]> Pileus Git - ~andy/linux/blob - fs/btrfs/backref.c
Btrfs: fix protection between walking backrefs and root deletion
[~andy/linux] / fs / btrfs / backref.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27
28 struct extent_inode_elem {
29         u64 inum;
30         u64 offset;
31         struct extent_inode_elem *next;
32 };
33
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35                                 struct btrfs_file_extent_item *fi,
36                                 u64 extent_item_pos,
37                                 struct extent_inode_elem **eie)
38 {
39         u64 offset = 0;
40         struct extent_inode_elem *e;
41
42         if (!btrfs_file_extent_compression(eb, fi) &&
43             !btrfs_file_extent_encryption(eb, fi) &&
44             !btrfs_file_extent_other_encoding(eb, fi)) {
45                 u64 data_offset;
46                 u64 data_len;
47
48                 data_offset = btrfs_file_extent_offset(eb, fi);
49                 data_len = btrfs_file_extent_num_bytes(eb, fi);
50
51                 if (extent_item_pos < data_offset ||
52                     extent_item_pos >= data_offset + data_len)
53                         return 1;
54                 offset = extent_item_pos - data_offset;
55         }
56
57         e = kmalloc(sizeof(*e), GFP_NOFS);
58         if (!e)
59                 return -ENOMEM;
60
61         e->next = *eie;
62         e->inum = key->objectid;
63         e->offset = key->offset + offset;
64         *eie = e;
65
66         return 0;
67 }
68
69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70                                 u64 extent_item_pos,
71                                 struct extent_inode_elem **eie)
72 {
73         u64 disk_byte;
74         struct btrfs_key key;
75         struct btrfs_file_extent_item *fi;
76         int slot;
77         int nritems;
78         int extent_type;
79         int ret;
80
81         /*
82          * from the shared data ref, we only have the leaf but we need
83          * the key. thus, we must look into all items and see that we
84          * find one (some) with a reference to our extent item.
85          */
86         nritems = btrfs_header_nritems(eb);
87         for (slot = 0; slot < nritems; ++slot) {
88                 btrfs_item_key_to_cpu(eb, &key, slot);
89                 if (key.type != BTRFS_EXTENT_DATA_KEY)
90                         continue;
91                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92                 extent_type = btrfs_file_extent_type(eb, fi);
93                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94                         continue;
95                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97                 if (disk_byte != wanted_disk_byte)
98                         continue;
99
100                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101                 if (ret < 0)
102                         return ret;
103         }
104
105         return 0;
106 }
107
108 /*
109  * this structure records all encountered refs on the way up to the root
110  */
111 struct __prelim_ref {
112         struct list_head list;
113         u64 root_id;
114         struct btrfs_key key_for_search;
115         int level;
116         int count;
117         struct extent_inode_elem *inode_list;
118         u64 parent;
119         u64 wanted_disk_byte;
120 };
121
122 static struct kmem_cache *btrfs_prelim_ref_cache;
123
124 int __init btrfs_prelim_ref_init(void)
125 {
126         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
127                                         sizeof(struct __prelim_ref),
128                                         0,
129                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
130                                         NULL);
131         if (!btrfs_prelim_ref_cache)
132                 return -ENOMEM;
133         return 0;
134 }
135
136 void btrfs_prelim_ref_exit(void)
137 {
138         if (btrfs_prelim_ref_cache)
139                 kmem_cache_destroy(btrfs_prelim_ref_cache);
140 }
141
142 /*
143  * the rules for all callers of this function are:
144  * - obtaining the parent is the goal
145  * - if you add a key, you must know that it is a correct key
146  * - if you cannot add the parent or a correct key, then we will look into the
147  *   block later to set a correct key
148  *
149  * delayed refs
150  * ============
151  *        backref type | shared | indirect | shared | indirect
152  * information         |   tree |     tree |   data |     data
153  * --------------------+--------+----------+--------+----------
154  *      parent logical |    y   |     -    |    -   |     -
155  *      key to resolve |    -   |     y    |    y   |     y
156  *  tree block logical |    -   |     -    |    -   |     -
157  *  root for resolving |    y   |     y    |    y   |     y
158  *
159  * - column 1:       we've the parent -> done
160  * - column 2, 3, 4: we use the key to find the parent
161  *
162  * on disk refs (inline or keyed)
163  * ==============================
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    y   |     -
168  *      key to resolve |    -   |     -    |    -   |     y
169  *  tree block logical |    y   |     y    |    y   |     y
170  *  root for resolving |    -   |     y    |    y   |     y
171  *
172  * - column 1, 3: we've the parent -> done
173  * - column 2:    we take the first key from the block to find the parent
174  *                (see __add_missing_keys)
175  * - column 4:    we use the key to find the parent
176  *
177  * additional information that's available but not required to find the parent
178  * block might help in merging entries to gain some speed.
179  */
180
181 static int __add_prelim_ref(struct list_head *head, u64 root_id,
182                             struct btrfs_key *key, int level,
183                             u64 parent, u64 wanted_disk_byte, int count,
184                             gfp_t gfp_mask)
185 {
186         struct __prelim_ref *ref;
187
188         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
189                 return 0;
190
191         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
192         if (!ref)
193                 return -ENOMEM;
194
195         ref->root_id = root_id;
196         if (key)
197                 ref->key_for_search = *key;
198         else
199                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
200
201         ref->inode_list = NULL;
202         ref->level = level;
203         ref->count = count;
204         ref->parent = parent;
205         ref->wanted_disk_byte = wanted_disk_byte;
206         list_add_tail(&ref->list, head);
207
208         return 0;
209 }
210
211 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
212                            struct ulist *parents, struct __prelim_ref *ref,
213                            int level, u64 time_seq, const u64 *extent_item_pos)
214 {
215         int ret = 0;
216         int slot;
217         struct extent_buffer *eb;
218         struct btrfs_key key;
219         struct btrfs_key *key_for_search = &ref->key_for_search;
220         struct btrfs_file_extent_item *fi;
221         struct extent_inode_elem *eie = NULL, *old = NULL;
222         u64 disk_byte;
223         u64 wanted_disk_byte = ref->wanted_disk_byte;
224         u64 count = 0;
225
226         if (level != 0) {
227                 eb = path->nodes[level];
228                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
229                 if (ret < 0)
230                         return ret;
231                 return 0;
232         }
233
234         /*
235          * We normally enter this function with the path already pointing to
236          * the first item to check. But sometimes, we may enter it with
237          * slot==nritems. In that case, go to the next leaf before we continue.
238          */
239         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
240                 ret = btrfs_next_old_leaf(root, path, time_seq);
241
242         while (!ret && count < ref->count) {
243                 eb = path->nodes[0];
244                 slot = path->slots[0];
245
246                 btrfs_item_key_to_cpu(eb, &key, slot);
247
248                 if (key.objectid != key_for_search->objectid ||
249                     key.type != BTRFS_EXTENT_DATA_KEY)
250                         break;
251
252                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
253                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
254
255                 if (disk_byte == wanted_disk_byte) {
256                         eie = NULL;
257                         old = NULL;
258                         count++;
259                         if (extent_item_pos) {
260                                 ret = check_extent_in_eb(&key, eb, fi,
261                                                 *extent_item_pos,
262                                                 &eie);
263                                 if (ret < 0)
264                                         break;
265                         }
266                         if (ret > 0)
267                                 goto next;
268                         ret = ulist_add_merge(parents, eb->start,
269                                               (uintptr_t)eie,
270                                               (u64 *)&old, GFP_NOFS);
271                         if (ret < 0)
272                                 break;
273                         if (!ret && extent_item_pos) {
274                                 while (old->next)
275                                         old = old->next;
276                                 old->next = eie;
277                         }
278                 }
279 next:
280                 ret = btrfs_next_old_item(root, path, time_seq);
281         }
282
283         if (ret > 0)
284                 ret = 0;
285         return ret;
286 }
287
288 /*
289  * resolve an indirect backref in the form (root_id, key, level)
290  * to a logical address
291  */
292 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
293                                   struct btrfs_path *path, u64 time_seq,
294                                   struct __prelim_ref *ref,
295                                   struct ulist *parents,
296                                   const u64 *extent_item_pos)
297 {
298         struct btrfs_root *root;
299         struct btrfs_key root_key;
300         struct extent_buffer *eb;
301         int ret = 0;
302         int root_level;
303         int level = ref->level;
304         int index;
305
306         root_key.objectid = ref->root_id;
307         root_key.type = BTRFS_ROOT_ITEM_KEY;
308         root_key.offset = (u64)-1;
309
310         index = srcu_read_lock(&fs_info->subvol_srcu);
311
312         root = btrfs_read_fs_root_no_name(fs_info, &root_key);
313         if (IS_ERR(root)) {
314                 srcu_read_unlock(&fs_info->subvol_srcu, index);
315                 ret = PTR_ERR(root);
316                 goto out;
317         }
318
319         root_level = btrfs_old_root_level(root, time_seq);
320
321         if (root_level + 1 == level) {
322                 srcu_read_unlock(&fs_info->subvol_srcu, index);
323                 goto out;
324         }
325
326         path->lowest_level = level;
327         ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
328
329         /* root node has been locked, we can release @subvol_srcu safely here */
330         srcu_read_unlock(&fs_info->subvol_srcu, index);
331
332         pr_debug("search slot in root %llu (level %d, ref count %d) returned "
333                  "%d for key (%llu %u %llu)\n",
334                  ref->root_id, level, ref->count, ret,
335                  ref->key_for_search.objectid, ref->key_for_search.type,
336                  ref->key_for_search.offset);
337         if (ret < 0)
338                 goto out;
339
340         eb = path->nodes[level];
341         while (!eb) {
342                 if (WARN_ON(!level)) {
343                         ret = 1;
344                         goto out;
345                 }
346                 level--;
347                 eb = path->nodes[level];
348         }
349
350         ret = add_all_parents(root, path, parents, ref, level, time_seq,
351                               extent_item_pos);
352 out:
353         path->lowest_level = 0;
354         btrfs_release_path(path);
355         return ret;
356 }
357
358 /*
359  * resolve all indirect backrefs from the list
360  */
361 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
362                                    struct btrfs_path *path, u64 time_seq,
363                                    struct list_head *head,
364                                    const u64 *extent_item_pos)
365 {
366         int err;
367         int ret = 0;
368         struct __prelim_ref *ref;
369         struct __prelim_ref *ref_safe;
370         struct __prelim_ref *new_ref;
371         struct ulist *parents;
372         struct ulist_node *node;
373         struct ulist_iterator uiter;
374
375         parents = ulist_alloc(GFP_NOFS);
376         if (!parents)
377                 return -ENOMEM;
378
379         /*
380          * _safe allows us to insert directly after the current item without
381          * iterating over the newly inserted items.
382          * we're also allowed to re-assign ref during iteration.
383          */
384         list_for_each_entry_safe(ref, ref_safe, head, list) {
385                 if (ref->parent)        /* already direct */
386                         continue;
387                 if (ref->count == 0)
388                         continue;
389                 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
390                                              parents, extent_item_pos);
391                 if (err == -ENOMEM)
392                         goto out;
393                 if (err)
394                         continue;
395
396                 /* we put the first parent into the ref at hand */
397                 ULIST_ITER_INIT(&uiter);
398                 node = ulist_next(parents, &uiter);
399                 ref->parent = node ? node->val : 0;
400                 ref->inode_list = node ?
401                         (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
402
403                 /* additional parents require new refs being added here */
404                 while ((node = ulist_next(parents, &uiter))) {
405                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
406                                                    GFP_NOFS);
407                         if (!new_ref) {
408                                 ret = -ENOMEM;
409                                 goto out;
410                         }
411                         memcpy(new_ref, ref, sizeof(*ref));
412                         new_ref->parent = node->val;
413                         new_ref->inode_list = (struct extent_inode_elem *)
414                                                         (uintptr_t)node->aux;
415                         list_add(&new_ref->list, &ref->list);
416                 }
417                 ulist_reinit(parents);
418         }
419 out:
420         ulist_free(parents);
421         return ret;
422 }
423
424 static inline int ref_for_same_block(struct __prelim_ref *ref1,
425                                      struct __prelim_ref *ref2)
426 {
427         if (ref1->level != ref2->level)
428                 return 0;
429         if (ref1->root_id != ref2->root_id)
430                 return 0;
431         if (ref1->key_for_search.type != ref2->key_for_search.type)
432                 return 0;
433         if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
434                 return 0;
435         if (ref1->key_for_search.offset != ref2->key_for_search.offset)
436                 return 0;
437         if (ref1->parent != ref2->parent)
438                 return 0;
439
440         return 1;
441 }
442
443 /*
444  * read tree blocks and add keys where required.
445  */
446 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
447                               struct list_head *head)
448 {
449         struct list_head *pos;
450         struct extent_buffer *eb;
451
452         list_for_each(pos, head) {
453                 struct __prelim_ref *ref;
454                 ref = list_entry(pos, struct __prelim_ref, list);
455
456                 if (ref->parent)
457                         continue;
458                 if (ref->key_for_search.type)
459                         continue;
460                 BUG_ON(!ref->wanted_disk_byte);
461                 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
462                                      fs_info->tree_root->leafsize, 0);
463                 if (!eb || !extent_buffer_uptodate(eb)) {
464                         free_extent_buffer(eb);
465                         return -EIO;
466                 }
467                 btrfs_tree_read_lock(eb);
468                 if (btrfs_header_level(eb) == 0)
469                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
470                 else
471                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
472                 btrfs_tree_read_unlock(eb);
473                 free_extent_buffer(eb);
474         }
475         return 0;
476 }
477
478 /*
479  * merge two lists of backrefs and adjust counts accordingly
480  *
481  * mode = 1: merge identical keys, if key is set
482  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
483  *           additionally, we could even add a key range for the blocks we
484  *           looked into to merge even more (-> replace unresolved refs by those
485  *           having a parent).
486  * mode = 2: merge identical parents
487  */
488 static void __merge_refs(struct list_head *head, int mode)
489 {
490         struct list_head *pos1;
491
492         list_for_each(pos1, head) {
493                 struct list_head *n2;
494                 struct list_head *pos2;
495                 struct __prelim_ref *ref1;
496
497                 ref1 = list_entry(pos1, struct __prelim_ref, list);
498
499                 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
500                      pos2 = n2, n2 = pos2->next) {
501                         struct __prelim_ref *ref2;
502                         struct __prelim_ref *xchg;
503                         struct extent_inode_elem *eie;
504
505                         ref2 = list_entry(pos2, struct __prelim_ref, list);
506
507                         if (mode == 1) {
508                                 if (!ref_for_same_block(ref1, ref2))
509                                         continue;
510                                 if (!ref1->parent && ref2->parent) {
511                                         xchg = ref1;
512                                         ref1 = ref2;
513                                         ref2 = xchg;
514                                 }
515                         } else {
516                                 if (ref1->parent != ref2->parent)
517                                         continue;
518                         }
519
520                         eie = ref1->inode_list;
521                         while (eie && eie->next)
522                                 eie = eie->next;
523                         if (eie)
524                                 eie->next = ref2->inode_list;
525                         else
526                                 ref1->inode_list = ref2->inode_list;
527                         ref1->count += ref2->count;
528
529                         list_del(&ref2->list);
530                         kmem_cache_free(btrfs_prelim_ref_cache, ref2);
531                 }
532
533         }
534 }
535
536 /*
537  * add all currently queued delayed refs from this head whose seq nr is
538  * smaller or equal that seq to the list
539  */
540 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
541                               struct list_head *prefs)
542 {
543         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
544         struct rb_node *n = &head->node.rb_node;
545         struct btrfs_key key;
546         struct btrfs_key op_key = {0};
547         int sgn;
548         int ret = 0;
549
550         if (extent_op && extent_op->update_key)
551                 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
552
553         spin_lock(&head->lock);
554         n = rb_first(&head->ref_root);
555         while (n) {
556                 struct btrfs_delayed_ref_node *node;
557                 node = rb_entry(n, struct btrfs_delayed_ref_node,
558                                 rb_node);
559                 n = rb_next(n);
560                 if (node->seq > seq)
561                         continue;
562
563                 switch (node->action) {
564                 case BTRFS_ADD_DELAYED_EXTENT:
565                 case BTRFS_UPDATE_DELAYED_HEAD:
566                         WARN_ON(1);
567                         continue;
568                 case BTRFS_ADD_DELAYED_REF:
569                         sgn = 1;
570                         break;
571                 case BTRFS_DROP_DELAYED_REF:
572                         sgn = -1;
573                         break;
574                 default:
575                         BUG_ON(1);
576                 }
577                 switch (node->type) {
578                 case BTRFS_TREE_BLOCK_REF_KEY: {
579                         struct btrfs_delayed_tree_ref *ref;
580
581                         ref = btrfs_delayed_node_to_tree_ref(node);
582                         ret = __add_prelim_ref(prefs, ref->root, &op_key,
583                                                ref->level + 1, 0, node->bytenr,
584                                                node->ref_mod * sgn, GFP_ATOMIC);
585                         break;
586                 }
587                 case BTRFS_SHARED_BLOCK_REF_KEY: {
588                         struct btrfs_delayed_tree_ref *ref;
589
590                         ref = btrfs_delayed_node_to_tree_ref(node);
591                         ret = __add_prelim_ref(prefs, ref->root, NULL,
592                                                ref->level + 1, ref->parent,
593                                                node->bytenr,
594                                                node->ref_mod * sgn, GFP_ATOMIC);
595                         break;
596                 }
597                 case BTRFS_EXTENT_DATA_REF_KEY: {
598                         struct btrfs_delayed_data_ref *ref;
599                         ref = btrfs_delayed_node_to_data_ref(node);
600
601                         key.objectid = ref->objectid;
602                         key.type = BTRFS_EXTENT_DATA_KEY;
603                         key.offset = ref->offset;
604                         ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
605                                                node->bytenr,
606                                                node->ref_mod * sgn, GFP_ATOMIC);
607                         break;
608                 }
609                 case BTRFS_SHARED_DATA_REF_KEY: {
610                         struct btrfs_delayed_data_ref *ref;
611
612                         ref = btrfs_delayed_node_to_data_ref(node);
613
614                         key.objectid = ref->objectid;
615                         key.type = BTRFS_EXTENT_DATA_KEY;
616                         key.offset = ref->offset;
617                         ret = __add_prelim_ref(prefs, ref->root, &key, 0,
618                                                ref->parent, node->bytenr,
619                                                node->ref_mod * sgn, GFP_ATOMIC);
620                         break;
621                 }
622                 default:
623                         WARN_ON(1);
624                 }
625                 if (ret)
626                         break;
627         }
628         spin_unlock(&head->lock);
629         return ret;
630 }
631
632 /*
633  * add all inline backrefs for bytenr to the list
634  */
635 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
636                              struct btrfs_path *path, u64 bytenr,
637                              int *info_level, struct list_head *prefs)
638 {
639         int ret = 0;
640         int slot;
641         struct extent_buffer *leaf;
642         struct btrfs_key key;
643         struct btrfs_key found_key;
644         unsigned long ptr;
645         unsigned long end;
646         struct btrfs_extent_item *ei;
647         u64 flags;
648         u64 item_size;
649
650         /*
651          * enumerate all inline refs
652          */
653         leaf = path->nodes[0];
654         slot = path->slots[0];
655
656         item_size = btrfs_item_size_nr(leaf, slot);
657         BUG_ON(item_size < sizeof(*ei));
658
659         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
660         flags = btrfs_extent_flags(leaf, ei);
661         btrfs_item_key_to_cpu(leaf, &found_key, slot);
662
663         ptr = (unsigned long)(ei + 1);
664         end = (unsigned long)ei + item_size;
665
666         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
667             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
668                 struct btrfs_tree_block_info *info;
669
670                 info = (struct btrfs_tree_block_info *)ptr;
671                 *info_level = btrfs_tree_block_level(leaf, info);
672                 ptr += sizeof(struct btrfs_tree_block_info);
673                 BUG_ON(ptr > end);
674         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
675                 *info_level = found_key.offset;
676         } else {
677                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
678         }
679
680         while (ptr < end) {
681                 struct btrfs_extent_inline_ref *iref;
682                 u64 offset;
683                 int type;
684
685                 iref = (struct btrfs_extent_inline_ref *)ptr;
686                 type = btrfs_extent_inline_ref_type(leaf, iref);
687                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
688
689                 switch (type) {
690                 case BTRFS_SHARED_BLOCK_REF_KEY:
691                         ret = __add_prelim_ref(prefs, 0, NULL,
692                                                 *info_level + 1, offset,
693                                                 bytenr, 1, GFP_NOFS);
694                         break;
695                 case BTRFS_SHARED_DATA_REF_KEY: {
696                         struct btrfs_shared_data_ref *sdref;
697                         int count;
698
699                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
700                         count = btrfs_shared_data_ref_count(leaf, sdref);
701                         ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
702                                                bytenr, count, GFP_NOFS);
703                         break;
704                 }
705                 case BTRFS_TREE_BLOCK_REF_KEY:
706                         ret = __add_prelim_ref(prefs, offset, NULL,
707                                                *info_level + 1, 0,
708                                                bytenr, 1, GFP_NOFS);
709                         break;
710                 case BTRFS_EXTENT_DATA_REF_KEY: {
711                         struct btrfs_extent_data_ref *dref;
712                         int count;
713                         u64 root;
714
715                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
716                         count = btrfs_extent_data_ref_count(leaf, dref);
717                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
718                                                                       dref);
719                         key.type = BTRFS_EXTENT_DATA_KEY;
720                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
721                         root = btrfs_extent_data_ref_root(leaf, dref);
722                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
723                                                bytenr, count, GFP_NOFS);
724                         break;
725                 }
726                 default:
727                         WARN_ON(1);
728                 }
729                 if (ret)
730                         return ret;
731                 ptr += btrfs_extent_inline_ref_size(type);
732         }
733
734         return 0;
735 }
736
737 /*
738  * add all non-inline backrefs for bytenr to the list
739  */
740 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
741                             struct btrfs_path *path, u64 bytenr,
742                             int info_level, struct list_head *prefs)
743 {
744         struct btrfs_root *extent_root = fs_info->extent_root;
745         int ret;
746         int slot;
747         struct extent_buffer *leaf;
748         struct btrfs_key key;
749
750         while (1) {
751                 ret = btrfs_next_item(extent_root, path);
752                 if (ret < 0)
753                         break;
754                 if (ret) {
755                         ret = 0;
756                         break;
757                 }
758
759                 slot = path->slots[0];
760                 leaf = path->nodes[0];
761                 btrfs_item_key_to_cpu(leaf, &key, slot);
762
763                 if (key.objectid != bytenr)
764                         break;
765                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
766                         continue;
767                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
768                         break;
769
770                 switch (key.type) {
771                 case BTRFS_SHARED_BLOCK_REF_KEY:
772                         ret = __add_prelim_ref(prefs, 0, NULL,
773                                                 info_level + 1, key.offset,
774                                                 bytenr, 1, GFP_NOFS);
775                         break;
776                 case BTRFS_SHARED_DATA_REF_KEY: {
777                         struct btrfs_shared_data_ref *sdref;
778                         int count;
779
780                         sdref = btrfs_item_ptr(leaf, slot,
781                                               struct btrfs_shared_data_ref);
782                         count = btrfs_shared_data_ref_count(leaf, sdref);
783                         ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
784                                                 bytenr, count, GFP_NOFS);
785                         break;
786                 }
787                 case BTRFS_TREE_BLOCK_REF_KEY:
788                         ret = __add_prelim_ref(prefs, key.offset, NULL,
789                                                info_level + 1, 0,
790                                                bytenr, 1, GFP_NOFS);
791                         break;
792                 case BTRFS_EXTENT_DATA_REF_KEY: {
793                         struct btrfs_extent_data_ref *dref;
794                         int count;
795                         u64 root;
796
797                         dref = btrfs_item_ptr(leaf, slot,
798                                               struct btrfs_extent_data_ref);
799                         count = btrfs_extent_data_ref_count(leaf, dref);
800                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
801                                                                       dref);
802                         key.type = BTRFS_EXTENT_DATA_KEY;
803                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
804                         root = btrfs_extent_data_ref_root(leaf, dref);
805                         ret = __add_prelim_ref(prefs, root, &key, 0, 0,
806                                                bytenr, count, GFP_NOFS);
807                         break;
808                 }
809                 default:
810                         WARN_ON(1);
811                 }
812                 if (ret)
813                         return ret;
814
815         }
816
817         return ret;
818 }
819
820 /*
821  * this adds all existing backrefs (inline backrefs, backrefs and delayed
822  * refs) for the given bytenr to the refs list, merges duplicates and resolves
823  * indirect refs to their parent bytenr.
824  * When roots are found, they're added to the roots list
825  *
826  * FIXME some caching might speed things up
827  */
828 static int find_parent_nodes(struct btrfs_trans_handle *trans,
829                              struct btrfs_fs_info *fs_info, u64 bytenr,
830                              u64 time_seq, struct ulist *refs,
831                              struct ulist *roots, const u64 *extent_item_pos)
832 {
833         struct btrfs_key key;
834         struct btrfs_path *path;
835         struct btrfs_delayed_ref_root *delayed_refs = NULL;
836         struct btrfs_delayed_ref_head *head;
837         int info_level = 0;
838         int ret;
839         struct list_head prefs_delayed;
840         struct list_head prefs;
841         struct __prelim_ref *ref;
842
843         INIT_LIST_HEAD(&prefs);
844         INIT_LIST_HEAD(&prefs_delayed);
845
846         key.objectid = bytenr;
847         key.offset = (u64)-1;
848         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
849                 key.type = BTRFS_METADATA_ITEM_KEY;
850         else
851                 key.type = BTRFS_EXTENT_ITEM_KEY;
852
853         path = btrfs_alloc_path();
854         if (!path)
855                 return -ENOMEM;
856         if (!trans)
857                 path->search_commit_root = 1;
858
859         /*
860          * grab both a lock on the path and a lock on the delayed ref head.
861          * We need both to get a consistent picture of how the refs look
862          * at a specified point in time
863          */
864 again:
865         head = NULL;
866
867         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
868         if (ret < 0)
869                 goto out;
870         BUG_ON(ret == 0);
871
872         if (trans) {
873                 /*
874                  * look if there are updates for this ref queued and lock the
875                  * head
876                  */
877                 delayed_refs = &trans->transaction->delayed_refs;
878                 spin_lock(&delayed_refs->lock);
879                 head = btrfs_find_delayed_ref_head(trans, bytenr);
880                 if (head) {
881                         if (!mutex_trylock(&head->mutex)) {
882                                 atomic_inc(&head->node.refs);
883                                 spin_unlock(&delayed_refs->lock);
884
885                                 btrfs_release_path(path);
886
887                                 /*
888                                  * Mutex was contended, block until it's
889                                  * released and try again
890                                  */
891                                 mutex_lock(&head->mutex);
892                                 mutex_unlock(&head->mutex);
893                                 btrfs_put_delayed_ref(&head->node);
894                                 goto again;
895                         }
896                         spin_unlock(&delayed_refs->lock);
897                         ret = __add_delayed_refs(head, time_seq,
898                                                  &prefs_delayed);
899                         mutex_unlock(&head->mutex);
900                         if (ret)
901                                 goto out;
902                 } else {
903                         spin_unlock(&delayed_refs->lock);
904                 }
905         }
906
907         if (path->slots[0]) {
908                 struct extent_buffer *leaf;
909                 int slot;
910
911                 path->slots[0]--;
912                 leaf = path->nodes[0];
913                 slot = path->slots[0];
914                 btrfs_item_key_to_cpu(leaf, &key, slot);
915                 if (key.objectid == bytenr &&
916                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
917                      key.type == BTRFS_METADATA_ITEM_KEY)) {
918                         ret = __add_inline_refs(fs_info, path, bytenr,
919                                                 &info_level, &prefs);
920                         if (ret)
921                                 goto out;
922                         ret = __add_keyed_refs(fs_info, path, bytenr,
923                                                info_level, &prefs);
924                         if (ret)
925                                 goto out;
926                 }
927         }
928         btrfs_release_path(path);
929
930         list_splice_init(&prefs_delayed, &prefs);
931
932         ret = __add_missing_keys(fs_info, &prefs);
933         if (ret)
934                 goto out;
935
936         __merge_refs(&prefs, 1);
937
938         ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
939                                       extent_item_pos);
940         if (ret)
941                 goto out;
942
943         __merge_refs(&prefs, 2);
944
945         while (!list_empty(&prefs)) {
946                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
947                 WARN_ON(ref->count < 0);
948                 if (ref->count && ref->root_id && ref->parent == 0) {
949                         /* no parent == root of tree */
950                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
951                         if (ret < 0)
952                                 goto out;
953                 }
954                 if (ref->count && ref->parent) {
955                         struct extent_inode_elem *eie = NULL;
956                         if (extent_item_pos && !ref->inode_list) {
957                                 u32 bsz;
958                                 struct extent_buffer *eb;
959                                 bsz = btrfs_level_size(fs_info->extent_root,
960                                                         info_level);
961                                 eb = read_tree_block(fs_info->extent_root,
962                                                            ref->parent, bsz, 0);
963                                 if (!eb || !extent_buffer_uptodate(eb)) {
964                                         free_extent_buffer(eb);
965                                         ret = -EIO;
966                                         goto out;
967                                 }
968                                 ret = find_extent_in_eb(eb, bytenr,
969                                                         *extent_item_pos, &eie);
970                                 free_extent_buffer(eb);
971                                 if (ret < 0)
972                                         goto out;
973                                 ref->inode_list = eie;
974                         }
975                         ret = ulist_add_merge(refs, ref->parent,
976                                               (uintptr_t)ref->inode_list,
977                                               (u64 *)&eie, GFP_NOFS);
978                         if (ret < 0)
979                                 goto out;
980                         if (!ret && extent_item_pos) {
981                                 /*
982                                  * we've recorded that parent, so we must extend
983                                  * its inode list here
984                                  */
985                                 BUG_ON(!eie);
986                                 while (eie->next)
987                                         eie = eie->next;
988                                 eie->next = ref->inode_list;
989                         }
990                 }
991                 list_del(&ref->list);
992                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
993         }
994
995 out:
996         btrfs_free_path(path);
997         while (!list_empty(&prefs)) {
998                 ref = list_first_entry(&prefs, struct __prelim_ref, list);
999                 list_del(&ref->list);
1000                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1001         }
1002         while (!list_empty(&prefs_delayed)) {
1003                 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1004                                        list);
1005                 list_del(&ref->list);
1006                 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1007         }
1008
1009         return ret;
1010 }
1011
1012 static void free_leaf_list(struct ulist *blocks)
1013 {
1014         struct ulist_node *node = NULL;
1015         struct extent_inode_elem *eie;
1016         struct extent_inode_elem *eie_next;
1017         struct ulist_iterator uiter;
1018
1019         ULIST_ITER_INIT(&uiter);
1020         while ((node = ulist_next(blocks, &uiter))) {
1021                 if (!node->aux)
1022                         continue;
1023                 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1024                 for (; eie; eie = eie_next) {
1025                         eie_next = eie->next;
1026                         kfree(eie);
1027                 }
1028                 node->aux = 0;
1029         }
1030
1031         ulist_free(blocks);
1032 }
1033
1034 /*
1035  * Finds all leafs with a reference to the specified combination of bytenr and
1036  * offset. key_list_head will point to a list of corresponding keys (caller must
1037  * free each list element). The leafs will be stored in the leafs ulist, which
1038  * must be freed with ulist_free.
1039  *
1040  * returns 0 on success, <0 on error
1041  */
1042 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1043                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1044                                 u64 time_seq, struct ulist **leafs,
1045                                 const u64 *extent_item_pos)
1046 {
1047         struct ulist *tmp;
1048         int ret;
1049
1050         tmp = ulist_alloc(GFP_NOFS);
1051         if (!tmp)
1052                 return -ENOMEM;
1053         *leafs = ulist_alloc(GFP_NOFS);
1054         if (!*leafs) {
1055                 ulist_free(tmp);
1056                 return -ENOMEM;
1057         }
1058
1059         ret = find_parent_nodes(trans, fs_info, bytenr,
1060                                 time_seq, *leafs, tmp, extent_item_pos);
1061         ulist_free(tmp);
1062
1063         if (ret < 0 && ret != -ENOENT) {
1064                 free_leaf_list(*leafs);
1065                 return ret;
1066         }
1067
1068         return 0;
1069 }
1070
1071 /*
1072  * walk all backrefs for a given extent to find all roots that reference this
1073  * extent. Walking a backref means finding all extents that reference this
1074  * extent and in turn walk the backrefs of those, too. Naturally this is a
1075  * recursive process, but here it is implemented in an iterative fashion: We
1076  * find all referencing extents for the extent in question and put them on a
1077  * list. In turn, we find all referencing extents for those, further appending
1078  * to the list. The way we iterate the list allows adding more elements after
1079  * the current while iterating. The process stops when we reach the end of the
1080  * list. Found roots are added to the roots list.
1081  *
1082  * returns 0 on success, < 0 on error.
1083  */
1084 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1085                                 struct btrfs_fs_info *fs_info, u64 bytenr,
1086                                 u64 time_seq, struct ulist **roots)
1087 {
1088         struct ulist *tmp;
1089         struct ulist_node *node = NULL;
1090         struct ulist_iterator uiter;
1091         int ret;
1092
1093         tmp = ulist_alloc(GFP_NOFS);
1094         if (!tmp)
1095                 return -ENOMEM;
1096         *roots = ulist_alloc(GFP_NOFS);
1097         if (!*roots) {
1098                 ulist_free(tmp);
1099                 return -ENOMEM;
1100         }
1101
1102         ULIST_ITER_INIT(&uiter);
1103         while (1) {
1104                 ret = find_parent_nodes(trans, fs_info, bytenr,
1105                                         time_seq, tmp, *roots, NULL);
1106                 if (ret < 0 && ret != -ENOENT) {
1107                         ulist_free(tmp);
1108                         ulist_free(*roots);
1109                         return ret;
1110                 }
1111                 node = ulist_next(tmp, &uiter);
1112                 if (!node)
1113                         break;
1114                 bytenr = node->val;
1115         }
1116
1117         ulist_free(tmp);
1118         return 0;
1119 }
1120
1121 /*
1122  * this makes the path point to (inum INODE_ITEM ioff)
1123  */
1124 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1125                         struct btrfs_path *path)
1126 {
1127         struct btrfs_key key;
1128         return btrfs_find_item(fs_root, path, inum, ioff,
1129                         BTRFS_INODE_ITEM_KEY, &key);
1130 }
1131
1132 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1133                                 struct btrfs_path *path,
1134                                 struct btrfs_key *found_key)
1135 {
1136         return btrfs_find_item(fs_root, path, inum, ioff,
1137                         BTRFS_INODE_REF_KEY, found_key);
1138 }
1139
1140 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1141                           u64 start_off, struct btrfs_path *path,
1142                           struct btrfs_inode_extref **ret_extref,
1143                           u64 *found_off)
1144 {
1145         int ret, slot;
1146         struct btrfs_key key;
1147         struct btrfs_key found_key;
1148         struct btrfs_inode_extref *extref;
1149         struct extent_buffer *leaf;
1150         unsigned long ptr;
1151
1152         key.objectid = inode_objectid;
1153         btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1154         key.offset = start_off;
1155
1156         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1157         if (ret < 0)
1158                 return ret;
1159
1160         while (1) {
1161                 leaf = path->nodes[0];
1162                 slot = path->slots[0];
1163                 if (slot >= btrfs_header_nritems(leaf)) {
1164                         /*
1165                          * If the item at offset is not found,
1166                          * btrfs_search_slot will point us to the slot
1167                          * where it should be inserted. In our case
1168                          * that will be the slot directly before the
1169                          * next INODE_REF_KEY_V2 item. In the case
1170                          * that we're pointing to the last slot in a
1171                          * leaf, we must move one leaf over.
1172                          */
1173                         ret = btrfs_next_leaf(root, path);
1174                         if (ret) {
1175                                 if (ret >= 1)
1176                                         ret = -ENOENT;
1177                                 break;
1178                         }
1179                         continue;
1180                 }
1181
1182                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1183
1184                 /*
1185                  * Check that we're still looking at an extended ref key for
1186                  * this particular objectid. If we have different
1187                  * objectid or type then there are no more to be found
1188                  * in the tree and we can exit.
1189                  */
1190                 ret = -ENOENT;
1191                 if (found_key.objectid != inode_objectid)
1192                         break;
1193                 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1194                         break;
1195
1196                 ret = 0;
1197                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1198                 extref = (struct btrfs_inode_extref *)ptr;
1199                 *ret_extref = extref;
1200                 if (found_off)
1201                         *found_off = found_key.offset;
1202                 break;
1203         }
1204
1205         return ret;
1206 }
1207
1208 /*
1209  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1210  * Elements of the path are separated by '/' and the path is guaranteed to be
1211  * 0-terminated. the path is only given within the current file system.
1212  * Therefore, it never starts with a '/'. the caller is responsible to provide
1213  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1214  * the start point of the resulting string is returned. this pointer is within
1215  * dest, normally.
1216  * in case the path buffer would overflow, the pointer is decremented further
1217  * as if output was written to the buffer, though no more output is actually
1218  * generated. that way, the caller can determine how much space would be
1219  * required for the path to fit into the buffer. in that case, the returned
1220  * value will be smaller than dest. callers must check this!
1221  */
1222 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1223                         u32 name_len, unsigned long name_off,
1224                         struct extent_buffer *eb_in, u64 parent,
1225                         char *dest, u32 size)
1226 {
1227         int slot;
1228         u64 next_inum;
1229         int ret;
1230         s64 bytes_left = ((s64)size) - 1;
1231         struct extent_buffer *eb = eb_in;
1232         struct btrfs_key found_key;
1233         int leave_spinning = path->leave_spinning;
1234         struct btrfs_inode_ref *iref;
1235
1236         if (bytes_left >= 0)
1237                 dest[bytes_left] = '\0';
1238
1239         path->leave_spinning = 1;
1240         while (1) {
1241                 bytes_left -= name_len;
1242                 if (bytes_left >= 0)
1243                         read_extent_buffer(eb, dest + bytes_left,
1244                                            name_off, name_len);
1245                 if (eb != eb_in) {
1246                         btrfs_tree_read_unlock_blocking(eb);
1247                         free_extent_buffer(eb);
1248                 }
1249                 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1250                 if (ret > 0)
1251                         ret = -ENOENT;
1252                 if (ret)
1253                         break;
1254
1255                 next_inum = found_key.offset;
1256
1257                 /* regular exit ahead */
1258                 if (parent == next_inum)
1259                         break;
1260
1261                 slot = path->slots[0];
1262                 eb = path->nodes[0];
1263                 /* make sure we can use eb after releasing the path */
1264                 if (eb != eb_in) {
1265                         atomic_inc(&eb->refs);
1266                         btrfs_tree_read_lock(eb);
1267                         btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1268                 }
1269                 btrfs_release_path(path);
1270                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1271
1272                 name_len = btrfs_inode_ref_name_len(eb, iref);
1273                 name_off = (unsigned long)(iref + 1);
1274
1275                 parent = next_inum;
1276                 --bytes_left;
1277                 if (bytes_left >= 0)
1278                         dest[bytes_left] = '/';
1279         }
1280
1281         btrfs_release_path(path);
1282         path->leave_spinning = leave_spinning;
1283
1284         if (ret)
1285                 return ERR_PTR(ret);
1286
1287         return dest + bytes_left;
1288 }
1289
1290 /*
1291  * this makes the path point to (logical EXTENT_ITEM *)
1292  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1293  * tree blocks and <0 on error.
1294  */
1295 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1296                         struct btrfs_path *path, struct btrfs_key *found_key,
1297                         u64 *flags_ret)
1298 {
1299         int ret;
1300         u64 flags;
1301         u64 size = 0;
1302         u32 item_size;
1303         struct extent_buffer *eb;
1304         struct btrfs_extent_item *ei;
1305         struct btrfs_key key;
1306
1307         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1308                 key.type = BTRFS_METADATA_ITEM_KEY;
1309         else
1310                 key.type = BTRFS_EXTENT_ITEM_KEY;
1311         key.objectid = logical;
1312         key.offset = (u64)-1;
1313
1314         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1315         if (ret < 0)
1316                 return ret;
1317
1318         while (1) {
1319                 u32 nritems;
1320                 if (path->slots[0] == 0) {
1321                         btrfs_set_path_blocking(path);
1322                         ret = btrfs_prev_leaf(fs_info->extent_root, path);
1323                         if (ret != 0) {
1324                                 if (ret > 0) {
1325                                         pr_debug("logical %llu is not within "
1326                                                  "any extent\n", logical);
1327                                         ret = -ENOENT;
1328                                 }
1329                                 return ret;
1330                         }
1331                 } else {
1332                         path->slots[0]--;
1333                 }
1334                 nritems = btrfs_header_nritems(path->nodes[0]);
1335                 if (nritems == 0) {
1336                         pr_debug("logical %llu is not within any extent\n",
1337                                  logical);
1338                         return -ENOENT;
1339                 }
1340                 if (path->slots[0] == nritems)
1341                         path->slots[0]--;
1342
1343                 btrfs_item_key_to_cpu(path->nodes[0], found_key,
1344                                       path->slots[0]);
1345                 if (found_key->type == BTRFS_EXTENT_ITEM_KEY ||
1346                     found_key->type == BTRFS_METADATA_ITEM_KEY)
1347                         break;
1348         }
1349
1350         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1351                 size = fs_info->extent_root->leafsize;
1352         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1353                 size = found_key->offset;
1354
1355         if (found_key->objectid > logical ||
1356             found_key->objectid + size <= logical) {
1357                 pr_debug("logical %llu is not within any extent\n", logical);
1358                 return -ENOENT;
1359         }
1360
1361         eb = path->nodes[0];
1362         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1363         BUG_ON(item_size < sizeof(*ei));
1364
1365         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1366         flags = btrfs_extent_flags(eb, ei);
1367
1368         pr_debug("logical %llu is at position %llu within the extent (%llu "
1369                  "EXTENT_ITEM %llu) flags %#llx size %u\n",
1370                  logical, logical - found_key->objectid, found_key->objectid,
1371                  found_key->offset, flags, item_size);
1372
1373         WARN_ON(!flags_ret);
1374         if (flags_ret) {
1375                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1376                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1377                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1378                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1379                 else
1380                         BUG_ON(1);
1381                 return 0;
1382         }
1383
1384         return -EIO;
1385 }
1386
1387 /*
1388  * helper function to iterate extent inline refs. ptr must point to a 0 value
1389  * for the first call and may be modified. it is used to track state.
1390  * if more refs exist, 0 is returned and the next call to
1391  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1392  * next ref. after the last ref was processed, 1 is returned.
1393  * returns <0 on error
1394  */
1395 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1396                                 struct btrfs_extent_item *ei, u32 item_size,
1397                                 struct btrfs_extent_inline_ref **out_eiref,
1398                                 int *out_type)
1399 {
1400         unsigned long end;
1401         u64 flags;
1402         struct btrfs_tree_block_info *info;
1403
1404         if (!*ptr) {
1405                 /* first call */
1406                 flags = btrfs_extent_flags(eb, ei);
1407                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1408                         info = (struct btrfs_tree_block_info *)(ei + 1);
1409                         *out_eiref =
1410                                 (struct btrfs_extent_inline_ref *)(info + 1);
1411                 } else {
1412                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1413                 }
1414                 *ptr = (unsigned long)*out_eiref;
1415                 if ((void *)*ptr >= (void *)ei + item_size)
1416                         return -ENOENT;
1417         }
1418
1419         end = (unsigned long)ei + item_size;
1420         *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1421         *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1422
1423         *ptr += btrfs_extent_inline_ref_size(*out_type);
1424         WARN_ON(*ptr > end);
1425         if (*ptr == end)
1426                 return 1; /* last */
1427
1428         return 0;
1429 }
1430
1431 /*
1432  * reads the tree block backref for an extent. tree level and root are returned
1433  * through out_level and out_root. ptr must point to a 0 value for the first
1434  * call and may be modified (see __get_extent_inline_ref comment).
1435  * returns 0 if data was provided, 1 if there was no more data to provide or
1436  * <0 on error.
1437  */
1438 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1439                                 struct btrfs_extent_item *ei, u32 item_size,
1440                                 u64 *out_root, u8 *out_level)
1441 {
1442         int ret;
1443         int type;
1444         struct btrfs_tree_block_info *info;
1445         struct btrfs_extent_inline_ref *eiref;
1446
1447         if (*ptr == (unsigned long)-1)
1448                 return 1;
1449
1450         while (1) {
1451                 ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1452                                                 &eiref, &type);
1453                 if (ret < 0)
1454                         return ret;
1455
1456                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1457                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1458                         break;
1459
1460                 if (ret == 1)
1461                         return 1;
1462         }
1463
1464         /* we can treat both ref types equally here */
1465         info = (struct btrfs_tree_block_info *)(ei + 1);
1466         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1467         *out_level = btrfs_tree_block_level(eb, info);
1468
1469         if (ret == 1)
1470                 *ptr = (unsigned long)-1;
1471
1472         return 0;
1473 }
1474
1475 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1476                                 u64 root, u64 extent_item_objectid,
1477                                 iterate_extent_inodes_t *iterate, void *ctx)
1478 {
1479         struct extent_inode_elem *eie;
1480         int ret = 0;
1481
1482         for (eie = inode_list; eie; eie = eie->next) {
1483                 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1484                          "root %llu\n", extent_item_objectid,
1485                          eie->inum, eie->offset, root);
1486                 ret = iterate(eie->inum, eie->offset, root, ctx);
1487                 if (ret) {
1488                         pr_debug("stopping iteration for %llu due to ret=%d\n",
1489                                  extent_item_objectid, ret);
1490                         break;
1491                 }
1492         }
1493
1494         return ret;
1495 }
1496
1497 /*
1498  * calls iterate() for every inode that references the extent identified by
1499  * the given parameters.
1500  * when the iterator function returns a non-zero value, iteration stops.
1501  */
1502 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1503                                 u64 extent_item_objectid, u64 extent_item_pos,
1504                                 int search_commit_root,
1505                                 iterate_extent_inodes_t *iterate, void *ctx)
1506 {
1507         int ret;
1508         struct btrfs_trans_handle *trans = NULL;
1509         struct ulist *refs = NULL;
1510         struct ulist *roots = NULL;
1511         struct ulist_node *ref_node = NULL;
1512         struct ulist_node *root_node = NULL;
1513         struct seq_list tree_mod_seq_elem = {};
1514         struct ulist_iterator ref_uiter;
1515         struct ulist_iterator root_uiter;
1516
1517         pr_debug("resolving all inodes for extent %llu\n",
1518                         extent_item_objectid);
1519
1520         if (!search_commit_root) {
1521                 trans = btrfs_join_transaction(fs_info->extent_root);
1522                 if (IS_ERR(trans))
1523                         return PTR_ERR(trans);
1524                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1525         }
1526
1527         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1528                                    tree_mod_seq_elem.seq, &refs,
1529                                    &extent_item_pos);
1530         if (ret)
1531                 goto out;
1532
1533         ULIST_ITER_INIT(&ref_uiter);
1534         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1535                 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1536                                            tree_mod_seq_elem.seq, &roots);
1537                 if (ret)
1538                         break;
1539                 ULIST_ITER_INIT(&root_uiter);
1540                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1541                         pr_debug("root %llu references leaf %llu, data list "
1542                                  "%#llx\n", root_node->val, ref_node->val,
1543                                  ref_node->aux);
1544                         ret = iterate_leaf_refs((struct extent_inode_elem *)
1545                                                 (uintptr_t)ref_node->aux,
1546                                                 root_node->val,
1547                                                 extent_item_objectid,
1548                                                 iterate, ctx);
1549                 }
1550                 ulist_free(roots);
1551         }
1552
1553         free_leaf_list(refs);
1554 out:
1555         if (!search_commit_root) {
1556                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1557                 btrfs_end_transaction(trans, fs_info->extent_root);
1558         }
1559
1560         return ret;
1561 }
1562
1563 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1564                                 struct btrfs_path *path,
1565                                 iterate_extent_inodes_t *iterate, void *ctx)
1566 {
1567         int ret;
1568         u64 extent_item_pos;
1569         u64 flags = 0;
1570         struct btrfs_key found_key;
1571         int search_commit_root = path->search_commit_root;
1572
1573         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1574         btrfs_release_path(path);
1575         if (ret < 0)
1576                 return ret;
1577         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1578                 return -EINVAL;
1579
1580         extent_item_pos = logical - found_key.objectid;
1581         ret = iterate_extent_inodes(fs_info, found_key.objectid,
1582                                         extent_item_pos, search_commit_root,
1583                                         iterate, ctx);
1584
1585         return ret;
1586 }
1587
1588 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1589                               struct extent_buffer *eb, void *ctx);
1590
1591 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1592                               struct btrfs_path *path,
1593                               iterate_irefs_t *iterate, void *ctx)
1594 {
1595         int ret = 0;
1596         int slot;
1597         u32 cur;
1598         u32 len;
1599         u32 name_len;
1600         u64 parent = 0;
1601         int found = 0;
1602         struct extent_buffer *eb;
1603         struct btrfs_item *item;
1604         struct btrfs_inode_ref *iref;
1605         struct btrfs_key found_key;
1606
1607         while (!ret) {
1608                 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1609                                      &found_key);
1610                 if (ret < 0)
1611                         break;
1612                 if (ret) {
1613                         ret = found ? 0 : -ENOENT;
1614                         break;
1615                 }
1616                 ++found;
1617
1618                 parent = found_key.offset;
1619                 slot = path->slots[0];
1620                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1621                 if (!eb) {
1622                         ret = -ENOMEM;
1623                         break;
1624                 }
1625                 extent_buffer_get(eb);
1626                 btrfs_tree_read_lock(eb);
1627                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1628                 btrfs_release_path(path);
1629
1630                 item = btrfs_item_nr(slot);
1631                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1632
1633                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1634                         name_len = btrfs_inode_ref_name_len(eb, iref);
1635                         /* path must be released before calling iterate()! */
1636                         pr_debug("following ref at offset %u for inode %llu in "
1637                                  "tree %llu\n", cur, found_key.objectid,
1638                                  fs_root->objectid);
1639                         ret = iterate(parent, name_len,
1640                                       (unsigned long)(iref + 1), eb, ctx);
1641                         if (ret)
1642                                 break;
1643                         len = sizeof(*iref) + name_len;
1644                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
1645                 }
1646                 btrfs_tree_read_unlock_blocking(eb);
1647                 free_extent_buffer(eb);
1648         }
1649
1650         btrfs_release_path(path);
1651
1652         return ret;
1653 }
1654
1655 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1656                                  struct btrfs_path *path,
1657                                  iterate_irefs_t *iterate, void *ctx)
1658 {
1659         int ret;
1660         int slot;
1661         u64 offset = 0;
1662         u64 parent;
1663         int found = 0;
1664         struct extent_buffer *eb;
1665         struct btrfs_inode_extref *extref;
1666         struct extent_buffer *leaf;
1667         u32 item_size;
1668         u32 cur_offset;
1669         unsigned long ptr;
1670
1671         while (1) {
1672                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1673                                             &offset);
1674                 if (ret < 0)
1675                         break;
1676                 if (ret) {
1677                         ret = found ? 0 : -ENOENT;
1678                         break;
1679                 }
1680                 ++found;
1681
1682                 slot = path->slots[0];
1683                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1684                 if (!eb) {
1685                         ret = -ENOMEM;
1686                         break;
1687                 }
1688                 extent_buffer_get(eb);
1689
1690                 btrfs_tree_read_lock(eb);
1691                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1692                 btrfs_release_path(path);
1693
1694                 leaf = path->nodes[0];
1695                 item_size = btrfs_item_size_nr(leaf, slot);
1696                 ptr = btrfs_item_ptr_offset(leaf, slot);
1697                 cur_offset = 0;
1698
1699                 while (cur_offset < item_size) {
1700                         u32 name_len;
1701
1702                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1703                         parent = btrfs_inode_extref_parent(eb, extref);
1704                         name_len = btrfs_inode_extref_name_len(eb, extref);
1705                         ret = iterate(parent, name_len,
1706                                       (unsigned long)&extref->name, eb, ctx);
1707                         if (ret)
1708                                 break;
1709
1710                         cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1711                         cur_offset += sizeof(*extref);
1712                 }
1713                 btrfs_tree_read_unlock_blocking(eb);
1714                 free_extent_buffer(eb);
1715
1716                 offset++;
1717         }
1718
1719         btrfs_release_path(path);
1720
1721         return ret;
1722 }
1723
1724 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1725                          struct btrfs_path *path, iterate_irefs_t *iterate,
1726                          void *ctx)
1727 {
1728         int ret;
1729         int found_refs = 0;
1730
1731         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1732         if (!ret)
1733                 ++found_refs;
1734         else if (ret != -ENOENT)
1735                 return ret;
1736
1737         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1738         if (ret == -ENOENT && found_refs)
1739                 return 0;
1740
1741         return ret;
1742 }
1743
1744 /*
1745  * returns 0 if the path could be dumped (probably truncated)
1746  * returns <0 in case of an error
1747  */
1748 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1749                          struct extent_buffer *eb, void *ctx)
1750 {
1751         struct inode_fs_paths *ipath = ctx;
1752         char *fspath;
1753         char *fspath_min;
1754         int i = ipath->fspath->elem_cnt;
1755         const int s_ptr = sizeof(char *);
1756         u32 bytes_left;
1757
1758         bytes_left = ipath->fspath->bytes_left > s_ptr ?
1759                                         ipath->fspath->bytes_left - s_ptr : 0;
1760
1761         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1762         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1763                                    name_off, eb, inum, fspath_min, bytes_left);
1764         if (IS_ERR(fspath))
1765                 return PTR_ERR(fspath);
1766
1767         if (fspath > fspath_min) {
1768                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1769                 ++ipath->fspath->elem_cnt;
1770                 ipath->fspath->bytes_left = fspath - fspath_min;
1771         } else {
1772                 ++ipath->fspath->elem_missed;
1773                 ipath->fspath->bytes_missing += fspath_min - fspath;
1774                 ipath->fspath->bytes_left = 0;
1775         }
1776
1777         return 0;
1778 }
1779
1780 /*
1781  * this dumps all file system paths to the inode into the ipath struct, provided
1782  * is has been created large enough. each path is zero-terminated and accessed
1783  * from ipath->fspath->val[i].
1784  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1785  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1786  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1787  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1788  * have been needed to return all paths.
1789  */
1790 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1791 {
1792         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1793                              inode_to_path, ipath);
1794 }
1795
1796 struct btrfs_data_container *init_data_container(u32 total_bytes)
1797 {
1798         struct btrfs_data_container *data;
1799         size_t alloc_bytes;
1800
1801         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1802         data = vmalloc(alloc_bytes);
1803         if (!data)
1804                 return ERR_PTR(-ENOMEM);
1805
1806         if (total_bytes >= sizeof(*data)) {
1807                 data->bytes_left = total_bytes - sizeof(*data);
1808                 data->bytes_missing = 0;
1809         } else {
1810                 data->bytes_missing = sizeof(*data) - total_bytes;
1811                 data->bytes_left = 0;
1812         }
1813
1814         data->elem_cnt = 0;
1815         data->elem_missed = 0;
1816
1817         return data;
1818 }
1819
1820 /*
1821  * allocates space to return multiple file system paths for an inode.
1822  * total_bytes to allocate are passed, note that space usable for actual path
1823  * information will be total_bytes - sizeof(struct inode_fs_paths).
1824  * the returned pointer must be freed with free_ipath() in the end.
1825  */
1826 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1827                                         struct btrfs_path *path)
1828 {
1829         struct inode_fs_paths *ifp;
1830         struct btrfs_data_container *fspath;
1831
1832         fspath = init_data_container(total_bytes);
1833         if (IS_ERR(fspath))
1834                 return (void *)fspath;
1835
1836         ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1837         if (!ifp) {
1838                 kfree(fspath);
1839                 return ERR_PTR(-ENOMEM);
1840         }
1841
1842         ifp->btrfs_path = path;
1843         ifp->fspath = fspath;
1844         ifp->fs_root = fs_root;
1845
1846         return ifp;
1847 }
1848
1849 void free_ipath(struct inode_fs_paths *ipath)
1850 {
1851         if (!ipath)
1852                 return;
1853         vfree(ipath->fspath);
1854         kfree(ipath);
1855 }