]> Pileus Git - ~andy/linux/blob - fs/btrfs/ctree.c
Merge branches 'audit', 'delay', 'fixes', 'misc' and 'sta2x11' into for-linus
[~andy/linux] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41                     struct btrfs_path *path, int level, int slot,
42                     int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44                                  struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46                                           u32 blocksize, u64 parent_transid,
47                                           u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49                                                 u64 bytenr, u32 blocksize,
50                                                 u64 time_seq);
51
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54         struct btrfs_path *path;
55         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56         return path;
57 }
58
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65         int i;
66         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67                 if (!p->nodes[i] || !p->locks[i])
68                         continue;
69                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70                 if (p->locks[i] == BTRFS_READ_LOCK)
71                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
73                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74         }
75 }
76
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86                                         struct extent_buffer *held, int held_rw)
87 {
88         int i;
89
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91         /* lockdep really cares that we take all of these spinlocks
92          * in the right order.  If any of the locks in the path are not
93          * currently blocking, it is going to complain.  So, make really
94          * really sure by forcing the path to blocking before we clear
95          * the path blocking.
96          */
97         if (held) {
98                 btrfs_set_lock_blocking_rw(held, held_rw);
99                 if (held_rw == BTRFS_WRITE_LOCK)
100                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101                 else if (held_rw == BTRFS_READ_LOCK)
102                         held_rw = BTRFS_READ_LOCK_BLOCKING;
103         }
104         btrfs_set_path_blocking(p);
105 #endif
106
107         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108                 if (p->nodes[i] && p->locks[i]) {
109                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111                                 p->locks[i] = BTRFS_WRITE_LOCK;
112                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113                                 p->locks[i] = BTRFS_READ_LOCK;
114                 }
115         }
116
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118         if (held)
119                 btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126         if (!p)
127                 return;
128         btrfs_release_path(p);
129         kmem_cache_free(btrfs_path_cachep, p);
130 }
131
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140         int i;
141
142         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143                 p->slots[i] = 0;
144                 if (!p->nodes[i])
145                         continue;
146                 if (p->locks[i]) {
147                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148                         p->locks[i] = 0;
149                 }
150                 free_extent_buffer(p->nodes[i]);
151                 p->nodes[i] = NULL;
152         }
153 }
154
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167         struct extent_buffer *eb;
168
169         while (1) {
170                 rcu_read_lock();
171                 eb = rcu_dereference(root->node);
172
173                 /*
174                  * RCU really hurts here, we could free up the root node because
175                  * it was cow'ed but we may not get the new root node yet so do
176                  * the inc_not_zero dance and if it doesn't work then
177                  * synchronize_rcu and try again.
178                  */
179                 if (atomic_inc_not_zero(&eb->refs)) {
180                         rcu_read_unlock();
181                         break;
182                 }
183                 rcu_read_unlock();
184                 synchronize_rcu();
185         }
186         return eb;
187 }
188
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195         struct extent_buffer *eb;
196
197         while (1) {
198                 eb = btrfs_root_node(root);
199                 btrfs_tree_lock(eb);
200                 if (eb == root->node)
201                         break;
202                 btrfs_tree_unlock(eb);
203                 free_extent_buffer(eb);
204         }
205         return eb;
206 }
207
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214         struct extent_buffer *eb;
215
216         while (1) {
217                 eb = btrfs_root_node(root);
218                 btrfs_tree_read_lock(eb);
219                 if (eb == root->node)
220                         break;
221                 btrfs_tree_read_unlock(eb);
222                 free_extent_buffer(eb);
223         }
224         return eb;
225 }
226
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233         spin_lock(&root->fs_info->trans_lock);
234         if (root->track_dirty && list_empty(&root->dirty_list)) {
235                 list_add(&root->dirty_list,
236                          &root->fs_info->dirty_cowonly_roots);
237         }
238         spin_unlock(&root->fs_info->trans_lock);
239 }
240
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247                       struct btrfs_root *root,
248                       struct extent_buffer *buf,
249                       struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251         struct extent_buffer *cow;
252         int ret = 0;
253         int level;
254         struct btrfs_disk_key disk_key;
255
256         WARN_ON(root->ref_cows && trans->transid !=
257                 root->fs_info->running_transaction->transid);
258         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259
260         level = btrfs_header_level(buf);
261         if (level == 0)
262                 btrfs_item_key(buf, &disk_key, 0);
263         else
264                 btrfs_node_key(buf, &disk_key, 0);
265
266         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267                                      new_root_objectid, &disk_key, level,
268                                      buf->start, 0);
269         if (IS_ERR(cow))
270                 return PTR_ERR(cow);
271
272         copy_extent_buffer(cow, buf, 0, 0, cow->len);
273         btrfs_set_header_bytenr(cow, cow->start);
274         btrfs_set_header_generation(cow, trans->transid);
275         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277                                      BTRFS_HEADER_FLAG_RELOC);
278         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280         else
281                 btrfs_set_header_owner(cow, new_root_objectid);
282
283         write_extent_buffer(cow, root->fs_info->fsid,
284                             (unsigned long)btrfs_header_fsid(cow),
285                             BTRFS_FSID_SIZE);
286
287         WARN_ON(btrfs_header_generation(buf) > trans->transid);
288         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290         else
291                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292
293         if (ret)
294                 return ret;
295
296         btrfs_mark_buffer_dirty(cow);
297         *cow_ret = cow;
298         return 0;
299 }
300
301 enum mod_log_op {
302         MOD_LOG_KEY_REPLACE,
303         MOD_LOG_KEY_ADD,
304         MOD_LOG_KEY_REMOVE,
305         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307         MOD_LOG_MOVE_KEYS,
308         MOD_LOG_ROOT_REPLACE,
309 };
310
311 struct tree_mod_move {
312         int dst_slot;
313         int nr_items;
314 };
315
316 struct tree_mod_root {
317         u64 logical;
318         u8 level;
319 };
320
321 struct tree_mod_elem {
322         struct rb_node node;
323         u64 index;              /* shifted logical */
324         struct seq_list elem;
325         enum mod_log_op op;
326
327         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328         int slot;
329
330         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331         u64 generation;
332
333         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334         struct btrfs_disk_key key;
335         u64 blockptr;
336
337         /* this is used for op == MOD_LOG_MOVE_KEYS */
338         struct tree_mod_move move;
339
340         /* this is used for op == MOD_LOG_ROOT_REPLACE */
341         struct tree_mod_root old_root;
342 };
343
344 static inline void
345 __get_tree_mod_seq(struct btrfs_fs_info *fs_info, struct seq_list *elem)
346 {
347         elem->seq = atomic_inc_return(&fs_info->tree_mod_seq);
348         list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
349 }
350
351 void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
352                             struct seq_list *elem)
353 {
354         elem->flags = 1;
355         spin_lock(&fs_info->tree_mod_seq_lock);
356         __get_tree_mod_seq(fs_info, elem);
357         spin_unlock(&fs_info->tree_mod_seq_lock);
358 }
359
360 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
361                             struct seq_list *elem)
362 {
363         struct rb_root *tm_root;
364         struct rb_node *node;
365         struct rb_node *next;
366         struct seq_list *cur_elem;
367         struct tree_mod_elem *tm;
368         u64 min_seq = (u64)-1;
369         u64 seq_putting = elem->seq;
370
371         if (!seq_putting)
372                 return;
373
374         BUG_ON(!(elem->flags & 1));
375         spin_lock(&fs_info->tree_mod_seq_lock);
376         list_del(&elem->list);
377
378         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
379                 if ((cur_elem->flags & 1) && cur_elem->seq < min_seq) {
380                         if (seq_putting > cur_elem->seq) {
381                                 /*
382                                  * blocker with lower sequence number exists, we
383                                  * cannot remove anything from the log
384                                  */
385                                 goto out;
386                         }
387                         min_seq = cur_elem->seq;
388                 }
389         }
390
391         /*
392          * anything that's lower than the lowest existing (read: blocked)
393          * sequence number can be removed from the tree.
394          */
395         write_lock(&fs_info->tree_mod_log_lock);
396         tm_root = &fs_info->tree_mod_log;
397         for (node = rb_first(tm_root); node; node = next) {
398                 next = rb_next(node);
399                 tm = container_of(node, struct tree_mod_elem, node);
400                 if (tm->elem.seq > min_seq)
401                         continue;
402                 rb_erase(node, tm_root);
403                 list_del(&tm->elem.list);
404                 kfree(tm);
405         }
406         write_unlock(&fs_info->tree_mod_log_lock);
407 out:
408         spin_unlock(&fs_info->tree_mod_seq_lock);
409 }
410
411 /*
412  * key order of the log:
413  *       index -> sequence
414  *
415  * the index is the shifted logical of the *new* root node for root replace
416  * operations, or the shifted logical of the affected block for all other
417  * operations.
418  */
419 static noinline int
420 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
421 {
422         struct rb_root *tm_root;
423         struct rb_node **new;
424         struct rb_node *parent = NULL;
425         struct tree_mod_elem *cur;
426         int ret = 0;
427
428         BUG_ON(!tm || !tm->elem.seq);
429
430         write_lock(&fs_info->tree_mod_log_lock);
431         tm_root = &fs_info->tree_mod_log;
432         new = &tm_root->rb_node;
433         while (*new) {
434                 cur = container_of(*new, struct tree_mod_elem, node);
435                 parent = *new;
436                 if (cur->index < tm->index)
437                         new = &((*new)->rb_left);
438                 else if (cur->index > tm->index)
439                         new = &((*new)->rb_right);
440                 else if (cur->elem.seq < tm->elem.seq)
441                         new = &((*new)->rb_left);
442                 else if (cur->elem.seq > tm->elem.seq)
443                         new = &((*new)->rb_right);
444                 else {
445                         kfree(tm);
446                         ret = -EEXIST;
447                         goto unlock;
448                 }
449         }
450
451         rb_link_node(&tm->node, parent, new);
452         rb_insert_color(&tm->node, tm_root);
453 unlock:
454         write_unlock(&fs_info->tree_mod_log_lock);
455         return ret;
456 }
457
458 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
459                                     struct extent_buffer *eb) {
460         smp_mb();
461         if (list_empty(&(fs_info)->tree_mod_seq_list))
462                 return 1;
463         if (!eb)
464                 return 0;
465         if (btrfs_header_level(eb) == 0)
466                 return 1;
467         return 0;
468 }
469
470 /*
471  * This allocates memory and gets a tree modification sequence number when
472  * needed.
473  *
474  * Returns 0 when no sequence number is needed, < 0 on error.
475  * Returns 1 when a sequence number was added. In this case,
476  * fs_info->tree_mod_seq_lock was acquired and must be released by the caller
477  * after inserting into the rb tree.
478  */
479 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
480                                  struct tree_mod_elem **tm_ret)
481 {
482         struct tree_mod_elem *tm;
483         int seq;
484
485         if (tree_mod_dont_log(fs_info, NULL))
486                 return 0;
487
488         tm = *tm_ret = kzalloc(sizeof(*tm), flags);
489         if (!tm)
490                 return -ENOMEM;
491
492         tm->elem.flags = 0;
493         spin_lock(&fs_info->tree_mod_seq_lock);
494         if (list_empty(&fs_info->tree_mod_seq_list)) {
495                 /*
496                  * someone emptied the list while we were waiting for the lock.
497                  * we must not add to the list, because no blocker exists. items
498                  * are removed from the list only when the existing blocker is
499                  * removed from the list.
500                  */
501                 kfree(tm);
502                 seq = 0;
503                 spin_unlock(&fs_info->tree_mod_seq_lock);
504         } else {
505                 __get_tree_mod_seq(fs_info, &tm->elem);
506                 seq = tm->elem.seq;
507         }
508
509         return seq;
510 }
511
512 static noinline int
513 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
514                              struct extent_buffer *eb, int slot,
515                              enum mod_log_op op, gfp_t flags)
516 {
517         struct tree_mod_elem *tm;
518         int ret;
519
520         ret = tree_mod_alloc(fs_info, flags, &tm);
521         if (ret <= 0)
522                 return ret;
523
524         tm->index = eb->start >> PAGE_CACHE_SHIFT;
525         if (op != MOD_LOG_KEY_ADD) {
526                 btrfs_node_key(eb, &tm->key, slot);
527                 tm->blockptr = btrfs_node_blockptr(eb, slot);
528         }
529         tm->op = op;
530         tm->slot = slot;
531         tm->generation = btrfs_node_ptr_generation(eb, slot);
532
533         ret = __tree_mod_log_insert(fs_info, tm);
534         spin_unlock(&fs_info->tree_mod_seq_lock);
535         return ret;
536 }
537
538 static noinline int
539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
540                         int slot, enum mod_log_op op)
541 {
542         return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
543 }
544
545 static noinline int
546 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
547                          struct extent_buffer *eb, int dst_slot, int src_slot,
548                          int nr_items, gfp_t flags)
549 {
550         struct tree_mod_elem *tm;
551         int ret;
552         int i;
553
554         if (tree_mod_dont_log(fs_info, eb))
555                 return 0;
556
557         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
558                 ret = tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
559                                               MOD_LOG_KEY_REMOVE_WHILE_MOVING);
560                 BUG_ON(ret < 0);
561         }
562
563         ret = tree_mod_alloc(fs_info, flags, &tm);
564         if (ret <= 0)
565                 return ret;
566
567         tm->index = eb->start >> PAGE_CACHE_SHIFT;
568         tm->slot = src_slot;
569         tm->move.dst_slot = dst_slot;
570         tm->move.nr_items = nr_items;
571         tm->op = MOD_LOG_MOVE_KEYS;
572
573         ret = __tree_mod_log_insert(fs_info, tm);
574         spin_unlock(&fs_info->tree_mod_seq_lock);
575         return ret;
576 }
577
578 static noinline int
579 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
580                          struct extent_buffer *old_root,
581                          struct extent_buffer *new_root, gfp_t flags)
582 {
583         struct tree_mod_elem *tm;
584         int ret;
585
586         ret = tree_mod_alloc(fs_info, flags, &tm);
587         if (ret <= 0)
588                 return ret;
589
590         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
591         tm->old_root.logical = old_root->start;
592         tm->old_root.level = btrfs_header_level(old_root);
593         tm->generation = btrfs_header_generation(old_root);
594         tm->op = MOD_LOG_ROOT_REPLACE;
595
596         ret = __tree_mod_log_insert(fs_info, tm);
597         spin_unlock(&fs_info->tree_mod_seq_lock);
598         return ret;
599 }
600
601 static struct tree_mod_elem *
602 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
603                       int smallest)
604 {
605         struct rb_root *tm_root;
606         struct rb_node *node;
607         struct tree_mod_elem *cur = NULL;
608         struct tree_mod_elem *found = NULL;
609         u64 index = start >> PAGE_CACHE_SHIFT;
610
611         read_lock(&fs_info->tree_mod_log_lock);
612         tm_root = &fs_info->tree_mod_log;
613         node = tm_root->rb_node;
614         while (node) {
615                 cur = container_of(node, struct tree_mod_elem, node);
616                 if (cur->index < index) {
617                         node = node->rb_left;
618                 } else if (cur->index > index) {
619                         node = node->rb_right;
620                 } else if (cur->elem.seq < min_seq) {
621                         node = node->rb_left;
622                 } else if (!smallest) {
623                         /* we want the node with the highest seq */
624                         if (found)
625                                 BUG_ON(found->elem.seq > cur->elem.seq);
626                         found = cur;
627                         node = node->rb_left;
628                 } else if (cur->elem.seq > min_seq) {
629                         /* we want the node with the smallest seq */
630                         if (found)
631                                 BUG_ON(found->elem.seq < cur->elem.seq);
632                         found = cur;
633                         node = node->rb_right;
634                 } else {
635                         found = cur;
636                         break;
637                 }
638         }
639         read_unlock(&fs_info->tree_mod_log_lock);
640
641         return found;
642 }
643
644 /*
645  * this returns the element from the log with the smallest time sequence
646  * value that's in the log (the oldest log item). any element with a time
647  * sequence lower than min_seq will be ignored.
648  */
649 static struct tree_mod_elem *
650 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
651                            u64 min_seq)
652 {
653         return __tree_mod_log_search(fs_info, start, min_seq, 1);
654 }
655
656 /*
657  * this returns the element from the log with the largest time sequence
658  * value that's in the log (the most recent log item). any element with
659  * a time sequence lower than min_seq will be ignored.
660  */
661 static struct tree_mod_elem *
662 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
663 {
664         return __tree_mod_log_search(fs_info, start, min_seq, 0);
665 }
666
667 static inline void
668 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
669                      struct extent_buffer *src, unsigned long dst_offset,
670                      unsigned long src_offset, int nr_items)
671 {
672         int ret;
673         int i;
674
675         if (tree_mod_dont_log(fs_info, NULL))
676                 return;
677
678         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
679                 return;
680
681         /* speed this up by single seq for all operations? */
682         for (i = 0; i < nr_items; i++) {
683                 ret = tree_mod_log_insert_key(fs_info, src, i + src_offset,
684                                               MOD_LOG_KEY_REMOVE);
685                 BUG_ON(ret < 0);
686                 ret = tree_mod_log_insert_key(fs_info, dst, i + dst_offset,
687                                               MOD_LOG_KEY_ADD);
688                 BUG_ON(ret < 0);
689         }
690 }
691
692 static inline void
693 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
694                      int dst_offset, int src_offset, int nr_items)
695 {
696         int ret;
697         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
698                                        nr_items, GFP_NOFS);
699         BUG_ON(ret < 0);
700 }
701
702 static inline void
703 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
704                           struct extent_buffer *eb,
705                           struct btrfs_disk_key *disk_key, int slot, int atomic)
706 {
707         int ret;
708
709         ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
710                                            MOD_LOG_KEY_REPLACE,
711                                            atomic ? GFP_ATOMIC : GFP_NOFS);
712         BUG_ON(ret < 0);
713 }
714
715 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
716                                  struct extent_buffer *eb)
717 {
718         int i;
719         int ret;
720         u32 nritems;
721
722         if (tree_mod_dont_log(fs_info, eb))
723                 return;
724
725         nritems = btrfs_header_nritems(eb);
726         for (i = nritems - 1; i >= 0; i--) {
727                 ret = tree_mod_log_insert_key(fs_info, eb, i,
728                                               MOD_LOG_KEY_REMOVE_WHILE_FREEING);
729                 BUG_ON(ret < 0);
730         }
731 }
732
733 static inline void
734 tree_mod_log_set_root_pointer(struct btrfs_root *root,
735                               struct extent_buffer *new_root_node)
736 {
737         int ret;
738         tree_mod_log_free_eb(root->fs_info, root->node);
739         ret = tree_mod_log_insert_root(root->fs_info, root->node,
740                                        new_root_node, GFP_NOFS);
741         BUG_ON(ret < 0);
742 }
743
744 /*
745  * check if the tree block can be shared by multiple trees
746  */
747 int btrfs_block_can_be_shared(struct btrfs_root *root,
748                               struct extent_buffer *buf)
749 {
750         /*
751          * Tree blocks not in refernece counted trees and tree roots
752          * are never shared. If a block was allocated after the last
753          * snapshot and the block was not allocated by tree relocation,
754          * we know the block is not shared.
755          */
756         if (root->ref_cows &&
757             buf != root->node && buf != root->commit_root &&
758             (btrfs_header_generation(buf) <=
759              btrfs_root_last_snapshot(&root->root_item) ||
760              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
761                 return 1;
762 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
763         if (root->ref_cows &&
764             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
765                 return 1;
766 #endif
767         return 0;
768 }
769
770 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
771                                        struct btrfs_root *root,
772                                        struct extent_buffer *buf,
773                                        struct extent_buffer *cow,
774                                        int *last_ref)
775 {
776         u64 refs;
777         u64 owner;
778         u64 flags;
779         u64 new_flags = 0;
780         int ret;
781
782         /*
783          * Backrefs update rules:
784          *
785          * Always use full backrefs for extent pointers in tree block
786          * allocated by tree relocation.
787          *
788          * If a shared tree block is no longer referenced by its owner
789          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
790          * use full backrefs for extent pointers in tree block.
791          *
792          * If a tree block is been relocating
793          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
794          * use full backrefs for extent pointers in tree block.
795          * The reason for this is some operations (such as drop tree)
796          * are only allowed for blocks use full backrefs.
797          */
798
799         if (btrfs_block_can_be_shared(root, buf)) {
800                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
801                                                buf->len, &refs, &flags);
802                 if (ret)
803                         return ret;
804                 if (refs == 0) {
805                         ret = -EROFS;
806                         btrfs_std_error(root->fs_info, ret);
807                         return ret;
808                 }
809         } else {
810                 refs = 1;
811                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
812                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
813                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
814                 else
815                         flags = 0;
816         }
817
818         owner = btrfs_header_owner(buf);
819         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
820                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
821
822         if (refs > 1) {
823                 if ((owner == root->root_key.objectid ||
824                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
825                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
826                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
827                         BUG_ON(ret); /* -ENOMEM */
828
829                         if (root->root_key.objectid ==
830                             BTRFS_TREE_RELOC_OBJECTID) {
831                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
832                                 BUG_ON(ret); /* -ENOMEM */
833                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
834                                 BUG_ON(ret); /* -ENOMEM */
835                         }
836                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
837                 } else {
838
839                         if (root->root_key.objectid ==
840                             BTRFS_TREE_RELOC_OBJECTID)
841                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
842                         else
843                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
844                         BUG_ON(ret); /* -ENOMEM */
845                 }
846                 if (new_flags != 0) {
847                         ret = btrfs_set_disk_extent_flags(trans, root,
848                                                           buf->start,
849                                                           buf->len,
850                                                           new_flags, 0);
851                         if (ret)
852                                 return ret;
853                 }
854         } else {
855                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
856                         if (root->root_key.objectid ==
857                             BTRFS_TREE_RELOC_OBJECTID)
858                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
859                         else
860                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
861                         BUG_ON(ret); /* -ENOMEM */
862                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
863                         BUG_ON(ret); /* -ENOMEM */
864                 }
865                 /*
866                  * don't log freeing in case we're freeing the root node, this
867                  * is done by tree_mod_log_set_root_pointer later
868                  */
869                 if (buf != root->node && btrfs_header_level(buf) != 0)
870                         tree_mod_log_free_eb(root->fs_info, buf);
871                 clean_tree_block(trans, root, buf);
872                 *last_ref = 1;
873         }
874         return 0;
875 }
876
877 /*
878  * does the dirty work in cow of a single block.  The parent block (if
879  * supplied) is updated to point to the new cow copy.  The new buffer is marked
880  * dirty and returned locked.  If you modify the block it needs to be marked
881  * dirty again.
882  *
883  * search_start -- an allocation hint for the new block
884  *
885  * empty_size -- a hint that you plan on doing more cow.  This is the size in
886  * bytes the allocator should try to find free next to the block it returns.
887  * This is just a hint and may be ignored by the allocator.
888  */
889 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
890                              struct btrfs_root *root,
891                              struct extent_buffer *buf,
892                              struct extent_buffer *parent, int parent_slot,
893                              struct extent_buffer **cow_ret,
894                              u64 search_start, u64 empty_size)
895 {
896         struct btrfs_disk_key disk_key;
897         struct extent_buffer *cow;
898         int level, ret;
899         int last_ref = 0;
900         int unlock_orig = 0;
901         u64 parent_start;
902
903         if (*cow_ret == buf)
904                 unlock_orig = 1;
905
906         btrfs_assert_tree_locked(buf);
907
908         WARN_ON(root->ref_cows && trans->transid !=
909                 root->fs_info->running_transaction->transid);
910         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
911
912         level = btrfs_header_level(buf);
913
914         if (level == 0)
915                 btrfs_item_key(buf, &disk_key, 0);
916         else
917                 btrfs_node_key(buf, &disk_key, 0);
918
919         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
920                 if (parent)
921                         parent_start = parent->start;
922                 else
923                         parent_start = 0;
924         } else
925                 parent_start = 0;
926
927         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
928                                      root->root_key.objectid, &disk_key,
929                                      level, search_start, empty_size);
930         if (IS_ERR(cow))
931                 return PTR_ERR(cow);
932
933         /* cow is set to blocking by btrfs_init_new_buffer */
934
935         copy_extent_buffer(cow, buf, 0, 0, cow->len);
936         btrfs_set_header_bytenr(cow, cow->start);
937         btrfs_set_header_generation(cow, trans->transid);
938         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
939         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
940                                      BTRFS_HEADER_FLAG_RELOC);
941         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
942                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
943         else
944                 btrfs_set_header_owner(cow, root->root_key.objectid);
945
946         write_extent_buffer(cow, root->fs_info->fsid,
947                             (unsigned long)btrfs_header_fsid(cow),
948                             BTRFS_FSID_SIZE);
949
950         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
951         if (ret) {
952                 btrfs_abort_transaction(trans, root, ret);
953                 return ret;
954         }
955
956         if (root->ref_cows)
957                 btrfs_reloc_cow_block(trans, root, buf, cow);
958
959         if (buf == root->node) {
960                 WARN_ON(parent && parent != buf);
961                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
962                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
963                         parent_start = buf->start;
964                 else
965                         parent_start = 0;
966
967                 extent_buffer_get(cow);
968                 tree_mod_log_set_root_pointer(root, cow);
969                 rcu_assign_pointer(root->node, cow);
970
971                 btrfs_free_tree_block(trans, root, buf, parent_start,
972                                       last_ref);
973                 free_extent_buffer(buf);
974                 add_root_to_dirty_list(root);
975         } else {
976                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
977                         parent_start = parent->start;
978                 else
979                         parent_start = 0;
980
981                 WARN_ON(trans->transid != btrfs_header_generation(parent));
982                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
983                                         MOD_LOG_KEY_REPLACE);
984                 btrfs_set_node_blockptr(parent, parent_slot,
985                                         cow->start);
986                 btrfs_set_node_ptr_generation(parent, parent_slot,
987                                               trans->transid);
988                 btrfs_mark_buffer_dirty(parent);
989                 btrfs_free_tree_block(trans, root, buf, parent_start,
990                                       last_ref);
991         }
992         if (unlock_orig)
993                 btrfs_tree_unlock(buf);
994         free_extent_buffer_stale(buf);
995         btrfs_mark_buffer_dirty(cow);
996         *cow_ret = cow;
997         return 0;
998 }
999
1000 /*
1001  * returns the logical address of the oldest predecessor of the given root.
1002  * entries older than time_seq are ignored.
1003  */
1004 static struct tree_mod_elem *
1005 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1006                            struct btrfs_root *root, u64 time_seq)
1007 {
1008         struct tree_mod_elem *tm;
1009         struct tree_mod_elem *found = NULL;
1010         u64 root_logical = root->node->start;
1011         int looped = 0;
1012
1013         if (!time_seq)
1014                 return 0;
1015
1016         /*
1017          * the very last operation that's logged for a root is the replacement
1018          * operation (if it is replaced at all). this has the index of the *new*
1019          * root, making it the very first operation that's logged for this root.
1020          */
1021         while (1) {
1022                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1023                                                 time_seq);
1024                 if (!looped && !tm)
1025                         return 0;
1026                 /*
1027                  * if there are no tree operation for the oldest root, we simply
1028                  * return it. this should only happen if that (old) root is at
1029                  * level 0.
1030                  */
1031                 if (!tm)
1032                         break;
1033
1034                 /*
1035                  * if there's an operation that's not a root replacement, we
1036                  * found the oldest version of our root. normally, we'll find a
1037                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1038                  */
1039                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1040                         break;
1041
1042                 found = tm;
1043                 root_logical = tm->old_root.logical;
1044                 BUG_ON(root_logical == root->node->start);
1045                 looped = 1;
1046         }
1047
1048         /* if there's no old root to return, return what we found instead */
1049         if (!found)
1050                 found = tm;
1051
1052         return found;
1053 }
1054
1055 /*
1056  * tm is a pointer to the first operation to rewind within eb. then, all
1057  * previous operations will be rewinded (until we reach something older than
1058  * time_seq).
1059  */
1060 static void
1061 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1062                       struct tree_mod_elem *first_tm)
1063 {
1064         u32 n;
1065         struct rb_node *next;
1066         struct tree_mod_elem *tm = first_tm;
1067         unsigned long o_dst;
1068         unsigned long o_src;
1069         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1070
1071         n = btrfs_header_nritems(eb);
1072         while (tm && tm->elem.seq >= time_seq) {
1073                 /*
1074                  * all the operations are recorded with the operator used for
1075                  * the modification. as we're going backwards, we do the
1076                  * opposite of each operation here.
1077                  */
1078                 switch (tm->op) {
1079                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1080                         BUG_ON(tm->slot < n);
1081                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1082                 case MOD_LOG_KEY_REMOVE:
1083                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1084                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1085                         btrfs_set_node_ptr_generation(eb, tm->slot,
1086                                                       tm->generation);
1087                         n++;
1088                         break;
1089                 case MOD_LOG_KEY_REPLACE:
1090                         BUG_ON(tm->slot >= n);
1091                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1092                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1093                         btrfs_set_node_ptr_generation(eb, tm->slot,
1094                                                       tm->generation);
1095                         break;
1096                 case MOD_LOG_KEY_ADD:
1097                         /* if a move operation is needed it's in the log */
1098                         n--;
1099                         break;
1100                 case MOD_LOG_MOVE_KEYS:
1101                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1102                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1103                         memmove_extent_buffer(eb, o_dst, o_src,
1104                                               tm->move.nr_items * p_size);
1105                         break;
1106                 case MOD_LOG_ROOT_REPLACE:
1107                         /*
1108                          * this operation is special. for roots, this must be
1109                          * handled explicitly before rewinding.
1110                          * for non-roots, this operation may exist if the node
1111                          * was a root: root A -> child B; then A gets empty and
1112                          * B is promoted to the new root. in the mod log, we'll
1113                          * have a root-replace operation for B, a tree block
1114                          * that is no root. we simply ignore that operation.
1115                          */
1116                         break;
1117                 }
1118                 next = rb_next(&tm->node);
1119                 if (!next)
1120                         break;
1121                 tm = container_of(next, struct tree_mod_elem, node);
1122                 if (tm->index != first_tm->index)
1123                         break;
1124         }
1125         btrfs_set_header_nritems(eb, n);
1126 }
1127
1128 static struct extent_buffer *
1129 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1130                     u64 time_seq)
1131 {
1132         struct extent_buffer *eb_rewin;
1133         struct tree_mod_elem *tm;
1134
1135         if (!time_seq)
1136                 return eb;
1137
1138         if (btrfs_header_level(eb) == 0)
1139                 return eb;
1140
1141         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1142         if (!tm)
1143                 return eb;
1144
1145         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1146                 BUG_ON(tm->slot != 0);
1147                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1148                                                 fs_info->tree_root->nodesize);
1149                 BUG_ON(!eb_rewin);
1150                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1151                 btrfs_set_header_backref_rev(eb_rewin,
1152                                              btrfs_header_backref_rev(eb));
1153                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1154                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1155         } else {
1156                 eb_rewin = btrfs_clone_extent_buffer(eb);
1157                 BUG_ON(!eb_rewin);
1158         }
1159
1160         extent_buffer_get(eb_rewin);
1161         free_extent_buffer(eb);
1162
1163         __tree_mod_log_rewind(eb_rewin, time_seq, tm);
1164
1165         return eb_rewin;
1166 }
1167
1168 /*
1169  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1170  * value. If there are no changes, the current root->root_node is returned. If
1171  * anything changed in between, there's a fresh buffer allocated on which the
1172  * rewind operations are done. In any case, the returned buffer is read locked.
1173  * Returns NULL on error (with no locks held).
1174  */
1175 static inline struct extent_buffer *
1176 get_old_root(struct btrfs_root *root, u64 time_seq)
1177 {
1178         struct tree_mod_elem *tm;
1179         struct extent_buffer *eb;
1180         struct tree_mod_root *old_root = NULL;
1181         u64 old_generation = 0;
1182         u64 logical;
1183
1184         eb = btrfs_read_lock_root_node(root);
1185         tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1186         if (!tm)
1187                 return root->node;
1188
1189         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1190                 old_root = &tm->old_root;
1191                 old_generation = tm->generation;
1192                 logical = old_root->logical;
1193         } else {
1194                 logical = root->node->start;
1195         }
1196
1197         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1198         if (old_root)
1199                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1200         else
1201                 eb = btrfs_clone_extent_buffer(root->node);
1202         btrfs_tree_read_unlock(root->node);
1203         free_extent_buffer(root->node);
1204         if (!eb)
1205                 return NULL;
1206         btrfs_tree_read_lock(eb);
1207         if (old_root) {
1208                 btrfs_set_header_bytenr(eb, eb->start);
1209                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1210                 btrfs_set_header_owner(eb, root->root_key.objectid);
1211                 btrfs_set_header_level(eb, old_root->level);
1212                 btrfs_set_header_generation(eb, old_generation);
1213         }
1214         if (tm)
1215                 __tree_mod_log_rewind(eb, time_seq, tm);
1216         else
1217                 WARN_ON(btrfs_header_level(eb) != 0);
1218         extent_buffer_get(eb);
1219
1220         return eb;
1221 }
1222
1223 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1224                                    struct btrfs_root *root,
1225                                    struct extent_buffer *buf)
1226 {
1227         /* ensure we can see the force_cow */
1228         smp_rmb();
1229
1230         /*
1231          * We do not need to cow a block if
1232          * 1) this block is not created or changed in this transaction;
1233          * 2) this block does not belong to TREE_RELOC tree;
1234          * 3) the root is not forced COW.
1235          *
1236          * What is forced COW:
1237          *    when we create snapshot during commiting the transaction,
1238          *    after we've finished coping src root, we must COW the shared
1239          *    block to ensure the metadata consistency.
1240          */
1241         if (btrfs_header_generation(buf) == trans->transid &&
1242             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1243             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1244               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1245             !root->force_cow)
1246                 return 0;
1247         return 1;
1248 }
1249
1250 /*
1251  * cows a single block, see __btrfs_cow_block for the real work.
1252  * This version of it has extra checks so that a block isn't cow'd more than
1253  * once per transaction, as long as it hasn't been written yet
1254  */
1255 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1256                     struct btrfs_root *root, struct extent_buffer *buf,
1257                     struct extent_buffer *parent, int parent_slot,
1258                     struct extent_buffer **cow_ret)
1259 {
1260         u64 search_start;
1261         int ret;
1262
1263         if (trans->transaction != root->fs_info->running_transaction) {
1264                 printk(KERN_CRIT "trans %llu running %llu\n",
1265                        (unsigned long long)trans->transid,
1266                        (unsigned long long)
1267                        root->fs_info->running_transaction->transid);
1268                 WARN_ON(1);
1269         }
1270         if (trans->transid != root->fs_info->generation) {
1271                 printk(KERN_CRIT "trans %llu running %llu\n",
1272                        (unsigned long long)trans->transid,
1273                        (unsigned long long)root->fs_info->generation);
1274                 WARN_ON(1);
1275         }
1276
1277         if (!should_cow_block(trans, root, buf)) {
1278                 *cow_ret = buf;
1279                 return 0;
1280         }
1281
1282         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1283
1284         if (parent)
1285                 btrfs_set_lock_blocking(parent);
1286         btrfs_set_lock_blocking(buf);
1287
1288         ret = __btrfs_cow_block(trans, root, buf, parent,
1289                                  parent_slot, cow_ret, search_start, 0);
1290
1291         trace_btrfs_cow_block(root, buf, *cow_ret);
1292
1293         return ret;
1294 }
1295
1296 /*
1297  * helper function for defrag to decide if two blocks pointed to by a
1298  * node are actually close by
1299  */
1300 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1301 {
1302         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1303                 return 1;
1304         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1305                 return 1;
1306         return 0;
1307 }
1308
1309 /*
1310  * compare two keys in a memcmp fashion
1311  */
1312 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1313 {
1314         struct btrfs_key k1;
1315
1316         btrfs_disk_key_to_cpu(&k1, disk);
1317
1318         return btrfs_comp_cpu_keys(&k1, k2);
1319 }
1320
1321 /*
1322  * same as comp_keys only with two btrfs_key's
1323  */
1324 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1325 {
1326         if (k1->objectid > k2->objectid)
1327                 return 1;
1328         if (k1->objectid < k2->objectid)
1329                 return -1;
1330         if (k1->type > k2->type)
1331                 return 1;
1332         if (k1->type < k2->type)
1333                 return -1;
1334         if (k1->offset > k2->offset)
1335                 return 1;
1336         if (k1->offset < k2->offset)
1337                 return -1;
1338         return 0;
1339 }
1340
1341 /*
1342  * this is used by the defrag code to go through all the
1343  * leaves pointed to by a node and reallocate them so that
1344  * disk order is close to key order
1345  */
1346 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1347                        struct btrfs_root *root, struct extent_buffer *parent,
1348                        int start_slot, int cache_only, u64 *last_ret,
1349                        struct btrfs_key *progress)
1350 {
1351         struct extent_buffer *cur;
1352         u64 blocknr;
1353         u64 gen;
1354         u64 search_start = *last_ret;
1355         u64 last_block = 0;
1356         u64 other;
1357         u32 parent_nritems;
1358         int end_slot;
1359         int i;
1360         int err = 0;
1361         int parent_level;
1362         int uptodate;
1363         u32 blocksize;
1364         int progress_passed = 0;
1365         struct btrfs_disk_key disk_key;
1366
1367         parent_level = btrfs_header_level(parent);
1368         if (cache_only && parent_level != 1)
1369                 return 0;
1370
1371         if (trans->transaction != root->fs_info->running_transaction)
1372                 WARN_ON(1);
1373         if (trans->transid != root->fs_info->generation)
1374                 WARN_ON(1);
1375
1376         parent_nritems = btrfs_header_nritems(parent);
1377         blocksize = btrfs_level_size(root, parent_level - 1);
1378         end_slot = parent_nritems;
1379
1380         if (parent_nritems == 1)
1381                 return 0;
1382
1383         btrfs_set_lock_blocking(parent);
1384
1385         for (i = start_slot; i < end_slot; i++) {
1386                 int close = 1;
1387
1388                 btrfs_node_key(parent, &disk_key, i);
1389                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1390                         continue;
1391
1392                 progress_passed = 1;
1393                 blocknr = btrfs_node_blockptr(parent, i);
1394                 gen = btrfs_node_ptr_generation(parent, i);
1395                 if (last_block == 0)
1396                         last_block = blocknr;
1397
1398                 if (i > 0) {
1399                         other = btrfs_node_blockptr(parent, i - 1);
1400                         close = close_blocks(blocknr, other, blocksize);
1401                 }
1402                 if (!close && i < end_slot - 2) {
1403                         other = btrfs_node_blockptr(parent, i + 1);
1404                         close = close_blocks(blocknr, other, blocksize);
1405                 }
1406                 if (close) {
1407                         last_block = blocknr;
1408                         continue;
1409                 }
1410
1411                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1412                 if (cur)
1413                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1414                 else
1415                         uptodate = 0;
1416                 if (!cur || !uptodate) {
1417                         if (cache_only) {
1418                                 free_extent_buffer(cur);
1419                                 continue;
1420                         }
1421                         if (!cur) {
1422                                 cur = read_tree_block(root, blocknr,
1423                                                          blocksize, gen);
1424                                 if (!cur)
1425                                         return -EIO;
1426                         } else if (!uptodate) {
1427                                 err = btrfs_read_buffer(cur, gen);
1428                                 if (err) {
1429                                         free_extent_buffer(cur);
1430                                         return err;
1431                                 }
1432                         }
1433                 }
1434                 if (search_start == 0)
1435                         search_start = last_block;
1436
1437                 btrfs_tree_lock(cur);
1438                 btrfs_set_lock_blocking(cur);
1439                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1440                                         &cur, search_start,
1441                                         min(16 * blocksize,
1442                                             (end_slot - i) * blocksize));
1443                 if (err) {
1444                         btrfs_tree_unlock(cur);
1445                         free_extent_buffer(cur);
1446                         break;
1447                 }
1448                 search_start = cur->start;
1449                 last_block = cur->start;
1450                 *last_ret = search_start;
1451                 btrfs_tree_unlock(cur);
1452                 free_extent_buffer(cur);
1453         }
1454         return err;
1455 }
1456
1457 /*
1458  * The leaf data grows from end-to-front in the node.
1459  * this returns the address of the start of the last item,
1460  * which is the stop of the leaf data stack
1461  */
1462 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1463                                          struct extent_buffer *leaf)
1464 {
1465         u32 nr = btrfs_header_nritems(leaf);
1466         if (nr == 0)
1467                 return BTRFS_LEAF_DATA_SIZE(root);
1468         return btrfs_item_offset_nr(leaf, nr - 1);
1469 }
1470
1471
1472 /*
1473  * search for key in the extent_buffer.  The items start at offset p,
1474  * and they are item_size apart.  There are 'max' items in p.
1475  *
1476  * the slot in the array is returned via slot, and it points to
1477  * the place where you would insert key if it is not found in
1478  * the array.
1479  *
1480  * slot may point to max if the key is bigger than all of the keys
1481  */
1482 static noinline int generic_bin_search(struct extent_buffer *eb,
1483                                        unsigned long p,
1484                                        int item_size, struct btrfs_key *key,
1485                                        int max, int *slot)
1486 {
1487         int low = 0;
1488         int high = max;
1489         int mid;
1490         int ret;
1491         struct btrfs_disk_key *tmp = NULL;
1492         struct btrfs_disk_key unaligned;
1493         unsigned long offset;
1494         char *kaddr = NULL;
1495         unsigned long map_start = 0;
1496         unsigned long map_len = 0;
1497         int err;
1498
1499         while (low < high) {
1500                 mid = (low + high) / 2;
1501                 offset = p + mid * item_size;
1502
1503                 if (!kaddr || offset < map_start ||
1504                     (offset + sizeof(struct btrfs_disk_key)) >
1505                     map_start + map_len) {
1506
1507                         err = map_private_extent_buffer(eb, offset,
1508                                                 sizeof(struct btrfs_disk_key),
1509                                                 &kaddr, &map_start, &map_len);
1510
1511                         if (!err) {
1512                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1513                                                         map_start);
1514                         } else {
1515                                 read_extent_buffer(eb, &unaligned,
1516                                                    offset, sizeof(unaligned));
1517                                 tmp = &unaligned;
1518                         }
1519
1520                 } else {
1521                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1522                                                         map_start);
1523                 }
1524                 ret = comp_keys(tmp, key);
1525
1526                 if (ret < 0)
1527                         low = mid + 1;
1528                 else if (ret > 0)
1529                         high = mid;
1530                 else {
1531                         *slot = mid;
1532                         return 0;
1533                 }
1534         }
1535         *slot = low;
1536         return 1;
1537 }
1538
1539 /*
1540  * simple bin_search frontend that does the right thing for
1541  * leaves vs nodes
1542  */
1543 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1544                       int level, int *slot)
1545 {
1546         if (level == 0)
1547                 return generic_bin_search(eb,
1548                                           offsetof(struct btrfs_leaf, items),
1549                                           sizeof(struct btrfs_item),
1550                                           key, btrfs_header_nritems(eb),
1551                                           slot);
1552         else
1553                 return generic_bin_search(eb,
1554                                           offsetof(struct btrfs_node, ptrs),
1555                                           sizeof(struct btrfs_key_ptr),
1556                                           key, btrfs_header_nritems(eb),
1557                                           slot);
1558 }
1559
1560 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1561                      int level, int *slot)
1562 {
1563         return bin_search(eb, key, level, slot);
1564 }
1565
1566 static void root_add_used(struct btrfs_root *root, u32 size)
1567 {
1568         spin_lock(&root->accounting_lock);
1569         btrfs_set_root_used(&root->root_item,
1570                             btrfs_root_used(&root->root_item) + size);
1571         spin_unlock(&root->accounting_lock);
1572 }
1573
1574 static void root_sub_used(struct btrfs_root *root, u32 size)
1575 {
1576         spin_lock(&root->accounting_lock);
1577         btrfs_set_root_used(&root->root_item,
1578                             btrfs_root_used(&root->root_item) - size);
1579         spin_unlock(&root->accounting_lock);
1580 }
1581
1582 /* given a node and slot number, this reads the blocks it points to.  The
1583  * extent buffer is returned with a reference taken (but unlocked).
1584  * NULL is returned on error.
1585  */
1586 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1587                                    struct extent_buffer *parent, int slot)
1588 {
1589         int level = btrfs_header_level(parent);
1590         if (slot < 0)
1591                 return NULL;
1592         if (slot >= btrfs_header_nritems(parent))
1593                 return NULL;
1594
1595         BUG_ON(level == 0);
1596
1597         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1598                        btrfs_level_size(root, level - 1),
1599                        btrfs_node_ptr_generation(parent, slot));
1600 }
1601
1602 /*
1603  * node level balancing, used to make sure nodes are in proper order for
1604  * item deletion.  We balance from the top down, so we have to make sure
1605  * that a deletion won't leave an node completely empty later on.
1606  */
1607 static noinline int balance_level(struct btrfs_trans_handle *trans,
1608                          struct btrfs_root *root,
1609                          struct btrfs_path *path, int level)
1610 {
1611         struct extent_buffer *right = NULL;
1612         struct extent_buffer *mid;
1613         struct extent_buffer *left = NULL;
1614         struct extent_buffer *parent = NULL;
1615         int ret = 0;
1616         int wret;
1617         int pslot;
1618         int orig_slot = path->slots[level];
1619         u64 orig_ptr;
1620
1621         if (level == 0)
1622                 return 0;
1623
1624         mid = path->nodes[level];
1625
1626         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1627                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1628         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1629
1630         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1631
1632         if (level < BTRFS_MAX_LEVEL - 1) {
1633                 parent = path->nodes[level + 1];
1634                 pslot = path->slots[level + 1];
1635         }
1636
1637         /*
1638          * deal with the case where there is only one pointer in the root
1639          * by promoting the node below to a root
1640          */
1641         if (!parent) {
1642                 struct extent_buffer *child;
1643
1644                 if (btrfs_header_nritems(mid) != 1)
1645                         return 0;
1646
1647                 /* promote the child to a root */
1648                 child = read_node_slot(root, mid, 0);
1649                 if (!child) {
1650                         ret = -EROFS;
1651                         btrfs_std_error(root->fs_info, ret);
1652                         goto enospc;
1653                 }
1654
1655                 btrfs_tree_lock(child);
1656                 btrfs_set_lock_blocking(child);
1657                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1658                 if (ret) {
1659                         btrfs_tree_unlock(child);
1660                         free_extent_buffer(child);
1661                         goto enospc;
1662                 }
1663
1664                 tree_mod_log_set_root_pointer(root, child);
1665                 rcu_assign_pointer(root->node, child);
1666
1667                 add_root_to_dirty_list(root);
1668                 btrfs_tree_unlock(child);
1669
1670                 path->locks[level] = 0;
1671                 path->nodes[level] = NULL;
1672                 clean_tree_block(trans, root, mid);
1673                 btrfs_tree_unlock(mid);
1674                 /* once for the path */
1675                 free_extent_buffer(mid);
1676
1677                 root_sub_used(root, mid->len);
1678                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1679                 /* once for the root ptr */
1680                 free_extent_buffer_stale(mid);
1681                 return 0;
1682         }
1683         if (btrfs_header_nritems(mid) >
1684             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1685                 return 0;
1686
1687         left = read_node_slot(root, parent, pslot - 1);
1688         if (left) {
1689                 btrfs_tree_lock(left);
1690                 btrfs_set_lock_blocking(left);
1691                 wret = btrfs_cow_block(trans, root, left,
1692                                        parent, pslot - 1, &left);
1693                 if (wret) {
1694                         ret = wret;
1695                         goto enospc;
1696                 }
1697         }
1698         right = read_node_slot(root, parent, pslot + 1);
1699         if (right) {
1700                 btrfs_tree_lock(right);
1701                 btrfs_set_lock_blocking(right);
1702                 wret = btrfs_cow_block(trans, root, right,
1703                                        parent, pslot + 1, &right);
1704                 if (wret) {
1705                         ret = wret;
1706                         goto enospc;
1707                 }
1708         }
1709
1710         /* first, try to make some room in the middle buffer */
1711         if (left) {
1712                 orig_slot += btrfs_header_nritems(left);
1713                 wret = push_node_left(trans, root, left, mid, 1);
1714                 if (wret < 0)
1715                         ret = wret;
1716         }
1717
1718         /*
1719          * then try to empty the right most buffer into the middle
1720          */
1721         if (right) {
1722                 wret = push_node_left(trans, root, mid, right, 1);
1723                 if (wret < 0 && wret != -ENOSPC)
1724                         ret = wret;
1725                 if (btrfs_header_nritems(right) == 0) {
1726                         clean_tree_block(trans, root, right);
1727                         btrfs_tree_unlock(right);
1728                         del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1729                         root_sub_used(root, right->len);
1730                         btrfs_free_tree_block(trans, root, right, 0, 1);
1731                         free_extent_buffer_stale(right);
1732                         right = NULL;
1733                 } else {
1734                         struct btrfs_disk_key right_key;
1735                         btrfs_node_key(right, &right_key, 0);
1736                         tree_mod_log_set_node_key(root->fs_info, parent,
1737                                                   &right_key, pslot + 1, 0);
1738                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1739                         btrfs_mark_buffer_dirty(parent);
1740                 }
1741         }
1742         if (btrfs_header_nritems(mid) == 1) {
1743                 /*
1744                  * we're not allowed to leave a node with one item in the
1745                  * tree during a delete.  A deletion from lower in the tree
1746                  * could try to delete the only pointer in this node.
1747                  * So, pull some keys from the left.
1748                  * There has to be a left pointer at this point because
1749                  * otherwise we would have pulled some pointers from the
1750                  * right
1751                  */
1752                 if (!left) {
1753                         ret = -EROFS;
1754                         btrfs_std_error(root->fs_info, ret);
1755                         goto enospc;
1756                 }
1757                 wret = balance_node_right(trans, root, mid, left);
1758                 if (wret < 0) {
1759                         ret = wret;
1760                         goto enospc;
1761                 }
1762                 if (wret == 1) {
1763                         wret = push_node_left(trans, root, left, mid, 1);
1764                         if (wret < 0)
1765                                 ret = wret;
1766                 }
1767                 BUG_ON(wret == 1);
1768         }
1769         if (btrfs_header_nritems(mid) == 0) {
1770                 clean_tree_block(trans, root, mid);
1771                 btrfs_tree_unlock(mid);
1772                 del_ptr(trans, root, path, level + 1, pslot, 1);
1773                 root_sub_used(root, mid->len);
1774                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1775                 free_extent_buffer_stale(mid);
1776                 mid = NULL;
1777         } else {
1778                 /* update the parent key to reflect our changes */
1779                 struct btrfs_disk_key mid_key;
1780                 btrfs_node_key(mid, &mid_key, 0);
1781                 tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1782                                           pslot, 0);
1783                 btrfs_set_node_key(parent, &mid_key, pslot);
1784                 btrfs_mark_buffer_dirty(parent);
1785         }
1786
1787         /* update the path */
1788         if (left) {
1789                 if (btrfs_header_nritems(left) > orig_slot) {
1790                         extent_buffer_get(left);
1791                         /* left was locked after cow */
1792                         path->nodes[level] = left;
1793                         path->slots[level + 1] -= 1;
1794                         path->slots[level] = orig_slot;
1795                         if (mid) {
1796                                 btrfs_tree_unlock(mid);
1797                                 free_extent_buffer(mid);
1798                         }
1799                 } else {
1800                         orig_slot -= btrfs_header_nritems(left);
1801                         path->slots[level] = orig_slot;
1802                 }
1803         }
1804         /* double check we haven't messed things up */
1805         if (orig_ptr !=
1806             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1807                 BUG();
1808 enospc:
1809         if (right) {
1810                 btrfs_tree_unlock(right);
1811                 free_extent_buffer(right);
1812         }
1813         if (left) {
1814                 if (path->nodes[level] != left)
1815                         btrfs_tree_unlock(left);
1816                 free_extent_buffer(left);
1817         }
1818         return ret;
1819 }
1820
1821 /* Node balancing for insertion.  Here we only split or push nodes around
1822  * when they are completely full.  This is also done top down, so we
1823  * have to be pessimistic.
1824  */
1825 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1826                                           struct btrfs_root *root,
1827                                           struct btrfs_path *path, int level)
1828 {
1829         struct extent_buffer *right = NULL;
1830         struct extent_buffer *mid;
1831         struct extent_buffer *left = NULL;
1832         struct extent_buffer *parent = NULL;
1833         int ret = 0;
1834         int wret;
1835         int pslot;
1836         int orig_slot = path->slots[level];
1837
1838         if (level == 0)
1839                 return 1;
1840
1841         mid = path->nodes[level];
1842         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1843
1844         if (level < BTRFS_MAX_LEVEL - 1) {
1845                 parent = path->nodes[level + 1];
1846                 pslot = path->slots[level + 1];
1847         }
1848
1849         if (!parent)
1850                 return 1;
1851
1852         left = read_node_slot(root, parent, pslot - 1);
1853
1854         /* first, try to make some room in the middle buffer */
1855         if (left) {
1856                 u32 left_nr;
1857
1858                 btrfs_tree_lock(left);
1859                 btrfs_set_lock_blocking(left);
1860
1861                 left_nr = btrfs_header_nritems(left);
1862                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1863                         wret = 1;
1864                 } else {
1865                         ret = btrfs_cow_block(trans, root, left, parent,
1866                                               pslot - 1, &left);
1867                         if (ret)
1868                                 wret = 1;
1869                         else {
1870                                 wret = push_node_left(trans, root,
1871                                                       left, mid, 0);
1872                         }
1873                 }
1874                 if (wret < 0)
1875                         ret = wret;
1876                 if (wret == 0) {
1877                         struct btrfs_disk_key disk_key;
1878                         orig_slot += left_nr;
1879                         btrfs_node_key(mid, &disk_key, 0);
1880                         tree_mod_log_set_node_key(root->fs_info, parent,
1881                                                   &disk_key, pslot, 0);
1882                         btrfs_set_node_key(parent, &disk_key, pslot);
1883                         btrfs_mark_buffer_dirty(parent);
1884                         if (btrfs_header_nritems(left) > orig_slot) {
1885                                 path->nodes[level] = left;
1886                                 path->slots[level + 1] -= 1;
1887                                 path->slots[level] = orig_slot;
1888                                 btrfs_tree_unlock(mid);
1889                                 free_extent_buffer(mid);
1890                         } else {
1891                                 orig_slot -=
1892                                         btrfs_header_nritems(left);
1893                                 path->slots[level] = orig_slot;
1894                                 btrfs_tree_unlock(left);
1895                                 free_extent_buffer(left);
1896                         }
1897                         return 0;
1898                 }
1899                 btrfs_tree_unlock(left);
1900                 free_extent_buffer(left);
1901         }
1902         right = read_node_slot(root, parent, pslot + 1);
1903
1904         /*
1905          * then try to empty the right most buffer into the middle
1906          */
1907         if (right) {
1908                 u32 right_nr;
1909
1910                 btrfs_tree_lock(right);
1911                 btrfs_set_lock_blocking(right);
1912
1913                 right_nr = btrfs_header_nritems(right);
1914                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1915                         wret = 1;
1916                 } else {
1917                         ret = btrfs_cow_block(trans, root, right,
1918                                               parent, pslot + 1,
1919                                               &right);
1920                         if (ret)
1921                                 wret = 1;
1922                         else {
1923                                 wret = balance_node_right(trans, root,
1924                                                           right, mid);
1925                         }
1926                 }
1927                 if (wret < 0)
1928                         ret = wret;
1929                 if (wret == 0) {
1930                         struct btrfs_disk_key disk_key;
1931
1932                         btrfs_node_key(right, &disk_key, 0);
1933                         tree_mod_log_set_node_key(root->fs_info, parent,
1934                                                   &disk_key, pslot + 1, 0);
1935                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1936                         btrfs_mark_buffer_dirty(parent);
1937
1938                         if (btrfs_header_nritems(mid) <= orig_slot) {
1939                                 path->nodes[level] = right;
1940                                 path->slots[level + 1] += 1;
1941                                 path->slots[level] = orig_slot -
1942                                         btrfs_header_nritems(mid);
1943                                 btrfs_tree_unlock(mid);
1944                                 free_extent_buffer(mid);
1945                         } else {
1946                                 btrfs_tree_unlock(right);
1947                                 free_extent_buffer(right);
1948                         }
1949                         return 0;
1950                 }
1951                 btrfs_tree_unlock(right);
1952                 free_extent_buffer(right);
1953         }
1954         return 1;
1955 }
1956
1957 /*
1958  * readahead one full node of leaves, finding things that are close
1959  * to the block in 'slot', and triggering ra on them.
1960  */
1961 static void reada_for_search(struct btrfs_root *root,
1962                              struct btrfs_path *path,
1963                              int level, int slot, u64 objectid)
1964 {
1965         struct extent_buffer *node;
1966         struct btrfs_disk_key disk_key;
1967         u32 nritems;
1968         u64 search;
1969         u64 target;
1970         u64 nread = 0;
1971         u64 gen;
1972         int direction = path->reada;
1973         struct extent_buffer *eb;
1974         u32 nr;
1975         u32 blocksize;
1976         u32 nscan = 0;
1977
1978         if (level != 1)
1979                 return;
1980
1981         if (!path->nodes[level])
1982                 return;
1983
1984         node = path->nodes[level];
1985
1986         search = btrfs_node_blockptr(node, slot);
1987         blocksize = btrfs_level_size(root, level - 1);
1988         eb = btrfs_find_tree_block(root, search, blocksize);
1989         if (eb) {
1990                 free_extent_buffer(eb);
1991                 return;
1992         }
1993
1994         target = search;
1995
1996         nritems = btrfs_header_nritems(node);
1997         nr = slot;
1998
1999         while (1) {
2000                 if (direction < 0) {
2001                         if (nr == 0)
2002                                 break;
2003                         nr--;
2004                 } else if (direction > 0) {
2005                         nr++;
2006                         if (nr >= nritems)
2007                                 break;
2008                 }
2009                 if (path->reada < 0 && objectid) {
2010                         btrfs_node_key(node, &disk_key, nr);
2011                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2012                                 break;
2013                 }
2014                 search = btrfs_node_blockptr(node, nr);
2015                 if ((search <= target && target - search <= 65536) ||
2016                     (search > target && search - target <= 65536)) {
2017                         gen = btrfs_node_ptr_generation(node, nr);
2018                         readahead_tree_block(root, search, blocksize, gen);
2019                         nread += blocksize;
2020                 }
2021                 nscan++;
2022                 if ((nread > 65536 || nscan > 32))
2023                         break;
2024         }
2025 }
2026
2027 /*
2028  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2029  * cache
2030  */
2031 static noinline int reada_for_balance(struct btrfs_root *root,
2032                                       struct btrfs_path *path, int level)
2033 {
2034         int slot;
2035         int nritems;
2036         struct extent_buffer *parent;
2037         struct extent_buffer *eb;
2038         u64 gen;
2039         u64 block1 = 0;
2040         u64 block2 = 0;
2041         int ret = 0;
2042         int blocksize;
2043
2044         parent = path->nodes[level + 1];
2045         if (!parent)
2046                 return 0;
2047
2048         nritems = btrfs_header_nritems(parent);
2049         slot = path->slots[level + 1];
2050         blocksize = btrfs_level_size(root, level);
2051
2052         if (slot > 0) {
2053                 block1 = btrfs_node_blockptr(parent, slot - 1);
2054                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2055                 eb = btrfs_find_tree_block(root, block1, blocksize);
2056                 /*
2057                  * if we get -eagain from btrfs_buffer_uptodate, we
2058                  * don't want to return eagain here.  That will loop
2059                  * forever
2060                  */
2061                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2062                         block1 = 0;
2063                 free_extent_buffer(eb);
2064         }
2065         if (slot + 1 < nritems) {
2066                 block2 = btrfs_node_blockptr(parent, slot + 1);
2067                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2068                 eb = btrfs_find_tree_block(root, block2, blocksize);
2069                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2070                         block2 = 0;
2071                 free_extent_buffer(eb);
2072         }
2073         if (block1 || block2) {
2074                 ret = -EAGAIN;
2075
2076                 /* release the whole path */
2077                 btrfs_release_path(path);
2078
2079                 /* read the blocks */
2080                 if (block1)
2081                         readahead_tree_block(root, block1, blocksize, 0);
2082                 if (block2)
2083                         readahead_tree_block(root, block2, blocksize, 0);
2084
2085                 if (block1) {
2086                         eb = read_tree_block(root, block1, blocksize, 0);
2087                         free_extent_buffer(eb);
2088                 }
2089                 if (block2) {
2090                         eb = read_tree_block(root, block2, blocksize, 0);
2091                         free_extent_buffer(eb);
2092                 }
2093         }
2094         return ret;
2095 }
2096
2097
2098 /*
2099  * when we walk down the tree, it is usually safe to unlock the higher layers
2100  * in the tree.  The exceptions are when our path goes through slot 0, because
2101  * operations on the tree might require changing key pointers higher up in the
2102  * tree.
2103  *
2104  * callers might also have set path->keep_locks, which tells this code to keep
2105  * the lock if the path points to the last slot in the block.  This is part of
2106  * walking through the tree, and selecting the next slot in the higher block.
2107  *
2108  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2109  * if lowest_unlock is 1, level 0 won't be unlocked
2110  */
2111 static noinline void unlock_up(struct btrfs_path *path, int level,
2112                                int lowest_unlock, int min_write_lock_level,
2113                                int *write_lock_level)
2114 {
2115         int i;
2116         int skip_level = level;
2117         int no_skips = 0;
2118         struct extent_buffer *t;
2119
2120         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2121                 if (!path->nodes[i])
2122                         break;
2123                 if (!path->locks[i])
2124                         break;
2125                 if (!no_skips && path->slots[i] == 0) {
2126                         skip_level = i + 1;
2127                         continue;
2128                 }
2129                 if (!no_skips && path->keep_locks) {
2130                         u32 nritems;
2131                         t = path->nodes[i];
2132                         nritems = btrfs_header_nritems(t);
2133                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2134                                 skip_level = i + 1;
2135                                 continue;
2136                         }
2137                 }
2138                 if (skip_level < i && i >= lowest_unlock)
2139                         no_skips = 1;
2140
2141                 t = path->nodes[i];
2142                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2143                         btrfs_tree_unlock_rw(t, path->locks[i]);
2144                         path->locks[i] = 0;
2145                         if (write_lock_level &&
2146                             i > min_write_lock_level &&
2147                             i <= *write_lock_level) {
2148                                 *write_lock_level = i - 1;
2149                         }
2150                 }
2151         }
2152 }
2153
2154 /*
2155  * This releases any locks held in the path starting at level and
2156  * going all the way up to the root.
2157  *
2158  * btrfs_search_slot will keep the lock held on higher nodes in a few
2159  * corner cases, such as COW of the block at slot zero in the node.  This
2160  * ignores those rules, and it should only be called when there are no
2161  * more updates to be done higher up in the tree.
2162  */
2163 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2164 {
2165         int i;
2166
2167         if (path->keep_locks)
2168                 return;
2169
2170         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2171                 if (!path->nodes[i])
2172                         continue;
2173                 if (!path->locks[i])
2174                         continue;
2175                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2176                 path->locks[i] = 0;
2177         }
2178 }
2179
2180 /*
2181  * helper function for btrfs_search_slot.  The goal is to find a block
2182  * in cache without setting the path to blocking.  If we find the block
2183  * we return zero and the path is unchanged.
2184  *
2185  * If we can't find the block, we set the path blocking and do some
2186  * reada.  -EAGAIN is returned and the search must be repeated.
2187  */
2188 static int
2189 read_block_for_search(struct btrfs_trans_handle *trans,
2190                        struct btrfs_root *root, struct btrfs_path *p,
2191                        struct extent_buffer **eb_ret, int level, int slot,
2192                        struct btrfs_key *key, u64 time_seq)
2193 {
2194         u64 blocknr;
2195         u64 gen;
2196         u32 blocksize;
2197         struct extent_buffer *b = *eb_ret;
2198         struct extent_buffer *tmp;
2199         int ret;
2200
2201         blocknr = btrfs_node_blockptr(b, slot);
2202         gen = btrfs_node_ptr_generation(b, slot);
2203         blocksize = btrfs_level_size(root, level - 1);
2204
2205         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2206         if (tmp) {
2207                 /* first we do an atomic uptodate check */
2208                 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2209                         if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2210                                 /*
2211                                  * we found an up to date block without
2212                                  * sleeping, return
2213                                  * right away
2214                                  */
2215                                 *eb_ret = tmp;
2216                                 return 0;
2217                         }
2218                         /* the pages were up to date, but we failed
2219                          * the generation number check.  Do a full
2220                          * read for the generation number that is correct.
2221                          * We must do this without dropping locks so
2222                          * we can trust our generation number
2223                          */
2224                         free_extent_buffer(tmp);
2225                         btrfs_set_path_blocking(p);
2226
2227                         /* now we're allowed to do a blocking uptodate check */
2228                         tmp = read_tree_block(root, blocknr, blocksize, gen);
2229                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2230                                 *eb_ret = tmp;
2231                                 return 0;
2232                         }
2233                         free_extent_buffer(tmp);
2234                         btrfs_release_path(p);
2235                         return -EIO;
2236                 }
2237         }
2238
2239         /*
2240          * reduce lock contention at high levels
2241          * of the btree by dropping locks before
2242          * we read.  Don't release the lock on the current
2243          * level because we need to walk this node to figure
2244          * out which blocks to read.
2245          */
2246         btrfs_unlock_up_safe(p, level + 1);
2247         btrfs_set_path_blocking(p);
2248
2249         free_extent_buffer(tmp);
2250         if (p->reada)
2251                 reada_for_search(root, p, level, slot, key->objectid);
2252
2253         btrfs_release_path(p);
2254
2255         ret = -EAGAIN;
2256         tmp = read_tree_block(root, blocknr, blocksize, 0);
2257         if (tmp) {
2258                 /*
2259                  * If the read above didn't mark this buffer up to date,
2260                  * it will never end up being up to date.  Set ret to EIO now
2261                  * and give up so that our caller doesn't loop forever
2262                  * on our EAGAINs.
2263                  */
2264                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2265                         ret = -EIO;
2266                 free_extent_buffer(tmp);
2267         }
2268         return ret;
2269 }
2270
2271 /*
2272  * helper function for btrfs_search_slot.  This does all of the checks
2273  * for node-level blocks and does any balancing required based on
2274  * the ins_len.
2275  *
2276  * If no extra work was required, zero is returned.  If we had to
2277  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2278  * start over
2279  */
2280 static int
2281 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2282                        struct btrfs_root *root, struct btrfs_path *p,
2283                        struct extent_buffer *b, int level, int ins_len,
2284                        int *write_lock_level)
2285 {
2286         int ret;
2287         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2288             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2289                 int sret;
2290
2291                 if (*write_lock_level < level + 1) {
2292                         *write_lock_level = level + 1;
2293                         btrfs_release_path(p);
2294                         goto again;
2295                 }
2296
2297                 sret = reada_for_balance(root, p, level);
2298                 if (sret)
2299                         goto again;
2300
2301                 btrfs_set_path_blocking(p);
2302                 sret = split_node(trans, root, p, level);
2303                 btrfs_clear_path_blocking(p, NULL, 0);
2304
2305                 BUG_ON(sret > 0);
2306                 if (sret) {
2307                         ret = sret;
2308                         goto done;
2309                 }
2310                 b = p->nodes[level];
2311         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2312                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2313                 int sret;
2314
2315                 if (*write_lock_level < level + 1) {
2316                         *write_lock_level = level + 1;
2317                         btrfs_release_path(p);
2318                         goto again;
2319                 }
2320
2321                 sret = reada_for_balance(root, p, level);
2322                 if (sret)
2323                         goto again;
2324
2325                 btrfs_set_path_blocking(p);
2326                 sret = balance_level(trans, root, p, level);
2327                 btrfs_clear_path_blocking(p, NULL, 0);
2328
2329                 if (sret) {
2330                         ret = sret;
2331                         goto done;
2332                 }
2333                 b = p->nodes[level];
2334                 if (!b) {
2335                         btrfs_release_path(p);
2336                         goto again;
2337                 }
2338                 BUG_ON(btrfs_header_nritems(b) == 1);
2339         }
2340         return 0;
2341
2342 again:
2343         ret = -EAGAIN;
2344 done:
2345         return ret;
2346 }
2347
2348 /*
2349  * look for key in the tree.  path is filled in with nodes along the way
2350  * if key is found, we return zero and you can find the item in the leaf
2351  * level of the path (level 0)
2352  *
2353  * If the key isn't found, the path points to the slot where it should
2354  * be inserted, and 1 is returned.  If there are other errors during the
2355  * search a negative error number is returned.
2356  *
2357  * if ins_len > 0, nodes and leaves will be split as we walk down the
2358  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2359  * possible)
2360  */
2361 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2362                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2363                       ins_len, int cow)
2364 {
2365         struct extent_buffer *b;
2366         int slot;
2367         int ret;
2368         int err;
2369         int level;
2370         int lowest_unlock = 1;
2371         int root_lock;
2372         /* everything at write_lock_level or lower must be write locked */
2373         int write_lock_level = 0;
2374         u8 lowest_level = 0;
2375         int min_write_lock_level;
2376
2377         lowest_level = p->lowest_level;
2378         WARN_ON(lowest_level && ins_len > 0);
2379         WARN_ON(p->nodes[0] != NULL);
2380
2381         if (ins_len < 0) {
2382                 lowest_unlock = 2;
2383
2384                 /* when we are removing items, we might have to go up to level
2385                  * two as we update tree pointers  Make sure we keep write
2386                  * for those levels as well
2387                  */
2388                 write_lock_level = 2;
2389         } else if (ins_len > 0) {
2390                 /*
2391                  * for inserting items, make sure we have a write lock on
2392                  * level 1 so we can update keys
2393                  */
2394                 write_lock_level = 1;
2395         }
2396
2397         if (!cow)
2398                 write_lock_level = -1;
2399
2400         if (cow && (p->keep_locks || p->lowest_level))
2401                 write_lock_level = BTRFS_MAX_LEVEL;
2402
2403         min_write_lock_level = write_lock_level;
2404
2405 again:
2406         /*
2407          * we try very hard to do read locks on the root
2408          */
2409         root_lock = BTRFS_READ_LOCK;
2410         level = 0;
2411         if (p->search_commit_root) {
2412                 /*
2413                  * the commit roots are read only
2414                  * so we always do read locks
2415                  */
2416                 b = root->commit_root;
2417                 extent_buffer_get(b);
2418                 level = btrfs_header_level(b);
2419                 if (!p->skip_locking)
2420                         btrfs_tree_read_lock(b);
2421         } else {
2422                 if (p->skip_locking) {
2423                         b = btrfs_root_node(root);
2424                         level = btrfs_header_level(b);
2425                 } else {
2426                         /* we don't know the level of the root node
2427                          * until we actually have it read locked
2428                          */
2429                         b = btrfs_read_lock_root_node(root);
2430                         level = btrfs_header_level(b);
2431                         if (level <= write_lock_level) {
2432                                 /* whoops, must trade for write lock */
2433                                 btrfs_tree_read_unlock(b);
2434                                 free_extent_buffer(b);
2435                                 b = btrfs_lock_root_node(root);
2436                                 root_lock = BTRFS_WRITE_LOCK;
2437
2438                                 /* the level might have changed, check again */
2439                                 level = btrfs_header_level(b);
2440                         }
2441                 }
2442         }
2443         p->nodes[level] = b;
2444         if (!p->skip_locking)
2445                 p->locks[level] = root_lock;
2446
2447         while (b) {
2448                 level = btrfs_header_level(b);
2449
2450                 /*
2451                  * setup the path here so we can release it under lock
2452                  * contention with the cow code
2453                  */
2454                 if (cow) {
2455                         /*
2456                          * if we don't really need to cow this block
2457                          * then we don't want to set the path blocking,
2458                          * so we test it here
2459                          */
2460                         if (!should_cow_block(trans, root, b))
2461                                 goto cow_done;
2462
2463                         btrfs_set_path_blocking(p);
2464
2465                         /*
2466                          * must have write locks on this node and the
2467                          * parent
2468                          */
2469                         if (level + 1 > write_lock_level) {
2470                                 write_lock_level = level + 1;
2471                                 btrfs_release_path(p);
2472                                 goto again;
2473                         }
2474
2475                         err = btrfs_cow_block(trans, root, b,
2476                                               p->nodes[level + 1],
2477                                               p->slots[level + 1], &b);
2478                         if (err) {
2479                                 ret = err;
2480                                 goto done;
2481                         }
2482                 }
2483 cow_done:
2484                 BUG_ON(!cow && ins_len);
2485
2486                 p->nodes[level] = b;
2487                 btrfs_clear_path_blocking(p, NULL, 0);
2488
2489                 /*
2490                  * we have a lock on b and as long as we aren't changing
2491                  * the tree, there is no way to for the items in b to change.
2492                  * It is safe to drop the lock on our parent before we
2493                  * go through the expensive btree search on b.
2494                  *
2495                  * If cow is true, then we might be changing slot zero,
2496                  * which may require changing the parent.  So, we can't
2497                  * drop the lock until after we know which slot we're
2498                  * operating on.
2499                  */
2500                 if (!cow)
2501                         btrfs_unlock_up_safe(p, level + 1);
2502
2503                 ret = bin_search(b, key, level, &slot);
2504
2505                 if (level != 0) {
2506                         int dec = 0;
2507                         if (ret && slot > 0) {
2508                                 dec = 1;
2509                                 slot -= 1;
2510                         }
2511                         p->slots[level] = slot;
2512                         err = setup_nodes_for_search(trans, root, p, b, level,
2513                                              ins_len, &write_lock_level);
2514                         if (err == -EAGAIN)
2515                                 goto again;
2516                         if (err) {
2517                                 ret = err;
2518                                 goto done;
2519                         }
2520                         b = p->nodes[level];
2521                         slot = p->slots[level];
2522
2523                         /*
2524                          * slot 0 is special, if we change the key
2525                          * we have to update the parent pointer
2526                          * which means we must have a write lock
2527                          * on the parent
2528                          */
2529                         if (slot == 0 && cow &&
2530                             write_lock_level < level + 1) {
2531                                 write_lock_level = level + 1;
2532                                 btrfs_release_path(p);
2533                                 goto again;
2534                         }
2535
2536                         unlock_up(p, level, lowest_unlock,
2537                                   min_write_lock_level, &write_lock_level);
2538
2539                         if (level == lowest_level) {
2540                                 if (dec)
2541                                         p->slots[level]++;
2542                                 goto done;
2543                         }
2544
2545                         err = read_block_for_search(trans, root, p,
2546                                                     &b, level, slot, key, 0);
2547                         if (err == -EAGAIN)
2548                                 goto again;
2549                         if (err) {
2550                                 ret = err;
2551                                 goto done;
2552                         }
2553
2554                         if (!p->skip_locking) {
2555                                 level = btrfs_header_level(b);
2556                                 if (level <= write_lock_level) {
2557                                         err = btrfs_try_tree_write_lock(b);
2558                                         if (!err) {
2559                                                 btrfs_set_path_blocking(p);
2560                                                 btrfs_tree_lock(b);
2561                                                 btrfs_clear_path_blocking(p, b,
2562                                                                   BTRFS_WRITE_LOCK);
2563                                         }
2564                                         p->locks[level] = BTRFS_WRITE_LOCK;
2565                                 } else {
2566                                         err = btrfs_try_tree_read_lock(b);
2567                                         if (!err) {
2568                                                 btrfs_set_path_blocking(p);
2569                                                 btrfs_tree_read_lock(b);
2570                                                 btrfs_clear_path_blocking(p, b,
2571                                                                   BTRFS_READ_LOCK);
2572                                         }
2573                                         p->locks[level] = BTRFS_READ_LOCK;
2574                                 }
2575                                 p->nodes[level] = b;
2576                         }
2577                 } else {
2578                         p->slots[level] = slot;
2579                         if (ins_len > 0 &&
2580                             btrfs_leaf_free_space(root, b) < ins_len) {
2581                                 if (write_lock_level < 1) {
2582                                         write_lock_level = 1;
2583                                         btrfs_release_path(p);
2584                                         goto again;
2585                                 }
2586
2587                                 btrfs_set_path_blocking(p);
2588                                 err = split_leaf(trans, root, key,
2589                                                  p, ins_len, ret == 0);
2590                                 btrfs_clear_path_blocking(p, NULL, 0);
2591
2592                                 BUG_ON(err > 0);
2593                                 if (err) {
2594                                         ret = err;
2595                                         goto done;
2596                                 }
2597                         }
2598                         if (!p->search_for_split)
2599                                 unlock_up(p, level, lowest_unlock,
2600                                           min_write_lock_level, &write_lock_level);
2601                         goto done;
2602                 }
2603         }
2604         ret = 1;
2605 done:
2606         /*
2607          * we don't really know what they plan on doing with the path
2608          * from here on, so for now just mark it as blocking
2609          */
2610         if (!p->leave_spinning)
2611                 btrfs_set_path_blocking(p);
2612         if (ret < 0)
2613                 btrfs_release_path(p);
2614         return ret;
2615 }
2616
2617 /*
2618  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2619  * current state of the tree together with the operations recorded in the tree
2620  * modification log to search for the key in a previous version of this tree, as
2621  * denoted by the time_seq parameter.
2622  *
2623  * Naturally, there is no support for insert, delete or cow operations.
2624  *
2625  * The resulting path and return value will be set up as if we called
2626  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2627  */
2628 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2629                           struct btrfs_path *p, u64 time_seq)
2630 {
2631         struct extent_buffer *b;
2632         int slot;
2633         int ret;
2634         int err;
2635         int level;
2636         int lowest_unlock = 1;
2637         u8 lowest_level = 0;
2638
2639         lowest_level = p->lowest_level;
2640         WARN_ON(p->nodes[0] != NULL);
2641
2642         if (p->search_commit_root) {
2643                 BUG_ON(time_seq);
2644                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2645         }
2646
2647 again:
2648         b = get_old_root(root, time_seq);
2649         level = btrfs_header_level(b);
2650         p->locks[level] = BTRFS_READ_LOCK;
2651
2652         while (b) {
2653                 level = btrfs_header_level(b);
2654                 p->nodes[level] = b;
2655                 btrfs_clear_path_blocking(p, NULL, 0);
2656
2657                 /*
2658                  * we have a lock on b and as long as we aren't changing
2659                  * the tree, there is no way to for the items in b to change.
2660                  * It is safe to drop the lock on our parent before we
2661                  * go through the expensive btree search on b.
2662                  */
2663                 btrfs_unlock_up_safe(p, level + 1);
2664
2665                 ret = bin_search(b, key, level, &slot);
2666
2667                 if (level != 0) {
2668                         int dec = 0;
2669                         if (ret && slot > 0) {
2670                                 dec = 1;
2671                                 slot -= 1;
2672                         }
2673                         p->slots[level] = slot;
2674                         unlock_up(p, level, lowest_unlock, 0, NULL);
2675
2676                         if (level == lowest_level) {
2677                                 if (dec)
2678                                         p->slots[level]++;
2679                                 goto done;
2680                         }
2681
2682                         err = read_block_for_search(NULL, root, p, &b, level,
2683                                                     slot, key, time_seq);
2684                         if (err == -EAGAIN)
2685                                 goto again;
2686                         if (err) {
2687                                 ret = err;
2688                                 goto done;
2689                         }
2690
2691                         level = btrfs_header_level(b);
2692                         err = btrfs_try_tree_read_lock(b);
2693                         if (!err) {
2694                                 btrfs_set_path_blocking(p);
2695                                 btrfs_tree_read_lock(b);
2696                                 btrfs_clear_path_blocking(p, b,
2697                                                           BTRFS_READ_LOCK);
2698                         }
2699                         p->locks[level] = BTRFS_READ_LOCK;
2700                         p->nodes[level] = b;
2701                         b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2702                         if (b != p->nodes[level]) {
2703                                 btrfs_tree_unlock_rw(p->nodes[level],
2704                                                      p->locks[level]);
2705                                 p->locks[level] = 0;
2706                                 p->nodes[level] = b;
2707                         }
2708                 } else {
2709                         p->slots[level] = slot;
2710                         unlock_up(p, level, lowest_unlock, 0, NULL);
2711                         goto done;
2712                 }
2713         }
2714         ret = 1;
2715 done:
2716         if (!p->leave_spinning)
2717                 btrfs_set_path_blocking(p);
2718         if (ret < 0)
2719                 btrfs_release_path(p);
2720
2721         return ret;
2722 }
2723
2724 /*
2725  * adjust the pointers going up the tree, starting at level
2726  * making sure the right key of each node is points to 'key'.
2727  * This is used after shifting pointers to the left, so it stops
2728  * fixing up pointers when a given leaf/node is not in slot 0 of the
2729  * higher levels
2730  *
2731  */
2732 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2733                            struct btrfs_root *root, struct btrfs_path *path,
2734                            struct btrfs_disk_key *key, int level)
2735 {
2736         int i;
2737         struct extent_buffer *t;
2738
2739         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2740                 int tslot = path->slots[i];
2741                 if (!path->nodes[i])
2742                         break;
2743                 t = path->nodes[i];
2744                 tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2745                 btrfs_set_node_key(t, key, tslot);
2746                 btrfs_mark_buffer_dirty(path->nodes[i]);
2747                 if (tslot != 0)
2748                         break;
2749         }
2750 }
2751
2752 /*
2753  * update item key.
2754  *
2755  * This function isn't completely safe. It's the caller's responsibility
2756  * that the new key won't break the order
2757  */
2758 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2759                              struct btrfs_root *root, struct btrfs_path *path,
2760                              struct btrfs_key *new_key)
2761 {
2762         struct btrfs_disk_key disk_key;
2763         struct extent_buffer *eb;
2764         int slot;
2765
2766         eb = path->nodes[0];
2767         slot = path->slots[0];
2768         if (slot > 0) {
2769                 btrfs_item_key(eb, &disk_key, slot - 1);
2770                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2771         }
2772         if (slot < btrfs_header_nritems(eb) - 1) {
2773                 btrfs_item_key(eb, &disk_key, slot + 1);
2774                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2775         }
2776
2777         btrfs_cpu_key_to_disk(&disk_key, new_key);
2778         btrfs_set_item_key(eb, &disk_key, slot);
2779         btrfs_mark_buffer_dirty(eb);
2780         if (slot == 0)
2781                 fixup_low_keys(trans, root, path, &disk_key, 1);
2782 }
2783
2784 /*
2785  * try to push data from one node into the next node left in the
2786  * tree.
2787  *
2788  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2789  * error, and > 0 if there was no room in the left hand block.
2790  */
2791 static int push_node_left(struct btrfs_trans_handle *trans,
2792                           struct btrfs_root *root, struct extent_buffer *dst,
2793                           struct extent_buffer *src, int empty)
2794 {
2795         int push_items = 0;
2796         int src_nritems;
2797         int dst_nritems;
2798         int ret = 0;
2799
2800         src_nritems = btrfs_header_nritems(src);
2801         dst_nritems = btrfs_header_nritems(dst);
2802         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2803         WARN_ON(btrfs_header_generation(src) != trans->transid);
2804         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2805
2806         if (!empty && src_nritems <= 8)
2807                 return 1;
2808
2809         if (push_items <= 0)
2810                 return 1;
2811
2812         if (empty) {
2813                 push_items = min(src_nritems, push_items);
2814                 if (push_items < src_nritems) {
2815                         /* leave at least 8 pointers in the node if
2816                          * we aren't going to empty it
2817                          */
2818                         if (src_nritems - push_items < 8) {
2819                                 if (push_items <= 8)
2820                                         return 1;
2821                                 push_items -= 8;
2822                         }
2823                 }
2824         } else
2825                 push_items = min(src_nritems - 8, push_items);
2826
2827         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2828                              push_items);
2829         copy_extent_buffer(dst, src,
2830                            btrfs_node_key_ptr_offset(dst_nritems),
2831                            btrfs_node_key_ptr_offset(0),
2832                            push_items * sizeof(struct btrfs_key_ptr));
2833
2834         if (push_items < src_nritems) {
2835                 tree_mod_log_eb_move(root->fs_info, src, 0, push_items,
2836                                      src_nritems - push_items);
2837                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2838                                       btrfs_node_key_ptr_offset(push_items),
2839                                       (src_nritems - push_items) *
2840                                       sizeof(struct btrfs_key_ptr));
2841         }
2842         btrfs_set_header_nritems(src, src_nritems - push_items);
2843         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2844         btrfs_mark_buffer_dirty(src);
2845         btrfs_mark_buffer_dirty(dst);
2846
2847         return ret;
2848 }
2849
2850 /*
2851  * try to push data from one node into the next node right in the
2852  * tree.
2853  *
2854  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2855  * error, and > 0 if there was no room in the right hand block.
2856  *
2857  * this will  only push up to 1/2 the contents of the left node over
2858  */
2859 static int balance_node_right(struct btrfs_trans_handle *trans,
2860                               struct btrfs_root *root,
2861                               struct extent_buffer *dst,
2862                               struct extent_buffer *src)
2863 {
2864         int push_items = 0;
2865         int max_push;
2866         int src_nritems;
2867         int dst_nritems;
2868         int ret = 0;
2869
2870         WARN_ON(btrfs_header_generation(src) != trans->transid);
2871         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2872
2873         src_nritems = btrfs_header_nritems(src);
2874         dst_nritems = btrfs_header_nritems(dst);
2875         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2876         if (push_items <= 0)
2877                 return 1;
2878
2879         if (src_nritems < 4)
2880                 return 1;
2881
2882         max_push = src_nritems / 2 + 1;
2883         /* don't try to empty the node */
2884         if (max_push >= src_nritems)
2885                 return 1;
2886
2887         if (max_push < push_items)
2888                 push_items = max_push;
2889
2890         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
2891         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2892                                       btrfs_node_key_ptr_offset(0),
2893                                       (dst_nritems) *
2894                                       sizeof(struct btrfs_key_ptr));
2895
2896         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
2897                              src_nritems - push_items, push_items);
2898         copy_extent_buffer(dst, src,
2899                            btrfs_node_key_ptr_offset(0),
2900                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2901                            push_items * sizeof(struct btrfs_key_ptr));
2902
2903         btrfs_set_header_nritems(src, src_nritems - push_items);
2904         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2905
2906         btrfs_mark_buffer_dirty(src);
2907         btrfs_mark_buffer_dirty(dst);
2908
2909         return ret;
2910 }
2911
2912 /*
2913  * helper function to insert a new root level in the tree.
2914  * A new node is allocated, and a single item is inserted to
2915  * point to the existing root
2916  *
2917  * returns zero on success or < 0 on failure.
2918  */
2919 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2920                            struct btrfs_root *root,
2921                            struct btrfs_path *path, int level)
2922 {
2923         u64 lower_gen;
2924         struct extent_buffer *lower;
2925         struct extent_buffer *c;
2926         struct extent_buffer *old;
2927         struct btrfs_disk_key lower_key;
2928
2929         BUG_ON(path->nodes[level]);
2930         BUG_ON(path->nodes[level-1] != root->node);
2931
2932         lower = path->nodes[level-1];
2933         if (level == 1)
2934                 btrfs_item_key(lower, &lower_key, 0);
2935         else
2936                 btrfs_node_key(lower, &lower_key, 0);
2937
2938         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2939                                    root->root_key.objectid, &lower_key,
2940                                    level, root->node->start, 0);
2941         if (IS_ERR(c))
2942                 return PTR_ERR(c);
2943
2944         root_add_used(root, root->nodesize);
2945
2946         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2947         btrfs_set_header_nritems(c, 1);
2948         btrfs_set_header_level(c, level);
2949         btrfs_set_header_bytenr(c, c->start);
2950         btrfs_set_header_generation(c, trans->transid);
2951         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2952         btrfs_set_header_owner(c, root->root_key.objectid);
2953
2954         write_extent_buffer(c, root->fs_info->fsid,
2955                             (unsigned long)btrfs_header_fsid(c),
2956                             BTRFS_FSID_SIZE);
2957
2958         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2959                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2960                             BTRFS_UUID_SIZE);
2961
2962         btrfs_set_node_key(c, &lower_key, 0);
2963         btrfs_set_node_blockptr(c, 0, lower->start);
2964         lower_gen = btrfs_header_generation(lower);
2965         WARN_ON(lower_gen != trans->transid);
2966
2967         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2968
2969         btrfs_mark_buffer_dirty(c);
2970
2971         old = root->node;
2972         tree_mod_log_set_root_pointer(root, c);
2973         rcu_assign_pointer(root->node, c);
2974
2975         /* the super has an extra ref to root->node */
2976         free_extent_buffer(old);
2977
2978         add_root_to_dirty_list(root);
2979         extent_buffer_get(c);
2980         path->nodes[level] = c;
2981         path->locks[level] = BTRFS_WRITE_LOCK;
2982         path->slots[level] = 0;
2983         return 0;
2984 }
2985
2986 /*
2987  * worker function to insert a single pointer in a node.
2988  * the node should have enough room for the pointer already
2989  *
2990  * slot and level indicate where you want the key to go, and
2991  * blocknr is the block the key points to.
2992  */
2993 static void insert_ptr(struct btrfs_trans_handle *trans,
2994                        struct btrfs_root *root, struct btrfs_path *path,
2995                        struct btrfs_disk_key *key, u64 bytenr,
2996                        int slot, int level)
2997 {
2998         struct extent_buffer *lower;
2999         int nritems;
3000         int ret;
3001
3002         BUG_ON(!path->nodes[level]);
3003         btrfs_assert_tree_locked(path->nodes[level]);
3004         lower = path->nodes[level];
3005         nritems = btrfs_header_nritems(lower);
3006         BUG_ON(slot > nritems);
3007         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3008         if (slot != nritems) {
3009                 if (level)
3010                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3011                                              slot, nritems - slot);
3012                 memmove_extent_buffer(lower,
3013                               btrfs_node_key_ptr_offset(slot + 1),
3014                               btrfs_node_key_ptr_offset(slot),
3015                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3016         }
3017         if (level) {
3018                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3019                                               MOD_LOG_KEY_ADD);
3020                 BUG_ON(ret < 0);
3021         }
3022         btrfs_set_node_key(lower, key, slot);
3023         btrfs_set_node_blockptr(lower, slot, bytenr);
3024         WARN_ON(trans->transid == 0);
3025         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3026         btrfs_set_header_nritems(lower, nritems + 1);
3027         btrfs_mark_buffer_dirty(lower);
3028 }
3029
3030 /*
3031  * split the node at the specified level in path in two.
3032  * The path is corrected to point to the appropriate node after the split
3033  *
3034  * Before splitting this tries to make some room in the node by pushing
3035  * left and right, if either one works, it returns right away.
3036  *
3037  * returns 0 on success and < 0 on failure
3038  */
3039 static noinline int split_node(struct btrfs_trans_handle *trans,
3040                                struct btrfs_root *root,
3041                                struct btrfs_path *path, int level)
3042 {
3043         struct extent_buffer *c;
3044         struct extent_buffer *split;
3045         struct btrfs_disk_key disk_key;
3046         int mid;
3047         int ret;
3048         u32 c_nritems;
3049
3050         c = path->nodes[level];
3051         WARN_ON(btrfs_header_generation(c) != trans->transid);
3052         if (c == root->node) {
3053                 /* trying to split the root, lets make a new one */
3054                 ret = insert_new_root(trans, root, path, level + 1);
3055                 if (ret)
3056                         return ret;
3057         } else {
3058                 ret = push_nodes_for_insert(trans, root, path, level);
3059                 c = path->nodes[level];
3060                 if (!ret && btrfs_header_nritems(c) <
3061                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3062                         return 0;
3063                 if (ret < 0)
3064                         return ret;
3065         }
3066
3067         c_nritems = btrfs_header_nritems(c);
3068         mid = (c_nritems + 1) / 2;
3069         btrfs_node_key(c, &disk_key, mid);
3070
3071         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3072                                         root->root_key.objectid,
3073                                         &disk_key, level, c->start, 0);
3074         if (IS_ERR(split))
3075                 return PTR_ERR(split);
3076
3077         root_add_used(root, root->nodesize);
3078
3079         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3080         btrfs_set_header_level(split, btrfs_header_level(c));
3081         btrfs_set_header_bytenr(split, split->start);
3082         btrfs_set_header_generation(split, trans->transid);
3083         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3084         btrfs_set_header_owner(split, root->root_key.objectid);
3085         write_extent_buffer(split, root->fs_info->fsid,
3086                             (unsigned long)btrfs_header_fsid(split),
3087                             BTRFS_FSID_SIZE);
3088         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3089                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
3090                             BTRFS_UUID_SIZE);
3091
3092         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3093         copy_extent_buffer(split, c,
3094                            btrfs_node_key_ptr_offset(0),
3095                            btrfs_node_key_ptr_offset(mid),
3096                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3097         btrfs_set_header_nritems(split, c_nritems - mid);
3098         btrfs_set_header_nritems(c, mid);
3099         ret = 0;
3100
3101         btrfs_mark_buffer_dirty(c);
3102         btrfs_mark_buffer_dirty(split);
3103
3104         insert_ptr(trans, root, path, &disk_key, split->start,
3105                    path->slots[level + 1] + 1, level + 1);
3106
3107         if (path->slots[level] >= mid) {
3108                 path->slots[level] -= mid;
3109                 btrfs_tree_unlock(c);
3110                 free_extent_buffer(c);
3111                 path->nodes[level] = split;
3112                 path->slots[level + 1] += 1;
3113         } else {
3114                 btrfs_tree_unlock(split);
3115                 free_extent_buffer(split);
3116         }
3117         return ret;
3118 }
3119
3120 /*
3121  * how many bytes are required to store the items in a leaf.  start
3122  * and nr indicate which items in the leaf to check.  This totals up the
3123  * space used both by the item structs and the item data
3124  */
3125 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3126 {
3127         int data_len;
3128         int nritems = btrfs_header_nritems(l);
3129         int end = min(nritems, start + nr) - 1;
3130
3131         if (!nr)
3132                 return 0;
3133         data_len = btrfs_item_end_nr(l, start);
3134         data_len = data_len - btrfs_item_offset_nr(l, end);
3135         data_len += sizeof(struct btrfs_item) * nr;
3136         WARN_ON(data_len < 0);
3137         return data_len;
3138 }
3139
3140 /*
3141  * The space between the end of the leaf items and
3142  * the start of the leaf data.  IOW, how much room
3143  * the leaf has left for both items and data
3144  */
3145 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3146                                    struct extent_buffer *leaf)
3147 {
3148         int nritems = btrfs_header_nritems(leaf);
3149         int ret;
3150         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3151         if (ret < 0) {
3152                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3153                        "used %d nritems %d\n",
3154                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3155                        leaf_space_used(leaf, 0, nritems), nritems);
3156         }
3157         return ret;
3158 }
3159
3160 /*
3161  * min slot controls the lowest index we're willing to push to the
3162  * right.  We'll push up to and including min_slot, but no lower
3163  */
3164 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3165                                       struct btrfs_root *root,
3166                                       struct btrfs_path *path,
3167                                       int data_size, int empty,
3168                                       struct extent_buffer *right,
3169                                       int free_space, u32 left_nritems,
3170                                       u32 min_slot)
3171 {
3172         struct extent_buffer *left = path->nodes[0];
3173         struct extent_buffer *upper = path->nodes[1];
3174         struct btrfs_map_token token;
3175         struct btrfs_disk_key disk_key;
3176         int slot;
3177         u32 i;
3178         int push_space = 0;
3179         int push_items = 0;
3180         struct btrfs_item *item;
3181         u32 nr;
3182         u32 right_nritems;
3183         u32 data_end;
3184         u32 this_item_size;
3185
3186         btrfs_init_map_token(&token);
3187
3188         if (empty)
3189                 nr = 0;
3190         else
3191                 nr = max_t(u32, 1, min_slot);
3192
3193         if (path->slots[0] >= left_nritems)
3194                 push_space += data_size;
3195
3196         slot = path->slots[1];
3197         i = left_nritems - 1;
3198         while (i >= nr) {
3199                 item = btrfs_item_nr(left, i);
3200
3201                 if (!empty && push_items > 0) {
3202                         if (path->slots[0] > i)
3203                                 break;
3204                         if (path->slots[0] == i) {
3205                                 int space = btrfs_leaf_free_space(root, left);
3206                                 if (space + push_space * 2 > free_space)
3207                                         break;
3208                         }
3209                 }
3210
3211                 if (path->slots[0] == i)
3212                         push_space += data_size;
3213
3214                 this_item_size = btrfs_item_size(left, item);
3215                 if (this_item_size + sizeof(*item) + push_space > free_space)
3216                         break;
3217
3218                 push_items++;
3219                 push_space += this_item_size + sizeof(*item);
3220                 if (i == 0)
3221                         break;
3222                 i--;
3223         }
3224
3225         if (push_items == 0)
3226                 goto out_unlock;
3227
3228         if (!empty && push_items == left_nritems)
3229                 WARN_ON(1);
3230
3231         /* push left to right */
3232         right_nritems = btrfs_header_nritems(right);
3233
3234         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3235         push_space -= leaf_data_end(root, left);
3236
3237         /* make room in the right data area */
3238         data_end = leaf_data_end(root, right);
3239         memmove_extent_buffer(right,
3240                               btrfs_leaf_data(right) + data_end - push_space,
3241                               btrfs_leaf_data(right) + data_end,
3242                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3243
3244         /* copy from the left data area */
3245         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3246                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3247                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3248                      push_space);
3249
3250         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3251                               btrfs_item_nr_offset(0),
3252                               right_nritems * sizeof(struct btrfs_item));
3253
3254         /* copy the items from left to right */
3255         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3256                    btrfs_item_nr_offset(left_nritems - push_items),
3257                    push_items * sizeof(struct btrfs_item));
3258
3259         /* update the item pointers */
3260         right_nritems += push_items;
3261         btrfs_set_header_nritems(right, right_nritems);
3262         push_space = BTRFS_LEAF_DATA_SIZE(root);
3263         for (i = 0; i < right_nritems; i++) {
3264                 item = btrfs_item_nr(right, i);
3265                 push_space -= btrfs_token_item_size(right, item, &token);
3266                 btrfs_set_token_item_offset(right, item, push_space, &token);
3267         }
3268
3269         left_nritems -= push_items;
3270         btrfs_set_header_nritems(left, left_nritems);
3271
3272         if (left_nritems)
3273                 btrfs_mark_buffer_dirty(left);
3274         else
3275                 clean_tree_block(trans, root, left);
3276
3277         btrfs_mark_buffer_dirty(right);
3278
3279         btrfs_item_key(right, &disk_key, 0);
3280         btrfs_set_node_key(upper, &disk_key, slot + 1);
3281         btrfs_mark_buffer_dirty(upper);
3282
3283         /* then fixup the leaf pointer in the path */
3284         if (path->slots[0] >= left_nritems) {
3285                 path->slots[0] -= left_nritems;
3286                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3287                         clean_tree_block(trans, root, path->nodes[0]);
3288                 btrfs_tree_unlock(path->nodes[0]);
3289                 free_extent_buffer(path->nodes[0]);
3290                 path->nodes[0] = right;
3291                 path->slots[1] += 1;
3292         } else {
3293                 btrfs_tree_unlock(right);
3294                 free_extent_buffer(right);
3295         }
3296         return 0;
3297
3298 out_unlock:
3299         btrfs_tree_unlock(right);
3300         free_extent_buffer(right);
3301         return 1;
3302 }
3303
3304 /*
3305  * push some data in the path leaf to the right, trying to free up at
3306  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3307  *
3308  * returns 1 if the push failed because the other node didn't have enough
3309  * room, 0 if everything worked out and < 0 if there were major errors.
3310  *
3311  * this will push starting from min_slot to the end of the leaf.  It won't
3312  * push any slot lower than min_slot
3313  */
3314 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3315                            *root, struct btrfs_path *path,
3316                            int min_data_size, int data_size,
3317                            int empty, u32 min_slot)
3318 {
3319         struct extent_buffer *left = path->nodes[0];
3320         struct extent_buffer *right;
3321         struct extent_buffer *upper;
3322         int slot;
3323         int free_space;
3324         u32 left_nritems;
3325         int ret;
3326
3327         if (!path->nodes[1])
3328                 return 1;
3329
3330         slot = path->slots[1];
3331         upper = path->nodes[1];
3332         if (slot >= btrfs_header_nritems(upper) - 1)
3333                 return 1;
3334
3335         btrfs_assert_tree_locked(path->nodes[1]);
3336
3337         right = read_node_slot(root, upper, slot + 1);
3338         if (right == NULL)
3339                 return 1;
3340
3341         btrfs_tree_lock(right);
3342         btrfs_set_lock_blocking(right);
3343
3344         free_space = btrfs_leaf_free_space(root, right);
3345         if (free_space < data_size)
3346                 goto out_unlock;
3347
3348         /* cow and double check */
3349         ret = btrfs_cow_block(trans, root, right, upper,
3350                               slot + 1, &right);
3351         if (ret)
3352                 goto out_unlock;
3353
3354         free_space = btrfs_leaf_free_space(root, right);
3355         if (free_space < data_size)
3356                 goto out_unlock;
3357
3358         left_nritems = btrfs_header_nritems(left);
3359         if (left_nritems == 0)
3360                 goto out_unlock;
3361
3362         return __push_leaf_right(trans, root, path, min_data_size, empty,
3363                                 right, free_space, left_nritems, min_slot);
3364 out_unlock:
3365         btrfs_tree_unlock(right);
3366         free_extent_buffer(right);
3367         return 1;
3368 }
3369
3370 /*
3371  * push some data in the path leaf to the left, trying to free up at
3372  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3373  *
3374  * max_slot can put a limit on how far into the leaf we'll push items.  The
3375  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3376  * items
3377  */
3378 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3379                                      struct btrfs_root *root,
3380                                      struct btrfs_path *path, int data_size,
3381                                      int empty, struct extent_buffer *left,
3382                                      int free_space, u32 right_nritems,
3383                                      u32 max_slot)
3384 {
3385         struct btrfs_disk_key disk_key;
3386         struct extent_buffer *right = path->nodes[0];
3387         int i;
3388         int push_space = 0;
3389         int push_items = 0;
3390         struct btrfs_item *item;
3391         u32 old_left_nritems;
3392         u32 nr;
3393         int ret = 0;
3394         u32 this_item_size;
3395         u32 old_left_item_size;
3396         struct btrfs_map_token token;
3397
3398         btrfs_init_map_token(&token);
3399
3400         if (empty)
3401                 nr = min(right_nritems, max_slot);
3402         else
3403                 nr = min(right_nritems - 1, max_slot);
3404
3405         for (i = 0; i < nr; i++) {
3406                 item = btrfs_item_nr(right, i);
3407
3408                 if (!empty && push_items > 0) {
3409                         if (path->slots[0] < i)
3410                                 break;
3411                         if (path->slots[0] == i) {
3412                                 int space = btrfs_leaf_free_space(root, right);
3413                                 if (space + push_space * 2 > free_space)
3414                                         break;
3415                         }
3416                 }
3417
3418                 if (path->slots[0] == i)
3419                         push_space += data_size;
3420
3421                 this_item_size = btrfs_item_size(right, item);
3422                 if (this_item_size + sizeof(*item) + push_space > free_space)
3423                         break;
3424
3425                 push_items++;
3426                 push_space += this_item_size + sizeof(*item);
3427         }
3428
3429         if (push_items == 0) {
3430                 ret = 1;
3431                 goto out;
3432         }
3433         if (!empty && push_items == btrfs_header_nritems(right))
3434                 WARN_ON(1);
3435
3436         /* push data from right to left */
3437         copy_extent_buffer(left, right,
3438                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3439                            btrfs_item_nr_offset(0),
3440                            push_items * sizeof(struct btrfs_item));
3441
3442         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3443                      btrfs_item_offset_nr(right, push_items - 1);
3444
3445         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3446                      leaf_data_end(root, left) - push_space,
3447                      btrfs_leaf_data(right) +
3448                      btrfs_item_offset_nr(right, push_items - 1),
3449                      push_space);
3450         old_left_nritems = btrfs_header_nritems(left);
3451         BUG_ON(old_left_nritems <= 0);
3452
3453         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3454         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3455                 u32 ioff;
3456
3457                 item = btrfs_item_nr(left, i);
3458
3459                 ioff = btrfs_token_item_offset(left, item, &token);
3460                 btrfs_set_token_item_offset(left, item,
3461                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3462                       &token);
3463         }
3464         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3465
3466         /* fixup right node */
3467         if (push_items > right_nritems) {
3468                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
3469                        right_nritems);
3470                 WARN_ON(1);
3471         }
3472
3473         if (push_items < right_nritems) {
3474                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3475                                                   leaf_data_end(root, right);
3476                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3477                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3478                                       btrfs_leaf_data(right) +
3479                                       leaf_data_end(root, right), push_space);
3480
3481                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3482                               btrfs_item_nr_offset(push_items),
3483                              (btrfs_header_nritems(right) - push_items) *
3484                              sizeof(struct btrfs_item));
3485         }
3486         right_nritems -= push_items;
3487         btrfs_set_header_nritems(right, right_nritems);
3488         push_space = BTRFS_LEAF_DATA_SIZE(root);
3489         for (i = 0; i < right_nritems; i++) {
3490                 item = btrfs_item_nr(right, i);
3491
3492                 push_space = push_space - btrfs_token_item_size(right,
3493                                                                 item, &token);
3494                 btrfs_set_token_item_offset(right, item, push_space, &token);
3495         }
3496
3497         btrfs_mark_buffer_dirty(left);
3498         if (right_nritems)
3499                 btrfs_mark_buffer_dirty(right);
3500         else
3501                 clean_tree_block(trans, root, right);
3502
3503         btrfs_item_key(right, &disk_key, 0);
3504         fixup_low_keys(trans, root, path, &disk_key, 1);
3505
3506         /* then fixup the leaf pointer in the path */
3507         if (path->slots[0] < push_items) {
3508                 path->slots[0] += old_left_nritems;
3509                 btrfs_tree_unlock(path->nodes[0]);
3510                 free_extent_buffer(path->nodes[0]);
3511                 path->nodes[0] = left;
3512                 path->slots[1] -= 1;
3513         } else {
3514                 btrfs_tree_unlock(left);
3515                 free_extent_buffer(left);
3516                 path->slots[0] -= push_items;
3517         }
3518         BUG_ON(path->slots[0] < 0);
3519         return ret;
3520 out:
3521         btrfs_tree_unlock(left);
3522         free_extent_buffer(left);
3523         return ret;
3524 }
3525
3526 /*
3527  * push some data in the path leaf to the left, trying to free up at
3528  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3529  *
3530  * max_slot can put a limit on how far into the leaf we'll push items.  The
3531  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3532  * items
3533  */
3534 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3535                           *root, struct btrfs_path *path, int min_data_size,
3536                           int data_size, int empty, u32 max_slot)
3537 {
3538         struct extent_buffer *right = path->nodes[0];
3539         struct extent_buffer *left;
3540         int slot;
3541         int free_space;
3542         u32 right_nritems;
3543         int ret = 0;
3544
3545         slot = path->slots[1];
3546         if (slot == 0)
3547                 return 1;
3548         if (!path->nodes[1])
3549                 return 1;
3550
3551         right_nritems = btrfs_header_nritems(right);
3552         if (right_nritems == 0)
3553                 return 1;
3554
3555         btrfs_assert_tree_locked(path->nodes[1]);
3556
3557         left = read_node_slot(root, path->nodes[1], slot - 1);
3558         if (left == NULL)
3559                 return 1;
3560
3561         btrfs_tree_lock(left);
3562         btrfs_set_lock_blocking(left);
3563
3564         free_space = btrfs_leaf_free_space(root, left);
3565         if (free_space < data_size) {
3566                 ret = 1;
3567                 goto out;
3568         }
3569
3570         /* cow and double check */
3571         ret = btrfs_cow_block(trans, root, left,
3572                               path->nodes[1], slot - 1, &left);
3573         if (ret) {
3574                 /* we hit -ENOSPC, but it isn't fatal here */
3575                 if (ret == -ENOSPC)
3576                         ret = 1;
3577                 goto out;
3578         }
3579
3580         free_space = btrfs_leaf_free_space(root, left);
3581         if (free_space < data_size) {
3582                 ret = 1;
3583                 goto out;
3584         }
3585
3586         return __push_leaf_left(trans, root, path, min_data_size,
3587                                empty, left, free_space, right_nritems,
3588                                max_slot);
3589 out:
3590         btrfs_tree_unlock(left);
3591         free_extent_buffer(left);
3592         return ret;
3593 }
3594
3595 /*
3596  * split the path's leaf in two, making sure there is at least data_size
3597  * available for the resulting leaf level of the path.
3598  */
3599 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3600                                     struct btrfs_root *root,
3601                                     struct btrfs_path *path,
3602                                     struct extent_buffer *l,
3603                                     struct extent_buffer *right,
3604                                     int slot, int mid, int nritems)
3605 {
3606         int data_copy_size;
3607         int rt_data_off;
3608         int i;
3609         struct btrfs_disk_key disk_key;
3610         struct btrfs_map_token token;
3611
3612         btrfs_init_map_token(&token);
3613
3614         nritems = nritems - mid;
3615         btrfs_set_header_nritems(right, nritems);
3616         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3617
3618         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3619                            btrfs_item_nr_offset(mid),
3620                            nritems * sizeof(struct btrfs_item));
3621
3622         copy_extent_buffer(right, l,
3623                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3624                      data_copy_size, btrfs_leaf_data(l) +
3625                      leaf_data_end(root, l), data_copy_size);
3626
3627         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3628                       btrfs_item_end_nr(l, mid);
3629
3630         for (i = 0; i < nritems; i++) {
3631                 struct btrfs_item *item = btrfs_item_nr(right, i);
3632                 u32 ioff;
3633
3634                 ioff = btrfs_token_item_offset(right, item, &token);
3635                 btrfs_set_token_item_offset(right, item,
3636                                             ioff + rt_data_off, &token);
3637         }
3638
3639         btrfs_set_header_nritems(l, mid);
3640         btrfs_item_key(right, &disk_key, 0);
3641         insert_ptr(trans, root, path, &disk_key, right->start,
3642                    path->slots[1] + 1, 1);
3643
3644         btrfs_mark_buffer_dirty(right);
3645         btrfs_mark_buffer_dirty(l);
3646         BUG_ON(path->slots[0] != slot);
3647
3648         if (mid <= slot) {
3649                 btrfs_tree_unlock(path->nodes[0]);
3650                 free_extent_buffer(path->nodes[0]);
3651                 path->nodes[0] = right;
3652                 path->slots[0] -= mid;
3653                 path->slots[1] += 1;
3654         } else {
3655                 btrfs_tree_unlock(right);
3656                 free_extent_buffer(right);
3657         }
3658
3659         BUG_ON(path->slots[0] < 0);
3660 }
3661
3662 /*
3663  * double splits happen when we need to insert a big item in the middle
3664  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3665  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3666  *          A                 B                 C
3667  *
3668  * We avoid this by trying to push the items on either side of our target
3669  * into the adjacent leaves.  If all goes well we can avoid the double split
3670  * completely.
3671  */
3672 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3673                                           struct btrfs_root *root,
3674                                           struct btrfs_path *path,
3675                                           int data_size)
3676 {
3677         int ret;
3678         int progress = 0;
3679         int slot;
3680         u32 nritems;
3681
3682         slot = path->slots[0];
3683
3684         /*
3685          * try to push all the items after our slot into the
3686          * right leaf
3687          */
3688         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3689         if (ret < 0)
3690                 return ret;
3691
3692         if (ret == 0)
3693                 progress++;
3694
3695         nritems = btrfs_header_nritems(path->nodes[0]);
3696         /*
3697          * our goal is to get our slot at the start or end of a leaf.  If
3698          * we've done so we're done
3699          */
3700         if (path->slots[0] == 0 || path->slots[0] == nritems)
3701                 return 0;
3702
3703         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3704                 return 0;
3705
3706         /* try to push all the items before our slot into the next leaf */
3707         slot = path->slots[0];
3708         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3709         if (ret < 0)
3710                 return ret;
3711
3712         if (ret == 0)
3713                 progress++;
3714
3715         if (progress)
3716                 return 0;
3717         return 1;
3718 }
3719
3720 /*
3721  * split the path's leaf in two, making sure there is at least data_size
3722  * available for the resulting leaf level of the path.
3723  *
3724  * returns 0 if all went well and < 0 on failure.
3725  */
3726 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3727                                struct btrfs_root *root,
3728                                struct btrfs_key *ins_key,
3729                                struct btrfs_path *path, int data_size,
3730                                int extend)
3731 {
3732         struct btrfs_disk_key disk_key;
3733         struct extent_buffer *l;
3734         u32 nritems;
3735         int mid;
3736         int slot;
3737         struct extent_buffer *right;
3738         int ret = 0;
3739         int wret;
3740         int split;
3741         int num_doubles = 0;
3742         int tried_avoid_double = 0;
3743
3744         l = path->nodes[0];
3745         slot = path->slots[0];
3746         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3747             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3748                 return -EOVERFLOW;
3749
3750         /* first try to make some room by pushing left and right */
3751         if (data_size) {
3752                 wret = push_leaf_right(trans, root, path, data_size,
3753                                        data_size, 0, 0);
3754                 if (wret < 0)
3755                         return wret;
3756                 if (wret) {
3757                         wret = push_leaf_left(trans, root, path, data_size,
3758                                               data_size, 0, (u32)-1);
3759                         if (wret < 0)
3760                                 return wret;
3761                 }
3762                 l = path->nodes[0];
3763
3764                 /* did the pushes work? */
3765                 if (btrfs_leaf_free_space(root, l) >= data_size)
3766                         return 0;
3767         }
3768
3769         if (!path->nodes[1]) {
3770                 ret = insert_new_root(trans, root, path, 1);
3771                 if (ret)
3772                         return ret;
3773         }
3774 again:
3775         split = 1;
3776         l = path->nodes[0];
3777         slot = path->slots[0];
3778         nritems = btrfs_header_nritems(l);
3779         mid = (nritems + 1) / 2;
3780
3781         if (mid <= slot) {
3782                 if (nritems == 1 ||
3783                     leaf_space_used(l, mid, nritems - mid) + data_size >
3784                         BTRFS_LEAF_DATA_SIZE(root)) {
3785                         if (slot >= nritems) {
3786                                 split = 0;
3787                         } else {
3788                                 mid = slot;
3789                                 if (mid != nritems &&
3790                                     leaf_space_used(l, mid, nritems - mid) +
3791                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3792                                         if (data_size && !tried_avoid_double)
3793                                                 goto push_for_double;
3794                                         split = 2;
3795                                 }
3796                         }
3797                 }
3798         } else {
3799                 if (leaf_space_used(l, 0, mid) + data_size >
3800                         BTRFS_LEAF_DATA_SIZE(root)) {
3801                         if (!extend && data_size && slot == 0) {
3802                                 split = 0;
3803                         } else if ((extend || !data_size) && slot == 0) {
3804                                 mid = 1;
3805                         } else {
3806                                 mid = slot;
3807                                 if (mid != nritems &&
3808                                     leaf_space_used(l, mid, nritems - mid) +
3809                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3810                                         if (data_size && !tried_avoid_double)
3811                                                 goto push_for_double;
3812                                         split = 2 ;
3813                                 }
3814                         }
3815                 }
3816         }
3817
3818         if (split == 0)
3819                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3820         else
3821                 btrfs_item_key(l, &disk_key, mid);
3822
3823         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3824                                         root->root_key.objectid,
3825                                         &disk_key, 0, l->start, 0);
3826         if (IS_ERR(right))
3827                 return PTR_ERR(right);
3828
3829         root_add_used(root, root->leafsize);
3830
3831         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3832         btrfs_set_header_bytenr(right, right->start);
3833         btrfs_set_header_generation(right, trans->transid);
3834         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3835         btrfs_set_header_owner(right, root->root_key.objectid);
3836         btrfs_set_header_level(right, 0);
3837         write_extent_buffer(right, root->fs_info->fsid,
3838                             (unsigned long)btrfs_header_fsid(right),
3839                             BTRFS_FSID_SIZE);
3840
3841         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3842                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
3843                             BTRFS_UUID_SIZE);
3844
3845         if (split == 0) {
3846                 if (mid <= slot) {
3847                         btrfs_set_header_nritems(right, 0);
3848                         insert_ptr(trans, root, path, &disk_key, right->start,
3849                                    path->slots[1] + 1, 1);
3850                         btrfs_tree_unlock(path->nodes[0]);
3851                         free_extent_buffer(path->nodes[0]);
3852                         path->nodes[0] = right;
3853                         path->slots[0] = 0;
3854                         path->slots[1] += 1;
3855                 } else {
3856                         btrfs_set_header_nritems(right, 0);
3857                         insert_ptr(trans, root, path, &disk_key, right->start,
3858                                           path->slots[1], 1);
3859                         btrfs_tree_unlock(path->nodes[0]);
3860                         free_extent_buffer(path->nodes[0]);
3861                         path->nodes[0] = right;
3862                         path->slots[0] = 0;
3863                         if (path->slots[1] == 0)
3864                                 fixup_low_keys(trans, root, path,
3865                                                &disk_key, 1);
3866                 }
3867                 btrfs_mark_buffer_dirty(right);
3868                 return ret;
3869         }
3870
3871         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3872
3873         if (split == 2) {
3874                 BUG_ON(num_doubles != 0);
3875                 num_doubles++;
3876                 goto again;
3877         }
3878
3879         return 0;
3880
3881 push_for_double:
3882         push_for_double_split(trans, root, path, data_size);
3883         tried_avoid_double = 1;
3884         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3885                 return 0;
3886         goto again;
3887 }
3888
3889 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3890                                          struct btrfs_root *root,
3891                                          struct btrfs_path *path, int ins_len)
3892 {
3893         struct btrfs_key key;
3894         struct extent_buffer *leaf;
3895         struct btrfs_file_extent_item *fi;
3896         u64 extent_len = 0;
3897         u32 item_size;
3898         int ret;
3899
3900         leaf = path->nodes[0];
3901         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3902
3903         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3904                key.type != BTRFS_EXTENT_CSUM_KEY);
3905
3906         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3907                 return 0;
3908
3909         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3910         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3911                 fi = btrfs_item_ptr(leaf, path->slots[0],
3912                                     struct btrfs_file_extent_item);
3913                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3914         }
3915         btrfs_release_path(path);
3916
3917         path->keep_locks = 1;
3918         path->search_for_split = 1;
3919         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3920         path->search_for_split = 0;
3921         if (ret < 0)
3922                 goto err;
3923
3924         ret = -EAGAIN;
3925         leaf = path->nodes[0];
3926         /* if our item isn't there or got smaller, return now */
3927         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3928                 goto err;
3929
3930         /* the leaf has  changed, it now has room.  return now */
3931         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3932                 goto err;
3933
3934         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3935                 fi = btrfs_item_ptr(leaf, path->slots[0],
3936                                     struct btrfs_file_extent_item);
3937                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3938                         goto err;
3939         }
3940
3941         btrfs_set_path_blocking(path);
3942         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3943         if (ret)
3944                 goto err;
3945
3946         path->keep_locks = 0;
3947         btrfs_unlock_up_safe(path, 1);
3948         return 0;
3949 err:
3950         path->keep_locks = 0;
3951         return ret;
3952 }
3953
3954 static noinline int split_item(struct btrfs_trans_handle *trans,
3955                                struct btrfs_root *root,
3956                                struct btrfs_path *path,
3957                                struct btrfs_key *new_key,
3958                                unsigned long split_offset)
3959 {
3960         struct extent_buffer *leaf;
3961         struct btrfs_item *item;
3962         struct btrfs_item *new_item;
3963         int slot;
3964         char *buf;
3965         u32 nritems;
3966         u32 item_size;
3967         u32 orig_offset;
3968         struct btrfs_disk_key disk_key;
3969
3970         leaf = path->nodes[0];
3971         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3972
3973         btrfs_set_path_blocking(path);
3974
3975         item = btrfs_item_nr(leaf, path->slots[0]);
3976         orig_offset = btrfs_item_offset(leaf, item);
3977         item_size = btrfs_item_size(leaf, item);
3978
3979         buf = kmalloc(item_size, GFP_NOFS);
3980         if (!buf)
3981                 return -ENOMEM;
3982
3983         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3984                             path->slots[0]), item_size);
3985
3986         slot = path->slots[0] + 1;
3987         nritems = btrfs_header_nritems(leaf);
3988         if (slot != nritems) {
3989                 /* shift the items */
3990                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3991                                 btrfs_item_nr_offset(slot),
3992                                 (nritems - slot) * sizeof(struct btrfs_item));
3993         }
3994
3995         btrfs_cpu_key_to_disk(&disk_key, new_key);
3996         btrfs_set_item_key(leaf, &disk_key, slot);
3997
3998         new_item = btrfs_item_nr(leaf, slot);
3999
4000         btrfs_set_item_offset(leaf, new_item, orig_offset);
4001         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4002
4003         btrfs_set_item_offset(leaf, item,
4004                               orig_offset + item_size - split_offset);
4005         btrfs_set_item_size(leaf, item, split_offset);
4006
4007         btrfs_set_header_nritems(leaf, nritems + 1);
4008
4009         /* write the data for the start of the original item */
4010         write_extent_buffer(leaf, buf,
4011                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4012                             split_offset);
4013
4014         /* write the data for the new item */
4015         write_extent_buffer(leaf, buf + split_offset,
4016                             btrfs_item_ptr_offset(leaf, slot),
4017                             item_size - split_offset);
4018         btrfs_mark_buffer_dirty(leaf);
4019
4020         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4021         kfree(buf);
4022         return 0;
4023 }
4024
4025 /*
4026  * This function splits a single item into two items,
4027  * giving 'new_key' to the new item and splitting the
4028  * old one at split_offset (from the start of the item).
4029  *
4030  * The path may be released by this operation.  After
4031  * the split, the path is pointing to the old item.  The
4032  * new item is going to be in the same node as the old one.
4033  *
4034  * Note, the item being split must be smaller enough to live alone on
4035  * a tree block with room for one extra struct btrfs_item
4036  *
4037  * This allows us to split the item in place, keeping a lock on the
4038  * leaf the entire time.
4039  */
4040 int btrfs_split_item(struct btrfs_trans_handle *trans,
4041                      struct btrfs_root *root,
4042                      struct btrfs_path *path,
4043                      struct btrfs_key *new_key,
4044                      unsigned long split_offset)
4045 {
4046         int ret;
4047         ret = setup_leaf_for_split(trans, root, path,
4048                                    sizeof(struct btrfs_item));
4049         if (ret)
4050                 return ret;
4051
4052         ret = split_item(trans, root, path, new_key, split_offset);
4053         return ret;
4054 }
4055
4056 /*
4057  * This function duplicate a item, giving 'new_key' to the new item.
4058  * It guarantees both items live in the same tree leaf and the new item
4059  * is contiguous with the original item.
4060  *
4061  * This allows us to split file extent in place, keeping a lock on the
4062  * leaf the entire time.
4063  */
4064 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4065                          struct btrfs_root *root,
4066                          struct btrfs_path *path,
4067                          struct btrfs_key *new_key)
4068 {
4069         struct extent_buffer *leaf;
4070         int ret;
4071         u32 item_size;
4072
4073         leaf = path->nodes[0];
4074         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4075         ret = setup_leaf_for_split(trans, root, path,
4076                                    item_size + sizeof(struct btrfs_item));
4077         if (ret)
4078                 return ret;
4079
4080         path->slots[0]++;
4081         setup_items_for_insert(trans, root, path, new_key, &item_size,
4082                                item_size, item_size +
4083                                sizeof(struct btrfs_item), 1);
4084         leaf = path->nodes[0];
4085         memcpy_extent_buffer(leaf,
4086                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4087                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4088                              item_size);
4089         return 0;
4090 }
4091
4092 /*
4093  * make the item pointed to by the path smaller.  new_size indicates
4094  * how small to make it, and from_end tells us if we just chop bytes
4095  * off the end of the item or if we shift the item to chop bytes off
4096  * the front.
4097  */
4098 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4099                          struct btrfs_root *root,
4100                          struct btrfs_path *path,
4101                          u32 new_size, int from_end)
4102 {
4103         int slot;
4104         struct extent_buffer *leaf;
4105         struct btrfs_item *item;
4106         u32 nritems;
4107         unsigned int data_end;
4108         unsigned int old_data_start;
4109         unsigned int old_size;
4110         unsigned int size_diff;
4111         int i;
4112         struct btrfs_map_token token;
4113
4114         btrfs_init_map_token(&token);
4115
4116         leaf = path->nodes[0];
4117         slot = path->slots[0];
4118
4119         old_size = btrfs_item_size_nr(leaf, slot);
4120         if (old_size == new_size)
4121                 return;
4122
4123         nritems = btrfs_header_nritems(leaf);
4124         data_end = leaf_data_end(root, leaf);
4125
4126         old_data_start = btrfs_item_offset_nr(leaf, slot);
4127
4128         size_diff = old_size - new_size;
4129
4130         BUG_ON(slot < 0);
4131         BUG_ON(slot >= nritems);
4132
4133         /*
4134          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4135          */
4136         /* first correct the data pointers */
4137         for (i = slot; i < nritems; i++) {
4138                 u32 ioff;
4139                 item = btrfs_item_nr(leaf, i);
4140
4141                 ioff = btrfs_token_item_offset(leaf, item, &token);
4142                 btrfs_set_token_item_offset(leaf, item,
4143                                             ioff + size_diff, &token);
4144         }
4145
4146         /* shift the data */
4147         if (from_end) {
4148                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4149                               data_end + size_diff, btrfs_leaf_data(leaf) +
4150                               data_end, old_data_start + new_size - data_end);
4151         } else {
4152                 struct btrfs_disk_key disk_key;
4153                 u64 offset;
4154
4155                 btrfs_item_key(leaf, &disk_key, slot);
4156
4157                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4158                         unsigned long ptr;
4159                         struct btrfs_file_extent_item *fi;
4160
4161                         fi = btrfs_item_ptr(leaf, slot,
4162                                             struct btrfs_file_extent_item);
4163                         fi = (struct btrfs_file_extent_item *)(
4164                              (unsigned long)fi - size_diff);
4165
4166                         if (btrfs_file_extent_type(leaf, fi) ==
4167                             BTRFS_FILE_EXTENT_INLINE) {
4168                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4169                                 memmove_extent_buffer(leaf, ptr,
4170                                       (unsigned long)fi,
4171                                       offsetof(struct btrfs_file_extent_item,
4172                                                  disk_bytenr));
4173                         }
4174                 }
4175
4176                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4177                               data_end + size_diff, btrfs_leaf_data(leaf) +
4178                               data_end, old_data_start - data_end);
4179
4180                 offset = btrfs_disk_key_offset(&disk_key);
4181                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4182                 btrfs_set_item_key(leaf, &disk_key, slot);
4183                 if (slot == 0)
4184                         fixup_low_keys(trans, root, path, &disk_key, 1);
4185         }
4186
4187         item = btrfs_item_nr(leaf, slot);
4188         btrfs_set_item_size(leaf, item, new_size);
4189         btrfs_mark_buffer_dirty(leaf);
4190
4191         if (btrfs_leaf_free_space(root, leaf) < 0) {
4192                 btrfs_print_leaf(root, leaf);
4193                 BUG();
4194         }
4195 }
4196
4197 /*
4198  * make the item pointed to by the path bigger, data_size is the new size.
4199  */
4200 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4201                        struct btrfs_root *root, struct btrfs_path *path,
4202                        u32 data_size)
4203 {
4204         int slot;
4205         struct extent_buffer *leaf;
4206         struct btrfs_item *item;
4207         u32 nritems;
4208         unsigned int data_end;
4209         unsigned int old_data;
4210         unsigned int old_size;
4211         int i;
4212         struct btrfs_map_token token;
4213
4214         btrfs_init_map_token(&token);
4215
4216         leaf = path->nodes[0];
4217
4218         nritems = btrfs_header_nritems(leaf);
4219         data_end = leaf_data_end(root, leaf);
4220
4221         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4222                 btrfs_print_leaf(root, leaf);
4223                 BUG();
4224         }
4225         slot = path->slots[0];
4226         old_data = btrfs_item_end_nr(leaf, slot);
4227
4228         BUG_ON(slot < 0);
4229         if (slot >= nritems) {
4230                 btrfs_print_leaf(root, leaf);
4231                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4232                        slot, nritems);
4233                 BUG_ON(1);
4234         }
4235
4236         /*
4237          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4238          */
4239         /* first correct the data pointers */
4240         for (i = slot; i < nritems; i++) {
4241                 u32 ioff;
4242                 item = btrfs_item_nr(leaf, i);
4243
4244                 ioff = btrfs_token_item_offset(leaf, item, &token);
4245                 btrfs_set_token_item_offset(leaf, item,
4246                                             ioff - data_size, &token);
4247         }
4248
4249         /* shift the data */
4250         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4251                       data_end - data_size, btrfs_leaf_data(leaf) +
4252                       data_end, old_data - data_end);
4253
4254         data_end = old_data;
4255         old_size = btrfs_item_size_nr(leaf, slot);
4256         item = btrfs_item_nr(leaf, slot);
4257         btrfs_set_item_size(leaf, item, old_size + data_size);
4258         btrfs_mark_buffer_dirty(leaf);
4259
4260         if (btrfs_leaf_free_space(root, leaf) < 0) {
4261                 btrfs_print_leaf(root, leaf);
4262                 BUG();
4263         }
4264 }
4265
4266 /*
4267  * Given a key and some data, insert items into the tree.
4268  * This does all the path init required, making room in the tree if needed.
4269  * Returns the number of keys that were inserted.
4270  */
4271 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
4272                             struct btrfs_root *root,
4273                             struct btrfs_path *path,
4274                             struct btrfs_key *cpu_key, u32 *data_size,
4275                             int nr)
4276 {
4277         struct extent_buffer *leaf;
4278         struct btrfs_item *item;
4279         int ret = 0;
4280         int slot;
4281         int i;
4282         u32 nritems;
4283         u32 total_data = 0;
4284         u32 total_size = 0;
4285         unsigned int data_end;
4286         struct btrfs_disk_key disk_key;
4287         struct btrfs_key found_key;
4288         struct btrfs_map_token token;
4289
4290         btrfs_init_map_token(&token);
4291
4292         for (i = 0; i < nr; i++) {
4293                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
4294                     BTRFS_LEAF_DATA_SIZE(root)) {
4295                         break;
4296                         nr = i;
4297                 }
4298                 total_data += data_size[i];
4299                 total_size += data_size[i] + sizeof(struct btrfs_item);
4300         }
4301         BUG_ON(nr == 0);
4302
4303         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4304         if (ret == 0)
4305                 return -EEXIST;
4306         if (ret < 0)
4307                 goto out;
4308
4309         leaf = path->nodes[0];
4310
4311         nritems = btrfs_header_nritems(leaf);
4312         data_end = leaf_data_end(root, leaf);
4313
4314         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4315                 for (i = nr; i >= 0; i--) {
4316                         total_data -= data_size[i];
4317                         total_size -= data_size[i] + sizeof(struct btrfs_item);
4318                         if (total_size < btrfs_leaf_free_space(root, leaf))
4319                                 break;
4320                 }
4321                 nr = i;
4322         }
4323
4324         slot = path->slots[0];
4325         BUG_ON(slot < 0);
4326
4327         if (slot != nritems) {
4328                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4329
4330                 item = btrfs_item_nr(leaf, slot);
4331                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4332
4333                 /* figure out how many keys we can insert in here */
4334                 total_data = data_size[0];
4335                 for (i = 1; i < nr; i++) {
4336                         if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
4337                                 break;
4338                         total_data += data_size[i];
4339                 }
4340                 nr = i;
4341
4342                 if (old_data < data_end) {
4343                         btrfs_print_leaf(root, leaf);
4344                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4345                                slot, old_data, data_end);
4346                         BUG_ON(1);
4347                 }
4348                 /*
4349                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4350                  */
4351                 /* first correct the data pointers */
4352                 for (i = slot; i < nritems; i++) {
4353                         u32 ioff;
4354
4355                         item = btrfs_item_nr(leaf, i);
4356                         ioff = btrfs_token_item_offset(leaf, item, &token);
4357                         btrfs_set_token_item_offset(leaf, item,
4358                                                     ioff - total_data, &token);
4359                 }
4360                 /* shift the items */
4361                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4362                               btrfs_item_nr_offset(slot),
4363                               (nritems - slot) * sizeof(struct btrfs_item));
4364
4365                 /* shift the data */
4366                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4367                               data_end - total_data, btrfs_leaf_data(leaf) +
4368                               data_end, old_data - data_end);
4369                 data_end = old_data;
4370         } else {
4371                 /*
4372                  * this sucks but it has to be done, if we are inserting at
4373                  * the end of the leaf only insert 1 of the items, since we
4374                  * have no way of knowing whats on the next leaf and we'd have
4375                  * to drop our current locks to figure it out
4376                  */
4377                 nr = 1;
4378         }
4379
4380         /* setup the item for the new data */
4381         for (i = 0; i < nr; i++) {
4382                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4383                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4384                 item = btrfs_item_nr(leaf, slot + i);
4385                 btrfs_set_token_item_offset(leaf, item,
4386                                             data_end - data_size[i], &token);
4387                 data_end -= data_size[i];
4388                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4389         }
4390         btrfs_set_header_nritems(leaf, nritems + nr);
4391         btrfs_mark_buffer_dirty(leaf);
4392
4393         ret = 0;
4394         if (slot == 0) {
4395                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4396                 fixup_low_keys(trans, root, path, &disk_key, 1);
4397         }
4398
4399         if (btrfs_leaf_free_space(root, leaf) < 0) {
4400                 btrfs_print_leaf(root, leaf);
4401                 BUG();
4402         }
4403 out:
4404         if (!ret)
4405                 ret = nr;
4406         return ret;
4407 }
4408
4409 /*
4410  * this is a helper for btrfs_insert_empty_items, the main goal here is
4411  * to save stack depth by doing the bulk of the work in a function
4412  * that doesn't call btrfs_search_slot
4413  */
4414 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4415                             struct btrfs_root *root, struct btrfs_path *path,
4416                             struct btrfs_key *cpu_key, u32 *data_size,
4417                             u32 total_data, u32 total_size, int nr)
4418 {
4419         struct btrfs_item *item;
4420         int i;
4421         u32 nritems;
4422         unsigned int data_end;
4423         struct btrfs_disk_key disk_key;
4424         struct extent_buffer *leaf;
4425         int slot;
4426         struct btrfs_map_token token;
4427
4428         btrfs_init_map_token(&token);
4429
4430         leaf = path->nodes[0];
4431         slot = path->slots[0];
4432
4433         nritems = btrfs_header_nritems(leaf);
4434         data_end = leaf_data_end(root, leaf);
4435
4436         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4437                 btrfs_print_leaf(root, leaf);
4438                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4439                        total_size, btrfs_leaf_free_space(root, leaf));
4440                 BUG();
4441         }
4442
4443         if (slot != nritems) {
4444                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4445
4446                 if (old_data < data_end) {
4447                         btrfs_print_leaf(root, leaf);
4448                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4449                                slot, old_data, data_end);
4450                         BUG_ON(1);
4451                 }
4452                 /*
4453                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4454                  */
4455                 /* first correct the data pointers */
4456                 for (i = slot; i < nritems; i++) {
4457                         u32 ioff;
4458
4459                         item = btrfs_item_nr(leaf, i);
4460                         ioff = btrfs_token_item_offset(leaf, item, &token);
4461                         btrfs_set_token_item_offset(leaf, item,
4462                                                     ioff - total_data, &token);
4463                 }
4464                 /* shift the items */
4465                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4466                               btrfs_item_nr_offset(slot),
4467                               (nritems - slot) * sizeof(struct btrfs_item));
4468
4469                 /* shift the data */
4470                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4471                               data_end - total_data, btrfs_leaf_data(leaf) +
4472                               data_end, old_data - data_end);
4473                 data_end = old_data;
4474         }
4475
4476         /* setup the item for the new data */
4477         for (i = 0; i < nr; i++) {
4478                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4479                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4480                 item = btrfs_item_nr(leaf, slot + i);
4481                 btrfs_set_token_item_offset(leaf, item,
4482                                             data_end - data_size[i], &token);
4483                 data_end -= data_size[i];
4484                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4485         }
4486
4487         btrfs_set_header_nritems(leaf, nritems + nr);
4488
4489         if (slot == 0) {
4490                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4491                 fixup_low_keys(trans, root, path, &disk_key, 1);
4492         }
4493         btrfs_unlock_up_safe(path, 1);
4494         btrfs_mark_buffer_dirty(leaf);
4495
4496         if (btrfs_leaf_free_space(root, leaf) < 0) {
4497                 btrfs_print_leaf(root, leaf);
4498                 BUG();
4499         }
4500 }
4501
4502 /*
4503  * Given a key and some data, insert items into the tree.
4504  * This does all the path init required, making room in the tree if needed.
4505  */
4506 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4507                             struct btrfs_root *root,
4508                             struct btrfs_path *path,
4509                             struct btrfs_key *cpu_key, u32 *data_size,
4510                             int nr)
4511 {
4512         int ret = 0;
4513         int slot;
4514         int i;
4515         u32 total_size = 0;
4516         u32 total_data = 0;
4517
4518         for (i = 0; i < nr; i++)
4519                 total_data += data_size[i];
4520
4521         total_size = total_data + (nr * sizeof(struct btrfs_item));
4522         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4523         if (ret == 0)
4524                 return -EEXIST;
4525         if (ret < 0)
4526                 return ret;
4527
4528         slot = path->slots[0];
4529         BUG_ON(slot < 0);
4530
4531         setup_items_for_insert(trans, root, path, cpu_key, data_size,
4532                                total_data, total_size, nr);
4533         return 0;
4534 }
4535
4536 /*
4537  * Given a key and some data, insert an item into the tree.
4538  * This does all the path init required, making room in the tree if needed.
4539  */
4540 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4541                       *root, struct btrfs_key *cpu_key, void *data, u32
4542                       data_size)
4543 {
4544         int ret = 0;
4545         struct btrfs_path *path;
4546         struct extent_buffer *leaf;
4547         unsigned long ptr;
4548
4549         path = btrfs_alloc_path();
4550         if (!path)
4551                 return -ENOMEM;
4552         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4553         if (!ret) {
4554                 leaf = path->nodes[0];
4555                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4556                 write_extent_buffer(leaf, data, ptr, data_size);
4557                 btrfs_mark_buffer_dirty(leaf);
4558         }
4559         btrfs_free_path(path);
4560         return ret;
4561 }
4562
4563 /*
4564  * delete the pointer from a given node.
4565  *
4566  * the tree should have been previously balanced so the deletion does not
4567  * empty a node.
4568  */
4569 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4570                     struct btrfs_path *path, int level, int slot,
4571                     int tree_mod_log)
4572 {
4573         struct extent_buffer *parent = path->nodes[level];
4574         u32 nritems;
4575         int ret;
4576
4577         nritems = btrfs_header_nritems(parent);
4578         if (slot != nritems - 1) {
4579                 if (tree_mod_log && level)
4580                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4581                                              slot + 1, nritems - slot - 1);
4582                 memmove_extent_buffer(parent,
4583                               btrfs_node_key_ptr_offset(slot),
4584                               btrfs_node_key_ptr_offset(slot + 1),
4585                               sizeof(struct btrfs_key_ptr) *
4586                               (nritems - slot - 1));
4587         } else if (tree_mod_log && level) {
4588                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4589                                               MOD_LOG_KEY_REMOVE);
4590                 BUG_ON(ret < 0);
4591         }
4592
4593         nritems--;
4594         btrfs_set_header_nritems(parent, nritems);
4595         if (nritems == 0 && parent == root->node) {
4596                 BUG_ON(btrfs_header_level(root->node) != 1);
4597                 /* just turn the root into a leaf and break */
4598                 btrfs_set_header_level(root->node, 0);
4599         } else if (slot == 0) {
4600                 struct btrfs_disk_key disk_key;
4601
4602                 btrfs_node_key(parent, &disk_key, 0);
4603                 fixup_low_keys(trans, root, path, &disk_key, level + 1);
4604         }
4605         btrfs_mark_buffer_dirty(parent);
4606 }
4607
4608 /*
4609  * a helper function to delete the leaf pointed to by path->slots[1] and
4610  * path->nodes[1].
4611  *
4612  * This deletes the pointer in path->nodes[1] and frees the leaf
4613  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4614  *
4615  * The path must have already been setup for deleting the leaf, including
4616  * all the proper balancing.  path->nodes[1] must be locked.
4617  */
4618 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4619                                     struct btrfs_root *root,
4620                                     struct btrfs_path *path,
4621                                     struct extent_buffer *leaf)
4622 {
4623         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4624         del_ptr(trans, root, path, 1, path->slots[1], 1);
4625
4626         /*
4627          * btrfs_free_extent is expensive, we want to make sure we
4628          * aren't holding any locks when we call it
4629          */
4630         btrfs_unlock_up_safe(path, 0);
4631
4632         root_sub_used(root, leaf->len);
4633
4634         extent_buffer_get(leaf);
4635         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4636         free_extent_buffer_stale(leaf);
4637 }
4638 /*
4639  * delete the item at the leaf level in path.  If that empties
4640  * the leaf, remove it from the tree
4641  */
4642 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4643                     struct btrfs_path *path, int slot, int nr)
4644 {
4645         struct extent_buffer *leaf;
4646         struct btrfs_item *item;
4647         int last_off;
4648         int dsize = 0;
4649         int ret = 0;
4650         int wret;
4651         int i;
4652         u32 nritems;
4653         struct btrfs_map_token token;
4654
4655         btrfs_init_map_token(&token);
4656
4657         leaf = path->nodes[0];
4658         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4659
4660         for (i = 0; i < nr; i++)
4661                 dsize += btrfs_item_size_nr(leaf, slot + i);
4662
4663         nritems = btrfs_header_nritems(leaf);
4664
4665         if (slot + nr != nritems) {
4666                 int data_end = leaf_data_end(root, leaf);
4667
4668                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4669                               data_end + dsize,
4670                               btrfs_leaf_data(leaf) + data_end,
4671                               last_off - data_end);
4672
4673                 for (i = slot + nr; i < nritems; i++) {
4674                         u32 ioff;
4675
4676                         item = btrfs_item_nr(leaf, i);
4677                         ioff = btrfs_token_item_offset(leaf, item, &token);
4678                         btrfs_set_token_item_offset(leaf, item,
4679                                                     ioff + dsize, &token);
4680                 }
4681
4682                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4683                               btrfs_item_nr_offset(slot + nr),
4684                               sizeof(struct btrfs_item) *
4685                               (nritems - slot - nr));
4686         }
4687         btrfs_set_header_nritems(leaf, nritems - nr);
4688         nritems -= nr;
4689
4690         /* delete the leaf if we've emptied it */
4691         if (nritems == 0) {
4692                 if (leaf == root->node) {
4693                         btrfs_set_header_level(leaf, 0);
4694                 } else {
4695                         btrfs_set_path_blocking(path);
4696                         clean_tree_block(trans, root, leaf);
4697                         btrfs_del_leaf(trans, root, path, leaf);
4698                 }
4699         } else {
4700                 int used = leaf_space_used(leaf, 0, nritems);
4701                 if (slot == 0) {
4702                         struct btrfs_disk_key disk_key;
4703
4704                         btrfs_item_key(leaf, &disk_key, 0);
4705                         fixup_low_keys(trans, root, path, &disk_key, 1);
4706                 }
4707
4708                 /* delete the leaf if it is mostly empty */
4709                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4710                         /* push_leaf_left fixes the path.
4711                          * make sure the path still points to our leaf
4712                          * for possible call to del_ptr below
4713                          */
4714                         slot = path->slots[1];
4715                         extent_buffer_get(leaf);
4716
4717                         btrfs_set_path_blocking(path);
4718                         wret = push_leaf_left(trans, root, path, 1, 1,
4719                                               1, (u32)-1);
4720                         if (wret < 0 && wret != -ENOSPC)
4721                                 ret = wret;
4722
4723                         if (path->nodes[0] == leaf &&
4724                             btrfs_header_nritems(leaf)) {
4725                                 wret = push_leaf_right(trans, root, path, 1,
4726                                                        1, 1, 0);
4727                                 if (wret < 0 && wret != -ENOSPC)
4728                                         ret = wret;
4729                         }
4730
4731                         if (btrfs_header_nritems(leaf) == 0) {
4732                                 path->slots[1] = slot;
4733                                 btrfs_del_leaf(trans, root, path, leaf);
4734                                 free_extent_buffer(leaf);
4735                                 ret = 0;
4736                         } else {
4737                                 /* if we're still in the path, make sure
4738                                  * we're dirty.  Otherwise, one of the
4739                                  * push_leaf functions must have already
4740                                  * dirtied this buffer
4741                                  */
4742                                 if (path->nodes[0] == leaf)
4743                                         btrfs_mark_buffer_dirty(leaf);
4744                                 free_extent_buffer(leaf);
4745                         }
4746                 } else {
4747                         btrfs_mark_buffer_dirty(leaf);
4748                 }
4749         }
4750         return ret;
4751 }
4752
4753 /*
4754  * search the tree again to find a leaf with lesser keys
4755  * returns 0 if it found something or 1 if there are no lesser leaves.
4756  * returns < 0 on io errors.
4757  *
4758  * This may release the path, and so you may lose any locks held at the
4759  * time you call it.
4760  */
4761 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4762 {
4763         struct btrfs_key key;
4764         struct btrfs_disk_key found_key;
4765         int ret;
4766
4767         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4768
4769         if (key.offset > 0)
4770                 key.offset--;
4771         else if (key.type > 0)
4772                 key.type--;
4773         else if (key.objectid > 0)
4774                 key.objectid--;
4775         else
4776                 return 1;
4777
4778         btrfs_release_path(path);
4779         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4780         if (ret < 0)
4781                 return ret;
4782         btrfs_item_key(path->nodes[0], &found_key, 0);
4783         ret = comp_keys(&found_key, &key);
4784         if (ret < 0)
4785                 return 0;
4786         return 1;
4787 }
4788
4789 /*
4790  * A helper function to walk down the tree starting at min_key, and looking
4791  * for nodes or leaves that are either in cache or have a minimum
4792  * transaction id.  This is used by the btree defrag code, and tree logging
4793  *
4794  * This does not cow, but it does stuff the starting key it finds back
4795  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4796  * key and get a writable path.
4797  *
4798  * This does lock as it descends, and path->keep_locks should be set
4799  * to 1 by the caller.
4800  *
4801  * This honors path->lowest_level to prevent descent past a given level
4802  * of the tree.
4803  *
4804  * min_trans indicates the oldest transaction that you are interested
4805  * in walking through.  Any nodes or leaves older than min_trans are
4806  * skipped over (without reading them).
4807  *
4808  * returns zero if something useful was found, < 0 on error and 1 if there
4809  * was nothing in the tree that matched the search criteria.
4810  */
4811 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4812                          struct btrfs_key *max_key,
4813                          struct btrfs_path *path, int cache_only,
4814                          u64 min_trans)
4815 {
4816         struct extent_buffer *cur;
4817         struct btrfs_key found_key;
4818         int slot;
4819         int sret;
4820         u32 nritems;
4821         int level;
4822         int ret = 1;
4823
4824         WARN_ON(!path->keep_locks);
4825 again:
4826         cur = btrfs_read_lock_root_node(root);
4827         level = btrfs_header_level(cur);
4828         WARN_ON(path->nodes[level]);
4829         path->nodes[level] = cur;
4830         path->locks[level] = BTRFS_READ_LOCK;
4831
4832         if (btrfs_header_generation(cur) < min_trans) {
4833                 ret = 1;
4834                 goto out;
4835         }
4836         while (1) {
4837                 nritems = btrfs_header_nritems(cur);
4838                 level = btrfs_header_level(cur);
4839                 sret = bin_search(cur, min_key, level, &slot);
4840
4841                 /* at the lowest level, we're done, setup the path and exit */
4842                 if (level == path->lowest_level) {
4843                         if (slot >= nritems)
4844                                 goto find_next_key;
4845                         ret = 0;
4846                         path->slots[level] = slot;
4847                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4848                         goto out;
4849                 }
4850                 if (sret && slot > 0)
4851                         slot--;
4852                 /*
4853                  * check this node pointer against the cache_only and
4854                  * min_trans parameters.  If it isn't in cache or is too
4855                  * old, skip to the next one.
4856                  */
4857                 while (slot < nritems) {
4858                         u64 blockptr;
4859                         u64 gen;
4860                         struct extent_buffer *tmp;
4861                         struct btrfs_disk_key disk_key;
4862
4863                         blockptr = btrfs_node_blockptr(cur, slot);
4864                         gen = btrfs_node_ptr_generation(cur, slot);
4865                         if (gen < min_trans) {
4866                                 slot++;
4867                                 continue;
4868                         }
4869                         if (!cache_only)
4870                                 break;
4871
4872                         if (max_key) {
4873                                 btrfs_node_key(cur, &disk_key, slot);
4874                                 if (comp_keys(&disk_key, max_key) >= 0) {
4875                                         ret = 1;
4876                                         goto out;
4877                                 }
4878                         }
4879
4880                         tmp = btrfs_find_tree_block(root, blockptr,
4881                                             btrfs_level_size(root, level - 1));
4882
4883                         if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4884                                 free_extent_buffer(tmp);
4885                                 break;
4886                         }
4887                         if (tmp)
4888                                 free_extent_buffer(tmp);
4889                         slot++;
4890                 }
4891 find_next_key:
4892                 /*
4893                  * we didn't find a candidate key in this node, walk forward
4894                  * and find another one
4895                  */
4896                 if (slot >= nritems) {
4897                         path->slots[level] = slot;
4898                         btrfs_set_path_blocking(path);
4899                         sret = btrfs_find_next_key(root, path, min_key, level,
4900                                                   cache_only, min_trans);
4901                         if (sret == 0) {
4902                                 btrfs_release_path(path);
4903                                 goto again;
4904                         } else {
4905                                 goto out;
4906                         }
4907                 }
4908                 /* save our key for returning back */
4909                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4910                 path->slots[level] = slot;
4911                 if (level == path->lowest_level) {
4912                         ret = 0;
4913                         unlock_up(path, level, 1, 0, NULL);
4914                         goto out;
4915                 }
4916                 btrfs_set_path_blocking(path);
4917                 cur = read_node_slot(root, cur, slot);
4918                 BUG_ON(!cur); /* -ENOMEM */
4919
4920                 btrfs_tree_read_lock(cur);
4921
4922                 path->locks[level - 1] = BTRFS_READ_LOCK;
4923                 path->nodes[level - 1] = cur;
4924                 unlock_up(path, level, 1, 0, NULL);
4925                 btrfs_clear_path_blocking(path, NULL, 0);
4926         }
4927 out:
4928         if (ret == 0)
4929                 memcpy(min_key, &found_key, sizeof(found_key));
4930         btrfs_set_path_blocking(path);
4931         return ret;
4932 }
4933
4934 /*
4935  * this is similar to btrfs_next_leaf, but does not try to preserve
4936  * and fixup the path.  It looks for and returns the next key in the
4937  * tree based on the current path and the cache_only and min_trans
4938  * parameters.
4939  *
4940  * 0 is returned if another key is found, < 0 if there are any errors
4941  * and 1 is returned if there are no higher keys in the tree
4942  *
4943  * path->keep_locks should be set to 1 on the search made before
4944  * calling this function.
4945  */
4946 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4947                         struct btrfs_key *key, int level,
4948                         int cache_only, u64 min_trans)
4949 {
4950         int slot;
4951         struct extent_buffer *c;
4952
4953         WARN_ON(!path->keep_locks);
4954         while (level < BTRFS_MAX_LEVEL) {
4955                 if (!path->nodes[level])
4956                         return 1;
4957
4958                 slot = path->slots[level] + 1;
4959                 c = path->nodes[level];
4960 next:
4961                 if (slot >= btrfs_header_nritems(c)) {
4962                         int ret;
4963                         int orig_lowest;
4964                         struct btrfs_key cur_key;
4965                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4966                             !path->nodes[level + 1])
4967                                 return 1;
4968
4969                         if (path->locks[level + 1]) {
4970                                 level++;
4971                                 continue;
4972                         }
4973
4974                         slot = btrfs_header_nritems(c) - 1;
4975                         if (level == 0)
4976                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4977                         else
4978                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4979
4980                         orig_lowest = path->lowest_level;
4981                         btrfs_release_path(path);
4982                         path->lowest_level = level;
4983                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4984                                                 0, 0);
4985                         path->lowest_level = orig_lowest;
4986                         if (ret < 0)
4987                                 return ret;
4988
4989                         c = path->nodes[level];
4990                         slot = path->slots[level];
4991                         if (ret == 0)
4992                                 slot++;
4993                         goto next;
4994                 }
4995
4996                 if (level == 0)
4997                         btrfs_item_key_to_cpu(c, key, slot);
4998                 else {
4999                         u64 blockptr = btrfs_node_blockptr(c, slot);
5000                         u64 gen = btrfs_node_ptr_generation(c, slot);
5001
5002                         if (cache_only) {
5003                                 struct extent_buffer *cur;
5004                                 cur = btrfs_find_tree_block(root, blockptr,
5005                                             btrfs_level_size(root, level - 1));
5006                                 if (!cur ||
5007                                     btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5008                                         slot++;
5009                                         if (cur)
5010                                                 free_extent_buffer(cur);
5011                                         goto next;
5012                                 }
5013                                 free_extent_buffer(cur);
5014                         }
5015                         if (gen < min_trans) {
5016                                 slot++;
5017                                 goto next;
5018                         }
5019                         btrfs_node_key_to_cpu(c, key, slot);
5020                 }
5021                 return 0;
5022         }
5023         return 1;
5024 }
5025
5026 /*
5027  * search the tree again to find a leaf with greater keys
5028  * returns 0 if it found something or 1 if there are no greater leaves.
5029  * returns < 0 on io errors.
5030  */
5031 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5032 {
5033         return btrfs_next_old_leaf(root, path, 0);
5034 }
5035
5036 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5037                         u64 time_seq)
5038 {
5039         int slot;
5040         int level;
5041         struct extent_buffer *c;
5042         struct extent_buffer *next;
5043         struct btrfs_key key;
5044         u32 nritems;
5045         int ret;
5046         int old_spinning = path->leave_spinning;
5047         int next_rw_lock = 0;
5048
5049         nritems = btrfs_header_nritems(path->nodes[0]);
5050         if (nritems == 0)
5051                 return 1;
5052
5053         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5054 again:
5055         level = 1;
5056         next = NULL;
5057         next_rw_lock = 0;
5058         btrfs_release_path(path);
5059
5060         path->keep_locks = 1;
5061         path->leave_spinning = 1;
5062
5063         if (time_seq)
5064                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5065         else
5066                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5067         path->keep_locks = 0;
5068
5069         if (ret < 0)
5070                 return ret;
5071
5072         nritems = btrfs_header_nritems(path->nodes[0]);
5073         /*
5074          * by releasing the path above we dropped all our locks.  A balance
5075          * could have added more items next to the key that used to be
5076          * at the very end of the block.  So, check again here and
5077          * advance the path if there are now more items available.
5078          */
5079         if (nritems > 0 && path->slots[0] < nritems - 1) {
5080                 if (ret == 0)
5081                         path->slots[0]++;
5082                 ret = 0;
5083                 goto done;
5084         }
5085
5086         while (level < BTRFS_MAX_LEVEL) {
5087                 if (!path->nodes[level]) {
5088                         ret = 1;
5089                         goto done;
5090                 }
5091
5092                 slot = path->slots[level] + 1;
5093                 c = path->nodes[level];
5094                 if (slot >= btrfs_header_nritems(c)) {
5095                         level++;
5096                         if (level == BTRFS_MAX_LEVEL) {
5097                                 ret = 1;
5098                                 goto done;
5099                         }
5100                         continue;
5101                 }
5102
5103                 if (next) {
5104                         btrfs_tree_unlock_rw(next, next_rw_lock);
5105                         free_extent_buffer(next);
5106                 }
5107
5108                 next = c;
5109                 next_rw_lock = path->locks[level];
5110                 ret = read_block_for_search(NULL, root, path, &next, level,
5111                                             slot, &key, 0);
5112                 if (ret == -EAGAIN)
5113                         goto again;
5114
5115                 if (ret < 0) {
5116                         btrfs_release_path(path);
5117                         goto done;
5118                 }
5119
5120                 if (!path->skip_locking) {
5121                         ret = btrfs_try_tree_read_lock(next);
5122                         if (!ret && time_seq) {
5123                                 /*
5124                                  * If we don't get the lock, we may be racing
5125                                  * with push_leaf_left, holding that lock while
5126                                  * itself waiting for the leaf we've currently
5127                                  * locked. To solve this situation, we give up
5128                                  * on our lock and cycle.
5129                                  */
5130                                 btrfs_release_path(path);
5131                                 cond_resched();
5132                                 goto again;
5133                         }
5134                         if (!ret) {
5135                                 btrfs_set_path_blocking(path);
5136                                 btrfs_tree_read_lock(next);
5137                                 btrfs_clear_path_blocking(path, next,
5138                                                           BTRFS_READ_LOCK);
5139                         }
5140                         next_rw_lock = BTRFS_READ_LOCK;
5141                 }
5142                 break;
5143         }
5144         path->slots[level] = slot;
5145         while (1) {
5146                 level--;
5147                 c = path->nodes[level];
5148                 if (path->locks[level])
5149                         btrfs_tree_unlock_rw(c, path->locks[level]);
5150
5151                 free_extent_buffer(c);
5152                 path->nodes[level] = next;
5153                 path->slots[level] = 0;
5154                 if (!path->skip_locking)
5155                         path->locks[level] = next_rw_lock;
5156                 if (!level)
5157                         break;
5158
5159                 ret = read_block_for_search(NULL, root, path, &next, level,
5160                                             0, &key, 0);
5161                 if (ret == -EAGAIN)
5162                         goto again;
5163
5164                 if (ret < 0) {
5165                         btrfs_release_path(path);
5166                         goto done;
5167                 }
5168
5169                 if (!path->skip_locking) {
5170                         ret = btrfs_try_tree_read_lock(next);
5171                         if (!ret) {
5172                                 btrfs_set_path_blocking(path);
5173                                 btrfs_tree_read_lock(next);
5174                                 btrfs_clear_path_blocking(path, next,
5175                                                           BTRFS_READ_LOCK);
5176                         }
5177                         next_rw_lock = BTRFS_READ_LOCK;
5178                 }
5179         }
5180         ret = 0;
5181 done:
5182         unlock_up(path, 0, 1, 0, NULL);
5183         path->leave_spinning = old_spinning;
5184         if (!old_spinning)
5185                 btrfs_set_path_blocking(path);
5186
5187         return ret;
5188 }
5189
5190 /*
5191  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5192  * searching until it gets past min_objectid or finds an item of 'type'
5193  *
5194  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5195  */
5196 int btrfs_previous_item(struct btrfs_root *root,
5197                         struct btrfs_path *path, u64 min_objectid,
5198                         int type)
5199 {
5200         struct btrfs_key found_key;
5201         struct extent_buffer *leaf;
5202         u32 nritems;
5203         int ret;
5204
5205         while (1) {
5206                 if (path->slots[0] == 0) {
5207                         btrfs_set_path_blocking(path);
5208                         ret = btrfs_prev_leaf(root, path);
5209                         if (ret != 0)
5210                                 return ret;
5211                 } else {
5212                         path->slots[0]--;
5213                 }
5214                 leaf = path->nodes[0];
5215                 nritems = btrfs_header_nritems(leaf);
5216                 if (nritems == 0)
5217                         return 1;
5218                 if (path->slots[0] == nritems)
5219                         path->slots[0]--;
5220
5221                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5222                 if (found_key.objectid < min_objectid)
5223                         break;
5224                 if (found_key.type == type)
5225                         return 0;
5226                 if (found_key.objectid == min_objectid &&
5227                     found_key.type < type)
5228                         break;
5229         }
5230         return 1;
5231 }