]> Pileus Git - ~andy/linux/blob - drivers/usb/host/xhci.c
xhci: Don't submit commands when the host is dead.
[~andy/linux] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 250 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 /*
179  * Free IRQs
180  * free all IRQs request
181  */
182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184         int i;
185         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186
187         /* return if using legacy interrupt */
188         if (xhci_to_hcd(xhci)->irq >= 0)
189                 return;
190
191         if (xhci->msix_entries) {
192                 for (i = 0; i < xhci->msix_count; i++)
193                         if (xhci->msix_entries[i].vector)
194                                 free_irq(xhci->msix_entries[i].vector,
195                                                 xhci_to_hcd(xhci));
196         } else if (pdev->irq >= 0)
197                 free_irq(pdev->irq, xhci_to_hcd(xhci));
198
199         return;
200 }
201
202 /*
203  * Set up MSI
204  */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207         int ret;
208         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210         ret = pci_enable_msi(pdev);
211         if (ret) {
212                 xhci_err(xhci, "failed to allocate MSI entry\n");
213                 return ret;
214         }
215
216         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217                                 0, "xhci_hcd", xhci_to_hcd(xhci));
218         if (ret) {
219                 xhci_err(xhci, "disable MSI interrupt\n");
220                 pci_disable_msi(pdev);
221         }
222
223         return ret;
224 }
225
226 /*
227  * Set up MSI-X
228  */
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231         int i, ret = 0;
232         struct usb_hcd *hcd = xhci_to_hcd(xhci);
233         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234
235         /*
236          * calculate number of msi-x vectors supported.
237          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238          *   with max number of interrupters based on the xhci HCSPARAMS1.
239          * - num_online_cpus: maximum msi-x vectors per CPUs core.
240          *   Add additional 1 vector to ensure always available interrupt.
241          */
242         xhci->msix_count = min(num_online_cpus() + 1,
243                                 HCS_MAX_INTRS(xhci->hcs_params1));
244
245         xhci->msix_entries =
246                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247                                 GFP_KERNEL);
248         if (!xhci->msix_entries) {
249                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250                 return -ENOMEM;
251         }
252
253         for (i = 0; i < xhci->msix_count; i++) {
254                 xhci->msix_entries[i].entry = i;
255                 xhci->msix_entries[i].vector = 0;
256         }
257
258         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259         if (ret) {
260                 xhci_err(xhci, "Failed to enable MSI-X\n");
261                 goto free_entries;
262         }
263
264         for (i = 0; i < xhci->msix_count; i++) {
265                 ret = request_irq(xhci->msix_entries[i].vector,
266                                 (irq_handler_t)xhci_msi_irq,
267                                 0, "xhci_hcd", xhci_to_hcd(xhci));
268                 if (ret)
269                         goto disable_msix;
270         }
271
272         hcd->msix_enabled = 1;
273         return ret;
274
275 disable_msix:
276         xhci_err(xhci, "disable MSI-X interrupt\n");
277         xhci_free_irq(xhci);
278         pci_disable_msix(pdev);
279 free_entries:
280         kfree(xhci->msix_entries);
281         xhci->msix_entries = NULL;
282         return ret;
283 }
284
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288         struct usb_hcd *hcd = xhci_to_hcd(xhci);
289         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291         xhci_free_irq(xhci);
292
293         if (xhci->msix_entries) {
294                 pci_disable_msix(pdev);
295                 kfree(xhci->msix_entries);
296                 xhci->msix_entries = NULL;
297         } else {
298                 pci_disable_msi(pdev);
299         }
300
301         hcd->msix_enabled = 0;
302         return;
303 }
304
305 /*
306  * Initialize memory for HCD and xHC (one-time init).
307  *
308  * Program the PAGESIZE register, initialize the device context array, create
309  * device contexts (?), set up a command ring segment (or two?), create event
310  * ring (one for now).
311  */
312 int xhci_init(struct usb_hcd *hcd)
313 {
314         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315         int retval = 0;
316
317         xhci_dbg(xhci, "xhci_init\n");
318         spin_lock_init(&xhci->lock);
319         if (link_quirk) {
320                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322         } else {
323                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324         }
325         retval = xhci_mem_init(xhci, GFP_KERNEL);
326         xhci_dbg(xhci, "Finished xhci_init\n");
327
328         return retval;
329 }
330
331 /*-------------------------------------------------------------------------*/
332
333
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
336 {
337         unsigned long flags;
338         int temp;
339         u64 temp_64;
340         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341         int i, j;
342
343         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344
345         spin_lock_irqsave(&xhci->lock, flags);
346         temp = xhci_readl(xhci, &xhci->op_regs->status);
347         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
349                 xhci_dbg(xhci, "HW died, polling stopped.\n");
350                 spin_unlock_irqrestore(&xhci->lock, flags);
351                 return;
352         }
353
354         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
355         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
356         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
357         xhci->error_bitmask = 0;
358         xhci_dbg(xhci, "Event ring:\n");
359         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
360         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
361         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
362         temp_64 &= ~ERST_PTR_MASK;
363         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
364         xhci_dbg(xhci, "Command ring:\n");
365         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
366         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
367         xhci_dbg_cmd_ptrs(xhci);
368         for (i = 0; i < MAX_HC_SLOTS; ++i) {
369                 if (!xhci->devs[i])
370                         continue;
371                 for (j = 0; j < 31; ++j) {
372                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
373                 }
374         }
375         spin_unlock_irqrestore(&xhci->lock, flags);
376
377         if (!xhci->zombie)
378                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
379         else
380                 xhci_dbg(xhci, "Quit polling the event ring.\n");
381 }
382 #endif
383
384 static int xhci_run_finished(struct xhci_hcd *xhci)
385 {
386         if (xhci_start(xhci)) {
387                 xhci_halt(xhci);
388                 return -ENODEV;
389         }
390         xhci->shared_hcd->state = HC_STATE_RUNNING;
391
392         if (xhci->quirks & XHCI_NEC_HOST)
393                 xhci_ring_cmd_db(xhci);
394
395         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
396         return 0;
397 }
398
399 /*
400  * Start the HC after it was halted.
401  *
402  * This function is called by the USB core when the HC driver is added.
403  * Its opposite is xhci_stop().
404  *
405  * xhci_init() must be called once before this function can be called.
406  * Reset the HC, enable device slot contexts, program DCBAAP, and
407  * set command ring pointer and event ring pointer.
408  *
409  * Setup MSI-X vectors and enable interrupts.
410  */
411 int xhci_run(struct usb_hcd *hcd)
412 {
413         u32 temp;
414         u64 temp_64;
415         u32 ret;
416         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
417         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418
419         /* Start the xHCI host controller running only after the USB 2.0 roothub
420          * is setup.
421          */
422
423         hcd->uses_new_polling = 1;
424         if (!usb_hcd_is_primary_hcd(hcd))
425                 return xhci_run_finished(xhci);
426
427         xhci_dbg(xhci, "xhci_run\n");
428         /* unregister the legacy interrupt */
429         if (hcd->irq)
430                 free_irq(hcd->irq, hcd);
431         hcd->irq = -1;
432
433         ret = xhci_setup_msix(xhci);
434         if (ret)
435                 /* fall back to msi*/
436                 ret = xhci_setup_msi(xhci);
437
438         if (ret) {
439                 /* fall back to legacy interrupt*/
440                 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
441                                         hcd->irq_descr, hcd);
442                 if (ret) {
443                         xhci_err(xhci, "request interrupt %d failed\n",
444                                         pdev->irq);
445                         return ret;
446                 }
447                 hcd->irq = pdev->irq;
448         }
449
450 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
451         init_timer(&xhci->event_ring_timer);
452         xhci->event_ring_timer.data = (unsigned long) xhci;
453         xhci->event_ring_timer.function = xhci_event_ring_work;
454         /* Poll the event ring */
455         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
456         xhci->zombie = 0;
457         xhci_dbg(xhci, "Setting event ring polling timer\n");
458         add_timer(&xhci->event_ring_timer);
459 #endif
460
461         xhci_dbg(xhci, "Command ring memory map follows:\n");
462         xhci_debug_ring(xhci, xhci->cmd_ring);
463         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
464         xhci_dbg_cmd_ptrs(xhci);
465
466         xhci_dbg(xhci, "ERST memory map follows:\n");
467         xhci_dbg_erst(xhci, &xhci->erst);
468         xhci_dbg(xhci, "Event ring:\n");
469         xhci_debug_ring(xhci, xhci->event_ring);
470         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
471         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
472         temp_64 &= ~ERST_PTR_MASK;
473         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
474
475         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
476         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
477         temp &= ~ER_IRQ_INTERVAL_MASK;
478         temp |= (u32) 160;
479         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
480
481         /* Set the HCD state before we enable the irqs */
482         temp = xhci_readl(xhci, &xhci->op_regs->command);
483         temp |= (CMD_EIE);
484         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
485                         temp);
486         xhci_writel(xhci, temp, &xhci->op_regs->command);
487
488         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
489         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
490                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
491         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
492                         &xhci->ir_set->irq_pending);
493         xhci_print_ir_set(xhci, 0);
494
495         if (xhci->quirks & XHCI_NEC_HOST)
496                 xhci_queue_vendor_command(xhci, 0, 0, 0,
497                                 TRB_TYPE(TRB_NEC_GET_FW));
498
499         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
500         return 0;
501 }
502
503 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
504 {
505         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
506
507         spin_lock_irq(&xhci->lock);
508         xhci_halt(xhci);
509
510         /* The shared_hcd is going to be deallocated shortly (the USB core only
511          * calls this function when allocation fails in usb_add_hcd(), or
512          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
513          */
514         xhci->shared_hcd = NULL;
515         spin_unlock_irq(&xhci->lock);
516 }
517
518 /*
519  * Stop xHCI driver.
520  *
521  * This function is called by the USB core when the HC driver is removed.
522  * Its opposite is xhci_run().
523  *
524  * Disable device contexts, disable IRQs, and quiesce the HC.
525  * Reset the HC, finish any completed transactions, and cleanup memory.
526  */
527 void xhci_stop(struct usb_hcd *hcd)
528 {
529         u32 temp;
530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
531
532         if (!usb_hcd_is_primary_hcd(hcd)) {
533                 xhci_only_stop_hcd(xhci->shared_hcd);
534                 return;
535         }
536
537         spin_lock_irq(&xhci->lock);
538         /* Make sure the xHC is halted for a USB3 roothub
539          * (xhci_stop() could be called as part of failed init).
540          */
541         xhci_halt(xhci);
542         xhci_reset(xhci);
543         spin_unlock_irq(&xhci->lock);
544
545         xhci_cleanup_msix(xhci);
546
547 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
548         /* Tell the event ring poll function not to reschedule */
549         xhci->zombie = 1;
550         del_timer_sync(&xhci->event_ring_timer);
551 #endif
552
553         if (xhci->quirks & XHCI_AMD_PLL_FIX)
554                 usb_amd_dev_put();
555
556         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
557         temp = xhci_readl(xhci, &xhci->op_regs->status);
558         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
559         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
560         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
561                         &xhci->ir_set->irq_pending);
562         xhci_print_ir_set(xhci, 0);
563
564         xhci_dbg(xhci, "cleaning up memory\n");
565         xhci_mem_cleanup(xhci);
566         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
567                     xhci_readl(xhci, &xhci->op_regs->status));
568 }
569
570 /*
571  * Shutdown HC (not bus-specific)
572  *
573  * This is called when the machine is rebooting or halting.  We assume that the
574  * machine will be powered off, and the HC's internal state will be reset.
575  * Don't bother to free memory.
576  *
577  * This will only ever be called with the main usb_hcd (the USB3 roothub).
578  */
579 void xhci_shutdown(struct usb_hcd *hcd)
580 {
581         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
582
583         spin_lock_irq(&xhci->lock);
584         xhci_halt(xhci);
585         spin_unlock_irq(&xhci->lock);
586
587         xhci_cleanup_msix(xhci);
588
589         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
590                     xhci_readl(xhci, &xhci->op_regs->status));
591 }
592
593 #ifdef CONFIG_PM
594 static void xhci_save_registers(struct xhci_hcd *xhci)
595 {
596         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
597         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
598         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
599         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
600         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
601         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
602         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
603         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
604         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
605 }
606
607 static void xhci_restore_registers(struct xhci_hcd *xhci)
608 {
609         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
610         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
611         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
612         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
613         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
614         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
615         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
616         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
617 }
618
619 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
620 {
621         u64     val_64;
622
623         /* step 2: initialize command ring buffer */
624         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
625         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
626                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
627                                       xhci->cmd_ring->dequeue) &
628                  (u64) ~CMD_RING_RSVD_BITS) |
629                 xhci->cmd_ring->cycle_state;
630         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
631                         (long unsigned long) val_64);
632         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
633 }
634
635 /*
636  * The whole command ring must be cleared to zero when we suspend the host.
637  *
638  * The host doesn't save the command ring pointer in the suspend well, so we
639  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
640  * aligned, because of the reserved bits in the command ring dequeue pointer
641  * register.  Therefore, we can't just set the dequeue pointer back in the
642  * middle of the ring (TRBs are 16-byte aligned).
643  */
644 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
645 {
646         struct xhci_ring *ring;
647         struct xhci_segment *seg;
648
649         ring = xhci->cmd_ring;
650         seg = ring->deq_seg;
651         do {
652                 memset(seg->trbs, 0, SEGMENT_SIZE);
653                 seg = seg->next;
654         } while (seg != ring->deq_seg);
655
656         /* Reset the software enqueue and dequeue pointers */
657         ring->deq_seg = ring->first_seg;
658         ring->dequeue = ring->first_seg->trbs;
659         ring->enq_seg = ring->deq_seg;
660         ring->enqueue = ring->dequeue;
661
662         /*
663          * Ring is now zeroed, so the HW should look for change of ownership
664          * when the cycle bit is set to 1.
665          */
666         ring->cycle_state = 1;
667
668         /*
669          * Reset the hardware dequeue pointer.
670          * Yes, this will need to be re-written after resume, but we're paranoid
671          * and want to make sure the hardware doesn't access bogus memory
672          * because, say, the BIOS or an SMI started the host without changing
673          * the command ring pointers.
674          */
675         xhci_set_cmd_ring_deq(xhci);
676 }
677
678 /*
679  * Stop HC (not bus-specific)
680  *
681  * This is called when the machine transition into S3/S4 mode.
682  *
683  */
684 int xhci_suspend(struct xhci_hcd *xhci)
685 {
686         int                     rc = 0;
687         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
688         u32                     command;
689         int                     i;
690
691         spin_lock_irq(&xhci->lock);
692         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
693         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
694         /* step 1: stop endpoint */
695         /* skipped assuming that port suspend has done */
696
697         /* step 2: clear Run/Stop bit */
698         command = xhci_readl(xhci, &xhci->op_regs->command);
699         command &= ~CMD_RUN;
700         xhci_writel(xhci, command, &xhci->op_regs->command);
701         if (handshake(xhci, &xhci->op_regs->status,
702                       STS_HALT, STS_HALT, 100*100)) {
703                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
704                 spin_unlock_irq(&xhci->lock);
705                 return -ETIMEDOUT;
706         }
707         xhci_clear_command_ring(xhci);
708
709         /* step 3: save registers */
710         xhci_save_registers(xhci);
711
712         /* step 4: set CSS flag */
713         command = xhci_readl(xhci, &xhci->op_regs->command);
714         command |= CMD_CSS;
715         xhci_writel(xhci, command, &xhci->op_regs->command);
716         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
717                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
718                 spin_unlock_irq(&xhci->lock);
719                 return -ETIMEDOUT;
720         }
721         spin_unlock_irq(&xhci->lock);
722
723         /* step 5: remove core well power */
724         /* synchronize irq when using MSI-X */
725         if (xhci->msix_entries) {
726                 for (i = 0; i < xhci->msix_count; i++)
727                         synchronize_irq(xhci->msix_entries[i].vector);
728         }
729
730         return rc;
731 }
732
733 /*
734  * start xHC (not bus-specific)
735  *
736  * This is called when the machine transition from S3/S4 mode.
737  *
738  */
739 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
740 {
741         u32                     command, temp = 0;
742         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
743         struct usb_hcd          *secondary_hcd;
744         int                     retval;
745
746         /* Wait a bit if either of the roothubs need to settle from the
747          * transition into bus suspend.
748          */
749         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
750                         time_before(jiffies,
751                                 xhci->bus_state[1].next_statechange))
752                 msleep(100);
753
754         spin_lock_irq(&xhci->lock);
755
756         if (!hibernated) {
757                 /* step 1: restore register */
758                 xhci_restore_registers(xhci);
759                 /* step 2: initialize command ring buffer */
760                 xhci_set_cmd_ring_deq(xhci);
761                 /* step 3: restore state and start state*/
762                 /* step 3: set CRS flag */
763                 command = xhci_readl(xhci, &xhci->op_regs->command);
764                 command |= CMD_CRS;
765                 xhci_writel(xhci, command, &xhci->op_regs->command);
766                 if (handshake(xhci, &xhci->op_regs->status,
767                               STS_RESTORE, 0, 10*100)) {
768                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
769                         spin_unlock_irq(&xhci->lock);
770                         return -ETIMEDOUT;
771                 }
772                 temp = xhci_readl(xhci, &xhci->op_regs->status);
773         }
774
775         /* If restore operation fails, re-initialize the HC during resume */
776         if ((temp & STS_SRE) || hibernated) {
777                 /* Let the USB core know _both_ roothubs lost power. */
778                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
779                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
780
781                 xhci_dbg(xhci, "Stop HCD\n");
782                 xhci_halt(xhci);
783                 xhci_reset(xhci);
784                 spin_unlock_irq(&xhci->lock);
785                 xhci_cleanup_msix(xhci);
786
787 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
788                 /* Tell the event ring poll function not to reschedule */
789                 xhci->zombie = 1;
790                 del_timer_sync(&xhci->event_ring_timer);
791 #endif
792
793                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
794                 temp = xhci_readl(xhci, &xhci->op_regs->status);
795                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
796                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
797                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
798                                 &xhci->ir_set->irq_pending);
799                 xhci_print_ir_set(xhci, 0);
800
801                 xhci_dbg(xhci, "cleaning up memory\n");
802                 xhci_mem_cleanup(xhci);
803                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
804                             xhci_readl(xhci, &xhci->op_regs->status));
805
806                 /* USB core calls the PCI reinit and start functions twice:
807                  * first with the primary HCD, and then with the secondary HCD.
808                  * If we don't do the same, the host will never be started.
809                  */
810                 if (!usb_hcd_is_primary_hcd(hcd))
811                         secondary_hcd = hcd;
812                 else
813                         secondary_hcd = xhci->shared_hcd;
814
815                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
816                 retval = xhci_init(hcd->primary_hcd);
817                 if (retval)
818                         return retval;
819                 xhci_dbg(xhci, "Start the primary HCD\n");
820                 retval = xhci_run(hcd->primary_hcd);
821                 if (retval)
822                         goto failed_restart;
823
824                 xhci_dbg(xhci, "Start the secondary HCD\n");
825                 retval = xhci_run(secondary_hcd);
826                 if (!retval) {
827                         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
828                         set_bit(HCD_FLAG_HW_ACCESSIBLE,
829                                         &xhci->shared_hcd->flags);
830                 }
831 failed_restart:
832                 hcd->state = HC_STATE_SUSPENDED;
833                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
834                 return retval;
835         }
836
837         /* step 4: set Run/Stop bit */
838         command = xhci_readl(xhci, &xhci->op_regs->command);
839         command |= CMD_RUN;
840         xhci_writel(xhci, command, &xhci->op_regs->command);
841         handshake(xhci, &xhci->op_regs->status, STS_HALT,
842                   0, 250 * 1000);
843
844         /* step 5: walk topology and initialize portsc,
845          * portpmsc and portli
846          */
847         /* this is done in bus_resume */
848
849         /* step 6: restart each of the previously
850          * Running endpoints by ringing their doorbells
851          */
852
853         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
854         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
855
856         spin_unlock_irq(&xhci->lock);
857         return 0;
858 }
859 #endif  /* CONFIG_PM */
860
861 /*-------------------------------------------------------------------------*/
862
863 /**
864  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
865  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
866  * value to right shift 1 for the bitmask.
867  *
868  * Index  = (epnum * 2) + direction - 1,
869  * where direction = 0 for OUT, 1 for IN.
870  * For control endpoints, the IN index is used (OUT index is unused), so
871  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
872  */
873 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
874 {
875         unsigned int index;
876         if (usb_endpoint_xfer_control(desc))
877                 index = (unsigned int) (usb_endpoint_num(desc)*2);
878         else
879                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
880                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
881         return index;
882 }
883
884 /* Find the flag for this endpoint (for use in the control context).  Use the
885  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
886  * bit 1, etc.
887  */
888 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
889 {
890         return 1 << (xhci_get_endpoint_index(desc) + 1);
891 }
892
893 /* Find the flag for this endpoint (for use in the control context).  Use the
894  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
895  * bit 1, etc.
896  */
897 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
898 {
899         return 1 << (ep_index + 1);
900 }
901
902 /* Compute the last valid endpoint context index.  Basically, this is the
903  * endpoint index plus one.  For slot contexts with more than valid endpoint,
904  * we find the most significant bit set in the added contexts flags.
905  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
906  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
907  */
908 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
909 {
910         return fls(added_ctxs) - 1;
911 }
912
913 /* Returns 1 if the arguments are OK;
914  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
915  */
916 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
917                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
918                 const char *func) {
919         struct xhci_hcd *xhci;
920         struct xhci_virt_device *virt_dev;
921
922         if (!hcd || (check_ep && !ep) || !udev) {
923                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
924                                 func);
925                 return -EINVAL;
926         }
927         if (!udev->parent) {
928                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
929                                 func);
930                 return 0;
931         }
932
933         if (check_virt_dev) {
934                 xhci = hcd_to_xhci(hcd);
935                 if (!udev->slot_id || !xhci->devs
936                         || !xhci->devs[udev->slot_id]) {
937                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
938                                                 "device\n", func);
939                         return -EINVAL;
940                 }
941
942                 virt_dev = xhci->devs[udev->slot_id];
943                 if (virt_dev->udev != udev) {
944                         printk(KERN_DEBUG "xHCI %s called with udev and "
945                                           "virt_dev does not match\n", func);
946                         return -EINVAL;
947                 }
948         }
949
950         return 1;
951 }
952
953 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
954                 struct usb_device *udev, struct xhci_command *command,
955                 bool ctx_change, bool must_succeed);
956
957 /*
958  * Full speed devices may have a max packet size greater than 8 bytes, but the
959  * USB core doesn't know that until it reads the first 8 bytes of the
960  * descriptor.  If the usb_device's max packet size changes after that point,
961  * we need to issue an evaluate context command and wait on it.
962  */
963 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
964                 unsigned int ep_index, struct urb *urb)
965 {
966         struct xhci_container_ctx *in_ctx;
967         struct xhci_container_ctx *out_ctx;
968         struct xhci_input_control_ctx *ctrl_ctx;
969         struct xhci_ep_ctx *ep_ctx;
970         int max_packet_size;
971         int hw_max_packet_size;
972         int ret = 0;
973
974         out_ctx = xhci->devs[slot_id]->out_ctx;
975         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
976         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
977         max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
978         if (hw_max_packet_size != max_packet_size) {
979                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
980                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
981                                 max_packet_size);
982                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
983                                 hw_max_packet_size);
984                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
985
986                 /* Set up the modified control endpoint 0 */
987                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
988                                 xhci->devs[slot_id]->out_ctx, ep_index);
989                 in_ctx = xhci->devs[slot_id]->in_ctx;
990                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
991                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
992                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
993
994                 /* Set up the input context flags for the command */
995                 /* FIXME: This won't work if a non-default control endpoint
996                  * changes max packet sizes.
997                  */
998                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
999                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1000                 ctrl_ctx->drop_flags = 0;
1001
1002                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1003                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1004                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1005                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1006
1007                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1008                                 true, false);
1009
1010                 /* Clean up the input context for later use by bandwidth
1011                  * functions.
1012                  */
1013                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1014         }
1015         return ret;
1016 }
1017
1018 /*
1019  * non-error returns are a promise to giveback() the urb later
1020  * we drop ownership so next owner (or urb unlink) can get it
1021  */
1022 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1023 {
1024         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1025         unsigned long flags;
1026         int ret = 0;
1027         unsigned int slot_id, ep_index;
1028         struct urb_priv *urb_priv;
1029         int size, i;
1030
1031         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1032                                         true, true, __func__) <= 0)
1033                 return -EINVAL;
1034
1035         slot_id = urb->dev->slot_id;
1036         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1037
1038         if (!HCD_HW_ACCESSIBLE(hcd)) {
1039                 if (!in_interrupt())
1040                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1041                 ret = -ESHUTDOWN;
1042                 goto exit;
1043         }
1044
1045         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1046                 size = urb->number_of_packets;
1047         else
1048                 size = 1;
1049
1050         urb_priv = kzalloc(sizeof(struct urb_priv) +
1051                                   size * sizeof(struct xhci_td *), mem_flags);
1052         if (!urb_priv)
1053                 return -ENOMEM;
1054
1055         for (i = 0; i < size; i++) {
1056                 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1057                 if (!urb_priv->td[i]) {
1058                         urb_priv->length = i;
1059                         xhci_urb_free_priv(xhci, urb_priv);
1060                         return -ENOMEM;
1061                 }
1062         }
1063
1064         urb_priv->length = size;
1065         urb_priv->td_cnt = 0;
1066         urb->hcpriv = urb_priv;
1067
1068         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1069                 /* Check to see if the max packet size for the default control
1070                  * endpoint changed during FS device enumeration
1071                  */
1072                 if (urb->dev->speed == USB_SPEED_FULL) {
1073                         ret = xhci_check_maxpacket(xhci, slot_id,
1074                                         ep_index, urb);
1075                         if (ret < 0)
1076                                 return ret;
1077                 }
1078
1079                 /* We have a spinlock and interrupts disabled, so we must pass
1080                  * atomic context to this function, which may allocate memory.
1081                  */
1082                 spin_lock_irqsave(&xhci->lock, flags);
1083                 if (xhci->xhc_state & XHCI_STATE_DYING)
1084                         goto dying;
1085                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1086                                 slot_id, ep_index);
1087                 spin_unlock_irqrestore(&xhci->lock, flags);
1088         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1089                 spin_lock_irqsave(&xhci->lock, flags);
1090                 if (xhci->xhc_state & XHCI_STATE_DYING)
1091                         goto dying;
1092                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1093                                 EP_GETTING_STREAMS) {
1094                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1095                                         "is transitioning to using streams.\n");
1096                         ret = -EINVAL;
1097                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1098                                 EP_GETTING_NO_STREAMS) {
1099                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1100                                         "is transitioning to "
1101                                         "not having streams.\n");
1102                         ret = -EINVAL;
1103                 } else {
1104                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1105                                         slot_id, ep_index);
1106                 }
1107                 spin_unlock_irqrestore(&xhci->lock, flags);
1108         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1109                 spin_lock_irqsave(&xhci->lock, flags);
1110                 if (xhci->xhc_state & XHCI_STATE_DYING)
1111                         goto dying;
1112                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1113                                 slot_id, ep_index);
1114                 spin_unlock_irqrestore(&xhci->lock, flags);
1115         } else {
1116                 spin_lock_irqsave(&xhci->lock, flags);
1117                 if (xhci->xhc_state & XHCI_STATE_DYING)
1118                         goto dying;
1119                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1120                                 slot_id, ep_index);
1121                 spin_unlock_irqrestore(&xhci->lock, flags);
1122         }
1123 exit:
1124         return ret;
1125 dying:
1126         xhci_urb_free_priv(xhci, urb_priv);
1127         urb->hcpriv = NULL;
1128         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1129                         "non-responsive xHCI host.\n",
1130                         urb->ep->desc.bEndpointAddress, urb);
1131         spin_unlock_irqrestore(&xhci->lock, flags);
1132         return -ESHUTDOWN;
1133 }
1134
1135 /* Get the right ring for the given URB.
1136  * If the endpoint supports streams, boundary check the URB's stream ID.
1137  * If the endpoint doesn't support streams, return the singular endpoint ring.
1138  */
1139 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1140                 struct urb *urb)
1141 {
1142         unsigned int slot_id;
1143         unsigned int ep_index;
1144         unsigned int stream_id;
1145         struct xhci_virt_ep *ep;
1146
1147         slot_id = urb->dev->slot_id;
1148         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1149         stream_id = urb->stream_id;
1150         ep = &xhci->devs[slot_id]->eps[ep_index];
1151         /* Common case: no streams */
1152         if (!(ep->ep_state & EP_HAS_STREAMS))
1153                 return ep->ring;
1154
1155         if (stream_id == 0) {
1156                 xhci_warn(xhci,
1157                                 "WARN: Slot ID %u, ep index %u has streams, "
1158                                 "but URB has no stream ID.\n",
1159                                 slot_id, ep_index);
1160                 return NULL;
1161         }
1162
1163         if (stream_id < ep->stream_info->num_streams)
1164                 return ep->stream_info->stream_rings[stream_id];
1165
1166         xhci_warn(xhci,
1167                         "WARN: Slot ID %u, ep index %u has "
1168                         "stream IDs 1 to %u allocated, "
1169                         "but stream ID %u is requested.\n",
1170                         slot_id, ep_index,
1171                         ep->stream_info->num_streams - 1,
1172                         stream_id);
1173         return NULL;
1174 }
1175
1176 /*
1177  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1178  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1179  * should pick up where it left off in the TD, unless a Set Transfer Ring
1180  * Dequeue Pointer is issued.
1181  *
1182  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1183  * the ring.  Since the ring is a contiguous structure, they can't be physically
1184  * removed.  Instead, there are two options:
1185  *
1186  *  1) If the HC is in the middle of processing the URB to be canceled, we
1187  *     simply move the ring's dequeue pointer past those TRBs using the Set
1188  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1189  *     when drivers timeout on the last submitted URB and attempt to cancel.
1190  *
1191  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1192  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1193  *     HC will need to invalidate the any TRBs it has cached after the stop
1194  *     endpoint command, as noted in the xHCI 0.95 errata.
1195  *
1196  *  3) The TD may have completed by the time the Stop Endpoint Command
1197  *     completes, so software needs to handle that case too.
1198  *
1199  * This function should protect against the TD enqueueing code ringing the
1200  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1201  * It also needs to account for multiple cancellations on happening at the same
1202  * time for the same endpoint.
1203  *
1204  * Note that this function can be called in any context, or so says
1205  * usb_hcd_unlink_urb()
1206  */
1207 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1208 {
1209         unsigned long flags;
1210         int ret, i;
1211         u32 temp;
1212         struct xhci_hcd *xhci;
1213         struct urb_priv *urb_priv;
1214         struct xhci_td *td;
1215         unsigned int ep_index;
1216         struct xhci_ring *ep_ring;
1217         struct xhci_virt_ep *ep;
1218
1219         xhci = hcd_to_xhci(hcd);
1220         spin_lock_irqsave(&xhci->lock, flags);
1221         /* Make sure the URB hasn't completed or been unlinked already */
1222         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1223         if (ret || !urb->hcpriv)
1224                 goto done;
1225         temp = xhci_readl(xhci, &xhci->op_regs->status);
1226         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1227                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1228                 urb_priv = urb->hcpriv;
1229
1230                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1231                 spin_unlock_irqrestore(&xhci->lock, flags);
1232                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1233                 xhci_urb_free_priv(xhci, urb_priv);
1234                 return ret;
1235         }
1236         if (xhci->xhc_state & XHCI_STATE_DYING) {
1237                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1238                                 "non-responsive xHCI host.\n",
1239                                 urb->ep->desc.bEndpointAddress, urb);
1240                 /* Let the stop endpoint command watchdog timer (which set this
1241                  * state) finish cleaning up the endpoint TD lists.  We must
1242                  * have caught it in the middle of dropping a lock and giving
1243                  * back an URB.
1244                  */
1245                 goto done;
1246         }
1247
1248         xhci_dbg(xhci, "Cancel URB %p\n", urb);
1249         xhci_dbg(xhci, "Event ring:\n");
1250         xhci_debug_ring(xhci, xhci->event_ring);
1251         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1252         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1253         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1254         if (!ep_ring) {
1255                 ret = -EINVAL;
1256                 goto done;
1257         }
1258
1259         xhci_dbg(xhci, "Endpoint ring:\n");
1260         xhci_debug_ring(xhci, ep_ring);
1261
1262         urb_priv = urb->hcpriv;
1263
1264         for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1265                 td = urb_priv->td[i];
1266                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1267         }
1268
1269         /* Queue a stop endpoint command, but only if this is
1270          * the first cancellation to be handled.
1271          */
1272         if (!(ep->ep_state & EP_HALT_PENDING)) {
1273                 ep->ep_state |= EP_HALT_PENDING;
1274                 ep->stop_cmds_pending++;
1275                 ep->stop_cmd_timer.expires = jiffies +
1276                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1277                 add_timer(&ep->stop_cmd_timer);
1278                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1279                 xhci_ring_cmd_db(xhci);
1280         }
1281 done:
1282         spin_unlock_irqrestore(&xhci->lock, flags);
1283         return ret;
1284 }
1285
1286 /* Drop an endpoint from a new bandwidth configuration for this device.
1287  * Only one call to this function is allowed per endpoint before
1288  * check_bandwidth() or reset_bandwidth() must be called.
1289  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1290  * add the endpoint to the schedule with possibly new parameters denoted by a
1291  * different endpoint descriptor in usb_host_endpoint.
1292  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1293  * not allowed.
1294  *
1295  * The USB core will not allow URBs to be queued to an endpoint that is being
1296  * disabled, so there's no need for mutual exclusion to protect
1297  * the xhci->devs[slot_id] structure.
1298  */
1299 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1300                 struct usb_host_endpoint *ep)
1301 {
1302         struct xhci_hcd *xhci;
1303         struct xhci_container_ctx *in_ctx, *out_ctx;
1304         struct xhci_input_control_ctx *ctrl_ctx;
1305         struct xhci_slot_ctx *slot_ctx;
1306         unsigned int last_ctx;
1307         unsigned int ep_index;
1308         struct xhci_ep_ctx *ep_ctx;
1309         u32 drop_flag;
1310         u32 new_add_flags, new_drop_flags, new_slot_info;
1311         int ret;
1312
1313         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1314         if (ret <= 0)
1315                 return ret;
1316         xhci = hcd_to_xhci(hcd);
1317         if (xhci->xhc_state & XHCI_STATE_DYING)
1318                 return -ENODEV;
1319
1320         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1321         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1322         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1323                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1324                                 __func__, drop_flag);
1325                 return 0;
1326         }
1327
1328         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1329         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1330         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1331         ep_index = xhci_get_endpoint_index(&ep->desc);
1332         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1333         /* If the HC already knows the endpoint is disabled,
1334          * or the HCD has noted it is disabled, ignore this request
1335          */
1336         if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1337             EP_STATE_DISABLED ||
1338             le32_to_cpu(ctrl_ctx->drop_flags) &
1339             xhci_get_endpoint_flag(&ep->desc)) {
1340                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1341                                 __func__, ep);
1342                 return 0;
1343         }
1344
1345         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1346         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1347
1348         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1349         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1350
1351         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1352         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1353         /* Update the last valid endpoint context, if we deleted the last one */
1354         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1355             LAST_CTX(last_ctx)) {
1356                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1357                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1358         }
1359         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1360
1361         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1362
1363         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1364                         (unsigned int) ep->desc.bEndpointAddress,
1365                         udev->slot_id,
1366                         (unsigned int) new_drop_flags,
1367                         (unsigned int) new_add_flags,
1368                         (unsigned int) new_slot_info);
1369         return 0;
1370 }
1371
1372 /* Add an endpoint to a new possible bandwidth configuration for this device.
1373  * Only one call to this function is allowed per endpoint before
1374  * check_bandwidth() or reset_bandwidth() must be called.
1375  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1376  * add the endpoint to the schedule with possibly new parameters denoted by a
1377  * different endpoint descriptor in usb_host_endpoint.
1378  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1379  * not allowed.
1380  *
1381  * The USB core will not allow URBs to be queued to an endpoint until the
1382  * configuration or alt setting is installed in the device, so there's no need
1383  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1384  */
1385 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1386                 struct usb_host_endpoint *ep)
1387 {
1388         struct xhci_hcd *xhci;
1389         struct xhci_container_ctx *in_ctx, *out_ctx;
1390         unsigned int ep_index;
1391         struct xhci_ep_ctx *ep_ctx;
1392         struct xhci_slot_ctx *slot_ctx;
1393         struct xhci_input_control_ctx *ctrl_ctx;
1394         u32 added_ctxs;
1395         unsigned int last_ctx;
1396         u32 new_add_flags, new_drop_flags, new_slot_info;
1397         int ret = 0;
1398
1399         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1400         if (ret <= 0) {
1401                 /* So we won't queue a reset ep command for a root hub */
1402                 ep->hcpriv = NULL;
1403                 return ret;
1404         }
1405         xhci = hcd_to_xhci(hcd);
1406         if (xhci->xhc_state & XHCI_STATE_DYING)
1407                 return -ENODEV;
1408
1409         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1410         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1411         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1412                 /* FIXME when we have to issue an evaluate endpoint command to
1413                  * deal with ep0 max packet size changing once we get the
1414                  * descriptors
1415                  */
1416                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1417                                 __func__, added_ctxs);
1418                 return 0;
1419         }
1420
1421         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1422         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1423         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1424         ep_index = xhci_get_endpoint_index(&ep->desc);
1425         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1426         /* If the HCD has already noted the endpoint is enabled,
1427          * ignore this request.
1428          */
1429         if (le32_to_cpu(ctrl_ctx->add_flags) &
1430             xhci_get_endpoint_flag(&ep->desc)) {
1431                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1432                                 __func__, ep);
1433                 return 0;
1434         }
1435
1436         /*
1437          * Configuration and alternate setting changes must be done in
1438          * process context, not interrupt context (or so documenation
1439          * for usb_set_interface() and usb_set_configuration() claim).
1440          */
1441         if (xhci_endpoint_init(xhci, xhci->devs[udev->slot_id],
1442                                 udev, ep, GFP_NOIO) < 0) {
1443                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1444                                 __func__, ep->desc.bEndpointAddress);
1445                 return -ENOMEM;
1446         }
1447
1448         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1449         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1450
1451         /* If xhci_endpoint_disable() was called for this endpoint, but the
1452          * xHC hasn't been notified yet through the check_bandwidth() call,
1453          * this re-adds a new state for the endpoint from the new endpoint
1454          * descriptors.  We must drop and re-add this endpoint, so we leave the
1455          * drop flags alone.
1456          */
1457         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1458
1459         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1460         /* Update the last valid endpoint context, if we just added one past */
1461         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1462             LAST_CTX(last_ctx)) {
1463                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1464                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1465         }
1466         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1467
1468         /* Store the usb_device pointer for later use */
1469         ep->hcpriv = udev;
1470
1471         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1472                         (unsigned int) ep->desc.bEndpointAddress,
1473                         udev->slot_id,
1474                         (unsigned int) new_drop_flags,
1475                         (unsigned int) new_add_flags,
1476                         (unsigned int) new_slot_info);
1477         return 0;
1478 }
1479
1480 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1481 {
1482         struct xhci_input_control_ctx *ctrl_ctx;
1483         struct xhci_ep_ctx *ep_ctx;
1484         struct xhci_slot_ctx *slot_ctx;
1485         int i;
1486
1487         /* When a device's add flag and drop flag are zero, any subsequent
1488          * configure endpoint command will leave that endpoint's state
1489          * untouched.  Make sure we don't leave any old state in the input
1490          * endpoint contexts.
1491          */
1492         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1493         ctrl_ctx->drop_flags = 0;
1494         ctrl_ctx->add_flags = 0;
1495         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1496         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1497         /* Endpoint 0 is always valid */
1498         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1499         for (i = 1; i < 31; ++i) {
1500                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1501                 ep_ctx->ep_info = 0;
1502                 ep_ctx->ep_info2 = 0;
1503                 ep_ctx->deq = 0;
1504                 ep_ctx->tx_info = 0;
1505         }
1506 }
1507
1508 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1509                 struct usb_device *udev, u32 *cmd_status)
1510 {
1511         int ret;
1512
1513         switch (*cmd_status) {
1514         case COMP_ENOMEM:
1515                 dev_warn(&udev->dev, "Not enough host controller resources "
1516                                 "for new device state.\n");
1517                 ret = -ENOMEM;
1518                 /* FIXME: can we allocate more resources for the HC? */
1519                 break;
1520         case COMP_BW_ERR:
1521                 dev_warn(&udev->dev, "Not enough bandwidth "
1522                                 "for new device state.\n");
1523                 ret = -ENOSPC;
1524                 /* FIXME: can we go back to the old state? */
1525                 break;
1526         case COMP_TRB_ERR:
1527                 /* the HCD set up something wrong */
1528                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1529                                 "add flag = 1, "
1530                                 "and endpoint is not disabled.\n");
1531                 ret = -EINVAL;
1532                 break;
1533         case COMP_SUCCESS:
1534                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1535                 ret = 0;
1536                 break;
1537         default:
1538                 xhci_err(xhci, "ERROR: unexpected command completion "
1539                                 "code 0x%x.\n", *cmd_status);
1540                 ret = -EINVAL;
1541                 break;
1542         }
1543         return ret;
1544 }
1545
1546 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1547                 struct usb_device *udev, u32 *cmd_status)
1548 {
1549         int ret;
1550         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1551
1552         switch (*cmd_status) {
1553         case COMP_EINVAL:
1554                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1555                                 "context command.\n");
1556                 ret = -EINVAL;
1557                 break;
1558         case COMP_EBADSLT:
1559                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1560                                 "evaluate context command.\n");
1561         case COMP_CTX_STATE:
1562                 dev_warn(&udev->dev, "WARN: invalid context state for "
1563                                 "evaluate context command.\n");
1564                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1565                 ret = -EINVAL;
1566                 break;
1567         case COMP_MEL_ERR:
1568                 /* Max Exit Latency too large error */
1569                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1570                 ret = -EINVAL;
1571                 break;
1572         case COMP_SUCCESS:
1573                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1574                 ret = 0;
1575                 break;
1576         default:
1577                 xhci_err(xhci, "ERROR: unexpected command completion "
1578                                 "code 0x%x.\n", *cmd_status);
1579                 ret = -EINVAL;
1580                 break;
1581         }
1582         return ret;
1583 }
1584
1585 /* Issue a configure endpoint command or evaluate context command
1586  * and wait for it to finish.
1587  */
1588 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1589                 struct usb_device *udev,
1590                 struct xhci_command *command,
1591                 bool ctx_change, bool must_succeed)
1592 {
1593         int ret;
1594         int timeleft;
1595         unsigned long flags;
1596         struct xhci_container_ctx *in_ctx;
1597         struct completion *cmd_completion;
1598         u32 *cmd_status;
1599         struct xhci_virt_device *virt_dev;
1600
1601         spin_lock_irqsave(&xhci->lock, flags);
1602         virt_dev = xhci->devs[udev->slot_id];
1603         if (command) {
1604                 in_ctx = command->in_ctx;
1605                 cmd_completion = command->completion;
1606                 cmd_status = &command->status;
1607                 command->command_trb = xhci->cmd_ring->enqueue;
1608
1609                 /* Enqueue pointer can be left pointing to the link TRB,
1610                  * we must handle that
1611                  */
1612                 if ((le32_to_cpu(command->command_trb->link.control)
1613                      & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
1614                         command->command_trb =
1615                                 xhci->cmd_ring->enq_seg->next->trbs;
1616
1617                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1618         } else {
1619                 in_ctx = virt_dev->in_ctx;
1620                 cmd_completion = &virt_dev->cmd_completion;
1621                 cmd_status = &virt_dev->cmd_status;
1622         }
1623         init_completion(cmd_completion);
1624
1625         if (!ctx_change)
1626                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1627                                 udev->slot_id, must_succeed);
1628         else
1629                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1630                                 udev->slot_id);
1631         if (ret < 0) {
1632                 if (command)
1633                         list_del(&command->cmd_list);
1634                 spin_unlock_irqrestore(&xhci->lock, flags);
1635                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1636                 return -ENOMEM;
1637         }
1638         xhci_ring_cmd_db(xhci);
1639         spin_unlock_irqrestore(&xhci->lock, flags);
1640
1641         /* Wait for the configure endpoint command to complete */
1642         timeleft = wait_for_completion_interruptible_timeout(
1643                         cmd_completion,
1644                         USB_CTRL_SET_TIMEOUT);
1645         if (timeleft <= 0) {
1646                 xhci_warn(xhci, "%s while waiting for %s command\n",
1647                                 timeleft == 0 ? "Timeout" : "Signal",
1648                                 ctx_change == 0 ?
1649                                         "configure endpoint" :
1650                                         "evaluate context");
1651                 /* FIXME cancel the configure endpoint command */
1652                 return -ETIME;
1653         }
1654
1655         if (!ctx_change)
1656                 return xhci_configure_endpoint_result(xhci, udev, cmd_status);
1657         return xhci_evaluate_context_result(xhci, udev, cmd_status);
1658 }
1659
1660 /* Called after one or more calls to xhci_add_endpoint() or
1661  * xhci_drop_endpoint().  If this call fails, the USB core is expected
1662  * to call xhci_reset_bandwidth().
1663  *
1664  * Since we are in the middle of changing either configuration or
1665  * installing a new alt setting, the USB core won't allow URBs to be
1666  * enqueued for any endpoint on the old config or interface.  Nothing
1667  * else should be touching the xhci->devs[slot_id] structure, so we
1668  * don't need to take the xhci->lock for manipulating that.
1669  */
1670 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1671 {
1672         int i;
1673         int ret = 0;
1674         struct xhci_hcd *xhci;
1675         struct xhci_virt_device *virt_dev;
1676         struct xhci_input_control_ctx *ctrl_ctx;
1677         struct xhci_slot_ctx *slot_ctx;
1678
1679         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1680         if (ret <= 0)
1681                 return ret;
1682         xhci = hcd_to_xhci(hcd);
1683         if (xhci->xhc_state & XHCI_STATE_DYING)
1684                 return -ENODEV;
1685
1686         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1687         virt_dev = xhci->devs[udev->slot_id];
1688
1689         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1690         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1691         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1692         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1693         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1694         xhci_dbg(xhci, "New Input Control Context:\n");
1695         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1696         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1697                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1698
1699         ret = xhci_configure_endpoint(xhci, udev, NULL,
1700                         false, false);
1701         if (ret) {
1702                 /* Callee should call reset_bandwidth() */
1703                 return ret;
1704         }
1705
1706         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1707         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1708                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1709
1710         /* Free any rings that were dropped, but not changed. */
1711         for (i = 1; i < 31; ++i) {
1712                 if ((ctrl_ctx->drop_flags & (1 << (i + 1))) &&
1713                                 !(ctrl_ctx->add_flags & (1 << (i + 1))))
1714                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1715         }
1716         xhci_zero_in_ctx(xhci, virt_dev);
1717         /*
1718          * Install any rings for completely new endpoints or changed endpoints,
1719          * and free or cache any old rings from changed endpoints.
1720          */
1721         for (i = 1; i < 31; ++i) {
1722                 if (!virt_dev->eps[i].new_ring)
1723                         continue;
1724                 /* Only cache or free the old ring if it exists.
1725                  * It may not if this is the first add of an endpoint.
1726                  */
1727                 if (virt_dev->eps[i].ring) {
1728                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1729                 }
1730                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1731                 virt_dev->eps[i].new_ring = NULL;
1732         }
1733
1734         return ret;
1735 }
1736
1737 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1738 {
1739         struct xhci_hcd *xhci;
1740         struct xhci_virt_device *virt_dev;
1741         int i, ret;
1742
1743         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1744         if (ret <= 0)
1745                 return;
1746         xhci = hcd_to_xhci(hcd);
1747
1748         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1749         virt_dev = xhci->devs[udev->slot_id];
1750         /* Free any rings allocated for added endpoints */
1751         for (i = 0; i < 31; ++i) {
1752                 if (virt_dev->eps[i].new_ring) {
1753                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1754                         virt_dev->eps[i].new_ring = NULL;
1755                 }
1756         }
1757         xhci_zero_in_ctx(xhci, virt_dev);
1758 }
1759
1760 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1761                 struct xhci_container_ctx *in_ctx,
1762                 struct xhci_container_ctx *out_ctx,
1763                 u32 add_flags, u32 drop_flags)
1764 {
1765         struct xhci_input_control_ctx *ctrl_ctx;
1766         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1767         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1768         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1769         xhci_slot_copy(xhci, in_ctx, out_ctx);
1770         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1771
1772         xhci_dbg(xhci, "Input Context:\n");
1773         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1774 }
1775
1776 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1777                 unsigned int slot_id, unsigned int ep_index,
1778                 struct xhci_dequeue_state *deq_state)
1779 {
1780         struct xhci_container_ctx *in_ctx;
1781         struct xhci_ep_ctx *ep_ctx;
1782         u32 added_ctxs;
1783         dma_addr_t addr;
1784
1785         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1786                         xhci->devs[slot_id]->out_ctx, ep_index);
1787         in_ctx = xhci->devs[slot_id]->in_ctx;
1788         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1789         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1790                         deq_state->new_deq_ptr);
1791         if (addr == 0) {
1792                 xhci_warn(xhci, "WARN Cannot submit config ep after "
1793                                 "reset ep command\n");
1794                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1795                                 deq_state->new_deq_seg,
1796                                 deq_state->new_deq_ptr);
1797                 return;
1798         }
1799         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1800
1801         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1802         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1803                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1804 }
1805
1806 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1807                 struct usb_device *udev, unsigned int ep_index)
1808 {
1809         struct xhci_dequeue_state deq_state;
1810         struct xhci_virt_ep *ep;
1811
1812         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1813         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1814         /* We need to move the HW's dequeue pointer past this TD,
1815          * or it will attempt to resend it on the next doorbell ring.
1816          */
1817         xhci_find_new_dequeue_state(xhci, udev->slot_id,
1818                         ep_index, ep->stopped_stream, ep->stopped_td,
1819                         &deq_state);
1820
1821         /* HW with the reset endpoint quirk will use the saved dequeue state to
1822          * issue a configure endpoint command later.
1823          */
1824         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1825                 xhci_dbg(xhci, "Queueing new dequeue state\n");
1826                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1827                                 ep_index, ep->stopped_stream, &deq_state);
1828         } else {
1829                 /* Better hope no one uses the input context between now and the
1830                  * reset endpoint completion!
1831                  * XXX: No idea how this hardware will react when stream rings
1832                  * are enabled.
1833                  */
1834                 xhci_dbg(xhci, "Setting up input context for "
1835                                 "configure endpoint command\n");
1836                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
1837                                 ep_index, &deq_state);
1838         }
1839 }
1840
1841 /* Deal with stalled endpoints.  The core should have sent the control message
1842  * to clear the halt condition.  However, we need to make the xHCI hardware
1843  * reset its sequence number, since a device will expect a sequence number of
1844  * zero after the halt condition is cleared.
1845  * Context: in_interrupt
1846  */
1847 void xhci_endpoint_reset(struct usb_hcd *hcd,
1848                 struct usb_host_endpoint *ep)
1849 {
1850         struct xhci_hcd *xhci;
1851         struct usb_device *udev;
1852         unsigned int ep_index;
1853         unsigned long flags;
1854         int ret;
1855         struct xhci_virt_ep *virt_ep;
1856
1857         xhci = hcd_to_xhci(hcd);
1858         udev = (struct usb_device *) ep->hcpriv;
1859         /* Called with a root hub endpoint (or an endpoint that wasn't added
1860          * with xhci_add_endpoint()
1861          */
1862         if (!ep->hcpriv)
1863                 return;
1864         ep_index = xhci_get_endpoint_index(&ep->desc);
1865         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1866         if (!virt_ep->stopped_td) {
1867                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
1868                                 ep->desc.bEndpointAddress);
1869                 return;
1870         }
1871         if (usb_endpoint_xfer_control(&ep->desc)) {
1872                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
1873                 return;
1874         }
1875
1876         xhci_dbg(xhci, "Queueing reset endpoint command\n");
1877         spin_lock_irqsave(&xhci->lock, flags);
1878         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
1879         /*
1880          * Can't change the ring dequeue pointer until it's transitioned to the
1881          * stopped state, which is only upon a successful reset endpoint
1882          * command.  Better hope that last command worked!
1883          */
1884         if (!ret) {
1885                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
1886                 kfree(virt_ep->stopped_td);
1887                 xhci_ring_cmd_db(xhci);
1888         }
1889         virt_ep->stopped_td = NULL;
1890         virt_ep->stopped_trb = NULL;
1891         virt_ep->stopped_stream = 0;
1892         spin_unlock_irqrestore(&xhci->lock, flags);
1893
1894         if (ret)
1895                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
1896 }
1897
1898 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
1899                 struct usb_device *udev, struct usb_host_endpoint *ep,
1900                 unsigned int slot_id)
1901 {
1902         int ret;
1903         unsigned int ep_index;
1904         unsigned int ep_state;
1905
1906         if (!ep)
1907                 return -EINVAL;
1908         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
1909         if (ret <= 0)
1910                 return -EINVAL;
1911         if (ep->ss_ep_comp.bmAttributes == 0) {
1912                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
1913                                 " descriptor for ep 0x%x does not support streams\n",
1914                                 ep->desc.bEndpointAddress);
1915                 return -EINVAL;
1916         }
1917
1918         ep_index = xhci_get_endpoint_index(&ep->desc);
1919         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1920         if (ep_state & EP_HAS_STREAMS ||
1921                         ep_state & EP_GETTING_STREAMS) {
1922                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
1923                                 "already has streams set up.\n",
1924                                 ep->desc.bEndpointAddress);
1925                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
1926                                 "dynamic stream context array reallocation.\n");
1927                 return -EINVAL;
1928         }
1929         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
1930                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
1931                                 "endpoint 0x%x; URBs are pending.\n",
1932                                 ep->desc.bEndpointAddress);
1933                 return -EINVAL;
1934         }
1935         return 0;
1936 }
1937
1938 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
1939                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
1940 {
1941         unsigned int max_streams;
1942
1943         /* The stream context array size must be a power of two */
1944         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
1945         /*
1946          * Find out how many primary stream array entries the host controller
1947          * supports.  Later we may use secondary stream arrays (similar to 2nd
1948          * level page entries), but that's an optional feature for xHCI host
1949          * controllers. xHCs must support at least 4 stream IDs.
1950          */
1951         max_streams = HCC_MAX_PSA(xhci->hcc_params);
1952         if (*num_stream_ctxs > max_streams) {
1953                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
1954                                 max_streams);
1955                 *num_stream_ctxs = max_streams;
1956                 *num_streams = max_streams;
1957         }
1958 }
1959
1960 /* Returns an error code if one of the endpoint already has streams.
1961  * This does not change any data structures, it only checks and gathers
1962  * information.
1963  */
1964 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
1965                 struct usb_device *udev,
1966                 struct usb_host_endpoint **eps, unsigned int num_eps,
1967                 unsigned int *num_streams, u32 *changed_ep_bitmask)
1968 {
1969         unsigned int max_streams;
1970         unsigned int endpoint_flag;
1971         int i;
1972         int ret;
1973
1974         for (i = 0; i < num_eps; i++) {
1975                 ret = xhci_check_streams_endpoint(xhci, udev,
1976                                 eps[i], udev->slot_id);
1977                 if (ret < 0)
1978                         return ret;
1979
1980                 max_streams = USB_SS_MAX_STREAMS(
1981                                 eps[i]->ss_ep_comp.bmAttributes);
1982                 if (max_streams < (*num_streams - 1)) {
1983                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
1984                                         eps[i]->desc.bEndpointAddress,
1985                                         max_streams);
1986                         *num_streams = max_streams+1;
1987                 }
1988
1989                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
1990                 if (*changed_ep_bitmask & endpoint_flag)
1991                         return -EINVAL;
1992                 *changed_ep_bitmask |= endpoint_flag;
1993         }
1994         return 0;
1995 }
1996
1997 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
1998                 struct usb_device *udev,
1999                 struct usb_host_endpoint **eps, unsigned int num_eps)
2000 {
2001         u32 changed_ep_bitmask = 0;
2002         unsigned int slot_id;
2003         unsigned int ep_index;
2004         unsigned int ep_state;
2005         int i;
2006
2007         slot_id = udev->slot_id;
2008         if (!xhci->devs[slot_id])
2009                 return 0;
2010
2011         for (i = 0; i < num_eps; i++) {
2012                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2013                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2014                 /* Are streams already being freed for the endpoint? */
2015                 if (ep_state & EP_GETTING_NO_STREAMS) {
2016                         xhci_warn(xhci, "WARN Can't disable streams for "
2017                                         "endpoint 0x%x\n, "
2018                                         "streams are being disabled already.",
2019                                         eps[i]->desc.bEndpointAddress);
2020                         return 0;
2021                 }
2022                 /* Are there actually any streams to free? */
2023                 if (!(ep_state & EP_HAS_STREAMS) &&
2024                                 !(ep_state & EP_GETTING_STREAMS)) {
2025                         xhci_warn(xhci, "WARN Can't disable streams for "
2026                                         "endpoint 0x%x\n, "
2027                                         "streams are already disabled!",
2028                                         eps[i]->desc.bEndpointAddress);
2029                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2030                                         "with non-streams endpoint\n");
2031                         return 0;
2032                 }
2033                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2034         }
2035         return changed_ep_bitmask;
2036 }
2037
2038 /*
2039  * The USB device drivers use this function (though the HCD interface in USB
2040  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2041  * coordinate mass storage command queueing across multiple endpoints (basically
2042  * a stream ID == a task ID).
2043  *
2044  * Setting up streams involves allocating the same size stream context array
2045  * for each endpoint and issuing a configure endpoint command for all endpoints.
2046  *
2047  * Don't allow the call to succeed if one endpoint only supports one stream
2048  * (which means it doesn't support streams at all).
2049  *
2050  * Drivers may get less stream IDs than they asked for, if the host controller
2051  * hardware or endpoints claim they can't support the number of requested
2052  * stream IDs.
2053  */
2054 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2055                 struct usb_host_endpoint **eps, unsigned int num_eps,
2056                 unsigned int num_streams, gfp_t mem_flags)
2057 {
2058         int i, ret;
2059         struct xhci_hcd *xhci;
2060         struct xhci_virt_device *vdev;
2061         struct xhci_command *config_cmd;
2062         unsigned int ep_index;
2063         unsigned int num_stream_ctxs;
2064         unsigned long flags;
2065         u32 changed_ep_bitmask = 0;
2066
2067         if (!eps)
2068                 return -EINVAL;
2069
2070         /* Add one to the number of streams requested to account for
2071          * stream 0 that is reserved for xHCI usage.
2072          */
2073         num_streams += 1;
2074         xhci = hcd_to_xhci(hcd);
2075         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2076                         num_streams);
2077
2078         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2079         if (!config_cmd) {
2080                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2081                 return -ENOMEM;
2082         }
2083
2084         /* Check to make sure all endpoints are not already configured for
2085          * streams.  While we're at it, find the maximum number of streams that
2086          * all the endpoints will support and check for duplicate endpoints.
2087          */
2088         spin_lock_irqsave(&xhci->lock, flags);
2089         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2090                         num_eps, &num_streams, &changed_ep_bitmask);
2091         if (ret < 0) {
2092                 xhci_free_command(xhci, config_cmd);
2093                 spin_unlock_irqrestore(&xhci->lock, flags);
2094                 return ret;
2095         }
2096         if (num_streams <= 1) {
2097                 xhci_warn(xhci, "WARN: endpoints can't handle "
2098                                 "more than one stream.\n");
2099                 xhci_free_command(xhci, config_cmd);
2100                 spin_unlock_irqrestore(&xhci->lock, flags);
2101                 return -EINVAL;
2102         }
2103         vdev = xhci->devs[udev->slot_id];
2104         /* Mark each endpoint as being in transition, so
2105          * xhci_urb_enqueue() will reject all URBs.
2106          */
2107         for (i = 0; i < num_eps; i++) {
2108                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2109                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2110         }
2111         spin_unlock_irqrestore(&xhci->lock, flags);
2112
2113         /* Setup internal data structures and allocate HW data structures for
2114          * streams (but don't install the HW structures in the input context
2115          * until we're sure all memory allocation succeeded).
2116          */
2117         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2118         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2119                         num_stream_ctxs, num_streams);
2120
2121         for (i = 0; i < num_eps; i++) {
2122                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2123                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2124                                 num_stream_ctxs,
2125                                 num_streams, mem_flags);
2126                 if (!vdev->eps[ep_index].stream_info)
2127                         goto cleanup;
2128                 /* Set maxPstreams in endpoint context and update deq ptr to
2129                  * point to stream context array. FIXME
2130                  */
2131         }
2132
2133         /* Set up the input context for a configure endpoint command. */
2134         for (i = 0; i < num_eps; i++) {
2135                 struct xhci_ep_ctx *ep_ctx;
2136
2137                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2138                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2139
2140                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2141                                 vdev->out_ctx, ep_index);
2142                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2143                                 vdev->eps[ep_index].stream_info);
2144         }
2145         /* Tell the HW to drop its old copy of the endpoint context info
2146          * and add the updated copy from the input context.
2147          */
2148         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2149                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2150
2151         /* Issue and wait for the configure endpoint command */
2152         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2153                         false, false);
2154
2155         /* xHC rejected the configure endpoint command for some reason, so we
2156          * leave the old ring intact and free our internal streams data
2157          * structure.
2158          */
2159         if (ret < 0)
2160                 goto cleanup;
2161
2162         spin_lock_irqsave(&xhci->lock, flags);
2163         for (i = 0; i < num_eps; i++) {
2164                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2165                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2166                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2167                          udev->slot_id, ep_index);
2168                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2169         }
2170         xhci_free_command(xhci, config_cmd);
2171         spin_unlock_irqrestore(&xhci->lock, flags);
2172
2173         /* Subtract 1 for stream 0, which drivers can't use */
2174         return num_streams - 1;
2175
2176 cleanup:
2177         /* If it didn't work, free the streams! */
2178         for (i = 0; i < num_eps; i++) {
2179                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2180                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2181                 vdev->eps[ep_index].stream_info = NULL;
2182                 /* FIXME Unset maxPstreams in endpoint context and
2183                  * update deq ptr to point to normal string ring.
2184                  */
2185                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2186                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2187                 xhci_endpoint_zero(xhci, vdev, eps[i]);
2188         }
2189         xhci_free_command(xhci, config_cmd);
2190         return -ENOMEM;
2191 }
2192
2193 /* Transition the endpoint from using streams to being a "normal" endpoint
2194  * without streams.
2195  *
2196  * Modify the endpoint context state, submit a configure endpoint command,
2197  * and free all endpoint rings for streams if that completes successfully.
2198  */
2199 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2200                 struct usb_host_endpoint **eps, unsigned int num_eps,
2201                 gfp_t mem_flags)
2202 {
2203         int i, ret;
2204         struct xhci_hcd *xhci;
2205         struct xhci_virt_device *vdev;
2206         struct xhci_command *command;
2207         unsigned int ep_index;
2208         unsigned long flags;
2209         u32 changed_ep_bitmask;
2210
2211         xhci = hcd_to_xhci(hcd);
2212         vdev = xhci->devs[udev->slot_id];
2213
2214         /* Set up a configure endpoint command to remove the streams rings */
2215         spin_lock_irqsave(&xhci->lock, flags);
2216         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2217                         udev, eps, num_eps);
2218         if (changed_ep_bitmask == 0) {
2219                 spin_unlock_irqrestore(&xhci->lock, flags);
2220                 return -EINVAL;
2221         }
2222
2223         /* Use the xhci_command structure from the first endpoint.  We may have
2224          * allocated too many, but the driver may call xhci_free_streams() for
2225          * each endpoint it grouped into one call to xhci_alloc_streams().
2226          */
2227         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2228         command = vdev->eps[ep_index].stream_info->free_streams_command;
2229         for (i = 0; i < num_eps; i++) {
2230                 struct xhci_ep_ctx *ep_ctx;
2231
2232                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2233                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2234                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2235                         EP_GETTING_NO_STREAMS;
2236
2237                 xhci_endpoint_copy(xhci, command->in_ctx,
2238                                 vdev->out_ctx, ep_index);
2239                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2240                                 &vdev->eps[ep_index]);
2241         }
2242         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2243                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2244         spin_unlock_irqrestore(&xhci->lock, flags);
2245
2246         /* Issue and wait for the configure endpoint command,
2247          * which must succeed.
2248          */
2249         ret = xhci_configure_endpoint(xhci, udev, command,
2250                         false, true);
2251
2252         /* xHC rejected the configure endpoint command for some reason, so we
2253          * leave the streams rings intact.
2254          */
2255         if (ret < 0)
2256                 return ret;
2257
2258         spin_lock_irqsave(&xhci->lock, flags);
2259         for (i = 0; i < num_eps; i++) {
2260                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2261                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2262                 vdev->eps[ep_index].stream_info = NULL;
2263                 /* FIXME Unset maxPstreams in endpoint context and
2264                  * update deq ptr to point to normal string ring.
2265                  */
2266                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2267                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2268         }
2269         spin_unlock_irqrestore(&xhci->lock, flags);
2270
2271         return 0;
2272 }
2273
2274 /*
2275  * This submits a Reset Device Command, which will set the device state to 0,
2276  * set the device address to 0, and disable all the endpoints except the default
2277  * control endpoint.  The USB core should come back and call
2278  * xhci_address_device(), and then re-set up the configuration.  If this is
2279  * called because of a usb_reset_and_verify_device(), then the old alternate
2280  * settings will be re-installed through the normal bandwidth allocation
2281  * functions.
2282  *
2283  * Wait for the Reset Device command to finish.  Remove all structures
2284  * associated with the endpoints that were disabled.  Clear the input device
2285  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
2286  *
2287  * If the virt_dev to be reset does not exist or does not match the udev,
2288  * it means the device is lost, possibly due to the xHC restore error and
2289  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2290  * re-allocate the device.
2291  */
2292 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2293 {
2294         int ret, i;
2295         unsigned long flags;
2296         struct xhci_hcd *xhci;
2297         unsigned int slot_id;
2298         struct xhci_virt_device *virt_dev;
2299         struct xhci_command *reset_device_cmd;
2300         int timeleft;
2301         int last_freed_endpoint;
2302
2303         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2304         if (ret <= 0)
2305                 return ret;
2306         xhci = hcd_to_xhci(hcd);
2307         slot_id = udev->slot_id;
2308         virt_dev = xhci->devs[slot_id];
2309         if (!virt_dev) {
2310                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2311                                 "not exist. Re-allocate the device\n", slot_id);
2312                 ret = xhci_alloc_dev(hcd, udev);
2313                 if (ret == 1)
2314                         return 0;
2315                 else
2316                         return -EINVAL;
2317         }
2318
2319         if (virt_dev->udev != udev) {
2320                 /* If the virt_dev and the udev does not match, this virt_dev
2321                  * may belong to another udev.
2322                  * Re-allocate the device.
2323                  */
2324                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2325                                 "not match the udev. Re-allocate the device\n",
2326                                 slot_id);
2327                 ret = xhci_alloc_dev(hcd, udev);
2328                 if (ret == 1)
2329                         return 0;
2330                 else
2331                         return -EINVAL;
2332         }
2333
2334         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2335         /* Allocate the command structure that holds the struct completion.
2336          * Assume we're in process context, since the normal device reset
2337          * process has to wait for the device anyway.  Storage devices are
2338          * reset as part of error handling, so use GFP_NOIO instead of
2339          * GFP_KERNEL.
2340          */
2341         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2342         if (!reset_device_cmd) {
2343                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2344                 return -ENOMEM;
2345         }
2346
2347         /* Attempt to submit the Reset Device command to the command ring */
2348         spin_lock_irqsave(&xhci->lock, flags);
2349         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2350
2351         /* Enqueue pointer can be left pointing to the link TRB,
2352          * we must handle that
2353          */
2354         if ((le32_to_cpu(reset_device_cmd->command_trb->link.control)
2355              & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
2356                 reset_device_cmd->command_trb =
2357                         xhci->cmd_ring->enq_seg->next->trbs;
2358
2359         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2360         ret = xhci_queue_reset_device(xhci, slot_id);
2361         if (ret) {
2362                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2363                 list_del(&reset_device_cmd->cmd_list);
2364                 spin_unlock_irqrestore(&xhci->lock, flags);
2365                 goto command_cleanup;
2366         }
2367         xhci_ring_cmd_db(xhci);
2368         spin_unlock_irqrestore(&xhci->lock, flags);
2369
2370         /* Wait for the Reset Device command to finish */
2371         timeleft = wait_for_completion_interruptible_timeout(
2372                         reset_device_cmd->completion,
2373                         USB_CTRL_SET_TIMEOUT);
2374         if (timeleft <= 0) {
2375                 xhci_warn(xhci, "%s while waiting for reset device command\n",
2376                                 timeleft == 0 ? "Timeout" : "Signal");
2377                 spin_lock_irqsave(&xhci->lock, flags);
2378                 /* The timeout might have raced with the event ring handler, so
2379                  * only delete from the list if the item isn't poisoned.
2380                  */
2381                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2382                         list_del(&reset_device_cmd->cmd_list);
2383                 spin_unlock_irqrestore(&xhci->lock, flags);
2384                 ret = -ETIME;
2385                 goto command_cleanup;
2386         }
2387
2388         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2389          * unless we tried to reset a slot ID that wasn't enabled,
2390          * or the device wasn't in the addressed or configured state.
2391          */
2392         ret = reset_device_cmd->status;
2393         switch (ret) {
2394         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2395         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2396                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2397                                 slot_id,
2398                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2399                 xhci_info(xhci, "Not freeing device rings.\n");
2400                 /* Don't treat this as an error.  May change my mind later. */
2401                 ret = 0;
2402                 goto command_cleanup;
2403         case COMP_SUCCESS:
2404                 xhci_dbg(xhci, "Successful reset device command.\n");
2405                 break;
2406         default:
2407                 if (xhci_is_vendor_info_code(xhci, ret))
2408                         break;
2409                 xhci_warn(xhci, "Unknown completion code %u for "
2410                                 "reset device command.\n", ret);
2411                 ret = -EINVAL;
2412                 goto command_cleanup;
2413         }
2414
2415         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2416         last_freed_endpoint = 1;
2417         for (i = 1; i < 31; ++i) {
2418                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
2419
2420                 if (ep->ep_state & EP_HAS_STREAMS) {
2421                         xhci_free_stream_info(xhci, ep->stream_info);
2422                         ep->stream_info = NULL;
2423                         ep->ep_state &= ~EP_HAS_STREAMS;
2424                 }
2425
2426                 if (ep->ring) {
2427                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2428                         last_freed_endpoint = i;
2429                 }
2430         }
2431         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2432         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2433         ret = 0;
2434
2435 command_cleanup:
2436         xhci_free_command(xhci, reset_device_cmd);
2437         return ret;
2438 }
2439
2440 /*
2441  * At this point, the struct usb_device is about to go away, the device has
2442  * disconnected, and all traffic has been stopped and the endpoints have been
2443  * disabled.  Free any HC data structures associated with that device.
2444  */
2445 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2446 {
2447         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2448         struct xhci_virt_device *virt_dev;
2449         unsigned long flags;
2450         u32 state;
2451         int i, ret;
2452
2453         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2454         if (ret <= 0)
2455                 return;
2456
2457         virt_dev = xhci->devs[udev->slot_id];
2458
2459         /* Stop any wayward timer functions (which may grab the lock) */
2460         for (i = 0; i < 31; ++i) {
2461                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2462                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2463         }
2464
2465         spin_lock_irqsave(&xhci->lock, flags);
2466         /* Don't disable the slot if the host controller is dead. */
2467         state = xhci_readl(xhci, &xhci->op_regs->status);
2468         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2469                 xhci_free_virt_device(xhci, udev->slot_id);
2470                 spin_unlock_irqrestore(&xhci->lock, flags);
2471                 return;
2472         }
2473
2474         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2475                 spin_unlock_irqrestore(&xhci->lock, flags);
2476                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2477                 return;
2478         }
2479         xhci_ring_cmd_db(xhci);
2480         spin_unlock_irqrestore(&xhci->lock, flags);
2481         /*
2482          * Event command completion handler will free any data structures
2483          * associated with the slot.  XXX Can free sleep?
2484          */
2485 }
2486
2487 /*
2488  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2489  * timed out, or allocating memory failed.  Returns 1 on success.
2490  */
2491 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2492 {
2493         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2494         unsigned long flags;
2495         int timeleft;
2496         int ret;
2497
2498         spin_lock_irqsave(&xhci->lock, flags);
2499         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2500         if (ret) {
2501                 spin_unlock_irqrestore(&xhci->lock, flags);
2502                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2503                 return 0;
2504         }
2505         xhci_ring_cmd_db(xhci);
2506         spin_unlock_irqrestore(&xhci->lock, flags);
2507
2508         /* XXX: how much time for xHC slot assignment? */
2509         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2510                         USB_CTRL_SET_TIMEOUT);
2511         if (timeleft <= 0) {
2512                 xhci_warn(xhci, "%s while waiting for a slot\n",
2513                                 timeleft == 0 ? "Timeout" : "Signal");
2514                 /* FIXME cancel the enable slot request */
2515                 return 0;
2516         }
2517
2518         if (!xhci->slot_id) {
2519                 xhci_err(xhci, "Error while assigning device slot ID\n");
2520                 return 0;
2521         }
2522         /* xhci_alloc_virt_device() does not touch rings; no need to lock.
2523          * Use GFP_NOIO, since this function can be called from
2524          * xhci_discover_or_reset_device(), which may be called as part of
2525          * mass storage driver error handling.
2526          */
2527         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2528                 /* Disable slot, if we can do it without mem alloc */
2529                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2530                 spin_lock_irqsave(&xhci->lock, flags);
2531                 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2532                         xhci_ring_cmd_db(xhci);
2533                 spin_unlock_irqrestore(&xhci->lock, flags);
2534                 return 0;
2535         }
2536         udev->slot_id = xhci->slot_id;
2537         /* Is this a LS or FS device under a HS hub? */
2538         /* Hub or peripherial? */
2539         return 1;
2540 }
2541
2542 /*
2543  * Issue an Address Device command (which will issue a SetAddress request to
2544  * the device).
2545  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2546  * we should only issue and wait on one address command at the same time.
2547  *
2548  * We add one to the device address issued by the hardware because the USB core
2549  * uses address 1 for the root hubs (even though they're not really devices).
2550  */
2551 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2552 {
2553         unsigned long flags;
2554         int timeleft;
2555         struct xhci_virt_device *virt_dev;
2556         int ret = 0;
2557         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2558         struct xhci_slot_ctx *slot_ctx;
2559         struct xhci_input_control_ctx *ctrl_ctx;
2560         u64 temp_64;
2561
2562         if (!udev->slot_id) {
2563                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2564                 return -EINVAL;
2565         }
2566
2567         virt_dev = xhci->devs[udev->slot_id];
2568
2569         if (WARN_ON(!virt_dev)) {
2570                 /*
2571                  * In plug/unplug torture test with an NEC controller,
2572                  * a zero-dereference was observed once due to virt_dev = 0.
2573                  * Print useful debug rather than crash if it is observed again!
2574                  */
2575                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2576                         udev->slot_id);
2577                 return -EINVAL;
2578         }
2579
2580         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2581         /*
2582          * If this is the first Set Address since device plug-in or
2583          * virt_device realloaction after a resume with an xHCI power loss,
2584          * then set up the slot context.
2585          */
2586         if (!slot_ctx->dev_info)
2587                 xhci_setup_addressable_virt_dev(xhci, udev);
2588         /* Otherwise, update the control endpoint ring enqueue pointer. */
2589         else
2590                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2591         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2592         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2593
2594         spin_lock_irqsave(&xhci->lock, flags);
2595         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2596                                         udev->slot_id);
2597         if (ret) {
2598                 spin_unlock_irqrestore(&xhci->lock, flags);
2599                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2600                 return ret;
2601         }
2602         xhci_ring_cmd_db(xhci);
2603         spin_unlock_irqrestore(&xhci->lock, flags);
2604
2605         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2606         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2607                         USB_CTRL_SET_TIMEOUT);
2608         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2609          * the SetAddress() "recovery interval" required by USB and aborting the
2610          * command on a timeout.
2611          */
2612         if (timeleft <= 0) {
2613                 xhci_warn(xhci, "%s while waiting for a slot\n",
2614                                 timeleft == 0 ? "Timeout" : "Signal");
2615                 /* FIXME cancel the address device command */
2616                 return -ETIME;
2617         }
2618
2619         switch (virt_dev->cmd_status) {
2620         case COMP_CTX_STATE:
2621         case COMP_EBADSLT:
2622                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2623                                 udev->slot_id);
2624                 ret = -EINVAL;
2625                 break;
2626         case COMP_TX_ERR:
2627                 dev_warn(&udev->dev, "Device not responding to set address.\n");
2628                 ret = -EPROTO;
2629                 break;
2630         case COMP_SUCCESS:
2631                 xhci_dbg(xhci, "Successful Address Device command\n");
2632                 break;
2633         default:
2634                 xhci_err(xhci, "ERROR: unexpected command completion "
2635                                 "code 0x%x.\n", virt_dev->cmd_status);
2636                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2637                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2638                 ret = -EINVAL;
2639                 break;
2640         }
2641         if (ret) {
2642                 return ret;
2643         }
2644         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2645         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2646         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2647                  udev->slot_id,
2648                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2649                  (unsigned long long)
2650                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2651         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2652                         (unsigned long long)virt_dev->out_ctx->dma);
2653         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2654         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2655         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2656         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2657         /*
2658          * USB core uses address 1 for the roothubs, so we add one to the
2659          * address given back to us by the HC.
2660          */
2661         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2662         /* Use kernel assigned address for devices; store xHC assigned
2663          * address locally. */
2664         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2665                 + 1;
2666         /* Zero the input context control for later use */
2667         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2668         ctrl_ctx->add_flags = 0;
2669         ctrl_ctx->drop_flags = 0;
2670
2671         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2672
2673         return 0;
2674 }
2675
2676 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2677  * internal data structures for the device.
2678  */
2679 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2680                         struct usb_tt *tt, gfp_t mem_flags)
2681 {
2682         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2683         struct xhci_virt_device *vdev;
2684         struct xhci_command *config_cmd;
2685         struct xhci_input_control_ctx *ctrl_ctx;
2686         struct xhci_slot_ctx *slot_ctx;
2687         unsigned long flags;
2688         unsigned think_time;
2689         int ret;
2690
2691         /* Ignore root hubs */
2692         if (!hdev->parent)
2693                 return 0;
2694
2695         vdev = xhci->devs[hdev->slot_id];
2696         if (!vdev) {
2697                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2698                 return -EINVAL;
2699         }
2700         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2701         if (!config_cmd) {
2702                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2703                 return -ENOMEM;
2704         }
2705
2706         spin_lock_irqsave(&xhci->lock, flags);
2707         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2708         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2709         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2710         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2711         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2712         if (tt->multi)
2713                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2714         if (xhci->hci_version > 0x95) {
2715                 xhci_dbg(xhci, "xHCI version %x needs hub "
2716                                 "TT think time and number of ports\n",
2717                                 (unsigned int) xhci->hci_version);
2718                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
2719                 /* Set TT think time - convert from ns to FS bit times.
2720                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
2721                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
2722                  *
2723                  * xHCI 1.0: this field shall be 0 if the device is not a
2724                  * High-spped hub.
2725                  */
2726                 think_time = tt->think_time;
2727                 if (think_time != 0)
2728                         think_time = (think_time / 666) - 1;
2729                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
2730                         slot_ctx->tt_info |=
2731                                 cpu_to_le32(TT_THINK_TIME(think_time));
2732         } else {
2733                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2734                                 "TT think time or number of ports\n",
2735                                 (unsigned int) xhci->hci_version);
2736         }
2737         slot_ctx->dev_state = 0;
2738         spin_unlock_irqrestore(&xhci->lock, flags);
2739
2740         xhci_dbg(xhci, "Set up %s for hub device.\n",
2741                         (xhci->hci_version > 0x95) ?
2742                         "configure endpoint" : "evaluate context");
2743         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2744         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
2745
2746         /* Issue and wait for the configure endpoint or
2747          * evaluate context command.
2748          */
2749         if (xhci->hci_version > 0x95)
2750                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2751                                 false, false);
2752         else
2753                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
2754                                 true, false);
2755
2756         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
2757         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
2758
2759         xhci_free_command(xhci, config_cmd);
2760         return ret;
2761 }
2762
2763 int xhci_get_frame(struct usb_hcd *hcd)
2764 {
2765         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2766         /* EHCI mods by the periodic size.  Why? */
2767         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
2768 }
2769
2770 MODULE_DESCRIPTION(DRIVER_DESC);
2771 MODULE_AUTHOR(DRIVER_AUTHOR);
2772 MODULE_LICENSE("GPL");
2773
2774 static int __init xhci_hcd_init(void)
2775 {
2776 #ifdef CONFIG_PCI
2777         int retval = 0;
2778
2779         retval = xhci_register_pci();
2780
2781         if (retval < 0) {
2782                 printk(KERN_DEBUG "Problem registering PCI driver.");
2783                 return retval;
2784         }
2785 #endif
2786         /*
2787          * Check the compiler generated sizes of structures that must be laid
2788          * out in specific ways for hardware access.
2789          */
2790         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2791         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
2792         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
2793         /* xhci_device_control has eight fields, and also
2794          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
2795          */
2796         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
2797         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
2798         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
2799         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
2800         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
2801         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
2802         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
2803         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
2804         return 0;
2805 }
2806 module_init(xhci_hcd_init);
2807
2808 static void __exit xhci_hcd_cleanup(void)
2809 {
2810 #ifdef CONFIG_PCI
2811         xhci_unregister_pci();
2812 #endif
2813 }
2814 module_exit(xhci_hcd_cleanup);