]> Pileus Git - ~andy/linux/blob - drivers/usb/host/xhci-mem.c
xhci: remove CONFIG_USB_XHCI_HCD_DEBUGGING and unused code
[~andy/linux] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27
28 #include "xhci.h"
29
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38                                         unsigned int cycle_state, gfp_t flags)
39 {
40         struct xhci_segment *seg;
41         dma_addr_t      dma;
42         int             i;
43
44         seg = kzalloc(sizeof *seg, flags);
45         if (!seg)
46                 return NULL;
47
48         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49         if (!seg->trbs) {
50                 kfree(seg);
51                 return NULL;
52         }
53
54         memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
55         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56         if (cycle_state == 0) {
57                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
58                         seg->trbs[i].link.control |= TRB_CYCLE;
59         }
60         seg->dma = dma;
61         seg->next = NULL;
62
63         return seg;
64 }
65
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68         if (seg->trbs) {
69                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70                 seg->trbs = NULL;
71         }
72         kfree(seg);
73 }
74
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76                                 struct xhci_segment *first)
77 {
78         struct xhci_segment *seg;
79
80         seg = first->next;
81         while (seg != first) {
82                 struct xhci_segment *next = seg->next;
83                 xhci_segment_free(xhci, seg);
84                 seg = next;
85         }
86         xhci_segment_free(xhci, first);
87 }
88
89 /*
90  * Make the prev segment point to the next segment.
91  *
92  * Change the last TRB in the prev segment to be a Link TRB which points to the
93  * DMA address of the next segment.  The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97                 struct xhci_segment *next, enum xhci_ring_type type)
98 {
99         u32 val;
100
101         if (!prev || !next)
102                 return;
103         prev->next = next;
104         if (type != TYPE_EVENT) {
105                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106                         cpu_to_le64(next->dma);
107
108                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110                 val &= ~TRB_TYPE_BITMASK;
111                 val |= TRB_TYPE(TRB_LINK);
112                 /* Always set the chain bit with 0.95 hardware */
113                 /* Set chain bit for isoc rings on AMD 0.96 host */
114                 if (xhci_link_trb_quirk(xhci) ||
115                                 (type == TYPE_ISOC &&
116                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
117                         val |= TRB_CHAIN;
118                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119         }
120 }
121
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127                 struct xhci_segment *first, struct xhci_segment *last,
128                 unsigned int num_segs)
129 {
130         struct xhci_segment *next;
131
132         if (!ring || !first || !last)
133                 return;
134
135         next = ring->enq_seg->next;
136         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137         xhci_link_segments(xhci, last, next, ring->type);
138         ring->num_segs += num_segs;
139         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140
141         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
143                         &= ~cpu_to_le32(LINK_TOGGLE);
144                 last->trbs[TRBS_PER_SEGMENT-1].link.control
145                         |= cpu_to_le32(LINK_TOGGLE);
146                 ring->last_seg = last;
147         }
148 }
149
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153         if (!ring)
154                 return;
155
156         if (ring->first_seg)
157                 xhci_free_segments_for_ring(xhci, ring->first_seg);
158
159         kfree(ring);
160 }
161
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163                                         unsigned int cycle_state)
164 {
165         /* The ring is empty, so the enqueue pointer == dequeue pointer */
166         ring->enqueue = ring->first_seg->trbs;
167         ring->enq_seg = ring->first_seg;
168         ring->dequeue = ring->enqueue;
169         ring->deq_seg = ring->first_seg;
170         /* The ring is initialized to 0. The producer must write 1 to the cycle
171          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
172          * compare CCS to the cycle bit to check ownership, so CCS = 1.
173          *
174          * New rings are initialized with cycle state equal to 1; if we are
175          * handling ring expansion, set the cycle state equal to the old ring.
176          */
177         ring->cycle_state = cycle_state;
178         /* Not necessary for new rings, but needed for re-initialized rings */
179         ring->enq_updates = 0;
180         ring->deq_updates = 0;
181
182         /*
183          * Each segment has a link TRB, and leave an extra TRB for SW
184          * accounting purpose
185          */
186         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191                 struct xhci_segment **first, struct xhci_segment **last,
192                 unsigned int num_segs, unsigned int cycle_state,
193                 enum xhci_ring_type type, gfp_t flags)
194 {
195         struct xhci_segment *prev;
196
197         prev = xhci_segment_alloc(xhci, cycle_state, flags);
198         if (!prev)
199                 return -ENOMEM;
200         num_segs--;
201
202         *first = prev;
203         while (num_segs > 0) {
204                 struct xhci_segment     *next;
205
206                 next = xhci_segment_alloc(xhci, cycle_state, flags);
207                 if (!next) {
208                         prev = *first;
209                         while (prev) {
210                                 next = prev->next;
211                                 xhci_segment_free(xhci, prev);
212                                 prev = next;
213                         }
214                         return -ENOMEM;
215                 }
216                 xhci_link_segments(xhci, prev, next, type);
217
218                 prev = next;
219                 num_segs--;
220         }
221         xhci_link_segments(xhci, prev, *first, type);
222         *last = prev;
223
224         return 0;
225 }
226
227 /**
228  * Create a new ring with zero or more segments.
229  *
230  * Link each segment together into a ring.
231  * Set the end flag and the cycle toggle bit on the last segment.
232  * See section 4.9.1 and figures 15 and 16.
233  */
234 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
235                 unsigned int num_segs, unsigned int cycle_state,
236                 enum xhci_ring_type type, gfp_t flags)
237 {
238         struct xhci_ring        *ring;
239         int ret;
240
241         ring = kzalloc(sizeof *(ring), flags);
242         if (!ring)
243                 return NULL;
244
245         ring->num_segs = num_segs;
246         INIT_LIST_HEAD(&ring->td_list);
247         ring->type = type;
248         if (num_segs == 0)
249                 return ring;
250
251         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
252                         &ring->last_seg, num_segs, cycle_state, type, flags);
253         if (ret)
254                 goto fail;
255
256         /* Only event ring does not use link TRB */
257         if (type != TYPE_EVENT) {
258                 /* See section 4.9.2.1 and 6.4.4.1 */
259                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
260                         cpu_to_le32(LINK_TOGGLE);
261         }
262         xhci_initialize_ring_info(ring, cycle_state);
263         return ring;
264
265 fail:
266         kfree(ring);
267         return NULL;
268 }
269
270 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
271                 struct xhci_virt_device *virt_dev,
272                 unsigned int ep_index)
273 {
274         int rings_cached;
275
276         rings_cached = virt_dev->num_rings_cached;
277         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
278                 virt_dev->ring_cache[rings_cached] =
279                         virt_dev->eps[ep_index].ring;
280                 virt_dev->num_rings_cached++;
281                 xhci_dbg(xhci, "Cached old ring, "
282                                 "%d ring%s cached\n",
283                                 virt_dev->num_rings_cached,
284                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
285         } else {
286                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
287                 xhci_dbg(xhci, "Ring cache full (%d rings), "
288                                 "freeing ring\n",
289                                 virt_dev->num_rings_cached);
290         }
291         virt_dev->eps[ep_index].ring = NULL;
292 }
293
294 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
295  * pointers to the beginning of the ring.
296  */
297 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
298                         struct xhci_ring *ring, unsigned int cycle_state,
299                         enum xhci_ring_type type)
300 {
301         struct xhci_segment     *seg = ring->first_seg;
302         int i;
303
304         do {
305                 memset(seg->trbs, 0,
306                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
307                 if (cycle_state == 0) {
308                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
309                                 seg->trbs[i].link.control |= TRB_CYCLE;
310                 }
311                 /* All endpoint rings have link TRBs */
312                 xhci_link_segments(xhci, seg, seg->next, type);
313                 seg = seg->next;
314         } while (seg != ring->first_seg);
315         ring->type = type;
316         xhci_initialize_ring_info(ring, cycle_state);
317         /* td list should be empty since all URBs have been cancelled,
318          * but just in case...
319          */
320         INIT_LIST_HEAD(&ring->td_list);
321 }
322
323 /*
324  * Expand an existing ring.
325  * Look for a cached ring or allocate a new ring which has same segment numbers
326  * and link the two rings.
327  */
328 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
329                                 unsigned int num_trbs, gfp_t flags)
330 {
331         struct xhci_segment     *first;
332         struct xhci_segment     *last;
333         unsigned int            num_segs;
334         unsigned int            num_segs_needed;
335         int                     ret;
336
337         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
338                                 (TRBS_PER_SEGMENT - 1);
339
340         /* Allocate number of segments we needed, or double the ring size */
341         num_segs = ring->num_segs > num_segs_needed ?
342                         ring->num_segs : num_segs_needed;
343
344         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
345                         num_segs, ring->cycle_state, ring->type, flags);
346         if (ret)
347                 return -ENOMEM;
348
349         xhci_link_rings(xhci, ring, first, last, num_segs);
350         xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
351                         ring->num_segs);
352
353         return 0;
354 }
355
356 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
357
358 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
359                                                     int type, gfp_t flags)
360 {
361         struct xhci_container_ctx *ctx;
362
363         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
364                 return NULL;
365
366         ctx = kzalloc(sizeof(*ctx), flags);
367         if (!ctx)
368                 return NULL;
369
370         ctx->type = type;
371         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
372         if (type == XHCI_CTX_TYPE_INPUT)
373                 ctx->size += CTX_SIZE(xhci->hcc_params);
374
375         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
376         if (!ctx->bytes) {
377                 kfree(ctx);
378                 return NULL;
379         }
380         memset(ctx->bytes, 0, ctx->size);
381         return ctx;
382 }
383
384 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
385                              struct xhci_container_ctx *ctx)
386 {
387         if (!ctx)
388                 return;
389         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
390         kfree(ctx);
391 }
392
393 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
394                                               struct xhci_container_ctx *ctx)
395 {
396         if (ctx->type != XHCI_CTX_TYPE_INPUT)
397                 return NULL;
398
399         return (struct xhci_input_control_ctx *)ctx->bytes;
400 }
401
402 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
403                                         struct xhci_container_ctx *ctx)
404 {
405         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
406                 return (struct xhci_slot_ctx *)ctx->bytes;
407
408         return (struct xhci_slot_ctx *)
409                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
410 }
411
412 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
413                                     struct xhci_container_ctx *ctx,
414                                     unsigned int ep_index)
415 {
416         /* increment ep index by offset of start of ep ctx array */
417         ep_index++;
418         if (ctx->type == XHCI_CTX_TYPE_INPUT)
419                 ep_index++;
420
421         return (struct xhci_ep_ctx *)
422                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
423 }
424
425
426 /***************** Streams structures manipulation *************************/
427
428 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
429                 unsigned int num_stream_ctxs,
430                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
431 {
432         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
433
434         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
435                 dma_free_coherent(&pdev->dev,
436                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
437                                 stream_ctx, dma);
438         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
439                 return dma_pool_free(xhci->small_streams_pool,
440                                 stream_ctx, dma);
441         else
442                 return dma_pool_free(xhci->medium_streams_pool,
443                                 stream_ctx, dma);
444 }
445
446 /*
447  * The stream context array for each endpoint with bulk streams enabled can
448  * vary in size, based on:
449  *  - how many streams the endpoint supports,
450  *  - the maximum primary stream array size the host controller supports,
451  *  - and how many streams the device driver asks for.
452  *
453  * The stream context array must be a power of 2, and can be as small as
454  * 64 bytes or as large as 1MB.
455  */
456 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
457                 unsigned int num_stream_ctxs, dma_addr_t *dma,
458                 gfp_t mem_flags)
459 {
460         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
461
462         if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
463                 return dma_alloc_coherent(&pdev->dev,
464                                 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
465                                 dma, mem_flags);
466         else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
467                 return dma_pool_alloc(xhci->small_streams_pool,
468                                 mem_flags, dma);
469         else
470                 return dma_pool_alloc(xhci->medium_streams_pool,
471                                 mem_flags, dma);
472 }
473
474 struct xhci_ring *xhci_dma_to_transfer_ring(
475                 struct xhci_virt_ep *ep,
476                 u64 address)
477 {
478         if (ep->ep_state & EP_HAS_STREAMS)
479                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
480                                 address >> TRB_SEGMENT_SHIFT);
481         return ep->ring;
482 }
483
484 struct xhci_ring *xhci_stream_id_to_ring(
485                 struct xhci_virt_device *dev,
486                 unsigned int ep_index,
487                 unsigned int stream_id)
488 {
489         struct xhci_virt_ep *ep = &dev->eps[ep_index];
490
491         if (stream_id == 0)
492                 return ep->ring;
493         if (!ep->stream_info)
494                 return NULL;
495
496         if (stream_id > ep->stream_info->num_streams)
497                 return NULL;
498         return ep->stream_info->stream_rings[stream_id];
499 }
500
501 /*
502  * Change an endpoint's internal structure so it supports stream IDs.  The
503  * number of requested streams includes stream 0, which cannot be used by device
504  * drivers.
505  *
506  * The number of stream contexts in the stream context array may be bigger than
507  * the number of streams the driver wants to use.  This is because the number of
508  * stream context array entries must be a power of two.
509  *
510  * We need a radix tree for mapping physical addresses of TRBs to which stream
511  * ID they belong to.  We need to do this because the host controller won't tell
512  * us which stream ring the TRB came from.  We could store the stream ID in an
513  * event data TRB, but that doesn't help us for the cancellation case, since the
514  * endpoint may stop before it reaches that event data TRB.
515  *
516  * The radix tree maps the upper portion of the TRB DMA address to a ring
517  * segment that has the same upper portion of DMA addresses.  For example, say I
518  * have segments of size 1KB, that are always 64-byte aligned.  A segment may
519  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
520  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
521  * pass the radix tree a key to get the right stream ID:
522  *
523  *      0x10c90fff >> 10 = 0x43243
524  *      0x10c912c0 >> 10 = 0x43244
525  *      0x10c91400 >> 10 = 0x43245
526  *
527  * Obviously, only those TRBs with DMA addresses that are within the segment
528  * will make the radix tree return the stream ID for that ring.
529  *
530  * Caveats for the radix tree:
531  *
532  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
533  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
534  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
535  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
536  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
537  * extended systems (where the DMA address can be bigger than 32-bits),
538  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
539  */
540 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
541                 unsigned int num_stream_ctxs,
542                 unsigned int num_streams, gfp_t mem_flags)
543 {
544         struct xhci_stream_info *stream_info;
545         u32 cur_stream;
546         struct xhci_ring *cur_ring;
547         unsigned long key;
548         u64 addr;
549         int ret;
550
551         xhci_dbg(xhci, "Allocating %u streams and %u "
552                         "stream context array entries.\n",
553                         num_streams, num_stream_ctxs);
554         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
555                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
556                 return NULL;
557         }
558         xhci->cmd_ring_reserved_trbs++;
559
560         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
561         if (!stream_info)
562                 goto cleanup_trbs;
563
564         stream_info->num_streams = num_streams;
565         stream_info->num_stream_ctxs = num_stream_ctxs;
566
567         /* Initialize the array of virtual pointers to stream rings. */
568         stream_info->stream_rings = kzalloc(
569                         sizeof(struct xhci_ring *)*num_streams,
570                         mem_flags);
571         if (!stream_info->stream_rings)
572                 goto cleanup_info;
573
574         /* Initialize the array of DMA addresses for stream rings for the HW. */
575         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
576                         num_stream_ctxs, &stream_info->ctx_array_dma,
577                         mem_flags);
578         if (!stream_info->stream_ctx_array)
579                 goto cleanup_ctx;
580         memset(stream_info->stream_ctx_array, 0,
581                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
582
583         /* Allocate everything needed to free the stream rings later */
584         stream_info->free_streams_command =
585                 xhci_alloc_command(xhci, true, true, mem_flags);
586         if (!stream_info->free_streams_command)
587                 goto cleanup_ctx;
588
589         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
590
591         /* Allocate rings for all the streams that the driver will use,
592          * and add their segment DMA addresses to the radix tree.
593          * Stream 0 is reserved.
594          */
595         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
596                 stream_info->stream_rings[cur_stream] =
597                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
598                 cur_ring = stream_info->stream_rings[cur_stream];
599                 if (!cur_ring)
600                         goto cleanup_rings;
601                 cur_ring->stream_id = cur_stream;
602                 /* Set deq ptr, cycle bit, and stream context type */
603                 addr = cur_ring->first_seg->dma |
604                         SCT_FOR_CTX(SCT_PRI_TR) |
605                         cur_ring->cycle_state;
606                 stream_info->stream_ctx_array[cur_stream].stream_ring =
607                         cpu_to_le64(addr);
608                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
609                                 cur_stream, (unsigned long long) addr);
610
611                 key = (unsigned long)
612                         (cur_ring->first_seg->dma >> TRB_SEGMENT_SHIFT);
613                 ret = radix_tree_insert(&stream_info->trb_address_map,
614                                 key, cur_ring);
615                 if (ret) {
616                         xhci_ring_free(xhci, cur_ring);
617                         stream_info->stream_rings[cur_stream] = NULL;
618                         goto cleanup_rings;
619                 }
620         }
621         /* Leave the other unused stream ring pointers in the stream context
622          * array initialized to zero.  This will cause the xHC to give us an
623          * error if the device asks for a stream ID we don't have setup (if it
624          * was any other way, the host controller would assume the ring is
625          * "empty" and wait forever for data to be queued to that stream ID).
626          */
627
628         return stream_info;
629
630 cleanup_rings:
631         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
632                 cur_ring = stream_info->stream_rings[cur_stream];
633                 if (cur_ring) {
634                         addr = cur_ring->first_seg->dma;
635                         radix_tree_delete(&stream_info->trb_address_map,
636                                         addr >> TRB_SEGMENT_SHIFT);
637                         xhci_ring_free(xhci, cur_ring);
638                         stream_info->stream_rings[cur_stream] = NULL;
639                 }
640         }
641         xhci_free_command(xhci, stream_info->free_streams_command);
642 cleanup_ctx:
643         kfree(stream_info->stream_rings);
644 cleanup_info:
645         kfree(stream_info);
646 cleanup_trbs:
647         xhci->cmd_ring_reserved_trbs--;
648         return NULL;
649 }
650 /*
651  * Sets the MaxPStreams field and the Linear Stream Array field.
652  * Sets the dequeue pointer to the stream context array.
653  */
654 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
655                 struct xhci_ep_ctx *ep_ctx,
656                 struct xhci_stream_info *stream_info)
657 {
658         u32 max_primary_streams;
659         /* MaxPStreams is the number of stream context array entries, not the
660          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
661          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
662          */
663         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
664         xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
665                         1 << (max_primary_streams + 1));
666         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
667         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
668                                        | EP_HAS_LSA);
669         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
670 }
671
672 /*
673  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
674  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
675  * not at the beginning of the ring).
676  */
677 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
678                 struct xhci_ep_ctx *ep_ctx,
679                 struct xhci_virt_ep *ep)
680 {
681         dma_addr_t addr;
682         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
683         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
684         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
685 }
686
687 /* Frees all stream contexts associated with the endpoint,
688  *
689  * Caller should fix the endpoint context streams fields.
690  */
691 void xhci_free_stream_info(struct xhci_hcd *xhci,
692                 struct xhci_stream_info *stream_info)
693 {
694         int cur_stream;
695         struct xhci_ring *cur_ring;
696         dma_addr_t addr;
697
698         if (!stream_info)
699                 return;
700
701         for (cur_stream = 1; cur_stream < stream_info->num_streams;
702                         cur_stream++) {
703                 cur_ring = stream_info->stream_rings[cur_stream];
704                 if (cur_ring) {
705                         addr = cur_ring->first_seg->dma;
706                         radix_tree_delete(&stream_info->trb_address_map,
707                                         addr >> TRB_SEGMENT_SHIFT);
708                         xhci_ring_free(xhci, cur_ring);
709                         stream_info->stream_rings[cur_stream] = NULL;
710                 }
711         }
712         xhci_free_command(xhci, stream_info->free_streams_command);
713         xhci->cmd_ring_reserved_trbs--;
714         if (stream_info->stream_ctx_array)
715                 xhci_free_stream_ctx(xhci,
716                                 stream_info->num_stream_ctxs,
717                                 stream_info->stream_ctx_array,
718                                 stream_info->ctx_array_dma);
719
720         if (stream_info)
721                 kfree(stream_info->stream_rings);
722         kfree(stream_info);
723 }
724
725
726 /***************** Device context manipulation *************************/
727
728 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
729                 struct xhci_virt_ep *ep)
730 {
731         init_timer(&ep->stop_cmd_timer);
732         ep->stop_cmd_timer.data = (unsigned long) ep;
733         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
734         ep->xhci = xhci;
735 }
736
737 static void xhci_free_tt_info(struct xhci_hcd *xhci,
738                 struct xhci_virt_device *virt_dev,
739                 int slot_id)
740 {
741         struct list_head *tt_list_head;
742         struct xhci_tt_bw_info *tt_info, *next;
743         bool slot_found = false;
744
745         /* If the device never made it past the Set Address stage,
746          * it may not have the real_port set correctly.
747          */
748         if (virt_dev->real_port == 0 ||
749                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
750                 xhci_dbg(xhci, "Bad real port.\n");
751                 return;
752         }
753
754         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
755         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
756                 /* Multi-TT hubs will have more than one entry */
757                 if (tt_info->slot_id == slot_id) {
758                         slot_found = true;
759                         list_del(&tt_info->tt_list);
760                         kfree(tt_info);
761                 } else if (slot_found) {
762                         break;
763                 }
764         }
765 }
766
767 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
768                 struct xhci_virt_device *virt_dev,
769                 struct usb_device *hdev,
770                 struct usb_tt *tt, gfp_t mem_flags)
771 {
772         struct xhci_tt_bw_info          *tt_info;
773         unsigned int                    num_ports;
774         int                             i, j;
775
776         if (!tt->multi)
777                 num_ports = 1;
778         else
779                 num_ports = hdev->maxchild;
780
781         for (i = 0; i < num_ports; i++, tt_info++) {
782                 struct xhci_interval_bw_table *bw_table;
783
784                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
785                 if (!tt_info)
786                         goto free_tts;
787                 INIT_LIST_HEAD(&tt_info->tt_list);
788                 list_add(&tt_info->tt_list,
789                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
790                 tt_info->slot_id = virt_dev->udev->slot_id;
791                 if (tt->multi)
792                         tt_info->ttport = i+1;
793                 bw_table = &tt_info->bw_table;
794                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
795                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
796         }
797         return 0;
798
799 free_tts:
800         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
801         return -ENOMEM;
802 }
803
804
805 /* All the xhci_tds in the ring's TD list should be freed at this point.
806  * Should be called with xhci->lock held if there is any chance the TT lists
807  * will be manipulated by the configure endpoint, allocate device, or update
808  * hub functions while this function is removing the TT entries from the list.
809  */
810 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
811 {
812         struct xhci_virt_device *dev;
813         int i;
814         int old_active_eps = 0;
815
816         /* Slot ID 0 is reserved */
817         if (slot_id == 0 || !xhci->devs[slot_id])
818                 return;
819
820         dev = xhci->devs[slot_id];
821         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
822         if (!dev)
823                 return;
824
825         if (dev->tt_info)
826                 old_active_eps = dev->tt_info->active_eps;
827
828         for (i = 0; i < 31; ++i) {
829                 if (dev->eps[i].ring)
830                         xhci_ring_free(xhci, dev->eps[i].ring);
831                 if (dev->eps[i].stream_info)
832                         xhci_free_stream_info(xhci,
833                                         dev->eps[i].stream_info);
834                 /* Endpoints on the TT/root port lists should have been removed
835                  * when usb_disable_device() was called for the device.
836                  * We can't drop them anyway, because the udev might have gone
837                  * away by this point, and we can't tell what speed it was.
838                  */
839                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
840                         xhci_warn(xhci, "Slot %u endpoint %u "
841                                         "not removed from BW list!\n",
842                                         slot_id, i);
843         }
844         /* If this is a hub, free the TT(s) from the TT list */
845         xhci_free_tt_info(xhci, dev, slot_id);
846         /* If necessary, update the number of active TTs on this root port */
847         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
848
849         if (dev->ring_cache) {
850                 for (i = 0; i < dev->num_rings_cached; i++)
851                         xhci_ring_free(xhci, dev->ring_cache[i]);
852                 kfree(dev->ring_cache);
853         }
854
855         if (dev->in_ctx)
856                 xhci_free_container_ctx(xhci, dev->in_ctx);
857         if (dev->out_ctx)
858                 xhci_free_container_ctx(xhci, dev->out_ctx);
859
860         kfree(xhci->devs[slot_id]);
861         xhci->devs[slot_id] = NULL;
862 }
863
864 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
865                 struct usb_device *udev, gfp_t flags)
866 {
867         struct xhci_virt_device *dev;
868         int i;
869
870         /* Slot ID 0 is reserved */
871         if (slot_id == 0 || xhci->devs[slot_id]) {
872                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
873                 return 0;
874         }
875
876         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
877         if (!xhci->devs[slot_id])
878                 return 0;
879         dev = xhci->devs[slot_id];
880
881         /* Allocate the (output) device context that will be used in the HC. */
882         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
883         if (!dev->out_ctx)
884                 goto fail;
885
886         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
887                         (unsigned long long)dev->out_ctx->dma);
888
889         /* Allocate the (input) device context for address device command */
890         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
891         if (!dev->in_ctx)
892                 goto fail;
893
894         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
895                         (unsigned long long)dev->in_ctx->dma);
896
897         /* Initialize the cancellation list and watchdog timers for each ep */
898         for (i = 0; i < 31; i++) {
899                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
900                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
901                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
902         }
903
904         /* Allocate endpoint 0 ring */
905         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
906         if (!dev->eps[0].ring)
907                 goto fail;
908
909         /* Allocate pointers to the ring cache */
910         dev->ring_cache = kzalloc(
911                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
912                         flags);
913         if (!dev->ring_cache)
914                 goto fail;
915         dev->num_rings_cached = 0;
916
917         init_completion(&dev->cmd_completion);
918         INIT_LIST_HEAD(&dev->cmd_list);
919         dev->udev = udev;
920
921         /* Point to output device context in dcbaa. */
922         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
923         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
924                  slot_id,
925                  &xhci->dcbaa->dev_context_ptrs[slot_id],
926                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
927
928         return 1;
929 fail:
930         xhci_free_virt_device(xhci, slot_id);
931         return 0;
932 }
933
934 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
935                 struct usb_device *udev)
936 {
937         struct xhci_virt_device *virt_dev;
938         struct xhci_ep_ctx      *ep0_ctx;
939         struct xhci_ring        *ep_ring;
940
941         virt_dev = xhci->devs[udev->slot_id];
942         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
943         ep_ring = virt_dev->eps[0].ring;
944         /*
945          * FIXME we don't keep track of the dequeue pointer very well after a
946          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
947          * host to our enqueue pointer.  This should only be called after a
948          * configured device has reset, so all control transfers should have
949          * been completed or cancelled before the reset.
950          */
951         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
952                                                         ep_ring->enqueue)
953                                    | ep_ring->cycle_state);
954 }
955
956 /*
957  * The xHCI roothub may have ports of differing speeds in any order in the port
958  * status registers.  xhci->port_array provides an array of the port speed for
959  * each offset into the port status registers.
960  *
961  * The xHCI hardware wants to know the roothub port number that the USB device
962  * is attached to (or the roothub port its ancestor hub is attached to).  All we
963  * know is the index of that port under either the USB 2.0 or the USB 3.0
964  * roothub, but that doesn't give us the real index into the HW port status
965  * registers. Call xhci_find_raw_port_number() to get real index.
966  */
967 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
968                 struct usb_device *udev)
969 {
970         struct usb_device *top_dev;
971         struct usb_hcd *hcd;
972
973         if (udev->speed == USB_SPEED_SUPER)
974                 hcd = xhci->shared_hcd;
975         else
976                 hcd = xhci->main_hcd;
977
978         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
979                         top_dev = top_dev->parent)
980                 /* Found device below root hub */;
981
982         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
983 }
984
985 /* Setup an xHCI virtual device for a Set Address command */
986 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
987 {
988         struct xhci_virt_device *dev;
989         struct xhci_ep_ctx      *ep0_ctx;
990         struct xhci_slot_ctx    *slot_ctx;
991         u32                     port_num;
992         u32                     max_packets;
993         struct usb_device *top_dev;
994
995         dev = xhci->devs[udev->slot_id];
996         /* Slot ID 0 is reserved */
997         if (udev->slot_id == 0 || !dev) {
998                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
999                                 udev->slot_id);
1000                 return -EINVAL;
1001         }
1002         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1003         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1004
1005         /* 3) Only the control endpoint is valid - one endpoint context */
1006         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1007         switch (udev->speed) {
1008         case USB_SPEED_SUPER:
1009                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1010                 max_packets = MAX_PACKET(512);
1011                 break;
1012         case USB_SPEED_HIGH:
1013                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1014                 max_packets = MAX_PACKET(64);
1015                 break;
1016         /* USB core guesses at a 64-byte max packet first for FS devices */
1017         case USB_SPEED_FULL:
1018                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1019                 max_packets = MAX_PACKET(64);
1020                 break;
1021         case USB_SPEED_LOW:
1022                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1023                 max_packets = MAX_PACKET(8);
1024                 break;
1025         case USB_SPEED_WIRELESS:
1026                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1027                 return -EINVAL;
1028                 break;
1029         default:
1030                 /* Speed was set earlier, this shouldn't happen. */
1031                 return -EINVAL;
1032         }
1033         /* Find the root hub port this device is under */
1034         port_num = xhci_find_real_port_number(xhci, udev);
1035         if (!port_num)
1036                 return -EINVAL;
1037         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1038         /* Set the port number in the virtual_device to the faked port number */
1039         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1040                         top_dev = top_dev->parent)
1041                 /* Found device below root hub */;
1042         dev->fake_port = top_dev->portnum;
1043         dev->real_port = port_num;
1044         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1045         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1046
1047         /* Find the right bandwidth table that this device will be a part of.
1048          * If this is a full speed device attached directly to a root port (or a
1049          * decendent of one), it counts as a primary bandwidth domain, not a
1050          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1051          * will never be created for the HS root hub.
1052          */
1053         if (!udev->tt || !udev->tt->hub->parent) {
1054                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1055         } else {
1056                 struct xhci_root_port_bw_info *rh_bw;
1057                 struct xhci_tt_bw_info *tt_bw;
1058
1059                 rh_bw = &xhci->rh_bw[port_num - 1];
1060                 /* Find the right TT. */
1061                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1062                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1063                                 continue;
1064
1065                         if (!dev->udev->tt->multi ||
1066                                         (udev->tt->multi &&
1067                                          tt_bw->ttport == dev->udev->ttport)) {
1068                                 dev->bw_table = &tt_bw->bw_table;
1069                                 dev->tt_info = tt_bw;
1070                                 break;
1071                         }
1072                 }
1073                 if (!dev->tt_info)
1074                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1075         }
1076
1077         /* Is this a LS/FS device under an external HS hub? */
1078         if (udev->tt && udev->tt->hub->parent) {
1079                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1080                                                 (udev->ttport << 8));
1081                 if (udev->tt->multi)
1082                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1083         }
1084         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1085         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1086
1087         /* Step 4 - ring already allocated */
1088         /* Step 5 */
1089         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1090
1091         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1092         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1093                                          max_packets);
1094
1095         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1096                                    dev->eps[0].ring->cycle_state);
1097
1098         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1099
1100         return 0;
1101 }
1102
1103 /*
1104  * Convert interval expressed as 2^(bInterval - 1) == interval into
1105  * straight exponent value 2^n == interval.
1106  *
1107  */
1108 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1109                 struct usb_host_endpoint *ep)
1110 {
1111         unsigned int interval;
1112
1113         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1114         if (interval != ep->desc.bInterval - 1)
1115                 dev_warn(&udev->dev,
1116                          "ep %#x - rounding interval to %d %sframes\n",
1117                          ep->desc.bEndpointAddress,
1118                          1 << interval,
1119                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1120
1121         if (udev->speed == USB_SPEED_FULL) {
1122                 /*
1123                  * Full speed isoc endpoints specify interval in frames,
1124                  * not microframes. We are using microframes everywhere,
1125                  * so adjust accordingly.
1126                  */
1127                 interval += 3;  /* 1 frame = 2^3 uframes */
1128         }
1129
1130         return interval;
1131 }
1132
1133 /*
1134  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1135  * microframes, rounded down to nearest power of 2.
1136  */
1137 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1138                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1139                 unsigned int min_exponent, unsigned int max_exponent)
1140 {
1141         unsigned int interval;
1142
1143         interval = fls(desc_interval) - 1;
1144         interval = clamp_val(interval, min_exponent, max_exponent);
1145         if ((1 << interval) != desc_interval)
1146                 dev_warn(&udev->dev,
1147                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1148                          ep->desc.bEndpointAddress,
1149                          1 << interval,
1150                          desc_interval);
1151
1152         return interval;
1153 }
1154
1155 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1156                 struct usb_host_endpoint *ep)
1157 {
1158         if (ep->desc.bInterval == 0)
1159                 return 0;
1160         return xhci_microframes_to_exponent(udev, ep,
1161                         ep->desc.bInterval, 0, 15);
1162 }
1163
1164
1165 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1166                 struct usb_host_endpoint *ep)
1167 {
1168         return xhci_microframes_to_exponent(udev, ep,
1169                         ep->desc.bInterval * 8, 3, 10);
1170 }
1171
1172 /* Return the polling or NAK interval.
1173  *
1174  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1175  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1176  *
1177  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1178  * is set to 0.
1179  */
1180 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1181                 struct usb_host_endpoint *ep)
1182 {
1183         unsigned int interval = 0;
1184
1185         switch (udev->speed) {
1186         case USB_SPEED_HIGH:
1187                 /* Max NAK rate */
1188                 if (usb_endpoint_xfer_control(&ep->desc) ||
1189                     usb_endpoint_xfer_bulk(&ep->desc)) {
1190                         interval = xhci_parse_microframe_interval(udev, ep);
1191                         break;
1192                 }
1193                 /* Fall through - SS and HS isoc/int have same decoding */
1194
1195         case USB_SPEED_SUPER:
1196                 if (usb_endpoint_xfer_int(&ep->desc) ||
1197                     usb_endpoint_xfer_isoc(&ep->desc)) {
1198                         interval = xhci_parse_exponent_interval(udev, ep);
1199                 }
1200                 break;
1201
1202         case USB_SPEED_FULL:
1203                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1204                         interval = xhci_parse_exponent_interval(udev, ep);
1205                         break;
1206                 }
1207                 /*
1208                  * Fall through for interrupt endpoint interval decoding
1209                  * since it uses the same rules as low speed interrupt
1210                  * endpoints.
1211                  */
1212
1213         case USB_SPEED_LOW:
1214                 if (usb_endpoint_xfer_int(&ep->desc) ||
1215                     usb_endpoint_xfer_isoc(&ep->desc)) {
1216
1217                         interval = xhci_parse_frame_interval(udev, ep);
1218                 }
1219                 break;
1220
1221         default:
1222                 BUG();
1223         }
1224         return EP_INTERVAL(interval);
1225 }
1226
1227 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1228  * High speed endpoint descriptors can define "the number of additional
1229  * transaction opportunities per microframe", but that goes in the Max Burst
1230  * endpoint context field.
1231  */
1232 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1233                 struct usb_host_endpoint *ep)
1234 {
1235         if (udev->speed != USB_SPEED_SUPER ||
1236                         !usb_endpoint_xfer_isoc(&ep->desc))
1237                 return 0;
1238         return ep->ss_ep_comp.bmAttributes;
1239 }
1240
1241 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1242                 struct usb_host_endpoint *ep)
1243 {
1244         int in;
1245         u32 type;
1246
1247         in = usb_endpoint_dir_in(&ep->desc);
1248         if (usb_endpoint_xfer_control(&ep->desc)) {
1249                 type = EP_TYPE(CTRL_EP);
1250         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1251                 if (in)
1252                         type = EP_TYPE(BULK_IN_EP);
1253                 else
1254                         type = EP_TYPE(BULK_OUT_EP);
1255         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1256                 if (in)
1257                         type = EP_TYPE(ISOC_IN_EP);
1258                 else
1259                         type = EP_TYPE(ISOC_OUT_EP);
1260         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1261                 if (in)
1262                         type = EP_TYPE(INT_IN_EP);
1263                 else
1264                         type = EP_TYPE(INT_OUT_EP);
1265         } else {
1266                 type = 0;
1267         }
1268         return type;
1269 }
1270
1271 /* Return the maximum endpoint service interval time (ESIT) payload.
1272  * Basically, this is the maxpacket size, multiplied by the burst size
1273  * and mult size.
1274  */
1275 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1276                 struct usb_device *udev,
1277                 struct usb_host_endpoint *ep)
1278 {
1279         int max_burst;
1280         int max_packet;
1281
1282         /* Only applies for interrupt or isochronous endpoints */
1283         if (usb_endpoint_xfer_control(&ep->desc) ||
1284                         usb_endpoint_xfer_bulk(&ep->desc))
1285                 return 0;
1286
1287         if (udev->speed == USB_SPEED_SUPER)
1288                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1289
1290         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1291         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1292         /* A 0 in max burst means 1 transfer per ESIT */
1293         return max_packet * (max_burst + 1);
1294 }
1295
1296 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1297  * Drivers will have to call usb_alloc_streams() to do that.
1298  */
1299 int xhci_endpoint_init(struct xhci_hcd *xhci,
1300                 struct xhci_virt_device *virt_dev,
1301                 struct usb_device *udev,
1302                 struct usb_host_endpoint *ep,
1303                 gfp_t mem_flags)
1304 {
1305         unsigned int ep_index;
1306         struct xhci_ep_ctx *ep_ctx;
1307         struct xhci_ring *ep_ring;
1308         unsigned int max_packet;
1309         unsigned int max_burst;
1310         enum xhci_ring_type type;
1311         u32 max_esit_payload;
1312         u32 endpoint_type;
1313
1314         ep_index = xhci_get_endpoint_index(&ep->desc);
1315         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1316
1317         endpoint_type = xhci_get_endpoint_type(udev, ep);
1318         if (!endpoint_type)
1319                 return -EINVAL;
1320         ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1321
1322         type = usb_endpoint_type(&ep->desc);
1323         /* Set up the endpoint ring */
1324         virt_dev->eps[ep_index].new_ring =
1325                 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1326         if (!virt_dev->eps[ep_index].new_ring) {
1327                 /* Attempt to use the ring cache */
1328                 if (virt_dev->num_rings_cached == 0)
1329                         return -ENOMEM;
1330                 virt_dev->eps[ep_index].new_ring =
1331                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1332                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1333                 virt_dev->num_rings_cached--;
1334                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1335                                         1, type);
1336         }
1337         virt_dev->eps[ep_index].skip = false;
1338         ep_ring = virt_dev->eps[ep_index].new_ring;
1339         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1340
1341         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1342                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1343
1344         /* FIXME dig Mult and streams info out of ep companion desc */
1345
1346         /* Allow 3 retries for everything but isoc;
1347          * CErr shall be set to 0 for Isoch endpoints.
1348          */
1349         if (!usb_endpoint_xfer_isoc(&ep->desc))
1350                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1351         else
1352                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1353
1354         /* Set the max packet size and max burst */
1355         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1356         max_burst = 0;
1357         switch (udev->speed) {
1358         case USB_SPEED_SUPER:
1359                 /* dig out max burst from ep companion desc */
1360                 max_burst = ep->ss_ep_comp.bMaxBurst;
1361                 break;
1362         case USB_SPEED_HIGH:
1363                 /* Some devices get this wrong */
1364                 if (usb_endpoint_xfer_bulk(&ep->desc))
1365                         max_packet = 512;
1366                 /* bits 11:12 specify the number of additional transaction
1367                  * opportunities per microframe (USB 2.0, section 9.6.6)
1368                  */
1369                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1370                                 usb_endpoint_xfer_int(&ep->desc)) {
1371                         max_burst = (usb_endpoint_maxp(&ep->desc)
1372                                      & 0x1800) >> 11;
1373                 }
1374                 break;
1375         case USB_SPEED_FULL:
1376         case USB_SPEED_LOW:
1377                 break;
1378         default:
1379                 BUG();
1380         }
1381         ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1382                         MAX_BURST(max_burst));
1383         max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1384         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1385
1386         /*
1387          * XXX no idea how to calculate the average TRB buffer length for bulk
1388          * endpoints, as the driver gives us no clue how big each scatter gather
1389          * list entry (or buffer) is going to be.
1390          *
1391          * For isochronous and interrupt endpoints, we set it to the max
1392          * available, until we have new API in the USB core to allow drivers to
1393          * declare how much bandwidth they actually need.
1394          *
1395          * Normally, it would be calculated by taking the total of the buffer
1396          * lengths in the TD and then dividing by the number of TRBs in a TD,
1397          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1398          * use Event Data TRBs, and we don't chain in a link TRB on short
1399          * transfers, we're basically dividing by 1.
1400          *
1401          * xHCI 1.0 specification indicates that the Average TRB Length should
1402          * be set to 8 for control endpoints.
1403          */
1404         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1405                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1406         else
1407                 ep_ctx->tx_info |=
1408                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1409
1410         /* FIXME Debug endpoint context */
1411         return 0;
1412 }
1413
1414 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1415                 struct xhci_virt_device *virt_dev,
1416                 struct usb_host_endpoint *ep)
1417 {
1418         unsigned int ep_index;
1419         struct xhci_ep_ctx *ep_ctx;
1420
1421         ep_index = xhci_get_endpoint_index(&ep->desc);
1422         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1423
1424         ep_ctx->ep_info = 0;
1425         ep_ctx->ep_info2 = 0;
1426         ep_ctx->deq = 0;
1427         ep_ctx->tx_info = 0;
1428         /* Don't free the endpoint ring until the set interface or configuration
1429          * request succeeds.
1430          */
1431 }
1432
1433 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1434 {
1435         bw_info->ep_interval = 0;
1436         bw_info->mult = 0;
1437         bw_info->num_packets = 0;
1438         bw_info->max_packet_size = 0;
1439         bw_info->type = 0;
1440         bw_info->max_esit_payload = 0;
1441 }
1442
1443 void xhci_update_bw_info(struct xhci_hcd *xhci,
1444                 struct xhci_container_ctx *in_ctx,
1445                 struct xhci_input_control_ctx *ctrl_ctx,
1446                 struct xhci_virt_device *virt_dev)
1447 {
1448         struct xhci_bw_info *bw_info;
1449         struct xhci_ep_ctx *ep_ctx;
1450         unsigned int ep_type;
1451         int i;
1452
1453         for (i = 1; i < 31; ++i) {
1454                 bw_info = &virt_dev->eps[i].bw_info;
1455
1456                 /* We can't tell what endpoint type is being dropped, but
1457                  * unconditionally clearing the bandwidth info for non-periodic
1458                  * endpoints should be harmless because the info will never be
1459                  * set in the first place.
1460                  */
1461                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1462                         /* Dropped endpoint */
1463                         xhci_clear_endpoint_bw_info(bw_info);
1464                         continue;
1465                 }
1466
1467                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1468                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1469                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1470
1471                         /* Ignore non-periodic endpoints */
1472                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1473                                         ep_type != ISOC_IN_EP &&
1474                                         ep_type != INT_IN_EP)
1475                                 continue;
1476
1477                         /* Added or changed endpoint */
1478                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1479                                         le32_to_cpu(ep_ctx->ep_info));
1480                         /* Number of packets and mult are zero-based in the
1481                          * input context, but we want one-based for the
1482                          * interval table.
1483                          */
1484                         bw_info->mult = CTX_TO_EP_MULT(
1485                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1486                         bw_info->num_packets = CTX_TO_MAX_BURST(
1487                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1488                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1489                                         le32_to_cpu(ep_ctx->ep_info2));
1490                         bw_info->type = ep_type;
1491                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1492                                         le32_to_cpu(ep_ctx->tx_info));
1493                 }
1494         }
1495 }
1496
1497 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1498  * Useful when you want to change one particular aspect of the endpoint and then
1499  * issue a configure endpoint command.
1500  */
1501 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1502                 struct xhci_container_ctx *in_ctx,
1503                 struct xhci_container_ctx *out_ctx,
1504                 unsigned int ep_index)
1505 {
1506         struct xhci_ep_ctx *out_ep_ctx;
1507         struct xhci_ep_ctx *in_ep_ctx;
1508
1509         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1510         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1511
1512         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1513         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1514         in_ep_ctx->deq = out_ep_ctx->deq;
1515         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1516 }
1517
1518 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1519  * Useful when you want to change one particular aspect of the endpoint and then
1520  * issue a configure endpoint command.  Only the context entries field matters,
1521  * but we'll copy the whole thing anyway.
1522  */
1523 void xhci_slot_copy(struct xhci_hcd *xhci,
1524                 struct xhci_container_ctx *in_ctx,
1525                 struct xhci_container_ctx *out_ctx)
1526 {
1527         struct xhci_slot_ctx *in_slot_ctx;
1528         struct xhci_slot_ctx *out_slot_ctx;
1529
1530         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1531         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1532
1533         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1534         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1535         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1536         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1537 }
1538
1539 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1540 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1541 {
1542         int i;
1543         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1544         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1545
1546         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1547
1548         if (!num_sp)
1549                 return 0;
1550
1551         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1552         if (!xhci->scratchpad)
1553                 goto fail_sp;
1554
1555         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1556                                      num_sp * sizeof(u64),
1557                                      &xhci->scratchpad->sp_dma, flags);
1558         if (!xhci->scratchpad->sp_array)
1559                 goto fail_sp2;
1560
1561         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1562         if (!xhci->scratchpad->sp_buffers)
1563                 goto fail_sp3;
1564
1565         xhci->scratchpad->sp_dma_buffers =
1566                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1567
1568         if (!xhci->scratchpad->sp_dma_buffers)
1569                 goto fail_sp4;
1570
1571         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1572         for (i = 0; i < num_sp; i++) {
1573                 dma_addr_t dma;
1574                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1575                                 flags);
1576                 if (!buf)
1577                         goto fail_sp5;
1578
1579                 xhci->scratchpad->sp_array[i] = dma;
1580                 xhci->scratchpad->sp_buffers[i] = buf;
1581                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1582         }
1583
1584         return 0;
1585
1586  fail_sp5:
1587         for (i = i - 1; i >= 0; i--) {
1588                 dma_free_coherent(dev, xhci->page_size,
1589                                     xhci->scratchpad->sp_buffers[i],
1590                                     xhci->scratchpad->sp_dma_buffers[i]);
1591         }
1592         kfree(xhci->scratchpad->sp_dma_buffers);
1593
1594  fail_sp4:
1595         kfree(xhci->scratchpad->sp_buffers);
1596
1597  fail_sp3:
1598         dma_free_coherent(dev, num_sp * sizeof(u64),
1599                             xhci->scratchpad->sp_array,
1600                             xhci->scratchpad->sp_dma);
1601
1602  fail_sp2:
1603         kfree(xhci->scratchpad);
1604         xhci->scratchpad = NULL;
1605
1606  fail_sp:
1607         return -ENOMEM;
1608 }
1609
1610 static void scratchpad_free(struct xhci_hcd *xhci)
1611 {
1612         int num_sp;
1613         int i;
1614         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1615
1616         if (!xhci->scratchpad)
1617                 return;
1618
1619         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1620
1621         for (i = 0; i < num_sp; i++) {
1622                 dma_free_coherent(&pdev->dev, xhci->page_size,
1623                                     xhci->scratchpad->sp_buffers[i],
1624                                     xhci->scratchpad->sp_dma_buffers[i]);
1625         }
1626         kfree(xhci->scratchpad->sp_dma_buffers);
1627         kfree(xhci->scratchpad->sp_buffers);
1628         dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1629                             xhci->scratchpad->sp_array,
1630                             xhci->scratchpad->sp_dma);
1631         kfree(xhci->scratchpad);
1632         xhci->scratchpad = NULL;
1633 }
1634
1635 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1636                 bool allocate_in_ctx, bool allocate_completion,
1637                 gfp_t mem_flags)
1638 {
1639         struct xhci_command *command;
1640
1641         command = kzalloc(sizeof(*command), mem_flags);
1642         if (!command)
1643                 return NULL;
1644
1645         if (allocate_in_ctx) {
1646                 command->in_ctx =
1647                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1648                                         mem_flags);
1649                 if (!command->in_ctx) {
1650                         kfree(command);
1651                         return NULL;
1652                 }
1653         }
1654
1655         if (allocate_completion) {
1656                 command->completion =
1657                         kzalloc(sizeof(struct completion), mem_flags);
1658                 if (!command->completion) {
1659                         xhci_free_container_ctx(xhci, command->in_ctx);
1660                         kfree(command);
1661                         return NULL;
1662                 }
1663                 init_completion(command->completion);
1664         }
1665
1666         command->status = 0;
1667         INIT_LIST_HEAD(&command->cmd_list);
1668         return command;
1669 }
1670
1671 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1672 {
1673         if (urb_priv) {
1674                 kfree(urb_priv->td[0]);
1675                 kfree(urb_priv);
1676         }
1677 }
1678
1679 void xhci_free_command(struct xhci_hcd *xhci,
1680                 struct xhci_command *command)
1681 {
1682         xhci_free_container_ctx(xhci,
1683                         command->in_ctx);
1684         kfree(command->completion);
1685         kfree(command);
1686 }
1687
1688 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1689 {
1690         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1691         struct dev_info *dev_info, *next;
1692         struct xhci_cd  *cur_cd, *next_cd;
1693         unsigned long   flags;
1694         int size;
1695         int i, j, num_ports;
1696
1697         /* Free the Event Ring Segment Table and the actual Event Ring */
1698         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1699         if (xhci->erst.entries)
1700                 dma_free_coherent(&pdev->dev, size,
1701                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1702         xhci->erst.entries = NULL;
1703         xhci_dbg(xhci, "Freed ERST\n");
1704         if (xhci->event_ring)
1705                 xhci_ring_free(xhci, xhci->event_ring);
1706         xhci->event_ring = NULL;
1707         xhci_dbg(xhci, "Freed event ring\n");
1708
1709         if (xhci->lpm_command)
1710                 xhci_free_command(xhci, xhci->lpm_command);
1711         xhci->cmd_ring_reserved_trbs = 0;
1712         if (xhci->cmd_ring)
1713                 xhci_ring_free(xhci, xhci->cmd_ring);
1714         xhci->cmd_ring = NULL;
1715         xhci_dbg(xhci, "Freed command ring\n");
1716         list_for_each_entry_safe(cur_cd, next_cd,
1717                         &xhci->cancel_cmd_list, cancel_cmd_list) {
1718                 list_del(&cur_cd->cancel_cmd_list);
1719                 kfree(cur_cd);
1720         }
1721
1722         for (i = 1; i < MAX_HC_SLOTS; ++i)
1723                 xhci_free_virt_device(xhci, i);
1724
1725         if (xhci->segment_pool)
1726                 dma_pool_destroy(xhci->segment_pool);
1727         xhci->segment_pool = NULL;
1728         xhci_dbg(xhci, "Freed segment pool\n");
1729
1730         if (xhci->device_pool)
1731                 dma_pool_destroy(xhci->device_pool);
1732         xhci->device_pool = NULL;
1733         xhci_dbg(xhci, "Freed device context pool\n");
1734
1735         if (xhci->small_streams_pool)
1736                 dma_pool_destroy(xhci->small_streams_pool);
1737         xhci->small_streams_pool = NULL;
1738         xhci_dbg(xhci, "Freed small stream array pool\n");
1739
1740         if (xhci->medium_streams_pool)
1741                 dma_pool_destroy(xhci->medium_streams_pool);
1742         xhci->medium_streams_pool = NULL;
1743         xhci_dbg(xhci, "Freed medium stream array pool\n");
1744
1745         if (xhci->dcbaa)
1746                 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1747                                 xhci->dcbaa, xhci->dcbaa->dma);
1748         xhci->dcbaa = NULL;
1749
1750         scratchpad_free(xhci);
1751
1752         spin_lock_irqsave(&xhci->lock, flags);
1753         list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1754                 list_del(&dev_info->list);
1755                 kfree(dev_info);
1756         }
1757         spin_unlock_irqrestore(&xhci->lock, flags);
1758
1759         if (!xhci->rh_bw)
1760                 goto no_bw;
1761
1762         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1763         for (i = 0; i < num_ports; i++) {
1764                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1765                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1766                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1767                         while (!list_empty(ep))
1768                                 list_del_init(ep->next);
1769                 }
1770         }
1771
1772         for (i = 0; i < num_ports; i++) {
1773                 struct xhci_tt_bw_info *tt, *n;
1774                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1775                         list_del(&tt->tt_list);
1776                         kfree(tt);
1777                 }
1778         }
1779
1780 no_bw:
1781         xhci->num_usb2_ports = 0;
1782         xhci->num_usb3_ports = 0;
1783         xhci->num_active_eps = 0;
1784         kfree(xhci->usb2_ports);
1785         kfree(xhci->usb3_ports);
1786         kfree(xhci->port_array);
1787         kfree(xhci->rh_bw);
1788         kfree(xhci->ext_caps);
1789
1790         xhci->page_size = 0;
1791         xhci->page_shift = 0;
1792         xhci->bus_state[0].bus_suspended = 0;
1793         xhci->bus_state[1].bus_suspended = 0;
1794 }
1795
1796 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1797                 struct xhci_segment *input_seg,
1798                 union xhci_trb *start_trb,
1799                 union xhci_trb *end_trb,
1800                 dma_addr_t input_dma,
1801                 struct xhci_segment *result_seg,
1802                 char *test_name, int test_number)
1803 {
1804         unsigned long long start_dma;
1805         unsigned long long end_dma;
1806         struct xhci_segment *seg;
1807
1808         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1809         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1810
1811         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1812         if (seg != result_seg) {
1813                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1814                                 test_name, test_number);
1815                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1816                                 "input DMA 0x%llx\n",
1817                                 input_seg,
1818                                 (unsigned long long) input_dma);
1819                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1820                                 "ending TRB %p (0x%llx DMA)\n",
1821                                 start_trb, start_dma,
1822                                 end_trb, end_dma);
1823                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1824                                 result_seg, seg);
1825                 return -1;
1826         }
1827         return 0;
1828 }
1829
1830 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1831 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1832 {
1833         struct {
1834                 dma_addr_t              input_dma;
1835                 struct xhci_segment     *result_seg;
1836         } simple_test_vector [] = {
1837                 /* A zeroed DMA field should fail */
1838                 { 0, NULL },
1839                 /* One TRB before the ring start should fail */
1840                 { xhci->event_ring->first_seg->dma - 16, NULL },
1841                 /* One byte before the ring start should fail */
1842                 { xhci->event_ring->first_seg->dma - 1, NULL },
1843                 /* Starting TRB should succeed */
1844                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1845                 /* Ending TRB should succeed */
1846                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1847                         xhci->event_ring->first_seg },
1848                 /* One byte after the ring end should fail */
1849                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1850                 /* One TRB after the ring end should fail */
1851                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1852                 /* An address of all ones should fail */
1853                 { (dma_addr_t) (~0), NULL },
1854         };
1855         struct {
1856                 struct xhci_segment     *input_seg;
1857                 union xhci_trb          *start_trb;
1858                 union xhci_trb          *end_trb;
1859                 dma_addr_t              input_dma;
1860                 struct xhci_segment     *result_seg;
1861         } complex_test_vector [] = {
1862                 /* Test feeding a valid DMA address from a different ring */
1863                 {       .input_seg = xhci->event_ring->first_seg,
1864                         .start_trb = xhci->event_ring->first_seg->trbs,
1865                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1866                         .input_dma = xhci->cmd_ring->first_seg->dma,
1867                         .result_seg = NULL,
1868                 },
1869                 /* Test feeding a valid end TRB from a different ring */
1870                 {       .input_seg = xhci->event_ring->first_seg,
1871                         .start_trb = xhci->event_ring->first_seg->trbs,
1872                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1873                         .input_dma = xhci->cmd_ring->first_seg->dma,
1874                         .result_seg = NULL,
1875                 },
1876                 /* Test feeding a valid start and end TRB from a different ring */
1877                 {       .input_seg = xhci->event_ring->first_seg,
1878                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1879                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1880                         .input_dma = xhci->cmd_ring->first_seg->dma,
1881                         .result_seg = NULL,
1882                 },
1883                 /* TRB in this ring, but after this TD */
1884                 {       .input_seg = xhci->event_ring->first_seg,
1885                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1886                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1887                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1888                         .result_seg = NULL,
1889                 },
1890                 /* TRB in this ring, but before this TD */
1891                 {       .input_seg = xhci->event_ring->first_seg,
1892                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1893                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1894                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1895                         .result_seg = NULL,
1896                 },
1897                 /* TRB in this ring, but after this wrapped TD */
1898                 {       .input_seg = xhci->event_ring->first_seg,
1899                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1900                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1901                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1902                         .result_seg = NULL,
1903                 },
1904                 /* TRB in this ring, but before this wrapped TD */
1905                 {       .input_seg = xhci->event_ring->first_seg,
1906                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1907                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1908                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1909                         .result_seg = NULL,
1910                 },
1911                 /* TRB not in this ring, and we have a wrapped TD */
1912                 {       .input_seg = xhci->event_ring->first_seg,
1913                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1914                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1915                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1916                         .result_seg = NULL,
1917                 },
1918         };
1919
1920         unsigned int num_tests;
1921         int i, ret;
1922
1923         num_tests = ARRAY_SIZE(simple_test_vector);
1924         for (i = 0; i < num_tests; i++) {
1925                 ret = xhci_test_trb_in_td(xhci,
1926                                 xhci->event_ring->first_seg,
1927                                 xhci->event_ring->first_seg->trbs,
1928                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1929                                 simple_test_vector[i].input_dma,
1930                                 simple_test_vector[i].result_seg,
1931                                 "Simple", i);
1932                 if (ret < 0)
1933                         return ret;
1934         }
1935
1936         num_tests = ARRAY_SIZE(complex_test_vector);
1937         for (i = 0; i < num_tests; i++) {
1938                 ret = xhci_test_trb_in_td(xhci,
1939                                 complex_test_vector[i].input_seg,
1940                                 complex_test_vector[i].start_trb,
1941                                 complex_test_vector[i].end_trb,
1942                                 complex_test_vector[i].input_dma,
1943                                 complex_test_vector[i].result_seg,
1944                                 "Complex", i);
1945                 if (ret < 0)
1946                         return ret;
1947         }
1948         xhci_dbg(xhci, "TRB math tests passed.\n");
1949         return 0;
1950 }
1951
1952 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1953 {
1954         u64 temp;
1955         dma_addr_t deq;
1956
1957         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1958                         xhci->event_ring->dequeue);
1959         if (deq == 0 && !in_interrupt())
1960                 xhci_warn(xhci, "WARN something wrong with SW event ring "
1961                                 "dequeue ptr.\n");
1962         /* Update HC event ring dequeue pointer */
1963         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1964         temp &= ERST_PTR_MASK;
1965         /* Don't clear the EHB bit (which is RW1C) because
1966          * there might be more events to service.
1967          */
1968         temp &= ~ERST_EHB;
1969         xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1970                         "preserving EHB bit\n");
1971         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1972                         &xhci->ir_set->erst_dequeue);
1973 }
1974
1975 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1976                 __le32 __iomem *addr, u8 major_revision, int max_caps)
1977 {
1978         u32 temp, port_offset, port_count;
1979         int i;
1980
1981         if (major_revision > 0x03) {
1982                 xhci_warn(xhci, "Ignoring unknown port speed, "
1983                                 "Ext Cap %p, revision = 0x%x\n",
1984                                 addr, major_revision);
1985                 /* Ignoring port protocol we can't understand. FIXME */
1986                 return;
1987         }
1988
1989         /* Port offset and count in the third dword, see section 7.2 */
1990         temp = xhci_readl(xhci, addr + 2);
1991         port_offset = XHCI_EXT_PORT_OFF(temp);
1992         port_count = XHCI_EXT_PORT_COUNT(temp);
1993         xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1994                         "count = %u, revision = 0x%x\n",
1995                         addr, port_offset, port_count, major_revision);
1996         /* Port count includes the current port offset */
1997         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1998                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
1999                 return;
2000
2001         /* cache usb2 port capabilities */
2002         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2003                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2004
2005         /* Check the host's USB2 LPM capability */
2006         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2007                         (temp & XHCI_L1C)) {
2008                 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2009                 xhci->sw_lpm_support = 1;
2010         }
2011
2012         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2013                 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2014                 xhci->sw_lpm_support = 1;
2015                 if (temp & XHCI_HLC) {
2016                         xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2017                         xhci->hw_lpm_support = 1;
2018                 }
2019         }
2020
2021         port_offset--;
2022         for (i = port_offset; i < (port_offset + port_count); i++) {
2023                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2024                 if (xhci->port_array[i] != 0) {
2025                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2026                                         " port %u\n", addr, i);
2027                         xhci_warn(xhci, "Port was marked as USB %u, "
2028                                         "duplicated as USB %u\n",
2029                                         xhci->port_array[i], major_revision);
2030                         /* Only adjust the roothub port counts if we haven't
2031                          * found a similar duplicate.
2032                          */
2033                         if (xhci->port_array[i] != major_revision &&
2034                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2035                                 if (xhci->port_array[i] == 0x03)
2036                                         xhci->num_usb3_ports--;
2037                                 else
2038                                         xhci->num_usb2_ports--;
2039                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2040                         }
2041                         /* FIXME: Should we disable the port? */
2042                         continue;
2043                 }
2044                 xhci->port_array[i] = major_revision;
2045                 if (major_revision == 0x03)
2046                         xhci->num_usb3_ports++;
2047                 else
2048                         xhci->num_usb2_ports++;
2049         }
2050         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2051 }
2052
2053 /*
2054  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2055  * specify what speeds each port is supposed to be.  We can't count on the port
2056  * speed bits in the PORTSC register being correct until a device is connected,
2057  * but we need to set up the two fake roothubs with the correct number of USB
2058  * 3.0 and USB 2.0 ports at host controller initialization time.
2059  */
2060 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2061 {
2062         __le32 __iomem *addr, *tmp_addr;
2063         u32 offset, tmp_offset;
2064         unsigned int num_ports;
2065         int i, j, port_index;
2066         int cap_count = 0;
2067
2068         addr = &xhci->cap_regs->hcc_params;
2069         offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2070         if (offset == 0) {
2071                 xhci_err(xhci, "No Extended Capability registers, "
2072                                 "unable to set up roothub.\n");
2073                 return -ENODEV;
2074         }
2075
2076         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2077         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2078         if (!xhci->port_array)
2079                 return -ENOMEM;
2080
2081         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2082         if (!xhci->rh_bw)
2083                 return -ENOMEM;
2084         for (i = 0; i < num_ports; i++) {
2085                 struct xhci_interval_bw_table *bw_table;
2086
2087                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2088                 bw_table = &xhci->rh_bw[i].bw_table;
2089                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2090                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2091         }
2092
2093         /*
2094          * For whatever reason, the first capability offset is from the
2095          * capability register base, not from the HCCPARAMS register.
2096          * See section 5.3.6 for offset calculation.
2097          */
2098         addr = &xhci->cap_regs->hc_capbase + offset;
2099
2100         tmp_addr = addr;
2101         tmp_offset = offset;
2102
2103         /* count extended protocol capability entries for later caching */
2104         do {
2105                 u32 cap_id;
2106                 cap_id = xhci_readl(xhci, tmp_addr);
2107                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2108                         cap_count++;
2109                 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2110                 tmp_addr += tmp_offset;
2111         } while (tmp_offset);
2112
2113         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2114         if (!xhci->ext_caps)
2115                 return -ENOMEM;
2116
2117         while (1) {
2118                 u32 cap_id;
2119
2120                 cap_id = xhci_readl(xhci, addr);
2121                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2122                         xhci_add_in_port(xhci, num_ports, addr,
2123                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2124                                         cap_count);
2125                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2126                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2127                                 == num_ports)
2128                         break;
2129                 /*
2130                  * Once you're into the Extended Capabilities, the offset is
2131                  * always relative to the register holding the offset.
2132                  */
2133                 addr += offset;
2134         }
2135
2136         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2137                 xhci_warn(xhci, "No ports on the roothubs?\n");
2138                 return -ENODEV;
2139         }
2140         xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2141                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2142
2143         /* Place limits on the number of roothub ports so that the hub
2144          * descriptors aren't longer than the USB core will allocate.
2145          */
2146         if (xhci->num_usb3_ports > 15) {
2147                 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2148                 xhci->num_usb3_ports = 15;
2149         }
2150         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2151                 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2152                                 USB_MAXCHILDREN);
2153                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2154         }
2155
2156         /*
2157          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2158          * Not sure how the USB core will handle a hub with no ports...
2159          */
2160         if (xhci->num_usb2_ports) {
2161                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2162                                 xhci->num_usb2_ports, flags);
2163                 if (!xhci->usb2_ports)
2164                         return -ENOMEM;
2165
2166                 port_index = 0;
2167                 for (i = 0; i < num_ports; i++) {
2168                         if (xhci->port_array[i] == 0x03 ||
2169                                         xhci->port_array[i] == 0 ||
2170                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2171                                 continue;
2172
2173                         xhci->usb2_ports[port_index] =
2174                                 &xhci->op_regs->port_status_base +
2175                                 NUM_PORT_REGS*i;
2176                         xhci_dbg(xhci, "USB 2.0 port at index %u, "
2177                                         "addr = %p\n", i,
2178                                         xhci->usb2_ports[port_index]);
2179                         port_index++;
2180                         if (port_index == xhci->num_usb2_ports)
2181                                 break;
2182                 }
2183         }
2184         if (xhci->num_usb3_ports) {
2185                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2186                                 xhci->num_usb3_ports, flags);
2187                 if (!xhci->usb3_ports)
2188                         return -ENOMEM;
2189
2190                 port_index = 0;
2191                 for (i = 0; i < num_ports; i++)
2192                         if (xhci->port_array[i] == 0x03) {
2193                                 xhci->usb3_ports[port_index] =
2194                                         &xhci->op_regs->port_status_base +
2195                                         NUM_PORT_REGS*i;
2196                                 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2197                                                 "addr = %p\n", i,
2198                                                 xhci->usb3_ports[port_index]);
2199                                 port_index++;
2200                                 if (port_index == xhci->num_usb3_ports)
2201                                         break;
2202                         }
2203         }
2204         return 0;
2205 }
2206
2207 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2208 {
2209         dma_addr_t      dma;
2210         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2211         unsigned int    val, val2;
2212         u64             val_64;
2213         struct xhci_segment     *seg;
2214         u32 page_size, temp;
2215         int i;
2216
2217         INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2218         INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2219
2220         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2221         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2222         for (i = 0; i < 16; i++) {
2223                 if ((0x1 & page_size) != 0)
2224                         break;
2225                 page_size = page_size >> 1;
2226         }
2227         if (i < 16)
2228                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2229         else
2230                 xhci_warn(xhci, "WARN: no supported page size\n");
2231         /* Use 4K pages, since that's common and the minimum the HC supports */
2232         xhci->page_shift = 12;
2233         xhci->page_size = 1 << xhci->page_shift;
2234         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2235
2236         /*
2237          * Program the Number of Device Slots Enabled field in the CONFIG
2238          * register with the max value of slots the HC can handle.
2239          */
2240         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2241         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2242                         (unsigned int) val);
2243         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2244         val |= (val2 & ~HCS_SLOTS_MASK);
2245         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2246                         (unsigned int) val);
2247         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2248
2249         /*
2250          * Section 5.4.8 - doorbell array must be
2251          * "physically contiguous and 64-byte (cache line) aligned".
2252          */
2253         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2254                         GFP_KERNEL);
2255         if (!xhci->dcbaa)
2256                 goto fail;
2257         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2258         xhci->dcbaa->dma = dma;
2259         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2260                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2261         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2262
2263         /*
2264          * Initialize the ring segment pool.  The ring must be a contiguous
2265          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2266          * however, the command ring segment needs 64-byte aligned segments,
2267          * so we pick the greater alignment need.
2268          */
2269         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2270                         TRB_SEGMENT_SIZE, 64, xhci->page_size);
2271
2272         /* See Table 46 and Note on Figure 55 */
2273         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2274                         2112, 64, xhci->page_size);
2275         if (!xhci->segment_pool || !xhci->device_pool)
2276                 goto fail;
2277
2278         /* Linear stream context arrays don't have any boundary restrictions,
2279          * and only need to be 16-byte aligned.
2280          */
2281         xhci->small_streams_pool =
2282                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2283                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2284         xhci->medium_streams_pool =
2285                 dma_pool_create("xHCI 1KB stream ctx arrays",
2286                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2287         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2288          * will be allocated with dma_alloc_coherent()
2289          */
2290
2291         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2292                 goto fail;
2293
2294         /* Set up the command ring to have one segments for now. */
2295         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2296         if (!xhci->cmd_ring)
2297                 goto fail;
2298         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2299         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2300                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2301
2302         /* Set the address in the Command Ring Control register */
2303         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2304         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2305                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2306                 xhci->cmd_ring->cycle_state;
2307         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2308         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2309         xhci_dbg_cmd_ptrs(xhci);
2310
2311         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2312         if (!xhci->lpm_command)
2313                 goto fail;
2314
2315         /* Reserve one command ring TRB for disabling LPM.
2316          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2317          * disabling LPM, we only need to reserve one TRB for all devices.
2318          */
2319         xhci->cmd_ring_reserved_trbs++;
2320
2321         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2322         val &= DBOFF_MASK;
2323         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2324                         " from cap regs base addr\n", val);
2325         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2326         xhci_dbg_regs(xhci);
2327         xhci_print_run_regs(xhci);
2328         /* Set ir_set to interrupt register set 0 */
2329         xhci->ir_set = &xhci->run_regs->ir_set[0];
2330
2331         /*
2332          * Event ring setup: Allocate a normal ring, but also setup
2333          * the event ring segment table (ERST).  Section 4.9.3.
2334          */
2335         xhci_dbg(xhci, "// Allocating event ring\n");
2336         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2337                                                 flags);
2338         if (!xhci->event_ring)
2339                 goto fail;
2340         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2341                 goto fail;
2342
2343         xhci->erst.entries = dma_alloc_coherent(dev,
2344                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2345                         GFP_KERNEL);
2346         if (!xhci->erst.entries)
2347                 goto fail;
2348         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2349                         (unsigned long long)dma);
2350
2351         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2352         xhci->erst.num_entries = ERST_NUM_SEGS;
2353         xhci->erst.erst_dma_addr = dma;
2354         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2355                         xhci->erst.num_entries,
2356                         xhci->erst.entries,
2357                         (unsigned long long)xhci->erst.erst_dma_addr);
2358
2359         /* set ring base address and size for each segment table entry */
2360         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2361                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2362                 entry->seg_addr = cpu_to_le64(seg->dma);
2363                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2364                 entry->rsvd = 0;
2365                 seg = seg->next;
2366         }
2367
2368         /* set ERST count with the number of entries in the segment table */
2369         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2370         val &= ERST_SIZE_MASK;
2371         val |= ERST_NUM_SEGS;
2372         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2373                         val);
2374         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2375
2376         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2377         /* set the segment table base address */
2378         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2379                         (unsigned long long)xhci->erst.erst_dma_addr);
2380         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2381         val_64 &= ERST_PTR_MASK;
2382         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2383         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2384
2385         /* Set the event ring dequeue address */
2386         xhci_set_hc_event_deq(xhci);
2387         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2388         xhci_print_ir_set(xhci, 0);
2389
2390         /*
2391          * XXX: Might need to set the Interrupter Moderation Register to
2392          * something other than the default (~1ms minimum between interrupts).
2393          * See section 5.5.1.2.
2394          */
2395         init_completion(&xhci->addr_dev);
2396         for (i = 0; i < MAX_HC_SLOTS; ++i)
2397                 xhci->devs[i] = NULL;
2398         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2399                 xhci->bus_state[0].resume_done[i] = 0;
2400                 xhci->bus_state[1].resume_done[i] = 0;
2401         }
2402
2403         if (scratchpad_alloc(xhci, flags))
2404                 goto fail;
2405         if (xhci_setup_port_arrays(xhci, flags))
2406                 goto fail;
2407
2408         /* Enable USB 3.0 device notifications for function remote wake, which
2409          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2410          * U3 (device suspend).
2411          */
2412         temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2413         temp &= ~DEV_NOTE_MASK;
2414         temp |= DEV_NOTE_FWAKE;
2415         xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2416
2417         return 0;
2418
2419 fail:
2420         xhci_warn(xhci, "Couldn't initialize memory\n");
2421         xhci_halt(xhci);
2422         xhci_reset(xhci);
2423         xhci_mem_cleanup(xhci);
2424         return -ENOMEM;
2425 }