
602                 BUG_ON(ret < 0);
603         }
604
605         ret = tree_mod_alloc(fs_info, flags, &tm);
606         if (ret < 0)
607                 goto out;
608
609         tm->index = eb->start >> PAGE_CACHE_SHIFT;
610         tm->slot = src_slot;
611         tm->move.dst_slot = dst_slot;
612         tm->move.nr_items = nr_items;
613         tm->op = MOD_LOG_MOVE_KEYS;
614
615         ret = __tree_mod_log_insert(fs_info, tm);
616 out:
617         tree_mod_log_write_unlock(fs_info);
618         return ret;
619 }
620
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624         int i;
625         u32 nritems;
626         int ret;
627
628         if (btrfs_header_level(eb) == 0)
629                 return;
630
631         nritems = btrfs_header_nritems(eb);
632         for (i = nritems - 1; i >= 0; i--) {
633                 ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
634                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
635                 BUG_ON(ret < 0);
636         }
637 }
638
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641                          struct extent_buffer *old_root,
642                          struct extent_buffer *new_root, gfp_t flags)
643 {
644         struct tree_mod_elem *tm;
645         int ret;
646
647         if (tree_mod_dont_log(fs_info, NULL))
648                 return 0;
649
650         __tree_mod_log_free_eb(fs_info, old_root);
651
652         ret = tree_mod_alloc(fs_info, flags, &tm);
653         if (ret < 0)
654                 goto out;
655
656         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
657         tm->old_root.logical = old_root->start;
658         tm->old_root.level = btrfs_header_level(old_root);
659         tm->generation = btrfs_header_generation(old_root);
660         tm->op = MOD_LOG_ROOT_REPLACE;
661
662         ret = __tree_mod_log_insert(fs_info, tm);
663 out:
664         tree_mod_log_write_unlock(fs_info);
665         return ret;
666 }
667
668 static struct tree_mod_elem *
669 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
670                       int smallest)
671 {
672         struct rb_root *tm_root;
673         struct rb_node *node;
674         struct tree_mod_elem *cur = NULL;
675         struct tree_mod_elem *found = NULL;
676         u64 index = start >> PAGE_CACHE_SHIFT;
677
678         tree_mod_log_read_lock(fs_info);
679         tm_root = &fs_info->tree_mod_log;
680         node = tm_root->rb_node;
681         while (node) {
682                 cur = container_of(node, struct tree_mod_elem, node);
683                 if (cur->index < index) {
684                         node = node->rb_left;
685                 } else if (cur->index > index) {
686                         node = node->rb_right;
687                 } else if (cur->seq < min_seq) {
688                         node = node->rb_left;
689                 } else if (!smallest) {
690                         /* we want the node with the highest seq */
691                         if (found)
692                                 BUG_ON(found->seq > cur->seq);
693                         found = cur;
694                         node = node->rb_left;
695                 } else if (cur->seq > min_seq) {
696                         /* we want the node with the smallest seq */
697                         if (found)
698                                 BUG_ON(found->seq < cur->seq);
699                         found = cur;
700                         node = node->rb_right;
701                 } else {
702                         found = cur;
703                         break;
704                 }
705         }
706         tree_mod_log_read_unlock(fs_info);
707
708         return found;
709 }
710
711 /*
712  * this returns the element from the log with the smallest time sequence
713  * value that's in the log (the oldest log item). any element with a time
714  * sequence lower than min_seq will be ignored.
715  */
716 static struct tree_mod_elem *
717 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
718                            u64 min_seq)
719 {
720         return __tree_mod_log_search(fs_info, start, min_seq, 1);
721 }
722
723 /*
724  * this returns the element from the log with the largest time sequence
725  * value that's in the log (the most recent log item). any element with
726  * a time sequence lower than min_seq will be ignored.
727  */
728 static struct tree_mod_elem *
729 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
730 {
731         return __tree_mod_log_search(fs_info, start, min_seq, 0);
732 }
733
734 static noinline void
735 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
736                      struct extent_buffer *src, unsigned long dst_offset,
737                      unsigned long src_offset, int nr_items)
738 {
739         int ret;
740         int i;
741
742         if (tree_mod_dont_log(fs_info, NULL))
743                 return;
744
745         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
746                 tree_mod_log_write_unlock(fs_info);
747                 return;
748         }
749
750         for (i = 0; i < nr_items; i++) {
751                 ret = tree_mod_log_insert_key_locked(fs_info, src,
752                                                      i + src_offset,
753                                                      MOD_LOG_KEY_REMOVE);
754                 BUG_ON(ret < 0);
755                 ret = tree_mod_log_insert_key_locked(fs_info, dst,
756                                                      i + dst_offset,
757                                                      MOD_LOG_KEY_ADD);
758                 BUG_ON(ret < 0);
759         }
760
761         tree_mod_log_write_unlock(fs_info);
762 }
763
764 static inline void
765 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
766                      int dst_offset, int src_offset, int nr_items)
767 {
768         int ret;
769         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
770                                        nr_items, GFP_NOFS);
771         BUG_ON(ret < 0);
772 }
773
774 static noinline void
775 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
776                           struct extent_buffer *eb,
777                           struct btrfs_disk_key *disk_key, int slot, int atomic)
778 {
779         int ret;
780
781         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
782                                            MOD_LOG_KEY_REPLACE,
783                                            atomic ? GFP_ATOMIC : GFP_NOFS);
784         BUG_ON(ret < 0);
785 }
786
787 static noinline void
788 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
789 {
790         if (tree_mod_dont_log(fs_info, eb))
791                 return;
792
793         __tree_mod_log_free_eb(fs_info, eb);
794
795         tree_mod_log_write_unlock(fs_info);
796 }
797
798 static noinline void
799 tree_mod_log_set_root_pointer(struct btrfs_root *root,
800                               struct extent_buffer *new_root_node)
801 {
802         int ret;
803         ret = tree_mod_log_insert_root(root->fs_info, root->node,
804                                        new_root_node, GFP_NOFS);
805         BUG_ON(ret < 0);
806 }
807
808 /*
809  * check if the tree block can be shared by multiple trees
810  */
811 int btrfs_block_can_be_shared(struct btrfs_root *root,
812                               struct extent_buffer *buf)
813 {
814         /*
815          * Tree blocks not in refernece counted trees and tree roots
816          * are never shared. If a block was allocated after the last
817          * snapshot and the block was not allocated by tree relocation,
818          * we know the block is not shared.
819          */
820         if (root->ref_cows &&
821             buf != root->node && buf != root->commit_root &&
822             (btrfs_header_generation(buf) <=
823              btrfs_root_last_snapshot(&root->root_item) ||
824              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
825                 return 1;
826 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
827         if (root->ref_cows &&
828             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
829                 return 1;
830 #endif
831         return 0;
832 }
833
834 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
835                                        struct btrfs_root *root,
836                                        struct extent_buffer *buf,
837                                        struct extent_buffer *cow,
838                                        int *last_ref)
839 {
840         u64 refs;
841         u64 owner;
842         u64 flags;
843         u64 new_flags = 0;
844         int ret;
845
846         /*
847          * Backrefs update rules:
848          *
849          * Always use full backrefs for extent pointers in tree block
850          * allocated by tree relocation.
851          *
852          * If a shared tree block is no longer referenced by its owner
853          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
854          * use full backrefs for extent pointers in tree block.
855          *
856          * If a tree block is been relocating
857          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
858          * use full backrefs for extent pointers in tree block.
859          * The reason for this is some operations (such as drop tree)
860          * are only allowed for blocks use full backrefs.
861          */
862
863         if (btrfs_block_can_be_shared(root, buf)) {
864                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
865                                                buf->len, &refs, &flags);
866                 if (ret)
867                         return ret;
868                 if (refs == 0) {
869                         ret = -EROFS;
870                         btrfs_std_error(root->fs_info, ret);
871                         return ret;
872                 }
873         } else {
874                 refs = 1;
875                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
876                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
877                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
878                 else
879                         flags = 0;
880         }
881
882         owner = btrfs_header_owner(buf);
883         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
884                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
885
886         if (refs > 1) {
887                 if ((owner == root->root_key.objectid ||
888                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
889                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
890                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
891                         BUG_ON(ret); /* -ENOMEM */
892
893                         if (root->root_key.objectid ==
894                             BTRFS_TREE_RELOC_OBJECTID) {
895                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
896                                 BUG_ON(ret); /* -ENOMEM */
897                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
898                                 BUG_ON(ret); /* -ENOMEM */
899                         }
900                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
901                 } else {
902
903                         if (root->root_key.objectid ==
904                             BTRFS_TREE_RELOC_OBJECTID)
905                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
906                         else
907                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
908                         BUG_ON(ret); /* -ENOMEM */
909                 }
910                 if (new_flags != 0) {
911                         ret = btrfs_set_disk_extent_flags(trans, root,
912                                                           buf->start,
913                                                           buf->len,
914                                                           new_flags, 0);
915                         if (ret)
916                                 return ret;
917                 }
918         } else {
919                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
920                         if (root->root_key.objectid ==
921                             BTRFS_TREE_RELOC_OBJECTID)
922                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
923                         else
924                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
925                         BUG_ON(ret); /* -ENOMEM */
926                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
927                         BUG_ON(ret); /* -ENOMEM */
928                 }
929                 /*
930                  * don't log freeing in case we're freeing the root node, this
931                  * is done by tree_mod_log_set_root_pointer later
932                  */
933                 if (buf != root->node && btrfs_header_level(buf) != 0)
934                         tree_mod_log_free_eb(root->fs_info, buf);
935                 clean_tree_block(trans, root, buf);
936                 *last_ref = 1;
937         }
938         return 0;
939 }
940
941 /*
942  * does the dirty work in cow of a single block.  The parent block (if
943  * supplied) is updated to point to the new cow copy.  The new buffer is marked
944  * dirty and returned locked.  If you modify the block it needs to be marked
945  * dirty again.
946  *
947  * search_start -- an allocation hint for the new block
948  *
949  * empty_size -- a hint that you plan on doing more cow.  This is the size in
950  * bytes the allocator should try to find free next to the block it returns.
951  * This is just a hint and may be ignored by the allocator.
952  */
953 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
954                              struct btrfs_root *root,
955                              struct extent_buffer *buf,
956                              struct extent_buffer *parent, int parent_slot,
957                              struct extent_buffer **cow_ret,
958                              u64 search_start, u64 empty_size)
959 {
960         struct btrfs_disk_key disk_key;
961         struct extent_buffer *cow;
962         int level, ret;
963         int last_ref = 0;
964         int unlock_orig = 0;
965         u64 parent_start;
966
967         if (*cow_ret == buf)
968                 unlock_orig = 1;
969
970         btrfs_assert_tree_locked(buf);
971
972         WARN_ON(root->ref_cows && trans->transid !=
973                 root->fs_info->running_transaction->transid);
974         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
975
976         level = btrfs_header_level(buf);
977
978         if (level == 0)
979                 btrfs_item_key(buf, &disk_key, 0);
980         else
981                 btrfs_node_key(buf, &disk_key, 0);
982
983         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
984                 if (parent)
985                         parent_start = parent->start;
986                 else
987                         parent_start = 0;
988         } else
989                 parent_start = 0;
990
991         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
992                                      root->root_key.objectid, &disk_key,
993                                      level, search_start, empty_size);
994         if (IS_ERR(cow))
995                 return PTR_ERR(cow);
996
997         /* cow is set to blocking by btrfs_init_new_buffer */
998
999         copy_extent_buffer(cow, buf, 0, 0, cow->len);
1000         btrfs_set_header_bytenr(cow, cow->start);
1001         btrfs_set_header_generation(cow, trans->transid);
1002         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1003         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1004                                      BTRFS_HEADER_FLAG_RELOC);
1005         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1006                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1007         else
1008                 btrfs_set_header_owner(cow, root->root_key.objectid);
1009
1010         write_extent_buffer(cow, root->fs_info->fsid,
1011                             (unsigned long)btrfs_header_fsid(cow),
1012                             BTRFS_FSID_SIZE);
1013
1014         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1015         if (ret) {
1016                 btrfs_abort_transaction(trans, root, ret);
1017                 return ret;
1018         }
1019
1020         if (root->ref_cows)
1021                 btrfs_reloc_cow_block(trans, root, buf, cow);
1022
1023         if (buf == root->node) {
1024                 WARN_ON(parent && parent != buf);
1025                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1026                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1027                         parent_start = buf->start;
1028                 else
1029                         parent_start = 0;
1030
1031                 extent_buffer_get(cow);
1032                 tree_mod_log_set_root_pointer(root, cow);
1033                 rcu_assign_pointer(root->node, cow);
1034
1035                 btrfs_free_tree_block(trans, root, buf, parent_start,
1036                                       last_ref);
1037                 free_extent_buffer(buf);
1038                 add_root_to_dirty_list(root);
1039         } else {
1040                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1041                         parent_start = parent->start;
1042                 else
1043                         parent_start = 0;
1044
1045                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1046                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1047                                         MOD_LOG_KEY_REPLACE);
1048                 btrfs_set_node_blockptr(parent, parent_slot,
1049                                         cow->start);
1050                 btrfs_set_node_ptr_generation(parent, parent_slot,
1051                                               trans->transid);
1052                 btrfs_mark_buffer_dirty(parent);
1053                 btrfs_free_tree_block(trans, root, buf, parent_start,
1054                                       last_ref);
1055         }
1056         if (unlock_orig)
1057                 btrfs_tree_unlock(buf);
1058         free_extent_buffer_stale(buf);
1059         btrfs_mark_buffer_dirty(cow);
1060         *cow_ret = cow;
1061         return 0;
1062 }
1063
1064 /*
1065  * returns the logical address of the oldest predecessor of the given root.
1066  * entries older than time_seq are ignored.
1067  */
1068 static struct tree_mod_elem *
1069 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1070                            struct btrfs_root *root, u64 time_seq)
1071 {
1072         struct tree_mod_elem *tm;
1073         struct tree_mod_elem *found = NULL;
1074         u64 root_logical = root->node->start;
1075         int looped = 0;
1076
1077         if (!time_seq)
1078                 return 0;
1079
1080         /*
1081          * the very last operation that's logged for a root is the replacement
1082          * operation (if it is replaced at all). this has the index of the *new*
1083          * root, making it the very first operation that's logged for this root.
1084          */
1085         while (1) {
1086                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1087                                                 time_seq);
1088                 if (!looped && !tm)
1089                         return 0;
1090                 /*
1091                  * if there are no tree operation for the oldest root, we simply
1092                  * return it. this should only happen if that (old) root is at
1093                  * level 0.
1094                  */
1095                 if (!tm)
1096                         break;
1097
1098                 /*
1099                  * if there's an operation that's not a root replacement, we
1100                  * found the oldest version of our root. normally, we'll find a
1101                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1102                  */
1103                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1104                         break;
1105
1106                 found = tm;
1107                 root_logical = tm->old_root.logical;
1108                 BUG_ON(root_logical == root->node->start);
1109                 looped = 1;
1110         }
1111
1112         /* if there's no old root to return, return what we found instead */
1113         if (!found)
1114                 found = tm;
1115
1116         return found;
1117 }
1118
1119 /*
1120  * tm is a pointer to the first operation to rewind within eb. then, all
1121  * previous operations will be rewinded (until we reach something older than
1122  * time_seq).
1123  */
1124 static void
1125 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1126                       struct tree_mod_elem *first_tm)
1127 {
1128         u32 n;
1129         struct rb_node *next;
1130         struct tree_mod_elem *tm = first_tm;
1131         unsigned long o_dst;
1132         unsigned long o_src;
1133         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1134
1135         n = btrfs_header_nritems(eb);
1136         while (tm && tm->seq >= time_seq) {
1137                 /*
1138                  * all the operations are recorded with the operator used for
1139                  * the modification. as we're going backwards, we do the
1140                  * opposite of each operation here.
1141                  */
1142                 switch (tm->op) {
1143                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1144                         BUG_ON(tm->slot < n);
1145                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1146                 case MOD_LOG_KEY_REMOVE:
1147                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1148                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1149                         btrfs_set_node_ptr_generation(eb, tm->slot,
1150                                                       tm->generation);
1151                         n++;
1152                         break;
1153                 case MOD_LOG_KEY_REPLACE:
1154                         BUG_ON(tm->slot >= n);
1155                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1156                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1157                         btrfs_set_node_ptr_generation(eb, tm->slot,
1158                                                       tm->generation);
1159                         break;
1160                 case MOD_LOG_KEY_ADD:
1161                         /* if a move operation is needed it's in the log */
1162                         n--;
1163                         break;
1164                 case MOD_LOG_MOVE_KEYS:
1165                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1166                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1167                         memmove_extent_buffer(eb, o_dst, o_src,
1168                                               tm->move.nr_items * p_size);
1169                         break;
1170                 case MOD_LOG_ROOT_REPLACE:
1171                         /*
1172                          * this operation is special. for roots, this must be
1173                          * handled explicitly before rewinding.
1174                          * for non-roots, this operation may exist if the node
1175                          * was a root: root A -> child B; then A gets empty and
1176                          * B is promoted to the new root. in the mod log, we'll
1177                          * have a root-replace operation for B, a tree block
1178                          * that is no root. we simply ignore that operation.
1179                          */
1180                         break;
1181                 }
1182                 next = rb_next(&tm->node);
1183                 if (!next)
1184                         break;
1185                 tm = container_of(next, struct tree_mod_elem, node);
1186                 if (tm->index != first_tm->index)
1187                         break;
1188         }
1189         btrfs_set_header_nritems(eb, n);
1190 }
1191
1192 static struct extent_buffer *
1193 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1194                     u64 time_seq)
1195 {
1196         struct extent_buffer *eb_rewin;
1197         struct tree_mod_elem *tm;
1198
1199         if (!time_seq)
1200                 return eb;
1201
1202         if (btrfs_header_level(eb) == 0)
1203                 return eb;
1204
1205         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1206         if (!tm)
1207                 return eb;
1208
1209         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1210                 BUG_ON(tm->slot != 0);
1211                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1212                                                 fs_info->tree_root->nodesize);
1213                 BUG_ON(!eb_rewin);
1214                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1215                 btrfs_set_header_backref_rev(eb_rewin,
1216                                              btrfs_header_backref_rev(eb));
1217                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1218                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1219         } else {
1220                 eb_rewin = btrfs_clone_extent_buffer(eb);
1221                 BUG_ON(!eb_rewin);
1222         }
1223
1224         extent_buffer_get(eb_rewin);
1225         free_extent_buffer(eb);
1226
1227         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1228
1229         return eb_rewin;
1230 }
1231
1232 /*
1233  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1234  * value. If there are no changes, the current root->root_node is returned. If
1235  * anything changed in between, there's a fresh buffer allocated on which the
1236  * rewind operations are done. In any case, the returned buffer is read locked.
1237  * Returns NULL on error (with no locks held).
1238  */
1239 static inline struct extent_buffer *
1240 get_old_root(struct btrfs_root *root, u64 time_seq)
1241 {
1242         struct tree_mod_elem *tm;
1243         struct extent_buffer *eb;
1244         struct tree_mod_root *old_root = NULL;
1245         u64 old_generation = 0;
1246         u64 logical;
1247
1248         eb = btrfs_read_lock_root_node(root);
1249         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1250         if (!tm)
1251                 return root->node;
1252
1253         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1254                 old_root = &tm->old_root;
1255                 old_generation = tm->generation;
1256                 logical = old_root->logical;
1257         } else {
1258                 logical = root->node->start;
1259         }
1260
1261         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1262         if (old_root)
1263                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1264         else
1265                 eb = btrfs_clone_extent_buffer(root->node);
1266         btrfs_tree_read_unlock(root->node);
1267         free_extent_buffer(root->node);
1268         if (!eb)
1269                 return NULL;
1270         btrfs_tree_read_lock(eb);
1271         if (old_root) {
1272                 btrfs_set_header_bytenr(eb, eb->start);
1273                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1274                 btrfs_set_header_owner(eb, root->root_key.objectid);
1275                 btrfs_set_header_level(eb, old_root->level);
1276                 btrfs_set_header_generation(eb, old_generation);
1277         }
1278         if (tm)
1279                 __tree_mod_log_rewind(eb, time_seq, tm);
1280         else
1281                 WARN_ON(btrfs_header_level(eb) != 0);
1282         extent_buffer_get(eb);
1283
1284         return eb;
1285 }
1286
1287 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1288                                    struct btrfs_root *root,
1289                                    struct extent_buffer *buf)
1290 {
1291         /* ensure we can see the force_cow */
1292         smp_rmb();
1293
1294         /*
1295          * We do not need to cow a block if
1296          * 1) this block is not created or changed in this transaction;
1297          * 2) this block does not belong to TREE_RELOC tree;
1298          * 3) the root is not forced COW.
1299          *
1300          * What is forced COW:
1301          *    when we create snapshot during commiting the transaction,
1302          *    after we've finished coping src root, we must COW the shared
1303          *    block to ensure the metadata consistency.
1304          */
1305         if (btrfs_header_generation(buf) == trans->transid &&
1306             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1307             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1308               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1309             !root->force_cow)
1310                 return 0;
1311         return 1;
1312 }
1313
1314 /*
1315  * cows a single block, see __btrfs_cow_block for the real work.
1316  * This version of it has extra checks so that a block isn't cow'd more than
1317  * once per transaction, as long as it hasn't been written yet
1318  */
1319 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1320                     struct btrfs_root *root, struct extent_buffer *buf,
1321                     struct extent_buffer *parent, int parent_slot,
1322                     struct extent_buffer **cow_ret)
1323 {
1324         u64 search_start;
1325         int ret;
1326
1327         if (trans->transaction != root->fs_info->running_transaction) {
1328                 printk(KERN_CRIT "trans %llu running %llu\n",
1329                        (unsigned long long)trans->transid,
1330                        (unsigned long long)
1331                        root->fs_info->running_transaction->transid);
1332                 WARN_ON(1);
1333         }
1334         if (trans->transid != root->fs_info->generation) {
1335                 printk(KERN_CRIT "trans %llu running %llu\n",
1336                        (unsigned long long)trans->transid,
1337                        (unsigned long long)root->fs_info->generation);
1338                 WARN_ON(1);
1339         }
1340
1341         if (!should_cow_block(trans, root, buf)) {
1342                 *cow_ret = buf;
1343                 return 0;
1344         }
1345
1346         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1347
1348         if (parent)
1349                 btrfs_set_lock_blocking(parent);
1350         btrfs_set_lock_blocking(buf);
1351
1352         ret = __btrfs_cow_block(trans, root, buf, parent,
1353                                  parent_slot, cow_ret, search_start, 0);
1354
1355         trace_btrfs_cow_block(root, buf, *cow_ret);
1356
1357         return ret;
1358 }
1359
1360 /*
1361  * helper function for defrag to decide if two blocks pointed to by a
1362  * node are actually close by
1363  */
1364 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1365 {
1366         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1367                 return 1;
1368         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1369                 return 1;
1370         return 0;
1371 }
1372
1373 /*
1374  * compare two keys in a memcmp fashion
1375  */
1376 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1377 {
1378         struct btrfs_key k1;
1379
1380         btrfs_disk_key_to_cpu(&k1, disk);
1381
1382         return btrfs_comp_cpu_keys(&k1, k2);
1383 }
1384
1385 /*
1386  * same as comp_keys only with two btrfs_key's
1387  */
1388 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1389 {
1390         if (k1->objectid > k2->objectid)
1391                 return 1;
1392         if (k1->objectid < k2->objectid)
1393                 return -1;
1394         if (k1->type > k2->type)
1395                 return 1;
1396         if (k1->type < k2->type)
1397                 return -1;
1398         if (k1->offset > k2->offset)
1399                 return 1;
1400         if (k1->offset < k2->offset)
1401                 return -1;
1402         return 0;
1403 }
1404
1405 /*
1406  * this is used by the defrag code to go through all the
1407  * leaves pointed to by a node and reallocate them so that
1408  * disk order is close to key order
1409  */
1410 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1411                        struct btrfs_root *root, struct extent_buffer *parent,
1412                        int start_slot, int cache_only, u64 *last_ret,
1413                        struct btrfs_key *progress)
1414 {
1415         struct extent_buffer *cur;
1416         u64 blocknr;
1417         u64 gen;
1418         u64 search_start = *last_ret;
1419         u64 last_block = 0;
1420         u64 other;
1421         u32 parent_nritems;
1422         int end_slot;
1423         int i;
1424         int err = 0;
1425         int parent_level;
1426         int uptodate;
1427         u32 blocksize;
1428         int progress_passed = 0;
1429         struct btrfs_disk_key disk_key;
1430
1431         parent_level = btrfs_header_level(parent);
1432         if (cache_only && parent_level != 1)
1433                 return 0;
1434
1435         if (trans->transaction != root->fs_info->running_transaction)
1436                 WARN_ON(1);
1437         if (trans->transid != root->fs_info->generation)
1438                 WARN_ON(1);
1439
1440         parent_nritems = btrfs_header_nritems(parent);
1441         blocksize = btrfs_level_size(root, parent_level - 1);
1442         end_slot = parent_nritems;
1443
1444         if (parent_nritems == 1)
1445                 return 0;
1446
1447         btrfs_set_lock_blocking(parent);
1448
1449         for (i = start_slot; i < end_slot; i++) {
1450                 int close = 1;
1451
1452                 btrfs_node_key(parent, &disk_key, i);
1453                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1454                         continue;
1455
1456                 progress_passed = 1;
1457                 blocknr = btrfs_node_blockptr(parent, i);
1458                 gen = btrfs_node_ptr_generation(parent, i);
1459                 if (last_block == 0)
1460                         last_block = blocknr;
1461
1462                 if (i > 0) {
1463                         other = btrfs_node_blockptr(parent, i - 1);
1464                         close = close_blocks(blocknr, other, blocksize);
1465                 }
1466                 if (!close && i < end_slot - 2) {
1467                         other = btrfs_node_blockptr(parent, i + 1);
1468                         close = close_blocks(blocknr, other, blocksize);
1469                 }
1470                 if (close) {
1471                         last_block = blocknr;
1472                         continue;
1473                 }
1474
1475                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1476                 if (cur)
1477                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1478                 else
1479                         uptodate = 0;
1480                 if (!cur || !uptodate) {
1481                         if (cache_only) {
1482                                 free_extent_buffer(cur);
1483                                 continue;
1484                         }
1485                         if (!cur) {
1486                                 cur = read_tree_block(root, blocknr,
1487                                                          blocksize, gen);
1488                                 if (!cur)
1489                                         return -EIO;
1490                         } else if (!uptodate) {
1491                                 err = btrfs_read_buffer(cur, gen);
1492                                 if (err) {
1493                                         free_extent_buffer(cur);
1494                                         return err;
1495                                 }
1496                         }
1497                 }
1498                 if (search_start == 0)
1499                         search_start = last_block;
1500
1501                 btrfs_tree_lock(cur);
1502                 btrfs_set_lock_blocking(cur);
1503                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1504                                         &cur, search_start,
1505                                         min(16 * blocksize,
1506                                             (end_slot - i) * blocksize));
1507                 if (err) {
1508                         btrfs_tree_unlock(cur);
1509                         free_extent_buffer(cur);
1510                         break;
1511                 }
1512                 search_start = cur->start;
1513                 last_block = cur->start;
1514                 *last_ret = search_start;
1515                 btrfs_tree_unlock(cur);
1516                 free_extent_buffer(cur);
1517         }
1518         return err;
1519 }
1520
1521 /*
1522  * The leaf data grows from end-to-front in the node.
1523  * this returns the address of the start of the last item,
1524  * which is the stop of the leaf data stack
1525  */
1526 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1527                                          struct extent_buffer *leaf)
1528 {
1529         u32 nr = btrfs_header_nritems(leaf);
1530         if (nr == 0)
1531                 return BTRFS_LEAF_DATA_SIZE(root);
1532         return btrfs_item_offset_nr(leaf, nr - 1);
1533 }
1534
1535
1536 /*
1537  * search for key in the extent_buffer.  The items start at offset p,
1538  * and they are item_size apart.  There are 'max' items in p.
1539  *
1540  * the slot in the array is returned via slot, and it points to
1541  * the place where you would insert key if it is not found in
1542  * the array.
1543  *
1544  * slot may point to max if the key is bigger than all of the keys
1545  */
1546 static noinline int generic_bin_search(struct extent_buffer *eb,
1547                                        unsigned long p,
1548                                        int item_size, struct btrfs_key *key,
1549                                        int max, int *slot)
1550 {
1551         int low = 0;
1552         int high = max;
1553         int mid;
1554         int ret;
1555         struct btrfs_disk_key *tmp = NULL;
1556         struct btrfs_disk_key unaligned;
1557         unsigned long offset;
1558         char *kaddr = NULL;
1559         unsigned long map_start = 0;
1560         unsigned long map_len = 0;
1561         int err;
1562
1563         while (low < high) {
1564                 mid = (low + high) / 2;
1565                 offset = p + mid * item_size;
1566
1567                 if (!kaddr || offset < map_start ||
1568                     (offset + sizeof(struct btrfs_disk_key)) >
1569                     map_start + map_len) {
1570
1571                         err = map_private_extent_buffer(eb, offset,
1572                                                 sizeof(struct btrfs_disk_key),
1573                                                 &kaddr, &map_start, &map_len);
1574
1575                         if (!err) {
1576                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1577                                                         map_start);
1578                         } else {
1579                                 read_extent_buffer(eb, &unaligned,
1580                                                    offset, sizeof(unaligned));
1581                                 tmp = &unaligned;
1582                         }
1583
1584                 } else {
1585                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1586                                                         map_start);
1587                 }
1588                 ret = comp_keys(tmp, key);
1589
1590                 if (ret < 0)
1591                         low = mid + 1;
1592                 else if (ret > 0)
1593                         high = mid;
1594                 else {
1595                         *slot = mid;
1596                         return 0;
1597                 }
1598         }
1599         *slot = low;
1600         return 1;
1601 }
1602
1603 /*
1604  * simple bin_search frontend that does the right thing for
1605  * leaves vs nodes
1606  */
1607 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1608                       int level, int *slot)
1609 {
1610         if (level == 0)
1611                 return generic_bin_search(eb,
1612                                           offsetof(struct btrfs_leaf, items),
1613                                           sizeof(struct btrfs_item),
1614                                           key, btrfs_header_nritems(eb),
1615                                           slot);
1616         else
1617                 return generic_bin_search(eb,
1618                                           offsetof(struct btrfs_node, ptrs),
1619                                           sizeof(struct btrfs_key_ptr),
1620                                           key, btrfs_header_nritems(eb),
1621                                           slot);
1622 }
1623
1624 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1625                      int level, int *slot)
1626 {
1627         return bin_search(eb, key, level, slot);
1628 }
1629
1630 static void root_add_used(struct btrfs_root *root, u32 size)
1631 {
1632         spin_lock(&root->accounting_lock);
1633         btrfs_set_root_used(&root->root_item,
1634                             btrfs_root_used(&root->root_item) + size);
1635         spin_unlock(&root->accounting_lock);
1636 }
1637
1638 static void root_sub_used(struct btrfs_root *root, u32 size)
1639 {
1640         spin_lock(&root->accounting_lock);
1641         btrfs_set_root_used(&root->root_item,
1642                             btrfs_root_used(&root->root_item) - size);
1643         spin_unlock(&root->accounting_lock);
1644 }
1645
1646 /* given a node and slot number, this reads the blocks it points to.  The
1647  * extent buffer is returned with a reference taken (but unlocked).
1648  * NULL is returned on error.
1649  */
1650 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1651                                    struct extent_buffer *parent, int slot)
1652 {
1653         int level = btrfs_header_level(parent);
1654         if (slot < 0)
1655                 return NULL;
1656         if (slot >= btrfs_header_nritems(parent))
1657                 return NULL;
1658
1659         BUG_ON(level == 0);
1660
1661         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1662                        btrfs_level_size(root, level - 1),
1663                        btrfs_node_ptr_generation(parent, slot));
1664 }
1665
1666 /*
1667  * node level balancing, used to make sure nodes are in proper order for
1668  * item deletion.  We balance from the top down, so we have to make sure
1669  * that a deletion won't leave an node completely empty later on.
1670  */
1671 static noinline int balance_level(struct btrfs_trans_handle *trans,
1672                          struct btrfs_root *root,
1673                          struct btrfs_path *path, int level)
1674 {
1675         struct extent_buffer *right = NULL;
1676         struct extent_buffer *mid;
1677         struct extent_buffer *left = NULL;
1678         struct extent_buffer *parent = NULL;
1679         int ret = 0;
1680         int wret;
1681         int pslot;
1682         int orig_slot = path->slots[level];
1683         u64 orig_ptr;
1684
1685         if (level == 0)
1686                 return 0;
1687
1688         mid = path->nodes[level];
1689
1690         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1691                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1692         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1693
1694         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1695
1696         if (level < BTRFS_MAX_LEVEL - 1) {
1697                 parent = path->nodes[level + 1];
1698                 pslot = path->slots[level + 1];
1699         }
1700
1701         /*
1702          * deal with the case where there is only one pointer in the root
1703          * by promoting the node below to a root
1704          */
1705         if (!parent) {
1706                 struct extent_buffer *child;
1707
1708                 if (btrfs_header_nritems(mid) != 1)
1709                         return 0;
1710
1711                 /* promote the child to a root */
1712                 child = read_node_slot(root, mid, 0);
1713                 if (!child) {
1714                         ret = -EROFS;
1715                         btrfs_std_error(root->fs_info, ret);
1716                         goto enospc;
1717                 }
1718
1719                 btrfs_tree_lock(child);
1720                 btrfs_set_lock_blocking(child);
1721                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1722                 if (ret) {
1723                         btrfs_tree_unlock(child);
1724                         free_extent_buffer(child);
1725                         goto enospc;
1726                 }
1727
1728                 tree_mod_log_set_root_pointer(root, child);
1729                 rcu_assign_pointer(root->node, child);
1730
1731                 add_root_to_dirty_list(root);
1732                 btrfs_tree_unlock(child);
1733
1734                 path->locks[level] = 0;
1735                 path->nodes[level] = NULL;
1736                 clean_tree_block(trans, root, mid);
1737                 btrfs_tree_unlock(mid);
1738                 /* once for the path */
1739                 free_extent_buffer(mid);
1740
1741                 root_sub_used(root, mid->len);
1742                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1743                 /* once for the root ptr */
1744                 free_extent_buffer_stale(mid);
1745                 return 0;
1746         }
1747         if (btrfs_header_nritems(mid) >
1748             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1749                 return 0;
1750
1751         left = read_node_slot(root, parent, pslot - 1);
1752         if (left) {
1753                 btrfs_tree_lock(left);
1754                 btrfs_set_lock_blocking(left);
1755                 wret = btrfs_cow_block(trans, root, left,
1756                                        parent, pslot - 1, &left);
1757                 if (wret) {
1758                         ret = wret;
1759                         goto enospc;
1760                 }
1761         }
1762         right = read_node_slot(root, parent, pslot + 1);
1763         if (right) {
1764                 btrfs_tree_lock(right);
1765                 btrfs_set_lock_blocking(right);
1766                 wret = btrfs_cow_block(trans, root, right,
1767                                        parent, pslot + 1, &right);
1768                 if (wret) {
1769                         ret = wret;
1770                         goto enospc;
1771                 }
1772         }
1773
1774         /* first, try to make some room in the middle buffer */
1775         if (left) {
1776                 orig_slot += btrfs_header_nritems(left);
1777                 wret = push_node_left(trans, root, left, mid, 1);
1778                 if (wret < 0)
1779                         ret = wret;
1780         }
1781
1782         /*
1783          * then try to empty the right most buffer into the middle
1784          */
1785         if (right) {
1786                 wret = push_node_left(trans, root, mid, right, 1);
1787                 if (wret < 0 && wret != -ENOSPC)
1788                         ret = wret;
1789                 if (btrfs_header_nritems(right) == 0) {
1790                         clean_tree_block(trans, root, right);
1791                         btrfs_tree_unlock(right);
1792                         del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1793                         root_sub_used(root, right->len);
1794                         btrfs_free_tree_block(trans, root, right, 0, 1);
1795                         free_extent_buffer_stale(right);
1796                         right = NULL;
1797                 } else {
1798                         struct btrfs_disk_key right_key;
1799                         btrfs_node_key(right, &right_key, 0);
1800                         tree_mod_log_set_node_key(root->fs_info, parent,
1801                                                   &right_key, pslot + 1, 0);
1802                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1803                         btrfs_mark_buffer_dirty(parent);
1804                 }
1805         }
1806         if (btrfs_header_nritems(mid) == 1) {
1807                 /*
1808                  * we're not allowed to leave a node with one item in the
1809                  * tree during a delete.  A deletion from lower in the tree
1810                  * could try to delete the only pointer in this node.
1811                  * So, pull some keys from the left.
1812                  * There has to be a left pointer at this point because
1813                  * otherwise we would have pulled some pointers from the
1814                  * right
1815                  */
1816                 if (!left) {
1817                         ret = -EROFS;
1818                         btrfs_std_error(root->fs_info, ret);
1819                         goto enospc;
1820                 }
1821                 wret = balance_node_right(trans, root, mid, left);
1822                 if (wret < 0) {
1823                         ret = wret;
1824                         goto enospc;
1825                 }
1826                 if (wret == 1) {
1827                         wret = push_node_left(trans, root, left, mid, 1);
1828                         if (wret < 0)
1829                                 ret = wret;
1830                 }
1831                 BUG_ON(wret == 1);
1832         }
1833         if (btrfs_header_nritems(mid) == 0) {
1834                 clean_tree_block(trans, root, mid);
1835                 btrfs_tree_unlock(mid);
1836                 del_ptr(trans, root, path, level + 1, pslot, 1);
1837                 root_sub_used(root, mid->len);
1838                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1839                 free_extent_buffer_stale(mid);
1840                 mid = NULL;
1841         } else {
1842                 /* update the parent key to reflect our changes */
1843                 struct btrfs_disk_key mid_key;
1844                 btrfs_node_key(mid, &mid_key, 0);
1845                 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1846                                           pslot, 0);
1847                 btrfs_set_node_key(parent, &mid_key, pslot);
1848                 btrfs_mark_buffer_dirty(parent);
1849         }
1850
1851         /* update the path */
1852         if (left) {
1853                 if (btrfs_header_nritems(left) > orig_slot) {
1854                         extent_buffer_get(left);
1855                         /* left was locked after cow */
1856                         path->nodes[level] = left;
1857                         path->slots[level + 1] -= 1;
1858                         path->slots[level] = orig_slot;
1859                         if (mid) {
1860                                 btrfs_tree_unlock(mid);
1861                                 free_extent_buffer(mid);
1862                         }
1863                 } else {
1864                         orig_slot -= btrfs_header_nritems(left);
1865                         path->slots[level] = orig_slot;
1866                 }
1867         }
1868         /* double check we haven't messed things up */
1869         if (orig_ptr !=
1870             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1871                 BUG();
1872 enospc:
1873         if (right) {
1874                 btrfs_tree_unlock(right);
1875                 free_extent_buffer(right);
1876         }
1877         if (left) {
1878                 if (path->nodes[level] != left)
1879                         btrfs_tree_unlock(left);
1880                 free_extent_buffer(left);
1881         }
1882         return ret;
1883 }
1884
1885 /* Node balancing for insertion.  Here we only split or push nodes around
1886  * when they are completely full.  This is also done top down, so we
1887  * have to be pessimistic.
1888  */
1889 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1890                                           struct btrfs_root *root,
1891                                           struct btrfs_path *path, int level)
1892 {
1893         struct extent_buffer *right = NULL;
1894         struct extent_buffer *mid;
1895         struct extent_buffer *left = NULL;
1896         struct extent_buffer *parent = NULL;
1897         int ret = 0;
1898         int wret;
1899         int pslot;
1900         int orig_slot = path->slots[level];
1901
1902         if (level == 0)
1903                 return 1;
1904
1905         mid = path->nodes[level];
1906         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1907
1908         if (level < BTRFS_MAX_LEVEL - 1) {
1909                 parent = path->nodes[level + 1];
1910                 pslot = path->slots[level + 1];
1911         }
1912
1913         if (!parent)
1914                 return 1;
1915
1916         left = read_node_slot(root, parent, pslot - 1);
1917
1918         /* first, try to make some room in the middle buffer */
1919         if (left) {
1920                 u32 left_nr;
1921
1922                 btrfs_tree_lock(left);
1923                 btrfs_set_lock_blocking(left);
1924
1925                 left_nr = btrfs_header_nritems(left);
1926                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1927                         wret = 1;
1928                 } else {
1929                         ret = btrfs_cow_block(trans, root, left, parent,
1930                                               pslot - 1, &left);
1931                         if (ret)
1932                                 wret = 1;
1933                         else {
1934                                 wret = push_node_left(trans, root,
1935                                                       left, mid, 0);
1936                         }
1937                 }
1938                 if (wret < 0)
1939                         ret = wret;
1940                 if (wret == 0) {
1941                         struct btrfs_disk_key disk_key;
1942                         orig_slot += left_nr;
1943                         btrfs_node_key(mid, &disk_key, 0);
1944                         tree_mod_log_set_node_key(root->fs_info, parent,
1945                                                   &disk_key, pslot, 0);
1946                         btrfs_set_node_key(parent, &disk_key, pslot);
1947                         btrfs_mark_buffer_dirty(parent);
1948                         if (btrfs_header_nritems(left) > orig_slot) {
1949                                 path->nodes[level] = left;
1950                                 path->slots[level + 1] -= 1;
1951                                 path->slots[level] = orig_slot;
1952                                 btrfs_tree_unlock(mid);
1953                                 free_extent_buffer(mid);
1954                         } else {
1955                                 orig_slot -=
1956                                         btrfs_header_nritems(left);
1957                                 path->slots[level] = orig_slot;
1958                                 btrfs_tree_unlock(left);
1959                                 free_extent_buffer(left);
1960                         }
1961                         return 0;
1962                 }
1963                 btrfs_tree_unlock(left);
1964                 free_extent_buffer(left);
1965         }
1966         right = read_node_slot(root, parent, pslot + 1);
1967
1968         /*
1969          * then try to empty the right most buffer into the middle
1970          */
1971         if (right) {
1972                 u32 right_nr;
1973
1974                 btrfs_tree_lock(right);
1975                 btrfs_set_lock_blocking(right);
1976
1977                 right_nr = btrfs_header_nritems(right);
1978                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1979                         wret = 1;
1980                 } else {
1981                         ret = btrfs_cow_block(trans, root, right,
1982                                               parent, pslot + 1,
1983                                               &right);
1984                         if (ret)
1985                                 wret = 1;
1986                         else {
1987                                 wret = balance_node_right(trans, root,
1988                                                           right, mid);
1989                         }
1990                 }
1991                 if (wret < 0)
1992                         ret = wret;
1993                 if (wret == 0) {
1994                         struct btrfs_disk_key disk_key;
1995
1996                         btrfs_node_key(right, &disk_key, 0);
1997                         tree_mod_log_set_node_key(root->fs_info, parent,
1998                                                   &disk_key, pslot + 1, 0);
1999                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2000                         btrfs_mark_buffer_dirty(parent);
2001
2002                         if (btrfs_header_nritems(mid) <= orig_slot) {
2003                                 path->nodes[level] = right;
2004                                 path->slots[level + 1] += 1;
2005                                 path->slots[level] = orig_slot -
2006                                         btrfs_header_nritems(mid);
2007                                 btrfs_tree_unlock(mid);
2008                                 free_extent_buffer(mid);
2009                         } else {
2010                                 btrfs_tree_unlock(right);
2011                                 free_extent_buffer(right);
2012                         }
2013                         return 0;
2014                 }
2015                 btrfs_tree_unlock(right);
2016                 free_extent_buffer(right);
2017         }
2018         return 1;
2019 }
2020
2021 /*
2022  * readahead one full node of leaves, finding things that are close
2023  * to the block in 'slot', and triggering ra on them.
2024  */
2025 static void reada_for_search(struct btrfs_root *root,
2026                              struct btrfs_path *path,
2027                              int level, int slot, u64 objectid)
2028 {
2029         struct extent_buffer *node;
2030         struct btrfs_disk_key disk_key;
2031         u32 nritems;
2032         u64 search;
2033         u64 target;
2034         u64 nread = 0;
2035         u64 gen;
2036         int direction = path->reada;
2037         struct extent_buffer *eb;
2038         u32 nr;
2039         u32 blocksize;
2040         u32 nscan = 0;
2041
2042         if (level != 1)
2043                 return;
2044
2045         if (!path->nodes[level])
2046                 return;
2047
2048         node = path->nodes[level];
2049
2050         search = btrfs_node_blockptr(node, slot);
2051         blocksize = btrfs_level_size(root, level - 1);
2052         eb = btrfs_find_tree_block(root, search, blocksize);
2053         if (eb) {
2054                 free_extent_buffer(eb);
2055                 return;
2056         }
2057
2058         target = search;
2059
2060         nritems = btrfs_header_nritems(node);
2061         nr = slot;
2062
2063         while (1) {
2064                 if (direction < 0) {
2065                         if (nr == 0)
2066                                 break;
2067                         nr--;
2068                 } else if (direction > 0) {
2069                         nr++;
2070                         if (nr >= nritems)
2071                                 break;
2072                 }
2073                 if (path->reada < 0 && objectid) {
2074                         btrfs_node_key(node, &disk_key, nr);
2075                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2076                                 break;
2077                 }
2078                 search = btrfs_node_blockptr(node, nr);
2079                 if ((search <= target && target - search <= 65536) ||
2080                     (search > target && search - target <= 65536)) {
2081                         gen = btrfs_node_ptr_generation(node, nr);
2082                         readahead_tree_block(root, search, blocksize, gen);
2083                         nread += blocksize;
2084                 }
2085                 nscan++;
2086                 if ((nread > 65536 || nscan > 32))
2087                         break;
2088         }
2089 }
2090
2091 /*
2092  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2093  * cache
2094  */
2095 static noinline int reada_for_balance(struct btrfs_root *root,
2096                                       struct btrfs_path *path, int level)
2097 {
2098         int slot;
2099         int nritems;
2100         struct extent_buffer *parent;
2101         struct extent_buffer *eb;
2102         u64 gen;
2103         u64 block1 = 0;
2104         u64 block2 = 0;
2105         int ret = 0;
2106         int blocksize;
2107
2108         parent = path->nodes[level + 1];
2109         if (!parent)
2110                 return 0;
2111
2112         nritems = btrfs_header_nritems(parent);
2113         slot = path->slots[level + 1];
2114         blocksize = btrfs_level_size(root, level);
2115
2116         if (slot > 0) {
2117                 block1 = btrfs_node_blockptr(parent, slot - 1);
2118                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2119                 eb = btrfs_find_tree_block(root, block1, blocksize);
2120                 /*
2121                  * if we get -eagain from btrfs_buffer_uptodate, we
2122                  * don't want to return eagain here.  That will loop
2123                  * forever
2124                  */
2125                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2126                         block1 = 0;
2127                 free_extent_buffer(eb);
2128         }
2129         if (slot + 1 < nritems) {
2130                 block2 = btrfs_node_blockptr(parent, slot + 1);
2131                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2132                 eb = btrfs_find_tree_block(root, block2, blocksize);
2133                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2134                         block2 = 0;
2135                 free_extent_buffer(eb);
2136         }
2137         if (block1 || block2) {
2138                 ret = -EAGAIN;
2139
2140                 /* release the whole path */
2141                 btrfs_release_path(path);
2142
2143                 /* read the blocks */
2144                 if (block1)
2145                         readahead_tree_block(root, block1, blocksize, 0);
2146                 if (block2)
2147                         readahead_tree_block(root, block2, blocksize, 0);
2148
2149                 if (block1) {
2150                         eb = read_tree_block(root, block1, blocksize, 0);
2151                         free_extent_buffer(eb);
2152                 }
2153                 if (block2) {
2154                         eb = read_tree_block(root, block2, blocksize, 0);
2155                         free_extent_buffer(eb);
2156                 }
2157         }
2158         return ret;
2159 }
2160
2161
2162 /*
2163  * when we walk down the tree, it is usually safe to unlock the higher layers
2164  * in the tree.  The exceptions are when our path goes through slot 0, because
2165  * operations on the tree might require changing key pointers higher up in the
2166  * tree.
2167  *
2168  * callers might also have set path->keep_locks, which tells this code to keep
2169  * the lock if the path points to the last slot in the block.  This is part of
2170  * walking through the tree, and selecting the next slot in the higher block.
2171  *
2172  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2173  * if lowest_unlock is 1, level 0 won't be unlocked
2174  */
2175 static noinline void unlock_up(struct btrfs_path *path, int level,
2176                                int lowest_unlock, int min_write_lock_level,
2177                                int *write_lock_level)
2178 {
2179         int i;
2180         int skip_level = level;
2181         int no_skips = 0;
2182         struct extent_buffer *t;
2183
2184         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2185                 if (!path->nodes[i])
2186                         break;
2187                 if (!path->locks[i])
2188                         break;
2189                 if (!no_skips && path->slots[i] == 0) {
2190                         skip_level = i + 1;
2191                         continue;
2192                 }
2193                 if (!no_skips && path->keep_locks) {
2194                         u32 nritems;
2195                         t = path->nodes[i];
2196                         nritems = btrfs_header_nritems(t);
2197                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2198                                 skip_level = i + 1;
2199                                 continue;
2200                         }
2201                 }
2202                 if (skip_level < i && i >= lowest_unlock)
2203                         no_skips = 1;
2204
2205                 t = path->nodes[i];
2206                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2207                         btrfs_tree_unlock_rw(t, path->locks[i]);
2208                         path->locks[i] = 0;
2209                         if (write_lock_level &&
2210                             i > min_write_lock_level &&
2211                             i <= *write_lock_level) {
2212                                 *write_lock_level = i - 1;
2213                         }
2214                 }
2215         }
2216 }
2217
2218 /*
2219  * This releases any locks held in the path starting at level and
2220  * going all the way up to the root.
2221  *
2222  * btrfs_search_slot will keep the lock held on higher nodes in a few
2223  * corner cases, such as COW of the block at slot zero in the node.  This
2224  * ignores those rules, and it should only be called when there are no
2225  * more updates to be done higher up in the tree.
2226  */
2227 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2228 {
2229         int i;
2230
2231         if (path->keep_locks)
2232                 return;
2233
2234         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2235                 if (!path->nodes[i])
2236                         continue;
2237                 if (!path->locks[i])
2238                         continue;
2239                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2240                 path->locks[i] = 0;
2241         }
2242 }
2243
2244 /*
2245  * helper function for btrfs_search_slot.  The goal is to find a block
2246  * in cache without setting the path to blocking.  If we find the block
2247  * we return zero and the path is unchanged.
2248  *
2249  * If we can't find the block, we set the path blocking and do some
2250  * reada.  -EAGAIN is returned and the search must be repeated.
2251  */
2252 static int
2253 read_block_for_search(struct btrfs_trans_handle *trans,
2254                        struct btrfs_root *root, struct btrfs_path *p,
2255                        struct extent_buffer **eb_ret, int level, int slot,
2256                        struct btrfs_key *key, u64 time_seq)
2257 {
2258         u64 blocknr;
2259         u64 gen;
2260         u32 blocksize;
2261         struct extent_buffer *b = *eb_ret;
2262         struct extent_buffer *tmp;
2263         int ret;
2264
2265         blocknr = btrfs_node_blockptr(b, slot);
2266         gen = btrfs_node_ptr_generation(b, slot);
2267         blocksize = btrfs_level_size(root, level - 1);
2268
2269         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2270         if (tmp) {
2271                 /* first we do an atomic uptodate check */
2272                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2273                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2274                                 /*
2275                                  * we found an up to date block without
2276                                  * sleeping, return
2277                                  * right away
2278                                  */
2279                                 *eb_ret = tmp;
2280                                 return 0;
2281                         }
2282                         /* the pages were up to date, but we failed
2283                          * the generation number check.  Do a full
2284                          * read for the generation number that is correct.
2285                          * We must do this without dropping locks so
2286                          * we can trust our generation number
2287                          */
2288                         free_extent_buffer(tmp);
2289                         btrfs_set_path_blocking(p);
2290
2291                         /* now we're allowed to do a blocking uptodate check */
2292                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2293                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2294                                 *eb_ret = tmp;
2295                                 return 0;
2296                         }
2297                         free_extent_buffer(tmp);
2298                         btrfs_release_path(p);
2299                         return -EIO;
2300                 }
2301         }
2302
2303         /*
2304          * reduce lock contention at high levels
2305          * of the btree by dropping locks before
2306          * we read.  Don't release the lock on the current
2307          * level because we need to walk this node to figure
2308          * out which blocks to read.
2309          */
2310         btrfs_unlock_up_safe(p, level + 1);
2311         btrfs_set_path_blocking(p);
2312
2313         free_extent_buffer(tmp);
2314         if (p->reada)
2315                 reada_for_search(root, p, level, slot, key->objectid);
2316
2317         btrfs_release_path(p);
2318
2319         ret = -EAGAIN;
2320         tmp = read_tree_block(root, blocknr, blocksize, 0);
2321         if (tmp) {
2322                 /*
2323                  * If the read above didn't mark this buffer up to date,
2324                  * it will never end up being up to date.  Set ret to EIO now
2325                  * and give up so that our caller doesn't loop forever
2326                  * on our EAGAINs.
2327                  */
2328                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2329                         ret = -EIO;
2330                 free_extent_buffer(tmp);
2331         }
2332         return ret;
2333 }
2334
2335 /*
2336  * helper function for btrfs_search_slot.  This does all of the checks
2337  * for node-level blocks and does any balancing required based on
2338  * the ins_len.
2339  *
2340  * If no extra work was required, zero is returned.  If we had to
2341  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2342  * start over
2343  */
2344 static int
2345 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2346                        struct btrfs_root *root, struct btrfs_path *p,
2347                        struct extent_buffer *b, int level, int ins_len,
2348                        int *write_lock_level)
2349 {
2350         int ret;
2351         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2352             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2353                 int sret;
2354
2355                 if (*write_lock_level < level + 1) {
2356                         *write_lock_level = level + 1;
2357                         btrfs_release_path(p);
2358                         goto again;
2359                 }
2360
2361                 sret = reada_for_balance(root, p, level);
2362                 if (sret)
2363                         goto again;
2364
2365                 btrfs_set_path_blocking(p);
2366                 sret = split_node(trans, root, p, level);
2367                 btrfs_clear_path_blocking(p, NULL, 0);
2368
2369                 BUG_ON(sret > 0);
2370                 if (sret) {
2371                         ret = sret;
2372                         goto done;
2373                 }
2374                 b = p->nodes[level];
2375         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2376                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2377                 int sret;
2378
2379                 if (*write_lock_level < level + 1) {
2380                         *write_lock_level = level + 1;
2381                         btrfs_release_path(p);
2382                         goto again;
2383                 }
2384
2385                 sret = reada_for_balance(root, p, level);
2386                 if (sret)
2387                         goto again;
2388
2389                 btrfs_set_path_blocking(p);
2390                 sret = balance_level(trans, root, p, level);
2391                 btrfs_clear_path_blocking(p, NULL, 0);
2392
2393                 if (sret) {
2394                         ret = sret;
2395                         goto done;
2396                 }
2397                 b = p->nodes[level];
2398                 if (!b) {
2399                         btrfs_release_path(p);
2400                         goto again;
2401                 }
2402                 BUG_ON(btrfs_header_nritems(b) == 1);
2403         }
2404         return 0;
2405
2406 again:
2407         ret = -EAGAIN;
2408 done:
2409         return ret;
2410 }
2411
2412 /*
2413  * look for key in the tree.  path is filled in with nodes along the way
2414  * if key is found, we return zero and you can find the item in the leaf
2415  * level of the path (level 0)
2416  *
2417  * If the key isn't found, the path points to the slot where it should
2418  * be inserted, and 1 is returned.  If there are other errors during the
2419  * search a negative error number is returned.
2420  *
2421  * if ins_len > 0, nodes and leaves will be split as we walk down the
2422  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2423  * possible)
2424  */
2425 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2426                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2427                       ins_len, int cow)
2428 {
2429         struct extent_buffer *b;
2430         int slot;
2431         int ret;
2432         int err;
2433         int level;
2434         int lowest_unlock = 1;
2435         int root_lock;
2436         /* everything at write_lock_level or lower must be write locked */
2437         int write_lock_level = 0;
2438         u8 lowest_level = 0;
2439         int min_write_lock_level;
2440
2441         lowest_level = p->lowest_level;
2442         WARN_ON(lowest_level && ins_len > 0);
2443         WARN_ON(p->nodes[0] != NULL);
2444
2445         if (ins_len < 0) {
2446                 lowest_unlock = 2;
2447
2448                 /* when we are removing items, we might have to go up to level
2449                  * two as we update tree pointers  Make sure we keep write
2450                  * for those levels as well
2451                  */
2452                 write_lock_level = 2;
2453         } else if (ins_len > 0) {
2454                 /*
2455                  * for inserting items, make sure we have a write lock on
2456                  * level 1 so we can update keys
2457                  */
2458                 write_lock_level = 1;
2459         }
2460
2461         if (!cow)
2462                 write_lock_level = -1;
2463
2464         if (cow && (p->keep_locks || p->lowest_level))
2465                 write_lock_level = BTRFS_MAX_LEVEL;
2466
2467         min_write_lock_level = write_lock_level;
2468
2469 again:
2470         /*
2471          * we try very hard to do read locks on the root
2472          */
2473         root_lock = BTRFS_READ_LOCK;
2474         level = 0;
2475         if (p->search_commit_root) {
2476                 /*
2477                  * the commit roots are read only
2478                  * so we always do read locks
2479                  */
2480                 b = root->commit_root;
2481                 extent_buffer_get(b);
2482                 level = btrfs_header_level(b);
2483                 if (!p->skip_locking)
2484                         btrfs_tree_read_lock(b);
2485         } else {
2486                 if (p->skip_locking) {
2487                         b = btrfs_root_node(root);
2488                         level = btrfs_header_level(b);
2489                 } else {
2490                         /* we don't know the level of the root node
2491                          * until we actually have it read locked
2492                          */
2493                         b = btrfs_read_lock_root_node(root);
2494                         level = btrfs_header_level(b);
2495                         if (level <= write_lock_level) {
2496                                 /* whoops, must trade for write lock */
2497                                 btrfs_tree_read_unlock(b);
2498                                 free_extent_buffer(b);
2499                                 b = btrfs_lock_root_node(root);
2500                                 root_lock = BTRFS_WRITE_LOCK;
2501
2502                                 /* the level might have changed, check again */
2503                                 level = btrfs_header_level(b);
2504                         }
2505                 }
2506         }
2507         p->nodes[level] = b;
2508         if (!p->skip_locking)
2509                 p->locks[level] = root_lock;
2510
2511         while (b) {
2512                 level = btrfs_header_level(b);
2513
2514                 /*
2515                  * setup the path here so we can release it under lock
2516                  * contention with the cow code
2517                  */
2518                 if (cow) {
2519                         /*
2520                          * if we don't really need to cow this block
2521                          * then we don't want to set the path blocking,
2522                          * so we test it here
2523                          */
2524                         if (!should_cow_block(trans, root, b))
2525                                 goto cow_done;
2526
2527                         btrfs_set_path_blocking(p);
2528
2529                         /*
2530                          * must have write locks on this node and the
2531                          * parent
2532                          */
2533                         if (level + 1 > write_lock_level) {
2534                                 write_lock_level = level + 1;
2535                                 btrfs_release_path(p);
2536                                 goto again;
2537                         }
2538
2539                         err = btrfs_cow_block(trans, root, b,
2540                                               p->nodes[level + 1],
2541                                               p->slots[level + 1], &b);
2542                         if (err) {
2543                                 ret = err;
2544                                 goto done;
2545                         }
2546                 }
2547 cow_done:
2548                 BUG_ON(!cow && ins_len);
2549
2550                 p->nodes[level] = b;
2551                 btrfs_clear_path_blocking(p, NULL, 0);
2552
2553                 /*
2554                  * we have a lock on b and as long as we aren't changing
2555                  * the tree, there is no way to for the items in b to change.
2556                  * It is safe to drop the lock on our parent before we
2557                  * go through the expensive btree search on b.
2558                  *
2559                  * If cow is true, then we might be changing slot zero,
2560                  * which may require changing the parent.  So, we can't
2561                  * drop the lock until after we know which slot we're
2562                  * operating on.
2563                  */
2564                 if (!cow)
2565                         btrfs_unlock_up_safe(p, level + 1);
2566
2567                 ret = bin_search(b, key, level, &slot);
2568
2569                 if (level != 0) {
2570                         int dec = 0;
2571                         if (ret && slot > 0) {
2572                                 dec = 1;
2573                                 slot -= 1;
2574                         }
2575                         p->slots[level] = slot;
2576                         err = setup_nodes_for_search(trans, root, p, b, level,
2577                                              ins_len, &write_lock_level);
2578                         if (err == -EAGAIN)
2579                                 goto again;
2580                         if (err) {
2581                                 ret = err;
2582                                 goto done;
2583                         }
2584                         b = p->nodes[level];
2585                         slot = p->slots[level];
2586
2587                         /*
2588                          * slot 0 is special, if we change the key
2589                          * we have to update the parent pointer
2590                          * which means we must have a write lock
2591                          * on the parent
2592                          */
2593                         if (slot == 0 && cow &&
2594                             write_lock_level < level + 1) {
2595                                 write_lock_level = level + 1;
2596                                 btrfs_release_path(p);
2597                                 goto again;
2598                         }
2599
2600                         unlock_up(p, level, lowest_unlock,
2601                                   min_write_lock_level, &write_lock_level);
2602
2603                         if (level == lowest_level) {
2604                                 if (dec)
2605                                         p->slots[level]++;
2606                                 goto done;
2607                         }
2608
2609                         err = read_block_for_search(trans, root, p,
2610                                                     &b, level, slot, key, 0);
2611                         if (err == -EAGAIN)
2612                                 goto again;
2613                         if (err) {
2614                                 ret = err;
2615                                 goto done;
2616                         }
2617
2618                         if (!p->skip_locking) {
2619                                 level = btrfs_header_level(b);
2620                                 if (level <= write_lock_level) {
2621                                         err = btrfs_try_tree_write_lock(b);
2622                                         if (!err) {
2623                                                 btrfs_set_path_blocking(p);
2624                                                 btrfs_tree_lock(b);
2625                                                 btrfs_clear_path_blocking(p, b,
2626                                                                   BTRFS_WRITE_LOCK);
2627                                         }
2628                                         p->locks[level] = BTRFS_WRITE_LOCK;
2629                                 } else {
2630                                         err = btrfs_try_tree_read_lock(b);
2631                                         if (!err) {
2632                                                 btrfs_set_path_blocking(p);
2633                                                 btrfs_tree_read_lock(b);
2634                                                 btrfs_clear_path_blocking(p, b,
2635                                                                   BTRFS_READ_LOCK);
2636                                         }
2637                                         p->locks[level] = BTRFS_READ_LOCK;
2638                                 }
2639                                 p->nodes[level] = b;
2640                         }
2641                 } else {
2642                         p->slots[level] = slot;
2643                         if (ins_len > 0 &&
2644                             btrfs_leaf_free_space(root, b) < ins_len) {
2645                                 if (write_lock_level < 1) {
2646                                         write_lock_level = 1;
2647                                         btrfs_release_path(p);
2648                                         goto again;
2649                                 }
2650
2651                                 btrfs_set_path_blocking(p);
2652                                 err = split_leaf(trans, root, key,
2653                                                  p, ins_len, ret == 0);
2654                                 btrfs_clear_path_blocking(p, NULL, 0);
2655
2656                                 BUG_ON(err > 0);
2657                                 if (err) {
2658                                         ret = err;
2659                                         goto done;
2660                                 }
2661                         }
2662                         if (!p->search_for_split)
2663                                 unlock_up(p, level, lowest_unlock,
2664                                           min_write_lock_level, &write_lock_level);
2665                         goto done;
2666                 }
2667         }
2668         ret = 1;
2669 done:
2670         /*
2671          * we don't really know what they plan on doing with the path
2672          * from here on, so for now just mark it as blocking
2673          */
2674         if (!p->leave_spinning)
2675                 btrfs_set_path_blocking(p);
2676         if (ret < 0)
2677                 btrfs_release_path(p);
2678         return ret;
2679 }
2680
2681 /*
2682  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2683  * current state of the tree together with the operations recorded in the tree
2684  * modification log to search for the key in a previous version of this tree, as
2685  * denoted by the time_seq parameter.
2686  *
2687  * Naturally, there is no support for insert, delete or cow operations.
2688  *
2689  * The resulting path and return value will be set up as if we called
2690  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2691  */
2692 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2693                           struct btrfs_path *p, u64 time_seq)
2694 {
2695         struct extent_buffer *b;
2696         int slot;
2697         int ret;
2698         int err;
2699         int level;
2700         int lowest_unlock = 1;
2701         u8 lowest_level = 0;
2702
2703         lowest_level = p->lowest_level;
2704         WARN_ON(p->nodes[0] != NULL);
2705
2706         if (p->search_commit_root) {
2707                 BUG_ON(time_seq);
2708                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2709         }
2710
2711 again:
2712         b = get_old_root(root, time_seq);
2713         level = btrfs_header_level(b);
2714         p->locks[level] = BTRFS_READ_LOCK;
2715
2716         while (b) {
2717                 level = btrfs_header_level(b);
2718                 p->nodes[level] = b;
2719                 btrfs_clear_path_blocking(p, NULL, 0);
2720
2721                 /*
2722                  * we have a lock on b and as long as we aren't changing
2723                  * the tree, there is no way to for the items in b to change.
2724                  * It is safe to drop the lock on our parent before we
2725                  * go through the expensive btree search on b.
2726                  */
2727                 btrfs_unlock_up_safe(p, level + 1);
2728
2729                 ret = bin_search(b, key, level, &slot);
2730
2731                 if (level != 0) {
2732                         int dec = 0;
2733                         if (ret && slot > 0) {
2734                                 dec = 1;
2735                                 slot -= 1;
2736                         }
2737                         p->slots[level] = slot;
2738                         unlock_up(p, level, lowest_unlock, 0, NULL);
2739
2740                         if (level == lowest_level) {
2741                                 if (dec)
2742                                         p->slots[level]++;
2743                                 goto done;
2744                         }
2745
2746                         err = read_block_for_search(NULL, root, p, &b, level,
2747                                                     slot, key, time_seq);
2748                         if (err == -EAGAIN)
2749                                 goto again;
2750                         if (err) {
2751                                 ret = err;
2752                                 goto done;
2753                         }
2754
2755                         level = btrfs_header_level(b);
2756                         err = btrfs_try_tree_read_lock(b);
2757                         if (!err) {
2758                                 btrfs_set_path_blocking(p);
2759                                 btrfs_tree_read_lock(b);
2760                                 btrfs_clear_path_blocking(p, b,
2761                                                           BTRFS_READ_LOCK);
2762                         }
2763                         p->locks[level] = BTRFS_READ_LOCK;
2764                         p->nodes[level] = b;
2765                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2766                         if (b != p->nodes[level]) {
2767                                 btrfs_tree_unlock_rw(p->nodes[level],
2768                                                      p->locks[level]);
2769                                 p->locks[level] = 0;
2770                                 p->nodes[level] = b;
2771                         }
2772                 } else {
2773                         p->slots[level] = slot;
2774                         unlock_up(p, level, lowest_unlock, 0, NULL);
2775                         goto done;
2776                 }
2777         }
2778         ret = 1;
2779 done:
2780         if (!p->leave_spinning)
2781                 btrfs_set_path_blocking(p);
2782         if (ret < 0)
2783                 btrfs_release_path(p);
2784
2785         return ret;
2786 }
2787
2788 /*
2789  * helper to use instead of search slot if no exact match is needed but
2790  * instead the next or previous item should be returned.
2791  * When find_higher is true, the next higher item is returned, the next lower
2792  * otherwise.
2793  * When return_any and find_higher are both true, and no higher item is found,
2794  * return the next lower instead.
2795  * When return_any is true and find_higher is false, and no lower item is found,
2796  * return the next higher instead.
2797  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2798  * < 0 on error
2799  */
2800 int btrfs_search_slot_for_read(struct btrfs_root *root,
2801                                struct btrfs_key *key, struct btrfs_path *p,
2802                                int find_higher, int return_any)
2803 {
2804         int ret;
2805         struct extent_buffer *leaf;
2806
2807 again:
2808         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2809         if (ret <= 0)
2810                 return ret;
2811         /*
2812          * a return value of 1 means the path is at the position where the
2813          * item should be inserted. Normally this is the next bigger item,
2814          * but in case the previous item is the last in a leaf, path points
2815          * to the first free slot in the previous leaf, i.e. at an invalid
2816          * item.
2817          */
2818         leaf = p->nodes[0];
2819
2820         if (find_higher) {
2821                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2822                         ret = btrfs_next_leaf(root, p);
2823                         if (ret <= 0)
2824                                 return ret;
2825                         if (!return_any)
2826                                 return 1;
2827                         /*
2828                          * no higher item found, return the next
2829                          * lower instead
2830                          */
2831                         return_any = 0;
2832                         find_higher = 0;
2833                         btrfs_release_path(p);
2834                         goto again;
2835                 }
2836         } else {
2837                 if (p->slots[0] == 0) {
2838                         ret = btrfs_prev_leaf(root, p);
2839                         if (ret < 0)
2840                                 return ret;
2841                         if (!ret) {
2842                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2843                                 return 0;
2844                         }
2845                         if (!return_any)
2846                                 return 1;
2847                         /*
2848                          * no lower item found, return the next
2849                          * higher instead
2850                          */
2851                         return_any = 0;
2852                         find_higher = 1;
2853                         btrfs_release_path(p);
2854                         goto again;
2855                 } else {
2856                         --p->slots[0];
2857                 }
2858         }
2859         return 0;
2860 }
2861
2862 /*
2863  * adjust the pointers going up the tree, starting at level
2864  * making sure the right key of each node is points to 'key'.
2865  * This is used after shifting pointers to the left, so it stops
2866  * fixing up pointers when a given leaf/node is not in slot 0 of the
2867  * higher levels
2868  *
2869  */
2870 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2871                            struct btrfs_root *root, struct btrfs_path *path,
2872                            struct btrfs_disk_key *key, int level)
2873 {
2874         int i;
2875         struct extent_buffer *t;
2876
2877         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2878                 int tslot = path->slots[i];
2879                 if (!path->nodes[i])
2880                         break;
2881                 t = path->nodes[i];
2882                 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2883                 btrfs_set_node_key(t, key, tslot);
2884                 btrfs_mark_buffer_dirty(path->nodes[i]);
2885                 if (tslot != 0)
2886                         break;
2887         }
2888 }
2889
2890 /*
2891  * update item key.
2892  *
2893  * This function isn't completely safe. It's the caller's responsibility
2894  * that the new key won't break the order
2895  */
2896 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2897                              struct btrfs_root *root, struct btrfs_path *path,
2898                              struct btrfs_key *new_key)
2899 {
2900         struct btrfs_disk_key disk_key;
2901         struct extent_buffer *eb;
2902         int slot;
2903
2904         eb = path->nodes[0];
2905         slot = path->slots[0];
2906         if (slot > 0) {
2907                 btrfs_item_key(eb, &disk_key, slot - 1);
2908                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2909         }
2910         if (slot < btrfs_header_nritems(eb) - 1) {
2911                 btrfs_item_key(eb, &disk_key, slot + 1);
2912                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2913         }
2914
2915         btrfs_cpu_key_to_disk(&disk_key, new_key);
2916         btrfs_set_item_key(eb, &disk_key, slot);
2917         btrfs_mark_buffer_dirty(eb);
2918         if (slot == 0)
2919                 fixup_low_keys(trans, root, path, &disk_key, 1);
2920 }
2921
2922 /*
2923  * try to push data from one node into the next node left in the
2924  * tree.
2925  *
2926  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2927  * error, and > 0 if there was no room in the left hand block.
2928  */
2929 static int push_node_left(struct btrfs_trans_handle *trans,
2930                           struct btrfs_root *root, struct extent_buffer *dst,
2931                           struct extent_buffer *src, int empty)
2932 {
2933         int push_items = 0;
2934         int src_nritems;
2935         int dst_nritems;
2936         int ret = 0;
2937
2938         src_nritems = btrfs_header_nritems(src);
2939         dst_nritems = btrfs_header_nritems(dst);
2940         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2941         WARN_ON(btrfs_header_generation(src) != trans->transid);
2942         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2943
2944         if (!empty && src_nritems <= 8)
2945                 return 1;
2946
2947         if (push_items <= 0)
2948                 return 1;
2949
2950         if (empty) {
2951                 push_items = min(src_nritems, push_items);
2952                 if (push_items < src_nritems) {
2953                         /* leave at least 8 pointers in the node if
2954                          * we aren't going to empty it
2955                          */
2956                         if (src_nritems - push_items < 8) {
2957                                 if (push_items <= 8)
2958                                         return 1;
2959                                 push_items -= 8;
2960                         }
2961                 }
2962         } else
2963                 push_items = min(src_nritems - 8, push_items);
2964
2965         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2966                              push_items);
2967         copy_extent_buffer(dst, src,
2968                            btrfs_node_key_ptr_offset(dst_nritems),
2969                            btrfs_node_key_ptr_offset(0),
2970                            push_items * sizeof(struct btrfs_key_ptr));
2971
2972         if (push_items < src_nritems) {
2973                 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2974                                      src_nritems - push_items);
2975                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2976                                       btrfs_node_key_ptr_offset(push_items),
2977                                       (src_nritems - push_items) *
2978                                       sizeof(struct btrfs_key_ptr));
2979         }
2980         btrfs_set_header_nritems(src, src_nritems - push_items);
2981         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2982         btrfs_mark_buffer_dirty(src);
2983         btrfs_mark_buffer_dirty(dst);
2984
2985         return ret;
2986 }
2987
2988 /*
2989  * try to push data from one node into the next node right in the
2990  * tree.
2991  *
2992  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2993  * error, and > 0 if there was no room in the right hand block.
2994  *
2995  * this will  only push up to 1/2 the contents of the left node over
2996  */
2997 static int balance_node_right(struct btrfs_trans_handle *trans,
2998                               struct btrfs_root *root,
2999                               struct extent_buffer *dst,
3000                               struct extent_buffer *src)
3001 {
3002         int push_items = 0;
3003         int max_push;
3004         int src_nritems;
3005         int dst_nritems;
3006         int ret = 0;
3007
3008         WARN_ON(btrfs_header_generation(src) != trans->transid);
3009         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3010
3011         src_nritems = btrfs_header_nritems(src);
3012         dst_nritems = btrfs_header_nritems(dst);
3013         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3014         if (push_items <= 0)
3015                 return 1;
3016
3017         if (src_nritems < 4)
3018                 return 1;
3019
3020         max_push = src_nritems / 2 + 1;
3021         /* don't try to empty the node */
3022         if (max_push >= src_nritems)
3023                 return 1;
3024
3025         if (max_push < push_items)
3026                 push_items = max_push;
3027
3028         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3029         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3030                                       btrfs_node_key_ptr_offset(0),
3031                                       (dst_nritems) *
3032                                       sizeof(struct btrfs_key_ptr));
3033
3034         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3035                              src_nritems - push_items, push_items);
3036         copy_extent_buffer(dst, src,
3037                            btrfs_node_key_ptr_offset(0),
3038                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3039                            push_items * sizeof(struct btrfs_key_ptr));
3040
3041         btrfs_set_header_nritems(src, src_nritems - push_items);
3042         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3043
3044         btrfs_mark_buffer_dirty(src);
3045         btrfs_mark_buffer_dirty(dst);
3046
3047         return ret;
3048 }
3049
3050 /*
3051  * helper function to insert a new root level in the tree.
3052  * A new node is allocated, and a single item is inserted to
3053  * point to the existing root
3054  *
3055  * returns zero on success or < 0 on failure.
3056  */
3057 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3058                            struct btrfs_root *root,
3059                            struct btrfs_path *path, int level)
3060 {
3061         u64 lower_gen;
3062         struct extent_buffer *lower;
3063         struct extent_buffer *c;
3064         struct extent_buffer *old;
3065         struct btrfs_disk_key lower_key;
3066
3067         BUG_ON(path->nodes[level]);
3068         BUG_ON(path->nodes[level-1] != root->node);
3069
3070         lower = path->nodes[level-1];
3071         if (level == 1)
3072                 btrfs_item_key(lower, &lower_key, 0);
3073         else
3074                 btrfs_node_key(lower, &lower_key, 0);
3075
3076         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3077                                    root->root_key.objectid, &lower_key,
3078                                    level, root->node->start, 0);
3079         if (IS_ERR(c))
3080                 return PTR_ERR(c);
3081
3082         root_add_used(root, root->nodesize);
3083
3084         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3085         btrfs_set_header_nritems(c, 1);
3086         btrfs_set_header_level(c, level);
3087         btrfs_set_header_bytenr(c, c->start);
3088         btrfs_set_header_generation(c, trans->transid);
3089         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3090         btrfs_set_header_owner(c, root->root_key.objectid);
3091
3092         write_extent_buffer(c, root->fs_info->fsid,
3093                             (unsigned long)btrfs_header_fsid(c),
3094                             BTRFS_FSID_SIZE);
3095
3096         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3097                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
3098                             BTRFS_UUID_SIZE);
3099
3100         btrfs_set_node_key(c, &lower_key, 0);
3101         btrfs_set_node_blockptr(c, 0, lower->start);
3102         lower_gen = btrfs_header_generation(lower);
3103         WARN_ON(lower_gen != trans->transid);
3104
3105         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3106
3107         btrfs_mark_buffer_dirty(c);
3108
3109         old = root->node;
3110         tree_mod_log_set_root_pointer(root, c);
3111         rcu_assign_pointer(root->node, c);
3112
3113         /* the super has an extra ref to root->node */
3114         free_extent_buffer(old);
3115
3116         add_root_to_dirty_list(root);
3117         extent_buffer_get(c);
3118         path->nodes[level] = c;
3119         path->locks[level] = BTRFS_WRITE_LOCK;
3120         path->slots[level] = 0;
3121         return 0;
3122 }
3123
3124 /*
3125  * worker function to insert a single pointer in a node.
3126  * the node should have enough room for the pointer already
3127  *
3128  * slot and level indicate where you want the key to go, and
3129  * blocknr is the block the key points to.
3130  */
3131 static void insert_ptr(struct btrfs_trans_handle *trans,
3132                        struct btrfs_root *root, struct btrfs_path *path,
3133                        struct btrfs_disk_key *key, u64 bytenr,
3134                        int slot, int level)
3135 {
3136         struct extent_buffer *lower;
3137         int nritems;
3138         int ret;
3139
3140         BUG_ON(!path->nodes[level]);
3141         btrfs_assert_tree_locked(path->nodes[level]);
3142         lower = path->nodes[level];
3143         nritems = btrfs_header_nritems(lower);
3144         BUG_ON(slot > nritems);
3145         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3146         if (slot != nritems) {
3147                 if (level)
3148                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3149                                              slot, nritems - slot);
3150                 memmove_extent_buffer(lower,
3151                               btrfs_node_key_ptr_offset(slot + 1),
3152                               btrfs_node_key_ptr_offset(slot),
3153                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3154         }
3155         if (level) {
3156                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3157                                               MOD_LOG_KEY_ADD);
3158                 BUG_ON(ret < 0);
3159         }
3160         btrfs_set_node_key(lower, key, slot);
3161         btrfs_set_node_blockptr(lower, slot, bytenr);
3162         WARN_ON(trans->transid == 0);
3163         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3164         btrfs_set_header_nritems(lower, nritems + 1);
3165         btrfs_mark_buffer_dirty(lower);
3166 }
3167
3168 /*
3169  * split the node at the specified level in path in two.
3170  * The path is corrected to point to the appropriate node after the split
3171  *
3172  * Before splitting this tries to make some room in the node by pushing
3173  * left and right, if either one works, it returns right away.
3174  *
3175  * returns 0 on success and < 0 on failure
3176  */
3177 static noinline int split_node(struct btrfs_trans_handle *trans,
3178                                struct btrfs_root *root,
3179                                struct btrfs_path *path, int level)
3180 {
3181         struct extent_buffer *c;
3182         struct extent_buffer *split;
3183         struct btrfs_disk_key disk_key;
3184         int mid;
3185         int ret;
3186         u32 c_nritems;
3187
3188         c = path->nodes[level];
3189         WARN_ON(btrfs_header_generation(c) != trans->transid);
3190         if (c == root->node) {
3191                 /* trying to split the root, lets make a new one */
3192                 ret = insert_new_root(trans, root, path, level + 1);
3193                 if (ret)
3194                         return ret;
3195         } else {
3196                 ret = push_nodes_for_insert(trans, root, path, level);
3197                 c = path->nodes[level];
3198                 if (!ret && btrfs_header_nritems(c) <
3199                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3200                         return 0;
3201                 if (ret < 0)
3202                         return ret;
3203         }
3204
3205         c_nritems = btrfs_header_nritems(c);
3206         mid = (c_nritems + 1) / 2;
3207         btrfs_node_key(c, &disk_key, mid);
3208
3209         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3210                                         root->root_key.objectid,
3211                                         &disk_key, level, c->start, 0);
3212         if (IS_ERR(split))
3213                 return PTR_ERR(split);
3214
3215         root_add_used(root, root->nodesize);
3216
3217         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3218         btrfs_set_header_level(split, btrfs_header_level(c));
3219         btrfs_set_header_bytenr(split, split->start);
3220         btrfs_set_header_generation(split, trans->transid);
3221         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3222         btrfs_set_header_owner(split, root->root_key.objectid);
3223         write_extent_buffer(split, root->fs_info->fsid,
3224                             (unsigned long)btrfs_header_fsid(split),
3225                             BTRFS_FSID_SIZE);
3226         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3227                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3228                             BTRFS_UUID_SIZE);
3229
3230         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3231         copy_extent_buffer(split, c,
3232                            btrfs_node_key_ptr_offset(0),
3233                            btrfs_node_key_ptr_offset(mid),
3234                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3235         btrfs_set_header_nritems(split, c_nritems - mid);
3236         btrfs_set_header_nritems(c, mid);
3237         ret = 0;
3238
3239         btrfs_mark_buffer_dirty(c);
3240         btrfs_mark_buffer_dirty(split);
3241
3242         insert_ptr(trans, root, path, &disk_key, split->start,
3243                    path->slots[level + 1] + 1, level + 1);
3244
3245         if (path->slots[level] >= mid) {
3246                 path->slots[level] -= mid;
3247                 btrfs_tree_unlock(c);
3248                 free_extent_buffer(c);
3249                 path->nodes[level] = split;
3250                 path->slots[level + 1] += 1;
3251         } else {
3252                 btrfs_tree_unlock(split);
3253                 free_extent_buffer(split);
3254         }
3255         return ret;
3256 }
3257
3258 /*
3259  * how many bytes are required to store the items in a leaf.  start
3260  * and nr indicate which items in the leaf to check.  This totals up the
3261  * space used both by the item structs and the item data
3262  */
3263 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3264 {
3265         int data_len;
3266         int nritems = btrfs_header_nritems(l);
3267         int end = min(nritems, start + nr) - 1;
3268
3269         if (!nr)
3270                 return 0;
3271         data_len = btrfs_item_end_nr(l, start);
3272         data_len = data_len - btrfs_item_offset_nr(l, end);
3273         data_len += sizeof(struct btrfs_item) * nr;
3274         WARN_ON(data_len < 0);
3275         return data_len;
3276 }
3277
3278 /*
3279  * The space between the end of the leaf items and
3280  * the start of the leaf data.  IOW, how much room
3281  * the leaf has left for both items and data
3282  */
3283 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3284                                    struct extent_buffer *leaf)
3285 {
3286         int nritems = btrfs_header_nritems(leaf);
3287         int ret;
3288         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3289         if (ret < 0) {
3290                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3291                        "used %d nritems %d\n",
3292                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3293                        leaf_space_used(leaf, 0, nritems), nritems);
3294         }
3295         return ret;
3296 }
3297
3298 /*
3299  * min slot controls the lowest index we're willing to push to the
3300  * right.  We'll push up to and including min_slot, but no lower
3301  */
3302 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3303                                       struct btrfs_root *root,
3304                                       struct btrfs_path *path,
3305                                       int data_size, int empty,
3306                                       struct extent_buffer *right,
3307                                       int free_space, u32 left_nritems,
3308                                       u32 min_slot)
3309 {
3310         struct extent_buffer *left = path->nodes[0];
3311         struct extent_buffer *upper = path->nodes[1];
3312         struct btrfs_map_token token;
3313         struct btrfs_disk_key disk_key;
3314         int slot;
3315         u32 i;
3316         int push_space = 0;
3317         int push_items = 0;
3318         struct btrfs_item *item;
3319         u32 nr;
3320         u32 right_nritems;
3321         u32 data_end;
3322         u32 this_item_size;
3323
3324         btrfs_init_map_token(&token);
3325
3326         if (empty)
3327                 nr = 0;
3328         else
3329                 nr = max_t(u32, 1, min_slot);
3330
3331         if (path->slots[0] >= left_nritems)
3332                 push_space += data_size;
3333
3334         slot = path->slots[1];
3335         i = left_nritems - 1;
3336         while (i >= nr) {
3337                 item = btrfs_item_nr(left, i);
3338
3339                 if (!empty && push_items > 0) {
3340                         if (path->slots[0] > i)
3341                                 break;
3342                         if (path->slots[0] == i) {
3343                                 int space = btrfs_leaf_free_space(root, left);
3344                                 if (space + push_space * 2 > free_space)
3345                                         break;
3346                         }
3347                 }
3348
3349                 if (path->slots[0] == i)
3350                         push_space += data_size;
3351
3352                 this_item_size = btrfs_item_size(left, item);
3353                 if (this_item_size + sizeof(*item) + push_space > free_space)
3354                         break;
3355
3356                 push_items++;
3357                 push_space += this_item_size + sizeof(*item);
3358                 if (i == 0)
3359                         break;
3360                 i--;
3361         }
3362
3363         if (push_items == 0)
3364                 goto out_unlock;
3365
3366         if (!empty && push_items == left_nritems)
3367                 WARN_ON(1);
3368
3369         /* push left to right */
3370         right_nritems = btrfs_header_nritems(right);
3371
3372         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3373         push_space -= leaf_data_end(root, left);
3374
3375         /* make room in the right data area */
3376         data_end = leaf_data_end(root, right);
3377         memmove_extent_buffer(right,
3378                               btrfs_leaf_data(right) + data_end - push_space,
3379                               btrfs_leaf_data(right) + data_end,
3380                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3381
3382         /* copy from the left data area */
3383         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3384                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3385                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3386                      push_space);
3387
3388         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3389                               btrfs_item_nr_offset(0),
3390                               right_nritems * sizeof(struct btrfs_item));
3391
3392         /* copy the items from left to right */
3393         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3394                    btrfs_item_nr_offset(left_nritems - push_items),
3395                    push_items * sizeof(struct btrfs_item));
3396
3397         /* update the item pointers */
3398         right_nritems += push_items;
3399         btrfs_set_header_nritems(right, right_nritems);
3400         push_space = BTRFS_LEAF_DATA_SIZE(root);
3401         for (i = 0; i < right_nritems; i++) {
3402                 item = btrfs_item_nr(right, i);
3403                 push_space -= btrfs_token_item_size(right, item, &token);
3404                 btrfs_set_token_item_offset(right, item, push_space, &token);
3405         }
3406
3407         left_nritems -= push_items;
3408         btrfs_set_header_nritems(left, left_nritems);
3409
3410         if (left_nritems)
3411                 btrfs_mark_buffer_dirty(left);
3412         else
3413                 clean_tree_block(trans, root, left);
3414
3415         btrfs_mark_buffer_dirty(right);
3416
3417         btrfs_item_key(right, &disk_key, 0);
3418         btrfs_set_node_key(upper, &disk_key, slot + 1);
3419         btrfs_mark_buffer_dirty(upper);
3420
3421         /* then fixup the leaf pointer in the path */
3422         if (path->slots[0] >= left_nritems) {
3423                 path->slots[0] -= left_nritems;
3424                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3425                         clean_tree_block(trans, root, path->nodes[0]);
3426                 btrfs_tree_unlock(path->nodes[0]);
3427                 free_extent_buffer(path->nodes[0]);
3428                 path->nodes[0] = right;
3429                 path->slots[1] += 1;
3430         } else {
3431                 btrfs_tree_unlock(right);
3432                 free_extent_buffer(right);
3433         }
3434         return 0;
3435
3436 out_unlock:
3437         btrfs_tree_unlock(right);
3438         free_extent_buffer(right);
3439         return 1;
3440 }
3441
3442 /*
3443  * push some data in the path leaf to the right, trying to free up at
3444  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3445  *
3446  * returns 1 if the push failed because the other node didn't have enough
3447  * room, 0 if everything worked out and < 0 if there were major errors.
3448  *
3449  * this will push starting from min_slot to the end of the leaf.  It won't
3450  * push any slot lower than min_slot
3451  */
3452 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3453                            *root, struct btrfs_path *path,
3454                            int min_data_size, int data_size,
3455                            int empty, u32 min_slot)
3456 {
3457         struct extent_buffer *left = path->nodes[0];
3458         struct extent_buffer *right;
3459         struct extent_buffer *upper;
3460         int slot;
3461         int free_space;
3462         u32 left_nritems;
3463         int ret;
3464
3465         if (!path->nodes[1])
3466                 return 1;
3467
3468         slot = path->slots[1];
3469         upper = path->nodes[1];
3470         if (slot >= btrfs_header_nritems(upper) - 1)
3471                 return 1;
3472
3473         btrfs_assert_tree_locked(path->nodes[1]);
3474
3475         right = read_node_slot(root, upper, slot + 1);
3476         if (right == NULL)
3477                 return 1;
3478
3479         btrfs_tree_lock(right);
3480         btrfs_set_lock_blocking(right);
3481
3482         free_space = btrfs_leaf_free_space(root, right);
3483         if (free_space < data_size)
3484                 goto out_unlock;
3485
3486         /* cow and double check */
3487         ret = btrfs_cow_block(trans, root, right, upper,
3488                               slot + 1, &right);
3489         if (ret)
3490                 goto out_unlock;
3491
3492         free_space = btrfs_leaf_free_space(root, right);
3493         if (free_space < data_size)
3494                 goto out_unlock;
3495
3496         left_nritems = btrfs_header_nritems(left);
3497         if (left_nritems == 0)
3498                 goto out_unlock;
3499
3500         return __push_leaf_right(trans, root, path, min_data_size, empty,
3501                                 right, free_space, left_nritems, min_slot);
3502 out_unlock:
3503         btrfs_tree_unlock(right);
3504         free_extent_buffer(right);
3505         return 1;
3506 }
3507
3508 /*
3509  * push some data in the path leaf to the left, trying to free up at
3510  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3511  *
3512  * max_slot can put a limit on how far into the leaf we'll push items.  The
3513  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3514  * items
3515  */
3516 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3517                                      struct btrfs_root *root,
3518                                      struct btrfs_path *path, int data_size,
3519                                      int empty, struct extent_buffer *left,
3520                                      int free_space, u32 right_nritems,
3521                                      u32 max_slot)
3522 {
3523         struct btrfs_disk_key disk_key;
3524         struct extent_buffer *right = path->nodes[0];
3525         int i;
3526         int push_space = 0;
3527         int push_items = 0;
3528         struct btrfs_item *item;
3529         u32 old_left_nritems;
3530         u32 nr;
3531         int ret = 0;
3532         u32 this_item_size;
3533         u32 old_left_item_size;
3534         struct btrfs_map_token token;
3535
3536         btrfs_init_map_token(&token);
3537
3538         if (empty)
3539                 nr = min(right_nritems, max_slot);
3540         else
3541                 nr = min(right_nritems - 1, max_slot);
3542
3543         for (i = 0; i < nr; i++) {
3544                 item = btrfs_item_nr(right, i);
3545
3546                 if (!empty && push_items > 0) {
3547                         if (path->slots[0] < i)
3548                                 break;
3549                         if (path->slots[0] == i) {
3550                                 int space = btrfs_leaf_free_space(root, right);
3551                                 if (space + push_space * 2 > free_space)
3552                                         break;
3553                         }
3554                 }
3555
3556                 if (path->slots[0] == i)
3557                         push_space += data_size;
3558
3559                 this_item_size = btrfs_item_size(right, item);
3560                 if (this_item_size + sizeof(*item) + push_space > free_space)
3561                         break;
3562
3563                 push_items++;
3564                 push_space += this_item_size + sizeof(*item);
3565         }
3566
3567         if (push_items == 0) {
3568                 ret = 1;
3569                 goto out;
3570         }
3571         if (!empty && push_items == btrfs_header_nritems(right))
3572                 WARN_ON(1);
3573
3574         /* push data from right to left */
3575         copy_extent_buffer(left, right,
3576                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3577                            btrfs_item_nr_offset(0),
3578                            push_items * sizeof(struct btrfs_item));
3579
3580         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3581                      btrfs_item_offset_nr(right, push_items - 1);
3582
3583         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3584                      leaf_data_end(root, left) - push_space,
3585                      btrfs_leaf_data(right) +
3586                      btrfs_item_offset_nr(right, push_items - 1),
3587                      push_space);
3588         old_left_nritems = btrfs_header_nritems(left);
3589         BUG_ON(old_left_nritems <= 0);
3590
3591         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3592         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3593                 u32 ioff;
3594
3595                 item = btrfs_item_nr(left, i);
3596
3597                 ioff = btrfs_token_item_offset(left, item, &token);
3598                 btrfs_set_token_item_offset(left, item,
3599                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3600                       &token);
3601         }
3602         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3603
3604         /* fixup right node */
3605         if (push_items > right_nritems) {
3606                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3607                        right_nritems);
3608                 WARN_ON(1);
3609         }
3610
3611         if (push_items < right_nritems) {
3612                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3613                                                   leaf_data_end(root, right);
3614                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3615                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3616                                       btrfs_leaf_data(right) +
3617                                       leaf_data_end(root, right), push_space);
3618
3619                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3620                               btrfs_item_nr_offset(push_items),
3621                              (btrfs_header_nritems(right) - push_items) *
3622                              sizeof(struct btrfs_item));
3623         }
3624         right_nritems -= push_items;
3625         btrfs_set_header_nritems(right, right_nritems);
3626         push_space = BTRFS_LEAF_DATA_SIZE(root);
3627         for (i = 0; i < right_nritems; i++) {
3628                 item = btrfs_item_nr(right, i);
3629
3630                 push_space = push_space - btrfs_token_item_size(right,
3631                                                                 item, &token);
3632                 btrfs_set_token_item_offset(right, item, push_space, &token);
3633         }
3634
3635         btrfs_mark_buffer_dirty(left);
3636         if (right_nritems)
3637                 btrfs_mark_buffer_dirty(right);
3638         else
3639                 clean_tree_block(trans, root, right);
3640
3641         btrfs_item_key(right, &disk_key, 0);
3642         fixup_low_keys(trans, root, path, &disk_key, 1);
3643
3644         /* then fixup the leaf pointer in the path */
3645         if (path->slots[0] < push_items) {
3646                 path->slots[0] += old_left_nritems;
3647                 btrfs_tree_unlock(path->nodes[0]);
3648                 free_extent_buffer(path->nodes[0]);
3649                 path->nodes[0] = left;
3650                 path->slots[1] -= 1;
3651         } else {
3652                 btrfs_tree_unlock(left);
3653                 free_extent_buffer(left);
3654                 path->slots[0] -= push_items;
3655         }
3656         BUG_ON(path->slots[0] < 0);
3657         return ret;
3658 out:
3659         btrfs_tree_unlock(left);
3660         free_extent_buffer(left);
3661         return ret;
3662 }
3663
3664 /*
3665  * push some data in the path leaf to the left, trying to free up at
3666  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3667  *
3668  * max_slot can put a limit on how far into the leaf we'll push items.  The
3669  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3670  * items
3671  */
3672 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3673                           *root, struct btrfs_path *path, int min_data_size,
3674                           int data_size, int empty, u32 max_slot)
3675 {
3676         struct extent_buffer *right = path->nodes[0];
3677         struct extent_buffer *left;
3678         int slot;
3679         int free_space;
3680         u32 right_nritems;
3681         int ret = 0;
3682
3683         slot = path->slots[1];
3684         if (slot == 0)
3685                 return 1;
3686         if (!path->nodes[1])
3687                 return 1;
3688
3689         right_nritems = btrfs_header_nritems(right);
3690         if (right_nritems == 0)
3691                 return 1;
3692
3693         btrfs_assert_tree_locked(path->nodes[1]);
3694
3695         left = read_node_slot(root, path->nodes[1], slot - 1);
3696         if (left == NULL)
3697                 return 1;
3698
3699         btrfs_tree_lock(left);
3700         btrfs_set_lock_blocking(left);
3701
3702         free_space = btrfs_leaf_free_space(root, left);
3703         if (free_space < data_size) {
3704                 ret = 1;
3705                 goto out;
3706         }
3707
3708         /* cow and double check */
3709         ret = btrfs_cow_block(trans, root, left,
3710                               path->nodes[1], slot - 1, &left);
3711         if (ret) {
3712                 /* we hit -ENOSPC, but it isn't fatal here */
3713                 if (ret == -ENOSPC)
3714                         ret = 1;
3715                 goto out;
3716         }
3717
3718         free_space = btrfs_leaf_free_space(root, left);
3719         if (free_space < data_size) {
3720                 ret = 1;
3721                 goto out;
3722         }
3723
3724         return __push_leaf_left(trans, root, path, min_data_size,
3725                                empty, left, free_space, right_nritems,
3726                                max_slot);
3727 out:
3728         btrfs_tree_unlock(left);
3729         free_extent_buffer(left);
3730         return ret;
3731 }
3732
3733 /*
3734  * split the path's leaf in two, making sure there is at least data_size
3735  * available for the resulting leaf level of the path.
3736  */
3737 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3738                                     struct btrfs_root *root,
3739                                     struct btrfs_path *path,
3740                                     struct extent_buffer *l,
3741                                     struct extent_buffer *right,
3742                                     int slot, int mid, int nritems)
3743 {
3744         int data_copy_size;
3745         int rt_data_off;
3746         int i;
3747         struct btrfs_disk_key disk_key;
3748         struct btrfs_map_token token;
3749
3750         btrfs_init_map_token(&token);
3751
3752         nritems = nritems - mid;
3753         btrfs_set_header_nritems(right, nritems);
3754         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3755
3756         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3757                            btrfs_item_nr_offset(mid),
3758                            nritems * sizeof(struct btrfs_item));
3759
3760         copy_extent_buffer(right, l,
3761                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3762                      data_copy_size, btrfs_leaf_data(l) +
3763                      leaf_data_end(root, l), data_copy_size);
3764
3765         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3766                       btrfs_item_end_nr(l, mid);
3767
3768         for (i = 0; i < nritems; i++) {
3769                 struct btrfs_item *item = btrfs_item_nr(right, i);
3770                 u32 ioff;
3771
3772                 ioff = btrfs_token_item_offset(right, item, &token);
3773                 btrfs_set_token_item_offset(right, item,
3774                                             ioff + rt_data_off, &token);
3775         }
3776
3777         btrfs_set_header_nritems(l, mid);
3778         btrfs_item_key(right, &disk_key, 0);
3779         insert_ptr(trans, root, path, &disk_key, right->start,
3780                    path->slots[1] + 1, 1);
3781
3782         btrfs_mark_buffer_dirty(right);
3783         btrfs_mark_buffer_dirty(l);
3784         BUG_ON(path->slots[0] != slot);
3785
3786         if (mid <= slot) {
3787                 btrfs_tree_unlock(path->nodes[0]);
3788                 free_extent_buffer(path->nodes[0]);
3789                 path->nodes[0] = right;
3790                 path->slots[0] -= mid;
3791                 path->slots[1] += 1;
3792         } else {
3793                 btrfs_tree_unlock(right);
3794                 free_extent_buffer(right);
3795         }
3796
3797         BUG_ON(path->slots[0] < 0);
3798 }
3799
3800 /*
3801  * double splits happen when we need to insert a big item in the middle
3802  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3803  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3804  *          A                 B                 C
3805  *
3806  * We avoid this by trying to push the items on either side of our target
3807  * into the adjacent leaves.  If all goes well we can avoid the double split
3808  * completely.
3809  */
3810 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3811                                           struct btrfs_root *root,
3812                                           struct btrfs_path *path,
3813                                           int data_size)
3814 {
3815         int ret;
3816         int progress = 0;
3817         int slot;
3818         u32 nritems;
3819
3820         slot = path->slots[0];
3821
3822         /*
3823          * try to push all the items after our slot into the
3824          * right leaf
3825          */
3826         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3827         if (ret < 0)
3828                 return ret;
3829
3830         if (ret == 0)
3831                 progress++;
3832
3833         nritems = btrfs_header_nritems(path->nodes[0]);
3834         /*
3835          * our goal is to get our slot at the start or end of a leaf.  If
3836          * we've done so we're done
3837          */
3838         if (path->slots[0] == 0 || path->slots[0] == nritems)
3839                 return 0;
3840
3841         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3842                 return 0;
3843
3844         /* try to push all the items before our slot into the next leaf */
3845         slot = path->slots[0];
3846         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3847         if (ret < 0)
3848                 return ret;
3849
3850         if (ret == 0)
3851                 progress++;
3852
3853         if (progress)
3854                 return 0;
3855         return 1;
3856 }
3857
3858 /*
3859  * split the path's leaf in two, making sure there is at least data_size
3860  * available for the resulting leaf level of the path.
3861  *
3862  * returns 0 if all went well and < 0 on failure.
3863  */
3864 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3865                                struct btrfs_root *root,
3866                                struct btrfs_key *ins_key,
3867                                struct btrfs_path *path, int data_size,
3868                                int extend)
3869 {
3870         struct btrfs_disk_key disk_key;
3871         struct extent_buffer *l;
3872         u32 nritems;
3873         int mid;
3874         int slot;
3875         struct extent_buffer *right;
3876         int ret = 0;
3877         int wret;
3878         int split;
3879         int num_doubles = 0;
3880         int tried_avoid_double = 0;
3881
3882         l = path->nodes[0];
3883         slot = path->slots[0];
3884         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3885             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3886                 return -EOVERFLOW;
3887
3888         /* first try to make some room by pushing left and right */
3889         if (data_size) {
3890                 wret = push_leaf_right(trans, root, path, data_size,
3891                                        data_size, 0, 0);
3892                 if (wret < 0)
3893                         return wret;
3894                 if (wret) {
3895                         wret = push_leaf_left(trans, root, path, data_size,
3896                                               data_size, 0, (u32)-1);
3897                         if (wret < 0)
3898                                 return wret;
3899                 }
3900                 l = path->nodes[0];
3901
3902                 /* did the pushes work? */
3903                 if (btrfs_leaf_free_space(root, l) >= data_size)
3904                         return 0;
3905         }
3906
3907         if (!path->nodes[1]) {
3908                 ret = insert_new_root(trans, root, path, 1);
3909                 if (ret)
3910                         return ret;
3911         }
3912 again:
3913         split = 1;
3914         l = path->nodes[0];
3915         slot = path->slots[0];
3916         nritems = btrfs_header_nritems(l);
3917         mid = (nritems + 1) / 2;
3918
3919         if (mid <= slot) {
3920                 if (nritems == 1 ||
3921                     leaf_space_used(l, mid, nritems - mid) + data_size >
3922                         BTRFS_LEAF_DATA_SIZE(root)) {
3923                         if (slot >= nritems) {
3924                                 split = 0;
3925                         } else {
3926                                 mid = slot;
3927                                 if (mid != nritems &&
3928                                     leaf_space_used(l, mid, nritems - mid) +
3929                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3930                                         if (data_size && !tried_avoid_double)
3931                                                 goto push_for_double;
3932                                         split = 2;
3933                                 }
3934                         }
3935                 }
3936         } else {
3937                 if (leaf_space_used(l, 0, mid) + data_size >
3938                         BTRFS_LEAF_DATA_SIZE(root)) {
3939                         if (!extend && data_size && slot == 0) {
3940                                 split = 0;
3941                         } else if ((extend || !data_size) && slot == 0) {
3942                                 mid = 1;
3943                         } else {
3944                                 mid = slot;
3945                                 if (mid != nritems &&
3946                                     leaf_space_used(l, mid, nritems - mid) +
3947                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3948                                         if (data_size && !tried_avoid_double)
3949                                                 goto push_for_double;
3950                                         split = 2 ;
3951                                 }
3952                         }
3953                 }
3954         }
3955
3956         if (split == 0)
3957                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3958         else
3959                 btrfs_item_key(l, &disk_key, mid);
3960
3961         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3962                                         root->root_key.objectid,
3963                                         &disk_key, 0, l->start, 0);
3964         if (IS_ERR(right))
3965                 return PTR_ERR(right);
3966
3967         root_add_used(root, root->leafsize);
3968
3969         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3970         btrfs_set_header_bytenr(right, right->start);
3971         btrfs_set_header_generation(right, trans->transid);
3972         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3973         btrfs_set_header_owner(right, root->root_key.objectid);
3974         btrfs_set_header_level(right, 0);
3975         write_extent_buffer(right, root->fs_info->fsid,
3976                             (unsigned long)btrfs_header_fsid(right),
3977                             BTRFS_FSID_SIZE);
3978
3979         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3980                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3981                             BTRFS_UUID_SIZE);
3982
3983         if (split == 0) {
3984                 if (mid <= slot) {
3985                         btrfs_set_header_nritems(right, 0);
3986                         insert_ptr(trans, root, path, &disk_key, right->start,
3987                                    path->slots[1] + 1, 1);
3988                         btrfs_tree_unlock(path->nodes[0]);
3989                         free_extent_buffer(path->nodes[0]);
3990                         path->nodes[0] = right;
3991                         path->slots[0] = 0;
3992                         path->slots[1] += 1;
3993                 } else {
3994                         btrfs_set_header_nritems(right, 0);
3995                         insert_ptr(trans, root, path, &disk_key, right->start,
3996                                           path->slots[1], 1);
3997                         btrfs_tree_unlock(path->nodes[0]);
3998                         free_extent_buffer(path->nodes[0]);
3999                         path->nodes[0] = right;
4000                         path->slots[0] = 0;
4001                         if (path->slots[1] == 0)
4002                                 fixup_low_keys(trans, root, path,
4003                                                &disk_key, 1);
4004                 }
4005                 btrfs_mark_buffer_dirty(right);
4006                 return ret;
4007         }
4008
4009         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4010
4011         if (split == 2) {
4012                 BUG_ON(num_doubles != 0);
4013                 num_doubles++;
4014                 goto again;
4015         }
4016
4017         return 0;
4018
4019 push_for_double:
4020         push_for_double_split(trans, root, path, data_size);
4021         tried_avoid_double = 1;
4022         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4023                 return 0;
4024         goto again;
4025 }
4026
4027 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4028                                          struct btrfs_root *root,
4029                                          struct btrfs_path *path, int ins_len)
4030 {
4031         struct btrfs_key key;
4032         struct extent_buffer *leaf;
4033         struct btrfs_file_extent_item *fi;
4034         u64 extent_len = 0;
4035         u32 item_size;
4036         int ret;
4037
4038         leaf = path->nodes[0];
4039         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4040
4041         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4042                key.type != BTRFS_EXTENT_CSUM_KEY);
4043
4044         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4045                 return 0;
4046
4047         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4048         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4049                 fi = btrfs_item_ptr(leaf, path->slots[0],
4050                                     struct btrfs_file_extent_item);
4051                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4052         }
4053         btrfs_release_path(path);
4054
4055         path->keep_locks = 1;
4056         path->search_for_split = 1;
4057         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4058         path->search_for_split = 0;
4059         if (ret < 0)
4060                 goto err;
4061
4062         ret = -EAGAIN;
4063         leaf = path->nodes[0];
4064         /* if our item isn't there or got smaller, return now */
4065         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4066                 goto err;
4067
4068         /* the leaf has  changed, it now has room.  return now */
4069         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4070                 goto err;
4071
4072         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4073                 fi = btrfs_item_ptr(leaf, path->slots[0],
4074                                     struct btrfs_file_extent_item);
4075                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4076                         goto err;
4077         }
4078
4079         btrfs_set_path_blocking(path);
4080         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4081         if (ret)
4082                 goto err;
4083
4084         path->keep_locks = 0;
4085         btrfs_unlock_up_safe(path, 1);
4086         return 0;
4087 err:
4088         path->keep_locks = 0;
4089         return ret;
4090 }
4091
4092 static noinline int split_item(struct btrfs_trans_handle *trans,
4093                                struct btrfs_root *root,
4094                                struct btrfs_path *path,
4095                                struct btrfs_key *new_key,
4096                                unsigned long split_offset)
4097 {
4098         struct extent_buffer *leaf;
4099         struct btrfs_item *item;
4100         struct btrfs_item *new_item;
4101         int slot;
4102         char *buf;
4103         u32 nritems;
4104         u32 item_size;
4105         u32 orig_offset;
4106         struct btrfs_disk_key disk_key;
4107
4108         leaf = path->nodes[0];
4109         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4110
4111         btrfs_set_path_blocking(path);
4112
4113         item = btrfs_item_nr(leaf, path->slots[0]);
4114         orig_offset = btrfs_item_offset(leaf, item);
4115         item_size = btrfs_item_size(leaf, item);
4116
4117         buf = kmalloc(item_size, GFP_NOFS);
4118         if (!buf)
4119                 return -ENOMEM;
4120
4121         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4122                             path->slots[0]), item_size);
4123
4124         slot = path->slots[0] + 1;
4125         nritems = btrfs_header_nritems(leaf);
4126         if (slot != nritems) {
4127                 /* shift the items */
4128                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4129                                 btrfs_item_nr_offset(slot),
4130                                 (nritems - slot) * sizeof(struct btrfs_item));
4131         }
4132
4133         btrfs_cpu_key_to_disk(&disk_key, new_key);
4134         btrfs_set_item_key(leaf, &disk_key, slot);
4135
4136         new_item = btrfs_item_nr(leaf, slot);
4137
4138         btrfs_set_item_offset(leaf, new_item, orig_offset);
4139         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4140
4141         btrfs_set_item_offset(leaf, item,
4142                               orig_offset + item_size - split_offset);
4143         btrfs_set_item_size(leaf, item, split_offset);
4144
4145         btrfs_set_header_nritems(leaf, nritems + 1);
4146
4147         /* write the data for the start of the original item */
4148         write_extent_buffer(leaf, buf,
4149                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4150                             split_offset);
4151
4152         /* write the data for the new item */
4153         write_extent_buffer(leaf, buf + split_offset,
4154                             btrfs_item_ptr_offset(leaf, slot),
4155                             item_size - split_offset);
4156         btrfs_mark_buffer_dirty(leaf);
4157
4158         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4159         kfree(buf);
4160         return 0;
4161 }
4162
4163 /*
4164  * This function splits a single item into two items,
4165  * giving 'new_key' to the new item and splitting the
4166  * old one at split_offset (from the start of the item).
4167  *
4168  * The path may be released by this operation.  After
4169  * the split, the path is pointing to the old item.  The
4170  * new item is going to be in the same node as the old one.
4171  *
4172  * Note, the item being split must be smaller enough to live alone on
4173  * a tree block with room for one extra struct btrfs_item
4174  *
4175  * This allows us to split the item in place, keeping a lock on the
4176  * leaf the entire time.
4177  */
4178 int btrfs_split_item(struct btrfs_trans_handle *trans,
4179                      struct btrfs_root *root,
4180                      struct btrfs_path *path,
4181                      struct btrfs_key *new_key,
4182                      unsigned long split_offset)
4183 {
4184         int ret;
4185         ret = setup_leaf_for_split(trans, root, path,
4186                                    sizeof(struct btrfs_item));
4187         if (ret)
4188                 return ret;
4189
4190         ret = split_item(trans, root, path, new_key, split_offset);
4191         return ret;
4192 }
4193
4194 /*
4195  * This function duplicate a item, giving 'new_key' to the new item.
4196  * It guarantees both items live in the same tree leaf and the new item
4197  * is contiguous with the original item.
4198  *
4199  * This allows us to split file extent in place, keeping a lock on the
4200  * leaf the entire time.
4201  */
4202 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4203                          struct btrfs_root *root,
4204                          struct btrfs_path *path,
4205                          struct btrfs_key *new_key)
4206 {
4207         struct extent_buffer *leaf;
4208         int ret;
4209         u32 item_size;
4210
4211         leaf = path->nodes[0];
4212         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4213         ret = setup_leaf_for_split(trans, root, path,
4214                                    item_size + sizeof(struct btrfs_item));
4215         if (ret)
4216                 return ret;
4217
4218         path->slots[0]++;
4219         setup_items_for_insert(trans, root, path, new_key, &item_size,
4220                                item_size, item_size +
4221                                sizeof(struct btrfs_item), 1);
4222         leaf = path->nodes[0];
4223         memcpy_extent_buffer(leaf,
4224                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4225                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4226                              item_size);
4227         return 0;
4228 }
4229
4230 /*
4231  * make the item pointed to by the path smaller.  new_size indicates
4232  * how small to make it, and from_end tells us if we just chop bytes
4233  * off the end of the item or if we shift the item to chop bytes off
4234  * the front.
4235  */
4236 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4237                          struct btrfs_root *root,
4238                          struct btrfs_path *path,
4239                          u32 new_size, int from_end)
4240 {
4241         int slot;
4242         struct extent_buffer *leaf;
4243         struct btrfs_item *item;
4244         u32 nritems;
4245         unsigned int data_end;
4246         unsigned int old_data_start;
4247         unsigned int old_size;
4248         unsigned int size_diff;
4249         int i;
4250         struct btrfs_map_token token;
4251
4252         btrfs_init_map_token(&token);
4253
4254         leaf = path->nodes[0];
4255         slot = path->slots[0];
4256
4257         old_size = btrfs_item_size_nr(leaf, slot);
4258         if (old_size == new_size)
4259                 return;
4260
4261         nritems = btrfs_header_nritems(leaf);
4262         data_end = leaf_data_end(root, leaf);
4263
4264         old_data_start = btrfs_item_offset_nr(leaf, slot);
4265
4266         size_diff = old_size - new_size;
4267
4268         BUG_ON(slot < 0);
4269         BUG_ON(slot >= nritems);
4270
4271         /*
4272          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4273          */
4274         /* first correct the data pointers */
4275         for (i = slot; i < nritems; i++) {
4276                 u32 ioff;
4277                 item = btrfs_item_nr(leaf, i);
4278
4279                 ioff = btrfs_token_item_offset(leaf, item, &token);
4280                 btrfs_set_token_item_offset(leaf, item,
4281                                             ioff + size_diff, &token);
4282         }
4283
4284         /* shift the data */
4285         if (from_end) {
4286                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4287                               data_end + size_diff, btrfs_leaf_data(leaf) +
4288                               data_end, old_data_start + new_size - data_end);
4289         } else {
4290                 struct btrfs_disk_key disk_key;
4291                 u64 offset;
4292
4293                 btrfs_item_key(leaf, &disk_key, slot);
4294
4295                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4296                         unsigned long ptr;
4297                         struct btrfs_file_extent_item *fi;
4298
4299                         fi = btrfs_item_ptr(leaf, slot,
4300                                             struct btrfs_file_extent_item);
4301                         fi = (struct btrfs_file_extent_item *)(
4302                              (unsigned long)fi - size_diff);
4303
4304                         if (btrfs_file_extent_type(leaf, fi) ==
4305                             BTRFS_FILE_EXTENT_INLINE) {
4306                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4307                                 memmove_extent_buffer(leaf, ptr,
4308                                       (unsigned long)fi,
4309                                       offsetof(struct btrfs_file_extent_item,
4310                                                  disk_bytenr));
4311                         }
4312                 }
4313
4314                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4315                               data_end + size_diff, btrfs_leaf_data(leaf) +
4316                               data_end, old_data_start - data_end);
4317
4318                 offset = btrfs_disk_key_offset(&disk_key);
4319                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4320                 btrfs_set_item_key(leaf, &disk_key, slot);
4321                 if (slot == 0)
4322                         fixup_low_keys(trans, root, path, &disk_key, 1);
4323         }
4324
4325         item = btrfs_item_nr(leaf, slot);
4326         btrfs_set_item_size(leaf, item, new_size);
4327         btrfs_mark_buffer_dirty(leaf);
4328
4329         if (btrfs_leaf_free_space(root, leaf) < 0) {
4330                 btrfs_print_leaf(root, leaf);
4331                 BUG();
4332         }
4333 }
4334
4335 /*
4336  * make the item pointed to by the path bigger, data_size is the new size.
4337  */
4338 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4339                        struct btrfs_root *root, struct btrfs_path *path,
4340                        u32 data_size)
4341 {
4342         int slot;
4343         struct extent_buffer *leaf;
4344         struct btrfs_item *item;
4345         u32 nritems;
4346         unsigned int data_end;
4347         unsigned int old_data;
4348         unsigned int old_size;
4349         int i;
4350         struct btrfs_map_token token;
4351
4352         btrfs_init_map_token(&token);
4353
4354         leaf = path->nodes[0];
4355
4356         nritems = btrfs_header_nritems(leaf);
4357         data_end = leaf_data_end(root, leaf);
4358
4359         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4360                 btrfs_print_leaf(root, leaf);
4361                 BUG();
4362         }
4363         slot = path->slots[0];
4364         old_data = btrfs_item_end_nr(leaf, slot);
4365
4366         BUG_ON(slot < 0);
4367         if (slot >= nritems) {
4368                 btrfs_print_leaf(root, leaf);
4369                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4370                        slot, nritems);
4371                 BUG_ON(1);
4372         }
4373
4374         /*
4375          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4376          */
4377         /* first correct the data pointers */
4378         for (i = slot; i < nritems; i++) {
4379                 u32 ioff;
4380                 item = btrfs_item_nr(leaf, i);
4381
4382                 ioff = btrfs_token_item_offset(leaf, item, &token);
4383                 btrfs_set_token_item_offset(leaf, item,
4384                                             ioff - data_size, &token);
4385         }
4386
4387         /* shift the data */
4388         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4389                       data_end - data_size, btrfs_leaf_data(leaf) +
4390                       data_end, old_data - data_end);
4391
4392         data_end = old_data;
4393         old_size = btrfs_item_size_nr(leaf, slot);
4394         item = btrfs_item_nr(leaf, slot);
4395         btrfs_set_item_size(leaf, item, old_size + data_size);
4396         btrfs_mark_buffer_dirty(leaf);
4397
4398         if (btrfs_leaf_free_space(root, leaf) < 0) {
4399                 btrfs_print_leaf(root, leaf);
4400                 BUG();
4401         }
4402 }
4403
4404 /*
4405  * this is a helper for btrfs_insert_empty_items, the main goal here is
4406  * to save stack depth by doing the bulk of the work in a function
4407  * that doesn't call btrfs_search_slot
4408  */
4409 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4410                             struct btrfs_root *root, struct btrfs_path *path,
4411                             struct btrfs_key *cpu_key, u32 *data_size,
4412                             u32 total_data, u32 total_size, int nr)
4413 {
4414         struct btrfs_item *item;
4415         int i;
4416         u32 nritems;
4417         unsigned int data_end;
4418         struct btrfs_disk_key disk_key;
4419         struct extent_buffer *leaf;
4420         int slot;
4421         struct btrfs_map_token token;
4422
4423         btrfs_init_map_token(&token);
4424
4425         leaf = path->nodes[0];
4426         slot = path->slots[0];
4427
4428         nritems = btrfs_header_nritems(leaf);
4429         data_end = leaf_data_end(root, leaf);
4430
4431         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4432                 btrfs_print_leaf(root, leaf);
4433                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4434                        total_size, btrfs_leaf_free_space(root, leaf));
4435                 BUG();
4436         }
4437
4438         if (slot != nritems) {
4439                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4440
4441                 if (old_data < data_end) {
4442                         btrfs_print_leaf(root, leaf);
4443                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4444                                slot, old_data, data_end);
4445                         BUG_ON(1);
4446                 }
4447                 /*
4448                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4449                  */
4450                 /* first correct the data pointers */
4451                 for (i = slot; i < nritems; i++) {
4452                         u32 ioff;
4453
4454                         item = btrfs_item_nr(leaf, i);
4455                         ioff = btrfs_token_item_offset(leaf, item, &token);
4456                         btrfs_set_token_item_offset(leaf, item,
4457                                                     ioff - total_data, &token);
4458                 }
4459                 /* shift the items */
4460                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4461                               btrfs_item_nr_offset(slot),
4462                               (nritems - slot) * sizeof(struct btrfs_item));
4463
4464                 /* shift the data */
4465                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4466                               data_end - total_data, btrfs_leaf_data(leaf) +
4467                               data_end, old_data - data_end);
4468                 data_end = old_data;
4469         }
4470
4471         /* setup the item for the new data */
4472         for (i = 0; i < nr; i++) {
4473                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4474                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4475                 item = btrfs_item_nr(leaf, slot + i);
4476                 btrfs_set_token_item_offset(leaf, item,
4477                                             data_end - data_size[i], &token);
4478                 data_end -= data_size[i];
4479                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4480         }
4481
4482         btrfs_set_header_nritems(leaf, nritems + nr);
4483
4484         if (slot == 0) {
4485                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4486                 fixup_low_keys(trans, root, path, &disk_key, 1);
4487         }
4488         btrfs_unlock_up_safe(path, 1);
4489         btrfs_mark_buffer_dirty(leaf);
4490
4491         if (btrfs_leaf_free_space(root, leaf) < 0) {
4492                 btrfs_print_leaf(root, leaf);
4493                 BUG();
4494         }
4495 }
4496
4497 /*
4498  * Given a key and some data, insert items into the tree.
4499  * This does all the path init required, making room in the tree if needed.
4500  */
4501 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4502                             struct btrfs_root *root,
4503                             struct btrfs_path *path,
4504                             struct btrfs_key *cpu_key, u32 *data_size,
4505                             int nr)
4506 {
4507         int ret = 0;
4508         int slot;
4509         int i;
4510         u32 total_size = 0;
4511         u32 total_data = 0;
4512
4513         for (i = 0; i < nr; i++)
4514                 total_data += data_size[i];
4515
4516         total_size = total_data + (nr * sizeof(struct btrfs_item));
4517         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4518         if (ret == 0)
4519                 return -EEXIST;
4520         if (ret < 0)
4521                 return ret;
4522
4523         slot = path->slots[0];
4524         BUG_ON(slot < 0);
4525
4526         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4527                                total_data, total_size, nr);
4528         return 0;
4529 }
4530
4531 /*
4532  * Given a key and some data, insert an item into the tree.
4533  * This does all the path init required, making room in the tree if needed.
4534  */
4535 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4536                       *root, struct btrfs_key *cpu_key, void *data, u32
4537                       data_size)
4538 {
4539         int ret = 0;
4540         struct btrfs_path *path;
4541         struct extent_buffer *leaf;
4542         unsigned long ptr;
4543
4544         path = btrfs_alloc_path();
4545         if (!path)
4546                 return -ENOMEM;
4547         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4548         if (!ret) {
4549                 leaf = path->nodes[0];
4550                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4551                 write_extent_buffer(leaf, data, ptr, data_size);
4552                 btrfs_mark_buffer_dirty(leaf);
4553         }
4554         btrfs_free_path(path);
4555         return ret;
4556 }
4557
4558 /*
4559  * delete the pointer from a given node.
4560  *
4561  * the tree should have been previously balanced so the deletion does not
4562  * empty a node.
4563  */
4564 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4565                     struct btrfs_path *path, int level, int slot,
4566                     int tree_mod_log)
4567 {
4568         struct extent_buffer *parent = path->nodes[level];
4569         u32 nritems;
4570         int ret;
4571
4572         nritems = btrfs_header_nritems(parent);
4573         if (slot != nritems - 1) {
4574                 if (tree_mod_log && level)
4575                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4576                                              slot + 1, nritems - slot - 1);
4577                 memmove_extent_buffer(parent,
4578                               btrfs_node_key_ptr_offset(slot),
4579                               btrfs_node_key_ptr_offset(slot + 1),
4580                               sizeof(struct btrfs_key_ptr) *
4581                               (nritems - slot - 1));
4582         } else if (tree_mod_log && level) {
4583                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4584                                               MOD_LOG_KEY_REMOVE);
4585                 BUG_ON(ret < 0);
4586         }
4587
4588         nritems--;
4589         btrfs_set_header_nritems(parent, nritems);
4590         if (nritems == 0 && parent == root->node) {
4591                 BUG_ON(btrfs_header_level(root->node) != 1);
4592                 /* just turn the root into a leaf and break */
4593                 btrfs_set_header_level(root->node, 0);
4594         } else if (slot == 0) {
4595                 struct btrfs_disk_key disk_key;
4596
4597                 btrfs_node_key(parent, &disk_key, 0);
4598                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4599         }
4600         btrfs_mark_buffer_dirty(parent);
4601 }
4602
4603 /*
4604  * a helper function to delete the leaf pointed to by path->slots[1] and
4605  * path->nodes[1].
4606  *
4607  * This deletes the pointer in path->nodes[1] and frees the leaf
4608  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4609  *
4610  * The path must have already been setup for deleting the leaf, including
4611  * all the proper balancing.  path->nodes[1] must be locked.
4612  */
4613 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4614                                     struct btrfs_root *root,
4615                                     struct btrfs_path *path,
4616                                     struct extent_buffer *leaf)
4617 {
4618         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4619         del_ptr(trans, root, path, 1, path->slots[1], 1);
4620
4621         /*
4622          * btrfs_free_extent is expensive, we want to make sure we
4623          * aren't holding any locks when we call it
4624          */
4625         btrfs_unlock_up_safe(path, 0);
4626
4627         root_sub_used(root, leaf->len);
4628
4629         extent_buffer_get(leaf);
4630         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4631         free_extent_buffer_stale(leaf);
4632 }
4633 /*
4634  * delete the item at the leaf level in path.  If that empties
4635  * the leaf, remove it from the tree
4636  */
4637 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4638                     struct btrfs_path *path, int slot, int nr)
4639 {
4640         struct extent_buffer *leaf;
4641         struct btrfs_item *item;
4642         int last_off;
4643         int dsize = 0;
4644         int ret = 0;
4645         int wret;
4646         int i;
4647         u32 nritems;
4648         struct btrfs_map_token token;
4649
4650         btrfs_init_map_token(&token);
4651
4652         leaf = path->nodes[0];
4653         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4654
4655         for (i = 0; i < nr; i++)
4656                 dsize += btrfs_item_size_nr(leaf, slot + i);
4657
4658         nritems = btrfs_header_nritems(leaf);
4659
4660         if (slot + nr != nritems) {
4661                 int data_end = leaf_data_end(root, leaf);
4662
4663                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4664                               data_end + dsize,
4665                               btrfs_leaf_data(leaf) + data_end,
4666                               last_off - data_end);
4667
4668                 for (i = slot + nr; i < nritems; i++) {
4669                         u32 ioff;
4670
4671                         item = btrfs_item_nr(leaf, i);
4672                         ioff = btrfs_token_item_offset(leaf, item, &token);
4673                         btrfs_set_token_item_offset(leaf, item,
4674                                                     ioff + dsize, &token);
4675                 }
4676
4677                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4678                               btrfs_item_nr_offset(slot + nr),
4679                               sizeof(struct btrfs_item) *
4680                               (nritems - slot - nr));
4681         }
4682         btrfs_set_header_nritems(leaf, nritems - nr);
4683         nritems -= nr;
4684
4685         /* delete the leaf if we've emptied it */
4686         if (nritems == 0) {
4687                 if (leaf == root->node) {
4688                         btrfs_set_header_level(leaf, 0);
4689                 } else {
4690                         btrfs_set_path_blocking(path);
4691                         clean_tree_block(trans, root, leaf);
4692                         btrfs_del_leaf(trans, root, path, leaf);
4693                 }
4694         } else {
4695                 int used = leaf_space_used(leaf, 0, nritems);
4696                 if (slot == 0) {
4697                         struct btrfs_disk_key disk_key;
4698
4699                         btrfs_item_key(leaf, &disk_key, 0);
4700                         fixup_low_keys(trans, root, path, &disk_key, 1);
4701                 }
4702
4703                 /* delete the leaf if it is mostly empty */
4704                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4705                         /* push_leaf_left fixes the path.
4706                          * make sure the path still points to our leaf
4707                          * for possible call to del_ptr below
4708                          */
4709                         slot = path->slots[1];
4710                         extent_buffer_get(leaf);
4711
4712                         btrfs_set_path_blocking(path);
4713                         wret = push_leaf_left(trans, root, path, 1, 1,
4714                                               1, (u32)-1);
4715                         if (wret < 0 && wret != -ENOSPC)
4716                                 ret = wret;
4717
4718                         if (path->nodes[0] == leaf &&
4719                             btrfs_header_nritems(leaf)) {
4720                                 wret = push_leaf_right(trans, root, path, 1,
4721                                                        1, 1, 0);
4722                                 if (wret < 0 && wret != -ENOSPC)
4723                                         ret = wret;
4724                         }
4725
4726                         if (btrfs_header_nritems(leaf) == 0) {
4727                                 path->slots[1] = slot;
4728                                 btrfs_del_leaf(trans, root, path, leaf);
4729                                 free_extent_buffer(leaf);
4730                                 ret = 0;
4731                         } else {
4732                                 /* if we're still in the path, make sure
4733                                  * we're dirty.  Otherwise, one of the
4734                                  * push_leaf functions must have already
4735                                  * dirtied this buffer
4736                                  */
4737                                 if (path->nodes[0] == leaf)
4738                                         btrfs_mark_buffer_dirty(leaf);
4739                                 free_extent_buffer(leaf);
4740                         }
4741                 } else {
4742                         btrfs_mark_buffer_dirty(leaf);
4743                 }
4744         }
4745         return ret;
4746 }
4747
4748 /*
4749  * search the tree again to find a leaf with lesser keys
4750  * returns 0 if it found something or 1 if there are no lesser leaves.
4751  * returns < 0 on io errors.
4752  *
4753  * This may release the path, and so you may lose any locks held at the
4754  * time you call it.
4755  */
4756 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4757 {
4758         struct btrfs_key key;
4759         struct btrfs_disk_key found_key;
4760         int ret;
4761
4762         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4763
4764         if (key.offset > 0)
4765                 key.offset--;
4766         else if (key.type > 0)
4767                 key.type--;
4768         else if (key.objectid > 0)
4769                 key.objectid--;
4770         else
4771                 return 1;
4772
4773         btrfs_release_path(path);
4774         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4775         if (ret < 0)
4776                 return ret;
4777         btrfs_item_key(path->nodes[0], &found_key, 0);
4778         ret = comp_keys(&found_key, &key);
4779         if (ret < 0)
4780                 return 0;
4781         return 1;
4782 }
4783
4784 /*
4785  * A helper function to walk down the tree starting at min_key, and looking
4786  * for nodes or leaves that are either in cache or have a minimum
4787  * transaction id.  This is used by the btree defrag code, and tree logging
4788  *
4789  * This does not cow, but it does stuff the starting key it finds back
4790  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4791  * key and get a writable path.
4792  *
4793  * This does lock as it descends, and path->keep_locks should be set
4794  * to 1 by the caller.
4795  *
4796  * This honors path->lowest_level to prevent descent past a given level
4797  * of the tree.
4798  *
4799  * min_trans indicates the oldest transaction that you are interested
4800  * in walking through.  Any nodes or leaves older than min_trans are
4801  * skipped over (without reading them).
4802  *
4803  * returns zero if something useful was found, < 0 on error and 1 if there
4804  * was nothing in the tree that matched the search criteria.
4805  */
4806 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4807                          struct btrfs_key *max_key,
4808                          struct btrfs_path *path, int cache_only,
4809                          u64 min_trans)
4810 {
4811         struct extent_buffer *cur;
4812         struct btrfs_key found_key;
4813         int slot;
4814         int sret;
4815         u32 nritems;
4816         int level;
4817         int ret = 1;
4818
4819         WARN_ON(!path->keep_locks);
4820 again:
4821         cur = btrfs_read_lock_root_node(root);
4822         level = btrfs_header_level(cur);
4823         WARN_ON(path->nodes[level]);
4824         path->nodes[level] = cur;
4825         path->locks[level] = BTRFS_READ_LOCK;
4826
4827         if (btrfs_header_generation(cur) < min_trans) {
4828                 ret = 1;
4829                 goto out;
4830         }
4831         while (1) {
4832                 nritems = btrfs_header_nritems(cur);
4833                 level = btrfs_header_level(cur);
4834                 sret = bin_search(cur, min_key, level, &slot);
4835
4836                 /* at the lowest level, we're done, setup the path and exit */
4837                 if (level == path->lowest_level) {
4838                         if (slot >= nritems)
4839                                 goto find_next_key;
4840                         ret = 0;
4841                         path->slots[level] = slot;
4842                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4843                         goto out;
4844                 }
4845                 if (sret && slot > 0)
4846                         slot--;
4847                 /*
4848                  * check this node pointer against the cache_only and
4849                  * min_trans parameters.  If it isn't in cache or is too
4850                  * old, skip to the next one.
4851                  */
4852                 while (slot < nritems) {
4853                         u64 blockptr;
4854                         u64 gen;
4855                         struct extent_buffer *tmp;
4856                         struct btrfs_disk_key disk_key;
4857
4858                         blockptr = btrfs_node_blockptr(cur, slot);
4859                         gen = btrfs_node_ptr_generation(cur, slot);
4860                         if (gen < min_trans) {
4861                                 slot++;
4862                                 continue;
4863                         }
4864                         if (!cache_only)
4865                                 break;
4866
4867                         if (max_key) {
4868                                 btrfs_node_key(cur, &disk_key, slot);
4869                                 if (comp_keys(&disk_key, max_key) >= 0) {
4870                                         ret = 1;
4871                                         goto out;
4872                                 }
4873                         }
4874
4875                         tmp = btrfs_find_tree_block(root, blockptr,
4876                                             btrfs_level_size(root, level - 1));
4877
4878                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4879                                 free_extent_buffer(tmp);
4880                                 break;
4881                         }
4882                         if (tmp)
4883                                 free_extent_buffer(tmp);
4884                         slot++;
4885                 }
4886 find_next_key:
4887                 /*
4888                  * we didn't find a candidate key in this node, walk forward
4889                  * and find another one
4890                  */
4891                 if (slot >= nritems) {
4892                         path->slots[level] = slot;
4893                         btrfs_set_path_blocking(path);
4894                         sret = btrfs_find_next_key(root, path, min_key, level,
4895                                                   cache_only, min_trans);
4896                         if (sret == 0) {
4897                                 btrfs_release_path(path);
4898                                 goto again;
4899                         } else {
4900                                 goto out;
4901                         }
4902                 }
4903                 /* save our key for returning back */
4904                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4905                 path->slots[level] = slot;
4906                 if (level == path->lowest_level) {
4907                         ret = 0;
4908                         unlock_up(path, level, 1, 0, NULL);
4909                         goto out;
4910                 }
4911                 btrfs_set_path_blocking(path);
4912                 cur = read_node_slot(root, cur, slot);
4913                 BUG_ON(!cur); /* -ENOMEM */
4914
4915                 btrfs_tree_read_lock(cur);
4916
4917                 path->locks[level - 1] = BTRFS_READ_LOCK;
4918                 path->nodes[level - 1] = cur;
4919                 unlock_up(path, level, 1, 0, NULL);
4920                 btrfs_clear_path_blocking(path, NULL, 0);
4921         }
4922 out:
4923         if (ret == 0)
4924                 memcpy(min_key, &found_key, sizeof(found_key));
4925         btrfs_set_path_blocking(path);
4926         return ret;
4927 }
4928
4929 static void tree_move_down(struct btrfs_root *root,
4930                            struct btrfs_path *path,
4931                            int *level, int root_level)
4932 {
4933         BUG_ON(*level == 0);
4934         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4935                                         path->slots[*level]);
4936         path->slots[*level - 1] = 0;
4937         (*level)--;
4938 }
4939
4940 static int tree_move_next_or_upnext(struct btrfs_root *root,
4941                                     struct btrfs_path *path,
4942                                     int *level, int root_level)
4943 {
4944         int ret = 0;
4945         int nritems;
4946         nritems = btrfs_header_nritems(path->nodes[*level]);
4947
4948         path->slots[*level]++;
4949
4950         while (path->slots[*level] >= nritems) {
4951                 if (*level == root_level)
4952                         return -1;
4953
4954                 /* move upnext */
4955                 path->slots[*level] = 0;
4956                 free_extent_buffer(path->nodes[*level]);
4957                 path->nodes[*level] = NULL;
4958                 (*level)++;
4959                 path->slots[*level]++;
4960
4961                 nritems = btrfs_header_nritems(path->nodes[*level]);
4962                 ret = 1;
4963         }
4964         return ret;
4965 }
4966
4967 /*
4968  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4969  * or down.
4970  */
4971 static int tree_advance(struct btrfs_root *root,
4972                         struct btrfs_path *path,
4973                         int *level, int root_level,
4974                         int allow_down,
4975                         struct btrfs_key *key)
4976 {
4977         int ret;
4978
4979         if (*level == 0 || !allow_down) {
4980                 ret = tree_move_next_or_upnext(root, path, level, root_level);
4981         } else {
4982                 tree_move_down(root, path, level, root_level);
4983                 ret = 0;
4984         }
4985         if (ret >= 0) {
4986                 if (*level == 0)
4987                         btrfs_item_key_to_cpu(path->nodes[*level], key,
4988                                         path->slots[*level]);
4989                 else
4990                         btrfs_node_key_to_cpu(path->nodes[*level], key,
4991                                         path->slots[*level]);
4992         }
4993         return ret;
4994 }
4995
4996 static int tree_compare_item(struct btrfs_root *left_root,
4997                              struct btrfs_path *left_path,
4998                              struct btrfs_path *right_path,
4999                              char *tmp_buf)
5000 {
5001         int cmp;
5002         int len1, len2;
5003         unsigned long off1, off2;
5004
5005         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5006         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5007         if (len1 != len2)
5008                 return 1;
5009
5010         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5011         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5012                                 right_path->slots[0]);
5013
5014         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5015
5016         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5017         if (cmp)
5018                 return 1;
5019         return 0;
5020 }
5021
5022 #define ADVANCE 1
5023 #define ADVANCE_ONLY_NEXT -1
5024
5025 /*
5026  * This function compares two trees and calls the provided callback for
5027  * every changed/new/deleted item it finds.
5028  * If shared tree blocks are encountered, whole subtrees are skipped, making
5029  * the compare pretty fast on snapshotted subvolumes.
5030  *
5031  * This currently works on commit roots only. As commit roots are read only,
5032  * we don't do any locking. The commit roots are protected with transactions.
5033  * Transactions are ended and rejoined when a commit is tried in between.
5034  *
5035  * This function checks for modifications done to the trees while comparing.
5036  * If it detects a change, it aborts immediately.
5037  */
5038 int btrfs_compare_trees(struct btrfs_root *left_root,
5039                         struct btrfs_root *right_root,
5040                         btrfs_changed_cb_t changed_cb, void *ctx)
5041 {
5042         int ret;
5043         int cmp;
5044         struct btrfs_trans_handle *trans = NULL;
5045         struct btrfs_path *left_path = NULL;
5046         struct btrfs_path *right_path = NULL;
5047         struct btrfs_key left_key;
5048         struct btrfs_key right_key;
5049         char *tmp_buf = NULL;
5050         int left_root_level;
5051         int right_root_level;
5052         int left_level;
5053         int right_level;
5054         int left_end_reached;
5055         int right_end_reached;
5056         int advance_left;
5057         int advance_right;
5058         u64 left_blockptr;
5059         u64 right_blockptr;
5060         u64 left_start_ctransid;
5061         u64 right_start_ctransid;
5062         u64 ctransid;
5063
5064         left_path = btrfs_alloc_path();
5065         if (!left_path) {
5066                 ret = -ENOMEM;
5067                 goto out;
5068         }
5069         right_path = btrfs_alloc_path();
5070         if (!right_path) {
5071                 ret = -ENOMEM;
5072                 goto out;
5073         }
5074
5075         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5076         if (!tmp_buf) {
5077                 ret = -ENOMEM;
5078                 goto out;
5079         }
5080
5081         left_path->search_commit_root = 1;
5082         left_path->skip_locking = 1;
5083         right_path->search_commit_root = 1;
5084         right_path->skip_locking = 1;
5085
5086         spin_lock(&left_root->root_times_lock);
5087         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5088         spin_unlock(&left_root->root_times_lock);
5089
5090         spin_lock(&right_root->root_times_lock);
5091         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5092         spin_unlock(&right_root->root_times_lock);
5093
5094         trans = btrfs_join_transaction(left_root);
5095         if (IS_ERR(trans)) {
5096                 ret = PTR_ERR(trans);
5097                 trans = NULL;
5098                 goto out;
5099         }
5100
5101         /*
5102          * Strategy: Go to the first items of both trees. Then do
5103          *
5104          * If both trees are at level 0
5105          *   Compare keys of current items
5106          *     If left < right treat left item as new, advance left tree
5107          *       and repeat
5108          *     If left > right treat right item as deleted, advance right tree
5109          *       and repeat
5110          *     If left == right do deep compare of items, treat as changed if
5111          *       needed, advance both trees and repeat
5112          * If both trees are at the same level but not at level 0
5113          *   Compare keys of current nodes/leafs
5114          *     If left < right advance left tree and repeat
5115          *     If left > right advance right tree and repeat
5116          *     If left == right compare blockptrs of the next nodes/leafs
5117          *       If they match advance both trees but stay at the same level
5118          *         and repeat
5119          *       If they don't match advance both trees while allowing to go
5120          *         deeper and repeat
5121          * If tree levels are different
5122          *   Advance the tree that needs it and repeat
5123          *
5124          * Advancing a tree means:
5125          *   If we are at level 0, try to go to the next slot. If that's not
5126          *   possible, go one level up and repeat. Stop when we found a level
5127          *   where we could go to the next slot. We may at this point be on a
5128          *   node or a leaf.
5129          *
5130          *   If we are not at level 0 and not on shared tree blocks, go one
5131          *   level deeper.
5132          *
5133          *   If we are not at level 0 and on shared tree blocks, go one slot to
5134          *   the right if possible or go up and right.
5135          */
5136
5137         left_level = btrfs_header_level(left_root->commit_root);
5138         left_root_level = left_level;
5139         left_path->nodes[left_level] = left_root->commit_root;
5140         extent_buffer_get(left_path->nodes[left_level]);
5141
5142         right_level = btrfs_header_level(right_root->commit_root);
5143         right_root_level = right_level;
5144         right_path->nodes[right_level] = right_root->commit_root;
5145         extent_buffer_get(right_path->nodes[right_level]);
5146
5147         if (left_level == 0)
5148                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5149                                 &left_key, left_path->slots[left_level]);
5150         else
5151                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5152                                 &left_key, left_path->slots[left_level]);
5153         if (right_level == 0)
5154                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5155                                 &right_key, right_path->slots[right_level]);
5156         else
5157                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5158                                 &right_key, right_path->slots[right_level]);
5159
5160         left_end_reached = right_end_reached = 0;
5161         advance_left = advance_right = 0;
5162
5163         while (1) {
5164                 /*
5165                  * We need to make sure the transaction does not get committed
5166                  * while we do anything on commit roots. This means, we need to
5167                  * join and leave transactions for every item that we process.
5168                  */
5169                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5170                         btrfs_release_path(left_path);
5171                         btrfs_release_path(right_path);
5172
5173                         ret = btrfs_end_transaction(trans, left_root);
5174                         trans = NULL;
5175                         if (ret < 0)
5176                                 goto out;
5177                 }
5178                 /* now rejoin the transaction */
5179                 if (!trans) {
5180                         trans = btrfs_join_transaction(left_root);
5181                         if (IS_ERR(trans)) {
5182                                 ret = PTR_ERR(trans);
5183                                 trans = NULL;
5184                                 goto out;
5185                         }
5186
5187                         spin_lock(&left_root->root_times_lock);
5188                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5189                         spin_unlock(&left_root->root_times_lock);
5190                         if (ctransid != left_start_ctransid)
5191                                 left_start_ctransid = 0;
5192
5193                         spin_lock(&right_root->root_times_lock);
5194                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5195                         spin_unlock(&right_root->root_times_lock);
5196                         if (ctransid != right_start_ctransid)
5197                                 right_start_ctransid = 0;
5198
5199                         if (!left_start_ctransid || !right_start_ctransid) {
5200                                 WARN(1, KERN_WARNING
5201                                         "btrfs: btrfs_compare_tree detected "
5202                                         "a change in one of the trees while "
5203                                         "iterating. This is probably a "
5204                                         "bug.\n");
5205                                 ret = -EIO;
5206                                 goto out;
5207                         }
5208
5209                         /*
5210                          * the commit root may have changed, so start again
5211                          * where we stopped
5212                          */
5213                         left_path->lowest_level = left_level;
5214                         right_path->lowest_level = right_level;
5215                         ret = btrfs_search_slot(NULL, left_root,
5216                                         &left_key, left_path, 0, 0);
5217                         if (ret < 0)
5218                                 goto out;
5219                         ret = btrfs_search_slot(NULL, right_root,
5220                                         &right_key, right_path, 0, 0);
5221                         if (ret < 0)
5222                                 goto out;
5223                 }
5224
5225                 if (advance_left && !left_end_reached) {
5226                         ret = tree_advance(left_root, left_path, &left_level,
5227                                         left_root_level,
5228                                         advance_left != ADVANCE_ONLY_NEXT,
5229                                         &left_key);
5230                         if (ret < 0)
5231                                 left_end_reached = ADVANCE;
5232                         advance_left = 0;
5233                 }
5234                 if (advance_right && !right_end_reached) {
5235                         ret = tree_advance(right_root, right_path, &right_level,
5236                                         right_root_level,
5237                                         advance_right != ADVANCE_ONLY_NEXT,
5238                                         &right_key);
5239                         if (ret < 0)
5240                                 right_end_reached = ADVANCE;
5241                         advance_right = 0;
5242                 }
5243
5244                 if (left_end_reached && right_end_reached) {
5245                         ret = 0;
5246                         goto out;
5247                 } else if (left_end_reached) {
5248                         if (right_level == 0) {
5249                                 ret = changed_cb(left_root, right_root,
5250                                                 left_path, right_path,
5251                                                 &right_key,
5252                                                 BTRFS_COMPARE_TREE_DELETED,
5253                                                 ctx);
5254                                 if (ret < 0)
5255                                         goto out;
5256                         }
5257                         advance_right = ADVANCE;
5258                         continue;
5259                 } else if (right_end_reached) {
5260                         if (left_level == 0) {
5261                                 ret = changed_cb(left_root, right_root,
5262                                                 left_path, right_path,
5263                                                 &left_key,
5264                                                 BTRFS_COMPARE_TREE_NEW,
5265                                                 ctx);
5266                                 if (ret < 0)
5267                                         goto out;
5268                         }
5269                         advance_left = ADVANCE;
5270                         continue;
5271                 }
5272
5273                 if (left_level == 0 && right_level == 0) {
5274                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5275                         if (cmp < 0) {
5276                                 ret = changed_cb(left_root, right_root,
5277                                                 left_path, right_path,
5278                                                 &left_key,
5279                                                 BTRFS_COMPARE_TREE_NEW,
5280                                                 ctx);
5281                                 if (ret < 0)
5282                                         goto out;
5283                                 advance_left = ADVANCE;
5284                         } else if (cmp > 0) {
5285                                 ret = changed_cb(left_root, right_root,
5286                                                 left_path, right_path,
5287                                                 &right_key,
5288                                                 BTRFS_COMPARE_TREE_DELETED,
5289                                                 ctx);
5290                                 if (ret < 0)
5291                                         goto out;
5292                                 advance_right = ADVANCE;
5293                         } else {
5294                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5295                                 ret = tree_compare_item(left_root, left_path,
5296                                                 right_path, tmp_buf);
5297                                 if (ret) {
5298                                         WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5299                                         ret = changed_cb(left_root, right_root,
5300                                                 left_path, right_path,
5301                                                 &left_key,
5302                                                 BTRFS_COMPARE_TREE_CHANGED,
5303                                                 ctx);
5304                                         if (ret < 0)
5305                                                 goto out;
5306                                 }
5307                                 advance_left = ADVANCE;
5308                                 advance_right = ADVANCE;
5309                         }
5310                 } else if (left_level == right_level) {
5311                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5312                         if (cmp < 0) {
5313                                 advance_left = ADVANCE;
5314                         } else if (cmp > 0) {
5315                                 advance_right = ADVANCE;
5316                         } else {
5317                                 left_blockptr = btrfs_node_blockptr(
5318                                                 left_path->nodes[left_level],
5319                                                 left_path->slots[left_level]);
5320                                 right_blockptr = btrfs_node_blockptr(
5321                                                 right_path->nodes[right_level],
5322                                                 right_path->slots[right_level]);
5323                                 if (left_blockptr == right_blockptr) {
5324                                         /*
5325                                          * As we're on a shared block, don't
5326                                          * allow to go deeper.
5327                                          */
5328                                         advance_left = ADVANCE_ONLY_NEXT;
5329                                         advance_right = ADVANCE_ONLY_NEXT;
5330                                 } else {
5331                                         advance_left = ADVANCE;
5332                                         advance_right = ADVANCE;
5333                                 }
5334                         }
5335                 } else if (left_level < right_level) {
5336                         advance_right = ADVANCE;
5337                 } else {
5338                         advance_left = ADVANCE;
5339                 }
5340         }
5341
5342 out:
5343         btrfs_free_path(left_path);
5344         btrfs_free_path(right_path);
5345         kfree(tmp_buf);
5346
5347         if (trans) {
5348                 if (!ret)
5349                         ret = btrfs_end_transaction(trans, left_root);
5350                 else
5351                         btrfs_end_transaction(trans, left_root);
5352         }
5353
5354         return ret;
5355 }
5356
5357 /*
5358  * this is similar to btrfs_next_leaf, but does not try to preserve
5359  * and fixup the path.  It looks for and returns the next key in the
5360  * tree based on the current path and the cache_only and min_trans
5361  * parameters.
5362  *
5363  * 0 is returned if another key is found, < 0 if there are any errors
5364  * and 1 is returned if there are no higher keys in the tree
5365  *
5366  * path->keep_locks should be set to 1 on the search made before
5367  * calling this function.
5368  */
5369 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5370                         struct btrfs_key *key, int level,
5371                         int cache_only, u64 min_trans)
5372 {
5373         int slot;
5374         struct extent_buffer *c;
5375
5376         WARN_ON(!path->keep_locks);
5377         while (level < BTRFS_MAX_LEVEL) {
5378                 if (!path->nodes[level])
5379                         return 1;
5380
5381                 slot = path->slots[level] + 1;
5382                 c = path->nodes[level];
5383 next:
5384                 if (slot >= btrfs_header_nritems(c)) {
5385                         int ret;
5386                         int orig_lowest;
5387                         struct btrfs_key cur_key;
5388                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5389                             !path->nodes[level + 1])
5390                                 return 1;
5391
5392                         if (path->locks[level + 1]) {
5393                                 level++;
5394                                 continue;
5395                         }
5396
5397                         slot = btrfs_header_nritems(c) - 1;
5398                         if (level == 0)
5399                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5400                         else
5401                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5402
5403                         orig_lowest = path->lowest_level;
5404                         btrfs_release_path(path);
5405                         path->lowest_level = level;
5406                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5407                                                 0, 0);
5408                         path->lowest_level = orig_lowest;
5409                         if (ret < 0)
5410                                 return ret;
5411
5412                         c = path->nodes[level];
5413                         slot = path->slots[level];
5414                         if (ret == 0)
5415                                 slot++;
5416                         goto next;
5417                 }
5418
5419                 if (level == 0)
5420                         btrfs_item_key_to_cpu(c, key, slot);
5421                 else {
5422                         u64 blockptr = btrfs_node_blockptr(c, slot);
5423                         u64 gen = btrfs_node_ptr_generation(c, slot);
5424
5425                         if (cache_only) {
5426                                 struct extent_buffer *cur;
5427                                 cur = btrfs_find_tree_block(root, blockptr,
5428                                             btrfs_level_size(root, level - 1));
5429                                 if (!cur ||
5430                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5431                                         slot++;
5432                                         if (cur)
5433                                                 free_extent_buffer(cur);
5434                                         goto next;
5435                                 }
5436                                 free_extent_buffer(cur);
5437                         }
5438                         if (gen < min_trans) {
5439                                 slot++;
5440                                 goto next;
5441                         }
5442                         btrfs_node_key_to_cpu(c, key, slot);
5443                 }
5444                 return 0;
5445         }
5446         return 1;
5447 }
5448
5449 /*
5450  * search the tree again to find a leaf with greater keys
5451  * returns 0 if it found something or 1 if there are no greater leaves.
5452  * returns < 0 on io errors.
5453  */
5454 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5455 {
5456         return btrfs_next_old_leaf(root, path, 0);
5457 }
5458
5459 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5460                         u64 time_seq)
5461 {
5462         int slot;
5463         int level;
5464         struct extent_buffer *c;
5465         struct extent_buffer *next;
5466         struct btrfs_key key;
5467         u32 nritems;
5468         int ret;
5469         int old_spinning = path->leave_spinning;
5470         int next_rw_lock = 0;
5471
5472         nritems = btrfs_header_nritems(path->nodes[0]);
5473         if (nritems == 0)
5474                 return 1;
5475
5476         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5477 again:
5478         level = 1;
5479         next = NULL;
5480         next_rw_lock = 0;
5481         btrfs_release_path(path);
5482
5483         path->keep_locks = 1;
5484         path->leave_spinning = 1;
5485
5486         if (time_seq)
5487                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5488         else
5489                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5490         path->keep_locks = 0;
5491
5492         if (ret < 0)
5493                 return ret;
5494
5495         nritems = btrfs_header_nritems(path->nodes[0]);
5496         /*
5497          * by releasing the path above we dropped all our locks.  A balance
5498          * could have added more items next to the key that used to be
5499          * at the very end of the block.  So, check again here and
5500          * advance the path if there are now more items available.
5501          */
5502         if (nritems > 0 && path->slots[0] < nritems - 1) {
5503                 if (ret == 0)
5504                         path->slots[0]++;
5505                 ret = 0;
5506                 goto done;
5507         }
5508
5509         while (level < BTRFS_MAX_LEVEL) {
5510                 if (!path->nodes[level]) {
5511                         ret = 1;
5512                         goto done;
5513                 }
5514
5515                 slot = path->slots[level] + 1;
5516                 c = path->nodes[level];
5517                 if (slot >= btrfs_header_nritems(c)) {
5518                         level++;
5519                         if (level == BTRFS_MAX_LEVEL) {
5520                                 ret = 1;
5521                                 goto done;
5522                         }
5523                         continue;
5524                 }
5525
5526                 if (next) {
5527                         btrfs_tree_unlock_rw(next, next_rw_lock);
5528                         free_extent_buffer(next);
5529                 }
5530
5531                 next = c;
5532                 next_rw_lock = path->locks[level];
5533                 ret = read_block_for_search(NULL, root, path, &next, level,
5534                                             slot, &key, 0);
5535                 if (ret == -EAGAIN)
5536                         goto again;
5537
5538                 if (ret < 0) {
5539                         btrfs_release_path(path);
5540                         goto done;
5541                 }
5542
5543                 if (!path->skip_locking) {
5544                         ret = btrfs_try_tree_read_lock(next);
5545                         if (!ret && time_seq) {
5546                                 /*
5547                                  * If we don't get the lock, we may be racing
5548                                  * with push_leaf_left, holding that lock while
5549                                  * itself waiting for the leaf we've currently
5550                                  * locked. To solve this situation, we give up
5551                                  * on our lock and cycle.
5552                                  */
5553                                 free_extent_buffer(next);
5554                                 btrfs_release_path(path);
5555                                 cond_resched();
5556                                 goto again;
5557                         }
5558                         if (!ret) {
5559                                 btrfs_set_path_blocking(path);
5560                                 btrfs_tree_read_lock(next);
5561                                 btrfs_clear_path_blocking(path, next,
5562                                                           BTRFS_READ_LOCK);
5563                         }
5564                         next_rw_lock = BTRFS_READ_LOCK;
5565                 }
5566                 break;
5567         }
5568         path->slots[level] = slot;
5569         while (1) {
5570                 level--;
5571                 c = path->nodes[level];
5572                 if (path->locks[level])
5573                         btrfs_tree_unlock_rw(c, path->locks[level]);
5574
5575                 free_extent_buffer(c);
5576                 path->nodes[level] = next;
5577                 path->slots[level] = 0;
5578                 if (!path->skip_locking)
5579                         path->locks[level] = next_rw_lock;
5580                 if (!level)
5581                         break;
5582
5583                 ret = read_block_for_search(NULL, root, path, &next, level,
5584                                             0, &key, 0);
5585                 if (ret == -EAGAIN)
5586                         goto again;
5587
5588                 if (ret < 0) {
5589                         btrfs_release_path(path);
5590                         goto done;
5591                 }
5592
5593                 if (!path->skip_locking) {
5594                         ret = btrfs_try_tree_read_lock(next);
5595                         if (!ret) {
5596                                 btrfs_set_path_blocking(path);
5597                                 btrfs_tree_read_lock(next);
5598                                 btrfs_clear_path_blocking(path, next,
5599                                                           BTRFS_READ_LOCK);
5600                         }
5601                         next_rw_lock = BTRFS_READ_LOCK;
5602                 }
5603         }
5604         ret = 0;
5605 done:
5606         unlock_up(path, 0, 1, 0, NULL);
5607         path->leave_spinning = old_spinning;
5608         if (!old_spinning)
5609                 btrfs_set_path_blocking(path);
5610
5611         return ret;
5612 }
5613
5614 /*
5615  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5616  * searching until it gets past min_objectid or finds an item of 'type'
5617  *
5618  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5619  */
5620 int btrfs_previous_item(struct btrfs_root *root,
5621                         struct btrfs_path *path, u64 min_objectid,
5622                         int type)
5623 {
5624         struct btrfs_key found_key;
5625         struct extent_buffer *leaf;
5626         u32 nritems;
5627         int ret;
5628
5629         while (1) {
5630                 if (path->slots[0] == 0) {
5631                         btrfs_set_path_blocking(path);
5632                         ret = btrfs_prev_leaf(root, path);
5633                         if (ret != 0)
5634                                 return ret;
5635                 } else {
5636                         path->slots[0]--;
5637                 }
5638                 leaf = path->nodes[0];
5639                 nritems = btrfs_header_nritems(leaf);
5640                 if (nritems == 0)
5641                         return 1;
5642                 if (path->slots[0] == nritems)
5643                         path->slots[0]--;
5644
5645                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5646                 if (found_key.objectid < min_objectid)
5647                         break;
5648                 if (found_key.type == type)
5649                         return 0;
5650                 if (found_key.objectid == min_objectid &&
5651                     found_key.type < type)
5652                         break;
5653         }
5654         return 1;
5655 }