]> Pileus Git - ~andy/linux/blob - fs/btrfs/backref.c
btrfs: bootstrap generic btrfs_find_item interface
[~andy/linux] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         struct extent_inode_elem *next;
32 };
33
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35                                 struct btrfs_file_extent_item *fi,
36                                 u64 extent_item_pos,
37                                 struct extent_inode_elem **eie)
38 {
39         u64 offset = 0;
40         struct extent_inode_elem *e;
41
42         if (!btrfs_file_extent_compression(eb, fi) &&
43             !btrfs_file_extent_encryption(eb, fi) &&
44             !btrfs_file_extent_other_encoding(eb, fi)) {
45                 u64 data_offset;
46                 u64 data_len;
47
48                 data_offset = btrfs_file_extent_offset(eb, fi);
49                 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51                 if (extent_item_pos < data_offset ||
52                     extent_item_pos >= data_offset + data_len)
53                         return 1;
54                 offset = extent_item_pos - data_offset;
55         }
56
57         e = kmalloc(sizeof(*e), GFP_NOFS);
58         if (!e)
59                 return -ENOMEM;
60
61         e->next = *eie;
62         e->inum = key->objectid;
63         e->offset = key->offset + offset;
64         *eie = e;
65
66         return 0;
67 }
68
69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70                                 u64 extent_item_pos,
71                                 struct extent_inode_elem **eie)
72 {
73         u64 disk_byte;
74         struct btrfs_key key;
75         struct btrfs_file_extent_item *fi;
76         int slot;
77         int nritems;
78         int extent_type;
79         int ret;
80
81         /*
82          * from the shared data ref, we only have the leaf but we need
83          * the key. thus, we must look into all items and see that we
84          * find one (some) with a reference to our extent item.
85          */
86         nritems = btrfs_header_nritems(eb);
87         for (slot = 0; slot < nritems; ++slot) {
88                 btrfs_item_key_to_cpu(eb, &key, slot);
89                 if (key.type != BTRFS_EXTENT_DATA_KEY)
90                         continue;
91                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92                 extent_type = btrfs_file_extent_type(eb, fi);
93                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94                         continue;
95                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97                 if (disk_byte != wanted_disk_byte)
98                         continue;
99
100                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101                 if (ret < 0)
102                         return ret;
103         }
104
105         return 0;
106 }
107
108 /*
109  * this structure records all encountered refs on the way up to the root
110  */
111 struct __prelim_ref {
112         struct list_head list;
113         u64 root_id;
114         struct btrfs_key key_for_search;
115         int level;
116         int count;
117         struct extent_inode_elem *inode_list;
118         u64 parent;
119         u64 wanted_disk_byte;
120 };
121
122 static struct kmem_cache *btrfs_prelim_ref_cache;
123
124 int __init btrfs_prelim_ref_init(void)
125 {
126         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
127                                         sizeof(struct __prelim_ref),
128                                         0,
129                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
130                                         NULL);
131         if (!btrfs_prelim_ref_cache)
132                 return -ENOMEM;
133         return 0;
134 }
135
136 void btrfs_prelim_ref_exit(void)
137 {
138         if (btrfs_prelim_ref_cache)
139                 kmem_cache_destroy(btrfs_prelim_ref_cache);
140 }
141
142 /*
143  * the rules for all callers of this function are:
144  * - obtaining the parent is the goal
145  * - if you add a key, you must know that it is a correct key
146  * - if you cannot add the parent or a correct key, then we will look into the
147  *   block later to set a correct key
148  *
149  * delayed refs
150  * ============
151  *        backref type | shared | indirect | shared | indirect
152  * information         |   tree |     tree |   data |     data
153  * --------------------+--------+----------+--------+----------
154  *      parent logical |    y   |     -    |    -   |     -
155  *      key to resolve |    -   |     y    |    y   |     y
156  *  tree block logical |    -   |     -    |    -   |     -
157  *  root for resolving |    y   |     y    |    y   |     y
158  *
159  * - column 1:       we've the parent -> done
160  * - column 2, 3, 4: we use the key to find the parent
161  *
162  * on disk refs (inline or keyed)
163  * ==============================
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    y   |     -
168  *      key to resolve |    -   |     -    |    -   |     y
169  *  tree block logical |    y   |     y    |    y   |     y
170  *  root for resolving |    -   |     y    |    y   |     y
171  *
172  * - column 1, 3: we've the parent -> done
173  * - column 2:    we take the first key from the block to find the parent
174  *                (see __add_missing_keys)
175  * - column 4:    we use the key to find the parent
176  *
177  * additional information that's available but not required to find the parent
178  * block might help in merging entries to gain some speed.
179  */
180
181 static int __add_prelim_ref(struct list_head *head, u64 root_id,
182                             struct btrfs_key *key, int level,
183                             u64 parent, u64 wanted_disk_byte, int count,
184                             gfp_t gfp_mask)
185 {
186         struct __prelim_ref *ref;
187
188         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
189                 return 0;
190
191         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
192         if (!ref)
193                 return -ENOMEM;
194
195         ref->root_id = root_id;
196         if (key)
197                 ref->key_for_search = *key;
198         else
199                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
200
201         ref->inode_list = NULL;
202         ref->level = level;
203         ref->count = count;
204         ref->parent = parent;
205         ref->wanted_disk_byte = wanted_disk_byte;
206         list_add_tail(&ref->list, head);
207
208         return 0;
209 }
210
211 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
212                                 struct ulist *parents, int level,
213                                 struct btrfs_key *key_for_search, u64 time_seq,
214                                 u64 wanted_disk_byte,
215                                 const u64 *extent_item_pos)
216 {
217         int ret = 0;
218         int slot;
219         struct extent_buffer *eb;
220         struct btrfs_key key;
221         struct btrfs_file_extent_item *fi;
222         struct extent_inode_elem *eie = NULL, *old = NULL;
223         u64 disk_byte;
224
225         if (level != 0) {
226                 eb = path->nodes[level];
227                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
228                 if (ret < 0)
229                         return ret;
230                 return 0;
231         }
232
233         /*
234          * We normally enter this function with the path already pointing to
235          * the first item to check. But sometimes, we may enter it with
236          * slot==nritems. In that case, go to the next leaf before we continue.
237          */
238         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
239                 ret = btrfs_next_old_leaf(root, path, time_seq);
240
241         while (!ret) {
242                 eb = path->nodes[0];
243                 slot = path->slots[0];
244
245                 btrfs_item_key_to_cpu(eb, &key, slot);
246
247                 if (key.objectid != key_for_search->objectid ||
248                     key.type != BTRFS_EXTENT_DATA_KEY)
249                         break;
250
251                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
252                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
253
254                 if (disk_byte == wanted_disk_byte) {
255                         eie = NULL;
256                         old = NULL;
257                         if (extent_item_pos) {
258                                 ret = check_extent_in_eb(&key, eb, fi,
259                                                 *extent_item_pos,
260                                                 &eie);
261                                 if (ret < 0)
262                                         break;
263                         }
264                         if (ret > 0)
265                                 goto next;
266                         ret = ulist_add_merge(parents, eb->start,
267                                               (uintptr_t)eie,
268                                               (u64 *)&old, GFP_NOFS);
269                         if (ret < 0)
270                                 break;
271                         if (!ret && extent_item_pos) {
272                                 while (old->next)
273                                         old = old->next;
274                                 old->next = eie;
275                         }
276                 }
277 next:
278                 ret = btrfs_next_old_item(root, path, time_seq);
279         }
280
281         if (ret > 0)
282                 ret = 0;
283         return ret;
284 }
285
286 /*
287  * resolve an indirect backref in the form (root_id, key, level)
288  * to a logical address
289  */
290 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
291                                   struct btrfs_path *path, u64 time_seq,
292                                   struct __prelim_ref *ref,
293                                   struct ulist *parents,
294                                   const u64 *extent_item_pos)
295 {
296         struct btrfs_root *root;
297         struct btrfs_key root_key;
298         struct extent_buffer *eb;
299         int ret = 0;
300         int root_level;
301         int level = ref->level;
302
303         root_key.objectid = ref->root_id;
304         root_key.type = BTRFS_ROOT_ITEM_KEY;
305         root_key.offset = (u64)-1;
306         root = btrfs_read_fs_root_no_name(fs_info, &root_key);
307         if (IS_ERR(root)) {
308                 ret = PTR_ERR(root);
309                 goto out;
310         }
311
312         root_level = btrfs_old_root_level(root, time_seq);
313
314         if (root_level + 1 == level)
315                 goto out;
316
317         path->lowest_level = level;
318         ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
319         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
320                  "%d for key (%llu %u %llu)\n",
321                  ref->root_id, level, ref->count, ret,
322                  ref->key_for_search.objectid, ref->key_for_search.type,
323                  ref->key_for_search.offset);
324         if (ret < 0)
325                 goto out;
326
327         eb = path->nodes[level];
328         while (!eb) {
329                 if (WARN_ON(!level)) {
330                         ret = 1;
331                         goto out;
332                 }
333                 level--;
334                 eb = path->nodes[level];
335         }
336
337         ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
338                                 time_seq, ref->wanted_disk_byte,
339                                 extent_item_pos);
340 out:
341         path->lowest_level = 0;
342         btrfs_release_path(path);
343         return ret;
344 }
345
346 /*
347  * resolve all indirect backrefs from the list
348  */
349 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
350                                    struct btrfs_path *path, u64 time_seq,
351                                    struct list_head *head,
352                                    const u64 *extent_item_pos)
353 {
354         int err;
355         int ret = 0;
356         struct __prelim_ref *ref;
357         struct __prelim_ref *ref_safe;
358         struct __prelim_ref *new_ref;
359         struct ulist *parents;
360         struct ulist_node *node;
361         struct ulist_iterator uiter;
362
363         parents = ulist_alloc(GFP_NOFS);
364         if (!parents)
365                 return -ENOMEM;
366
367         /*
368          * _safe allows us to insert directly after the current item without
369          * iterating over the newly inserted items.
370          * we're also allowed to re-assign ref during iteration.
371          */
372         list_for_each_entry_safe(ref, ref_safe, head, list) {
373                 if (ref->parent)        /* already direct */
374                         continue;
375                 if (ref->count == 0)
376                         continue;
377                 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
378                                              parents, extent_item_pos);
379                 if (err == -ENOMEM)
380                         goto out;
381                 if (err)
382                         continue;
383
384                 /* we put the first parent into the ref at hand */
385                 ULIST_ITER_INIT(&uiter);
386                 node = ulist_next(parents, &uiter);
387                 ref->parent = node ? node->val : 0;
388                 ref->inode_list = node ?
389                         (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
390
391                 /* additional parents require new refs being added here */
392                 while ((node = ulist_next(parents, &uiter))) {
393                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
394                                                    GFP_NOFS);
395                         if (!new_ref) {
396                                 ret = -ENOMEM;
397                                 goto out;
398                         }
399                         memcpy(new_ref, ref, sizeof(*ref));
400                         new_ref->parent = node->val;
401                         new_ref->inode_list = (struct extent_inode_elem *)
402                                                         (uintptr_t)node->aux;
403                         list_add(&new_ref->list, &ref->list);
404                 }
405                 ulist_reinit(parents);
406         }
407 out:
408         ulist_free(parents);
409         return ret;
410 }
411
412 static inline int ref_for_same_block(struct __prelim_ref *ref1,
413                                      struct __prelim_ref *ref2)
414 {
415         if (ref1->level != ref2->level)
416                 return 0;
417         if (ref1->root_id != ref2->root_id)
418                 return 0;
419         if (ref1->key_for_search.type != ref2->key_for_search.type)
420                 return 0;
421         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
422                 return 0;
423         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
424                 return 0;
425         if (ref1->parent != ref2->parent)
426                 return 0;
427
428         return 1;
429 }
430
431 /*
432  * read tree blocks and add keys where required.
433  */
434 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
435                               struct list_head *head)
436 {
437         struct list_head *pos;
438         struct extent_buffer *eb;
439
440         list_for_each(pos, head) {
441                 struct __prelim_ref *ref;
442                 ref = list_entry(pos, struct __prelim_ref, list);
443
444                 if (ref->parent)
445                         continue;
446                 if (ref->key_for_search.type)
447                         continue;
448                 BUG_ON(!ref->wanted_disk_byte);
449                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
450                                      fs_info->tree_root->leafsize, 0);
451                 if (!eb || !extent_buffer_uptodate(eb)) {
452                         free_extent_buffer(eb);
453                         return -EIO;
454                 }
455                 btrfs_tree_read_lock(eb);
456                 if (btrfs_header_level(eb) == 0)
457                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
458                 else
459                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
460                 btrfs_tree_read_unlock(eb);
461                 free_extent_buffer(eb);
462         }
463         return 0;
464 }
465
466 /*
467  * merge two lists of backrefs and adjust counts accordingly
468  *
469  * mode = 1: merge identical keys, if key is set
470  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
471  *           additionally, we could even add a key range for the blocks we
472  *           looked into to merge even more (-> replace unresolved refs by those
473  *           having a parent).
474  * mode = 2: merge identical parents
475  */
476 static void __merge_refs(struct list_head *head, int mode)
477 {
478         struct list_head *pos1;
479
480         list_for_each(pos1, head) {
481                 struct list_head *n2;
482                 struct list_head *pos2;
483                 struct __prelim_ref *ref1;
484
485                 ref1 = list_entry(pos1, struct __prelim_ref, list);
486
487                 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
488                      pos2 = n2, n2 = pos2->next) {
489                         struct __prelim_ref *ref2;
490                         struct __prelim_ref *xchg;
491                         struct extent_inode_elem *eie;
492
493                         ref2 = list_entry(pos2, struct __prelim_ref, list);
494
495                         if (mode == 1) {
496                                 if (!ref_for_same_block(ref1, ref2))
497                                         continue;
498                                 if (!ref1->parent && ref2->parent) {
499                                         xchg = ref1;
500                                         ref1 = ref2;
501                                         ref2 = xchg;
502                                 }
503                         } else {
504                                 if (ref1->parent != ref2->parent)
505                                         continue;
506                         }
507
508                         eie = ref1->inode_list;
509                         while (eie && eie->next)
510                                 eie = eie->next;
511                         if (eie)
512                                 eie->next = ref2->inode_list;
513                         else
514                                 ref1->inode_list = ref2->inode_list;
515                         ref1->count += ref2->count;
516
517                         list_del(&ref2->list);
518                         kmem_cache_free(btrfs_prelim_ref_cache, ref2);
519                 }
520
521         }
522 }
523
524 /*
525  * add all currently queued delayed refs from this head whose seq nr is
526  * smaller or equal that seq to the list
527  */
528 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
529                               struct list_head *prefs)
530 {
531         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
532         struct rb_node *n = &head->node.rb_node;
533         struct btrfs_key key;
534         struct btrfs_key op_key = {0};
535         int sgn;
536         int ret = 0;
537
538         if (extent_op && extent_op->update_key)
539                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
540
541         while ((n = rb_prev(n))) {
542                 struct btrfs_delayed_ref_node *node;
543                 node = rb_entry(n, struct btrfs_delayed_ref_node,
544                                 rb_node);
545                 if (node->bytenr != head->node.bytenr)
546                         break;
547                 WARN_ON(node->is_head);
548
549                 if (node->seq > seq)
550                         continue;
551
552                 switch (node->action) {
553                 case BTRFS_ADD_DELAYED_EXTENT:
554                 case BTRFS_UPDATE_DELAYED_HEAD:
555                         WARN_ON(1);
556                         continue;
557                 case BTRFS_ADD_DELAYED_REF:
558                         sgn = 1;
559                         break;
560                 case BTRFS_DROP_DELAYED_REF:
561                         sgn = -1;
562                         break;
563                 default:
564                         BUG_ON(1);
565                 }
566                 switch (node->type) {
567                 case BTRFS_TREE_BLOCK_REF_KEY: {
568                         struct btrfs_delayed_tree_ref *ref;
569
570                         ref = btrfs_delayed_node_to_tree_ref(node);
571                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
572                                                ref->level + 1, 0, node->bytenr,
573                                                node->ref_mod * sgn, GFP_ATOMIC);
574                         break;
575                 }
576                 case BTRFS_SHARED_BLOCK_REF_KEY: {
577                         struct btrfs_delayed_tree_ref *ref;
578
579                         ref = btrfs_delayed_node_to_tree_ref(node);
580                         ret = __add_prelim_ref(prefs, ref->root, NULL,
581                                                ref->level + 1, ref->parent,
582                                                node->bytenr,
583                                                node->ref_mod * sgn, GFP_ATOMIC);
584                         break;
585                 }
586                 case BTRFS_EXTENT_DATA_REF_KEY: {
587                         struct btrfs_delayed_data_ref *ref;
588                         ref = btrfs_delayed_node_to_data_ref(node);
589
590                         key.objectid = ref->objectid;
591                         key.type = BTRFS_EXTENT_DATA_KEY;
592                         key.offset = ref->offset;
593                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
594                                                node->bytenr,
595                                                node->ref_mod * sgn, GFP_ATOMIC);
596                         break;
597                 }
598                 case BTRFS_SHARED_DATA_REF_KEY: {
599                         struct btrfs_delayed_data_ref *ref;
600
601                         ref = btrfs_delayed_node_to_data_ref(node);
602
603                         key.objectid = ref->objectid;
604                         key.type = BTRFS_EXTENT_DATA_KEY;
605                         key.offset = ref->offset;
606                         ret = __add_prelim_ref(prefs, ref->root, &key, 0,
607                                                ref->parent, node->bytenr,
608                                                node->ref_mod * sgn, GFP_ATOMIC);
609                         break;
610                 }
611                 default:
612                         WARN_ON(1);
613                 }
614                 if (ret)
615                         return ret;
616         }
617
618         return 0;
619 }
620
621 /*
622  * add all inline backrefs for bytenr to the list
623  */
624 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
625                              struct btrfs_path *path, u64 bytenr,
626                              int *info_level, struct list_head *prefs)
627 {
628         int ret = 0;
629         int slot;
630         struct extent_buffer *leaf;
631         struct btrfs_key key;
632         struct btrfs_key found_key;
633         unsigned long ptr;
634         unsigned long end;
635         struct btrfs_extent_item *ei;
636         u64 flags;
637         u64 item_size;
638
639         /*
640          * enumerate all inline refs
641          */
642         leaf = path->nodes[0];
643         slot = path->slots[0];
644
645         item_size = btrfs_item_size_nr(leaf, slot);
646         BUG_ON(item_size < sizeof(*ei));
647
648         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
649         flags = btrfs_extent_flags(leaf, ei);
650         btrfs_item_key_to_cpu(leaf, &found_key, slot);
651
652         ptr = (unsigned long)(ei + 1);
653         end = (unsigned long)ei + item_size;
654
655         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
656             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
657                 struct btrfs_tree_block_info *info;
658
659                 info = (struct btrfs_tree_block_info *)ptr;
660                 *info_level = btrfs_tree_block_level(leaf, info);
661                 ptr += sizeof(struct btrfs_tree_block_info);
662                 BUG_ON(ptr > end);
663         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
664                 *info_level = found_key.offset;
665         } else {
666                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
667         }
668
669         while (ptr < end) {
670                 struct btrfs_extent_inline_ref *iref;
671                 u64 offset;
672                 int type;
673
674                 iref = (struct btrfs_extent_inline_ref *)ptr;
675                 type = btrfs_extent_inline_ref_type(leaf, iref);
676                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
677
678                 switch (type) {
679                 case BTRFS_SHARED_BLOCK_REF_KEY:
680                         ret = __add_prelim_ref(prefs, 0, NULL,
681                                                 *info_level + 1, offset,
682                                                 bytenr, 1, GFP_NOFS);
683                         break;
684                 case BTRFS_SHARED_DATA_REF_KEY: {
685                         struct btrfs_shared_data_ref *sdref;
686                         int count;
687
688                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
689                         count = btrfs_shared_data_ref_count(leaf, sdref);
690                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
691                                                bytenr, count, GFP_NOFS);
692                         break;
693                 }
694                 case BTRFS_TREE_BLOCK_REF_KEY:
695                         ret = __add_prelim_ref(prefs, offset, NULL,
696                                                *info_level + 1, 0,
697                                                bytenr, 1, GFP_NOFS);
698                         break;
699                 case BTRFS_EXTENT_DATA_REF_KEY: {
700                         struct btrfs_extent_data_ref *dref;
701                         int count;
702                         u64 root;
703
704                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
705                         count = btrfs_extent_data_ref_count(leaf, dref);
706                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
707                                                                       dref);
708                         key.type = BTRFS_EXTENT_DATA_KEY;
709                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
710                         root = btrfs_extent_data_ref_root(leaf, dref);
711                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
712                                                bytenr, count, GFP_NOFS);
713                         break;
714                 }
715                 default:
716                         WARN_ON(1);
717                 }
718                 if (ret)
719                         return ret;
720                 ptr += btrfs_extent_inline_ref_size(type);
721         }
722
723         return 0;
724 }
725
726 /*
727  * add all non-inline backrefs for bytenr to the list
728  */
729 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
730                             struct btrfs_path *path, u64 bytenr,
731                             int info_level, struct list_head *prefs)
732 {
733         struct btrfs_root *extent_root = fs_info->extent_root;
734         int ret;
735         int slot;
736         struct extent_buffer *leaf;
737         struct btrfs_key key;
738
739         while (1) {
740                 ret = btrfs_next_item(extent_root, path);
741                 if (ret < 0)
742                         break;
743                 if (ret) {
744                         ret = 0;
745                         break;
746                 }
747
748                 slot = path->slots[0];
749                 leaf = path->nodes[0];
750                 btrfs_item_key_to_cpu(leaf, &key, slot);
751
752                 if (key.objectid != bytenr)
753                         break;
754                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
755                         continue;
756                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
757                         break;
758
759                 switch (key.type) {
760                 case BTRFS_SHARED_BLOCK_REF_KEY:
761                         ret = __add_prelim_ref(prefs, 0, NULL,
762                                                 info_level + 1, key.offset,
763                                                 bytenr, 1, GFP_NOFS);
764                         break;
765                 case BTRFS_SHARED_DATA_REF_KEY: {
766                         struct btrfs_shared_data_ref *sdref;
767                         int count;
768
769                         sdref = btrfs_item_ptr(leaf, slot,
770                                               struct btrfs_shared_data_ref);
771                         count = btrfs_shared_data_ref_count(leaf, sdref);
772                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
773                                                 bytenr, count, GFP_NOFS);
774                         break;
775                 }
776                 case BTRFS_TREE_BLOCK_REF_KEY:
777                         ret = __add_prelim_ref(prefs, key.offset, NULL,
778                                                info_level + 1, 0,
779                                                bytenr, 1, GFP_NOFS);
780                         break;
781                 case BTRFS_EXTENT_DATA_REF_KEY: {
782                         struct btrfs_extent_data_ref *dref;
783                         int count;
784                         u64 root;
785
786                         dref = btrfs_item_ptr(leaf, slot,
787                                               struct btrfs_extent_data_ref);
788                         count = btrfs_extent_data_ref_count(leaf, dref);
789                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
790                                                                       dref);
791                         key.type = BTRFS_EXTENT_DATA_KEY;
792                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
793                         root = btrfs_extent_data_ref_root(leaf, dref);
794                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
795                                                bytenr, count, GFP_NOFS);
796                         break;
797                 }
798                 default:
799                         WARN_ON(1);
800                 }
801                 if (ret)
802                         return ret;
803
804         }
805
806         return ret;
807 }
808
809 /*
810  * this adds all existing backrefs (inline backrefs, backrefs and delayed
811  * refs) for the given bytenr to the refs list, merges duplicates and resolves
812  * indirect refs to their parent bytenr.
813  * When roots are found, they're added to the roots list
814  *
815  * FIXME some caching might speed things up
816  */
817 static int find_parent_nodes(struct btrfs_trans_handle *trans,
818                              struct btrfs_fs_info *fs_info, u64 bytenr,
819                              u64 time_seq, struct ulist *refs,
820                              struct ulist *roots, const u64 *extent_item_pos)
821 {
822         struct btrfs_key key;
823         struct btrfs_path *path;
824         struct btrfs_delayed_ref_root *delayed_refs = NULL;
825         struct btrfs_delayed_ref_head *head;
826         int info_level = 0;
827         int ret;
828         struct list_head prefs_delayed;
829         struct list_head prefs;
830         struct __prelim_ref *ref;
831
832         INIT_LIST_HEAD(&prefs);
833         INIT_LIST_HEAD(&prefs_delayed);
834
835         key.objectid = bytenr;
836         key.offset = (u64)-1;
837         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
838                 key.type = BTRFS_METADATA_ITEM_KEY;
839         else
840                 key.type = BTRFS_EXTENT_ITEM_KEY;
841
842         path = btrfs_alloc_path();
843         if (!path)
844                 return -ENOMEM;
845         if (!trans)
846                 path->search_commit_root = 1;
847
848         /*
849          * grab both a lock on the path and a lock on the delayed ref head.
850          * We need both to get a consistent picture of how the refs look
851          * at a specified point in time
852          */
853 again:
854         head = NULL;
855
856         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
857         if (ret < 0)
858                 goto out;
859         BUG_ON(ret == 0);
860
861         if (trans) {
862                 /*
863                  * look if there are updates for this ref queued and lock the
864                  * head
865                  */
866                 delayed_refs = &trans->transaction->delayed_refs;
867                 spin_lock(&delayed_refs->lock);
868                 head = btrfs_find_delayed_ref_head(trans, bytenr);
869                 if (head) {
870                         if (!mutex_trylock(&head->mutex)) {
871                                 atomic_inc(&head->node.refs);
872                                 spin_unlock(&delayed_refs->lock);
873
874                                 btrfs_release_path(path);
875
876                                 /*
877                                  * Mutex was contended, block until it's
878                                  * released and try again
879                                  */
880                                 mutex_lock(&head->mutex);
881                                 mutex_unlock(&head->mutex);
882                                 btrfs_put_delayed_ref(&head->node);
883                                 goto again;
884                         }
885                         ret = __add_delayed_refs(head, time_seq,
886                                                  &prefs_delayed);
887                         mutex_unlock(&head->mutex);
888                         if (ret) {
889                                 spin_unlock(&delayed_refs->lock);
890                                 goto out;
891                         }
892                 }
893                 spin_unlock(&delayed_refs->lock);
894         }
895
896         if (path->slots[0]) {
897                 struct extent_buffer *leaf;
898                 int slot;
899
900                 path->slots[0]--;
901                 leaf = path->nodes[0];
902                 slot = path->slots[0];
903                 btrfs_item_key_to_cpu(leaf, &key, slot);
904                 if (key.objectid == bytenr &&
905                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
906                      key.type == BTRFS_METADATA_ITEM_KEY)) {
907                         ret = __add_inline_refs(fs_info, path, bytenr,
908                                                 &info_level, &prefs);
909                         if (ret)
910                                 goto out;
911                         ret = __add_keyed_refs(fs_info, path, bytenr,
912                                                info_level, &prefs);
913                         if (ret)
914                                 goto out;
915                 }
916         }
917         btrfs_release_path(path);
918
919         list_splice_init(&prefs_delayed, &prefs);
920
921         ret = __add_missing_keys(fs_info, &prefs);
922         if (ret)
923                 goto out;
924
925         __merge_refs(&prefs, 1);
926
927         ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
928                                       extent_item_pos);
929         if (ret)
930                 goto out;
931
932         __merge_refs(&prefs, 2);
933
934         while (!list_empty(&prefs)) {
935                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
936                 WARN_ON(ref->count < 0);
937                 if (ref->count && ref->root_id && ref->parent == 0) {
938                         /* no parent == root of tree */
939                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
940                         if (ret < 0)
941                                 goto out;
942                 }
943                 if (ref->count && ref->parent) {
944                         struct extent_inode_elem *eie = NULL;
945                         if (extent_item_pos && !ref->inode_list) {
946                                 u32 bsz;
947                                 struct extent_buffer *eb;
948                                 bsz = btrfs_level_size(fs_info->extent_root,
949                                                         info_level);
950                                 eb = read_tree_block(fs_info->extent_root,
951                                                            ref->parent, bsz, 0);
952                                 if (!eb || !extent_buffer_uptodate(eb)) {
953                                         free_extent_buffer(eb);
954                                         ret = -EIO;
955                                         goto out;
956                                 }
957                                 ret = find_extent_in_eb(eb, bytenr,
958                                                         *extent_item_pos, &eie);
959                                 free_extent_buffer(eb);
960                                 if (ret < 0)
961                                         goto out;
962                                 ref->inode_list = eie;
963                         }
964                         ret = ulist_add_merge(refs, ref->parent,
965                                               (uintptr_t)ref->inode_list,
966                                               (u64 *)&eie, GFP_NOFS);
967                         if (ret < 0)
968                                 goto out;
969                         if (!ret && extent_item_pos) {
970                                 /*
971                                  * we've recorded that parent, so we must extend
972                                  * its inode list here
973                                  */
974                                 BUG_ON(!eie);
975                                 while (eie->next)
976                                         eie = eie->next;
977                                 eie->next = ref->inode_list;
978                         }
979                 }
980                 list_del(&ref->list);
981                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
982         }
983
984 out:
985         btrfs_free_path(path);
986         while (!list_empty(&prefs)) {
987                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
988                 list_del(&ref->list);
989                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
990         }
991         while (!list_empty(&prefs_delayed)) {
992                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
993                                        list);
994                 list_del(&ref->list);
995                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
996         }
997
998         return ret;
999 }
1000
1001 static void free_leaf_list(struct ulist *blocks)
1002 {
1003         struct ulist_node *node = NULL;
1004         struct extent_inode_elem *eie;
1005         struct extent_inode_elem *eie_next;
1006         struct ulist_iterator uiter;
1007
1008         ULIST_ITER_INIT(&uiter);
1009         while ((node = ulist_next(blocks, &uiter))) {
1010                 if (!node->aux)
1011                         continue;
1012                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1013                 for (; eie; eie = eie_next) {
1014                         eie_next = eie->next;
1015                         kfree(eie);
1016                 }
1017                 node->aux = 0;
1018         }
1019
1020         ulist_free(blocks);
1021 }
1022
1023 /*
1024  * Finds all leafs with a reference to the specified combination of bytenr and
1025  * offset. key_list_head will point to a list of corresponding keys (caller must
1026  * free each list element). The leafs will be stored in the leafs ulist, which
1027  * must be freed with ulist_free.
1028  *
1029  * returns 0 on success, <0 on error
1030  */
1031 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1032                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1033                                 u64 time_seq, struct ulist **leafs,
1034                                 const u64 *extent_item_pos)
1035 {
1036         struct ulist *tmp;
1037         int ret;
1038
1039         tmp = ulist_alloc(GFP_NOFS);
1040         if (!tmp)
1041                 return -ENOMEM;
1042         *leafs = ulist_alloc(GFP_NOFS);
1043         if (!*leafs) {
1044                 ulist_free(tmp);
1045                 return -ENOMEM;
1046         }
1047
1048         ret = find_parent_nodes(trans, fs_info, bytenr,
1049                                 time_seq, *leafs, tmp, extent_item_pos);
1050         ulist_free(tmp);
1051
1052         if (ret < 0 && ret != -ENOENT) {
1053                 free_leaf_list(*leafs);
1054                 return ret;
1055         }
1056
1057         return 0;
1058 }
1059
1060 /*
1061  * walk all backrefs for a given extent to find all roots that reference this
1062  * extent. Walking a backref means finding all extents that reference this
1063  * extent and in turn walk the backrefs of those, too. Naturally this is a
1064  * recursive process, but here it is implemented in an iterative fashion: We
1065  * find all referencing extents for the extent in question and put them on a
1066  * list. In turn, we find all referencing extents for those, further appending
1067  * to the list. The way we iterate the list allows adding more elements after
1068  * the current while iterating. The process stops when we reach the end of the
1069  * list. Found roots are added to the roots list.
1070  *
1071  * returns 0 on success, < 0 on error.
1072  */
1073 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1074                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1075                                 u64 time_seq, struct ulist **roots)
1076 {
1077         struct ulist *tmp;
1078         struct ulist_node *node = NULL;
1079         struct ulist_iterator uiter;
1080         int ret;
1081
1082         tmp = ulist_alloc(GFP_NOFS);
1083         if (!tmp)
1084                 return -ENOMEM;
1085         *roots = ulist_alloc(GFP_NOFS);
1086         if (!*roots) {
1087                 ulist_free(tmp);
1088                 return -ENOMEM;
1089         }
1090
1091         ULIST_ITER_INIT(&uiter);
1092         while (1) {
1093                 ret = find_parent_nodes(trans, fs_info, bytenr,
1094                                         time_seq, tmp, *roots, NULL);
1095                 if (ret < 0 && ret != -ENOENT) {
1096                         ulist_free(tmp);
1097                         ulist_free(*roots);
1098                         return ret;
1099                 }
1100                 node = ulist_next(tmp, &uiter);
1101                 if (!node)
1102                         break;
1103                 bytenr = node->val;
1104         }
1105
1106         ulist_free(tmp);
1107         return 0;
1108 }
1109
1110 /*
1111  * this makes the path point to (inum INODE_ITEM ioff)
1112  */
1113 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1114                         struct btrfs_path *path)
1115 {
1116         struct btrfs_key key;
1117         return btrfs_find_item(fs_root, path, inum, ioff,
1118                         BTRFS_INODE_ITEM_KEY, &key);
1119 }
1120
1121 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1122                                 struct btrfs_path *path,
1123                                 struct btrfs_key *found_key)
1124 {
1125         return btrfs_find_item(fs_root, path, inum, ioff,
1126                         BTRFS_INODE_REF_KEY, found_key);
1127 }
1128
1129 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1130                           u64 start_off, struct btrfs_path *path,
1131                           struct btrfs_inode_extref **ret_extref,
1132                           u64 *found_off)
1133 {
1134         int ret, slot;
1135         struct btrfs_key key;
1136         struct btrfs_key found_key;
1137         struct btrfs_inode_extref *extref;
1138         struct extent_buffer *leaf;
1139         unsigned long ptr;
1140
1141         key.objectid = inode_objectid;
1142         btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1143         key.offset = start_off;
1144
1145         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1146         if (ret < 0)
1147                 return ret;
1148
1149         while (1) {
1150                 leaf = path->nodes[0];
1151                 slot = path->slots[0];
1152                 if (slot >= btrfs_header_nritems(leaf)) {
1153                         /*
1154                          * If the item at offset is not found,
1155                          * btrfs_search_slot will point us to the slot
1156                          * where it should be inserted. In our case
1157                          * that will be the slot directly before the
1158                          * next INODE_REF_KEY_V2 item. In the case
1159                          * that we're pointing to the last slot in a
1160                          * leaf, we must move one leaf over.
1161                          */
1162                         ret = btrfs_next_leaf(root, path);
1163                         if (ret) {
1164                                 if (ret >= 1)
1165                                         ret = -ENOENT;
1166                                 break;
1167                         }
1168                         continue;
1169                 }
1170
1171                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1172
1173                 /*
1174                  * Check that we're still looking at an extended ref key for
1175                  * this particular objectid. If we have different
1176                  * objectid or type then there are no more to be found
1177                  * in the tree and we can exit.
1178                  */
1179                 ret = -ENOENT;
1180                 if (found_key.objectid != inode_objectid)
1181                         break;
1182                 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1183                         break;
1184
1185                 ret = 0;
1186                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1187                 extref = (struct btrfs_inode_extref *)ptr;
1188                 *ret_extref = extref;
1189                 if (found_off)
1190                         *found_off = found_key.offset;
1191                 break;
1192         }
1193
1194         return ret;
1195 }
1196
1197 /*
1198  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1199  * Elements of the path are separated by '/' and the path is guaranteed to be
1200  * 0-terminated. the path is only given within the current file system.
1201  * Therefore, it never starts with a '/'. the caller is responsible to provide
1202  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1203  * the start point of the resulting string is returned. this pointer is within
1204  * dest, normally.
1205  * in case the path buffer would overflow, the pointer is decremented further
1206  * as if output was written to the buffer, though no more output is actually
1207  * generated. that way, the caller can determine how much space would be
1208  * required for the path to fit into the buffer. in that case, the returned
1209  * value will be smaller than dest. callers must check this!
1210  */
1211 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1212                         u32 name_len, unsigned long name_off,
1213                         struct extent_buffer *eb_in, u64 parent,
1214                         char *dest, u32 size)
1215 {
1216         int slot;
1217         u64 next_inum;
1218         int ret;
1219         s64 bytes_left = ((s64)size) - 1;
1220         struct extent_buffer *eb = eb_in;
1221         struct btrfs_key found_key;
1222         int leave_spinning = path->leave_spinning;
1223         struct btrfs_inode_ref *iref;
1224
1225         if (bytes_left >= 0)
1226                 dest[bytes_left] = '\0';
1227
1228         path->leave_spinning = 1;
1229         while (1) {
1230                 bytes_left -= name_len;
1231                 if (bytes_left >= 0)
1232                         read_extent_buffer(eb, dest + bytes_left,
1233                                            name_off, name_len);
1234                 if (eb != eb_in) {
1235                         btrfs_tree_read_unlock_blocking(eb);
1236                         free_extent_buffer(eb);
1237                 }
1238                 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1239                 if (ret > 0)
1240                         ret = -ENOENT;
1241                 if (ret)
1242                         break;
1243
1244                 next_inum = found_key.offset;
1245
1246                 /* regular exit ahead */
1247                 if (parent == next_inum)
1248                         break;
1249
1250                 slot = path->slots[0];
1251                 eb = path->nodes[0];
1252                 /* make sure we can use eb after releasing the path */
1253                 if (eb != eb_in) {
1254                         atomic_inc(&eb->refs);
1255                         btrfs_tree_read_lock(eb);
1256                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1257                 }
1258                 btrfs_release_path(path);
1259                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1260
1261                 name_len = btrfs_inode_ref_name_len(eb, iref);
1262                 name_off = (unsigned long)(iref + 1);
1263
1264                 parent = next_inum;
1265                 --bytes_left;
1266                 if (bytes_left >= 0)
1267                         dest[bytes_left] = '/';
1268         }
1269
1270         btrfs_release_path(path);
1271         path->leave_spinning = leave_spinning;
1272
1273         if (ret)
1274                 return ERR_PTR(ret);
1275
1276         return dest + bytes_left;
1277 }
1278
1279 /*
1280  * this makes the path point to (logical EXTENT_ITEM *)
1281  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1282  * tree blocks and <0 on error.
1283  */
1284 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1285                         struct btrfs_path *path, struct btrfs_key *found_key,
1286                         u64 *flags_ret)
1287 {
1288         int ret;
1289         u64 flags;
1290         u64 size = 0;
1291         u32 item_size;
1292         struct extent_buffer *eb;
1293         struct btrfs_extent_item *ei;
1294         struct btrfs_key key;
1295
1296         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1297                 key.type = BTRFS_METADATA_ITEM_KEY;
1298         else
1299                 key.type = BTRFS_EXTENT_ITEM_KEY;
1300         key.objectid = logical;
1301         key.offset = (u64)-1;
1302
1303         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1304         if (ret < 0)
1305                 return ret;
1306         ret = btrfs_previous_item(fs_info->extent_root, path,
1307                                         0, BTRFS_EXTENT_ITEM_KEY);
1308         if (ret < 0)
1309                 return ret;
1310
1311         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1312         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1313                 size = fs_info->extent_root->leafsize;
1314         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1315                 size = found_key->offset;
1316
1317         if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1318              found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1319             found_key->objectid > logical ||
1320             found_key->objectid + size <= logical) {
1321                 pr_debug("logical %llu is not within any extent\n", logical);
1322                 return -ENOENT;
1323         }
1324
1325         eb = path->nodes[0];
1326         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1327         BUG_ON(item_size < sizeof(*ei));
1328
1329         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1330         flags = btrfs_extent_flags(eb, ei);
1331
1332         pr_debug("logical %llu is at position %llu within the extent (%llu "
1333                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1334                  logical, logical - found_key->objectid, found_key->objectid,
1335                  found_key->offset, flags, item_size);
1336
1337         WARN_ON(!flags_ret);
1338         if (flags_ret) {
1339                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1340                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1341                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1342                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1343                 else
1344                         BUG_ON(1);
1345                 return 0;
1346         }
1347
1348         return -EIO;
1349 }
1350
1351 /*
1352  * helper function to iterate extent inline refs. ptr must point to a 0 value
1353  * for the first call and may be modified. it is used to track state.
1354  * if more refs exist, 0 is returned and the next call to
1355  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1356  * next ref. after the last ref was processed, 1 is returned.
1357  * returns <0 on error
1358  */
1359 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1360                                 struct btrfs_extent_item *ei, u32 item_size,
1361                                 struct btrfs_extent_inline_ref **out_eiref,
1362                                 int *out_type)
1363 {
1364         unsigned long end;
1365         u64 flags;
1366         struct btrfs_tree_block_info *info;
1367
1368         if (!*ptr) {
1369                 /* first call */
1370                 flags = btrfs_extent_flags(eb, ei);
1371                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1372                         info = (struct btrfs_tree_block_info *)(ei + 1);
1373                         *out_eiref =
1374                                 (struct btrfs_extent_inline_ref *)(info + 1);
1375                 } else {
1376                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1377                 }
1378                 *ptr = (unsigned long)*out_eiref;
1379                 if ((void *)*ptr >= (void *)ei + item_size)
1380                         return -ENOENT;
1381         }
1382
1383         end = (unsigned long)ei + item_size;
1384         *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1385         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1386
1387         *ptr += btrfs_extent_inline_ref_size(*out_type);
1388         WARN_ON(*ptr > end);
1389         if (*ptr == end)
1390                 return 1; /* last */
1391
1392         return 0;
1393 }
1394
1395 /*
1396  * reads the tree block backref for an extent. tree level and root are returned
1397  * through out_level and out_root. ptr must point to a 0 value for the first
1398  * call and may be modified (see __get_extent_inline_ref comment).
1399  * returns 0 if data was provided, 1 if there was no more data to provide or
1400  * <0 on error.
1401  */
1402 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1403                                 struct btrfs_extent_item *ei, u32 item_size,
1404                                 u64 *out_root, u8 *out_level)
1405 {
1406         int ret;
1407         int type;
1408         struct btrfs_tree_block_info *info;
1409         struct btrfs_extent_inline_ref *eiref;
1410
1411         if (*ptr == (unsigned long)-1)
1412                 return 1;
1413
1414         while (1) {
1415                 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1416                                                 &eiref, &type);
1417                 if (ret < 0)
1418                         return ret;
1419
1420                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1421                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1422                         break;
1423
1424                 if (ret == 1)
1425                         return 1;
1426         }
1427
1428         /* we can treat both ref types equally here */
1429         info = (struct btrfs_tree_block_info *)(ei + 1);
1430         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1431         *out_level = btrfs_tree_block_level(eb, info);
1432
1433         if (ret == 1)
1434                 *ptr = (unsigned long)-1;
1435
1436         return 0;
1437 }
1438
1439 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1440                                 u64 root, u64 extent_item_objectid,
1441                                 iterate_extent_inodes_t *iterate, void *ctx)
1442 {
1443         struct extent_inode_elem *eie;
1444         int ret = 0;
1445
1446         for (eie = inode_list; eie; eie = eie->next) {
1447                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1448                          "root %llu\n", extent_item_objectid,
1449                          eie->inum, eie->offset, root);
1450                 ret = iterate(eie->inum, eie->offset, root, ctx);
1451                 if (ret) {
1452                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1453                                  extent_item_objectid, ret);
1454                         break;
1455                 }
1456         }
1457
1458         return ret;
1459 }
1460
1461 /*
1462  * calls iterate() for every inode that references the extent identified by
1463  * the given parameters.
1464  * when the iterator function returns a non-zero value, iteration stops.
1465  */
1466 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1467                                 u64 extent_item_objectid, u64 extent_item_pos,
1468                                 int search_commit_root,
1469                                 iterate_extent_inodes_t *iterate, void *ctx)
1470 {
1471         int ret;
1472         struct btrfs_trans_handle *trans = NULL;
1473         struct ulist *refs = NULL;
1474         struct ulist *roots = NULL;
1475         struct ulist_node *ref_node = NULL;
1476         struct ulist_node *root_node = NULL;
1477         struct seq_list tree_mod_seq_elem = {};
1478         struct ulist_iterator ref_uiter;
1479         struct ulist_iterator root_uiter;
1480
1481         pr_debug("resolving all inodes for extent %llu\n",
1482                         extent_item_objectid);
1483
1484         if (!search_commit_root) {
1485                 trans = btrfs_join_transaction(fs_info->extent_root);
1486                 if (IS_ERR(trans))
1487                         return PTR_ERR(trans);
1488                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1489         }
1490
1491         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1492                                    tree_mod_seq_elem.seq, &refs,
1493                                    &extent_item_pos);
1494         if (ret)
1495                 goto out;
1496
1497         ULIST_ITER_INIT(&ref_uiter);
1498         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1499                 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1500                                            tree_mod_seq_elem.seq, &roots);
1501                 if (ret)
1502                         break;
1503                 ULIST_ITER_INIT(&root_uiter);
1504                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1505                         pr_debug("root %llu references leaf %llu, data list "
1506                                  "%#llx\n", root_node->val, ref_node->val,
1507                                  ref_node->aux);
1508                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1509                                                 (uintptr_t)ref_node->aux,
1510                                                 root_node->val,
1511                                                 extent_item_objectid,
1512                                                 iterate, ctx);
1513                 }
1514                 ulist_free(roots);
1515         }
1516
1517         free_leaf_list(refs);
1518 out:
1519         if (!search_commit_root) {
1520                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1521                 btrfs_end_transaction(trans, fs_info->extent_root);
1522         }
1523
1524         return ret;
1525 }
1526
1527 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1528                                 struct btrfs_path *path,
1529                                 iterate_extent_inodes_t *iterate, void *ctx)
1530 {
1531         int ret;
1532         u64 extent_item_pos;
1533         u64 flags = 0;
1534         struct btrfs_key found_key;
1535         int search_commit_root = path->search_commit_root;
1536
1537         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1538         btrfs_release_path(path);
1539         if (ret < 0)
1540                 return ret;
1541         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1542                 return -EINVAL;
1543
1544         extent_item_pos = logical - found_key.objectid;
1545         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1546                                         extent_item_pos, search_commit_root,
1547                                         iterate, ctx);
1548
1549         return ret;
1550 }
1551
1552 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1553                               struct extent_buffer *eb, void *ctx);
1554
1555 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1556                               struct btrfs_path *path,
1557                               iterate_irefs_t *iterate, void *ctx)
1558 {
1559         int ret = 0;
1560         int slot;
1561         u32 cur;
1562         u32 len;
1563         u32 name_len;
1564         u64 parent = 0;
1565         int found = 0;
1566         struct extent_buffer *eb;
1567         struct btrfs_item *item;
1568         struct btrfs_inode_ref *iref;
1569         struct btrfs_key found_key;
1570
1571         while (!ret) {
1572                 path->leave_spinning = 1;
1573                 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1574                                      &found_key);
1575                 if (ret < 0)
1576                         break;
1577                 if (ret) {
1578                         ret = found ? 0 : -ENOENT;
1579                         break;
1580                 }
1581                 ++found;
1582
1583                 parent = found_key.offset;
1584                 slot = path->slots[0];
1585                 eb = path->nodes[0];
1586                 /* make sure we can use eb after releasing the path */
1587                 atomic_inc(&eb->refs);
1588                 btrfs_tree_read_lock(eb);
1589                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1590                 btrfs_release_path(path);
1591
1592                 item = btrfs_item_nr(slot);
1593                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1594
1595                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1596                         name_len = btrfs_inode_ref_name_len(eb, iref);
1597                         /* path must be released before calling iterate()! */
1598                         pr_debug("following ref at offset %u for inode %llu in "
1599                                  "tree %llu\n", cur, found_key.objectid,
1600                                  fs_root->objectid);
1601                         ret = iterate(parent, name_len,
1602                                       (unsigned long)(iref + 1), eb, ctx);
1603                         if (ret)
1604                                 break;
1605                         len = sizeof(*iref) + name_len;
1606                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1607                 }
1608                 btrfs_tree_read_unlock_blocking(eb);
1609                 free_extent_buffer(eb);
1610         }
1611
1612         btrfs_release_path(path);
1613
1614         return ret;
1615 }
1616
1617 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1618                                  struct btrfs_path *path,
1619                                  iterate_irefs_t *iterate, void *ctx)
1620 {
1621         int ret;
1622         int slot;
1623         u64 offset = 0;
1624         u64 parent;
1625         int found = 0;
1626         struct extent_buffer *eb;
1627         struct btrfs_inode_extref *extref;
1628         struct extent_buffer *leaf;
1629         u32 item_size;
1630         u32 cur_offset;
1631         unsigned long ptr;
1632
1633         while (1) {
1634                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1635                                             &offset);
1636                 if (ret < 0)
1637                         break;
1638                 if (ret) {
1639                         ret = found ? 0 : -ENOENT;
1640                         break;
1641                 }
1642                 ++found;
1643
1644                 slot = path->slots[0];
1645                 eb = path->nodes[0];
1646                 /* make sure we can use eb after releasing the path */
1647                 atomic_inc(&eb->refs);
1648
1649                 btrfs_tree_read_lock(eb);
1650                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1651                 btrfs_release_path(path);
1652
1653                 leaf = path->nodes[0];
1654                 item_size = btrfs_item_size_nr(leaf, slot);
1655                 ptr = btrfs_item_ptr_offset(leaf, slot);
1656                 cur_offset = 0;
1657
1658                 while (cur_offset < item_size) {
1659                         u32 name_len;
1660
1661                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1662                         parent = btrfs_inode_extref_parent(eb, extref);
1663                         name_len = btrfs_inode_extref_name_len(eb, extref);
1664                         ret = iterate(parent, name_len,
1665                                       (unsigned long)&extref->name, eb, ctx);
1666                         if (ret)
1667                                 break;
1668
1669                         cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1670                         cur_offset += sizeof(*extref);
1671                 }
1672                 btrfs_tree_read_unlock_blocking(eb);
1673                 free_extent_buffer(eb);
1674
1675                 offset++;
1676         }
1677
1678         btrfs_release_path(path);
1679
1680         return ret;
1681 }
1682
1683 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1684                          struct btrfs_path *path, iterate_irefs_t *iterate,
1685                          void *ctx)
1686 {
1687         int ret;
1688         int found_refs = 0;
1689
1690         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1691         if (!ret)
1692                 ++found_refs;
1693         else if (ret != -ENOENT)
1694                 return ret;
1695
1696         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1697         if (ret == -ENOENT && found_refs)
1698                 return 0;
1699
1700         return ret;
1701 }
1702
1703 /*
1704  * returns 0 if the path could be dumped (probably truncated)
1705  * returns <0 in case of an error
1706  */
1707 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1708                          struct extent_buffer *eb, void *ctx)
1709 {
1710         struct inode_fs_paths *ipath = ctx;
1711         char *fspath;
1712         char *fspath_min;
1713         int i = ipath->fspath->elem_cnt;
1714         const int s_ptr = sizeof(char *);
1715         u32 bytes_left;
1716
1717         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1718                                         ipath->fspath->bytes_left - s_ptr : 0;
1719
1720         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1721         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1722                                    name_off, eb, inum, fspath_min, bytes_left);
1723         if (IS_ERR(fspath))
1724                 return PTR_ERR(fspath);
1725
1726         if (fspath > fspath_min) {
1727                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1728                 ++ipath->fspath->elem_cnt;
1729                 ipath->fspath->bytes_left = fspath - fspath_min;
1730         } else {
1731                 ++ipath->fspath->elem_missed;
1732                 ipath->fspath->bytes_missing += fspath_min - fspath;
1733                 ipath->fspath->bytes_left = 0;
1734         }
1735
1736         return 0;
1737 }
1738
1739 /*
1740  * this dumps all file system paths to the inode into the ipath struct, provided
1741  * is has been created large enough. each path is zero-terminated and accessed
1742  * from ipath->fspath->val[i].
1743  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1744  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1745  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1746  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1747  * have been needed to return all paths.
1748  */
1749 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1750 {
1751         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1752                              inode_to_path, ipath);
1753 }
1754
1755 struct btrfs_data_container *init_data_container(u32 total_bytes)
1756 {
1757         struct btrfs_data_container *data;
1758         size_t alloc_bytes;
1759
1760         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1761         data = vmalloc(alloc_bytes);
1762         if (!data)
1763                 return ERR_PTR(-ENOMEM);
1764
1765         if (total_bytes >= sizeof(*data)) {
1766                 data->bytes_left = total_bytes - sizeof(*data);
1767                 data->bytes_missing = 0;
1768         } else {
1769                 data->bytes_missing = sizeof(*data) - total_bytes;
1770                 data->bytes_left = 0;
1771         }
1772
1773         data->elem_cnt = 0;
1774         data->elem_missed = 0;
1775
1776         return data;
1777 }
1778
1779 /*
1780  * allocates space to return multiple file system paths for an inode.
1781  * total_bytes to allocate are passed, note that space usable for actual path
1782  * information will be total_bytes - sizeof(struct inode_fs_paths).
1783  * the returned pointer must be freed with free_ipath() in the end.
1784  */
1785 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1786                                         struct btrfs_path *path)
1787 {
1788         struct inode_fs_paths *ifp;
1789         struct btrfs_data_container *fspath;
1790
1791         fspath = init_data_container(total_bytes);
1792         if (IS_ERR(fspath))
1793                 return (void *)fspath;
1794
1795         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1796         if (!ifp) {
1797                 kfree(fspath);
1798                 return ERR_PTR(-ENOMEM);
1799         }
1800
1801         ifp->btrfs_path = path;
1802         ifp->fspath = fspath;
1803         ifp->fs_root = fs_root;
1804
1805         return ifp;
1806 }
1807
1808 void free_ipath(struct inode_fs_paths *ipath)
1809 {
1810         if (!ipath)
1811                 return;
1812         vfree(ipath->fspath);
1813         kfree(ipath);
1814 }