]> Pileus Git - ~andy/linux/blob - fs/btrfs/ctree.c
316136bd6dd7eb3899bcf060c3e0bd749f674310
[~andy/linux] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31                       *root, struct btrfs_key *ins_key,
32                       struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34                           struct btrfs_root *root, struct extent_buffer *dst,
35                           struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37                               struct btrfs_root *root,
38                               struct extent_buffer *dst_buf,
39                               struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41                     int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43                                  struct extent_buffer *eb);
44 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50         return path;
51 }
52
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i] || !p->locks[i])
62                         continue;
63                 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64                 if (p->locks[i] == BTRFS_READ_LOCK)
65                         p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66                 else if (p->locks[i] == BTRFS_WRITE_LOCK)
67                         p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68         }
69 }
70
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80                                         struct extent_buffer *held, int held_rw)
81 {
82         int i;
83
84 #ifdef CONFIG_DEBUG_LOCK_ALLOC
85         /* lockdep really cares that we take all of these spinlocks
86          * in the right order.  If any of the locks in the path are not
87          * currently blocking, it is going to complain.  So, make really
88          * really sure by forcing the path to blocking before we clear
89          * the path blocking.
90          */
91         if (held) {
92                 btrfs_set_lock_blocking_rw(held, held_rw);
93                 if (held_rw == BTRFS_WRITE_LOCK)
94                         held_rw = BTRFS_WRITE_LOCK_BLOCKING;
95                 else if (held_rw == BTRFS_READ_LOCK)
96                         held_rw = BTRFS_READ_LOCK_BLOCKING;
97         }
98         btrfs_set_path_blocking(p);
99 #endif
100
101         for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
102                 if (p->nodes[i] && p->locks[i]) {
103                         btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
104                         if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
105                                 p->locks[i] = BTRFS_WRITE_LOCK;
106                         else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
107                                 p->locks[i] = BTRFS_READ_LOCK;
108                 }
109         }
110
111 #ifdef CONFIG_DEBUG_LOCK_ALLOC
112         if (held)
113                 btrfs_clear_lock_blocking_rw(held, held_rw);
114 #endif
115 }
116
117 /* this also releases the path */
118 void btrfs_free_path(struct btrfs_path *p)
119 {
120         if (!p)
121                 return;
122         btrfs_release_path(p);
123         kmem_cache_free(btrfs_path_cachep, p);
124 }
125
126 /*
127  * path release drops references on the extent buffers in the path
128  * and it drops any locks held by this path
129  *
130  * It is safe to call this on paths that no locks or extent buffers held.
131  */
132 noinline void btrfs_release_path(struct btrfs_path *p)
133 {
134         int i;
135
136         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
137                 p->slots[i] = 0;
138                 if (!p->nodes[i])
139                         continue;
140                 if (p->locks[i]) {
141                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
142                         p->locks[i] = 0;
143                 }
144                 free_extent_buffer(p->nodes[i]);
145                 p->nodes[i] = NULL;
146         }
147 }
148
149 /*
150  * safely gets a reference on the root node of a tree.  A lock
151  * is not taken, so a concurrent writer may put a different node
152  * at the root of the tree.  See btrfs_lock_root_node for the
153  * looping required.
154  *
155  * The extent buffer returned by this has a reference taken, so
156  * it won't disappear.  It may stop being the root of the tree
157  * at any time because there are no locks held.
158  */
159 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
160 {
161         struct extent_buffer *eb;
162
163         while (1) {
164                 rcu_read_lock();
165                 eb = rcu_dereference(root->node);
166
167                 /*
168                  * RCU really hurts here, we could free up the root node because
169                  * it was cow'ed but we may not get the new root node yet so do
170                  * the inc_not_zero dance and if it doesn't work then
171                  * synchronize_rcu and try again.
172                  */
173                 if (atomic_inc_not_zero(&eb->refs)) {
174                         rcu_read_unlock();
175                         break;
176                 }
177                 rcu_read_unlock();
178                 synchronize_rcu();
179         }
180         return eb;
181 }
182
183 /* loop around taking references on and locking the root node of the
184  * tree until you end up with a lock on the root.  A locked buffer
185  * is returned, with a reference held.
186  */
187 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
188 {
189         struct extent_buffer *eb;
190
191         while (1) {
192                 eb = btrfs_root_node(root);
193                 btrfs_tree_lock(eb);
194                 if (eb == root->node)
195                         break;
196                 btrfs_tree_unlock(eb);
197                 free_extent_buffer(eb);
198         }
199         return eb;
200 }
201
202 /* loop around taking references on and locking the root node of the
203  * tree until you end up with a lock on the root.  A locked buffer
204  * is returned, with a reference held.
205  */
206 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
207 {
208         struct extent_buffer *eb;
209
210         while (1) {
211                 eb = btrfs_root_node(root);
212                 btrfs_tree_read_lock(eb);
213                 if (eb == root->node)
214                         break;
215                 btrfs_tree_read_unlock(eb);
216                 free_extent_buffer(eb);
217         }
218         return eb;
219 }
220
221 /* cowonly root (everything not a reference counted cow subvolume), just get
222  * put onto a simple dirty list.  transaction.c walks this to make sure they
223  * get properly updated on disk.
224  */
225 static void add_root_to_dirty_list(struct btrfs_root *root)
226 {
227         spin_lock(&root->fs_info->trans_lock);
228         if (root->track_dirty && list_empty(&root->dirty_list)) {
229                 list_add(&root->dirty_list,
230                          &root->fs_info->dirty_cowonly_roots);
231         }
232         spin_unlock(&root->fs_info->trans_lock);
233 }
234
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241                       struct btrfs_root *root,
242                       struct extent_buffer *buf,
243                       struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245         struct extent_buffer *cow;
246         int ret = 0;
247         int level;
248         struct btrfs_disk_key disk_key;
249
250         WARN_ON(root->ref_cows && trans->transid !=
251                 root->fs_info->running_transaction->transid);
252         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
253
254         level = btrfs_header_level(buf);
255         if (level == 0)
256                 btrfs_item_key(buf, &disk_key, 0);
257         else
258                 btrfs_node_key(buf, &disk_key, 0);
259
260         cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
261                                      new_root_objectid, &disk_key, level,
262                                      buf->start, 0);
263         if (IS_ERR(cow))
264                 return PTR_ERR(cow);
265
266         copy_extent_buffer(cow, buf, 0, 0, cow->len);
267         btrfs_set_header_bytenr(cow, cow->start);
268         btrfs_set_header_generation(cow, trans->transid);
269         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
270         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
271                                      BTRFS_HEADER_FLAG_RELOC);
272         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
273                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
274         else
275                 btrfs_set_header_owner(cow, new_root_objectid);
276
277         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
278                             BTRFS_FSID_SIZE);
279
280         WARN_ON(btrfs_header_generation(buf) > trans->transid);
281         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
283         else
284                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
285
286         if (ret)
287                 return ret;
288
289         btrfs_mark_buffer_dirty(cow);
290         *cow_ret = cow;
291         return 0;
292 }
293
294 enum mod_log_op {
295         MOD_LOG_KEY_REPLACE,
296         MOD_LOG_KEY_ADD,
297         MOD_LOG_KEY_REMOVE,
298         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300         MOD_LOG_MOVE_KEYS,
301         MOD_LOG_ROOT_REPLACE,
302 };
303
304 struct tree_mod_move {
305         int dst_slot;
306         int nr_items;
307 };
308
309 struct tree_mod_root {
310         u64 logical;
311         u8 level;
312 };
313
314 struct tree_mod_elem {
315         struct rb_node node;
316         u64 index;              /* shifted logical */
317         u64 seq;
318         enum mod_log_op op;
319
320         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321         int slot;
322
323         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324         u64 generation;
325
326         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327         struct btrfs_disk_key key;
328         u64 blockptr;
329
330         /* this is used for op == MOD_LOG_MOVE_KEYS */
331         struct tree_mod_move move;
332
333         /* this is used for op == MOD_LOG_ROOT_REPLACE */
334         struct tree_mod_root old_root;
335 };
336
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339         read_lock(&fs_info->tree_mod_log_lock);
340 }
341
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344         read_unlock(&fs_info->tree_mod_log_lock);
345 }
346
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349         write_lock(&fs_info->tree_mod_log_lock);
350 }
351
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354         write_unlock(&fs_info->tree_mod_log_lock);
355 }
356
357 /*
358  * Increment the upper half of tree_mod_seq, set lower half zero.
359  *
360  * Must be called with fs_info->tree_mod_seq_lock held.
361  */
362 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info)
363 {
364         u64 seq = atomic64_read(&fs_info->tree_mod_seq);
365         seq &= 0xffffffff00000000ull;
366         seq += 1ull << 32;
367         atomic64_set(&fs_info->tree_mod_seq, seq);
368         return seq;
369 }
370
371 /*
372  * Increment the lower half of tree_mod_seq.
373  *
374  * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers
375  * are generated should not technically require a spin lock here. (Rationale:
376  * incrementing the minor while incrementing the major seq number is between its
377  * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it
378  * just returns a unique sequence number as usual.) We have decided to leave
379  * that requirement in here and rethink it once we notice it really imposes a
380  * problem on some workload.
381  */
382 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info)
383 {
384         return atomic64_inc_return(&fs_info->tree_mod_seq);
385 }
386
387 /*
388  * return the last minor in the previous major tree_mod_seq number
389  */
390 u64 btrfs_tree_mod_seq_prev(u64 seq)
391 {
392         return (seq & 0xffffffff00000000ull) - 1ull;
393 }
394
395 /*
396  * This adds a new blocker to the tree mod log's blocker list if the @elem
397  * passed does not already have a sequence number set. So when a caller expects
398  * to record tree modifications, it should ensure to set elem->seq to zero
399  * before calling btrfs_get_tree_mod_seq.
400  * Returns a fresh, unused tree log modification sequence number, even if no new
401  * blocker was added.
402  */
403 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
404                            struct seq_list *elem)
405 {
406         u64 seq;
407
408         tree_mod_log_write_lock(fs_info);
409         spin_lock(&fs_info->tree_mod_seq_lock);
410         if (!elem->seq) {
411                 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info);
412                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
413         }
414         seq = btrfs_inc_tree_mod_seq_minor(fs_info);
415         spin_unlock(&fs_info->tree_mod_seq_lock);
416         tree_mod_log_write_unlock(fs_info);
417
418         return seq;
419 }
420
421 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
422                             struct seq_list *elem)
423 {
424         struct rb_root *tm_root;
425         struct rb_node *node;
426         struct rb_node *next;
427         struct seq_list *cur_elem;
428         struct tree_mod_elem *tm;
429         u64 min_seq = (u64)-1;
430         u64 seq_putting = elem->seq;
431
432         if (!seq_putting)
433                 return;
434
435         spin_lock(&fs_info->tree_mod_seq_lock);
436         list_del(&elem->list);
437         elem->seq = 0;
438
439         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
440                 if (cur_elem->seq < min_seq) {
441                         if (seq_putting > cur_elem->seq) {
442                                 /*
443                                  * blocker with lower sequence number exists, we
444                                  * cannot remove anything from the log
445                                  */
446                                 spin_unlock(&fs_info->tree_mod_seq_lock);
447                                 return;
448                         }
449                         min_seq = cur_elem->seq;
450                 }
451         }
452         spin_unlock(&fs_info->tree_mod_seq_lock);
453
454         /*
455          * anything that's lower than the lowest existing (read: blocked)
456          * sequence number can be removed from the tree.
457          */
458         tree_mod_log_write_lock(fs_info);
459         tm_root = &fs_info->tree_mod_log;
460         for (node = rb_first(tm_root); node; node = next) {
461                 next = rb_next(node);
462                 tm = container_of(node, struct tree_mod_elem, node);
463                 if (tm->seq > min_seq)
464                         continue;
465                 rb_erase(node, tm_root);
466                 kfree(tm);
467         }
468         tree_mod_log_write_unlock(fs_info);
469 }
470
471 /*
472  * key order of the log:
473  *       index -> sequence
474  *
475  * the index is the shifted logical of the *new* root node for root replace
476  * operations, or the shifted logical of the affected block for all other
477  * operations.
478  */
479 static noinline int
480 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
481 {
482         struct rb_root *tm_root;
483         struct rb_node **new;
484         struct rb_node *parent = NULL;
485         struct tree_mod_elem *cur;
486         int ret = 0;
487
488         BUG_ON(!tm);
489
490         tree_mod_log_write_lock(fs_info);
491         if (list_empty(&fs_info->tree_mod_seq_list)) {
492                 tree_mod_log_write_unlock(fs_info);
493                 /*
494                  * Ok we no longer care about logging modifications, free up tm
495                  * and return 0.  Any callers shouldn't be using tm after
496                  * calling tree_mod_log_insert, but if they do we can just
497                  * change this to return a special error code to let the callers
498                  * do their own thing.
499                  */
500                 kfree(tm);
501                 return 0;
502         }
503
504         spin_lock(&fs_info->tree_mod_seq_lock);
505         tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info);
506         spin_unlock(&fs_info->tree_mod_seq_lock);
507
508         tm_root = &fs_info->tree_mod_log;
509         new = &tm_root->rb_node;
510         while (*new) {
511                 cur = container_of(*new, struct tree_mod_elem, node);
512                 parent = *new;
513                 if (cur->index < tm->index)
514                         new = &((*new)->rb_left);
515                 else if (cur->index > tm->index)
516                         new = &((*new)->rb_right);
517                 else if (cur->seq < tm->seq)
518                         new = &((*new)->rb_left);
519                 else if (cur->seq > tm->seq)
520                         new = &((*new)->rb_right);
521                 else {
522                         ret = -EEXIST;
523                         kfree(tm);
524                         goto out;
525                 }
526         }
527
528         rb_link_node(&tm->node, parent, new);
529         rb_insert_color(&tm->node, tm_root);
530 out:
531         tree_mod_log_write_unlock(fs_info);
532         return ret;
533 }
534
535 /*
536  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
537  * returns zero with the tree_mod_log_lock acquired. The caller must hold
538  * this until all tree mod log insertions are recorded in the rb tree and then
539  * call tree_mod_log_write_unlock() to release.
540  */
541 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
542                                     struct extent_buffer *eb) {
543         smp_mb();
544         if (list_empty(&(fs_info)->tree_mod_seq_list))
545                 return 1;
546         if (eb && btrfs_header_level(eb) == 0)
547                 return 1;
548         return 0;
549 }
550
551 static inline int
552 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
553                           struct extent_buffer *eb, int slot,
554                           enum mod_log_op op, gfp_t flags)
555 {
556         struct tree_mod_elem *tm;
557
558         tm = kzalloc(sizeof(*tm), flags);
559         if (!tm)
560                 return -ENOMEM;
561
562         tm->index = eb->start >> PAGE_CACHE_SHIFT;
563         if (op != MOD_LOG_KEY_ADD) {
564                 btrfs_node_key(eb, &tm->key, slot);
565                 tm->blockptr = btrfs_node_blockptr(eb, slot);
566         }
567         tm->op = op;
568         tm->slot = slot;
569         tm->generation = btrfs_node_ptr_generation(eb, slot);
570
571         return __tree_mod_log_insert(fs_info, tm);
572 }
573
574 static noinline int
575 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
576                         struct extent_buffer *eb, int slot,
577                         enum mod_log_op op, gfp_t flags)
578 {
579         if (tree_mod_dont_log(fs_info, eb))
580                 return 0;
581
582         return __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
583 }
584
585 static noinline int
586 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
587                          struct extent_buffer *eb, int dst_slot, int src_slot,
588                          int nr_items, gfp_t flags)
589 {
590         struct tree_mod_elem *tm;
591         int ret;
592         int i;
593
594         if (tree_mod_dont_log(fs_info, eb))
595                 return 0;
596
597         /*
598          * When we override something during the move, we log these removals.
599          * This can only happen when we move towards the beginning of the
600          * buffer, i.e. dst_slot < src_slot.
601          */
602         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
603                 ret = __tree_mod_log_insert_key(fs_info, eb, i + dst_slot,
604                                 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
605                 BUG_ON(ret < 0);
606         }
607
608         tm = kzalloc(sizeof(*tm), flags);
609         if (!tm)
610                 return -ENOMEM;
611
612         tm->index = eb->start >> PAGE_CACHE_SHIFT;
613         tm->slot = src_slot;
614         tm->move.dst_slot = dst_slot;
615         tm->move.nr_items = nr_items;
616         tm->op = MOD_LOG_MOVE_KEYS;
617
618         return __tree_mod_log_insert(fs_info, tm);
619 }
620
621 static inline void
622 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
623 {
624         int i;
625         u32 nritems;
626         int ret;
627
628         if (btrfs_header_level(eb) == 0)
629                 return;
630
631         nritems = btrfs_header_nritems(eb);
632         for (i = nritems - 1; i >= 0; i--) {
633                 ret = __tree_mod_log_insert_key(fs_info, eb, i,
634                                 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635                 BUG_ON(ret < 0);
636         }
637 }
638
639 static noinline int
640 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
641                          struct extent_buffer *old_root,
642                          struct extent_buffer *new_root, gfp_t flags,
643                          int log_removal)
644 {
645         struct tree_mod_elem *tm;
646
647         if (tree_mod_dont_log(fs_info, NULL))
648                 return 0;
649
650         if (log_removal)
651                 __tree_mod_log_free_eb(fs_info, old_root);
652
653         tm = kzalloc(sizeof(*tm), flags);
654         if (!tm)
655                 return -ENOMEM;
656
657         tm->index = new_root->start >> PAGE_CACHE_SHIFT;
658         tm->old_root.logical = old_root->start;
659         tm->old_root.level = btrfs_header_level(old_root);
660         tm->generation = btrfs_header_generation(old_root);
661         tm->op = MOD_LOG_ROOT_REPLACE;
662
663         return __tree_mod_log_insert(fs_info, tm);
664 }
665
666 static struct tree_mod_elem *
667 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
668                       int smallest)
669 {
670         struct rb_root *tm_root;
671         struct rb_node *node;
672         struct tree_mod_elem *cur = NULL;
673         struct tree_mod_elem *found = NULL;
674         u64 index = start >> PAGE_CACHE_SHIFT;
675
676         tree_mod_log_read_lock(fs_info);
677         tm_root = &fs_info->tree_mod_log;
678         node = tm_root->rb_node;
679         while (node) {
680                 cur = container_of(node, struct tree_mod_elem, node);
681                 if (cur->index < index) {
682                         node = node->rb_left;
683                 } else if (cur->index > index) {
684                         node = node->rb_right;
685                 } else if (cur->seq < min_seq) {
686                         node = node->rb_left;
687                 } else if (!smallest) {
688                         /* we want the node with the highest seq */
689                         if (found)
690                                 BUG_ON(found->seq > cur->seq);
691                         found = cur;
692                         node = node->rb_left;
693                 } else if (cur->seq > min_seq) {
694                         /* we want the node with the smallest seq */
695                         if (found)
696                                 BUG_ON(found->seq < cur->seq);
697                         found = cur;
698                         node = node->rb_right;
699                 } else {
700                         found = cur;
701                         break;
702                 }
703         }
704         tree_mod_log_read_unlock(fs_info);
705
706         return found;
707 }
708
709 /*
710  * this returns the element from the log with the smallest time sequence
711  * value that's in the log (the oldest log item). any element with a time
712  * sequence lower than min_seq will be ignored.
713  */
714 static struct tree_mod_elem *
715 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
716                            u64 min_seq)
717 {
718         return __tree_mod_log_search(fs_info, start, min_seq, 1);
719 }
720
721 /*
722  * this returns the element from the log with the largest time sequence
723  * value that's in the log (the most recent log item). any element with
724  * a time sequence lower than min_seq will be ignored.
725  */
726 static struct tree_mod_elem *
727 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
728 {
729         return __tree_mod_log_search(fs_info, start, min_seq, 0);
730 }
731
732 static noinline void
733 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
734                      struct extent_buffer *src, unsigned long dst_offset,
735                      unsigned long src_offset, int nr_items)
736 {
737         int ret;
738         int i;
739
740         if (tree_mod_dont_log(fs_info, NULL))
741                 return;
742
743         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
744                 return;
745
746         for (i = 0; i < nr_items; i++) {
747                 ret = __tree_mod_log_insert_key(fs_info, src,
748                                                 i + src_offset,
749                                                 MOD_LOG_KEY_REMOVE, GFP_NOFS);
750                 BUG_ON(ret < 0);
751                 ret = __tree_mod_log_insert_key(fs_info, dst,
752                                                      i + dst_offset,
753                                                      MOD_LOG_KEY_ADD,
754                                                      GFP_NOFS);
755                 BUG_ON(ret < 0);
756         }
757 }
758
759 static inline void
760 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
761                      int dst_offset, int src_offset, int nr_items)
762 {
763         int ret;
764         ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
765                                        nr_items, GFP_NOFS);
766         BUG_ON(ret < 0);
767 }
768
769 static noinline void
770 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
771                           struct extent_buffer *eb, int slot, int atomic)
772 {
773         int ret;
774
775         ret = __tree_mod_log_insert_key(fs_info, eb, slot,
776                                         MOD_LOG_KEY_REPLACE,
777                                         atomic ? GFP_ATOMIC : GFP_NOFS);
778         BUG_ON(ret < 0);
779 }
780
781 static noinline void
782 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
783 {
784         if (tree_mod_dont_log(fs_info, eb))
785                 return;
786         __tree_mod_log_free_eb(fs_info, eb);
787 }
788
789 static noinline void
790 tree_mod_log_set_root_pointer(struct btrfs_root *root,
791                               struct extent_buffer *new_root_node,
792                               int log_removal)
793 {
794         int ret;
795         ret = tree_mod_log_insert_root(root->fs_info, root->node,
796                                        new_root_node, GFP_NOFS, log_removal);
797         BUG_ON(ret < 0);
798 }
799
800 /*
801  * check if the tree block can be shared by multiple trees
802  */
803 int btrfs_block_can_be_shared(struct btrfs_root *root,
804                               struct extent_buffer *buf)
805 {
806         /*
807          * Tree blocks not in refernece counted trees and tree roots
808          * are never shared. If a block was allocated after the last
809          * snapshot and the block was not allocated by tree relocation,
810          * we know the block is not shared.
811          */
812         if (root->ref_cows &&
813             buf != root->node && buf != root->commit_root &&
814             (btrfs_header_generation(buf) <=
815              btrfs_root_last_snapshot(&root->root_item) ||
816              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
817                 return 1;
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819         if (root->ref_cows &&
820             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
821                 return 1;
822 #endif
823         return 0;
824 }
825
826 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
827                                        struct btrfs_root *root,
828                                        struct extent_buffer *buf,
829                                        struct extent_buffer *cow,
830                                        int *last_ref)
831 {
832         u64 refs;
833         u64 owner;
834         u64 flags;
835         u64 new_flags = 0;
836         int ret;
837
838         /*
839          * Backrefs update rules:
840          *
841          * Always use full backrefs for extent pointers in tree block
842          * allocated by tree relocation.
843          *
844          * If a shared tree block is no longer referenced by its owner
845          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
846          * use full backrefs for extent pointers in tree block.
847          *
848          * If a tree block is been relocating
849          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
850          * use full backrefs for extent pointers in tree block.
851          * The reason for this is some operations (such as drop tree)
852          * are only allowed for blocks use full backrefs.
853          */
854
855         if (btrfs_block_can_be_shared(root, buf)) {
856                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
857                                                btrfs_header_level(buf), 1,
858                                                &refs, &flags);
859                 if (ret)
860                         return ret;
861                 if (refs == 0) {
862                         ret = -EROFS;
863                         btrfs_std_error(root->fs_info, ret);
864                         return ret;
865                 }
866         } else {
867                 refs = 1;
868                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
869                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
870                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
871                 else
872                         flags = 0;
873         }
874
875         owner = btrfs_header_owner(buf);
876         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
877                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
878
879         if (refs > 1) {
880                 if ((owner == root->root_key.objectid ||
881                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
882                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
883                         ret = btrfs_inc_ref(trans, root, buf, 1, 1);
884                         BUG_ON(ret); /* -ENOMEM */
885
886                         if (root->root_key.objectid ==
887                             BTRFS_TREE_RELOC_OBJECTID) {
888                                 ret = btrfs_dec_ref(trans, root, buf, 0, 1);
889                                 BUG_ON(ret); /* -ENOMEM */
890                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
891                                 BUG_ON(ret); /* -ENOMEM */
892                         }
893                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
894                 } else {
895
896                         if (root->root_key.objectid ==
897                             BTRFS_TREE_RELOC_OBJECTID)
898                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899                         else
900                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
901                         BUG_ON(ret); /* -ENOMEM */
902                 }
903                 if (new_flags != 0) {
904                         int level = btrfs_header_level(buf);
905
906                         ret = btrfs_set_disk_extent_flags(trans, root,
907                                                           buf->start,
908                                                           buf->len,
909                                                           new_flags, level, 0);
910                         if (ret)
911                                 return ret;
912                 }
913         } else {
914                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
915                         if (root->root_key.objectid ==
916                             BTRFS_TREE_RELOC_OBJECTID)
917                                 ret = btrfs_inc_ref(trans, root, cow, 1, 1);
918                         else
919                                 ret = btrfs_inc_ref(trans, root, cow, 0, 1);
920                         BUG_ON(ret); /* -ENOMEM */
921                         ret = btrfs_dec_ref(trans, root, buf, 1, 1);
922                         BUG_ON(ret); /* -ENOMEM */
923                 }
924                 clean_tree_block(trans, root, buf);
925                 *last_ref = 1;
926         }
927         return 0;
928 }
929
930 /*
931  * does the dirty work in cow of a single block.  The parent block (if
932  * supplied) is updated to point to the new cow copy.  The new buffer is marked
933  * dirty and returned locked.  If you modify the block it needs to be marked
934  * dirty again.
935  *
936  * search_start -- an allocation hint for the new block
937  *
938  * empty_size -- a hint that you plan on doing more cow.  This is the size in
939  * bytes the allocator should try to find free next to the block it returns.
940  * This is just a hint and may be ignored by the allocator.
941  */
942 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
943                              struct btrfs_root *root,
944                              struct extent_buffer *buf,
945                              struct extent_buffer *parent, int parent_slot,
946                              struct extent_buffer **cow_ret,
947                              u64 search_start, u64 empty_size)
948 {
949         struct btrfs_disk_key disk_key;
950         struct extent_buffer *cow;
951         int level, ret;
952         int last_ref = 0;
953         int unlock_orig = 0;
954         u64 parent_start;
955
956         if (*cow_ret == buf)
957                 unlock_orig = 1;
958
959         btrfs_assert_tree_locked(buf);
960
961         WARN_ON(root->ref_cows && trans->transid !=
962                 root->fs_info->running_transaction->transid);
963         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
964
965         level = btrfs_header_level(buf);
966
967         if (level == 0)
968                 btrfs_item_key(buf, &disk_key, 0);
969         else
970                 btrfs_node_key(buf, &disk_key, 0);
971
972         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
973                 if (parent)
974                         parent_start = parent->start;
975                 else
976                         parent_start = 0;
977         } else
978                 parent_start = 0;
979
980         cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
981                                      root->root_key.objectid, &disk_key,
982                                      level, search_start, empty_size);
983         if (IS_ERR(cow))
984                 return PTR_ERR(cow);
985
986         /* cow is set to blocking by btrfs_init_new_buffer */
987
988         copy_extent_buffer(cow, buf, 0, 0, cow->len);
989         btrfs_set_header_bytenr(cow, cow->start);
990         btrfs_set_header_generation(cow, trans->transid);
991         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
992         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
993                                      BTRFS_HEADER_FLAG_RELOC);
994         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
995                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
996         else
997                 btrfs_set_header_owner(cow, root->root_key.objectid);
998
999         write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1000                             BTRFS_FSID_SIZE);
1001
1002         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1003         if (ret) {
1004                 btrfs_abort_transaction(trans, root, ret);
1005                 return ret;
1006         }
1007
1008         if (root->ref_cows) {
1009                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1010                 if (ret)
1011                         return ret;
1012         }
1013
1014         if (buf == root->node) {
1015                 WARN_ON(parent && parent != buf);
1016                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1017                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1018                         parent_start = buf->start;
1019                 else
1020                         parent_start = 0;
1021
1022                 extent_buffer_get(cow);
1023                 tree_mod_log_set_root_pointer(root, cow, 1);
1024                 rcu_assign_pointer(root->node, cow);
1025
1026                 btrfs_free_tree_block(trans, root, buf, parent_start,
1027                                       last_ref);
1028                 free_extent_buffer(buf);
1029                 add_root_to_dirty_list(root);
1030         } else {
1031                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1032                         parent_start = parent->start;
1033                 else
1034                         parent_start = 0;
1035
1036                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1037                 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1038                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1039                 btrfs_set_node_blockptr(parent, parent_slot,
1040                                         cow->start);
1041                 btrfs_set_node_ptr_generation(parent, parent_slot,
1042                                               trans->transid);
1043                 btrfs_mark_buffer_dirty(parent);
1044                 if (last_ref)
1045                         tree_mod_log_free_eb(root->fs_info, buf);
1046                 btrfs_free_tree_block(trans, root, buf, parent_start,
1047                                       last_ref);
1048         }
1049         if (unlock_orig)
1050                 btrfs_tree_unlock(buf);
1051         free_extent_buffer_stale(buf);
1052         btrfs_mark_buffer_dirty(cow);
1053         *cow_ret = cow;
1054         return 0;
1055 }
1056
1057 /*
1058  * returns the logical address of the oldest predecessor of the given root.
1059  * entries older than time_seq are ignored.
1060  */
1061 static struct tree_mod_elem *
1062 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1063                            struct extent_buffer *eb_root, u64 time_seq)
1064 {
1065         struct tree_mod_elem *tm;
1066         struct tree_mod_elem *found = NULL;
1067         u64 root_logical = eb_root->start;
1068         int looped = 0;
1069
1070         if (!time_seq)
1071                 return NULL;
1072
1073         /*
1074          * the very last operation that's logged for a root is the replacement
1075          * operation (if it is replaced at all). this has the index of the *new*
1076          * root, making it the very first operation that's logged for this root.
1077          */
1078         while (1) {
1079                 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1080                                                 time_seq);
1081                 if (!looped && !tm)
1082                         return NULL;
1083                 /*
1084                  * if there are no tree operation for the oldest root, we simply
1085                  * return it. this should only happen if that (old) root is at
1086                  * level 0.
1087                  */
1088                 if (!tm)
1089                         break;
1090
1091                 /*
1092                  * if there's an operation that's not a root replacement, we
1093                  * found the oldest version of our root. normally, we'll find a
1094                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1095                  */
1096                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1097                         break;
1098
1099                 found = tm;
1100                 root_logical = tm->old_root.logical;
1101                 looped = 1;
1102         }
1103
1104         /* if there's no old root to return, return what we found instead */
1105         if (!found)
1106                 found = tm;
1107
1108         return found;
1109 }
1110
1111 /*
1112  * tm is a pointer to the first operation to rewind within eb. then, all
1113  * previous operations will be rewinded (until we reach something older than
1114  * time_seq).
1115  */
1116 static void
1117 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1118                       u64 time_seq, struct tree_mod_elem *first_tm)
1119 {
1120         u32 n;
1121         struct rb_node *next;
1122         struct tree_mod_elem *tm = first_tm;
1123         unsigned long o_dst;
1124         unsigned long o_src;
1125         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1126
1127         n = btrfs_header_nritems(eb);
1128         tree_mod_log_read_lock(fs_info);
1129         while (tm && tm->seq >= time_seq) {
1130                 /*
1131                  * all the operations are recorded with the operator used for
1132                  * the modification. as we're going backwards, we do the
1133                  * opposite of each operation here.
1134                  */
1135                 switch (tm->op) {
1136                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1137                         BUG_ON(tm->slot < n);
1138                         /* Fallthrough */
1139                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1140                 case MOD_LOG_KEY_REMOVE:
1141                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1142                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1143                         btrfs_set_node_ptr_generation(eb, tm->slot,
1144                                                       tm->generation);
1145                         n++;
1146                         break;
1147                 case MOD_LOG_KEY_REPLACE:
1148                         BUG_ON(tm->slot >= n);
1149                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1150                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1151                         btrfs_set_node_ptr_generation(eb, tm->slot,
1152                                                       tm->generation);
1153                         break;
1154                 case MOD_LOG_KEY_ADD:
1155                         /* if a move operation is needed it's in the log */
1156                         n--;
1157                         break;
1158                 case MOD_LOG_MOVE_KEYS:
1159                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1160                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1161                         memmove_extent_buffer(eb, o_dst, o_src,
1162                                               tm->move.nr_items * p_size);
1163                         break;
1164                 case MOD_LOG_ROOT_REPLACE:
1165                         /*
1166                          * this operation is special. for roots, this must be
1167                          * handled explicitly before rewinding.
1168                          * for non-roots, this operation may exist if the node
1169                          * was a root: root A -> child B; then A gets empty and
1170                          * B is promoted to the new root. in the mod log, we'll
1171                          * have a root-replace operation for B, a tree block
1172                          * that is no root. we simply ignore that operation.
1173                          */
1174                         break;
1175                 }
1176                 next = rb_next(&tm->node);
1177                 if (!next)
1178                         break;
1179                 tm = container_of(next, struct tree_mod_elem, node);
1180                 if (tm->index != first_tm->index)
1181                         break;
1182         }
1183         tree_mod_log_read_unlock(fs_info);
1184         btrfs_set_header_nritems(eb, n);
1185 }
1186
1187 /*
1188  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1189  * is returned. If rewind operations happen, a fresh buffer is returned. The
1190  * returned buffer is always read-locked. If the returned buffer is not the
1191  * input buffer, the lock on the input buffer is released and the input buffer
1192  * is freed (its refcount is decremented).
1193  */
1194 static struct extent_buffer *
1195 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1196                     struct extent_buffer *eb, u64 time_seq)
1197 {
1198         struct extent_buffer *eb_rewin;
1199         struct tree_mod_elem *tm;
1200
1201         if (!time_seq)
1202                 return eb;
1203
1204         if (btrfs_header_level(eb) == 0)
1205                 return eb;
1206
1207         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1208         if (!tm)
1209                 return eb;
1210
1211         btrfs_set_path_blocking(path);
1212         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1213
1214         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1215                 BUG_ON(tm->slot != 0);
1216                 eb_rewin = alloc_dummy_extent_buffer(eb->start,
1217                                                 fs_info->tree_root->nodesize);
1218                 if (!eb_rewin) {
1219                         btrfs_tree_read_unlock_blocking(eb);
1220                         free_extent_buffer(eb);
1221                         return NULL;
1222                 }
1223                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1224                 btrfs_set_header_backref_rev(eb_rewin,
1225                                              btrfs_header_backref_rev(eb));
1226                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1227                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1228         } else {
1229                 eb_rewin = btrfs_clone_extent_buffer(eb);
1230                 if (!eb_rewin) {
1231                         btrfs_tree_read_unlock_blocking(eb);
1232                         free_extent_buffer(eb);
1233                         return NULL;
1234                 }
1235         }
1236
1237         btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1238         btrfs_tree_read_unlock_blocking(eb);
1239         free_extent_buffer(eb);
1240
1241         extent_buffer_get(eb_rewin);
1242         btrfs_tree_read_lock(eb_rewin);
1243         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1244         WARN_ON(btrfs_header_nritems(eb_rewin) >
1245                 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1246
1247         return eb_rewin;
1248 }
1249
1250 /*
1251  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1252  * value. If there are no changes, the current root->root_node is returned. If
1253  * anything changed in between, there's a fresh buffer allocated on which the
1254  * rewind operations are done. In any case, the returned buffer is read locked.
1255  * Returns NULL on error (with no locks held).
1256  */
1257 static inline struct extent_buffer *
1258 get_old_root(struct btrfs_root *root, u64 time_seq)
1259 {
1260         struct tree_mod_elem *tm;
1261         struct extent_buffer *eb = NULL;
1262         struct extent_buffer *eb_root;
1263         struct extent_buffer *old;
1264         struct tree_mod_root *old_root = NULL;
1265         u64 old_generation = 0;
1266         u64 logical;
1267         u32 blocksize;
1268
1269         eb_root = btrfs_read_lock_root_node(root);
1270         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1271         if (!tm)
1272                 return eb_root;
1273
1274         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1275                 old_root = &tm->old_root;
1276                 old_generation = tm->generation;
1277                 logical = old_root->logical;
1278         } else {
1279                 logical = eb_root->start;
1280         }
1281
1282         tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1283         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1284                 btrfs_tree_read_unlock(eb_root);
1285                 free_extent_buffer(eb_root);
1286                 blocksize = btrfs_level_size(root, old_root->level);
1287                 old = read_tree_block(root, logical, blocksize, 0);
1288                 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1289                         free_extent_buffer(old);
1290                         pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1291                                 logical);
1292                 } else {
1293                         eb = btrfs_clone_extent_buffer(old);
1294                         free_extent_buffer(old);
1295                 }
1296         } else if (old_root) {
1297                 btrfs_tree_read_unlock(eb_root);
1298                 free_extent_buffer(eb_root);
1299                 eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1300         } else {
1301                 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1302                 eb = btrfs_clone_extent_buffer(eb_root);
1303                 btrfs_tree_read_unlock_blocking(eb_root);
1304                 free_extent_buffer(eb_root);
1305         }
1306
1307         if (!eb)
1308                 return NULL;
1309         extent_buffer_get(eb);
1310         btrfs_tree_read_lock(eb);
1311         if (old_root) {
1312                 btrfs_set_header_bytenr(eb, eb->start);
1313                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1314                 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1315                 btrfs_set_header_level(eb, old_root->level);
1316                 btrfs_set_header_generation(eb, old_generation);
1317         }
1318         if (tm)
1319                 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1320         else
1321                 WARN_ON(btrfs_header_level(eb) != 0);
1322         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1323
1324         return eb;
1325 }
1326
1327 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1328 {
1329         struct tree_mod_elem *tm;
1330         int level;
1331         struct extent_buffer *eb_root = btrfs_root_node(root);
1332
1333         tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1334         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1335                 level = tm->old_root.level;
1336         } else {
1337                 level = btrfs_header_level(eb_root);
1338         }
1339         free_extent_buffer(eb_root);
1340
1341         return level;
1342 }
1343
1344 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1345                                    struct btrfs_root *root,
1346                                    struct extent_buffer *buf)
1347 {
1348         /* ensure we can see the force_cow */
1349         smp_rmb();
1350
1351         /*
1352          * We do not need to cow a block if
1353          * 1) this block is not created or changed in this transaction;
1354          * 2) this block does not belong to TREE_RELOC tree;
1355          * 3) the root is not forced COW.
1356          *
1357          * What is forced COW:
1358          *    when we create snapshot during commiting the transaction,
1359          *    after we've finished coping src root, we must COW the shared
1360          *    block to ensure the metadata consistency.
1361          */
1362         if (btrfs_header_generation(buf) == trans->transid &&
1363             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1364             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1365               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1366             !root->force_cow)
1367                 return 0;
1368         return 1;
1369 }
1370
1371 /*
1372  * cows a single block, see __btrfs_cow_block for the real work.
1373  * This version of it has extra checks so that a block isn't cow'd more than
1374  * once per transaction, as long as it hasn't been written yet
1375  */
1376 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1377                     struct btrfs_root *root, struct extent_buffer *buf,
1378                     struct extent_buffer *parent, int parent_slot,
1379                     struct extent_buffer **cow_ret)
1380 {
1381         u64 search_start;
1382         int ret;
1383
1384         if (trans->transaction != root->fs_info->running_transaction)
1385                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1386                        trans->transid,
1387                        root->fs_info->running_transaction->transid);
1388
1389         if (trans->transid != root->fs_info->generation)
1390                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1391                        trans->transid, root->fs_info->generation);
1392
1393         if (!should_cow_block(trans, root, buf)) {
1394                 *cow_ret = buf;
1395                 return 0;
1396         }
1397
1398         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1399
1400         if (parent)
1401                 btrfs_set_lock_blocking(parent);
1402         btrfs_set_lock_blocking(buf);
1403
1404         ret = __btrfs_cow_block(trans, root, buf, parent,
1405                                  parent_slot, cow_ret, search_start, 0);
1406
1407         trace_btrfs_cow_block(root, buf, *cow_ret);
1408
1409         return ret;
1410 }
1411
1412 /*
1413  * helper function for defrag to decide if two blocks pointed to by a
1414  * node are actually close by
1415  */
1416 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1417 {
1418         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1419                 return 1;
1420         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1421                 return 1;
1422         return 0;
1423 }
1424
1425 /*
1426  * compare two keys in a memcmp fashion
1427  */
1428 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1429 {
1430         struct btrfs_key k1;
1431
1432         btrfs_disk_key_to_cpu(&k1, disk);
1433
1434         return btrfs_comp_cpu_keys(&k1, k2);
1435 }
1436
1437 /*
1438  * same as comp_keys only with two btrfs_key's
1439  */
1440 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1441 {
1442         if (k1->objectid > k2->objectid)
1443                 return 1;
1444         if (k1->objectid < k2->objectid)
1445                 return -1;
1446         if (k1->type > k2->type)
1447                 return 1;
1448         if (k1->type < k2->type)
1449                 return -1;
1450         if (k1->offset > k2->offset)
1451                 return 1;
1452         if (k1->offset < k2->offset)
1453                 return -1;
1454         return 0;
1455 }
1456
1457 /*
1458  * this is used by the defrag code to go through all the
1459  * leaves pointed to by a node and reallocate them so that
1460  * disk order is close to key order
1461  */
1462 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1463                        struct btrfs_root *root, struct extent_buffer *parent,
1464                        int start_slot, u64 *last_ret,
1465                        struct btrfs_key *progress)
1466 {
1467         struct extent_buffer *cur;
1468         u64 blocknr;
1469         u64 gen;
1470         u64 search_start = *last_ret;
1471         u64 last_block = 0;
1472         u64 other;
1473         u32 parent_nritems;
1474         int end_slot;
1475         int i;
1476         int err = 0;
1477         int parent_level;
1478         int uptodate;
1479         u32 blocksize;
1480         int progress_passed = 0;
1481         struct btrfs_disk_key disk_key;
1482
1483         parent_level = btrfs_header_level(parent);
1484
1485         WARN_ON(trans->transaction != root->fs_info->running_transaction);
1486         WARN_ON(trans->transid != root->fs_info->generation);
1487
1488         parent_nritems = btrfs_header_nritems(parent);
1489         blocksize = btrfs_level_size(root, parent_level - 1);
1490         end_slot = parent_nritems;
1491
1492         if (parent_nritems == 1)
1493                 return 0;
1494
1495         btrfs_set_lock_blocking(parent);
1496
1497         for (i = start_slot; i < end_slot; i++) {
1498                 int close = 1;
1499
1500                 btrfs_node_key(parent, &disk_key, i);
1501                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1502                         continue;
1503
1504                 progress_passed = 1;
1505                 blocknr = btrfs_node_blockptr(parent, i);
1506                 gen = btrfs_node_ptr_generation(parent, i);
1507                 if (last_block == 0)
1508                         last_block = blocknr;
1509
1510                 if (i > 0) {
1511                         other = btrfs_node_blockptr(parent, i - 1);
1512                         close = close_blocks(blocknr, other, blocksize);
1513                 }
1514                 if (!close && i < end_slot - 2) {
1515                         other = btrfs_node_blockptr(parent, i + 1);
1516                         close = close_blocks(blocknr, other, blocksize);
1517                 }
1518                 if (close) {
1519                         last_block = blocknr;
1520                         continue;
1521                 }
1522
1523                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
1524                 if (cur)
1525                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1526                 else
1527                         uptodate = 0;
1528                 if (!cur || !uptodate) {
1529                         if (!cur) {
1530                                 cur = read_tree_block(root, blocknr,
1531                                                          blocksize, gen);
1532                                 if (!cur || !extent_buffer_uptodate(cur)) {
1533                                         free_extent_buffer(cur);
1534                                         return -EIO;
1535                                 }
1536                         } else if (!uptodate) {
1537                                 err = btrfs_read_buffer(cur, gen);
1538                                 if (err) {
1539                                         free_extent_buffer(cur);
1540                                         return err;
1541                                 }
1542                         }
1543                 }
1544                 if (search_start == 0)
1545                         search_start = last_block;
1546
1547                 btrfs_tree_lock(cur);
1548                 btrfs_set_lock_blocking(cur);
1549                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1550                                         &cur, search_start,
1551                                         min(16 * blocksize,
1552                                             (end_slot - i) * blocksize));
1553                 if (err) {
1554                         btrfs_tree_unlock(cur);
1555                         free_extent_buffer(cur);
1556                         break;
1557                 }
1558                 search_start = cur->start;
1559                 last_block = cur->start;
1560                 *last_ret = search_start;
1561                 btrfs_tree_unlock(cur);
1562                 free_extent_buffer(cur);
1563         }
1564         return err;
1565 }
1566
1567 /*
1568  * The leaf data grows from end-to-front in the node.
1569  * this returns the address of the start of the last item,
1570  * which is the stop of the leaf data stack
1571  */
1572 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1573                                          struct extent_buffer *leaf)
1574 {
1575         u32 nr = btrfs_header_nritems(leaf);
1576         if (nr == 0)
1577                 return BTRFS_LEAF_DATA_SIZE(root);
1578         return btrfs_item_offset_nr(leaf, nr - 1);
1579 }
1580
1581
1582 /*
1583  * search for key in the extent_buffer.  The items start at offset p,
1584  * and they are item_size apart.  There are 'max' items in p.
1585  *
1586  * the slot in the array is returned via slot, and it points to
1587  * the place where you would insert key if it is not found in
1588  * the array.
1589  *
1590  * slot may point to max if the key is bigger than all of the keys
1591  */
1592 static noinline int generic_bin_search(struct extent_buffer *eb,
1593                                        unsigned long p,
1594                                        int item_size, struct btrfs_key *key,
1595                                        int max, int *slot)
1596 {
1597         int low = 0;
1598         int high = max;
1599         int mid;
1600         int ret;
1601         struct btrfs_disk_key *tmp = NULL;
1602         struct btrfs_disk_key unaligned;
1603         unsigned long offset;
1604         char *kaddr = NULL;
1605         unsigned long map_start = 0;
1606         unsigned long map_len = 0;
1607         int err;
1608
1609         while (low < high) {
1610                 mid = (low + high) / 2;
1611                 offset = p + mid * item_size;
1612
1613                 if (!kaddr || offset < map_start ||
1614                     (offset + sizeof(struct btrfs_disk_key)) >
1615                     map_start + map_len) {
1616
1617                         err = map_private_extent_buffer(eb, offset,
1618                                                 sizeof(struct btrfs_disk_key),
1619                                                 &kaddr, &map_start, &map_len);
1620
1621                         if (!err) {
1622                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1623                                                         map_start);
1624                         } else {
1625                                 read_extent_buffer(eb, &unaligned,
1626                                                    offset, sizeof(unaligned));
1627                                 tmp = &unaligned;
1628                         }
1629
1630                 } else {
1631                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1632                                                         map_start);
1633                 }
1634                 ret = comp_keys(tmp, key);
1635
1636                 if (ret < 0)
1637                         low = mid + 1;
1638                 else if (ret > 0)
1639                         high = mid;
1640                 else {
1641                         *slot = mid;
1642                         return 0;
1643                 }
1644         }
1645         *slot = low;
1646         return 1;
1647 }
1648
1649 /*
1650  * simple bin_search frontend that does the right thing for
1651  * leaves vs nodes
1652  */
1653 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1654                       int level, int *slot)
1655 {
1656         if (level == 0)
1657                 return generic_bin_search(eb,
1658                                           offsetof(struct btrfs_leaf, items),
1659                                           sizeof(struct btrfs_item),
1660                                           key, btrfs_header_nritems(eb),
1661                                           slot);
1662         else
1663                 return generic_bin_search(eb,
1664                                           offsetof(struct btrfs_node, ptrs),
1665                                           sizeof(struct btrfs_key_ptr),
1666                                           key, btrfs_header_nritems(eb),
1667                                           slot);
1668 }
1669
1670 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1671                      int level, int *slot)
1672 {
1673         return bin_search(eb, key, level, slot);
1674 }
1675
1676 static void root_add_used(struct btrfs_root *root, u32 size)
1677 {
1678         spin_lock(&root->accounting_lock);
1679         btrfs_set_root_used(&root->root_item,
1680                             btrfs_root_used(&root->root_item) + size);
1681         spin_unlock(&root->accounting_lock);
1682 }
1683
1684 static void root_sub_used(struct btrfs_root *root, u32 size)
1685 {
1686         spin_lock(&root->accounting_lock);
1687         btrfs_set_root_used(&root->root_item,
1688                             btrfs_root_used(&root->root_item) - size);
1689         spin_unlock(&root->accounting_lock);
1690 }
1691
1692 /* given a node and slot number, this reads the blocks it points to.  The
1693  * extent buffer is returned with a reference taken (but unlocked).
1694  * NULL is returned on error.
1695  */
1696 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1697                                    struct extent_buffer *parent, int slot)
1698 {
1699         int level = btrfs_header_level(parent);
1700         struct extent_buffer *eb;
1701
1702         if (slot < 0)
1703                 return NULL;
1704         if (slot >= btrfs_header_nritems(parent))
1705                 return NULL;
1706
1707         BUG_ON(level == 0);
1708
1709         eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1710                              btrfs_level_size(root, level - 1),
1711                              btrfs_node_ptr_generation(parent, slot));
1712         if (eb && !extent_buffer_uptodate(eb)) {
1713                 free_extent_buffer(eb);
1714                 eb = NULL;
1715         }
1716
1717         return eb;
1718 }
1719
1720 /*
1721  * node level balancing, used to make sure nodes are in proper order for
1722  * item deletion.  We balance from the top down, so we have to make sure
1723  * that a deletion won't leave an node completely empty later on.
1724  */
1725 static noinline int balance_level(struct btrfs_trans_handle *trans,
1726                          struct btrfs_root *root,
1727                          struct btrfs_path *path, int level)
1728 {
1729         struct extent_buffer *right = NULL;
1730         struct extent_buffer *mid;
1731         struct extent_buffer *left = NULL;
1732         struct extent_buffer *parent = NULL;
1733         int ret = 0;
1734         int wret;
1735         int pslot;
1736         int orig_slot = path->slots[level];
1737         u64 orig_ptr;
1738
1739         if (level == 0)
1740                 return 0;
1741
1742         mid = path->nodes[level];
1743
1744         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1745                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1746         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1747
1748         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1749
1750         if (level < BTRFS_MAX_LEVEL - 1) {
1751                 parent = path->nodes[level + 1];
1752                 pslot = path->slots[level + 1];
1753         }
1754
1755         /*
1756          * deal with the case where there is only one pointer in the root
1757          * by promoting the node below to a root
1758          */
1759         if (!parent) {
1760                 struct extent_buffer *child;
1761
1762                 if (btrfs_header_nritems(mid) != 1)
1763                         return 0;
1764
1765                 /* promote the child to a root */
1766                 child = read_node_slot(root, mid, 0);
1767                 if (!child) {
1768                         ret = -EROFS;
1769                         btrfs_std_error(root->fs_info, ret);
1770                         goto enospc;
1771                 }
1772
1773                 btrfs_tree_lock(child);
1774                 btrfs_set_lock_blocking(child);
1775                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1776                 if (ret) {
1777                         btrfs_tree_unlock(child);
1778                         free_extent_buffer(child);
1779                         goto enospc;
1780                 }
1781
1782                 tree_mod_log_set_root_pointer(root, child, 1);
1783                 rcu_assign_pointer(root->node, child);
1784
1785                 add_root_to_dirty_list(root);
1786                 btrfs_tree_unlock(child);
1787
1788                 path->locks[level] = 0;
1789                 path->nodes[level] = NULL;
1790                 clean_tree_block(trans, root, mid);
1791                 btrfs_tree_unlock(mid);
1792                 /* once for the path */
1793                 free_extent_buffer(mid);
1794
1795                 root_sub_used(root, mid->len);
1796                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1797                 /* once for the root ptr */
1798                 free_extent_buffer_stale(mid);
1799                 return 0;
1800         }
1801         if (btrfs_header_nritems(mid) >
1802             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1803                 return 0;
1804
1805         left = read_node_slot(root, parent, pslot - 1);
1806         if (left) {
1807                 btrfs_tree_lock(left);
1808                 btrfs_set_lock_blocking(left);
1809                 wret = btrfs_cow_block(trans, root, left,
1810                                        parent, pslot - 1, &left);
1811                 if (wret) {
1812                         ret = wret;
1813                         goto enospc;
1814                 }
1815         }
1816         right = read_node_slot(root, parent, pslot + 1);
1817         if (right) {
1818                 btrfs_tree_lock(right);
1819                 btrfs_set_lock_blocking(right);
1820                 wret = btrfs_cow_block(trans, root, right,
1821                                        parent, pslot + 1, &right);
1822                 if (wret) {
1823                         ret = wret;
1824                         goto enospc;
1825                 }
1826         }
1827
1828         /* first, try to make some room in the middle buffer */
1829         if (left) {
1830                 orig_slot += btrfs_header_nritems(left);
1831                 wret = push_node_left(trans, root, left, mid, 1);
1832                 if (wret < 0)
1833                         ret = wret;
1834         }
1835
1836         /*
1837          * then try to empty the right most buffer into the middle
1838          */
1839         if (right) {
1840                 wret = push_node_left(trans, root, mid, right, 1);
1841                 if (wret < 0 && wret != -ENOSPC)
1842                         ret = wret;
1843                 if (btrfs_header_nritems(right) == 0) {
1844                         clean_tree_block(trans, root, right);
1845                         btrfs_tree_unlock(right);
1846                         del_ptr(root, path, level + 1, pslot + 1);
1847                         root_sub_used(root, right->len);
1848                         btrfs_free_tree_block(trans, root, right, 0, 1);
1849                         free_extent_buffer_stale(right);
1850                         right = NULL;
1851                 } else {
1852                         struct btrfs_disk_key right_key;
1853                         btrfs_node_key(right, &right_key, 0);
1854                         tree_mod_log_set_node_key(root->fs_info, parent,
1855                                                   pslot + 1, 0);
1856                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1857                         btrfs_mark_buffer_dirty(parent);
1858                 }
1859         }
1860         if (btrfs_header_nritems(mid) == 1) {
1861                 /*
1862                  * we're not allowed to leave a node with one item in the
1863                  * tree during a delete.  A deletion from lower in the tree
1864                  * could try to delete the only pointer in this node.
1865                  * So, pull some keys from the left.
1866                  * There has to be a left pointer at this point because
1867                  * otherwise we would have pulled some pointers from the
1868                  * right
1869                  */
1870                 if (!left) {
1871                         ret = -EROFS;
1872                         btrfs_std_error(root->fs_info, ret);
1873                         goto enospc;
1874                 }
1875                 wret = balance_node_right(trans, root, mid, left);
1876                 if (wret < 0) {
1877                         ret = wret;
1878                         goto enospc;
1879                 }
1880                 if (wret == 1) {
1881                         wret = push_node_left(trans, root, left, mid, 1);
1882                         if (wret < 0)
1883                                 ret = wret;
1884                 }
1885                 BUG_ON(wret == 1);
1886         }
1887         if (btrfs_header_nritems(mid) == 0) {
1888                 clean_tree_block(trans, root, mid);
1889                 btrfs_tree_unlock(mid);
1890                 del_ptr(root, path, level + 1, pslot);
1891                 root_sub_used(root, mid->len);
1892                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1893                 free_extent_buffer_stale(mid);
1894                 mid = NULL;
1895         } else {
1896                 /* update the parent key to reflect our changes */
1897                 struct btrfs_disk_key mid_key;
1898                 btrfs_node_key(mid, &mid_key, 0);
1899                 tree_mod_log_set_node_key(root->fs_info, parent,
1900                                           pslot, 0);
1901                 btrfs_set_node_key(parent, &mid_key, pslot);
1902                 btrfs_mark_buffer_dirty(parent);
1903         }
1904
1905         /* update the path */
1906         if (left) {
1907                 if (btrfs_header_nritems(left) > orig_slot) {
1908                         extent_buffer_get(left);
1909                         /* left was locked after cow */
1910                         path->nodes[level] = left;
1911                         path->slots[level + 1] -= 1;
1912                         path->slots[level] = orig_slot;
1913                         if (mid) {
1914                                 btrfs_tree_unlock(mid);
1915                                 free_extent_buffer(mid);
1916                         }
1917                 } else {
1918                         orig_slot -= btrfs_header_nritems(left);
1919                         path->slots[level] = orig_slot;
1920                 }
1921         }
1922         /* double check we haven't messed things up */
1923         if (orig_ptr !=
1924             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1925                 BUG();
1926 enospc:
1927         if (right) {
1928                 btrfs_tree_unlock(right);
1929                 free_extent_buffer(right);
1930         }
1931         if (left) {
1932                 if (path->nodes[level] != left)
1933                         btrfs_tree_unlock(left);
1934                 free_extent_buffer(left);
1935         }
1936         return ret;
1937 }
1938
1939 /* Node balancing for insertion.  Here we only split or push nodes around
1940  * when they are completely full.  This is also done top down, so we
1941  * have to be pessimistic.
1942  */
1943 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1944                                           struct btrfs_root *root,
1945                                           struct btrfs_path *path, int level)
1946 {
1947         struct extent_buffer *right = NULL;
1948         struct extent_buffer *mid;
1949         struct extent_buffer *left = NULL;
1950         struct extent_buffer *parent = NULL;
1951         int ret = 0;
1952         int wret;
1953         int pslot;
1954         int orig_slot = path->slots[level];
1955
1956         if (level == 0)
1957                 return 1;
1958
1959         mid = path->nodes[level];
1960         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1961
1962         if (level < BTRFS_MAX_LEVEL - 1) {
1963                 parent = path->nodes[level + 1];
1964                 pslot = path->slots[level + 1];
1965         }
1966
1967         if (!parent)
1968                 return 1;
1969
1970         left = read_node_slot(root, parent, pslot - 1);
1971
1972         /* first, try to make some room in the middle buffer */
1973         if (left) {
1974                 u32 left_nr;
1975
1976                 btrfs_tree_lock(left);
1977                 btrfs_set_lock_blocking(left);
1978
1979                 left_nr = btrfs_header_nritems(left);
1980                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1981                         wret = 1;
1982                 } else {
1983                         ret = btrfs_cow_block(trans, root, left, parent,
1984                                               pslot - 1, &left);
1985                         if (ret)
1986                                 wret = 1;
1987                         else {
1988                                 wret = push_node_left(trans, root,
1989                                                       left, mid, 0);
1990                         }
1991                 }
1992                 if (wret < 0)
1993                         ret = wret;
1994                 if (wret == 0) {
1995                         struct btrfs_disk_key disk_key;
1996                         orig_slot += left_nr;
1997                         btrfs_node_key(mid, &disk_key, 0);
1998                         tree_mod_log_set_node_key(root->fs_info, parent,
1999                                                   pslot, 0);
2000                         btrfs_set_node_key(parent, &disk_key, pslot);
2001                         btrfs_mark_buffer_dirty(parent);
2002                         if (btrfs_header_nritems(left) > orig_slot) {
2003                                 path->nodes[level] = left;
2004                                 path->slots[level + 1] -= 1;
2005                                 path->slots[level] = orig_slot;
2006                                 btrfs_tree_unlock(mid);
2007                                 free_extent_buffer(mid);
2008                         } else {
2009                                 orig_slot -=
2010                                         btrfs_header_nritems(left);
2011                                 path->slots[level] = orig_slot;
2012                                 btrfs_tree_unlock(left);
2013                                 free_extent_buffer(left);
2014                         }
2015                         return 0;
2016                 }
2017                 btrfs_tree_unlock(left);
2018                 free_extent_buffer(left);
2019         }
2020         right = read_node_slot(root, parent, pslot + 1);
2021
2022         /*
2023          * then try to empty the right most buffer into the middle
2024          */
2025         if (right) {
2026                 u32 right_nr;
2027
2028                 btrfs_tree_lock(right);
2029                 btrfs_set_lock_blocking(right);
2030
2031                 right_nr = btrfs_header_nritems(right);
2032                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2033                         wret = 1;
2034                 } else {
2035                         ret = btrfs_cow_block(trans, root, right,
2036                                               parent, pslot + 1,
2037                                               &right);
2038                         if (ret)
2039                                 wret = 1;
2040                         else {
2041                                 wret = balance_node_right(trans, root,
2042                                                           right, mid);
2043                         }
2044                 }
2045                 if (wret < 0)
2046                         ret = wret;
2047                 if (wret == 0) {
2048                         struct btrfs_disk_key disk_key;
2049
2050                         btrfs_node_key(right, &disk_key, 0);
2051                         tree_mod_log_set_node_key(root->fs_info, parent,
2052                                                   pslot + 1, 0);
2053                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2054                         btrfs_mark_buffer_dirty(parent);
2055
2056                         if (btrfs_header_nritems(mid) <= orig_slot) {
2057                                 path->nodes[level] = right;
2058                                 path->slots[level + 1] += 1;
2059                                 path->slots[level] = orig_slot -
2060                                         btrfs_header_nritems(mid);
2061                                 btrfs_tree_unlock(mid);
2062                                 free_extent_buffer(mid);
2063                         } else {
2064                                 btrfs_tree_unlock(right);
2065                                 free_extent_buffer(right);
2066                         }
2067                         return 0;
2068                 }
2069                 btrfs_tree_unlock(right);
2070                 free_extent_buffer(right);
2071         }
2072         return 1;
2073 }
2074
2075 /*
2076  * readahead one full node of leaves, finding things that are close
2077  * to the block in 'slot', and triggering ra on them.
2078  */
2079 static void reada_for_search(struct btrfs_root *root,
2080                              struct btrfs_path *path,
2081                              int level, int slot, u64 objectid)
2082 {
2083         struct extent_buffer *node;
2084         struct btrfs_disk_key disk_key;
2085         u32 nritems;
2086         u64 search;
2087         u64 target;
2088         u64 nread = 0;
2089         u64 gen;
2090         int direction = path->reada;
2091         struct extent_buffer *eb;
2092         u32 nr;
2093         u32 blocksize;
2094         u32 nscan = 0;
2095
2096         if (level != 1)
2097                 return;
2098
2099         if (!path->nodes[level])
2100                 return;
2101
2102         node = path->nodes[level];
2103
2104         search = btrfs_node_blockptr(node, slot);
2105         blocksize = btrfs_level_size(root, level - 1);
2106         eb = btrfs_find_tree_block(root, search, blocksize);
2107         if (eb) {
2108                 free_extent_buffer(eb);
2109                 return;
2110         }
2111
2112         target = search;
2113
2114         nritems = btrfs_header_nritems(node);
2115         nr = slot;
2116
2117         while (1) {
2118                 if (direction < 0) {
2119                         if (nr == 0)
2120                                 break;
2121                         nr--;
2122                 } else if (direction > 0) {
2123                         nr++;
2124                         if (nr >= nritems)
2125                                 break;
2126                 }
2127                 if (path->reada < 0 && objectid) {
2128                         btrfs_node_key(node, &disk_key, nr);
2129                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2130                                 break;
2131                 }
2132                 search = btrfs_node_blockptr(node, nr);
2133                 if ((search <= target && target - search <= 65536) ||
2134                     (search > target && search - target <= 65536)) {
2135                         gen = btrfs_node_ptr_generation(node, nr);
2136                         readahead_tree_block(root, search, blocksize, gen);
2137                         nread += blocksize;
2138                 }
2139                 nscan++;
2140                 if ((nread > 65536 || nscan > 32))
2141                         break;
2142         }
2143 }
2144
2145 static noinline void reada_for_balance(struct btrfs_root *root,
2146                                        struct btrfs_path *path, int level)
2147 {
2148         int slot;
2149         int nritems;
2150         struct extent_buffer *parent;
2151         struct extent_buffer *eb;
2152         u64 gen;
2153         u64 block1 = 0;
2154         u64 block2 = 0;
2155         int blocksize;
2156
2157         parent = path->nodes[level + 1];
2158         if (!parent)
2159                 return;
2160
2161         nritems = btrfs_header_nritems(parent);
2162         slot = path->slots[level + 1];
2163         blocksize = btrfs_level_size(root, level);
2164
2165         if (slot > 0) {
2166                 block1 = btrfs_node_blockptr(parent, slot - 1);
2167                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2168                 eb = btrfs_find_tree_block(root, block1, blocksize);
2169                 /*
2170                  * if we get -eagain from btrfs_buffer_uptodate, we
2171                  * don't want to return eagain here.  That will loop
2172                  * forever
2173                  */
2174                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2175                         block1 = 0;
2176                 free_extent_buffer(eb);
2177         }
2178         if (slot + 1 < nritems) {
2179                 block2 = btrfs_node_blockptr(parent, slot + 1);
2180                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2181                 eb = btrfs_find_tree_block(root, block2, blocksize);
2182                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2183                         block2 = 0;
2184                 free_extent_buffer(eb);
2185         }
2186
2187         if (block1)
2188                 readahead_tree_block(root, block1, blocksize, 0);
2189         if (block2)
2190                 readahead_tree_block(root, block2, blocksize, 0);
2191 }
2192
2193
2194 /*
2195  * when we walk down the tree, it is usually safe to unlock the higher layers
2196  * in the tree.  The exceptions are when our path goes through slot 0, because
2197  * operations on the tree might require changing key pointers higher up in the
2198  * tree.
2199  *
2200  * callers might also have set path->keep_locks, which tells this code to keep
2201  * the lock if the path points to the last slot in the block.  This is part of
2202  * walking through the tree, and selecting the next slot in the higher block.
2203  *
2204  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2205  * if lowest_unlock is 1, level 0 won't be unlocked
2206  */
2207 static noinline void unlock_up(struct btrfs_path *path, int level,
2208                                int lowest_unlock, int min_write_lock_level,
2209                                int *write_lock_level)
2210 {
2211         int i;
2212         int skip_level = level;
2213         int no_skips = 0;
2214         struct extent_buffer *t;
2215
2216         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2217                 if (!path->nodes[i])
2218                         break;
2219                 if (!path->locks[i])
2220                         break;
2221                 if (!no_skips && path->slots[i] == 0) {
2222                         skip_level = i + 1;
2223                         continue;
2224                 }
2225                 if (!no_skips && path->keep_locks) {
2226                         u32 nritems;
2227                         t = path->nodes[i];
2228                         nritems = btrfs_header_nritems(t);
2229                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2230                                 skip_level = i + 1;
2231                                 continue;
2232                         }
2233                 }
2234                 if (skip_level < i && i >= lowest_unlock)
2235                         no_skips = 1;
2236
2237                 t = path->nodes[i];
2238                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2239                         btrfs_tree_unlock_rw(t, path->locks[i]);
2240                         path->locks[i] = 0;
2241                         if (write_lock_level &&
2242                             i > min_write_lock_level &&
2243                             i <= *write_lock_level) {
2244                                 *write_lock_level = i - 1;
2245                         }
2246                 }
2247         }
2248 }
2249
2250 /*
2251  * This releases any locks held in the path starting at level and
2252  * going all the way up to the root.
2253  *
2254  * btrfs_search_slot will keep the lock held on higher nodes in a few
2255  * corner cases, such as COW of the block at slot zero in the node.  This
2256  * ignores those rules, and it should only be called when there are no
2257  * more updates to be done higher up in the tree.
2258  */
2259 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2260 {
2261         int i;
2262
2263         if (path->keep_locks)
2264                 return;
2265
2266         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2267                 if (!path->nodes[i])
2268                         continue;
2269                 if (!path->locks[i])
2270                         continue;
2271                 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2272                 path->locks[i] = 0;
2273         }
2274 }
2275
2276 /*
2277  * helper function for btrfs_search_slot.  The goal is to find a block
2278  * in cache without setting the path to blocking.  If we find the block
2279  * we return zero and the path is unchanged.
2280  *
2281  * If we can't find the block, we set the path blocking and do some
2282  * reada.  -EAGAIN is returned and the search must be repeated.
2283  */
2284 static int
2285 read_block_for_search(struct btrfs_trans_handle *trans,
2286                        struct btrfs_root *root, struct btrfs_path *p,
2287                        struct extent_buffer **eb_ret, int level, int slot,
2288                        struct btrfs_key *key, u64 time_seq)
2289 {
2290         u64 blocknr;
2291         u64 gen;
2292         u32 blocksize;
2293         struct extent_buffer *b = *eb_ret;
2294         struct extent_buffer *tmp;
2295         int ret;
2296
2297         blocknr = btrfs_node_blockptr(b, slot);
2298         gen = btrfs_node_ptr_generation(b, slot);
2299         blocksize = btrfs_level_size(root, level - 1);
2300
2301         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2302         if (tmp) {
2303                 /* first we do an atomic uptodate check */
2304                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2305                         *eb_ret = tmp;
2306                         return 0;
2307                 }
2308
2309                 /* the pages were up to date, but we failed
2310                  * the generation number check.  Do a full
2311                  * read for the generation number that is correct.
2312                  * We must do this without dropping locks so
2313                  * we can trust our generation number
2314                  */
2315                 btrfs_set_path_blocking(p);
2316
2317                 /* now we're allowed to do a blocking uptodate check */
2318                 ret = btrfs_read_buffer(tmp, gen);
2319                 if (!ret) {
2320                         *eb_ret = tmp;
2321                         return 0;
2322                 }
2323                 free_extent_buffer(tmp);
2324                 btrfs_release_path(p);
2325                 return -EIO;
2326         }
2327
2328         /*
2329          * reduce lock contention at high levels
2330          * of the btree by dropping locks before
2331          * we read.  Don't release the lock on the current
2332          * level because we need to walk this node to figure
2333          * out which blocks to read.
2334          */
2335         btrfs_unlock_up_safe(p, level + 1);
2336         btrfs_set_path_blocking(p);
2337
2338         free_extent_buffer(tmp);
2339         if (p->reada)
2340                 reada_for_search(root, p, level, slot, key->objectid);
2341
2342         btrfs_release_path(p);
2343
2344         ret = -EAGAIN;
2345         tmp = read_tree_block(root, blocknr, blocksize, 0);
2346         if (tmp) {
2347                 /*
2348                  * If the read above didn't mark this buffer up to date,
2349                  * it will never end up being up to date.  Set ret to EIO now
2350                  * and give up so that our caller doesn't loop forever
2351                  * on our EAGAINs.
2352                  */
2353                 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2354                         ret = -EIO;
2355                 free_extent_buffer(tmp);
2356         }
2357         return ret;
2358 }
2359
2360 /*
2361  * helper function for btrfs_search_slot.  This does all of the checks
2362  * for node-level blocks and does any balancing required based on
2363  * the ins_len.
2364  *
2365  * If no extra work was required, zero is returned.  If we had to
2366  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2367  * start over
2368  */
2369 static int
2370 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2371                        struct btrfs_root *root, struct btrfs_path *p,
2372                        struct extent_buffer *b, int level, int ins_len,
2373                        int *write_lock_level)
2374 {
2375         int ret;
2376         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2377             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2378                 int sret;
2379
2380                 if (*write_lock_level < level + 1) {
2381                         *write_lock_level = level + 1;
2382                         btrfs_release_path(p);
2383                         goto again;
2384                 }
2385
2386                 btrfs_set_path_blocking(p);
2387                 reada_for_balance(root, p, level);
2388                 sret = split_node(trans, root, p, level);
2389                 btrfs_clear_path_blocking(p, NULL, 0);
2390
2391                 BUG_ON(sret > 0);
2392                 if (sret) {
2393                         ret = sret;
2394                         goto done;
2395                 }
2396                 b = p->nodes[level];
2397         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2398                    BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2399                 int sret;
2400
2401                 if (*write_lock_level < level + 1) {
2402                         *write_lock_level = level + 1;
2403                         btrfs_release_path(p);
2404                         goto again;
2405                 }
2406
2407                 btrfs_set_path_blocking(p);
2408                 reada_for_balance(root, p, level);
2409                 sret = balance_level(trans, root, p, level);
2410                 btrfs_clear_path_blocking(p, NULL, 0);
2411
2412                 if (sret) {
2413                         ret = sret;
2414                         goto done;
2415                 }
2416                 b = p->nodes[level];
2417                 if (!b) {
2418                         btrfs_release_path(p);
2419                         goto again;
2420                 }
2421                 BUG_ON(btrfs_header_nritems(b) == 1);
2422         }
2423         return 0;
2424
2425 again:
2426         ret = -EAGAIN;
2427 done:
2428         return ret;
2429 }
2430
2431 static void key_search_validate(struct extent_buffer *b,
2432                                 struct btrfs_key *key,
2433                                 int level)
2434 {
2435 #ifdef CONFIG_BTRFS_ASSERT
2436         struct btrfs_disk_key disk_key;
2437
2438         btrfs_cpu_key_to_disk(&disk_key, key);
2439
2440         if (level == 0)
2441                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2442                     offsetof(struct btrfs_leaf, items[0].key),
2443                     sizeof(disk_key)));
2444         else
2445                 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2446                     offsetof(struct btrfs_node, ptrs[0].key),
2447                     sizeof(disk_key)));
2448 #endif
2449 }
2450
2451 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2452                       int level, int *prev_cmp, int *slot)
2453 {
2454         if (*prev_cmp != 0) {
2455                 *prev_cmp = bin_search(b, key, level, slot);
2456                 return *prev_cmp;
2457         }
2458
2459         key_search_validate(b, key, level);
2460         *slot = 0;
2461
2462         return 0;
2463 }
2464
2465 /*
2466  * look for key in the tree.  path is filled in with nodes along the way
2467  * if key is found, we return zero and you can find the item in the leaf
2468  * level of the path (level 0)
2469  *
2470  * If the key isn't found, the path points to the slot where it should
2471  * be inserted, and 1 is returned.  If there are other errors during the
2472  * search a negative error number is returned.
2473  *
2474  * if ins_len > 0, nodes and leaves will be split as we walk down the
2475  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2476  * possible)
2477  */
2478 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2479                       *root, struct btrfs_key *key, struct btrfs_path *p, int
2480                       ins_len, int cow)
2481 {
2482         struct extent_buffer *b;
2483         int slot;
2484         int ret;
2485         int err;
2486         int level;
2487         int lowest_unlock = 1;
2488         int root_lock;
2489         /* everything at write_lock_level or lower must be write locked */
2490         int write_lock_level = 0;
2491         u8 lowest_level = 0;
2492         int min_write_lock_level;
2493         int prev_cmp;
2494
2495         lowest_level = p->lowest_level;
2496         WARN_ON(lowest_level && ins_len > 0);
2497         WARN_ON(p->nodes[0] != NULL);
2498
2499         if (ins_len < 0) {
2500                 lowest_unlock = 2;
2501
2502                 /* when we are removing items, we might have to go up to level
2503                  * two as we update tree pointers  Make sure we keep write
2504                  * for those levels as well
2505                  */
2506                 write_lock_level = 2;
2507         } else if (ins_len > 0) {
2508                 /*
2509                  * for inserting items, make sure we have a write lock on
2510                  * level 1 so we can update keys
2511                  */
2512                 write_lock_level = 1;
2513         }
2514
2515         if (!cow)
2516                 write_lock_level = -1;
2517
2518         if (cow && (p->keep_locks || p->lowest_level))
2519                 write_lock_level = BTRFS_MAX_LEVEL;
2520
2521         min_write_lock_level = write_lock_level;
2522
2523 again:
2524         prev_cmp = -1;
2525         /*
2526          * we try very hard to do read locks on the root
2527          */
2528         root_lock = BTRFS_READ_LOCK;
2529         level = 0;
2530         if (p->search_commit_root) {
2531                 /*
2532                  * the commit roots are read only
2533                  * so we always do read locks
2534                  */
2535                 b = root->commit_root;
2536                 extent_buffer_get(b);
2537                 level = btrfs_header_level(b);
2538                 if (!p->skip_locking)
2539                         btrfs_tree_read_lock(b);
2540         } else {
2541                 if (p->skip_locking) {
2542                         b = btrfs_root_node(root);
2543                         level = btrfs_header_level(b);
2544                 } else {
2545                         /* we don't know the level of the root node
2546                          * until we actually have it read locked
2547                          */
2548                         b = btrfs_read_lock_root_node(root);
2549                         level = btrfs_header_level(b);
2550                         if (level <= write_lock_level) {
2551                                 /* whoops, must trade for write lock */
2552                                 btrfs_tree_read_unlock(b);
2553                                 free_extent_buffer(b);
2554                                 b = btrfs_lock_root_node(root);
2555                                 root_lock = BTRFS_WRITE_LOCK;
2556
2557                                 /* the level might have changed, check again */
2558                                 level = btrfs_header_level(b);
2559                         }
2560                 }
2561         }
2562         p->nodes[level] = b;
2563         if (!p->skip_locking)
2564                 p->locks[level] = root_lock;
2565
2566         while (b) {
2567                 level = btrfs_header_level(b);
2568
2569                 /*
2570                  * setup the path here so we can release it under lock
2571                  * contention with the cow code
2572                  */
2573                 if (cow) {
2574                         /*
2575                          * if we don't really need to cow this block
2576                          * then we don't want to set the path blocking,
2577                          * so we test it here
2578                          */
2579                         if (!should_cow_block(trans, root, b))
2580                                 goto cow_done;
2581
2582                         btrfs_set_path_blocking(p);
2583
2584                         /*
2585                          * must have write locks on this node and the
2586                          * parent
2587                          */
2588                         if (level > write_lock_level ||
2589                             (level + 1 > write_lock_level &&
2590                             level + 1 < BTRFS_MAX_LEVEL &&
2591                             p->nodes[level + 1])) {
2592                                 write_lock_level = level + 1;
2593                                 btrfs_release_path(p);
2594                                 goto again;
2595                         }
2596
2597                         err = btrfs_cow_block(trans, root, b,
2598                                               p->nodes[level + 1],
2599                                               p->slots[level + 1], &b);
2600                         if (err) {
2601                                 ret = err;
2602                                 goto done;
2603                         }
2604                 }
2605 cow_done:
2606                 BUG_ON(!cow && ins_len);
2607
2608                 p->nodes[level] = b;
2609                 btrfs_clear_path_blocking(p, NULL, 0);
2610
2611                 /*
2612                  * we have a lock on b and as long as we aren't changing
2613                  * the tree, there is no way to for the items in b to change.
2614                  * It is safe to drop the lock on our parent before we
2615                  * go through the expensive btree search on b.
2616                  *
2617                  * If cow is true, then we might be changing slot zero,
2618                  * which may require changing the parent.  So, we can't
2619                  * drop the lock until after we know which slot we're
2620                  * operating on.
2621                  */
2622                 if (!cow)
2623                         btrfs_unlock_up_safe(p, level + 1);
2624
2625                 ret = key_search(b, key, level, &prev_cmp, &slot);
2626
2627                 if (level != 0) {
2628                         int dec = 0;
2629                         if (ret && slot > 0) {
2630                                 dec = 1;
2631                                 slot -= 1;
2632                         }
2633                         p->slots[level] = slot;
2634                         err = setup_nodes_for_search(trans, root, p, b, level,
2635                                              ins_len, &write_lock_level);
2636                         if (err == -EAGAIN)
2637                                 goto again;
2638                         if (err) {
2639                                 ret = err;
2640                                 goto done;
2641                         }
2642                         b = p->nodes[level];
2643                         slot = p->slots[level];
2644
2645                         /*
2646                          * slot 0 is special, if we change the key
2647                          * we have to update the parent pointer
2648                          * which means we must have a write lock
2649                          * on the parent
2650                          */
2651                         if (slot == 0 && cow &&
2652                             write_lock_level < level + 1) {
2653                                 write_lock_level = level + 1;
2654                                 btrfs_release_path(p);
2655                                 goto again;
2656                         }
2657
2658                         unlock_up(p, level, lowest_unlock,
2659                                   min_write_lock_level, &write_lock_level);
2660
2661                         if (level == lowest_level) {
2662                                 if (dec)
2663                                         p->slots[level]++;
2664                                 goto done;
2665                         }
2666
2667                         err = read_block_for_search(trans, root, p,
2668                                                     &b, level, slot, key, 0);
2669                         if (err == -EAGAIN)
2670                                 goto again;
2671                         if (err) {
2672                                 ret = err;
2673                                 goto done;
2674                         }
2675
2676                         if (!p->skip_locking) {
2677                                 level = btrfs_header_level(b);
2678                                 if (level <= write_lock_level) {
2679                                         err = btrfs_try_tree_write_lock(b);
2680                                         if (!err) {
2681                                                 btrfs_set_path_blocking(p);
2682                                                 btrfs_tree_lock(b);
2683                                                 btrfs_clear_path_blocking(p, b,
2684                                                                   BTRFS_WRITE_LOCK);
2685                                         }
2686                                         p->locks[level] = BTRFS_WRITE_LOCK;
2687                                 } else {
2688                                         err = btrfs_try_tree_read_lock(b);
2689                                         if (!err) {
2690                                                 btrfs_set_path_blocking(p);
2691                                                 btrfs_tree_read_lock(b);
2692                                                 btrfs_clear_path_blocking(p, b,
2693                                                                   BTRFS_READ_LOCK);
2694                                         }
2695                                         p->locks[level] = BTRFS_READ_LOCK;
2696                                 }
2697                                 p->nodes[level] = b;
2698                         }
2699                 } else {
2700                         p->slots[level] = slot;
2701                         if (ins_len > 0 &&
2702                             btrfs_leaf_free_space(root, b) < ins_len) {
2703                                 if (write_lock_level < 1) {
2704                                         write_lock_level = 1;
2705                                         btrfs_release_path(p);
2706                                         goto again;
2707                                 }
2708
2709                                 btrfs_set_path_blocking(p);
2710                                 err = split_leaf(trans, root, key,
2711                                                  p, ins_len, ret == 0);
2712                                 btrfs_clear_path_blocking(p, NULL, 0);
2713
2714                                 BUG_ON(err > 0);
2715                                 if (err) {
2716                                         ret = err;
2717                                         goto done;
2718                                 }
2719                         }
2720                         if (!p->search_for_split)
2721                                 unlock_up(p, level, lowest_unlock,
2722                                           min_write_lock_level, &write_lock_level);
2723                         goto done;
2724                 }
2725         }
2726         ret = 1;
2727 done:
2728         /*
2729          * we don't really know what they plan on doing with the path
2730          * from here on, so for now just mark it as blocking
2731          */
2732         if (!p->leave_spinning)
2733                 btrfs_set_path_blocking(p);
2734         if (ret < 0)
2735                 btrfs_release_path(p);
2736         return ret;
2737 }
2738
2739 /*
2740  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2741  * current state of the tree together with the operations recorded in the tree
2742  * modification log to search for the key in a previous version of this tree, as
2743  * denoted by the time_seq parameter.
2744  *
2745  * Naturally, there is no support for insert, delete or cow operations.
2746  *
2747  * The resulting path and return value will be set up as if we called
2748  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2749  */
2750 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2751                           struct btrfs_path *p, u64 time_seq)
2752 {
2753         struct extent_buffer *b;
2754         int slot;
2755         int ret;
2756         int err;
2757         int level;
2758         int lowest_unlock = 1;
2759         u8 lowest_level = 0;
2760         int prev_cmp = -1;
2761
2762         lowest_level = p->lowest_level;
2763         WARN_ON(p->nodes[0] != NULL);
2764
2765         if (p->search_commit_root) {
2766                 BUG_ON(time_seq);
2767                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2768         }
2769
2770 again:
2771         b = get_old_root(root, time_seq);
2772         level = btrfs_header_level(b);
2773         p->locks[level] = BTRFS_READ_LOCK;
2774
2775         while (b) {
2776                 level = btrfs_header_level(b);
2777                 p->nodes[level] = b;
2778                 btrfs_clear_path_blocking(p, NULL, 0);
2779
2780                 /*
2781                  * we have a lock on b and as long as we aren't changing
2782                  * the tree, there is no way to for the items in b to change.
2783                  * It is safe to drop the lock on our parent before we
2784                  * go through the expensive btree search on b.
2785                  */
2786                 btrfs_unlock_up_safe(p, level + 1);
2787
2788                 /*
2789                  * Since we can unwind eb's we want to do a real search every
2790                  * time.
2791                  */
2792                 prev_cmp = -1;
2793                 ret = key_search(b, key, level, &prev_cmp, &slot);
2794
2795                 if (level != 0) {
2796                         int dec = 0;
2797                         if (ret && slot > 0) {
2798                                 dec = 1;
2799                                 slot -= 1;
2800                         }
2801                         p->slots[level] = slot;
2802                         unlock_up(p, level, lowest_unlock, 0, NULL);
2803
2804                         if (level == lowest_level) {
2805                                 if (dec)
2806                                         p->slots[level]++;
2807                                 goto done;
2808                         }
2809
2810                         err = read_block_for_search(NULL, root, p, &b, level,
2811                                                     slot, key, time_seq);
2812                         if (err == -EAGAIN)
2813                                 goto again;
2814                         if (err) {
2815                                 ret = err;
2816                                 goto done;
2817                         }
2818
2819                         level = btrfs_header_level(b);
2820                         err = btrfs_try_tree_read_lock(b);
2821                         if (!err) {
2822                                 btrfs_set_path_blocking(p);
2823                                 btrfs_tree_read_lock(b);
2824                                 btrfs_clear_path_blocking(p, b,
2825                                                           BTRFS_READ_LOCK);
2826                         }
2827                         b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
2828                         if (!b) {
2829                                 ret = -ENOMEM;
2830                                 goto done;
2831                         }
2832                         p->locks[level] = BTRFS_READ_LOCK;
2833                         p->nodes[level] = b;
2834                 } else {
2835                         p->slots[level] = slot;
2836                         unlock_up(p, level, lowest_unlock, 0, NULL);
2837                         goto done;
2838                 }
2839         }
2840         ret = 1;
2841 done:
2842         if (!p->leave_spinning)
2843                 btrfs_set_path_blocking(p);
2844         if (ret < 0)
2845                 btrfs_release_path(p);
2846
2847         return ret;
2848 }
2849
2850 /*
2851  * helper to use instead of search slot if no exact match is needed but
2852  * instead the next or previous item should be returned.
2853  * When find_higher is true, the next higher item is returned, the next lower
2854  * otherwise.
2855  * When return_any and find_higher are both true, and no higher item is found,
2856  * return the next lower instead.
2857  * When return_any is true and find_higher is false, and no lower item is found,
2858  * return the next higher instead.
2859  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2860  * < 0 on error
2861  */
2862 int btrfs_search_slot_for_read(struct btrfs_root *root,
2863                                struct btrfs_key *key, struct btrfs_path *p,
2864                                int find_higher, int return_any)
2865 {
2866         int ret;
2867         struct extent_buffer *leaf;
2868
2869 again:
2870         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2871         if (ret <= 0)
2872                 return ret;
2873         /*
2874          * a return value of 1 means the path is at the position where the
2875          * item should be inserted. Normally this is the next bigger item,
2876          * but in case the previous item is the last in a leaf, path points
2877          * to the first free slot in the previous leaf, i.e. at an invalid
2878          * item.
2879          */
2880         leaf = p->nodes[0];
2881
2882         if (find_higher) {
2883                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2884                         ret = btrfs_next_leaf(root, p);
2885                         if (ret <= 0)
2886                                 return ret;
2887                         if (!return_any)
2888                                 return 1;
2889                         /*
2890                          * no higher item found, return the next
2891                          * lower instead
2892                          */
2893                         return_any = 0;
2894                         find_higher = 0;
2895                         btrfs_release_path(p);
2896                         goto again;
2897                 }
2898         } else {
2899                 if (p->slots[0] == 0) {
2900                         ret = btrfs_prev_leaf(root, p);
2901                         if (ret < 0)
2902                                 return ret;
2903                         if (!ret) {
2904                                 p->slots[0] = btrfs_header_nritems(leaf) - 1;
2905                                 return 0;
2906                         }
2907                         if (!return_any)
2908                                 return 1;
2909                         /*
2910                          * no lower item found, return the next
2911                          * higher instead
2912                          */
2913                         return_any = 0;
2914                         find_higher = 1;
2915                         btrfs_release_path(p);
2916                         goto again;
2917                 } else {
2918                         --p->slots[0];
2919                 }
2920         }
2921         return 0;
2922 }
2923
2924 /*
2925  * adjust the pointers going up the tree, starting at level
2926  * making sure the right key of each node is points to 'key'.
2927  * This is used after shifting pointers to the left, so it stops
2928  * fixing up pointers when a given leaf/node is not in slot 0 of the
2929  * higher levels
2930  *
2931  */
2932 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
2933                            struct btrfs_disk_key *key, int level)
2934 {
2935         int i;
2936         struct extent_buffer *t;
2937
2938         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2939                 int tslot = path->slots[i];
2940                 if (!path->nodes[i])
2941                         break;
2942                 t = path->nodes[i];
2943                 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2944                 btrfs_set_node_key(t, key, tslot);
2945                 btrfs_mark_buffer_dirty(path->nodes[i]);
2946                 if (tslot != 0)
2947                         break;
2948         }
2949 }
2950
2951 /*
2952  * update item key.
2953  *
2954  * This function isn't completely safe. It's the caller's responsibility
2955  * that the new key won't break the order
2956  */
2957 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
2958                              struct btrfs_key *new_key)
2959 {
2960         struct btrfs_disk_key disk_key;
2961         struct extent_buffer *eb;
2962         int slot;
2963
2964         eb = path->nodes[0];
2965         slot = path->slots[0];
2966         if (slot > 0) {
2967                 btrfs_item_key(eb, &disk_key, slot - 1);
2968                 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2969         }
2970         if (slot < btrfs_header_nritems(eb) - 1) {
2971                 btrfs_item_key(eb, &disk_key, slot + 1);
2972                 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2973         }
2974
2975         btrfs_cpu_key_to_disk(&disk_key, new_key);
2976         btrfs_set_item_key(eb, &disk_key, slot);
2977         btrfs_mark_buffer_dirty(eb);
2978         if (slot == 0)
2979                 fixup_low_keys(root, path, &disk_key, 1);
2980 }
2981
2982 /*
2983  * try to push data from one node into the next node left in the
2984  * tree.
2985  *
2986  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2987  * error, and > 0 if there was no room in the left hand block.
2988  */
2989 static int push_node_left(struct btrfs_trans_handle *trans,
2990                           struct btrfs_root *root, struct extent_buffer *dst,
2991                           struct extent_buffer *src, int empty)
2992 {
2993         int push_items = 0;
2994         int src_nritems;
2995         int dst_nritems;
2996         int ret = 0;
2997
2998         src_nritems = btrfs_header_nritems(src);
2999         dst_nritems = btrfs_header_nritems(dst);
3000         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3001         WARN_ON(btrfs_header_generation(src) != trans->transid);
3002         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3003
3004         if (!empty && src_nritems <= 8)
3005                 return 1;
3006
3007         if (push_items <= 0)
3008                 return 1;
3009
3010         if (empty) {
3011                 push_items = min(src_nritems, push_items);
3012                 if (push_items < src_nritems) {
3013                         /* leave at least 8 pointers in the node if
3014                          * we aren't going to empty it
3015                          */
3016                         if (src_nritems - push_items < 8) {
3017                                 if (push_items <= 8)
3018                                         return 1;
3019                                 push_items -= 8;
3020                         }
3021                 }
3022         } else
3023                 push_items = min(src_nritems - 8, push_items);
3024
3025         tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3026                              push_items);
3027         copy_extent_buffer(dst, src,
3028                            btrfs_node_key_ptr_offset(dst_nritems),
3029                            btrfs_node_key_ptr_offset(0),
3030                            push_items * sizeof(struct btrfs_key_ptr));
3031
3032         if (push_items < src_nritems) {
3033                 /*
3034                  * don't call tree_mod_log_eb_move here, key removal was already
3035                  * fully logged by tree_mod_log_eb_copy above.
3036                  */
3037                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3038                                       btrfs_node_key_ptr_offset(push_items),
3039                                       (src_nritems - push_items) *
3040                                       sizeof(struct btrfs_key_ptr));
3041         }
3042         btrfs_set_header_nritems(src, src_nritems - push_items);
3043         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3044         btrfs_mark_buffer_dirty(src);
3045         btrfs_mark_buffer_dirty(dst);
3046
3047         return ret;
3048 }
3049
3050 /*
3051  * try to push data from one node into the next node right in the
3052  * tree.
3053  *
3054  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3055  * error, and > 0 if there was no room in the right hand block.
3056  *
3057  * this will  only push up to 1/2 the contents of the left node over
3058  */
3059 static int balance_node_right(struct btrfs_trans_handle *trans,
3060                               struct btrfs_root *root,
3061                               struct extent_buffer *dst,
3062                               struct extent_buffer *src)
3063 {
3064         int push_items = 0;
3065         int max_push;
3066         int src_nritems;
3067         int dst_nritems;
3068         int ret = 0;
3069
3070         WARN_ON(btrfs_header_generation(src) != trans->transid);
3071         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3072
3073         src_nritems = btrfs_header_nritems(src);
3074         dst_nritems = btrfs_header_nritems(dst);
3075         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3076         if (push_items <= 0)
3077                 return 1;
3078
3079         if (src_nritems < 4)
3080                 return 1;
3081
3082         max_push = src_nritems / 2 + 1;
3083         /* don't try to empty the node */
3084         if (max_push >= src_nritems)
3085                 return 1;
3086
3087         if (max_push < push_items)
3088                 push_items = max_push;
3089
3090         tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3091         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3092                                       btrfs_node_key_ptr_offset(0),
3093                                       (dst_nritems) *
3094                                       sizeof(struct btrfs_key_ptr));
3095
3096         tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3097                              src_nritems - push_items, push_items);
3098         copy_extent_buffer(dst, src,
3099                            btrfs_node_key_ptr_offset(0),
3100                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3101                            push_items * sizeof(struct btrfs_key_ptr));
3102
3103         btrfs_set_header_nritems(src, src_nritems - push_items);
3104         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3105
3106         btrfs_mark_buffer_dirty(src);
3107         btrfs_mark_buffer_dirty(dst);
3108
3109         return ret;
3110 }
3111
3112 /*
3113  * helper function to insert a new root level in the tree.
3114  * A new node is allocated, and a single item is inserted to
3115  * point to the existing root
3116  *
3117  * returns zero on success or < 0 on failure.
3118  */
3119 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3120                            struct btrfs_root *root,
3121                            struct btrfs_path *path, int level)
3122 {
3123         u64 lower_gen;
3124         struct extent_buffer *lower;
3125         struct extent_buffer *c;
3126         struct extent_buffer *old;
3127         struct btrfs_disk_key lower_key;
3128
3129         BUG_ON(path->nodes[level]);
3130         BUG_ON(path->nodes[level-1] != root->node);
3131
3132         lower = path->nodes[level-1];
3133         if (level == 1)
3134                 btrfs_item_key(lower, &lower_key, 0);
3135         else
3136                 btrfs_node_key(lower, &lower_key, 0);
3137
3138         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3139                                    root->root_key.objectid, &lower_key,
3140                                    level, root->node->start, 0);
3141         if (IS_ERR(c))
3142                 return PTR_ERR(c);
3143
3144         root_add_used(root, root->nodesize);
3145
3146         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3147         btrfs_set_header_nritems(c, 1);
3148         btrfs_set_header_level(c, level);
3149         btrfs_set_header_bytenr(c, c->start);
3150         btrfs_set_header_generation(c, trans->transid);
3151         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3152         btrfs_set_header_owner(c, root->root_key.objectid);
3153
3154         write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3155                             BTRFS_FSID_SIZE);
3156
3157         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3158                             btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3159
3160         btrfs_set_node_key(c, &lower_key, 0);
3161         btrfs_set_node_blockptr(c, 0, lower->start);
3162         lower_gen = btrfs_header_generation(lower);
3163         WARN_ON(lower_gen != trans->transid);
3164
3165         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3166
3167         btrfs_mark_buffer_dirty(c);
3168
3169         old = root->node;
3170         tree_mod_log_set_root_pointer(root, c, 0);
3171         rcu_assign_pointer(root->node, c);
3172
3173         /* the super has an extra ref to root->node */
3174         free_extent_buffer(old);
3175
3176         add_root_to_dirty_list(root);
3177         extent_buffer_get(c);
3178         path->nodes[level] = c;
3179         path->locks[level] = BTRFS_WRITE_LOCK;
3180         path->slots[level] = 0;
3181         return 0;
3182 }
3183
3184 /*
3185  * worker function to insert a single pointer in a node.
3186  * the node should have enough room for the pointer already
3187  *
3188  * slot and level indicate where you want the key to go, and
3189  * blocknr is the block the key points to.
3190  */
3191 static void insert_ptr(struct btrfs_trans_handle *trans,
3192                        struct btrfs_root *root, struct btrfs_path *path,
3193                        struct btrfs_disk_key *key, u64 bytenr,
3194                        int slot, int level)
3195 {
3196         struct extent_buffer *lower;
3197         int nritems;
3198         int ret;
3199
3200         BUG_ON(!path->nodes[level]);
3201         btrfs_assert_tree_locked(path->nodes[level]);
3202         lower = path->nodes[level];
3203         nritems = btrfs_header_nritems(lower);
3204         BUG_ON(slot > nritems);
3205         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3206         if (slot != nritems) {
3207                 if (level)
3208                         tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3209                                              slot, nritems - slot);
3210                 memmove_extent_buffer(lower,
3211                               btrfs_node_key_ptr_offset(slot + 1),
3212                               btrfs_node_key_ptr_offset(slot),
3213                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3214         }
3215         if (level) {
3216                 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3217                                               MOD_LOG_KEY_ADD, GFP_NOFS);
3218                 BUG_ON(ret < 0);
3219         }
3220         btrfs_set_node_key(lower, key, slot);
3221         btrfs_set_node_blockptr(lower, slot, bytenr);
3222         WARN_ON(trans->transid == 0);
3223         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3224         btrfs_set_header_nritems(lower, nritems + 1);
3225         btrfs_mark_buffer_dirty(lower);
3226 }
3227
3228 /*
3229  * split the node at the specified level in path in two.
3230  * The path is corrected to point to the appropriate node after the split
3231  *
3232  * Before splitting this tries to make some room in the node by pushing
3233  * left and right, if either one works, it returns right away.
3234  *
3235  * returns 0 on success and < 0 on failure
3236  */
3237 static noinline int split_node(struct btrfs_trans_handle *trans,
3238                                struct btrfs_root *root,
3239                                struct btrfs_path *path, int level)
3240 {
3241         struct extent_buffer *c;
3242         struct extent_buffer *split;
3243         struct btrfs_disk_key disk_key;
3244         int mid;
3245         int ret;
3246         u32 c_nritems;
3247
3248         c = path->nodes[level];
3249         WARN_ON(btrfs_header_generation(c) != trans->transid);
3250         if (c == root->node) {
3251                 /*
3252                  * trying to split the root, lets make a new one
3253                  *
3254                  * tree mod log: We don't log_removal old root in
3255                  * insert_new_root, because that root buffer will be kept as a
3256                  * normal node. We are going to log removal of half of the
3257                  * elements below with tree_mod_log_eb_copy. We're holding a
3258                  * tree lock on the buffer, which is why we cannot race with
3259                  * other tree_mod_log users.
3260                  */
3261                 ret = insert_new_root(trans, root, path, level + 1);
3262                 if (ret)
3263                         return ret;
3264         } else {
3265                 ret = push_nodes_for_insert(trans, root, path, level);
3266                 c = path->nodes[level];
3267                 if (!ret && btrfs_header_nritems(c) <
3268                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3269                         return 0;
3270                 if (ret < 0)
3271                         return ret;
3272         }
3273
3274         c_nritems = btrfs_header_nritems(c);
3275         mid = (c_nritems + 1) / 2;
3276         btrfs_node_key(c, &disk_key, mid);
3277
3278         split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3279                                         root->root_key.objectid,
3280                                         &disk_key, level, c->start, 0);
3281         if (IS_ERR(split))
3282                 return PTR_ERR(split);
3283
3284         root_add_used(root, root->nodesize);
3285
3286         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3287         btrfs_set_header_level(split, btrfs_header_level(c));
3288         btrfs_set_header_bytenr(split, split->start);
3289         btrfs_set_header_generation(split, trans->transid);
3290         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3291         btrfs_set_header_owner(split, root->root_key.objectid);
3292         write_extent_buffer(split, root->fs_info->fsid,
3293                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
3294         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3295                             btrfs_header_chunk_tree_uuid(split),
3296                             BTRFS_UUID_SIZE);
3297
3298         tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3299         copy_extent_buffer(split, c,
3300                            btrfs_node_key_ptr_offset(0),
3301                            btrfs_node_key_ptr_offset(mid),
3302                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3303         btrfs_set_header_nritems(split, c_nritems - mid);
3304         btrfs_set_header_nritems(c, mid);
3305         ret = 0;
3306
3307         btrfs_mark_buffer_dirty(c);
3308         btrfs_mark_buffer_dirty(split);
3309
3310         insert_ptr(trans, root, path, &disk_key, split->start,
3311                    path->slots[level + 1] + 1, level + 1);
3312
3313         if (path->slots[level] >= mid) {
3314                 path->slots[level] -= mid;
3315                 btrfs_tree_unlock(c);
3316                 free_extent_buffer(c);
3317                 path->nodes[level] = split;
3318                 path->slots[level + 1] += 1;
3319         } else {
3320                 btrfs_tree_unlock(split);
3321                 free_extent_buffer(split);
3322         }
3323         return ret;
3324 }
3325
3326 /*
3327  * how many bytes are required to store the items in a leaf.  start
3328  * and nr indicate which items in the leaf to check.  This totals up the
3329  * space used both by the item structs and the item data
3330  */
3331 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3332 {
3333         struct btrfs_item *start_item;
3334         struct btrfs_item *end_item;
3335         struct btrfs_map_token token;
3336         int data_len;
3337         int nritems = btrfs_header_nritems(l);
3338         int end = min(nritems, start + nr) - 1;
3339
3340         if (!nr)
3341                 return 0;
3342         btrfs_init_map_token(&token);
3343         start_item = btrfs_item_nr(start);
3344         end_item = btrfs_item_nr(end);
3345         data_len = btrfs_token_item_offset(l, start_item, &token) +
3346                 btrfs_token_item_size(l, start_item, &token);
3347         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3348         data_len += sizeof(struct btrfs_item) * nr;
3349         WARN_ON(data_len < 0);
3350         return data_len;
3351 }
3352
3353 /*
3354  * The space between the end of the leaf items and
3355  * the start of the leaf data.  IOW, how much room
3356  * the leaf has left for both items and data
3357  */
3358 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3359                                    struct extent_buffer *leaf)
3360 {
3361         int nritems = btrfs_header_nritems(leaf);
3362         int ret;
3363         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3364         if (ret < 0) {
3365                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3366                        "used %d nritems %d\n",
3367                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3368                        leaf_space_used(leaf, 0, nritems), nritems);
3369         }
3370         return ret;
3371 }
3372
3373 /*
3374  * min slot controls the lowest index we're willing to push to the
3375  * right.  We'll push up to and including min_slot, but no lower
3376  */
3377 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3378                                       struct btrfs_root *root,
3379                                       struct btrfs_path *path,
3380                                       int data_size, int empty,
3381                                       struct extent_buffer *right,
3382                                       int free_space, u32 left_nritems,
3383                                       u32 min_slot)
3384 {
3385         struct extent_buffer *left = path->nodes[0];
3386         struct extent_buffer *upper = path->nodes[1];
3387         struct btrfs_map_token token;
3388         struct btrfs_disk_key disk_key;
3389         int slot;
3390         u32 i;
3391         int push_space = 0;
3392         int push_items = 0;
3393         struct btrfs_item *item;
3394         u32 nr;
3395         u32 right_nritems;
3396         u32 data_end;
3397         u32 this_item_size;
3398
3399         btrfs_init_map_token(&token);
3400
3401         if (empty)
3402                 nr = 0;
3403         else
3404                 nr = max_t(u32, 1, min_slot);
3405
3406         if (path->slots[0] >= left_nritems)
3407                 push_space += data_size;
3408
3409         slot = path->slots[1];
3410         i = left_nritems - 1;
3411         while (i >= nr) {
3412                 item = btrfs_item_nr(i);
3413
3414                 if (!empty && push_items > 0) {
3415                         if (path->slots[0] > i)
3416                                 break;
3417                         if (path->slots[0] == i) {
3418                                 int space = btrfs_leaf_free_space(root, left);
3419                                 if (space + push_space * 2 > free_space)
3420                                         break;
3421                         }
3422                 }
3423
3424                 if (path->slots[0] == i)
3425                         push_space += data_size;
3426
3427                 this_item_size = btrfs_item_size(left, item);
3428                 if (this_item_size + sizeof(*item) + push_space > free_space)
3429                         break;
3430
3431                 push_items++;
3432                 push_space += this_item_size + sizeof(*item);
3433                 if (i == 0)
3434                         break;
3435                 i--;
3436         }
3437
3438         if (push_items == 0)
3439                 goto out_unlock;
3440
3441         WARN_ON(!empty && push_items == left_nritems);
3442
3443         /* push left to right */
3444         right_nritems = btrfs_header_nritems(right);
3445
3446         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3447         push_space -= leaf_data_end(root, left);
3448
3449         /* make room in the right data area */
3450         data_end = leaf_data_end(root, right);
3451         memmove_extent_buffer(right,
3452                               btrfs_leaf_data(right) + data_end - push_space,
3453                               btrfs_leaf_data(right) + data_end,
3454                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
3455
3456         /* copy from the left data area */
3457         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3458                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3459                      btrfs_leaf_data(left) + leaf_data_end(root, left),
3460                      push_space);
3461
3462         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3463                               btrfs_item_nr_offset(0),
3464                               right_nritems * sizeof(struct btrfs_item));
3465
3466         /* copy the items from left to right */
3467         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3468                    btrfs_item_nr_offset(left_nritems - push_items),
3469                    push_items * sizeof(struct btrfs_item));
3470
3471         /* update the item pointers */
3472         right_nritems += push_items;
3473         btrfs_set_header_nritems(right, right_nritems);
3474         push_space = BTRFS_LEAF_DATA_SIZE(root);
3475         for (i = 0; i < right_nritems; i++) {
3476                 item = btrfs_item_nr(i);
3477                 push_space -= btrfs_token_item_size(right, item, &token);
3478                 btrfs_set_token_item_offset(right, item, push_space, &token);
3479         }
3480
3481         left_nritems -= push_items;
3482         btrfs_set_header_nritems(left, left_nritems);
3483
3484         if (left_nritems)
3485                 btrfs_mark_buffer_dirty(left);
3486         else
3487                 clean_tree_block(trans, root, left);
3488
3489         btrfs_mark_buffer_dirty(right);
3490
3491         btrfs_item_key(right, &disk_key, 0);
3492         btrfs_set_node_key(upper, &disk_key, slot + 1);
3493         btrfs_mark_buffer_dirty(upper);
3494
3495         /* then fixup the leaf pointer in the path */
3496         if (path->slots[0] >= left_nritems) {
3497                 path->slots[0] -= left_nritems;
3498                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3499                         clean_tree_block(trans, root, path->nodes[0]);
3500                 btrfs_tree_unlock(path->nodes[0]);
3501                 free_extent_buffer(path->nodes[0]);
3502                 path->nodes[0] = right;
3503                 path->slots[1] += 1;
3504         } else {
3505                 btrfs_tree_unlock(right);
3506                 free_extent_buffer(right);
3507         }
3508         return 0;
3509
3510 out_unlock:
3511         btrfs_tree_unlock(right);
3512         free_extent_buffer(right);
3513         return 1;
3514 }
3515
3516 /*
3517  * push some data in the path leaf to the right, trying to free up at
3518  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3519  *
3520  * returns 1 if the push failed because the other node didn't have enough
3521  * room, 0 if everything worked out and < 0 if there were major errors.
3522  *
3523  * this will push starting from min_slot to the end of the leaf.  It won't
3524  * push any slot lower than min_slot
3525  */
3526 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3527                            *root, struct btrfs_path *path,
3528                            int min_data_size, int data_size,
3529                            int empty, u32 min_slot)
3530 {
3531         struct extent_buffer *left = path->nodes[0];
3532         struct extent_buffer *right;
3533         struct extent_buffer *upper;
3534         int slot;
3535         int free_space;
3536         u32 left_nritems;
3537         int ret;
3538
3539         if (!path->nodes[1])
3540                 return 1;
3541
3542         slot = path->slots[1];
3543         upper = path->nodes[1];
3544         if (slot >= btrfs_header_nritems(upper) - 1)
3545                 return 1;
3546
3547         btrfs_assert_tree_locked(path->nodes[1]);
3548
3549         right = read_node_slot(root, upper, slot + 1);
3550         if (right == NULL)
3551                 return 1;
3552
3553         btrfs_tree_lock(right);
3554         btrfs_set_lock_blocking(right);
3555
3556         free_space = btrfs_leaf_free_space(root, right);
3557         if (free_space < data_size)
3558                 goto out_unlock;
3559
3560         /* cow and double check */
3561         ret = btrfs_cow_block(trans, root, right, upper,
3562                               slot + 1, &right);
3563         if (ret)
3564                 goto out_unlock;
3565
3566         free_space = btrfs_leaf_free_space(root, right);
3567         if (free_space < data_size)
3568                 goto out_unlock;
3569
3570         left_nritems = btrfs_header_nritems(left);
3571         if (left_nritems == 0)
3572                 goto out_unlock;
3573
3574         return __push_leaf_right(trans, root, path, min_data_size, empty,
3575                                 right, free_space, left_nritems, min_slot);
3576 out_unlock:
3577         btrfs_tree_unlock(right);
3578         free_extent_buffer(right);
3579         return 1;
3580 }
3581
3582 /*
3583  * push some data in the path leaf to the left, trying to free up at
3584  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3585  *
3586  * max_slot can put a limit on how far into the leaf we'll push items.  The
3587  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3588  * items
3589  */
3590 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3591                                      struct btrfs_root *root,
3592                                      struct btrfs_path *path, int data_size,
3593                                      int empty, struct extent_buffer *left,
3594                                      int free_space, u32 right_nritems,
3595                                      u32 max_slot)
3596 {
3597         struct btrfs_disk_key disk_key;
3598         struct extent_buffer *right = path->nodes[0];
3599         int i;
3600         int push_space = 0;
3601         int push_items = 0;
3602         struct btrfs_item *item;
3603         u32 old_left_nritems;
3604         u32 nr;
3605         int ret = 0;
3606         u32 this_item_size;
3607         u32 old_left_item_size;
3608         struct btrfs_map_token token;
3609
3610         btrfs_init_map_token(&token);
3611
3612         if (empty)
3613                 nr = min(right_nritems, max_slot);
3614         else
3615                 nr = min(right_nritems - 1, max_slot);
3616
3617         for (i = 0; i < nr; i++) {
3618                 item = btrfs_item_nr(i);
3619
3620                 if (!empty && push_items > 0) {
3621                         if (path->slots[0] < i)
3622                                 break;
3623                         if (path->slots[0] == i) {
3624                                 int space = btrfs_leaf_free_space(root, right);
3625                                 if (space + push_space * 2 > free_space)
3626                                         break;
3627                         }
3628                 }
3629
3630                 if (path->slots[0] == i)
3631                         push_space += data_size;
3632
3633                 this_item_size = btrfs_item_size(right, item);
3634                 if (this_item_size + sizeof(*item) + push_space > free_space)
3635                         break;
3636
3637                 push_items++;
3638                 push_space += this_item_size + sizeof(*item);
3639         }
3640
3641         if (push_items == 0) {
3642                 ret = 1;
3643                 goto out;
3644         }
3645         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3646
3647         /* push data from right to left */
3648         copy_extent_buffer(left, right,
3649                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3650                            btrfs_item_nr_offset(0),
3651                            push_items * sizeof(struct btrfs_item));
3652
3653         push_space = BTRFS_LEAF_DATA_SIZE(root) -
3654                      btrfs_item_offset_nr(right, push_items - 1);
3655
3656         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3657                      leaf_data_end(root, left) - push_space,
3658                      btrfs_leaf_data(right) +
3659                      btrfs_item_offset_nr(right, push_items - 1),
3660                      push_space);
3661         old_left_nritems = btrfs_header_nritems(left);
3662         BUG_ON(old_left_nritems <= 0);
3663
3664         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3665         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3666                 u32 ioff;
3667
3668                 item = btrfs_item_nr(i);
3669
3670                 ioff = btrfs_token_item_offset(left, item, &token);
3671                 btrfs_set_token_item_offset(left, item,
3672                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3673                       &token);
3674         }
3675         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3676
3677         /* fixup right node */
3678         if (push_items > right_nritems)
3679                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3680                        right_nritems);
3681
3682         if (push_items < right_nritems) {
3683                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3684                                                   leaf_data_end(root, right);
3685                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3686                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
3687                                       btrfs_leaf_data(right) +
3688                                       leaf_data_end(root, right), push_space);
3689
3690                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3691                               btrfs_item_nr_offset(push_items),
3692                              (btrfs_header_nritems(right) - push_items) *
3693                              sizeof(struct btrfs_item));
3694         }
3695         right_nritems -= push_items;
3696         btrfs_set_header_nritems(right, right_nritems);
3697         push_space = BTRFS_LEAF_DATA_SIZE(root);
3698         for (i = 0; i < right_nritems; i++) {
3699                 item = btrfs_item_nr(i);
3700
3701                 push_space = push_space - btrfs_token_item_size(right,
3702                                                                 item, &token);
3703                 btrfs_set_token_item_offset(right, item, push_space, &token);
3704         }
3705
3706         btrfs_mark_buffer_dirty(left);
3707         if (right_nritems)
3708                 btrfs_mark_buffer_dirty(right);
3709         else
3710                 clean_tree_block(trans, root, right);
3711
3712         btrfs_item_key(right, &disk_key, 0);
3713         fixup_low_keys(root, path, &disk_key, 1);
3714
3715         /* then fixup the leaf pointer in the path */
3716         if (path->slots[0] < push_items) {
3717                 path->slots[0] += old_left_nritems;
3718                 btrfs_tree_unlock(path->nodes[0]);
3719                 free_extent_buffer(path->nodes[0]);
3720                 path->nodes[0] = left;
3721                 path->slots[1] -= 1;
3722         } else {
3723                 btrfs_tree_unlock(left);
3724                 free_extent_buffer(left);
3725                 path->slots[0] -= push_items;
3726         }
3727         BUG_ON(path->slots[0] < 0);
3728         return ret;
3729 out:
3730         btrfs_tree_unlock(left);
3731         free_extent_buffer(left);
3732         return ret;
3733 }
3734
3735 /*
3736  * push some data in the path leaf to the left, trying to free up at
3737  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3738  *
3739  * max_slot can put a limit on how far into the leaf we'll push items.  The
3740  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3741  * items
3742  */
3743 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3744                           *root, struct btrfs_path *path, int min_data_size,
3745                           int data_size, int empty, u32 max_slot)
3746 {
3747         struct extent_buffer *right = path->nodes[0];
3748         struct extent_buffer *left;
3749         int slot;
3750         int free_space;
3751         u32 right_nritems;
3752         int ret = 0;
3753
3754         slot = path->slots[1];
3755         if (slot == 0)
3756                 return 1;
3757         if (!path->nodes[1])
3758                 return 1;
3759
3760         right_nritems = btrfs_header_nritems(right);
3761         if (right_nritems == 0)
3762                 return 1;
3763
3764         btrfs_assert_tree_locked(path->nodes[1]);
3765
3766         left = read_node_slot(root, path->nodes[1], slot - 1);
3767         if (left == NULL)
3768                 return 1;
3769
3770         btrfs_tree_lock(left);
3771         btrfs_set_lock_blocking(left);
3772
3773         free_space = btrfs_leaf_free_space(root, left);
3774         if (free_space < data_size) {
3775                 ret = 1;
3776                 goto out;
3777         }
3778
3779         /* cow and double check */
3780         ret = btrfs_cow_block(trans, root, left,
3781                               path->nodes[1], slot - 1, &left);
3782         if (ret) {
3783                 /* we hit -ENOSPC, but it isn't fatal here */
3784                 if (ret == -ENOSPC)
3785                         ret = 1;
3786                 goto out;
3787         }
3788
3789         free_space = btrfs_leaf_free_space(root, left);
3790         if (free_space < data_size) {
3791                 ret = 1;
3792                 goto out;
3793         }
3794
3795         return __push_leaf_left(trans, root, path, min_data_size,
3796                                empty, left, free_space, right_nritems,
3797                                max_slot);
3798 out:
3799         btrfs_tree_unlock(left);
3800         free_extent_buffer(left);
3801         return ret;
3802 }
3803
3804 /*
3805  * split the path's leaf in two, making sure there is at least data_size
3806  * available for the resulting leaf level of the path.
3807  */
3808 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3809                                     struct btrfs_root *root,
3810                                     struct btrfs_path *path,
3811                                     struct extent_buffer *l,
3812                                     struct extent_buffer *right,
3813                                     int slot, int mid, int nritems)
3814 {
3815         int data_copy_size;
3816         int rt_data_off;
3817         int i;
3818         struct btrfs_disk_key disk_key;
3819         struct btrfs_map_token token;
3820
3821         btrfs_init_map_token(&token);
3822
3823         nritems = nritems - mid;
3824         btrfs_set_header_nritems(right, nritems);
3825         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3826
3827         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3828                            btrfs_item_nr_offset(mid),
3829                            nritems * sizeof(struct btrfs_item));
3830
3831         copy_extent_buffer(right, l,
3832                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3833                      data_copy_size, btrfs_leaf_data(l) +
3834                      leaf_data_end(root, l), data_copy_size);
3835
3836         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3837                       btrfs_item_end_nr(l, mid);
3838
3839         for (i = 0; i < nritems; i++) {
3840                 struct btrfs_item *item = btrfs_item_nr(i);
3841                 u32 ioff;
3842
3843                 ioff = btrfs_token_item_offset(right, item, &token);
3844                 btrfs_set_token_item_offset(right, item,
3845                                             ioff + rt_data_off, &token);
3846         }
3847
3848         btrfs_set_header_nritems(l, mid);
3849         btrfs_item_key(right, &disk_key, 0);
3850         insert_ptr(trans, root, path, &disk_key, right->start,
3851                    path->slots[1] + 1, 1);
3852
3853         btrfs_mark_buffer_dirty(right);
3854         btrfs_mark_buffer_dirty(l);
3855         BUG_ON(path->slots[0] != slot);
3856
3857         if (mid <= slot) {
3858                 btrfs_tree_unlock(path->nodes[0]);
3859                 free_extent_buffer(path->nodes[0]);
3860                 path->nodes[0] = right;
3861                 path->slots[0] -= mid;
3862                 path->slots[1] += 1;
3863         } else {
3864                 btrfs_tree_unlock(right);
3865                 free_extent_buffer(right);
3866         }
3867
3868         BUG_ON(path->slots[0] < 0);
3869 }
3870
3871 /*
3872  * double splits happen when we need to insert a big item in the middle
3873  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3874  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3875  *          A                 B                 C
3876  *
3877  * We avoid this by trying to push the items on either side of our target
3878  * into the adjacent leaves.  If all goes well we can avoid the double split
3879  * completely.
3880  */
3881 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3882                                           struct btrfs_root *root,
3883                                           struct btrfs_path *path,
3884                                           int data_size)
3885 {
3886         int ret;
3887         int progress = 0;
3888         int slot;
3889         u32 nritems;
3890
3891         slot = path->slots[0];
3892
3893         /*
3894          * try to push all the items after our slot into the
3895          * right leaf
3896          */
3897         ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3898         if (ret < 0)
3899                 return ret;
3900
3901         if (ret == 0)
3902                 progress++;
3903
3904         nritems = btrfs_header_nritems(path->nodes[0]);
3905         /*
3906          * our goal is to get our slot at the start or end of a leaf.  If
3907          * we've done so we're done
3908          */
3909         if (path->slots[0] == 0 || path->slots[0] == nritems)
3910                 return 0;
3911
3912         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3913                 return 0;
3914
3915         /* try to push all the items before our slot into the next leaf */
3916         slot = path->slots[0];
3917         ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3918         if (ret < 0)
3919                 return ret;
3920
3921         if (ret == 0)
3922                 progress++;
3923
3924         if (progress)
3925                 return 0;
3926         return 1;
3927 }
3928
3929 /*
3930  * split the path's leaf in two, making sure there is at least data_size
3931  * available for the resulting leaf level of the path.
3932  *
3933  * returns 0 if all went well and < 0 on failure.
3934  */
3935 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3936                                struct btrfs_root *root,
3937                                struct btrfs_key *ins_key,
3938                                struct btrfs_path *path, int data_size,
3939                                int extend)
3940 {
3941         struct btrfs_disk_key disk_key;
3942         struct extent_buffer *l;
3943         u32 nritems;
3944         int mid;
3945         int slot;
3946         struct extent_buffer *right;
3947         int ret = 0;
3948         int wret;
3949         int split;
3950         int num_doubles = 0;
3951         int tried_avoid_double = 0;
3952
3953         l = path->nodes[0];
3954         slot = path->slots[0];
3955         if (extend && data_size + btrfs_item_size_nr(l, slot) +
3956             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3957                 return -EOVERFLOW;
3958
3959         /* first try to make some room by pushing left and right */
3960         if (data_size && path->nodes[1]) {
3961                 wret = push_leaf_right(trans, root, path, data_size,
3962                                        data_size, 0, 0);
3963                 if (wret < 0)
3964                         return wret;
3965                 if (wret) {
3966                         wret = push_leaf_left(trans, root, path, data_size,
3967                                               data_size, 0, (u32)-1);
3968                         if (wret < 0)
3969                                 return wret;
3970                 }
3971                 l = path->nodes[0];
3972
3973                 /* did the pushes work? */
3974                 if (btrfs_leaf_free_space(root, l) >= data_size)
3975                         return 0;
3976         }
3977
3978         if (!path->nodes[1]) {
3979                 ret = insert_new_root(trans, root, path, 1);
3980                 if (ret)
3981                         return ret;
3982         }
3983 again:
3984         split = 1;
3985         l = path->nodes[0];
3986         slot = path->slots[0];
3987         nritems = btrfs_header_nritems(l);
3988         mid = (nritems + 1) / 2;
3989
3990         if (mid <= slot) {
3991                 if (nritems == 1 ||
3992                     leaf_space_used(l, mid, nritems - mid) + data_size >
3993                         BTRFS_LEAF_DATA_SIZE(root)) {
3994                         if (slot >= nritems) {
3995                                 split = 0;
3996                         } else {
3997                                 mid = slot;
3998                                 if (mid != nritems &&
3999                                     leaf_space_used(l, mid, nritems - mid) +
4000                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4001                                         if (data_size && !tried_avoid_double)
4002                                                 goto push_for_double;
4003                                         split = 2;
4004                                 }
4005                         }
4006                 }
4007         } else {
4008                 if (leaf_space_used(l, 0, mid) + data_size >
4009                         BTRFS_LEAF_DATA_SIZE(root)) {
4010                         if (!extend && data_size && slot == 0) {
4011                                 split = 0;
4012                         } else if ((extend || !data_size) && slot == 0) {
4013                                 mid = 1;
4014                         } else {
4015                                 mid = slot;
4016                                 if (mid != nritems &&
4017                                     leaf_space_used(l, mid, nritems - mid) +
4018                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4019                                         if (data_size && !tried_avoid_double)
4020                                                 goto push_for_double;
4021                                         split = 2;
4022                                 }
4023                         }
4024                 }
4025         }
4026
4027         if (split == 0)
4028                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4029         else
4030                 btrfs_item_key(l, &disk_key, mid);
4031
4032         right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4033                                         root->root_key.objectid,
4034                                         &disk_key, 0, l->start, 0);
4035         if (IS_ERR(right))
4036                 return PTR_ERR(right);
4037
4038         root_add_used(root, root->leafsize);
4039
4040         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4041         btrfs_set_header_bytenr(right, right->start);
4042         btrfs_set_header_generation(right, trans->transid);
4043         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4044         btrfs_set_header_owner(right, root->root_key.objectid);
4045         btrfs_set_header_level(right, 0);
4046         write_extent_buffer(right, root->fs_info->fsid,
4047                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
4048
4049         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4050                             btrfs_header_chunk_tree_uuid(right),
4051                             BTRFS_UUID_SIZE);
4052
4053         if (split == 0) {
4054                 if (mid <= slot) {
4055                         btrfs_set_header_nritems(right, 0);
4056                         insert_ptr(trans, root, path, &disk_key, right->start,
4057                                    path->slots[1] + 1, 1);
4058                         btrfs_tree_unlock(path->nodes[0]);
4059                         free_extent_buffer(path->nodes[0]);
4060                         path->nodes[0] = right;
4061                         path->slots[0] = 0;
4062                         path->slots[1] += 1;
4063                 } else {
4064                         btrfs_set_header_nritems(right, 0);
4065                         insert_ptr(trans, root, path, &disk_key, right->start,
4066                                           path->slots[1], 1);
4067                         btrfs_tree_unlock(path->nodes[0]);
4068                         free_extent_buffer(path->nodes[0]);
4069                         path->nodes[0] = right;
4070                         path->slots[0] = 0;
4071                         if (path->slots[1] == 0)
4072                                 fixup_low_keys(root, path, &disk_key, 1);
4073                 }
4074                 btrfs_mark_buffer_dirty(right);
4075                 return ret;
4076         }
4077
4078         copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4079
4080         if (split == 2) {
4081                 BUG_ON(num_doubles != 0);
4082                 num_doubles++;
4083                 goto again;
4084         }
4085
4086         return 0;
4087
4088 push_for_double:
4089         push_for_double_split(trans, root, path, data_size);
4090         tried_avoid_double = 1;
4091         if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4092                 return 0;
4093         goto again;
4094 }
4095
4096 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4097                                          struct btrfs_root *root,
4098                                          struct btrfs_path *path, int ins_len)
4099 {
4100         struct btrfs_key key;
4101         struct extent_buffer *leaf;
4102         struct btrfs_file_extent_item *fi;
4103         u64 extent_len = 0;
4104         u32 item_size;
4105         int ret;
4106
4107         leaf = path->nodes[0];
4108         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4109
4110         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4111                key.type != BTRFS_EXTENT_CSUM_KEY);
4112
4113         if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4114                 return 0;
4115
4116         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4117         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4118                 fi = btrfs_item_ptr(leaf, path->slots[0],
4119                                     struct btrfs_file_extent_item);
4120                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4121         }
4122         btrfs_release_path(path);
4123
4124         path->keep_locks = 1;
4125         path->search_for_split = 1;
4126         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4127         path->search_for_split = 0;
4128         if (ret < 0)
4129                 goto err;
4130
4131         ret = -EAGAIN;
4132         leaf = path->nodes[0];
4133         /* if our item isn't there or got smaller, return now */
4134         if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4135                 goto err;
4136
4137         /* the leaf has  changed, it now has room.  return now */
4138         if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4139                 goto err;
4140
4141         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4142                 fi = btrfs_item_ptr(leaf, path->slots[0],
4143                                     struct btrfs_file_extent_item);
4144                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4145                         goto err;
4146         }
4147
4148         btrfs_set_path_blocking(path);
4149         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4150         if (ret)
4151                 goto err;
4152
4153         path->keep_locks = 0;
4154         btrfs_unlock_up_safe(path, 1);
4155         return 0;
4156 err:
4157         path->keep_locks = 0;
4158         return ret;
4159 }
4160
4161 static noinline int split_item(struct btrfs_trans_handle *trans,
4162                                struct btrfs_root *root,
4163                                struct btrfs_path *path,
4164                                struct btrfs_key *new_key,
4165                                unsigned long split_offset)
4166 {
4167         struct extent_buffer *leaf;
4168         struct btrfs_item *item;
4169         struct btrfs_item *new_item;
4170         int slot;
4171         char *buf;
4172         u32 nritems;
4173         u32 item_size;
4174         u32 orig_offset;
4175         struct btrfs_disk_key disk_key;
4176
4177         leaf = path->nodes[0];
4178         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4179
4180         btrfs_set_path_blocking(path);
4181
4182         item = btrfs_item_nr(path->slots[0]);
4183         orig_offset = btrfs_item_offset(leaf, item);
4184         item_size = btrfs_item_size(leaf, item);
4185
4186         buf = kmalloc(item_size, GFP_NOFS);
4187         if (!buf)
4188                 return -ENOMEM;
4189
4190         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4191                             path->slots[0]), item_size);
4192
4193         slot = path->slots[0] + 1;
4194         nritems = btrfs_header_nritems(leaf);
4195         if (slot != nritems) {
4196                 /* shift the items */
4197                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4198                                 btrfs_item_nr_offset(slot),
4199                                 (nritems - slot) * sizeof(struct btrfs_item));
4200         }
4201
4202         btrfs_cpu_key_to_disk(&disk_key, new_key);
4203         btrfs_set_item_key(leaf, &disk_key, slot);
4204
4205         new_item = btrfs_item_nr(slot);
4206
4207         btrfs_set_item_offset(leaf, new_item, orig_offset);
4208         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4209
4210         btrfs_set_item_offset(leaf, item,
4211                               orig_offset + item_size - split_offset);
4212         btrfs_set_item_size(leaf, item, split_offset);
4213
4214         btrfs_set_header_nritems(leaf, nritems + 1);
4215
4216         /* write the data for the start of the original item */
4217         write_extent_buffer(leaf, buf,
4218                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4219                             split_offset);
4220
4221         /* write the data for the new item */
4222         write_extent_buffer(leaf, buf + split_offset,
4223                             btrfs_item_ptr_offset(leaf, slot),
4224                             item_size - split_offset);
4225         btrfs_mark_buffer_dirty(leaf);
4226
4227         BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4228         kfree(buf);
4229         return 0;
4230 }
4231
4232 /*
4233  * This function splits a single item into two items,
4234  * giving 'new_key' to the new item and splitting the
4235  * old one at split_offset (from the start of the item).
4236  *
4237  * The path may be released by this operation.  After
4238  * the split, the path is pointing to the old item.  The
4239  * new item is going to be in the same node as the old one.
4240  *
4241  * Note, the item being split must be smaller enough to live alone on
4242  * a tree block with room for one extra struct btrfs_item
4243  *
4244  * This allows us to split the item in place, keeping a lock on the
4245  * leaf the entire time.
4246  */
4247 int btrfs_split_item(struct btrfs_trans_handle *trans,
4248                      struct btrfs_root *root,
4249                      struct btrfs_path *path,
4250                      struct btrfs_key *new_key,
4251                      unsigned long split_offset)
4252 {
4253         int ret;
4254         ret = setup_leaf_for_split(trans, root, path,
4255                                    sizeof(struct btrfs_item));
4256         if (ret)
4257                 return ret;
4258
4259         ret = split_item(trans, root, path, new_key, split_offset);
4260         return ret;
4261 }
4262
4263 /*
4264  * This function duplicate a item, giving 'new_key' to the new item.
4265  * It guarantees both items live in the same tree leaf and the new item
4266  * is contiguous with the original item.
4267  *
4268  * This allows us to split file extent in place, keeping a lock on the
4269  * leaf the entire time.
4270  */
4271 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4272                          struct btrfs_root *root,
4273                          struct btrfs_path *path,
4274                          struct btrfs_key *new_key)
4275 {
4276         struct extent_buffer *leaf;
4277         int ret;
4278         u32 item_size;
4279
4280         leaf = path->nodes[0];
4281         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4282         ret = setup_leaf_for_split(trans, root, path,
4283                                    item_size + sizeof(struct btrfs_item));
4284         if (ret)
4285                 return ret;
4286
4287         path->slots[0]++;
4288         setup_items_for_insert(root, path, new_key, &item_size,
4289                                item_size, item_size +
4290                                sizeof(struct btrfs_item), 1);
4291         leaf = path->nodes[0];
4292         memcpy_extent_buffer(leaf,
4293                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4294                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4295                              item_size);
4296         return 0;
4297 }
4298
4299 /*
4300  * make the item pointed to by the path smaller.  new_size indicates
4301  * how small to make it, and from_end tells us if we just chop bytes
4302  * off the end of the item or if we shift the item to chop bytes off
4303  * the front.
4304  */
4305 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4306                          u32 new_size, int from_end)
4307 {
4308         int slot;
4309         struct extent_buffer *leaf;
4310         struct btrfs_item *item;
4311         u32 nritems;
4312         unsigned int data_end;
4313         unsigned int old_data_start;
4314         unsigned int old_size;
4315         unsigned int size_diff;
4316         int i;
4317         struct btrfs_map_token token;
4318
4319         btrfs_init_map_token(&token);
4320
4321         leaf = path->nodes[0];
4322         slot = path->slots[0];
4323
4324         old_size = btrfs_item_size_nr(leaf, slot);
4325         if (old_size == new_size)
4326                 return;
4327
4328         nritems = btrfs_header_nritems(leaf);
4329         data_end = leaf_data_end(root, leaf);
4330
4331         old_data_start = btrfs_item_offset_nr(leaf, slot);
4332
4333         size_diff = old_size - new_size;
4334
4335         BUG_ON(slot < 0);
4336         BUG_ON(slot >= nritems);
4337
4338         /*
4339          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4340          */
4341         /* first correct the data pointers */
4342         for (i = slot; i < nritems; i++) {
4343                 u32 ioff;
4344                 item = btrfs_item_nr(i);
4345
4346                 ioff = btrfs_token_item_offset(leaf, item, &token);
4347                 btrfs_set_token_item_offset(leaf, item,
4348                                             ioff + size_diff, &token);
4349         }
4350
4351         /* shift the data */
4352         if (from_end) {
4353                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4354                               data_end + size_diff, btrfs_leaf_data(leaf) +
4355                               data_end, old_data_start + new_size - data_end);
4356         } else {
4357                 struct btrfs_disk_key disk_key;
4358                 u64 offset;
4359
4360                 btrfs_item_key(leaf, &disk_key, slot);
4361
4362                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4363                         unsigned long ptr;
4364                         struct btrfs_file_extent_item *fi;
4365
4366                         fi = btrfs_item_ptr(leaf, slot,
4367                                             struct btrfs_file_extent_item);
4368                         fi = (struct btrfs_file_extent_item *)(
4369                              (unsigned long)fi - size_diff);
4370
4371                         if (btrfs_file_extent_type(leaf, fi) ==
4372                             BTRFS_FILE_EXTENT_INLINE) {
4373                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4374                                 memmove_extent_buffer(leaf, ptr,
4375                                       (unsigned long)fi,
4376                                       offsetof(struct btrfs_file_extent_item,
4377                                                  disk_bytenr));
4378                         }
4379                 }
4380
4381                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4382                               data_end + size_diff, btrfs_leaf_data(leaf) +
4383                               data_end, old_data_start - data_end);
4384
4385                 offset = btrfs_disk_key_offset(&disk_key);
4386                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4387                 btrfs_set_item_key(leaf, &disk_key, slot);
4388                 if (slot == 0)
4389                         fixup_low_keys(root, path, &disk_key, 1);
4390         }
4391
4392         item = btrfs_item_nr(slot);
4393         btrfs_set_item_size(leaf, item, new_size);
4394         btrfs_mark_buffer_dirty(leaf);
4395
4396         if (btrfs_leaf_free_space(root, leaf) < 0) {
4397                 btrfs_print_leaf(root, leaf);
4398                 BUG();
4399         }
4400 }
4401
4402 /*
4403  * make the item pointed to by the path bigger, data_size is the added size.
4404  */
4405 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4406                        u32 data_size)
4407 {
4408         int slot;
4409         struct extent_buffer *leaf;
4410         struct btrfs_item *item;
4411         u32 nritems;
4412         unsigned int data_end;
4413         unsigned int old_data;
4414         unsigned int old_size;
4415         int i;
4416         struct btrfs_map_token token;
4417
4418         btrfs_init_map_token(&token);
4419
4420         leaf = path->nodes[0];
4421
4422         nritems = btrfs_header_nritems(leaf);
4423         data_end = leaf_data_end(root, leaf);
4424
4425         if (btrfs_leaf_free_space(root, leaf) < data_size) {
4426                 btrfs_print_leaf(root, leaf);
4427                 BUG();
4428         }
4429         slot = path->slots[0];
4430         old_data = btrfs_item_end_nr(leaf, slot);
4431
4432         BUG_ON(slot < 0);
4433         if (slot >= nritems) {
4434                 btrfs_print_leaf(root, leaf);
4435                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
4436                        slot, nritems);
4437                 BUG_ON(1);
4438         }
4439
4440         /*
4441          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4442          */
4443         /* first correct the data pointers */
4444         for (i = slot; i < nritems; i++) {
4445                 u32 ioff;
4446                 item = btrfs_item_nr(i);
4447
4448                 ioff = btrfs_token_item_offset(leaf, item, &token);
4449                 btrfs_set_token_item_offset(leaf, item,
4450                                             ioff - data_size, &token);
4451         }
4452
4453         /* shift the data */
4454         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4455                       data_end - data_size, btrfs_leaf_data(leaf) +
4456                       data_end, old_data - data_end);
4457
4458         data_end = old_data;
4459         old_size = btrfs_item_size_nr(leaf, slot);
4460         item = btrfs_item_nr(slot);
4461         btrfs_set_item_size(leaf, item, old_size + data_size);
4462         btrfs_mark_buffer_dirty(leaf);
4463
4464         if (btrfs_leaf_free_space(root, leaf) < 0) {
4465                 btrfs_print_leaf(root, leaf);
4466                 BUG();
4467         }
4468 }
4469
4470 /*
4471  * this is a helper for btrfs_insert_empty_items, the main goal here is
4472  * to save stack depth by doing the bulk of the work in a function
4473  * that doesn't call btrfs_search_slot
4474  */
4475 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4476                             struct btrfs_key *cpu_key, u32 *data_size,
4477                             u32 total_data, u32 total_size, int nr)
4478 {
4479         struct btrfs_item *item;
4480         int i;
4481         u32 nritems;
4482         unsigned int data_end;
4483         struct btrfs_disk_key disk_key;
4484         struct extent_buffer *leaf;
4485         int slot;
4486         struct btrfs_map_token token;
4487
4488         btrfs_init_map_token(&token);
4489
4490         leaf = path->nodes[0];
4491         slot = path->slots[0];
4492
4493         nritems = btrfs_header_nritems(leaf);
4494         data_end = leaf_data_end(root, leaf);
4495
4496         if (btrfs_leaf_free_space(root, leaf) < total_size) {
4497                 btrfs_print_leaf(root, leaf);
4498                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
4499                        total_size, btrfs_leaf_free_space(root, leaf));
4500                 BUG();
4501         }
4502
4503         if (slot != nritems) {
4504                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4505
4506                 if (old_data < data_end) {
4507                         btrfs_print_leaf(root, leaf);
4508                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4509                                slot, old_data, data_end);
4510                         BUG_ON(1);
4511                 }
4512                 /*
4513                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4514                  */
4515                 /* first correct the data pointers */
4516                 for (i = slot; i < nritems; i++) {
4517                         u32 ioff;
4518
4519                         item = btrfs_item_nr( i);
4520                         ioff = btrfs_token_item_offset(leaf, item, &token);
4521                         btrfs_set_token_item_offset(leaf, item,
4522                                                     ioff - total_data, &token);
4523                 }
4524                 /* shift the items */
4525                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4526                               btrfs_item_nr_offset(slot),
4527                               (nritems - slot) * sizeof(struct btrfs_item));
4528
4529                 /* shift the data */
4530                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4531                               data_end - total_data, btrfs_leaf_data(leaf) +
4532                               data_end, old_data - data_end);
4533                 data_end = old_data;
4534         }
4535
4536         /* setup the item for the new data */
4537         for (i = 0; i < nr; i++) {
4538                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4539                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4540                 item = btrfs_item_nr(slot + i);
4541                 btrfs_set_token_item_offset(leaf, item,
4542                                             data_end - data_size[i], &token);
4543                 data_end -= data_size[i];
4544                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4545         }
4546
4547         btrfs_set_header_nritems(leaf, nritems + nr);
4548
4549         if (slot == 0) {
4550                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4551                 fixup_low_keys(root, path, &disk_key, 1);
4552         }
4553         btrfs_unlock_up_safe(path, 1);
4554         btrfs_mark_buffer_dirty(leaf);
4555
4556         if (btrfs_leaf_free_space(root, leaf) < 0) {
4557                 btrfs_print_leaf(root, leaf);
4558                 BUG();
4559         }
4560 }
4561
4562 /*
4563  * Given a key and some data, insert items into the tree.
4564  * This does all the path init required, making room in the tree if needed.
4565  */
4566 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4567                             struct btrfs_root *root,
4568                             struct btrfs_path *path,
4569                             struct btrfs_key *cpu_key, u32 *data_size,
4570                             int nr)
4571 {
4572         int ret = 0;
4573         int slot;
4574         int i;
4575         u32 total_size = 0;
4576         u32 total_data = 0;
4577
4578         for (i = 0; i < nr; i++)
4579                 total_data += data_size[i];
4580
4581         total_size = total_data + (nr * sizeof(struct btrfs_item));
4582         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4583         if (ret == 0)
4584                 return -EEXIST;
4585         if (ret < 0)
4586                 return ret;
4587
4588         slot = path->slots[0];
4589         BUG_ON(slot < 0);
4590
4591         setup_items_for_insert(root, path, cpu_key, data_size,
4592                                total_data, total_size, nr);
4593         return 0;
4594 }
4595
4596 /*
4597  * Given a key and some data, insert an item into the tree.
4598  * This does all the path init required, making room in the tree if needed.
4599  */
4600 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4601                       *root, struct btrfs_key *cpu_key, void *data, u32
4602                       data_size)
4603 {
4604         int ret = 0;
4605         struct btrfs_path *path;
4606         struct extent_buffer *leaf;
4607         unsigned long ptr;
4608
4609         path = btrfs_alloc_path();
4610         if (!path)
4611                 return -ENOMEM;
4612         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4613         if (!ret) {
4614                 leaf = path->nodes[0];
4615                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4616                 write_extent_buffer(leaf, data, ptr, data_size);
4617                 btrfs_mark_buffer_dirty(leaf);
4618         }
4619         btrfs_free_path(path);
4620         return ret;
4621 }
4622
4623 /*
4624  * delete the pointer from a given node.
4625  *
4626  * the tree should have been previously balanced so the deletion does not
4627  * empty a node.
4628  */
4629 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4630                     int level, int slot)
4631 {
4632         struct extent_buffer *parent = path->nodes[level];
4633         u32 nritems;
4634         int ret;
4635
4636         nritems = btrfs_header_nritems(parent);
4637         if (slot != nritems - 1) {
4638                 if (level)
4639                         tree_mod_log_eb_move(root->fs_info, parent, slot,
4640                                              slot + 1, nritems - slot - 1);
4641                 memmove_extent_buffer(parent,
4642                               btrfs_node_key_ptr_offset(slot),
4643                               btrfs_node_key_ptr_offset(slot + 1),
4644                               sizeof(struct btrfs_key_ptr) *
4645                               (nritems - slot - 1));
4646         } else if (level) {
4647                 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4648                                               MOD_LOG_KEY_REMOVE, GFP_NOFS);
4649                 BUG_ON(ret < 0);
4650         }
4651
4652         nritems--;
4653         btrfs_set_header_nritems(parent, nritems);
4654         if (nritems == 0 && parent == root->node) {
4655                 BUG_ON(btrfs_header_level(root->node) != 1);
4656                 /* just turn the root into a leaf and break */
4657                 btrfs_set_header_level(root->node, 0);
4658         } else if (slot == 0) {
4659                 struct btrfs_disk_key disk_key;
4660
4661                 btrfs_node_key(parent, &disk_key, 0);
4662                 fixup_low_keys(root, path, &disk_key, level + 1);
4663         }
4664         btrfs_mark_buffer_dirty(parent);
4665 }
4666
4667 /*
4668  * a helper function to delete the leaf pointed to by path->slots[1] and
4669  * path->nodes[1].
4670  *
4671  * This deletes the pointer in path->nodes[1] and frees the leaf
4672  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4673  *
4674  * The path must have already been setup for deleting the leaf, including
4675  * all the proper balancing.  path->nodes[1] must be locked.
4676  */
4677 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4678                                     struct btrfs_root *root,
4679                                     struct btrfs_path *path,
4680                                     struct extent_buffer *leaf)
4681 {
4682         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4683         del_ptr(root, path, 1, path->slots[1]);
4684
4685         /*
4686          * btrfs_free_extent is expensive, we want to make sure we
4687          * aren't holding any locks when we call it
4688          */
4689         btrfs_unlock_up_safe(path, 0);
4690
4691         root_sub_used(root, leaf->len);
4692
4693         extent_buffer_get(leaf);
4694         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4695         free_extent_buffer_stale(leaf);
4696 }
4697 /*
4698  * delete the item at the leaf level in path.  If that empties
4699  * the leaf, remove it from the tree
4700  */
4701 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4702                     struct btrfs_path *path, int slot, int nr)
4703 {
4704         struct extent_buffer *leaf;
4705         struct btrfs_item *item;
4706         int last_off;
4707         int dsize = 0;
4708         int ret = 0;
4709         int wret;
4710         int i;
4711         u32 nritems;
4712         struct btrfs_map_token token;
4713
4714         btrfs_init_map_token(&token);
4715
4716         leaf = path->nodes[0];
4717         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4718
4719         for (i = 0; i < nr; i++)
4720                 dsize += btrfs_item_size_nr(leaf, slot + i);
4721
4722         nritems = btrfs_header_nritems(leaf);
4723
4724         if (slot + nr != nritems) {
4725                 int data_end = leaf_data_end(root, leaf);
4726
4727                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4728                               data_end + dsize,
4729                               btrfs_leaf_data(leaf) + data_end,
4730                               last_off - data_end);
4731
4732                 for (i = slot + nr; i < nritems; i++) {
4733                         u32 ioff;
4734
4735                         item = btrfs_item_nr(i);
4736                         ioff = btrfs_token_item_offset(leaf, item, &token);
4737                         btrfs_set_token_item_offset(leaf, item,
4738                                                     ioff + dsize, &token);
4739                 }
4740
4741                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4742                               btrfs_item_nr_offset(slot + nr),
4743                               sizeof(struct btrfs_item) *
4744                               (nritems - slot - nr));
4745         }
4746         btrfs_set_header_nritems(leaf, nritems - nr);
4747         nritems -= nr;
4748
4749         /* delete the leaf if we've emptied it */
4750         if (nritems == 0) {
4751                 if (leaf == root->node) {
4752                         btrfs_set_header_level(leaf, 0);
4753                 } else {
4754                         btrfs_set_path_blocking(path);
4755                         clean_tree_block(trans, root, leaf);
4756                         btrfs_del_leaf(trans, root, path, leaf);
4757                 }
4758         } else {
4759                 int used = leaf_space_used(leaf, 0, nritems);
4760                 if (slot == 0) {
4761                         struct btrfs_disk_key disk_key;
4762
4763                         btrfs_item_key(leaf, &disk_key, 0);
4764                         fixup_low_keys(root, path, &disk_key, 1);
4765                 }
4766
4767                 /* delete the leaf if it is mostly empty */
4768                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4769                         /* push_leaf_left fixes the path.
4770                          * make sure the path still points to our leaf
4771                          * for possible call to del_ptr below
4772                          */
4773                         slot = path->slots[1];
4774                         extent_buffer_get(leaf);
4775
4776                         btrfs_set_path_blocking(path);
4777                         wret = push_leaf_left(trans, root, path, 1, 1,
4778                                               1, (u32)-1);
4779                         if (wret < 0 && wret != -ENOSPC)
4780                                 ret = wret;
4781
4782                         if (path->nodes[0] == leaf &&
4783                             btrfs_header_nritems(leaf)) {
4784                                 wret = push_leaf_right(trans, root, path, 1,
4785                                                        1, 1, 0);
4786                                 if (wret < 0 && wret != -ENOSPC)
4787                                         ret = wret;
4788                         }
4789
4790                         if (btrfs_header_nritems(leaf) == 0) {
4791                                 path->slots[1] = slot;
4792                                 btrfs_del_leaf(trans, root, path, leaf);
4793                                 free_extent_buffer(leaf);
4794                                 ret = 0;
4795                         } else {
4796                                 /* if we're still in the path, make sure
4797                                  * we're dirty.  Otherwise, one of the
4798                                  * push_leaf functions must have already
4799                                  * dirtied this buffer
4800                                  */
4801                                 if (path->nodes[0] == leaf)
4802                                         btrfs_mark_buffer_dirty(leaf);
4803                                 free_extent_buffer(leaf);
4804                         }
4805                 } else {
4806                         btrfs_mark_buffer_dirty(leaf);
4807                 }
4808         }
4809         return ret;
4810 }
4811
4812 /*
4813  * search the tree again to find a leaf with lesser keys
4814  * returns 0 if it found something or 1 if there are no lesser leaves.
4815  * returns < 0 on io errors.
4816  *
4817  * This may release the path, and so you may lose any locks held at the
4818  * time you call it.
4819  */
4820 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4821 {
4822         struct btrfs_key key;
4823         struct btrfs_disk_key found_key;
4824         int ret;
4825
4826         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4827
4828         if (key.offset > 0) {
4829                 key.offset--;
4830         } else if (key.type > 0) {
4831                 key.type--;
4832                 key.offset = (u64)-1;
4833         } else if (key.objectid > 0) {
4834                 key.objectid--;
4835                 key.type = (u8)-1;
4836                 key.offset = (u64)-1;
4837         } else {
4838                 return 1;
4839         }
4840
4841         btrfs_release_path(path);
4842         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4843         if (ret < 0)
4844                 return ret;
4845         btrfs_item_key(path->nodes[0], &found_key, 0);
4846         ret = comp_keys(&found_key, &key);
4847         if (ret < 0)
4848                 return 0;
4849         return 1;
4850 }
4851
4852 /*
4853  * A helper function to walk down the tree starting at min_key, and looking
4854  * for nodes or leaves that are have a minimum transaction id.
4855  * This is used by the btree defrag code, and tree logging
4856  *
4857  * This does not cow, but it does stuff the starting key it finds back
4858  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4859  * key and get a writable path.
4860  *
4861  * This does lock as it descends, and path->keep_locks should be set
4862  * to 1 by the caller.
4863  *
4864  * This honors path->lowest_level to prevent descent past a given level
4865  * of the tree.
4866  *
4867  * min_trans indicates the oldest transaction that you are interested
4868  * in walking through.  Any nodes or leaves older than min_trans are
4869  * skipped over (without reading them).
4870  *
4871  * returns zero if something useful was found, < 0 on error and 1 if there
4872  * was nothing in the tree that matched the search criteria.
4873  */
4874 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4875                          struct btrfs_path *path,
4876                          u64 min_trans)
4877 {
4878         struct extent_buffer *cur;
4879         struct btrfs_key found_key;
4880         int slot;
4881         int sret;
4882         u32 nritems;
4883         int level;
4884         int ret = 1;
4885
4886         WARN_ON(!path->keep_locks);
4887 again:
4888         cur = btrfs_read_lock_root_node(root);
4889         level = btrfs_header_level(cur);
4890         WARN_ON(path->nodes[level]);
4891         path->nodes[level] = cur;
4892         path->locks[level] = BTRFS_READ_LOCK;
4893
4894         if (btrfs_header_generation(cur) < min_trans) {
4895                 ret = 1;
4896                 goto out;
4897         }
4898         while (1) {
4899                 nritems = btrfs_header_nritems(cur);
4900                 level = btrfs_header_level(cur);
4901                 sret = bin_search(cur, min_key, level, &slot);
4902
4903                 /* at the lowest level, we're done, setup the path and exit */
4904                 if (level == path->lowest_level) {
4905                         if (slot >= nritems)
4906                                 goto find_next_key;
4907                         ret = 0;
4908                         path->slots[level] = slot;
4909                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4910                         goto out;
4911                 }
4912                 if (sret && slot > 0)
4913                         slot--;
4914                 /*
4915                  * check this node pointer against the min_trans parameters.
4916                  * If it is too old, old, skip to the next one.
4917                  */
4918                 while (slot < nritems) {
4919                         u64 gen;
4920
4921                         gen = btrfs_node_ptr_generation(cur, slot);
4922                         if (gen < min_trans) {
4923                                 slot++;
4924                                 continue;
4925                         }
4926                         break;
4927                 }
4928 find_next_key:
4929                 /*
4930                  * we didn't find a candidate key in this node, walk forward
4931                  * and find another one
4932                  */
4933                 if (slot >= nritems) {
4934                         path->slots[level] = slot;
4935                         btrfs_set_path_blocking(path);
4936                         sret = btrfs_find_next_key(root, path, min_key, level,
4937                                                   min_trans);
4938                         if (sret == 0) {
4939                                 btrfs_release_path(path);
4940                                 goto again;
4941                         } else {
4942                                 goto out;
4943                         }
4944                 }
4945                 /* save our key for returning back */
4946                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4947                 path->slots[level] = slot;
4948                 if (level == path->lowest_level) {
4949                         ret = 0;
4950                         unlock_up(path, level, 1, 0, NULL);
4951                         goto out;
4952                 }
4953                 btrfs_set_path_blocking(path);
4954                 cur = read_node_slot(root, cur, slot);
4955                 BUG_ON(!cur); /* -ENOMEM */
4956
4957                 btrfs_tree_read_lock(cur);
4958
4959                 path->locks[level - 1] = BTRFS_READ_LOCK;
4960                 path->nodes[level - 1] = cur;
4961                 unlock_up(path, level, 1, 0, NULL);
4962                 btrfs_clear_path_blocking(path, NULL, 0);
4963         }
4964 out:
4965         if (ret == 0)
4966                 memcpy(min_key, &found_key, sizeof(found_key));
4967         btrfs_set_path_blocking(path);
4968         return ret;
4969 }
4970
4971 static void tree_move_down(struct btrfs_root *root,
4972                            struct btrfs_path *path,
4973                            int *level, int root_level)
4974 {
4975         BUG_ON(*level == 0);
4976         path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4977                                         path->slots[*level]);
4978         path->slots[*level - 1] = 0;
4979         (*level)--;
4980 }
4981
4982 static int tree_move_next_or_upnext(struct btrfs_root *root,
4983                                     struct btrfs_path *path,
4984                                     int *level, int root_level)
4985 {
4986         int ret = 0;
4987         int nritems;
4988         nritems = btrfs_header_nritems(path->nodes[*level]);
4989
4990         path->slots[*level]++;
4991
4992         while (path->slots[*level] >= nritems) {
4993                 if (*level == root_level)
4994                         return -1;
4995
4996                 /* move upnext */
4997                 path->slots[*level] = 0;
4998                 free_extent_buffer(path->nodes[*level]);
4999                 path->nodes[*level] = NULL;
5000                 (*level)++;
5001                 path->slots[*level]++;
5002
5003                 nritems = btrfs_header_nritems(path->nodes[*level]);
5004                 ret = 1;
5005         }
5006         return ret;
5007 }
5008
5009 /*
5010  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5011  * or down.
5012  */
5013 static int tree_advance(struct btrfs_root *root,
5014                         struct btrfs_path *path,
5015                         int *level, int root_level,
5016                         int allow_down,
5017                         struct btrfs_key *key)
5018 {
5019         int ret;
5020
5021         if (*level == 0 || !allow_down) {
5022                 ret = tree_move_next_or_upnext(root, path, level, root_level);
5023         } else {
5024                 tree_move_down(root, path, level, root_level);
5025                 ret = 0;
5026         }
5027         if (ret >= 0) {
5028                 if (*level == 0)
5029                         btrfs_item_key_to_cpu(path->nodes[*level], key,
5030                                         path->slots[*level]);
5031                 else
5032                         btrfs_node_key_to_cpu(path->nodes[*level], key,
5033                                         path->slots[*level]);
5034         }
5035         return ret;
5036 }
5037
5038 static int tree_compare_item(struct btrfs_root *left_root,
5039                              struct btrfs_path *left_path,
5040                              struct btrfs_path *right_path,
5041                              char *tmp_buf)
5042 {
5043         int cmp;
5044         int len1, len2;
5045         unsigned long off1, off2;
5046
5047         len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5048         len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5049         if (len1 != len2)
5050                 return 1;
5051
5052         off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5053         off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5054                                 right_path->slots[0]);
5055
5056         read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5057
5058         cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5059         if (cmp)
5060                 return 1;
5061         return 0;
5062 }
5063
5064 #define ADVANCE 1
5065 #define ADVANCE_ONLY_NEXT -1
5066
5067 /*
5068  * This function compares two trees and calls the provided callback for
5069  * every changed/new/deleted item it finds.
5070  * If shared tree blocks are encountered, whole subtrees are skipped, making
5071  * the compare pretty fast on snapshotted subvolumes.
5072  *
5073  * This currently works on commit roots only. As commit roots are read only,
5074  * we don't do any locking. The commit roots are protected with transactions.
5075  * Transactions are ended and rejoined when a commit is tried in between.
5076  *
5077  * This function checks for modifications done to the trees while comparing.
5078  * If it detects a change, it aborts immediately.
5079  */
5080 int btrfs_compare_trees(struct btrfs_root *left_root,
5081                         struct btrfs_root *right_root,
5082                         btrfs_changed_cb_t changed_cb, void *ctx)
5083 {
5084         int ret;
5085         int cmp;
5086         struct btrfs_trans_handle *trans = NULL;
5087         struct btrfs_path *left_path = NULL;
5088         struct btrfs_path *right_path = NULL;
5089         struct btrfs_key left_key;
5090         struct btrfs_key right_key;
5091         char *tmp_buf = NULL;
5092         int left_root_level;
5093         int right_root_level;
5094         int left_level;
5095         int right_level;
5096         int left_end_reached;
5097         int right_end_reached;
5098         int advance_left;
5099         int advance_right;
5100         u64 left_blockptr;
5101         u64 right_blockptr;
5102         u64 left_start_ctransid;
5103         u64 right_start_ctransid;
5104         u64 ctransid;
5105
5106         left_path = btrfs_alloc_path();
5107         if (!left_path) {
5108                 ret = -ENOMEM;
5109                 goto out;
5110         }
5111         right_path = btrfs_alloc_path();
5112         if (!right_path) {
5113                 ret = -ENOMEM;
5114                 goto out;
5115         }
5116
5117         tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5118         if (!tmp_buf) {
5119                 ret = -ENOMEM;
5120                 goto out;
5121         }
5122
5123         left_path->search_commit_root = 1;
5124         left_path->skip_locking = 1;
5125         right_path->search_commit_root = 1;
5126         right_path->skip_locking = 1;
5127
5128         spin_lock(&left_root->root_item_lock);
5129         left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5130         spin_unlock(&left_root->root_item_lock);
5131
5132         spin_lock(&right_root->root_item_lock);
5133         right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5134         spin_unlock(&right_root->root_item_lock);
5135
5136         trans = btrfs_join_transaction(left_root);
5137         if (IS_ERR(trans)) {
5138                 ret = PTR_ERR(trans);
5139                 trans = NULL;
5140                 goto out;
5141         }
5142
5143         /*
5144          * Strategy: Go to the first items of both trees. Then do
5145          *
5146          * If both trees are at level 0
5147          *   Compare keys of current items
5148          *     If left < right treat left item as new, advance left tree
5149          *       and repeat
5150          *     If left > right treat right item as deleted, advance right tree
5151          *       and repeat
5152          *     If left == right do deep compare of items, treat as changed if
5153          *       needed, advance both trees and repeat
5154          * If both trees are at the same level but not at level 0
5155          *   Compare keys of current nodes/leafs
5156          *     If left < right advance left tree and repeat
5157          *     If left > right advance right tree and repeat
5158          *     If left == right compare blockptrs of the next nodes/leafs
5159          *       If they match advance both trees but stay at the same level
5160          *         and repeat
5161          *       If they don't match advance both trees while allowing to go
5162          *         deeper and repeat
5163          * If tree levels are different
5164          *   Advance the tree that needs it and repeat
5165          *
5166          * Advancing a tree means:
5167          *   If we are at level 0, try to go to the next slot. If that's not
5168          *   possible, go one level up and repeat. Stop when we found a level
5169          *   where we could go to the next slot. We may at this point be on a
5170          *   node or a leaf.
5171          *
5172          *   If we are not at level 0 and not on shared tree blocks, go one
5173          *   level deeper.
5174          *
5175          *   If we are not at level 0 and on shared tree blocks, go one slot to
5176          *   the right if possible or go up and right.
5177          */
5178
5179         left_level = btrfs_header_level(left_root->commit_root);
5180         left_root_level = left_level;
5181         left_path->nodes[left_level] = left_root->commit_root;
5182         extent_buffer_get(left_path->nodes[left_level]);
5183
5184         right_level = btrfs_header_level(right_root->commit_root);
5185         right_root_level = right_level;
5186         right_path->nodes[right_level] = right_root->commit_root;
5187         extent_buffer_get(right_path->nodes[right_level]);
5188
5189         if (left_level == 0)
5190                 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5191                                 &left_key, left_path->slots[left_level]);
5192         else
5193                 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5194                                 &left_key, left_path->slots[left_level]);
5195         if (right_level == 0)
5196                 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5197                                 &right_key, right_path->slots[right_level]);
5198         else
5199                 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5200                                 &right_key, right_path->slots[right_level]);
5201
5202         left_end_reached = right_end_reached = 0;
5203         advance_left = advance_right = 0;
5204
5205         while (1) {
5206                 /*
5207                  * We need to make sure the transaction does not get committed
5208                  * while we do anything on commit roots. This means, we need to
5209                  * join and leave transactions for every item that we process.
5210                  */
5211                 if (trans && btrfs_should_end_transaction(trans, left_root)) {
5212                         btrfs_release_path(left_path);
5213                         btrfs_release_path(right_path);
5214
5215                         ret = btrfs_end_transaction(trans, left_root);
5216                         trans = NULL;
5217                         if (ret < 0)
5218                                 goto out;
5219                 }
5220                 /* now rejoin the transaction */
5221                 if (!trans) {
5222                         trans = btrfs_join_transaction(left_root);
5223                         if (IS_ERR(trans)) {
5224                                 ret = PTR_ERR(trans);
5225                                 trans = NULL;
5226                                 goto out;
5227                         }
5228
5229                         spin_lock(&left_root->root_item_lock);
5230                         ctransid = btrfs_root_ctransid(&left_root->root_item);
5231                         spin_unlock(&left_root->root_item_lock);
5232                         if (ctransid != left_start_ctransid)
5233                                 left_start_ctransid = 0;
5234
5235                         spin_lock(&right_root->root_item_lock);
5236                         ctransid = btrfs_root_ctransid(&right_root->root_item);
5237                         spin_unlock(&right_root->root_item_lock);
5238                         if (ctransid != right_start_ctransid)
5239                                 right_start_ctransid = 0;
5240
5241                         if (!left_start_ctransid || !right_start_ctransid) {
5242                                 WARN(1, KERN_WARNING
5243                                         "btrfs: btrfs_compare_tree detected "
5244                                         "a change in one of the trees while "
5245                                         "iterating. This is probably a "
5246                                         "bug.\n");
5247                                 ret = -EIO;
5248                                 goto out;
5249                         }
5250
5251                         /*
5252                          * the commit root may have changed, so start again
5253                          * where we stopped
5254                          */
5255                         left_path->lowest_level = left_level;
5256                         right_path->lowest_level = right_level;
5257                         ret = btrfs_search_slot(NULL, left_root,
5258                                         &left_key, left_path, 0, 0);
5259                         if (ret < 0)
5260                                 goto out;
5261                         ret = btrfs_search_slot(NULL, right_root,
5262                                         &right_key, right_path, 0, 0);
5263                         if (ret < 0)
5264                                 goto out;
5265                 }
5266
5267                 if (advance_left && !left_end_reached) {
5268                         ret = tree_advance(left_root, left_path, &left_level,
5269                                         left_root_level,
5270                                         advance_left != ADVANCE_ONLY_NEXT,
5271                                         &left_key);
5272                         if (ret < 0)
5273                                 left_end_reached = ADVANCE;
5274                         advance_left = 0;
5275                 }
5276                 if (advance_right && !right_end_reached) {
5277                         ret = tree_advance(right_root, right_path, &right_level,
5278                                         right_root_level,
5279                                         advance_right != ADVANCE_ONLY_NEXT,
5280                                         &right_key);
5281                         if (ret < 0)
5282                                 right_end_reached = ADVANCE;
5283                         advance_right = 0;
5284                 }
5285
5286                 if (left_end_reached && right_end_reached) {
5287                         ret = 0;
5288                         goto out;
5289                 } else if (left_end_reached) {
5290                         if (right_level == 0) {
5291                                 ret = changed_cb(left_root, right_root,
5292                                                 left_path, right_path,
5293                                                 &right_key,
5294                                                 BTRFS_COMPARE_TREE_DELETED,
5295                                                 ctx);
5296                                 if (ret < 0)
5297                                         goto out;
5298                         }
5299                         advance_right = ADVANCE;
5300                         continue;
5301                 } else if (right_end_reached) {
5302                         if (left_level == 0) {
5303                                 ret = changed_cb(left_root, right_root,
5304                                                 left_path, right_path,
5305                                                 &left_key,
5306                                                 BTRFS_COMPARE_TREE_NEW,
5307                                                 ctx);
5308                                 if (ret < 0)
5309                                         goto out;
5310                         }
5311                         advance_left = ADVANCE;
5312                         continue;
5313                 }
5314
5315                 if (left_level == 0 && right_level == 0) {
5316                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5317                         if (cmp < 0) {
5318                                 ret = changed_cb(left_root, right_root,
5319                                                 left_path, right_path,
5320                                                 &left_key,
5321                                                 BTRFS_COMPARE_TREE_NEW,
5322                                                 ctx);
5323                                 if (ret < 0)
5324                                         goto out;
5325                                 advance_left = ADVANCE;
5326                         } else if (cmp > 0) {
5327                                 ret = changed_cb(left_root, right_root,
5328                                                 left_path, right_path,
5329                                                 &right_key,
5330                                                 BTRFS_COMPARE_TREE_DELETED,
5331                                                 ctx);
5332                                 if (ret < 0)
5333                                         goto out;
5334                                 advance_right = ADVANCE;
5335                         } else {
5336                                 enum btrfs_compare_tree_result cmp;
5337
5338                                 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5339                                 ret = tree_compare_item(left_root, left_path,
5340                                                 right_path, tmp_buf);
5341                                 if (ret)
5342                                         cmp = BTRFS_COMPARE_TREE_CHANGED;
5343                                 else
5344                                         cmp = BTRFS_COMPARE_TREE_SAME;
5345                                 ret = changed_cb(left_root, right_root,
5346                                                  left_path, right_path,
5347                                                  &left_key, cmp, ctx);
5348                                 if (ret < 0)
5349                                         goto out;
5350                                 advance_left = ADVANCE;
5351                                 advance_right = ADVANCE;
5352                         }
5353                 } else if (left_level == right_level) {
5354                         cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5355                         if (cmp < 0) {
5356                                 advance_left = ADVANCE;
5357                         } else if (cmp > 0) {
5358                                 advance_right = ADVANCE;
5359                         } else {
5360                                 left_blockptr = btrfs_node_blockptr(
5361                                                 left_path->nodes[left_level],
5362                                                 left_path->slots[left_level]);
5363                                 right_blockptr = btrfs_node_blockptr(
5364                                                 right_path->nodes[right_level],
5365                                                 right_path->slots[right_level]);
5366                                 if (left_blockptr == right_blockptr) {
5367                                         /*
5368                                          * As we're on a shared block, don't
5369                                          * allow to go deeper.
5370                                          */
5371                                         advance_left = ADVANCE_ONLY_NEXT;
5372                                         advance_right = ADVANCE_ONLY_NEXT;
5373                                 } else {
5374                                         advance_left = ADVANCE;
5375                                         advance_right = ADVANCE;
5376                                 }
5377                         }
5378                 } else if (left_level < right_level) {
5379                         advance_right = ADVANCE;
5380                 } else {
5381                         advance_left = ADVANCE;
5382                 }
5383         }
5384
5385 out:
5386         btrfs_free_path(left_path);
5387         btrfs_free_path(right_path);
5388         kfree(tmp_buf);
5389
5390         if (trans) {
5391                 if (!ret)
5392                         ret = btrfs_end_transaction(trans, left_root);
5393                 else
5394                         btrfs_end_transaction(trans, left_root);
5395         }
5396
5397         return ret;
5398 }
5399
5400 /*
5401  * this is similar to btrfs_next_leaf, but does not try to preserve
5402  * and fixup the path.  It looks for and returns the next key in the
5403  * tree based on the current path and the min_trans parameters.
5404  *
5405  * 0 is returned if another key is found, < 0 if there are any errors
5406  * and 1 is returned if there are no higher keys in the tree
5407  *
5408  * path->keep_locks should be set to 1 on the search made before
5409  * calling this function.
5410  */
5411 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5412                         struct btrfs_key *key, int level, u64 min_trans)
5413 {
5414         int slot;
5415         struct extent_buffer *c;
5416
5417         WARN_ON(!path->keep_locks);
5418         while (level < BTRFS_MAX_LEVEL) {
5419                 if (!path->nodes[level])
5420                         return 1;
5421
5422                 slot = path->slots[level] + 1;
5423                 c = path->nodes[level];
5424 next:
5425                 if (slot >= btrfs_header_nritems(c)) {
5426                         int ret;
5427                         int orig_lowest;
5428                         struct btrfs_key cur_key;
5429                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5430                             !path->nodes[level + 1])
5431                                 return 1;
5432
5433                         if (path->locks[level + 1]) {
5434                                 level++;
5435                                 continue;
5436                         }
5437
5438                         slot = btrfs_header_nritems(c) - 1;
5439                         if (level == 0)
5440                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5441                         else
5442                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5443
5444                         orig_lowest = path->lowest_level;
5445                         btrfs_release_path(path);
5446                         path->lowest_level = level;
5447                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5448                                                 0, 0);
5449                         path->lowest_level = orig_lowest;
5450                         if (ret < 0)
5451                                 return ret;
5452
5453                         c = path->nodes[level];
5454                         slot = path->slots[level];
5455                         if (ret == 0)
5456                                 slot++;
5457                         goto next;
5458                 }
5459
5460                 if (level == 0)
5461                         btrfs_item_key_to_cpu(c, key, slot);
5462                 else {
5463                         u64 gen = btrfs_node_ptr_generation(c, slot);
5464
5465                         if (gen < min_trans) {
5466                                 slot++;
5467                                 goto next;
5468                         }
5469                         btrfs_node_key_to_cpu(c, key, slot);
5470                 }
5471                 return 0;
5472         }
5473         return 1;
5474 }
5475
5476 /*
5477  * search the tree again to find a leaf with greater keys
5478  * returns 0 if it found something or 1 if there are no greater leaves.
5479  * returns < 0 on io errors.
5480  */
5481 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5482 {
5483         return btrfs_next_old_leaf(root, path, 0);
5484 }
5485
5486 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5487                         u64 time_seq)
5488 {
5489         int slot;
5490         int level;
5491         struct extent_buffer *c;
5492         struct extent_buffer *next;
5493         struct btrfs_key key;
5494         u32 nritems;
5495         int ret;
5496         int old_spinning = path->leave_spinning;
5497         int next_rw_lock = 0;
5498
5499         nritems = btrfs_header_nritems(path->nodes[0]);
5500         if (nritems == 0)
5501                 return 1;
5502
5503         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5504 again:
5505         level = 1;
5506         next = NULL;
5507         next_rw_lock = 0;
5508         btrfs_release_path(path);
5509
5510         path->keep_locks = 1;
5511         path->leave_spinning = 1;
5512
5513         if (time_seq)
5514                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5515         else
5516                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5517         path->keep_locks = 0;
5518
5519         if (ret < 0)
5520                 return ret;
5521
5522         nritems = btrfs_header_nritems(path->nodes[0]);
5523         /*
5524          * by releasing the path above we dropped all our locks.  A balance
5525          * could have added more items next to the key that used to be
5526          * at the very end of the block.  So, check again here and
5527          * advance the path if there are now more items available.
5528          */
5529         if (nritems > 0 && path->slots[0] < nritems - 1) {
5530                 if (ret == 0)
5531                         path->slots[0]++;
5532                 ret = 0;
5533                 goto done;
5534         }
5535
5536         while (level < BTRFS_MAX_LEVEL) {
5537                 if (!path->nodes[level]) {
5538                         ret = 1;
5539                         goto done;
5540                 }
5541
5542                 slot = path->slots[level] + 1;
5543                 c = path->nodes[level];
5544                 if (slot >= btrfs_header_nritems(c)) {
5545                         level++;
5546                         if (level == BTRFS_MAX_LEVEL) {
5547                                 ret = 1;
5548                                 goto done;
5549                         }
5550                         continue;
5551                 }
5552
5553                 if (next) {
5554                         btrfs_tree_unlock_rw(next, next_rw_lock);
5555                         free_extent_buffer(next);
5556                 }
5557
5558                 next = c;
5559                 next_rw_lock = path->locks[level];
5560                 ret = read_block_for_search(NULL, root, path, &next, level,
5561                                             slot, &key, 0);
5562                 if (ret == -EAGAIN)
5563                         goto again;
5564
5565                 if (ret < 0) {
5566                         btrfs_release_path(path);
5567                         goto done;
5568                 }
5569
5570                 if (!path->skip_locking) {
5571                         ret = btrfs_try_tree_read_lock(next);
5572                         if (!ret && time_seq) {
5573                                 /*
5574                                  * If we don't get the lock, we may be racing
5575                                  * with push_leaf_left, holding that lock while
5576                                  * itself waiting for the leaf we've currently
5577                                  * locked. To solve this situation, we give up
5578                                  * on our lock and cycle.
5579                                  */
5580                                 free_extent_buffer(next);
5581                                 btrfs_release_path(path);
5582                                 cond_resched();
5583                                 goto again;
5584                         }
5585                         if (!ret) {
5586                                 btrfs_set_path_blocking(path);
5587                                 btrfs_tree_read_lock(next);
5588                                 btrfs_clear_path_blocking(path, next,
5589                                                           BTRFS_READ_LOCK);
5590                         }
5591                         next_rw_lock = BTRFS_READ_LOCK;
5592                 }
5593                 break;
5594         }
5595         path->slots[level] = slot;
5596         while (1) {
5597                 level--;
5598                 c = path->nodes[level];
5599                 if (path->locks[level])
5600                         btrfs_tree_unlock_rw(c, path->locks[level]);
5601
5602                 free_extent_buffer(c);
5603                 path->nodes[level] = next;
5604                 path->slots[level] = 0;
5605                 if (!path->skip_locking)
5606                         path->locks[level] = next_rw_lock;
5607                 if (!level)
5608                         break;
5609
5610                 ret = read_block_for_search(NULL, root, path, &next, level,
5611                                             0, &key, 0);
5612                 if (ret == -EAGAIN)
5613                         goto again;
5614
5615                 if (ret < 0) {
5616                         btrfs_release_path(path);
5617                         goto done;
5618                 }
5619
5620                 if (!path->skip_locking) {
5621                         ret = btrfs_try_tree_read_lock(next);
5622                         if (!ret) {
5623                                 btrfs_set_path_blocking(path);
5624                                 btrfs_tree_read_lock(next);
5625                                 btrfs_clear_path_blocking(path, next,
5626                                                           BTRFS_READ_LOCK);
5627                         }
5628                         next_rw_lock = BTRFS_READ_LOCK;
5629                 }
5630         }
5631         ret = 0;
5632 done:
5633         unlock_up(path, 0, 1, 0, NULL);
5634         path->leave_spinning = old_spinning;
5635         if (!old_spinning)
5636                 btrfs_set_path_blocking(path);
5637
5638         return ret;
5639 }
5640
5641 /*
5642  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5643  * searching until it gets past min_objectid or finds an item of 'type'
5644  *
5645  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5646  */
5647 int btrfs_previous_item(struct btrfs_root *root,
5648                         struct btrfs_path *path, u64 min_objectid,
5649                         int type)
5650 {
5651         struct btrfs_key found_key;
5652         struct extent_buffer *leaf;
5653         u32 nritems;
5654         int ret;
5655
5656         while (1) {
5657                 if (path->slots[0] == 0) {
5658                         btrfs_set_path_blocking(path);
5659                         ret = btrfs_prev_leaf(root, path);
5660                         if (ret != 0)
5661                                 return ret;
5662                 } else {
5663                         path->slots[0]--;
5664                 }
5665                 leaf = path->nodes[0];
5666                 nritems = btrfs_header_nritems(leaf);
5667                 if (nritems == 0)
5668                         return 1;
5669                 if (path->slots[0] == nritems)
5670                         path->slots[0]--;
5671
5672                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5673                 if (found_key.objectid < min_objectid)
5674                         break;
5675                 if (found_key.type == type)
5676                         return 0;
5677                 if (found_key.objectid == min_objectid &&
5678                     found_key.type < type)
5679                         break;
5680         }
5681         return 1;
5682 }