]> Pileus Git - ~andy/linux/blob - drivers/usb/host/xhci.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/audit
[~andy/linux] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55                       u32 mask, u32 done, int usec)
56 {
57         u32     result;
58
59         do {
60                 result = xhci_readl(xhci, ptr);
61                 if (result == ~(u32)0)          /* card removed */
62                         return -ENODEV;
63                 result &= mask;
64                 if (result == done)
65                         return 0;
66                 udelay(1);
67                 usec--;
68         } while (usec > 0);
69         return -ETIMEDOUT;
70 }
71
72 /*
73  * Disable interrupts and begin the xHCI halting process.
74  */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77         u32 halted;
78         u32 cmd;
79         u32 mask;
80
81         mask = ~(XHCI_IRQS);
82         halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83         if (!halted)
84                 mask &= ~CMD_RUN;
85
86         cmd = xhci_readl(xhci, &xhci->op_regs->command);
87         cmd &= mask;
88         xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92  * Force HC into halt state.
93  *
94  * Disable any IRQs and clear the run/stop bit.
95  * HC will complete any current and actively pipelined transactions, and
96  * should halt within 16 ms of the run/stop bit being cleared.
97  * Read HC Halted bit in the status register to see when the HC is finished.
98  */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101         int ret;
102         xhci_dbg(xhci, "// Halt the HC\n");
103         xhci_quiesce(xhci);
104
105         ret = handshake(xhci, &xhci->op_regs->status,
106                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107         if (!ret)
108                 xhci->xhc_state |= XHCI_STATE_HALTED;
109         return ret;
110 }
111
112 /*
113  * Set the run bit and wait for the host to be running.
114  */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117         u32 temp;
118         int ret;
119
120         temp = xhci_readl(xhci, &xhci->op_regs->command);
121         temp |= (CMD_RUN);
122         xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123                         temp);
124         xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126         /*
127          * Wait for the HCHalted Status bit to be 0 to indicate the host is
128          * running.
129          */
130         ret = handshake(xhci, &xhci->op_regs->status,
131                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
132         if (ret == -ETIMEDOUT)
133                 xhci_err(xhci, "Host took too long to start, "
134                                 "waited %u microseconds.\n",
135                                 XHCI_MAX_HALT_USEC);
136         if (!ret)
137                 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138         return ret;
139 }
140
141 /*
142  * Reset a halted HC.
143  *
144  * This resets pipelines, timers, counters, state machines, etc.
145  * Transactions will be terminated immediately, and operational registers
146  * will be set to their defaults.
147  */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150         u32 command;
151         u32 state;
152         int ret;
153
154         state = xhci_readl(xhci, &xhci->op_regs->status);
155         if ((state & STS_HALT) == 0) {
156                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157                 return 0;
158         }
159
160         xhci_dbg(xhci, "// Reset the HC\n");
161         command = xhci_readl(xhci, &xhci->op_regs->command);
162         command |= CMD_RESET;
163         xhci_writel(xhci, command, &xhci->op_regs->command);
164
165         ret = handshake(xhci, &xhci->op_regs->command,
166                         CMD_RESET, 0, 250 * 1000);
167         if (ret)
168                 return ret;
169
170         xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171         /*
172          * xHCI cannot write to any doorbells or operational registers other
173          * than status until the "Controller Not Ready" flag is cleared.
174          */
175         return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 #ifdef CONFIG_PCI
179 static int xhci_free_msi(struct xhci_hcd *xhci)
180 {
181         int i;
182
183         if (!xhci->msix_entries)
184                 return -EINVAL;
185
186         for (i = 0; i < xhci->msix_count; i++)
187                 if (xhci->msix_entries[i].vector)
188                         free_irq(xhci->msix_entries[i].vector,
189                                         xhci_to_hcd(xhci));
190         return 0;
191 }
192
193 /*
194  * Set up MSI
195  */
196 static int xhci_setup_msi(struct xhci_hcd *xhci)
197 {
198         int ret;
199         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
200
201         ret = pci_enable_msi(pdev);
202         if (ret) {
203                 xhci_dbg(xhci, "failed to allocate MSI entry\n");
204                 return ret;
205         }
206
207         ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208                                 0, "xhci_hcd", xhci_to_hcd(xhci));
209         if (ret) {
210                 xhci_dbg(xhci, "disable MSI interrupt\n");
211                 pci_disable_msi(pdev);
212         }
213
214         return ret;
215 }
216
217 /*
218  * Free IRQs
219  * free all IRQs request
220  */
221 static void xhci_free_irq(struct xhci_hcd *xhci)
222 {
223         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224         int ret;
225
226         /* return if using legacy interrupt */
227         if (xhci_to_hcd(xhci)->irq >= 0)
228                 return;
229
230         ret = xhci_free_msi(xhci);
231         if (!ret)
232                 return;
233         if (pdev->irq >= 0)
234                 free_irq(pdev->irq, xhci_to_hcd(xhci));
235
236         return;
237 }
238
239 /*
240  * Set up MSI-X
241  */
242 static int xhci_setup_msix(struct xhci_hcd *xhci)
243 {
244         int i, ret = 0;
245         struct usb_hcd *hcd = xhci_to_hcd(xhci);
246         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
247
248         /*
249          * calculate number of msi-x vectors supported.
250          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251          *   with max number of interrupters based on the xhci HCSPARAMS1.
252          * - num_online_cpus: maximum msi-x vectors per CPUs core.
253          *   Add additional 1 vector to ensure always available interrupt.
254          */
255         xhci->msix_count = min(num_online_cpus() + 1,
256                                 HCS_MAX_INTRS(xhci->hcs_params1));
257
258         xhci->msix_entries =
259                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260                                 GFP_KERNEL);
261         if (!xhci->msix_entries) {
262                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263                 return -ENOMEM;
264         }
265
266         for (i = 0; i < xhci->msix_count; i++) {
267                 xhci->msix_entries[i].entry = i;
268                 xhci->msix_entries[i].vector = 0;
269         }
270
271         ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272         if (ret) {
273                 xhci_dbg(xhci, "Failed to enable MSI-X\n");
274                 goto free_entries;
275         }
276
277         for (i = 0; i < xhci->msix_count; i++) {
278                 ret = request_irq(xhci->msix_entries[i].vector,
279                                 (irq_handler_t)xhci_msi_irq,
280                                 0, "xhci_hcd", xhci_to_hcd(xhci));
281                 if (ret)
282                         goto disable_msix;
283         }
284
285         hcd->msix_enabled = 1;
286         return ret;
287
288 disable_msix:
289         xhci_dbg(xhci, "disable MSI-X interrupt\n");
290         xhci_free_irq(xhci);
291         pci_disable_msix(pdev);
292 free_entries:
293         kfree(xhci->msix_entries);
294         xhci->msix_entries = NULL;
295         return ret;
296 }
297
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
300 {
301         struct usb_hcd *hcd = xhci_to_hcd(xhci);
302         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
303
304         xhci_free_irq(xhci);
305
306         if (xhci->msix_entries) {
307                 pci_disable_msix(pdev);
308                 kfree(xhci->msix_entries);
309                 xhci->msix_entries = NULL;
310         } else {
311                 pci_disable_msi(pdev);
312         }
313
314         hcd->msix_enabled = 0;
315         return;
316 }
317
318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
319 {
320         int i;
321
322         if (xhci->msix_entries) {
323                 for (i = 0; i < xhci->msix_count; i++)
324                         synchronize_irq(xhci->msix_entries[i].vector);
325         }
326 }
327
328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
329 {
330         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332         int ret;
333
334         /*
335          * Some Fresco Logic host controllers advertise MSI, but fail to
336          * generate interrupts.  Don't even try to enable MSI.
337          */
338         if (xhci->quirks & XHCI_BROKEN_MSI)
339                 return 0;
340
341         /* unregister the legacy interrupt */
342         if (hcd->irq)
343                 free_irq(hcd->irq, hcd);
344         hcd->irq = -1;
345
346         ret = xhci_setup_msix(xhci);
347         if (ret)
348                 /* fall back to msi*/
349                 ret = xhci_setup_msi(xhci);
350
351         if (!ret)
352                 /* hcd->irq is -1, we have MSI */
353                 return 0;
354
355         /* fall back to legacy interrupt*/
356         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
357                         hcd->irq_descr, hcd);
358         if (ret) {
359                 xhci_err(xhci, "request interrupt %d failed\n",
360                                 pdev->irq);
361                 return ret;
362         }
363         hcd->irq = pdev->irq;
364         return 0;
365 }
366
367 #else
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371         return 0;
372 }
373
374 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
375 {
376 }
377
378 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
379 {
380 }
381
382 #endif
383
384 /*
385  * Initialize memory for HCD and xHC (one-time init).
386  *
387  * Program the PAGESIZE register, initialize the device context array, create
388  * device contexts (?), set up a command ring segment (or two?), create event
389  * ring (one for now).
390  */
391 int xhci_init(struct usb_hcd *hcd)
392 {
393         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
394         int retval = 0;
395
396         xhci_dbg(xhci, "xhci_init\n");
397         spin_lock_init(&xhci->lock);
398         if (xhci->hci_version == 0x95 && link_quirk) {
399                 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
400                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
401         } else {
402                 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
403         }
404         retval = xhci_mem_init(xhci, GFP_KERNEL);
405         xhci_dbg(xhci, "Finished xhci_init\n");
406
407         return retval;
408 }
409
410 /*-------------------------------------------------------------------------*/
411
412
413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
414 static void xhci_event_ring_work(unsigned long arg)
415 {
416         unsigned long flags;
417         int temp;
418         u64 temp_64;
419         struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
420         int i, j;
421
422         xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
423
424         spin_lock_irqsave(&xhci->lock, flags);
425         temp = xhci_readl(xhci, &xhci->op_regs->status);
426         xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
427         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
428                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
429                 xhci_dbg(xhci, "HW died, polling stopped.\n");
430                 spin_unlock_irqrestore(&xhci->lock, flags);
431                 return;
432         }
433
434         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
435         xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
436         xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
437         xhci->error_bitmask = 0;
438         xhci_dbg(xhci, "Event ring:\n");
439         xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
440         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
441         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
442         temp_64 &= ~ERST_PTR_MASK;
443         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
444         xhci_dbg(xhci, "Command ring:\n");
445         xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
446         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
447         xhci_dbg_cmd_ptrs(xhci);
448         for (i = 0; i < MAX_HC_SLOTS; ++i) {
449                 if (!xhci->devs[i])
450                         continue;
451                 for (j = 0; j < 31; ++j) {
452                         xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
453                 }
454         }
455         spin_unlock_irqrestore(&xhci->lock, flags);
456
457         if (!xhci->zombie)
458                 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
459         else
460                 xhci_dbg(xhci, "Quit polling the event ring.\n");
461 }
462 #endif
463
464 static int xhci_run_finished(struct xhci_hcd *xhci)
465 {
466         if (xhci_start(xhci)) {
467                 xhci_halt(xhci);
468                 return -ENODEV;
469         }
470         xhci->shared_hcd->state = HC_STATE_RUNNING;
471
472         if (xhci->quirks & XHCI_NEC_HOST)
473                 xhci_ring_cmd_db(xhci);
474
475         xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
476         return 0;
477 }
478
479 /*
480  * Start the HC after it was halted.
481  *
482  * This function is called by the USB core when the HC driver is added.
483  * Its opposite is xhci_stop().
484  *
485  * xhci_init() must be called once before this function can be called.
486  * Reset the HC, enable device slot contexts, program DCBAAP, and
487  * set command ring pointer and event ring pointer.
488  *
489  * Setup MSI-X vectors and enable interrupts.
490  */
491 int xhci_run(struct usb_hcd *hcd)
492 {
493         u32 temp;
494         u64 temp_64;
495         int ret;
496         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
497
498         /* Start the xHCI host controller running only after the USB 2.0 roothub
499          * is setup.
500          */
501
502         hcd->uses_new_polling = 1;
503         if (!usb_hcd_is_primary_hcd(hcd))
504                 return xhci_run_finished(xhci);
505
506         xhci_dbg(xhci, "xhci_run\n");
507
508         ret = xhci_try_enable_msi(hcd);
509         if (ret)
510                 return ret;
511
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513         init_timer(&xhci->event_ring_timer);
514         xhci->event_ring_timer.data = (unsigned long) xhci;
515         xhci->event_ring_timer.function = xhci_event_ring_work;
516         /* Poll the event ring */
517         xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
518         xhci->zombie = 0;
519         xhci_dbg(xhci, "Setting event ring polling timer\n");
520         add_timer(&xhci->event_ring_timer);
521 #endif
522
523         xhci_dbg(xhci, "Command ring memory map follows:\n");
524         xhci_debug_ring(xhci, xhci->cmd_ring);
525         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
526         xhci_dbg_cmd_ptrs(xhci);
527
528         xhci_dbg(xhci, "ERST memory map follows:\n");
529         xhci_dbg_erst(xhci, &xhci->erst);
530         xhci_dbg(xhci, "Event ring:\n");
531         xhci_debug_ring(xhci, xhci->event_ring);
532         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
533         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
534         temp_64 &= ~ERST_PTR_MASK;
535         xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
536
537         xhci_dbg(xhci, "// Set the interrupt modulation register\n");
538         temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
539         temp &= ~ER_IRQ_INTERVAL_MASK;
540         temp |= (u32) 160;
541         xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
542
543         /* Set the HCD state before we enable the irqs */
544         temp = xhci_readl(xhci, &xhci->op_regs->command);
545         temp |= (CMD_EIE);
546         xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
547                         temp);
548         xhci_writel(xhci, temp, &xhci->op_regs->command);
549
550         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551         xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
552                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
553         xhci_writel(xhci, ER_IRQ_ENABLE(temp),
554                         &xhci->ir_set->irq_pending);
555         xhci_print_ir_set(xhci, 0);
556
557         if (xhci->quirks & XHCI_NEC_HOST)
558                 xhci_queue_vendor_command(xhci, 0, 0, 0,
559                                 TRB_TYPE(TRB_NEC_GET_FW));
560
561         xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
562         return 0;
563 }
564
565 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
566 {
567         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
568
569         spin_lock_irq(&xhci->lock);
570         xhci_halt(xhci);
571
572         /* The shared_hcd is going to be deallocated shortly (the USB core only
573          * calls this function when allocation fails in usb_add_hcd(), or
574          * usb_remove_hcd() is called).  So we need to unset xHCI's pointer.
575          */
576         xhci->shared_hcd = NULL;
577         spin_unlock_irq(&xhci->lock);
578 }
579
580 /*
581  * Stop xHCI driver.
582  *
583  * This function is called by the USB core when the HC driver is removed.
584  * Its opposite is xhci_run().
585  *
586  * Disable device contexts, disable IRQs, and quiesce the HC.
587  * Reset the HC, finish any completed transactions, and cleanup memory.
588  */
589 void xhci_stop(struct usb_hcd *hcd)
590 {
591         u32 temp;
592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
593
594         if (!usb_hcd_is_primary_hcd(hcd)) {
595                 xhci_only_stop_hcd(xhci->shared_hcd);
596                 return;
597         }
598
599         spin_lock_irq(&xhci->lock);
600         /* Make sure the xHC is halted for a USB3 roothub
601          * (xhci_stop() could be called as part of failed init).
602          */
603         xhci_halt(xhci);
604         xhci_reset(xhci);
605         spin_unlock_irq(&xhci->lock);
606
607         xhci_cleanup_msix(xhci);
608
609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
610         /* Tell the event ring poll function not to reschedule */
611         xhci->zombie = 1;
612         del_timer_sync(&xhci->event_ring_timer);
613 #endif
614
615         if (xhci->quirks & XHCI_AMD_PLL_FIX)
616                 usb_amd_dev_put();
617
618         xhci_dbg(xhci, "// Disabling event ring interrupts\n");
619         temp = xhci_readl(xhci, &xhci->op_regs->status);
620         xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
621         temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
622         xhci_writel(xhci, ER_IRQ_DISABLE(temp),
623                         &xhci->ir_set->irq_pending);
624         xhci_print_ir_set(xhci, 0);
625
626         xhci_dbg(xhci, "cleaning up memory\n");
627         xhci_mem_cleanup(xhci);
628         xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
629                     xhci_readl(xhci, &xhci->op_regs->status));
630 }
631
632 /*
633  * Shutdown HC (not bus-specific)
634  *
635  * This is called when the machine is rebooting or halting.  We assume that the
636  * machine will be powered off, and the HC's internal state will be reset.
637  * Don't bother to free memory.
638  *
639  * This will only ever be called with the main usb_hcd (the USB3 roothub).
640  */
641 void xhci_shutdown(struct usb_hcd *hcd)
642 {
643         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
644
645         spin_lock_irq(&xhci->lock);
646         xhci_halt(xhci);
647         spin_unlock_irq(&xhci->lock);
648
649         xhci_cleanup_msix(xhci);
650
651         xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
652                     xhci_readl(xhci, &xhci->op_regs->status));
653 }
654
655 #ifdef CONFIG_PM
656 static void xhci_save_registers(struct xhci_hcd *xhci)
657 {
658         xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
659         xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
660         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
661         xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
662         xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
663         xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
664         xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
665         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
666         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
667 }
668
669 static void xhci_restore_registers(struct xhci_hcd *xhci)
670 {
671         xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
672         xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
673         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
674         xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
675         xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
676         xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
677         xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
678         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
679 }
680
681 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
682 {
683         u64     val_64;
684
685         /* step 2: initialize command ring buffer */
686         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
687         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
688                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
689                                       xhci->cmd_ring->dequeue) &
690                  (u64) ~CMD_RING_RSVD_BITS) |
691                 xhci->cmd_ring->cycle_state;
692         xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
693                         (long unsigned long) val_64);
694         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
695 }
696
697 /*
698  * The whole command ring must be cleared to zero when we suspend the host.
699  *
700  * The host doesn't save the command ring pointer in the suspend well, so we
701  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
702  * aligned, because of the reserved bits in the command ring dequeue pointer
703  * register.  Therefore, we can't just set the dequeue pointer back in the
704  * middle of the ring (TRBs are 16-byte aligned).
705  */
706 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
707 {
708         struct xhci_ring *ring;
709         struct xhci_segment *seg;
710
711         ring = xhci->cmd_ring;
712         seg = ring->deq_seg;
713         do {
714                 memset(seg->trbs, 0,
715                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
716                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
717                         cpu_to_le32(~TRB_CYCLE);
718                 seg = seg->next;
719         } while (seg != ring->deq_seg);
720
721         /* Reset the software enqueue and dequeue pointers */
722         ring->deq_seg = ring->first_seg;
723         ring->dequeue = ring->first_seg->trbs;
724         ring->enq_seg = ring->deq_seg;
725         ring->enqueue = ring->dequeue;
726
727         /*
728          * Ring is now zeroed, so the HW should look for change of ownership
729          * when the cycle bit is set to 1.
730          */
731         ring->cycle_state = 1;
732
733         /*
734          * Reset the hardware dequeue pointer.
735          * Yes, this will need to be re-written after resume, but we're paranoid
736          * and want to make sure the hardware doesn't access bogus memory
737          * because, say, the BIOS or an SMI started the host without changing
738          * the command ring pointers.
739          */
740         xhci_set_cmd_ring_deq(xhci);
741 }
742
743 /*
744  * Stop HC (not bus-specific)
745  *
746  * This is called when the machine transition into S3/S4 mode.
747  *
748  */
749 int xhci_suspend(struct xhci_hcd *xhci)
750 {
751         int                     rc = 0;
752         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
753         u32                     command;
754
755         spin_lock_irq(&xhci->lock);
756         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
757         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
758         /* step 1: stop endpoint */
759         /* skipped assuming that port suspend has done */
760
761         /* step 2: clear Run/Stop bit */
762         command = xhci_readl(xhci, &xhci->op_regs->command);
763         command &= ~CMD_RUN;
764         xhci_writel(xhci, command, &xhci->op_regs->command);
765         if (handshake(xhci, &xhci->op_regs->status,
766                       STS_HALT, STS_HALT, 100*100)) {
767                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
768                 spin_unlock_irq(&xhci->lock);
769                 return -ETIMEDOUT;
770         }
771         xhci_clear_command_ring(xhci);
772
773         /* step 3: save registers */
774         xhci_save_registers(xhci);
775
776         /* step 4: set CSS flag */
777         command = xhci_readl(xhci, &xhci->op_regs->command);
778         command |= CMD_CSS;
779         xhci_writel(xhci, command, &xhci->op_regs->command);
780         if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
781                 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
782                 spin_unlock_irq(&xhci->lock);
783                 return -ETIMEDOUT;
784         }
785         spin_unlock_irq(&xhci->lock);
786
787         /* step 5: remove core well power */
788         /* synchronize irq when using MSI-X */
789         xhci_msix_sync_irqs(xhci);
790
791         return rc;
792 }
793
794 /*
795  * start xHC (not bus-specific)
796  *
797  * This is called when the machine transition from S3/S4 mode.
798  *
799  */
800 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
801 {
802         u32                     command, temp = 0;
803         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
804         struct usb_hcd          *secondary_hcd;
805         int                     retval = 0;
806
807         /* Wait a bit if either of the roothubs need to settle from the
808          * transition into bus suspend.
809          */
810         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
811                         time_before(jiffies,
812                                 xhci->bus_state[1].next_statechange))
813                 msleep(100);
814
815         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
816         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
817
818         spin_lock_irq(&xhci->lock);
819         if (xhci->quirks & XHCI_RESET_ON_RESUME)
820                 hibernated = true;
821
822         if (!hibernated) {
823                 /* step 1: restore register */
824                 xhci_restore_registers(xhci);
825                 /* step 2: initialize command ring buffer */
826                 xhci_set_cmd_ring_deq(xhci);
827                 /* step 3: restore state and start state*/
828                 /* step 3: set CRS flag */
829                 command = xhci_readl(xhci, &xhci->op_regs->command);
830                 command |= CMD_CRS;
831                 xhci_writel(xhci, command, &xhci->op_regs->command);
832                 if (handshake(xhci, &xhci->op_regs->status,
833                               STS_RESTORE, 0, 10*100)) {
834                         xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
835                         spin_unlock_irq(&xhci->lock);
836                         return -ETIMEDOUT;
837                 }
838                 temp = xhci_readl(xhci, &xhci->op_regs->status);
839         }
840
841         /* If restore operation fails, re-initialize the HC during resume */
842         if ((temp & STS_SRE) || hibernated) {
843                 /* Let the USB core know _both_ roothubs lost power. */
844                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
845                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
846
847                 xhci_dbg(xhci, "Stop HCD\n");
848                 xhci_halt(xhci);
849                 xhci_reset(xhci);
850                 spin_unlock_irq(&xhci->lock);
851                 xhci_cleanup_msix(xhci);
852
853 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
854                 /* Tell the event ring poll function not to reschedule */
855                 xhci->zombie = 1;
856                 del_timer_sync(&xhci->event_ring_timer);
857 #endif
858
859                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
860                 temp = xhci_readl(xhci, &xhci->op_regs->status);
861                 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
862                 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
863                 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
864                                 &xhci->ir_set->irq_pending);
865                 xhci_print_ir_set(xhci, 0);
866
867                 xhci_dbg(xhci, "cleaning up memory\n");
868                 xhci_mem_cleanup(xhci);
869                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
870                             xhci_readl(xhci, &xhci->op_regs->status));
871
872                 /* USB core calls the PCI reinit and start functions twice:
873                  * first with the primary HCD, and then with the secondary HCD.
874                  * If we don't do the same, the host will never be started.
875                  */
876                 if (!usb_hcd_is_primary_hcd(hcd))
877                         secondary_hcd = hcd;
878                 else
879                         secondary_hcd = xhci->shared_hcd;
880
881                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
882                 retval = xhci_init(hcd->primary_hcd);
883                 if (retval)
884                         return retval;
885                 xhci_dbg(xhci, "Start the primary HCD\n");
886                 retval = xhci_run(hcd->primary_hcd);
887                 if (!retval) {
888                         xhci_dbg(xhci, "Start the secondary HCD\n");
889                         retval = xhci_run(secondary_hcd);
890                 }
891                 hcd->state = HC_STATE_SUSPENDED;
892                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
893                 goto done;
894         }
895
896         /* step 4: set Run/Stop bit */
897         command = xhci_readl(xhci, &xhci->op_regs->command);
898         command |= CMD_RUN;
899         xhci_writel(xhci, command, &xhci->op_regs->command);
900         handshake(xhci, &xhci->op_regs->status, STS_HALT,
901                   0, 250 * 1000);
902
903         /* step 5: walk topology and initialize portsc,
904          * portpmsc and portli
905          */
906         /* this is done in bus_resume */
907
908         /* step 6: restart each of the previously
909          * Running endpoints by ringing their doorbells
910          */
911
912         spin_unlock_irq(&xhci->lock);
913
914  done:
915         if (retval == 0) {
916                 usb_hcd_resume_root_hub(hcd);
917                 usb_hcd_resume_root_hub(xhci->shared_hcd);
918         }
919         return retval;
920 }
921 #endif  /* CONFIG_PM */
922
923 /*-------------------------------------------------------------------------*/
924
925 /**
926  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
927  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
928  * value to right shift 1 for the bitmask.
929  *
930  * Index  = (epnum * 2) + direction - 1,
931  * where direction = 0 for OUT, 1 for IN.
932  * For control endpoints, the IN index is used (OUT index is unused), so
933  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
934  */
935 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
936 {
937         unsigned int index;
938         if (usb_endpoint_xfer_control(desc))
939                 index = (unsigned int) (usb_endpoint_num(desc)*2);
940         else
941                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
942                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
943         return index;
944 }
945
946 /* Find the flag for this endpoint (for use in the control context).  Use the
947  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
948  * bit 1, etc.
949  */
950 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
951 {
952         return 1 << (xhci_get_endpoint_index(desc) + 1);
953 }
954
955 /* Find the flag for this endpoint (for use in the control context).  Use the
956  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
957  * bit 1, etc.
958  */
959 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
960 {
961         return 1 << (ep_index + 1);
962 }
963
964 /* Compute the last valid endpoint context index.  Basically, this is the
965  * endpoint index plus one.  For slot contexts with more than valid endpoint,
966  * we find the most significant bit set in the added contexts flags.
967  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
968  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
969  */
970 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
971 {
972         return fls(added_ctxs) - 1;
973 }
974
975 /* Returns 1 if the arguments are OK;
976  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
977  */
978 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
979                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
980                 const char *func) {
981         struct xhci_hcd *xhci;
982         struct xhci_virt_device *virt_dev;
983
984         if (!hcd || (check_ep && !ep) || !udev) {
985                 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
986                                 func);
987                 return -EINVAL;
988         }
989         if (!udev->parent) {
990                 printk(KERN_DEBUG "xHCI %s called for root hub\n",
991                                 func);
992                 return 0;
993         }
994
995         xhci = hcd_to_xhci(hcd);
996         if (xhci->xhc_state & XHCI_STATE_HALTED)
997                 return -ENODEV;
998
999         if (check_virt_dev) {
1000                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1001                         printk(KERN_DEBUG "xHCI %s called with unaddressed "
1002                                                 "device\n", func);
1003                         return -EINVAL;
1004                 }
1005
1006                 virt_dev = xhci->devs[udev->slot_id];
1007                 if (virt_dev->udev != udev) {
1008                         printk(KERN_DEBUG "xHCI %s called with udev and "
1009                                           "virt_dev does not match\n", func);
1010                         return -EINVAL;
1011                 }
1012         }
1013
1014         return 1;
1015 }
1016
1017 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1018                 struct usb_device *udev, struct xhci_command *command,
1019                 bool ctx_change, bool must_succeed);
1020
1021 /*
1022  * Full speed devices may have a max packet size greater than 8 bytes, but the
1023  * USB core doesn't know that until it reads the first 8 bytes of the
1024  * descriptor.  If the usb_device's max packet size changes after that point,
1025  * we need to issue an evaluate context command and wait on it.
1026  */
1027 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1028                 unsigned int ep_index, struct urb *urb)
1029 {
1030         struct xhci_container_ctx *in_ctx;
1031         struct xhci_container_ctx *out_ctx;
1032         struct xhci_input_control_ctx *ctrl_ctx;
1033         struct xhci_ep_ctx *ep_ctx;
1034         int max_packet_size;
1035         int hw_max_packet_size;
1036         int ret = 0;
1037
1038         out_ctx = xhci->devs[slot_id]->out_ctx;
1039         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1040         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1041         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1042         if (hw_max_packet_size != max_packet_size) {
1043                 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1044                 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1045                                 max_packet_size);
1046                 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1047                                 hw_max_packet_size);
1048                 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1049
1050                 /* Set up the modified control endpoint 0 */
1051                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1052                                 xhci->devs[slot_id]->out_ctx, ep_index);
1053                 in_ctx = xhci->devs[slot_id]->in_ctx;
1054                 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1055                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1056                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1057
1058                 /* Set up the input context flags for the command */
1059                 /* FIXME: This won't work if a non-default control endpoint
1060                  * changes max packet sizes.
1061                  */
1062                 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1063                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1064                 ctrl_ctx->drop_flags = 0;
1065
1066                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1067                 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1068                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1069                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1070
1071                 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1072                                 true, false);
1073
1074                 /* Clean up the input context for later use by bandwidth
1075                  * functions.
1076                  */
1077                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1078         }
1079         return ret;
1080 }
1081
1082 /*
1083  * non-error returns are a promise to giveback() the urb later
1084  * we drop ownership so next owner (or urb unlink) can get it
1085  */
1086 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1087 {
1088         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1089         struct xhci_td *buffer;
1090         unsigned long flags;
1091         int ret = 0;
1092         unsigned int slot_id, ep_index;
1093         struct urb_priv *urb_priv;
1094         int size, i;
1095
1096         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1097                                         true, true, __func__) <= 0)
1098                 return -EINVAL;
1099
1100         slot_id = urb->dev->slot_id;
1101         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1102
1103         if (!HCD_HW_ACCESSIBLE(hcd)) {
1104                 if (!in_interrupt())
1105                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1106                 ret = -ESHUTDOWN;
1107                 goto exit;
1108         }
1109
1110         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1111                 size = urb->number_of_packets;
1112         else
1113                 size = 1;
1114
1115         urb_priv = kzalloc(sizeof(struct urb_priv) +
1116                                   size * sizeof(struct xhci_td *), mem_flags);
1117         if (!urb_priv)
1118                 return -ENOMEM;
1119
1120         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1121         if (!buffer) {
1122                 kfree(urb_priv);
1123                 return -ENOMEM;
1124         }
1125
1126         for (i = 0; i < size; i++) {
1127                 urb_priv->td[i] = buffer;
1128                 buffer++;
1129         }
1130
1131         urb_priv->length = size;
1132         urb_priv->td_cnt = 0;
1133         urb->hcpriv = urb_priv;
1134
1135         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1136                 /* Check to see if the max packet size for the default control
1137                  * endpoint changed during FS device enumeration
1138                  */
1139                 if (urb->dev->speed == USB_SPEED_FULL) {
1140                         ret = xhci_check_maxpacket(xhci, slot_id,
1141                                         ep_index, urb);
1142                         if (ret < 0) {
1143                                 xhci_urb_free_priv(xhci, urb_priv);
1144                                 urb->hcpriv = NULL;
1145                                 return ret;
1146                         }
1147                 }
1148
1149                 /* We have a spinlock and interrupts disabled, so we must pass
1150                  * atomic context to this function, which may allocate memory.
1151                  */
1152                 spin_lock_irqsave(&xhci->lock, flags);
1153                 if (xhci->xhc_state & XHCI_STATE_DYING)
1154                         goto dying;
1155                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1156                                 slot_id, ep_index);
1157                 if (ret)
1158                         goto free_priv;
1159                 spin_unlock_irqrestore(&xhci->lock, flags);
1160         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1161                 spin_lock_irqsave(&xhci->lock, flags);
1162                 if (xhci->xhc_state & XHCI_STATE_DYING)
1163                         goto dying;
1164                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1165                                 EP_GETTING_STREAMS) {
1166                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1167                                         "is transitioning to using streams.\n");
1168                         ret = -EINVAL;
1169                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1170                                 EP_GETTING_NO_STREAMS) {
1171                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1172                                         "is transitioning to "
1173                                         "not having streams.\n");
1174                         ret = -EINVAL;
1175                 } else {
1176                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1177                                         slot_id, ep_index);
1178                 }
1179                 if (ret)
1180                         goto free_priv;
1181                 spin_unlock_irqrestore(&xhci->lock, flags);
1182         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1183                 spin_lock_irqsave(&xhci->lock, flags);
1184                 if (xhci->xhc_state & XHCI_STATE_DYING)
1185                         goto dying;
1186                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1187                                 slot_id, ep_index);
1188                 if (ret)
1189                         goto free_priv;
1190                 spin_unlock_irqrestore(&xhci->lock, flags);
1191         } else {
1192                 spin_lock_irqsave(&xhci->lock, flags);
1193                 if (xhci->xhc_state & XHCI_STATE_DYING)
1194                         goto dying;
1195                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1196                                 slot_id, ep_index);
1197                 if (ret)
1198                         goto free_priv;
1199                 spin_unlock_irqrestore(&xhci->lock, flags);
1200         }
1201 exit:
1202         return ret;
1203 dying:
1204         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1205                         "non-responsive xHCI host.\n",
1206                         urb->ep->desc.bEndpointAddress, urb);
1207         ret = -ESHUTDOWN;
1208 free_priv:
1209         xhci_urb_free_priv(xhci, urb_priv);
1210         urb->hcpriv = NULL;
1211         spin_unlock_irqrestore(&xhci->lock, flags);
1212         return ret;
1213 }
1214
1215 /* Get the right ring for the given URB.
1216  * If the endpoint supports streams, boundary check the URB's stream ID.
1217  * If the endpoint doesn't support streams, return the singular endpoint ring.
1218  */
1219 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1220                 struct urb *urb)
1221 {
1222         unsigned int slot_id;
1223         unsigned int ep_index;
1224         unsigned int stream_id;
1225         struct xhci_virt_ep *ep;
1226
1227         slot_id = urb->dev->slot_id;
1228         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1229         stream_id = urb->stream_id;
1230         ep = &xhci->devs[slot_id]->eps[ep_index];
1231         /* Common case: no streams */
1232         if (!(ep->ep_state & EP_HAS_STREAMS))
1233                 return ep->ring;
1234
1235         if (stream_id == 0) {
1236                 xhci_warn(xhci,
1237                                 "WARN: Slot ID %u, ep index %u has streams, "
1238                                 "but URB has no stream ID.\n",
1239                                 slot_id, ep_index);
1240                 return NULL;
1241         }
1242
1243         if (stream_id < ep->stream_info->num_streams)
1244                 return ep->stream_info->stream_rings[stream_id];
1245
1246         xhci_warn(xhci,
1247                         "WARN: Slot ID %u, ep index %u has "
1248                         "stream IDs 1 to %u allocated, "
1249                         "but stream ID %u is requested.\n",
1250                         slot_id, ep_index,
1251                         ep->stream_info->num_streams - 1,
1252                         stream_id);
1253         return NULL;
1254 }
1255
1256 /*
1257  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1258  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1259  * should pick up where it left off in the TD, unless a Set Transfer Ring
1260  * Dequeue Pointer is issued.
1261  *
1262  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1263  * the ring.  Since the ring is a contiguous structure, they can't be physically
1264  * removed.  Instead, there are two options:
1265  *
1266  *  1) If the HC is in the middle of processing the URB to be canceled, we
1267  *     simply move the ring's dequeue pointer past those TRBs using the Set
1268  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1269  *     when drivers timeout on the last submitted URB and attempt to cancel.
1270  *
1271  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1272  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1273  *     HC will need to invalidate the any TRBs it has cached after the stop
1274  *     endpoint command, as noted in the xHCI 0.95 errata.
1275  *
1276  *  3) The TD may have completed by the time the Stop Endpoint Command
1277  *     completes, so software needs to handle that case too.
1278  *
1279  * This function should protect against the TD enqueueing code ringing the
1280  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1281  * It also needs to account for multiple cancellations on happening at the same
1282  * time for the same endpoint.
1283  *
1284  * Note that this function can be called in any context, or so says
1285  * usb_hcd_unlink_urb()
1286  */
1287 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1288 {
1289         unsigned long flags;
1290         int ret, i;
1291         u32 temp;
1292         struct xhci_hcd *xhci;
1293         struct urb_priv *urb_priv;
1294         struct xhci_td *td;
1295         unsigned int ep_index;
1296         struct xhci_ring *ep_ring;
1297         struct xhci_virt_ep *ep;
1298
1299         xhci = hcd_to_xhci(hcd);
1300         spin_lock_irqsave(&xhci->lock, flags);
1301         /* Make sure the URB hasn't completed or been unlinked already */
1302         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1303         if (ret || !urb->hcpriv)
1304                 goto done;
1305         temp = xhci_readl(xhci, &xhci->op_regs->status);
1306         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1307                 xhci_dbg(xhci, "HW died, freeing TD.\n");
1308                 urb_priv = urb->hcpriv;
1309                 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1310                         td = urb_priv->td[i];
1311                         if (!list_empty(&td->td_list))
1312                                 list_del_init(&td->td_list);
1313                         if (!list_empty(&td->cancelled_td_list))
1314                                 list_del_init(&td->cancelled_td_list);
1315                 }
1316
1317                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1318                 spin_unlock_irqrestore(&xhci->lock, flags);
1319                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1320                 xhci_urb_free_priv(xhci, urb_priv);
1321                 return ret;
1322         }
1323         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1324                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1325                 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1326                                 "non-responsive xHCI host.\n",
1327                                 urb->ep->desc.bEndpointAddress, urb);
1328                 /* Let the stop endpoint command watchdog timer (which set this
1329                  * state) finish cleaning up the endpoint TD lists.  We must
1330                  * have caught it in the middle of dropping a lock and giving
1331                  * back an URB.
1332                  */
1333                 goto done;
1334         }
1335
1336         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1337         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1338         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1339         if (!ep_ring) {
1340                 ret = -EINVAL;
1341                 goto done;
1342         }
1343
1344         urb_priv = urb->hcpriv;
1345         i = urb_priv->td_cnt;
1346         if (i < urb_priv->length)
1347                 xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1348                                 "starting at offset 0x%llx\n",
1349                                 urb, urb->dev->devpath,
1350                                 urb->ep->desc.bEndpointAddress,
1351                                 (unsigned long long) xhci_trb_virt_to_dma(
1352                                         urb_priv->td[i]->start_seg,
1353                                         urb_priv->td[i]->first_trb));
1354
1355         for (; i < urb_priv->length; i++) {
1356                 td = urb_priv->td[i];
1357                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1358         }
1359
1360         /* Queue a stop endpoint command, but only if this is
1361          * the first cancellation to be handled.
1362          */
1363         if (!(ep->ep_state & EP_HALT_PENDING)) {
1364                 ep->ep_state |= EP_HALT_PENDING;
1365                 ep->stop_cmds_pending++;
1366                 ep->stop_cmd_timer.expires = jiffies +
1367                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1368                 add_timer(&ep->stop_cmd_timer);
1369                 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1370                 xhci_ring_cmd_db(xhci);
1371         }
1372 done:
1373         spin_unlock_irqrestore(&xhci->lock, flags);
1374         return ret;
1375 }
1376
1377 /* Drop an endpoint from a new bandwidth configuration for this device.
1378  * Only one call to this function is allowed per endpoint before
1379  * check_bandwidth() or reset_bandwidth() must be called.
1380  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1381  * add the endpoint to the schedule with possibly new parameters denoted by a
1382  * different endpoint descriptor in usb_host_endpoint.
1383  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1384  * not allowed.
1385  *
1386  * The USB core will not allow URBs to be queued to an endpoint that is being
1387  * disabled, so there's no need for mutual exclusion to protect
1388  * the xhci->devs[slot_id] structure.
1389  */
1390 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1391                 struct usb_host_endpoint *ep)
1392 {
1393         struct xhci_hcd *xhci;
1394         struct xhci_container_ctx *in_ctx, *out_ctx;
1395         struct xhci_input_control_ctx *ctrl_ctx;
1396         struct xhci_slot_ctx *slot_ctx;
1397         unsigned int last_ctx;
1398         unsigned int ep_index;
1399         struct xhci_ep_ctx *ep_ctx;
1400         u32 drop_flag;
1401         u32 new_add_flags, new_drop_flags, new_slot_info;
1402         int ret;
1403
1404         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1405         if (ret <= 0)
1406                 return ret;
1407         xhci = hcd_to_xhci(hcd);
1408         if (xhci->xhc_state & XHCI_STATE_DYING)
1409                 return -ENODEV;
1410
1411         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1412         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1413         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1414                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1415                                 __func__, drop_flag);
1416                 return 0;
1417         }
1418
1419         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1420         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1421         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1422         ep_index = xhci_get_endpoint_index(&ep->desc);
1423         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1424         /* If the HC already knows the endpoint is disabled,
1425          * or the HCD has noted it is disabled, ignore this request
1426          */
1427         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1428              cpu_to_le32(EP_STATE_DISABLED)) ||
1429             le32_to_cpu(ctrl_ctx->drop_flags) &
1430             xhci_get_endpoint_flag(&ep->desc)) {
1431                 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1432                                 __func__, ep);
1433                 return 0;
1434         }
1435
1436         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1437         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1438
1439         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1440         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1441
1442         last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1443         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1444         /* Update the last valid endpoint context, if we deleted the last one */
1445         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1446             LAST_CTX(last_ctx)) {
1447                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1448                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1449         }
1450         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1451
1452         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1453
1454         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1455                         (unsigned int) ep->desc.bEndpointAddress,
1456                         udev->slot_id,
1457                         (unsigned int) new_drop_flags,
1458                         (unsigned int) new_add_flags,
1459                         (unsigned int) new_slot_info);
1460         return 0;
1461 }
1462
1463 /* Add an endpoint to a new possible bandwidth configuration for this device.
1464  * Only one call to this function is allowed per endpoint before
1465  * check_bandwidth() or reset_bandwidth() must be called.
1466  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1467  * add the endpoint to the schedule with possibly new parameters denoted by a
1468  * different endpoint descriptor in usb_host_endpoint.
1469  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1470  * not allowed.
1471  *
1472  * The USB core will not allow URBs to be queued to an endpoint until the
1473  * configuration or alt setting is installed in the device, so there's no need
1474  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1475  */
1476 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1477                 struct usb_host_endpoint *ep)
1478 {
1479         struct xhci_hcd *xhci;
1480         struct xhci_container_ctx *in_ctx, *out_ctx;
1481         unsigned int ep_index;
1482         struct xhci_ep_ctx *ep_ctx;
1483         struct xhci_slot_ctx *slot_ctx;
1484         struct xhci_input_control_ctx *ctrl_ctx;
1485         u32 added_ctxs;
1486         unsigned int last_ctx;
1487         u32 new_add_flags, new_drop_flags, new_slot_info;
1488         struct xhci_virt_device *virt_dev;
1489         int ret = 0;
1490
1491         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1492         if (ret <= 0) {
1493                 /* So we won't queue a reset ep command for a root hub */
1494                 ep->hcpriv = NULL;
1495                 return ret;
1496         }
1497         xhci = hcd_to_xhci(hcd);
1498         if (xhci->xhc_state & XHCI_STATE_DYING)
1499                 return -ENODEV;
1500
1501         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1502         last_ctx = xhci_last_valid_endpoint(added_ctxs);
1503         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1504                 /* FIXME when we have to issue an evaluate endpoint command to
1505                  * deal with ep0 max packet size changing once we get the
1506                  * descriptors
1507                  */
1508                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1509                                 __func__, added_ctxs);
1510                 return 0;
1511         }
1512
1513         virt_dev = xhci->devs[udev->slot_id];
1514         in_ctx = virt_dev->in_ctx;
1515         out_ctx = virt_dev->out_ctx;
1516         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1517         ep_index = xhci_get_endpoint_index(&ep->desc);
1518         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1519
1520         /* If this endpoint is already in use, and the upper layers are trying
1521          * to add it again without dropping it, reject the addition.
1522          */
1523         if (virt_dev->eps[ep_index].ring &&
1524                         !(le32_to_cpu(ctrl_ctx->drop_flags) &
1525                                 xhci_get_endpoint_flag(&ep->desc))) {
1526                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1527                                 "without dropping it.\n",
1528                                 (unsigned int) ep->desc.bEndpointAddress);
1529                 return -EINVAL;
1530         }
1531
1532         /* If the HCD has already noted the endpoint is enabled,
1533          * ignore this request.
1534          */
1535         if (le32_to_cpu(ctrl_ctx->add_flags) &
1536             xhci_get_endpoint_flag(&ep->desc)) {
1537                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1538                                 __func__, ep);
1539                 return 0;
1540         }
1541
1542         /*
1543          * Configuration and alternate setting changes must be done in
1544          * process context, not interrupt context (or so documenation
1545          * for usb_set_interface() and usb_set_configuration() claim).
1546          */
1547         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1548                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1549                                 __func__, ep->desc.bEndpointAddress);
1550                 return -ENOMEM;
1551         }
1552
1553         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1554         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1555
1556         /* If xhci_endpoint_disable() was called for this endpoint, but the
1557          * xHC hasn't been notified yet through the check_bandwidth() call,
1558          * this re-adds a new state for the endpoint from the new endpoint
1559          * descriptors.  We must drop and re-add this endpoint, so we leave the
1560          * drop flags alone.
1561          */
1562         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1563
1564         slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1565         /* Update the last valid endpoint context, if we just added one past */
1566         if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1567             LAST_CTX(last_ctx)) {
1568                 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1569                 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1570         }
1571         new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1572
1573         /* Store the usb_device pointer for later use */
1574         ep->hcpriv = udev;
1575
1576         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1577                         (unsigned int) ep->desc.bEndpointAddress,
1578                         udev->slot_id,
1579                         (unsigned int) new_drop_flags,
1580                         (unsigned int) new_add_flags,
1581                         (unsigned int) new_slot_info);
1582         return 0;
1583 }
1584
1585 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1586 {
1587         struct xhci_input_control_ctx *ctrl_ctx;
1588         struct xhci_ep_ctx *ep_ctx;
1589         struct xhci_slot_ctx *slot_ctx;
1590         int i;
1591
1592         /* When a device's add flag and drop flag are zero, any subsequent
1593          * configure endpoint command will leave that endpoint's state
1594          * untouched.  Make sure we don't leave any old state in the input
1595          * endpoint contexts.
1596          */
1597         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1598         ctrl_ctx->drop_flags = 0;
1599         ctrl_ctx->add_flags = 0;
1600         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1601         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1602         /* Endpoint 0 is always valid */
1603         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1604         for (i = 1; i < 31; ++i) {
1605                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1606                 ep_ctx->ep_info = 0;
1607                 ep_ctx->ep_info2 = 0;
1608                 ep_ctx->deq = 0;
1609                 ep_ctx->tx_info = 0;
1610         }
1611 }
1612
1613 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1614                 struct usb_device *udev, u32 *cmd_status)
1615 {
1616         int ret;
1617
1618         switch (*cmd_status) {
1619         case COMP_ENOMEM:
1620                 dev_warn(&udev->dev, "Not enough host controller resources "
1621                                 "for new device state.\n");
1622                 ret = -ENOMEM;
1623                 /* FIXME: can we allocate more resources for the HC? */
1624                 break;
1625         case COMP_BW_ERR:
1626         case COMP_2ND_BW_ERR:
1627                 dev_warn(&udev->dev, "Not enough bandwidth "
1628                                 "for new device state.\n");
1629                 ret = -ENOSPC;
1630                 /* FIXME: can we go back to the old state? */
1631                 break;
1632         case COMP_TRB_ERR:
1633                 /* the HCD set up something wrong */
1634                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1635                                 "add flag = 1, "
1636                                 "and endpoint is not disabled.\n");
1637                 ret = -EINVAL;
1638                 break;
1639         case COMP_DEV_ERR:
1640                 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1641                                 "configure command.\n");
1642                 ret = -ENODEV;
1643                 break;
1644         case COMP_SUCCESS:
1645                 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1646                 ret = 0;
1647                 break;
1648         default:
1649                 xhci_err(xhci, "ERROR: unexpected command completion "
1650                                 "code 0x%x.\n", *cmd_status);
1651                 ret = -EINVAL;
1652                 break;
1653         }
1654         return ret;
1655 }
1656
1657 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1658                 struct usb_device *udev, u32 *cmd_status)
1659 {
1660         int ret;
1661         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1662
1663         switch (*cmd_status) {
1664         case COMP_EINVAL:
1665                 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1666                                 "context command.\n");
1667                 ret = -EINVAL;
1668                 break;
1669         case COMP_EBADSLT:
1670                 dev_warn(&udev->dev, "WARN: slot not enabled for"
1671                                 "evaluate context command.\n");
1672         case COMP_CTX_STATE:
1673                 dev_warn(&udev->dev, "WARN: invalid context state for "
1674                                 "evaluate context command.\n");
1675                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1676                 ret = -EINVAL;
1677                 break;
1678         case COMP_DEV_ERR:
1679                 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1680                                 "context command.\n");
1681                 ret = -ENODEV;
1682                 break;
1683         case COMP_MEL_ERR:
1684                 /* Max Exit Latency too large error */
1685                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1686                 ret = -EINVAL;
1687                 break;
1688         case COMP_SUCCESS:
1689                 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1690                 ret = 0;
1691                 break;
1692         default:
1693                 xhci_err(xhci, "ERROR: unexpected command completion "
1694                                 "code 0x%x.\n", *cmd_status);
1695                 ret = -EINVAL;
1696                 break;
1697         }
1698         return ret;
1699 }
1700
1701 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1702                 struct xhci_container_ctx *in_ctx)
1703 {
1704         struct xhci_input_control_ctx *ctrl_ctx;
1705         u32 valid_add_flags;
1706         u32 valid_drop_flags;
1707
1708         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1709         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1710          * (bit 1).  The default control endpoint is added during the Address
1711          * Device command and is never removed until the slot is disabled.
1712          */
1713         valid_add_flags = ctrl_ctx->add_flags >> 2;
1714         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1715
1716         /* Use hweight32 to count the number of ones in the add flags, or
1717          * number of endpoints added.  Don't count endpoints that are changed
1718          * (both added and dropped).
1719          */
1720         return hweight32(valid_add_flags) -
1721                 hweight32(valid_add_flags & valid_drop_flags);
1722 }
1723
1724 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1725                 struct xhci_container_ctx *in_ctx)
1726 {
1727         struct xhci_input_control_ctx *ctrl_ctx;
1728         u32 valid_add_flags;
1729         u32 valid_drop_flags;
1730
1731         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1732         valid_add_flags = ctrl_ctx->add_flags >> 2;
1733         valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1734
1735         return hweight32(valid_drop_flags) -
1736                 hweight32(valid_add_flags & valid_drop_flags);
1737 }
1738
1739 /*
1740  * We need to reserve the new number of endpoints before the configure endpoint
1741  * command completes.  We can't subtract the dropped endpoints from the number
1742  * of active endpoints until the command completes because we can oversubscribe
1743  * the host in this case:
1744  *
1745  *  - the first configure endpoint command drops more endpoints than it adds
1746  *  - a second configure endpoint command that adds more endpoints is queued
1747  *  - the first configure endpoint command fails, so the config is unchanged
1748  *  - the second command may succeed, even though there isn't enough resources
1749  *
1750  * Must be called with xhci->lock held.
1751  */
1752 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1753                 struct xhci_container_ctx *in_ctx)
1754 {
1755         u32 added_eps;
1756
1757         added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1758         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1759                 xhci_dbg(xhci, "Not enough ep ctxs: "
1760                                 "%u active, need to add %u, limit is %u.\n",
1761                                 xhci->num_active_eps, added_eps,
1762                                 xhci->limit_active_eps);
1763                 return -ENOMEM;
1764         }
1765         xhci->num_active_eps += added_eps;
1766         xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1767                         xhci->num_active_eps);
1768         return 0;
1769 }
1770
1771 /*
1772  * The configure endpoint was failed by the xHC for some other reason, so we
1773  * need to revert the resources that failed configuration would have used.
1774  *
1775  * Must be called with xhci->lock held.
1776  */
1777 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1778                 struct xhci_container_ctx *in_ctx)
1779 {
1780         u32 num_failed_eps;
1781
1782         num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1783         xhci->num_active_eps -= num_failed_eps;
1784         xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1785                         num_failed_eps,
1786                         xhci->num_active_eps);
1787 }
1788
1789 /*
1790  * Now that the command has completed, clean up the active endpoint count by
1791  * subtracting out the endpoints that were dropped (but not changed).
1792  *
1793  * Must be called with xhci->lock held.
1794  */
1795 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1796                 struct xhci_container_ctx *in_ctx)
1797 {
1798         u32 num_dropped_eps;
1799
1800         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1801         xhci->num_active_eps -= num_dropped_eps;
1802         if (num_dropped_eps)
1803                 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1804                                 num_dropped_eps,
1805                                 xhci->num_active_eps);
1806 }
1807
1808 unsigned int xhci_get_block_size(struct usb_device *udev)
1809 {
1810         switch (udev->speed) {
1811         case USB_SPEED_LOW:
1812         case USB_SPEED_FULL:
1813                 return FS_BLOCK;
1814         case USB_SPEED_HIGH:
1815                 return HS_BLOCK;
1816         case USB_SPEED_SUPER:
1817                 return SS_BLOCK;
1818         case USB_SPEED_UNKNOWN:
1819         case USB_SPEED_WIRELESS:
1820         default:
1821                 /* Should never happen */
1822                 return 1;
1823         }
1824 }
1825
1826 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1827 {
1828         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1829                 return LS_OVERHEAD;
1830         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1831                 return FS_OVERHEAD;
1832         return HS_OVERHEAD;
1833 }
1834
1835 /* If we are changing a LS/FS device under a HS hub,
1836  * make sure (if we are activating a new TT) that the HS bus has enough
1837  * bandwidth for this new TT.
1838  */
1839 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1840                 struct xhci_virt_device *virt_dev,
1841                 int old_active_eps)
1842 {
1843         struct xhci_interval_bw_table *bw_table;
1844         struct xhci_tt_bw_info *tt_info;
1845
1846         /* Find the bandwidth table for the root port this TT is attached to. */
1847         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1848         tt_info = virt_dev->tt_info;
1849         /* If this TT already had active endpoints, the bandwidth for this TT
1850          * has already been added.  Removing all periodic endpoints (and thus
1851          * making the TT enactive) will only decrease the bandwidth used.
1852          */
1853         if (old_active_eps)
1854                 return 0;
1855         if (old_active_eps == 0 && tt_info->active_eps != 0) {
1856                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1857                         return -ENOMEM;
1858                 return 0;
1859         }
1860         /* Not sure why we would have no new active endpoints...
1861          *
1862          * Maybe because of an Evaluate Context change for a hub update or a
1863          * control endpoint 0 max packet size change?
1864          * FIXME: skip the bandwidth calculation in that case.
1865          */
1866         return 0;
1867 }
1868
1869 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1870                 struct xhci_virt_device *virt_dev)
1871 {
1872         unsigned int bw_reserved;
1873
1874         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1875         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1876                 return -ENOMEM;
1877
1878         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1879         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1880                 return -ENOMEM;
1881
1882         return 0;
1883 }
1884
1885 /*
1886  * This algorithm is a very conservative estimate of the worst-case scheduling
1887  * scenario for any one interval.  The hardware dynamically schedules the
1888  * packets, so we can't tell which microframe could be the limiting factor in
1889  * the bandwidth scheduling.  This only takes into account periodic endpoints.
1890  *
1891  * Obviously, we can't solve an NP complete problem to find the minimum worst
1892  * case scenario.  Instead, we come up with an estimate that is no less than
1893  * the worst case bandwidth used for any one microframe, but may be an
1894  * over-estimate.
1895  *
1896  * We walk the requirements for each endpoint by interval, starting with the
1897  * smallest interval, and place packets in the schedule where there is only one
1898  * possible way to schedule packets for that interval.  In order to simplify
1899  * this algorithm, we record the largest max packet size for each interval, and
1900  * assume all packets will be that size.
1901  *
1902  * For interval 0, we obviously must schedule all packets for each interval.
1903  * The bandwidth for interval 0 is just the amount of data to be transmitted
1904  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1905  * the number of packets).
1906  *
1907  * For interval 1, we have two possible microframes to schedule those packets
1908  * in.  For this algorithm, if we can schedule the same number of packets for
1909  * each possible scheduling opportunity (each microframe), we will do so.  The
1910  * remaining number of packets will be saved to be transmitted in the gaps in
1911  * the next interval's scheduling sequence.
1912  *
1913  * As we move those remaining packets to be scheduled with interval 2 packets,
1914  * we have to double the number of remaining packets to transmit.  This is
1915  * because the intervals are actually powers of 2, and we would be transmitting
1916  * the previous interval's packets twice in this interval.  We also have to be
1917  * sure that when we look at the largest max packet size for this interval, we
1918  * also look at the largest max packet size for the remaining packets and take
1919  * the greater of the two.
1920  *
1921  * The algorithm continues to evenly distribute packets in each scheduling
1922  * opportunity, and push the remaining packets out, until we get to the last
1923  * interval.  Then those packets and their associated overhead are just added
1924  * to the bandwidth used.
1925  */
1926 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1927                 struct xhci_virt_device *virt_dev,
1928                 int old_active_eps)
1929 {
1930         unsigned int bw_reserved;
1931         unsigned int max_bandwidth;
1932         unsigned int bw_used;
1933         unsigned int block_size;
1934         struct xhci_interval_bw_table *bw_table;
1935         unsigned int packet_size = 0;
1936         unsigned int overhead = 0;
1937         unsigned int packets_transmitted = 0;
1938         unsigned int packets_remaining = 0;
1939         unsigned int i;
1940
1941         if (virt_dev->udev->speed == USB_SPEED_SUPER)
1942                 return xhci_check_ss_bw(xhci, virt_dev);
1943
1944         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1945                 max_bandwidth = HS_BW_LIMIT;
1946                 /* Convert percent of bus BW reserved to blocks reserved */
1947                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1948         } else {
1949                 max_bandwidth = FS_BW_LIMIT;
1950                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1951         }
1952
1953         bw_table = virt_dev->bw_table;
1954         /* We need to translate the max packet size and max ESIT payloads into
1955          * the units the hardware uses.
1956          */
1957         block_size = xhci_get_block_size(virt_dev->udev);
1958
1959         /* If we are manipulating a LS/FS device under a HS hub, double check
1960          * that the HS bus has enough bandwidth if we are activing a new TT.
1961          */
1962         if (virt_dev->tt_info) {
1963                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1964                                 virt_dev->real_port);
1965                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1966                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1967                                         "newly activated TT.\n");
1968                         return -ENOMEM;
1969                 }
1970                 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1971                                 virt_dev->tt_info->slot_id,
1972                                 virt_dev->tt_info->ttport);
1973         } else {
1974                 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1975                                 virt_dev->real_port);
1976         }
1977
1978         /* Add in how much bandwidth will be used for interval zero, or the
1979          * rounded max ESIT payload + number of packets * largest overhead.
1980          */
1981         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1982                 bw_table->interval_bw[0].num_packets *
1983                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1984
1985         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1986                 unsigned int bw_added;
1987                 unsigned int largest_mps;
1988                 unsigned int interval_overhead;
1989
1990                 /*
1991                  * How many packets could we transmit in this interval?
1992                  * If packets didn't fit in the previous interval, we will need
1993                  * to transmit that many packets twice within this interval.
1994                  */
1995                 packets_remaining = 2 * packets_remaining +
1996                         bw_table->interval_bw[i].num_packets;
1997
1998                 /* Find the largest max packet size of this or the previous
1999                  * interval.
2000                  */
2001                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2002                         largest_mps = 0;
2003                 else {
2004                         struct xhci_virt_ep *virt_ep;
2005                         struct list_head *ep_entry;
2006
2007                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2008                         virt_ep = list_entry(ep_entry,
2009                                         struct xhci_virt_ep, bw_endpoint_list);
2010                         /* Convert to blocks, rounding up */
2011                         largest_mps = DIV_ROUND_UP(
2012                                         virt_ep->bw_info.max_packet_size,
2013                                         block_size);
2014                 }
2015                 if (largest_mps > packet_size)
2016                         packet_size = largest_mps;
2017
2018                 /* Use the larger overhead of this or the previous interval. */
2019                 interval_overhead = xhci_get_largest_overhead(
2020                                 &bw_table->interval_bw[i]);
2021                 if (interval_overhead > overhead)
2022                         overhead = interval_overhead;
2023
2024                 /* How many packets can we evenly distribute across
2025                  * (1 << (i + 1)) possible scheduling opportunities?
2026                  */
2027                 packets_transmitted = packets_remaining >> (i + 1);
2028
2029                 /* Add in the bandwidth used for those scheduled packets */
2030                 bw_added = packets_transmitted * (overhead + packet_size);
2031
2032                 /* How many packets do we have remaining to transmit? */
2033                 packets_remaining = packets_remaining % (1 << (i + 1));
2034
2035                 /* What largest max packet size should those packets have? */
2036                 /* If we've transmitted all packets, don't carry over the
2037                  * largest packet size.
2038                  */
2039                 if (packets_remaining == 0) {
2040                         packet_size = 0;
2041                         overhead = 0;
2042                 } else if (packets_transmitted > 0) {
2043                         /* Otherwise if we do have remaining packets, and we've
2044                          * scheduled some packets in this interval, take the
2045                          * largest max packet size from endpoints with this
2046                          * interval.
2047                          */
2048                         packet_size = largest_mps;
2049                         overhead = interval_overhead;
2050                 }
2051                 /* Otherwise carry over packet_size and overhead from the last
2052                  * time we had a remainder.
2053                  */
2054                 bw_used += bw_added;
2055                 if (bw_used > max_bandwidth) {
2056                         xhci_warn(xhci, "Not enough bandwidth. "
2057                                         "Proposed: %u, Max: %u\n",
2058                                 bw_used, max_bandwidth);
2059                         return -ENOMEM;
2060                 }
2061         }
2062         /*
2063          * Ok, we know we have some packets left over after even-handedly
2064          * scheduling interval 15.  We don't know which microframes they will
2065          * fit into, so we over-schedule and say they will be scheduled every
2066          * microframe.
2067          */
2068         if (packets_remaining > 0)
2069                 bw_used += overhead + packet_size;
2070
2071         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2072                 unsigned int port_index = virt_dev->real_port - 1;
2073
2074                 /* OK, we're manipulating a HS device attached to a
2075                  * root port bandwidth domain.  Include the number of active TTs
2076                  * in the bandwidth used.
2077                  */
2078                 bw_used += TT_HS_OVERHEAD *
2079                         xhci->rh_bw[port_index].num_active_tts;
2080         }
2081
2082         xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2083                 "Available: %u " "percent\n",
2084                 bw_used, max_bandwidth, bw_reserved,
2085                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2086                 max_bandwidth);
2087
2088         bw_used += bw_reserved;
2089         if (bw_used > max_bandwidth) {
2090                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2091                                 bw_used, max_bandwidth);
2092                 return -ENOMEM;
2093         }
2094
2095         bw_table->bw_used = bw_used;
2096         return 0;
2097 }
2098
2099 static bool xhci_is_async_ep(unsigned int ep_type)
2100 {
2101         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2102                                         ep_type != ISOC_IN_EP &&
2103                                         ep_type != INT_IN_EP);
2104 }
2105
2106 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2107 {
2108         return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2109 }
2110
2111 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2112 {
2113         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2114
2115         if (ep_bw->ep_interval == 0)
2116                 return SS_OVERHEAD_BURST +
2117                         (ep_bw->mult * ep_bw->num_packets *
2118                                         (SS_OVERHEAD + mps));
2119         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2120                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2121                                 1 << ep_bw->ep_interval);
2122
2123 }
2124
2125 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2126                 struct xhci_bw_info *ep_bw,
2127                 struct xhci_interval_bw_table *bw_table,
2128                 struct usb_device *udev,
2129                 struct xhci_virt_ep *virt_ep,
2130                 struct xhci_tt_bw_info *tt_info)
2131 {
2132         struct xhci_interval_bw *interval_bw;
2133         int normalized_interval;
2134
2135         if (xhci_is_async_ep(ep_bw->type))
2136                 return;
2137
2138         if (udev->speed == USB_SPEED_SUPER) {
2139                 if (xhci_is_sync_in_ep(ep_bw->type))
2140                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2141                                 xhci_get_ss_bw_consumed(ep_bw);
2142                 else
2143                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2144                                 xhci_get_ss_bw_consumed(ep_bw);
2145                 return;
2146         }
2147
2148         /* SuperSpeed endpoints never get added to intervals in the table, so
2149          * this check is only valid for HS/FS/LS devices.
2150          */
2151         if (list_empty(&virt_ep->bw_endpoint_list))
2152                 return;
2153         /* For LS/FS devices, we need to translate the interval expressed in
2154          * microframes to frames.
2155          */
2156         if (udev->speed == USB_SPEED_HIGH)
2157                 normalized_interval = ep_bw->ep_interval;
2158         else
2159                 normalized_interval = ep_bw->ep_interval - 3;
2160
2161         if (normalized_interval == 0)
2162                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2163         interval_bw = &bw_table->interval_bw[normalized_interval];
2164         interval_bw->num_packets -= ep_bw->num_packets;
2165         switch (udev->speed) {
2166         case USB_SPEED_LOW:
2167                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2168                 break;
2169         case USB_SPEED_FULL:
2170                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2171                 break;
2172         case USB_SPEED_HIGH:
2173                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2174                 break;
2175         case USB_SPEED_SUPER:
2176         case USB_SPEED_UNKNOWN:
2177         case USB_SPEED_WIRELESS:
2178                 /* Should never happen because only LS/FS/HS endpoints will get
2179                  * added to the endpoint list.
2180                  */
2181                 return;
2182         }
2183         if (tt_info)
2184                 tt_info->active_eps -= 1;
2185         list_del_init(&virt_ep->bw_endpoint_list);
2186 }
2187
2188 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2189                 struct xhci_bw_info *ep_bw,
2190                 struct xhci_interval_bw_table *bw_table,
2191                 struct usb_device *udev,
2192                 struct xhci_virt_ep *virt_ep,
2193                 struct xhci_tt_bw_info *tt_info)
2194 {
2195         struct xhci_interval_bw *interval_bw;
2196         struct xhci_virt_ep *smaller_ep;
2197         int normalized_interval;
2198
2199         if (xhci_is_async_ep(ep_bw->type))
2200                 return;
2201
2202         if (udev->speed == USB_SPEED_SUPER) {
2203                 if (xhci_is_sync_in_ep(ep_bw->type))
2204                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2205                                 xhci_get_ss_bw_consumed(ep_bw);
2206                 else
2207                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2208                                 xhci_get_ss_bw_consumed(ep_bw);
2209                 return;
2210         }
2211
2212         /* For LS/FS devices, we need to translate the interval expressed in
2213          * microframes to frames.
2214          */
2215         if (udev->speed == USB_SPEED_HIGH)
2216                 normalized_interval = ep_bw->ep_interval;
2217         else
2218                 normalized_interval = ep_bw->ep_interval - 3;
2219
2220         if (normalized_interval == 0)
2221                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2222         interval_bw = &bw_table->interval_bw[normalized_interval];
2223         interval_bw->num_packets += ep_bw->num_packets;
2224         switch (udev->speed) {
2225         case USB_SPEED_LOW:
2226                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2227                 break;
2228         case USB_SPEED_FULL:
2229                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2230                 break;
2231         case USB_SPEED_HIGH:
2232                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2233                 break;
2234         case USB_SPEED_SUPER:
2235         case USB_SPEED_UNKNOWN:
2236         case USB_SPEED_WIRELESS:
2237                 /* Should never happen because only LS/FS/HS endpoints will get
2238                  * added to the endpoint list.
2239                  */
2240                 return;
2241         }
2242
2243         if (tt_info)
2244                 tt_info->active_eps += 1;
2245         /* Insert the endpoint into the list, largest max packet size first. */
2246         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2247                         bw_endpoint_list) {
2248                 if (ep_bw->max_packet_size >=
2249                                 smaller_ep->bw_info.max_packet_size) {
2250                         /* Add the new ep before the smaller endpoint */
2251                         list_add_tail(&virt_ep->bw_endpoint_list,
2252                                         &smaller_ep->bw_endpoint_list);
2253                         return;
2254                 }
2255         }
2256         /* Add the new endpoint at the end of the list. */
2257         list_add_tail(&virt_ep->bw_endpoint_list,
2258                         &interval_bw->endpoints);
2259 }
2260
2261 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2262                 struct xhci_virt_device *virt_dev,
2263                 int old_active_eps)
2264 {
2265         struct xhci_root_port_bw_info *rh_bw_info;
2266         if (!virt_dev->tt_info)
2267                 return;
2268
2269         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2270         if (old_active_eps == 0 &&
2271                                 virt_dev->tt_info->active_eps != 0) {
2272                 rh_bw_info->num_active_tts += 1;
2273                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2274         } else if (old_active_eps != 0 &&
2275                                 virt_dev->tt_info->active_eps == 0) {
2276                 rh_bw_info->num_active_tts -= 1;
2277                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2278         }
2279 }
2280
2281 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2282                 struct xhci_virt_device *virt_dev,
2283                 struct xhci_container_ctx *in_ctx)
2284 {
2285         struct xhci_bw_info ep_bw_info[31];
2286         int i;
2287         struct xhci_input_control_ctx *ctrl_ctx;
2288         int old_active_eps = 0;
2289
2290         if (virt_dev->tt_info)
2291                 old_active_eps = virt_dev->tt_info->active_eps;
2292
2293         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2294
2295         for (i = 0; i < 31; i++) {
2296                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2297                         continue;
2298
2299                 /* Make a copy of the BW info in case we need to revert this */
2300                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2301                                 sizeof(ep_bw_info[i]));
2302                 /* Drop the endpoint from the interval table if the endpoint is
2303                  * being dropped or changed.
2304                  */
2305                 if (EP_IS_DROPPED(ctrl_ctx, i))
2306                         xhci_drop_ep_from_interval_table(xhci,
2307                                         &virt_dev->eps[i].bw_info,
2308                                         virt_dev->bw_table,
2309                                         virt_dev->udev,
2310                                         &virt_dev->eps[i],
2311                                         virt_dev->tt_info);
2312         }
2313         /* Overwrite the information stored in the endpoints' bw_info */
2314         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2315         for (i = 0; i < 31; i++) {
2316                 /* Add any changed or added endpoints to the interval table */
2317                 if (EP_IS_ADDED(ctrl_ctx, i))
2318                         xhci_add_ep_to_interval_table(xhci,
2319                                         &virt_dev->eps[i].bw_info,
2320                                         virt_dev->bw_table,
2321                                         virt_dev->udev,
2322                                         &virt_dev->eps[i],
2323                                         virt_dev->tt_info);
2324         }
2325
2326         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2327                 /* Ok, this fits in the bandwidth we have.
2328                  * Update the number of active TTs.
2329                  */
2330                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2331                 return 0;
2332         }
2333
2334         /* We don't have enough bandwidth for this, revert the stored info. */
2335         for (i = 0; i < 31; i++) {
2336                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2337                         continue;
2338
2339                 /* Drop the new copies of any added or changed endpoints from
2340                  * the interval table.
2341                  */
2342                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2343                         xhci_drop_ep_from_interval_table(xhci,
2344                                         &virt_dev->eps[i].bw_info,
2345                                         virt_dev->bw_table,
2346                                         virt_dev->udev,
2347                                         &virt_dev->eps[i],
2348                                         virt_dev->tt_info);
2349                 }
2350                 /* Revert the endpoint back to its old information */
2351                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2352                                 sizeof(ep_bw_info[i]));
2353                 /* Add any changed or dropped endpoints back into the table */
2354                 if (EP_IS_DROPPED(ctrl_ctx, i))
2355                         xhci_add_ep_to_interval_table(xhci,
2356                                         &virt_dev->eps[i].bw_info,
2357                                         virt_dev->bw_table,
2358                                         virt_dev->udev,
2359                                         &virt_dev->eps[i],
2360                                         virt_dev->tt_info);
2361         }
2362         return -ENOMEM;
2363 }
2364
2365
2366 /* Issue a configure endpoint command or evaluate context command
2367  * and wait for it to finish.
2368  */
2369 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2370                 struct usb_device *udev,
2371                 struct xhci_command *command,
2372                 bool ctx_change, bool must_succeed)
2373 {
2374         int ret;
2375         int timeleft;
2376         unsigned long flags;
2377         struct xhci_container_ctx *in_ctx;
2378         struct completion *cmd_completion;
2379         u32 *cmd_status;
2380         struct xhci_virt_device *virt_dev;
2381
2382         spin_lock_irqsave(&xhci->lock, flags);
2383         virt_dev = xhci->devs[udev->slot_id];
2384
2385         if (command)
2386                 in_ctx = command->in_ctx;
2387         else
2388                 in_ctx = virt_dev->in_ctx;
2389
2390         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2391                         xhci_reserve_host_resources(xhci, in_ctx)) {
2392                 spin_unlock_irqrestore(&xhci->lock, flags);
2393                 xhci_warn(xhci, "Not enough host resources, "
2394                                 "active endpoint contexts = %u\n",
2395                                 xhci->num_active_eps);
2396                 return -ENOMEM;
2397         }
2398         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2399                         xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2400                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2401                         xhci_free_host_resources(xhci, in_ctx);
2402                 spin_unlock_irqrestore(&xhci->lock, flags);
2403                 xhci_warn(xhci, "Not enough bandwidth\n");
2404                 return -ENOMEM;
2405         }
2406
2407         if (command) {
2408                 cmd_completion = command->completion;
2409                 cmd_status = &command->status;
2410                 command->command_trb = xhci->cmd_ring->enqueue;
2411
2412                 /* Enqueue pointer can be left pointing to the link TRB,
2413                  * we must handle that
2414                  */
2415                 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2416                         command->command_trb =
2417                                 xhci->cmd_ring->enq_seg->next->trbs;
2418
2419                 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2420         } else {
2421                 cmd_completion = &virt_dev->cmd_completion;
2422                 cmd_status = &virt_dev->cmd_status;
2423         }
2424         init_completion(cmd_completion);
2425
2426         if (!ctx_change)
2427                 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2428                                 udev->slot_id, must_succeed);
2429         else
2430                 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2431                                 udev->slot_id);
2432         if (ret < 0) {
2433                 if (command)
2434                         list_del(&command->cmd_list);
2435                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2436                         xhci_free_host_resources(xhci, in_ctx);
2437                 spin_unlock_irqrestore(&xhci->lock, flags);
2438                 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2439                 return -ENOMEM;
2440         }
2441         xhci_ring_cmd_db(xhci);
2442         spin_unlock_irqrestore(&xhci->lock, flags);
2443
2444         /* Wait for the configure endpoint command to complete */
2445         timeleft = wait_for_completion_interruptible_timeout(
2446                         cmd_completion,
2447                         USB_CTRL_SET_TIMEOUT);
2448         if (timeleft <= 0) {
2449                 xhci_warn(xhci, "%s while waiting for %s command\n",
2450                                 timeleft == 0 ? "Timeout" : "Signal",
2451                                 ctx_change == 0 ?
2452                                         "configure endpoint" :
2453                                         "evaluate context");
2454                 /* FIXME cancel the configure endpoint command */
2455                 return -ETIME;
2456         }
2457
2458         if (!ctx_change)
2459                 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2460         else
2461                 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2462
2463         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2464                 spin_lock_irqsave(&xhci->lock, flags);
2465                 /* If the command failed, remove the reserved resources.
2466                  * Otherwise, clean up the estimate to include dropped eps.
2467                  */
2468                 if (ret)
2469                         xhci_free_host_resources(xhci, in_ctx);
2470                 else
2471                         xhci_finish_resource_reservation(xhci, in_ctx);
2472                 spin_unlock_irqrestore(&xhci->lock, flags);
2473         }
2474         return ret;
2475 }
2476
2477 /* Called after one or more calls to xhci_add_endpoint() or
2478  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2479  * to call xhci_reset_bandwidth().
2480  *
2481  * Since we are in the middle of changing either configuration or
2482  * installing a new alt setting, the USB core won't allow URBs to be
2483  * enqueued for any endpoint on the old config or interface.  Nothing
2484  * else should be touching the xhci->devs[slot_id] structure, so we
2485  * don't need to take the xhci->lock for manipulating that.
2486  */
2487 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2488 {
2489         int i;
2490         int ret = 0;
2491         struct xhci_hcd *xhci;
2492         struct xhci_virt_device *virt_dev;
2493         struct xhci_input_control_ctx *ctrl_ctx;
2494         struct xhci_slot_ctx *slot_ctx;
2495
2496         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2497         if (ret <= 0)
2498                 return ret;
2499         xhci = hcd_to_xhci(hcd);
2500         if (xhci->xhc_state & XHCI_STATE_DYING)
2501                 return -ENODEV;
2502
2503         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2504         virt_dev = xhci->devs[udev->slot_id];
2505
2506         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2507         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2508         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2509         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2510         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2511
2512         /* Don't issue the command if there's no endpoints to update. */
2513         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2514                         ctrl_ctx->drop_flags == 0)
2515                 return 0;
2516
2517         xhci_dbg(xhci, "New Input Control Context:\n");
2518         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2519         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2520                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2521
2522         ret = xhci_configure_endpoint(xhci, udev, NULL,
2523                         false, false);
2524         if (ret) {
2525                 /* Callee should call reset_bandwidth() */
2526                 return ret;
2527         }
2528
2529         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2530         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2531                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2532
2533         /* Free any rings that were dropped, but not changed. */
2534         for (i = 1; i < 31; ++i) {
2535                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2536                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2537                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2538         }
2539         xhci_zero_in_ctx(xhci, virt_dev);
2540         /*
2541          * Install any rings for completely new endpoints or changed endpoints,
2542          * and free or cache any old rings from changed endpoints.
2543          */
2544         for (i = 1; i < 31; ++i) {
2545                 if (!virt_dev->eps[i].new_ring)
2546                         continue;
2547                 /* Only cache or free the old ring if it exists.
2548                  * It may not if this is the first add of an endpoint.
2549                  */
2550                 if (virt_dev->eps[i].ring) {
2551                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2552                 }
2553                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2554                 virt_dev->eps[i].new_ring = NULL;
2555         }
2556
2557         return ret;
2558 }
2559
2560 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2561 {
2562         struct xhci_hcd *xhci;
2563         struct xhci_virt_device *virt_dev;
2564         int i, ret;
2565
2566         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2567         if (ret <= 0)
2568                 return;
2569         xhci = hcd_to_xhci(hcd);
2570
2571         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2572         virt_dev = xhci->devs[udev->slot_id];
2573         /* Free any rings allocated for added endpoints */
2574         for (i = 0; i < 31; ++i) {
2575                 if (virt_dev->eps[i].new_ring) {
2576                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2577                         virt_dev->eps[i].new_ring = NULL;
2578                 }
2579         }
2580         xhci_zero_in_ctx(xhci, virt_dev);
2581 }
2582
2583 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2584                 struct xhci_container_ctx *in_ctx,
2585                 struct xhci_container_ctx *out_ctx,
2586                 u32 add_flags, u32 drop_flags)
2587 {
2588         struct xhci_input_control_ctx *ctrl_ctx;
2589         ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2590         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2591         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2592         xhci_slot_copy(xhci, in_ctx, out_ctx);
2593         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2594
2595         xhci_dbg(xhci, "Input Context:\n");
2596         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2597 }
2598
2599 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2600                 unsigned int slot_id, unsigned int ep_index,
2601                 struct xhci_dequeue_state *deq_state)
2602 {
2603         struct xhci_container_ctx *in_ctx;
2604         struct xhci_ep_ctx *ep_ctx;
2605         u32 added_ctxs;
2606         dma_addr_t addr;
2607
2608         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2609                         xhci->devs[slot_id]->out_ctx, ep_index);
2610         in_ctx = xhci->devs[slot_id]->in_ctx;
2611         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2612         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2613                         deq_state->new_deq_ptr);
2614         if (addr == 0) {
2615                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2616                                 "reset ep command\n");
2617                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2618                                 deq_state->new_deq_seg,
2619                                 deq_state->new_deq_ptr);
2620                 return;
2621         }
2622         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2623
2624         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2625         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2626                         xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2627 }
2628
2629 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2630                 struct usb_device *udev, unsigned int ep_index)
2631 {
2632         struct xhci_dequeue_state deq_state;
2633         struct xhci_virt_ep *ep;
2634
2635         xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2636         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2637         /* We need to move the HW's dequeue pointer past this TD,
2638          * or it will attempt to resend it on the next doorbell ring.
2639          */
2640         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2641                         ep_index, ep->stopped_stream, ep->stopped_td,
2642                         &deq_state);
2643
2644         /* HW with the reset endpoint quirk will use the saved dequeue state to
2645          * issue a configure endpoint command later.
2646          */
2647         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2648                 xhci_dbg(xhci, "Queueing new dequeue state\n");
2649                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2650                                 ep_index, ep->stopped_stream, &deq_state);
2651         } else {
2652                 /* Better hope no one uses the input context between now and the
2653                  * reset endpoint completion!
2654                  * XXX: No idea how this hardware will react when stream rings
2655                  * are enabled.
2656                  */
2657                 xhci_dbg(xhci, "Setting up input context for "
2658                                 "configure endpoint command\n");
2659                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2660                                 ep_index, &deq_state);
2661         }
2662 }
2663
2664 /* Deal with stalled endpoints.  The core should have sent the control message
2665  * to clear the halt condition.  However, we need to make the xHCI hardware
2666  * reset its sequence number, since a device will expect a sequence number of
2667  * zero after the halt condition is cleared.
2668  * Context: in_interrupt
2669  */
2670 void xhci_endpoint_reset(struct usb_hcd *hcd,
2671                 struct usb_host_endpoint *ep)
2672 {
2673         struct xhci_hcd *xhci;
2674         struct usb_device *udev;
2675         unsigned int ep_index;
2676         unsigned long flags;
2677         int ret;
2678         struct xhci_virt_ep *virt_ep;
2679
2680         xhci = hcd_to_xhci(hcd);
2681         udev = (struct usb_device *) ep->hcpriv;
2682         /* Called with a root hub endpoint (or an endpoint that wasn't added
2683          * with xhci_add_endpoint()
2684          */
2685         if (!ep->hcpriv)
2686                 return;
2687         ep_index = xhci_get_endpoint_index(&ep->desc);
2688         virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2689         if (!virt_ep->stopped_td) {
2690                 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2691                                 ep->desc.bEndpointAddress);
2692                 return;
2693         }
2694         if (usb_endpoint_xfer_control(&ep->desc)) {
2695                 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2696                 return;
2697         }
2698
2699         xhci_dbg(xhci, "Queueing reset endpoint command\n");
2700         spin_lock_irqsave(&xhci->lock, flags);
2701         ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2702         /*
2703          * Can't change the ring dequeue pointer until it's transitioned to the
2704          * stopped state, which is only upon a successful reset endpoint
2705          * command.  Better hope that last command worked!
2706          */
2707         if (!ret) {
2708                 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2709                 kfree(virt_ep->stopped_td);
2710                 xhci_ring_cmd_db(xhci);
2711         }
2712         virt_ep->stopped_td = NULL;
2713         virt_ep->stopped_trb = NULL;
2714         virt_ep->stopped_stream = 0;
2715         spin_unlock_irqrestore(&xhci->lock, flags);
2716
2717         if (ret)
2718                 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2719 }
2720
2721 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2722                 struct usb_device *udev, struct usb_host_endpoint *ep,
2723                 unsigned int slot_id)
2724 {
2725         int ret;
2726         unsigned int ep_index;
2727         unsigned int ep_state;
2728
2729         if (!ep)
2730                 return -EINVAL;
2731         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2732         if (ret <= 0)
2733                 return -EINVAL;
2734         if (ep->ss_ep_comp.bmAttributes == 0) {
2735                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2736                                 " descriptor for ep 0x%x does not support streams\n",
2737                                 ep->desc.bEndpointAddress);
2738                 return -EINVAL;
2739         }
2740
2741         ep_index = xhci_get_endpoint_index(&ep->desc);
2742         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2743         if (ep_state & EP_HAS_STREAMS ||
2744                         ep_state & EP_GETTING_STREAMS) {
2745                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2746                                 "already has streams set up.\n",
2747                                 ep->desc.bEndpointAddress);
2748                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2749                                 "dynamic stream context array reallocation.\n");
2750                 return -EINVAL;
2751         }
2752         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2753                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2754                                 "endpoint 0x%x; URBs are pending.\n",
2755                                 ep->desc.bEndpointAddress);
2756                 return -EINVAL;
2757         }
2758         return 0;
2759 }
2760
2761 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2762                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2763 {
2764         unsigned int max_streams;
2765
2766         /* The stream context array size must be a power of two */
2767         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2768         /*
2769          * Find out how many primary stream array entries the host controller
2770          * supports.  Later we may use secondary stream arrays (similar to 2nd
2771          * level page entries), but that's an optional feature for xHCI host
2772          * controllers. xHCs must support at least 4 stream IDs.
2773          */
2774         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2775         if (*num_stream_ctxs > max_streams) {
2776                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2777                                 max_streams);
2778                 *num_stream_ctxs = max_streams;
2779                 *num_streams = max_streams;
2780         }
2781 }
2782
2783 /* Returns an error code if one of the endpoint already has streams.
2784  * This does not change any data structures, it only checks and gathers
2785  * information.
2786  */
2787 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2788                 struct usb_device *udev,
2789                 struct usb_host_endpoint **eps, unsigned int num_eps,
2790                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2791 {
2792         unsigned int max_streams;
2793         unsigned int endpoint_flag;
2794         int i;
2795         int ret;
2796
2797         for (i = 0; i < num_eps; i++) {
2798                 ret = xhci_check_streams_endpoint(xhci, udev,
2799                                 eps[i], udev->slot_id);
2800                 if (ret < 0)
2801                         return ret;
2802
2803                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2804                 if (max_streams < (*num_streams - 1)) {
2805                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2806                                         eps[i]->desc.bEndpointAddress,
2807                                         max_streams);
2808                         *num_streams = max_streams+1;
2809                 }
2810
2811                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2812                 if (*changed_ep_bitmask & endpoint_flag)
2813                         return -EINVAL;
2814                 *changed_ep_bitmask |= endpoint_flag;
2815         }
2816         return 0;
2817 }
2818
2819 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2820                 struct usb_device *udev,
2821                 struct usb_host_endpoint **eps, unsigned int num_eps)
2822 {
2823         u32 changed_ep_bitmask = 0;
2824         unsigned int slot_id;
2825         unsigned int ep_index;
2826         unsigned int ep_state;
2827         int i;
2828
2829         slot_id = udev->slot_id;
2830         if (!xhci->devs[slot_id])
2831                 return 0;
2832
2833         for (i = 0; i < num_eps; i++) {
2834                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2835                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2836                 /* Are streams already being freed for the endpoint? */
2837                 if (ep_state & EP_GETTING_NO_STREAMS) {
2838                         xhci_warn(xhci, "WARN Can't disable streams for "
2839                                         "endpoint 0x%x\n, "
2840                                         "streams are being disabled already.",
2841                                         eps[i]->desc.bEndpointAddress);
2842                         return 0;
2843                 }
2844                 /* Are there actually any streams to free? */
2845                 if (!(ep_state & EP_HAS_STREAMS) &&
2846                                 !(ep_state & EP_GETTING_STREAMS)) {
2847                         xhci_warn(xhci, "WARN Can't disable streams for "
2848                                         "endpoint 0x%x\n, "
2849                                         "streams are already disabled!",
2850                                         eps[i]->desc.bEndpointAddress);
2851                         xhci_warn(xhci, "WARN xhci_free_streams() called "
2852                                         "with non-streams endpoint\n");
2853                         return 0;
2854                 }
2855                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2856         }
2857         return changed_ep_bitmask;
2858 }
2859
2860 /*
2861  * The USB device drivers use this function (though the HCD interface in USB
2862  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
2863  * coordinate mass storage command queueing across multiple endpoints (basically
2864  * a stream ID == a task ID).
2865  *
2866  * Setting up streams involves allocating the same size stream context array
2867  * for each endpoint and issuing a configure endpoint command for all endpoints.
2868  *
2869  * Don't allow the call to succeed if one endpoint only supports one stream
2870  * (which means it doesn't support streams at all).
2871  *
2872  * Drivers may get less stream IDs than they asked for, if the host controller
2873  * hardware or endpoints claim they can't support the number of requested
2874  * stream IDs.
2875  */
2876 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2877                 struct usb_host_endpoint **eps, unsigned int num_eps,
2878                 unsigned int num_streams, gfp_t mem_flags)
2879 {
2880         int i, ret;
2881         struct xhci_hcd *xhci;
2882         struct xhci_virt_device *vdev;
2883         struct xhci_command *config_cmd;
2884         unsigned int ep_index;
2885         unsigned int num_stream_ctxs;
2886         unsigned long flags;
2887         u32 changed_ep_bitmask = 0;
2888
2889         if (!eps)
2890                 return -EINVAL;
2891
2892         /* Add one to the number of streams requested to account for
2893          * stream 0 that is reserved for xHCI usage.
2894          */
2895         num_streams += 1;
2896         xhci = hcd_to_xhci(hcd);
2897         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2898                         num_streams);
2899
2900         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2901         if (!config_cmd) {
2902                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2903                 return -ENOMEM;
2904         }
2905
2906         /* Check to make sure all endpoints are not already configured for
2907          * streams.  While we're at it, find the maximum number of streams that
2908          * all the endpoints will support and check for duplicate endpoints.
2909          */
2910         spin_lock_irqsave(&xhci->lock, flags);
2911         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2912                         num_eps, &num_streams, &changed_ep_bitmask);
2913         if (ret < 0) {
2914                 xhci_free_command(xhci, config_cmd);
2915                 spin_unlock_irqrestore(&xhci->lock, flags);
2916                 return ret;
2917         }
2918         if (num_streams <= 1) {
2919                 xhci_warn(xhci, "WARN: endpoints can't handle "
2920                                 "more than one stream.\n");
2921                 xhci_free_command(xhci, config_cmd);
2922                 spin_unlock_irqrestore(&xhci->lock, flags);
2923                 return -EINVAL;
2924         }
2925         vdev = xhci->devs[udev->slot_id];
2926         /* Mark each endpoint as being in transition, so
2927          * xhci_urb_enqueue() will reject all URBs.
2928          */
2929         for (i = 0; i < num_eps; i++) {
2930                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2931                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2932         }
2933         spin_unlock_irqrestore(&xhci->lock, flags);
2934
2935         /* Setup internal data structures and allocate HW data structures for
2936          * streams (but don't install the HW structures in the input context
2937          * until we're sure all memory allocation succeeded).
2938          */
2939         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2940         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2941                         num_stream_ctxs, num_streams);
2942
2943         for (i = 0; i < num_eps; i++) {
2944                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2945                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2946                                 num_stream_ctxs,
2947                                 num_streams, mem_flags);
2948                 if (!vdev->eps[ep_index].stream_info)
2949                         goto cleanup;
2950                 /* Set maxPstreams in endpoint context and update deq ptr to
2951                  * point to stream context array. FIXME
2952                  */
2953         }
2954
2955         /* Set up the input context for a configure endpoint command. */
2956         for (i = 0; i < num_eps; i++) {
2957                 struct xhci_ep_ctx *ep_ctx;
2958
2959                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2960                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2961
2962                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2963                                 vdev->out_ctx, ep_index);
2964                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2965                                 vdev->eps[ep_index].stream_info);
2966         }
2967         /* Tell the HW to drop its old copy of the endpoint context info
2968          * and add the updated copy from the input context.
2969          */
2970         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2971                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2972
2973         /* Issue and wait for the configure endpoint command */
2974         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2975                         false, false);
2976
2977         /* xHC rejected the configure endpoint command for some reason, so we
2978          * leave the old ring intact and free our internal streams data
2979          * structure.
2980          */
2981         if (ret < 0)
2982                 goto cleanup;
2983
2984         spin_lock_irqsave(&xhci->lock, flags);
2985         for (i = 0; i < num_eps; i++) {
2986                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2987                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2988                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2989                          udev->slot_id, ep_index);
2990                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2991         }
2992         xhci_free_command(xhci, config_cmd);
2993         spin_unlock_irqrestore(&xhci->lock, flags);
2994
2995         /* Subtract 1 for stream 0, which drivers can't use */
2996         return num_streams - 1;
2997
2998 cleanup:
2999         /* If it didn't work, free the streams! */
3000         for (i = 0; i < num_eps; i++) {
3001                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3002                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3003                 vdev->eps[ep_index].stream_info = NULL;
3004                 /* FIXME Unset maxPstreams in endpoint context and
3005                  * update deq ptr to point to normal string ring.
3006                  */
3007                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3008                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3009                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3010         }
3011         xhci_free_command(xhci, config_cmd);
3012         return -ENOMEM;
3013 }
3014
3015 /* Transition the endpoint from using streams to being a "normal" endpoint
3016  * without streams.
3017  *
3018  * Modify the endpoint context state, submit a configure endpoint command,
3019  * and free all endpoint rings for streams if that completes successfully.
3020  */
3021 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3022                 struct usb_host_endpoint **eps, unsigned int num_eps,
3023                 gfp_t mem_flags)
3024 {
3025         int i, ret;
3026         struct xhci_hcd *xhci;
3027         struct xhci_virt_device *vdev;
3028         struct xhci_command *command;
3029         unsigned int ep_index;
3030         unsigned long flags;
3031         u32 changed_ep_bitmask;
3032
3033         xhci = hcd_to_xhci(hcd);
3034         vdev = xhci->devs[udev->slot_id];
3035
3036         /* Set up a configure endpoint command to remove the streams rings */
3037         spin_lock_irqsave(&xhci->lock, flags);
3038         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3039                         udev, eps, num_eps);
3040         if (changed_ep_bitmask == 0) {
3041                 spin_unlock_irqrestore(&xhci->lock, flags);
3042                 return -EINVAL;
3043         }
3044
3045         /* Use the xhci_command structure from the first endpoint.  We may have
3046          * allocated too many, but the driver may call xhci_free_streams() for
3047          * each endpoint it grouped into one call to xhci_alloc_streams().
3048          */
3049         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3050         command = vdev->eps[ep_index].stream_info->free_streams_command;
3051         for (i = 0; i < num_eps; i++) {
3052                 struct xhci_ep_ctx *ep_ctx;
3053
3054                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3055                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3056                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3057                         EP_GETTING_NO_STREAMS;
3058
3059                 xhci_endpoint_copy(xhci, command->in_ctx,
3060                                 vdev->out_ctx, ep_index);
3061                 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3062                                 &vdev->eps[ep_index]);
3063         }
3064         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3065                         vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3066         spin_unlock_irqrestore(&xhci->lock, flags);
3067
3068         /* Issue and wait for the configure endpoint command,
3069          * which must succeed.
3070          */
3071         ret = xhci_configure_endpoint(xhci, udev, command,
3072                         false, true);
3073
3074         /* xHC rejected the configure endpoint command for some reason, so we
3075          * leave the streams rings intact.
3076          */
3077         if (ret < 0)
3078                 return ret;
3079
3080         spin_lock_irqsave(&xhci->lock, flags);
3081         for (i = 0; i < num_eps; i++) {
3082                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3083                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3084                 vdev->eps[ep_index].stream_info = NULL;
3085                 /* FIXME Unset maxPstreams in endpoint context and
3086                  * update deq ptr to point to normal string ring.
3087                  */
3088                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3089                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3090         }
3091         spin_unlock_irqrestore(&xhci->lock, flags);
3092
3093         return 0;
3094 }
3095
3096 /*
3097  * Deletes endpoint resources for endpoints that were active before a Reset
3098  * Device command, or a Disable Slot command.  The Reset Device command leaves
3099  * the control endpoint intact, whereas the Disable Slot command deletes it.
3100  *
3101  * Must be called with xhci->lock held.
3102  */
3103 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3104         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3105 {
3106         int i;
3107         unsigned int num_dropped_eps = 0;
3108         unsigned int drop_flags = 0;
3109
3110         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3111                 if (virt_dev->eps[i].ring) {
3112                         drop_flags |= 1 << i;
3113                         num_dropped_eps++;
3114                 }
3115         }
3116         xhci->num_active_eps -= num_dropped_eps;
3117         if (num_dropped_eps)
3118                 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3119                                 "%u now active.\n",
3120                                 num_dropped_eps, drop_flags,
3121                                 xhci->num_active_eps);
3122 }
3123
3124 /*
3125  * This submits a Reset Device Command, which will set the device state to 0,
3126  * set the device address to 0, and disable all the endpoints except the default
3127  * control endpoint.  The USB core should come back and call
3128  * xhci_address_device(), and then re-set up the configuration.  If this is
3129  * called because of a usb_reset_and_verify_device(), then the old alternate
3130  * settings will be re-installed through the normal bandwidth allocation
3131  * functions.
3132  *
3133  * Wait for the Reset Device command to finish.  Remove all structures
3134  * associated with the endpoints that were disabled.  Clear the input device
3135  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3136  *
3137  * If the virt_dev to be reset does not exist or does not match the udev,
3138  * it means the device is lost, possibly due to the xHC restore error and
3139  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3140  * re-allocate the device.
3141  */
3142 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3143 {
3144         int ret, i;
3145         unsigned long flags;
3146         struct xhci_hcd *xhci;
3147         unsigned int slot_id;
3148         struct xhci_virt_device *virt_dev;
3149         struct xhci_command *reset_device_cmd;
3150         int timeleft;
3151         int last_freed_endpoint;
3152         struct xhci_slot_ctx *slot_ctx;
3153         int old_active_eps = 0;
3154
3155         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3156         if (ret <= 0)
3157                 return ret;
3158         xhci = hcd_to_xhci(hcd);
3159         slot_id = udev->slot_id;
3160         virt_dev = xhci->devs[slot_id];
3161         if (!virt_dev) {
3162                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3163                                 "not exist. Re-allocate the device\n", slot_id);
3164                 ret = xhci_alloc_dev(hcd, udev);
3165                 if (ret == 1)
3166                         return 0;
3167                 else
3168                         return -EINVAL;
3169         }
3170
3171         if (virt_dev->udev != udev) {
3172                 /* If the virt_dev and the udev does not match, this virt_dev
3173                  * may belong to another udev.
3174                  * Re-allocate the device.
3175                  */
3176                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3177                                 "not match the udev. Re-allocate the device\n",
3178                                 slot_id);
3179                 ret = xhci_alloc_dev(hcd, udev);
3180                 if (ret == 1)
3181                         return 0;
3182                 else
3183                         return -EINVAL;
3184         }
3185
3186         /* If device is not setup, there is no point in resetting it */
3187         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3188         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3189                                                 SLOT_STATE_DISABLED)
3190                 return 0;
3191
3192         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3193         /* Allocate the command structure that holds the struct completion.
3194          * Assume we're in process context, since the normal device reset
3195          * process has to wait for the device anyway.  Storage devices are
3196          * reset as part of error handling, so use GFP_NOIO instead of
3197          * GFP_KERNEL.
3198          */
3199         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3200         if (!reset_device_cmd) {
3201                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3202                 return -ENOMEM;
3203         }
3204
3205         /* Attempt to submit the Reset Device command to the command ring */
3206         spin_lock_irqsave(&xhci->lock, flags);
3207         reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3208
3209         /* Enqueue pointer can be left pointing to the link TRB,
3210          * we must handle that
3211          */
3212         if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3213                 reset_device_cmd->command_trb =
3214                         xhci->cmd_ring->enq_seg->next->trbs;
3215
3216         list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3217         ret = xhci_queue_reset_device(xhci, slot_id);
3218         if (ret) {
3219                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3220                 list_del(&reset_device_cmd->cmd_list);
3221                 spin_unlock_irqrestore(&xhci->lock, flags);
3222                 goto command_cleanup;
3223         }
3224         xhci_ring_cmd_db(xhci);
3225         spin_unlock_irqrestore(&xhci->lock, flags);
3226
3227         /* Wait for the Reset Device command to finish */
3228         timeleft = wait_for_completion_interruptible_timeout(
3229                         reset_device_cmd->completion,
3230                         USB_CTRL_SET_TIMEOUT);
3231         if (timeleft <= 0) {
3232                 xhci_warn(xhci, "%s while waiting for reset device command\n",
3233                                 timeleft == 0 ? "Timeout" : "Signal");
3234                 spin_lock_irqsave(&xhci->lock, flags);
3235                 /* The timeout might have raced with the event ring handler, so
3236                  * only delete from the list if the item isn't poisoned.
3237                  */
3238                 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3239                         list_del(&reset_device_cmd->cmd_list);
3240                 spin_unlock_irqrestore(&xhci->lock, flags);
3241                 ret = -ETIME;
3242                 goto command_cleanup;
3243         }
3244
3245         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3246          * unless we tried to reset a slot ID that wasn't enabled,
3247          * or the device wasn't in the addressed or configured state.
3248          */
3249         ret = reset_device_cmd->status;
3250         switch (ret) {
3251         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3252         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3253                 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3254                                 slot_id,
3255                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3256                 xhci_info(xhci, "Not freeing device rings.\n");
3257                 /* Don't treat this as an error.  May change my mind later. */
3258                 ret = 0;
3259                 goto command_cleanup;
3260         case COMP_SUCCESS:
3261                 xhci_dbg(xhci, "Successful reset device command.\n");
3262                 break;
3263         default:
3264                 if (xhci_is_vendor_info_code(xhci, ret))
3265                         break;
3266                 xhci_warn(xhci, "Unknown completion code %u for "
3267                                 "reset device command.\n", ret);
3268                 ret = -EINVAL;
3269                 goto command_cleanup;
3270         }
3271
3272         /* Free up host controller endpoint resources */
3273         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3274                 spin_lock_irqsave(&xhci->lock, flags);
3275                 /* Don't delete the default control endpoint resources */
3276                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3277                 spin_unlock_irqrestore(&xhci->lock, flags);
3278         }
3279
3280         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3281         last_freed_endpoint = 1;
3282         for (i = 1; i < 31; ++i) {
3283                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3284
3285                 if (ep->ep_state & EP_HAS_STREAMS) {
3286                         xhci_free_stream_info(xhci, ep->stream_info);
3287                         ep->stream_info = NULL;
3288                         ep->ep_state &= ~EP_HAS_STREAMS;
3289                 }
3290
3291                 if (ep->ring) {
3292                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3293                         last_freed_endpoint = i;
3294                 }
3295                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3296                         xhci_drop_ep_from_interval_table(xhci,
3297                                         &virt_dev->eps[i].bw_info,
3298                                         virt_dev->bw_table,
3299                                         udev,
3300                                         &virt_dev->eps[i],
3301                                         virt_dev->tt_info);
3302                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3303         }
3304         /* If necessary, update the number of active TTs on this root port */
3305         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3306
3307         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3308         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3309         ret = 0;
3310
3311 command_cleanup:
3312         xhci_free_command(xhci, reset_device_cmd);
3313         return ret;
3314 }
3315
3316 /*
3317  * At this point, the struct usb_device is about to go away, the device has
3318  * disconnected, and all traffic has been stopped and the endpoints have been
3319  * disabled.  Free any HC data structures associated with that device.
3320  */
3321 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3322 {
3323         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3324         struct xhci_virt_device *virt_dev;
3325         unsigned long flags;
3326         u32 state;
3327         int i, ret;
3328
3329         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3330         /* If the host is halted due to driver unload, we still need to free the
3331          * device.
3332          */
3333         if (ret <= 0 && ret != -ENODEV)
3334                 return;
3335
3336         virt_dev = xhci->devs[udev->slot_id];
3337
3338         /* Stop any wayward timer functions (which may grab the lock) */
3339         for (i = 0; i < 31; ++i) {
3340                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3341                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3342         }
3343
3344         if (udev->usb2_hw_lpm_enabled) {
3345                 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3346                 udev->usb2_hw_lpm_enabled = 0;
3347         }
3348
3349         spin_lock_irqsave(&xhci->lock, flags);
3350         /* Don't disable the slot if the host controller is dead. */
3351         state = xhci_readl(xhci, &xhci->op_regs->status);
3352         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3353                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3354                 xhci_free_virt_device(xhci, udev->slot_id);
3355                 spin_unlock_irqrestore(&xhci->lock, flags);
3356                 return;
3357         }
3358
3359         if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3360                 spin_unlock_irqrestore(&xhci->lock, flags);
3361                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3362                 return;
3363         }
3364         xhci_ring_cmd_db(xhci);
3365         spin_unlock_irqrestore(&xhci->lock, flags);
3366         /*
3367          * Event command completion handler will free any data structures
3368          * associated with the slot.  XXX Can free sleep?
3369          */
3370 }
3371
3372 /*
3373  * Checks if we have enough host controller resources for the default control
3374  * endpoint.
3375  *
3376  * Must be called with xhci->lock held.
3377  */
3378 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3379 {
3380         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3381                 xhci_dbg(xhci, "Not enough ep ctxs: "
3382                                 "%u active, need to add 1, limit is %u.\n",
3383                                 xhci->num_active_eps, xhci->limit_active_eps);
3384                 return -ENOMEM;
3385         }
3386         xhci->num_active_eps += 1;
3387         xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3388                         xhci->num_active_eps);
3389         return 0;
3390 }
3391
3392
3393 /*
3394  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3395  * timed out, or allocating memory failed.  Returns 1 on success.
3396  */
3397 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3398 {
3399         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3400         unsigned long flags;
3401         int timeleft;
3402         int ret;
3403
3404         spin_lock_irqsave(&xhci->lock, flags);
3405         ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3406         if (ret) {
3407                 spin_unlock_irqrestore(&xhci->lock, flags);
3408                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3409                 return 0;
3410         }
3411         xhci_ring_cmd_db(xhci);
3412         spin_unlock_irqrestore(&xhci->lock, flags);
3413
3414         /* XXX: how much time for xHC slot assignment? */
3415         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3416                         USB_CTRL_SET_TIMEOUT);
3417         if (timeleft <= 0) {
3418                 xhci_warn(xhci, "%s while waiting for a slot\n",
3419                                 timeleft == 0 ? "Timeout" : "Signal");
3420                 /* FIXME cancel the enable slot request */
3421                 return 0;
3422         }
3423
3424         if (!xhci->slot_id) {
3425                 xhci_err(xhci, "Error while assigning device slot ID\n");
3426                 return 0;
3427         }
3428
3429         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3430                 spin_lock_irqsave(&xhci->lock, flags);
3431                 ret = xhci_reserve_host_control_ep_resources(xhci);
3432                 if (ret) {
3433                         spin_unlock_irqrestore(&xhci->lock, flags);
3434                         xhci_warn(xhci, "Not enough host resources, "
3435                                         "active endpoint contexts = %u\n",
3436                                         xhci->num_active_eps);
3437                         goto disable_slot;
3438                 }
3439                 spin_unlock_irqrestore(&xhci->lock, flags);
3440         }
3441         /* Use GFP_NOIO, since this function can be called from
3442          * xhci_discover_or_reset_device(), which may be called as part of
3443          * mass storage driver error handling.
3444          */
3445         if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3446                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3447                 goto disable_slot;
3448         }
3449         udev->slot_id = xhci->slot_id;
3450         /* Is this a LS or FS device under a HS hub? */
3451         /* Hub or peripherial? */
3452         return 1;
3453
3454 disable_slot:
3455         /* Disable slot, if we can do it without mem alloc */
3456         spin_lock_irqsave(&xhci->lock, flags);
3457         if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3458                 xhci_ring_cmd_db(xhci);
3459         spin_unlock_irqrestore(&xhci->lock, flags);
3460         return 0;
3461 }
3462
3463 /*
3464  * Issue an Address Device command (which will issue a SetAddress request to
3465  * the device).
3466  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3467  * we should only issue and wait on one address command at the same time.
3468  *
3469  * We add one to the device address issued by the hardware because the USB core
3470  * uses address 1 for the root hubs (even though they're not really devices).
3471  */
3472 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3473 {
3474         unsigned long flags;
3475         int timeleft;
3476         struct xhci_virt_device *virt_dev;
3477         int ret = 0;
3478         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3479         struct xhci_slot_ctx *slot_ctx;
3480         struct xhci_input_control_ctx *ctrl_ctx;
3481         u64 temp_64;
3482
3483         if (!udev->slot_id) {
3484                 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3485                 return -EINVAL;
3486         }
3487
3488         virt_dev = xhci->devs[udev->slot_id];
3489
3490         if (WARN_ON(!virt_dev)) {
3491                 /*
3492                  * In plug/unplug torture test with an NEC controller,
3493                  * a zero-dereference was observed once due to virt_dev = 0.
3494                  * Print useful debug rather than crash if it is observed again!
3495                  */
3496                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3497                         udev->slot_id);
3498                 return -EINVAL;
3499         }
3500
3501         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3502         /*
3503          * If this is the first Set Address since device plug-in or
3504          * virt_device realloaction after a resume with an xHCI power loss,
3505          * then set up the slot context.
3506          */
3507         if (!slot_ctx->dev_info)
3508                 xhci_setup_addressable_virt_dev(xhci, udev);
3509         /* Otherwise, update the control endpoint ring enqueue pointer. */
3510         else
3511                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3512         ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3513         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3514         ctrl_ctx->drop_flags = 0;
3515
3516         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3517         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3518
3519         spin_lock_irqsave(&xhci->lock, flags);
3520         ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3521                                         udev->slot_id);
3522         if (ret) {
3523                 spin_unlock_irqrestore(&xhci->lock, flags);
3524                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3525                 return ret;
3526         }
3527         xhci_ring_cmd_db(xhci);
3528         spin_unlock_irqrestore(&xhci->lock, flags);
3529
3530         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3531         timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3532                         USB_CTRL_SET_TIMEOUT);
3533         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3534          * the SetAddress() "recovery interval" required by USB and aborting the
3535          * command on a timeout.
3536          */
3537         if (timeleft <= 0) {
3538                 xhci_warn(xhci, "%s while waiting for address device command\n",
3539                                 timeleft == 0 ? "Timeout" : "Signal");
3540                 /* FIXME cancel the address device command */
3541                 return -ETIME;
3542         }
3543
3544         switch (virt_dev->cmd_status) {
3545         case COMP_CTX_STATE:
3546         case COMP_EBADSLT:
3547                 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3548                                 udev->slot_id);
3549                 ret = -EINVAL;
3550                 break;
3551         case COMP_TX_ERR:
3552                 dev_warn(&udev->dev, "Device not responding to set address.\n");
3553                 ret = -EPROTO;
3554                 break;
3555         case COMP_DEV_ERR:
3556                 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3557                                 "device command.\n");
3558                 ret = -ENODEV;
3559                 break;
3560         case COMP_SUCCESS:
3561                 xhci_dbg(xhci, "Successful Address Device command\n");
3562                 break;
3563         default:
3564                 xhci_err(xhci, "ERROR: unexpected command completion "
3565                                 "code 0x%x.\n", virt_dev->cmd_status);
3566                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3567                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3568                 ret = -EINVAL;
3569                 break;
3570         }
3571         if (ret) {
3572                 return ret;
3573         }
3574         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3575         xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3576         xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3577                  udev->slot_id,
3578                  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3579                  (unsigned long long)
3580                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3581         xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3582                         (unsigned long long)virt_dev->out_ctx->dma);
3583         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3584         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3585         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3586         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3587         /*
3588          * USB core uses address 1 for the roothubs, so we add one to the
3589          * address given back to us by the HC.
3590          */
3591         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3592         /* Use kernel assigned address for devices; store xHC assigned
3593          * address locally. */
3594         virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3595                 + 1;
3596         /* Zero the input context control for later use */
3597         ctrl_ctx->add_flags = 0;
3598         ctrl_ctx->drop_flags = 0;
3599
3600         xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3601
3602         return 0;
3603 }
3604
3605 #ifdef CONFIG_USB_SUSPEND
3606
3607 /* BESL to HIRD Encoding array for USB2 LPM */
3608 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3609         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3610
3611 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3612 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3613 {
3614         int hird;
3615
3616         if (use_besl) {
3617                 for (hird = 0; hird < 16; hird++) {
3618                         if (xhci_besl_encoding[hird] >= u2del)
3619                                 break;
3620                 }
3621         } else {
3622                 if (u2del <= 50)
3623                         hird = 0;
3624                 else
3625                         hird = (u2del - 51) / 75 + 1;
3626
3627                 if (hird > 15)
3628                         hird = 15;
3629         }
3630
3631         return hird;
3632 }
3633
3634 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3635                                         struct usb_device *udev)
3636 {
3637         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3638         struct dev_info *dev_info;
3639         __le32 __iomem  **port_array;
3640         __le32 __iomem  *addr, *pm_addr;
3641         u32             temp, dev_id;
3642         unsigned int    port_num;
3643         unsigned long   flags;
3644         int             u2del, hird;
3645         int             ret;
3646
3647         if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3648                         !udev->lpm_capable)
3649                 return -EINVAL;
3650
3651         /* we only support lpm for non-hub device connected to root hub yet */
3652         if (!udev->parent || udev->parent->parent ||
3653                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3654                 return -EINVAL;
3655
3656         spin_lock_irqsave(&xhci->lock, flags);
3657
3658         /* Look for devices in lpm_failed_devs list */
3659         dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3660                         le16_to_cpu(udev->descriptor.idProduct);
3661         list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3662                 if (dev_info->dev_id == dev_id) {
3663                         ret = -EINVAL;
3664                         goto finish;
3665                 }
3666         }
3667
3668         port_array = xhci->usb2_ports;
3669         port_num = udev->portnum - 1;
3670
3671         if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3672                 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3673                 ret = -EINVAL;
3674                 goto finish;
3675         }
3676
3677         /*
3678          * Test USB 2.0 software LPM.
3679          * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3680          * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3681          * in the June 2011 errata release.
3682          */
3683         xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3684         /*
3685          * Set L1 Device Slot and HIRD/BESL.
3686          * Check device's USB 2.0 extension descriptor to determine whether
3687          * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3688          */
3689         pm_addr = port_array[port_num] + 1;
3690         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3691         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3692                 hird = xhci_calculate_hird_besl(u2del, 1);
3693         else
3694                 hird = xhci_calculate_hird_besl(u2del, 0);
3695
3696         temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3697         xhci_writel(xhci, temp, pm_addr);
3698
3699         /* Set port link state to U2(L1) */
3700         addr = port_array[port_num];
3701         xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3702
3703         /* wait for ACK */
3704         spin_unlock_irqrestore(&xhci->lock, flags);
3705         msleep(10);
3706         spin_lock_irqsave(&xhci->lock, flags);
3707
3708         /* Check L1 Status */
3709         ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3710         if (ret != -ETIMEDOUT) {
3711                 /* enter L1 successfully */
3712                 temp = xhci_readl(xhci, addr);
3713                 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3714                                 port_num, temp);
3715                 ret = 0;
3716         } else {
3717                 temp = xhci_readl(xhci, pm_addr);
3718                 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3719                                 port_num, temp & PORT_L1S_MASK);
3720                 ret = -EINVAL;
3721         }
3722
3723         /* Resume the port */
3724         xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3725
3726         spin_unlock_irqrestore(&xhci->lock, flags);
3727         msleep(10);
3728         spin_lock_irqsave(&xhci->lock, flags);
3729
3730         /* Clear PLC */
3731         xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3732
3733         /* Check PORTSC to make sure the device is in the right state */
3734         if (!ret) {
3735                 temp = xhci_readl(xhci, addr);
3736                 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3737                 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3738                                 (temp & PORT_PLS_MASK) != XDEV_U0) {
3739                         xhci_dbg(xhci, "port L1 resume fail\n");
3740                         ret = -EINVAL;
3741                 }
3742         }
3743
3744         if (ret) {
3745                 /* Insert dev to lpm_failed_devs list */
3746                 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3747                                 "re-enumerate\n");
3748                 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3749                 if (!dev_info) {
3750                         ret = -ENOMEM;
3751                         goto finish;
3752                 }
3753                 dev_info->dev_id = dev_id;
3754                 INIT_LIST_HEAD(&dev_info->list);
3755                 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3756         } else {
3757                 xhci_ring_device(xhci, udev->slot_id);
3758         }
3759
3760 finish:
3761         spin_unlock_irqrestore(&xhci->lock, flags);
3762         return ret;
3763 }
3764
3765 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3766                         struct usb_device *udev, int enable)
3767 {
3768         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3769         __le32 __iomem  **port_array;
3770         __le32 __iomem  *pm_addr;
3771         u32             temp;
3772         unsigned int    port_num;
3773         unsigned long   flags;
3774         int             u2del, hird;
3775
3776         if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3777                         !udev->lpm_capable)
3778                 return -EPERM;
3779
3780         if (!udev->parent || udev->parent->parent ||
3781                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3782                 return -EPERM;
3783
3784         if (udev->usb2_hw_lpm_capable != 1)
3785                 return -EPERM;
3786
3787         spin_lock_irqsave(&xhci->lock, flags);
3788
3789         port_array = xhci->usb2_ports;
3790         port_num = udev->portnum - 1;
3791         pm_addr = port_array[port_num] + 1;
3792         temp = xhci_readl(xhci, pm_addr);
3793
3794         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3795                         enable ? "enable" : "disable", port_num);
3796
3797         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3798         if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3799                 hird = xhci_calculate_hird_besl(u2del, 1);
3800         else
3801                 hird = xhci_calculate_hird_besl(u2del, 0);
3802
3803         if (enable) {
3804                 temp &= ~PORT_HIRD_MASK;
3805                 temp |= PORT_HIRD(hird) | PORT_RWE;
3806                 xhci_writel(xhci, temp, pm_addr);
3807                 temp = xhci_readl(xhci, pm_addr);
3808                 temp |= PORT_HLE;
3809                 xhci_writel(xhci, temp, pm_addr);
3810         } else {
3811                 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3812                 xhci_writel(xhci, temp, pm_addr);
3813         }
3814
3815         spin_unlock_irqrestore(&xhci->lock, flags);
3816         return 0;
3817 }
3818
3819 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3820 {
3821         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3822         int             ret;
3823
3824         ret = xhci_usb2_software_lpm_test(hcd, udev);
3825         if (!ret) {
3826                 xhci_dbg(xhci, "software LPM test succeed\n");
3827                 if (xhci->hw_lpm_support == 1) {
3828                         udev->usb2_hw_lpm_capable = 1;
3829                         ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3830                         if (!ret)
3831                                 udev->usb2_hw_lpm_enabled = 1;
3832                 }
3833         }
3834
3835         return 0;
3836 }
3837
3838 #else
3839
3840 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3841                                 struct usb_device *udev, int enable)
3842 {
3843         return 0;
3844 }
3845
3846 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3847 {
3848         return 0;
3849 }
3850
3851 #endif /* CONFIG_USB_SUSPEND */
3852
3853 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3854  * internal data structures for the device.
3855  */
3856 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3857                         struct usb_tt *tt, gfp_t mem_flags)
3858 {
3859         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860         struct xhci_virt_device *vdev;
3861         struct xhci_command *config_cmd;
3862         struct xhci_input_control_ctx *ctrl_ctx;
3863         struct xhci_slot_ctx *slot_ctx;
3864         unsigned long flags;
3865         unsigned think_time;
3866         int ret;
3867
3868         /* Ignore root hubs */
3869         if (!hdev->parent)
3870                 return 0;
3871
3872         vdev = xhci->devs[hdev->slot_id];
3873         if (!vdev) {
3874                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3875                 return -EINVAL;
3876         }
3877         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3878         if (!config_cmd) {
3879                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3880                 return -ENOMEM;
3881         }
3882
3883         spin_lock_irqsave(&xhci->lock, flags);
3884         if (hdev->speed == USB_SPEED_HIGH &&
3885                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3886                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3887                 xhci_free_command(xhci, config_cmd);
3888                 spin_unlock_irqrestore(&xhci->lock, flags);
3889                 return -ENOMEM;
3890         }
3891
3892         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3893         ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3894         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3895         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3896         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3897         if (tt->multi)
3898                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3899         if (xhci->hci_version > 0x95) {
3900                 xhci_dbg(xhci, "xHCI version %x needs hub "
3901                                 "TT think time and number of ports\n",
3902                                 (unsigned int) xhci->hci_version);
3903                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3904                 /* Set TT think time - convert from ns to FS bit times.
3905                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
3906                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
3907                  *
3908                  * xHCI 1.0: this field shall be 0 if the device is not a
3909                  * High-spped hub.
3910                  */
3911                 think_time = tt->think_time;
3912                 if (think_time != 0)
3913                         think_time = (think_time / 666) - 1;
3914                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3915                         slot_ctx->tt_info |=
3916                                 cpu_to_le32(TT_THINK_TIME(think_time));
3917         } else {
3918                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3919                                 "TT think time or number of ports\n",
3920                                 (unsigned int) xhci->hci_version);
3921         }
3922         slot_ctx->dev_state = 0;
3923         spin_unlock_irqrestore(&xhci->lock, flags);
3924
3925         xhci_dbg(xhci, "Set up %s for hub device.\n",
3926                         (xhci->hci_version > 0x95) ?
3927                         "configure endpoint" : "evaluate context");
3928         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3929         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3930
3931         /* Issue and wait for the configure endpoint or
3932          * evaluate context command.
3933          */
3934         if (xhci->hci_version > 0x95)
3935                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3936                                 false, false);
3937         else
3938                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3939                                 true, false);
3940
3941         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3942         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3943
3944         xhci_free_command(xhci, config_cmd);
3945         return ret;
3946 }
3947
3948 int xhci_get_frame(struct usb_hcd *hcd)
3949 {
3950         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3951         /* EHCI mods by the periodic size.  Why? */
3952         return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3953 }
3954
3955 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3956 {
3957         struct xhci_hcd         *xhci;
3958         struct device           *dev = hcd->self.controller;
3959         int                     retval;
3960         u32                     temp;
3961
3962         hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3963
3964         if (usb_hcd_is_primary_hcd(hcd)) {
3965                 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3966                 if (!xhci)
3967                         return -ENOMEM;
3968                 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3969                 xhci->main_hcd = hcd;
3970                 /* Mark the first roothub as being USB 2.0.
3971                  * The xHCI driver will register the USB 3.0 roothub.
3972                  */
3973                 hcd->speed = HCD_USB2;
3974                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3975                 /*
3976                  * USB 2.0 roothub under xHCI has an integrated TT,
3977                  * (rate matching hub) as opposed to having an OHCI/UHCI
3978                  * companion controller.
3979                  */
3980                 hcd->has_tt = 1;
3981         } else {
3982                 /* xHCI private pointer was set in xhci_pci_probe for the second
3983                  * registered roothub.
3984                  */
3985                 xhci = hcd_to_xhci(hcd);
3986                 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3987                 if (HCC_64BIT_ADDR(temp)) {
3988                         xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3989                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3990                 } else {
3991                         dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3992                 }
3993                 return 0;
3994         }
3995
3996         xhci->cap_regs = hcd->regs;
3997         xhci->op_regs = hcd->regs +
3998                 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
3999         xhci->run_regs = hcd->regs +
4000                 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4001         /* Cache read-only capability registers */
4002         xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4003         xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4004         xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4005         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4006         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4007         xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4008         xhci_print_registers(xhci);
4009
4010         get_quirks(dev, xhci);
4011
4012         /* Make sure the HC is halted. */
4013         retval = xhci_halt(xhci);
4014         if (retval)
4015                 goto error;
4016
4017         xhci_dbg(xhci, "Resetting HCD\n");
4018         /* Reset the internal HC memory state and registers. */
4019         retval = xhci_reset(xhci);
4020         if (retval)
4021                 goto error;
4022         xhci_dbg(xhci, "Reset complete\n");
4023
4024         temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4025         if (HCC_64BIT_ADDR(temp)) {
4026                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4027                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4028         } else {
4029                 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4030         }
4031
4032         xhci_dbg(xhci, "Calling HCD init\n");
4033         /* Initialize HCD and host controller data structures. */
4034         retval = xhci_init(hcd);
4035         if (retval)
4036                 goto error;
4037         xhci_dbg(xhci, "Called HCD init\n");
4038         return 0;
4039 error:
4040         kfree(xhci);
4041         return retval;
4042 }
4043
4044 MODULE_DESCRIPTION(DRIVER_DESC);
4045 MODULE_AUTHOR(DRIVER_AUTHOR);
4046 MODULE_LICENSE("GPL");
4047
4048 static int __init xhci_hcd_init(void)
4049 {
4050         int retval;
4051
4052         retval = xhci_register_pci();
4053         if (retval < 0) {
4054                 printk(KERN_DEBUG "Problem registering PCI driver.");
4055                 return retval;
4056         }
4057         /*
4058          * Check the compiler generated sizes of structures that must be laid
4059          * out in specific ways for hardware access.
4060          */
4061         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4062         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4063         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4064         /* xhci_device_control has eight fields, and also
4065          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4066          */
4067         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4068         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4069         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4070         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4071         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4072         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4073         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4074         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4075         return 0;
4076 }
4077 module_init(xhci_hcd_init);
4078
4079 static void __exit xhci_hcd_cleanup(void)
4080 {
4081         xhci_unregister_pci();
4082 }
4083 module_exit(xhci_hcd_cleanup);