]> Pileus Git - ~andy/linux/blob - drivers/usb/host/xhci-mem.c
USB: xhci-mem.c: introduce missing kfree
[~andy/linux] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26
27 #include "xhci.h"
28
29 /*
30  * Allocates a generic ring segment from the ring pool, sets the dma address,
31  * initializes the segment to zero, and sets the private next pointer to NULL.
32  *
33  * Section 4.11.1.1:
34  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35  */
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 {
38         struct xhci_segment *seg;
39         dma_addr_t      dma;
40
41         seg = kzalloc(sizeof *seg, flags);
42         if (!seg)
43                 return 0;
44         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
45
46         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47         if (!seg->trbs) {
48                 kfree(seg);
49                 return 0;
50         }
51         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52                         seg->trbs, (unsigned long long)dma);
53
54         memset(seg->trbs, 0, SEGMENT_SIZE);
55         seg->dma = dma;
56         seg->next = NULL;
57
58         return seg;
59 }
60
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62 {
63         if (!seg)
64                 return;
65         if (seg->trbs) {
66                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67                                 seg->trbs, (unsigned long long)seg->dma);
68                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69                 seg->trbs = NULL;
70         }
71         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72         kfree(seg);
73 }
74
75 /*
76  * Make the prev segment point to the next segment.
77  *
78  * Change the last TRB in the prev segment to be a Link TRB which points to the
79  * DMA address of the next segment.  The caller needs to set any Link TRB
80  * related flags, such as End TRB, Toggle Cycle, and no snoop.
81  */
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83                 struct xhci_segment *next, bool link_trbs)
84 {
85         u32 val;
86
87         if (!prev || !next)
88                 return;
89         prev->next = next;
90         if (link_trbs) {
91                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
92
93                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95                 val &= ~TRB_TYPE_BITMASK;
96                 val |= TRB_TYPE(TRB_LINK);
97                 /* Always set the chain bit with 0.95 hardware */
98                 if (xhci_link_trb_quirk(xhci))
99                         val |= TRB_CHAIN;
100                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
101         }
102         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
103                         (unsigned long long)prev->dma,
104                         (unsigned long long)next->dma);
105 }
106
107 /* XXX: Do we need the hcd structure in all these functions? */
108 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
109 {
110         struct xhci_segment *seg;
111         struct xhci_segment *first_seg;
112
113         if (!ring || !ring->first_seg)
114                 return;
115         first_seg = ring->first_seg;
116         seg = first_seg->next;
117         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
118         while (seg != first_seg) {
119                 struct xhci_segment *next = seg->next;
120                 xhci_segment_free(xhci, seg);
121                 seg = next;
122         }
123         xhci_segment_free(xhci, first_seg);
124         ring->first_seg = NULL;
125         kfree(ring);
126 }
127
128 /**
129  * Create a new ring with zero or more segments.
130  *
131  * Link each segment together into a ring.
132  * Set the end flag and the cycle toggle bit on the last segment.
133  * See section 4.9.1 and figures 15 and 16.
134  */
135 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
136                 unsigned int num_segs, bool link_trbs, gfp_t flags)
137 {
138         struct xhci_ring        *ring;
139         struct xhci_segment     *prev;
140
141         ring = kzalloc(sizeof *(ring), flags);
142         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
143         if (!ring)
144                 return 0;
145
146         INIT_LIST_HEAD(&ring->td_list);
147         if (num_segs == 0)
148                 return ring;
149
150         ring->first_seg = xhci_segment_alloc(xhci, flags);
151         if (!ring->first_seg)
152                 goto fail;
153         num_segs--;
154
155         prev = ring->first_seg;
156         while (num_segs > 0) {
157                 struct xhci_segment     *next;
158
159                 next = xhci_segment_alloc(xhci, flags);
160                 if (!next)
161                         goto fail;
162                 xhci_link_segments(xhci, prev, next, link_trbs);
163
164                 prev = next;
165                 num_segs--;
166         }
167         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
168
169         if (link_trbs) {
170                 /* See section 4.9.2.1 and 6.4.4.1 */
171                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
172                 xhci_dbg(xhci, "Wrote link toggle flag to"
173                                 " segment %p (virtual), 0x%llx (DMA)\n",
174                                 prev, (unsigned long long)prev->dma);
175         }
176         /* The ring is empty, so the enqueue pointer == dequeue pointer */
177         ring->enqueue = ring->first_seg->trbs;
178         ring->enq_seg = ring->first_seg;
179         ring->dequeue = ring->enqueue;
180         ring->deq_seg = ring->first_seg;
181         /* The ring is initialized to 0. The producer must write 1 to the cycle
182          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
183          * compare CCS to the cycle bit to check ownership, so CCS = 1.
184          */
185         ring->cycle_state = 1;
186
187         return ring;
188
189 fail:
190         xhci_ring_free(xhci, ring);
191         return 0;
192 }
193
194 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
195
196 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
197                                                     int type, gfp_t flags)
198 {
199         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
200         if (!ctx)
201                 return NULL;
202
203         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
204         ctx->type = type;
205         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
206         if (type == XHCI_CTX_TYPE_INPUT)
207                 ctx->size += CTX_SIZE(xhci->hcc_params);
208
209         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
210         memset(ctx->bytes, 0, ctx->size);
211         return ctx;
212 }
213
214 void xhci_free_container_ctx(struct xhci_hcd *xhci,
215                              struct xhci_container_ctx *ctx)
216 {
217         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
218         kfree(ctx);
219 }
220
221 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
222                                               struct xhci_container_ctx *ctx)
223 {
224         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
225         return (struct xhci_input_control_ctx *)ctx->bytes;
226 }
227
228 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
229                                         struct xhci_container_ctx *ctx)
230 {
231         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
232                 return (struct xhci_slot_ctx *)ctx->bytes;
233
234         return (struct xhci_slot_ctx *)
235                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
236 }
237
238 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
239                                     struct xhci_container_ctx *ctx,
240                                     unsigned int ep_index)
241 {
242         /* increment ep index by offset of start of ep ctx array */
243         ep_index++;
244         if (ctx->type == XHCI_CTX_TYPE_INPUT)
245                 ep_index++;
246
247         return (struct xhci_ep_ctx *)
248                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
249 }
250
251 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
252                 struct xhci_virt_ep *ep)
253 {
254         init_timer(&ep->stop_cmd_timer);
255         ep->stop_cmd_timer.data = (unsigned long) ep;
256         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
257         ep->xhci = xhci;
258 }
259
260 /* All the xhci_tds in the ring's TD list should be freed at this point */
261 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
262 {
263         struct xhci_virt_device *dev;
264         int i;
265
266         /* Slot ID 0 is reserved */
267         if (slot_id == 0 || !xhci->devs[slot_id])
268                 return;
269
270         dev = xhci->devs[slot_id];
271         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
272         if (!dev)
273                 return;
274
275         for (i = 0; i < 31; ++i)
276                 if (dev->eps[i].ring)
277                         xhci_ring_free(xhci, dev->eps[i].ring);
278
279         if (dev->in_ctx)
280                 xhci_free_container_ctx(xhci, dev->in_ctx);
281         if (dev->out_ctx)
282                 xhci_free_container_ctx(xhci, dev->out_ctx);
283
284         kfree(xhci->devs[slot_id]);
285         xhci->devs[slot_id] = 0;
286 }
287
288 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
289                 struct usb_device *udev, gfp_t flags)
290 {
291         struct xhci_virt_device *dev;
292         int i;
293
294         /* Slot ID 0 is reserved */
295         if (slot_id == 0 || xhci->devs[slot_id]) {
296                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
297                 return 0;
298         }
299
300         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
301         if (!xhci->devs[slot_id])
302                 return 0;
303         dev = xhci->devs[slot_id];
304
305         /* Allocate the (output) device context that will be used in the HC. */
306         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
307         if (!dev->out_ctx)
308                 goto fail;
309
310         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
311                         (unsigned long long)dev->out_ctx->dma);
312
313         /* Allocate the (input) device context for address device command */
314         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
315         if (!dev->in_ctx)
316                 goto fail;
317
318         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
319                         (unsigned long long)dev->in_ctx->dma);
320
321         /* Initialize the cancellation list and watchdog timers for each ep */
322         for (i = 0; i < 31; i++) {
323                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
324                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
325         }
326
327         /* Allocate endpoint 0 ring */
328         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
329         if (!dev->eps[0].ring)
330                 goto fail;
331
332         init_completion(&dev->cmd_completion);
333         INIT_LIST_HEAD(&dev->cmd_list);
334
335         /* Point to output device context in dcbaa. */
336         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
337         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
338                         slot_id,
339                         &xhci->dcbaa->dev_context_ptrs[slot_id],
340                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
341
342         return 1;
343 fail:
344         xhci_free_virt_device(xhci, slot_id);
345         return 0;
346 }
347
348 /* Setup an xHCI virtual device for a Set Address command */
349 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
350 {
351         struct xhci_virt_device *dev;
352         struct xhci_ep_ctx      *ep0_ctx;
353         struct usb_device       *top_dev;
354         struct xhci_slot_ctx    *slot_ctx;
355         struct xhci_input_control_ctx *ctrl_ctx;
356
357         dev = xhci->devs[udev->slot_id];
358         /* Slot ID 0 is reserved */
359         if (udev->slot_id == 0 || !dev) {
360                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
361                                 udev->slot_id);
362                 return -EINVAL;
363         }
364         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
365         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
366         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
367
368         /* 2) New slot context and endpoint 0 context are valid*/
369         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
370
371         /* 3) Only the control endpoint is valid - one endpoint context */
372         slot_ctx->dev_info |= LAST_CTX(1);
373
374         slot_ctx->dev_info |= (u32) udev->route;
375         switch (udev->speed) {
376         case USB_SPEED_SUPER:
377                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
378                 break;
379         case USB_SPEED_HIGH:
380                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
381                 break;
382         case USB_SPEED_FULL:
383                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
384                 break;
385         case USB_SPEED_LOW:
386                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
387                 break;
388         case USB_SPEED_VARIABLE:
389                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
390                 return -EINVAL;
391                 break;
392         default:
393                 /* Speed was set earlier, this shouldn't happen. */
394                 BUG();
395         }
396         /* Find the root hub port this device is under */
397         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
398                         top_dev = top_dev->parent)
399                 /* Found device below root hub */;
400         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
401         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
402
403         /* Is this a LS/FS device under a HS hub? */
404         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
405                         udev->tt) {
406                 slot_ctx->tt_info = udev->tt->hub->slot_id;
407                 slot_ctx->tt_info |= udev->ttport << 8;
408                 if (udev->tt->multi)
409                         slot_ctx->dev_info |= DEV_MTT;
410         }
411         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
412         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
413
414         /* Step 4 - ring already allocated */
415         /* Step 5 */
416         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
417         /*
418          * XXX: Not sure about wireless USB devices.
419          */
420         switch (udev->speed) {
421         case USB_SPEED_SUPER:
422                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
423                 break;
424         case USB_SPEED_HIGH:
425         /* USB core guesses at a 64-byte max packet first for FS devices */
426         case USB_SPEED_FULL:
427                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
428                 break;
429         case USB_SPEED_LOW:
430                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
431                 break;
432         case USB_SPEED_VARIABLE:
433                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
434                 return -EINVAL;
435                 break;
436         default:
437                 /* New speed? */
438                 BUG();
439         }
440         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
441         ep0_ctx->ep_info2 |= MAX_BURST(0);
442         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
443
444         ep0_ctx->deq =
445                 dev->eps[0].ring->first_seg->dma;
446         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
447
448         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
449
450         return 0;
451 }
452
453 /* Return the polling or NAK interval.
454  *
455  * The polling interval is expressed in "microframes".  If xHCI's Interval field
456  * is set to N, it will service the endpoint every 2^(Interval)*125us.
457  *
458  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
459  * is set to 0.
460  */
461 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
462                 struct usb_host_endpoint *ep)
463 {
464         unsigned int interval = 0;
465
466         switch (udev->speed) {
467         case USB_SPEED_HIGH:
468                 /* Max NAK rate */
469                 if (usb_endpoint_xfer_control(&ep->desc) ||
470                                 usb_endpoint_xfer_bulk(&ep->desc))
471                         interval = ep->desc.bInterval;
472                 /* Fall through - SS and HS isoc/int have same decoding */
473         case USB_SPEED_SUPER:
474                 if (usb_endpoint_xfer_int(&ep->desc) ||
475                                 usb_endpoint_xfer_isoc(&ep->desc)) {
476                         if (ep->desc.bInterval == 0)
477                                 interval = 0;
478                         else
479                                 interval = ep->desc.bInterval - 1;
480                         if (interval > 15)
481                                 interval = 15;
482                         if (interval != ep->desc.bInterval + 1)
483                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
484                                                 ep->desc.bEndpointAddress, 1 << interval);
485                 }
486                 break;
487         /* Convert bInterval (in 1-255 frames) to microframes and round down to
488          * nearest power of 2.
489          */
490         case USB_SPEED_FULL:
491         case USB_SPEED_LOW:
492                 if (usb_endpoint_xfer_int(&ep->desc) ||
493                                 usb_endpoint_xfer_isoc(&ep->desc)) {
494                         interval = fls(8*ep->desc.bInterval) - 1;
495                         if (interval > 10)
496                                 interval = 10;
497                         if (interval < 3)
498                                 interval = 3;
499                         if ((1 << interval) != 8*ep->desc.bInterval)
500                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
501                                                 ep->desc.bEndpointAddress, 1 << interval);
502                 }
503                 break;
504         default:
505                 BUG();
506         }
507         return EP_INTERVAL(interval);
508 }
509
510 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
511                 struct usb_host_endpoint *ep)
512 {
513         int in;
514         u32 type;
515
516         in = usb_endpoint_dir_in(&ep->desc);
517         if (usb_endpoint_xfer_control(&ep->desc)) {
518                 type = EP_TYPE(CTRL_EP);
519         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
520                 if (in)
521                         type = EP_TYPE(BULK_IN_EP);
522                 else
523                         type = EP_TYPE(BULK_OUT_EP);
524         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
525                 if (in)
526                         type = EP_TYPE(ISOC_IN_EP);
527                 else
528                         type = EP_TYPE(ISOC_OUT_EP);
529         } else if (usb_endpoint_xfer_int(&ep->desc)) {
530                 if (in)
531                         type = EP_TYPE(INT_IN_EP);
532                 else
533                         type = EP_TYPE(INT_OUT_EP);
534         } else {
535                 BUG();
536         }
537         return type;
538 }
539
540 int xhci_endpoint_init(struct xhci_hcd *xhci,
541                 struct xhci_virt_device *virt_dev,
542                 struct usb_device *udev,
543                 struct usb_host_endpoint *ep,
544                 gfp_t mem_flags)
545 {
546         unsigned int ep_index;
547         struct xhci_ep_ctx *ep_ctx;
548         struct xhci_ring *ep_ring;
549         unsigned int max_packet;
550         unsigned int max_burst;
551
552         ep_index = xhci_get_endpoint_index(&ep->desc);
553         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
554
555         /* Set up the endpoint ring */
556         virt_dev->eps[ep_index].new_ring =
557                 xhci_ring_alloc(xhci, 1, true, mem_flags);
558         if (!virt_dev->eps[ep_index].new_ring)
559                 return -ENOMEM;
560         ep_ring = virt_dev->eps[ep_index].new_ring;
561         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
562
563         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
564
565         /* FIXME dig Mult and streams info out of ep companion desc */
566
567         /* Allow 3 retries for everything but isoc;
568          * error count = 0 means infinite retries.
569          */
570         if (!usb_endpoint_xfer_isoc(&ep->desc))
571                 ep_ctx->ep_info2 = ERROR_COUNT(3);
572         else
573                 ep_ctx->ep_info2 = ERROR_COUNT(1);
574
575         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
576
577         /* Set the max packet size and max burst */
578         switch (udev->speed) {
579         case USB_SPEED_SUPER:
580                 max_packet = ep->desc.wMaxPacketSize;
581                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
582                 /* dig out max burst from ep companion desc */
583                 if (!ep->ss_ep_comp) {
584                         xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
585                         max_packet = 0;
586                 } else {
587                         max_packet = ep->ss_ep_comp->desc.bMaxBurst;
588                 }
589                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
590                 break;
591         case USB_SPEED_HIGH:
592                 /* bits 11:12 specify the number of additional transaction
593                  * opportunities per microframe (USB 2.0, section 9.6.6)
594                  */
595                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
596                                 usb_endpoint_xfer_int(&ep->desc)) {
597                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
598                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
599                 }
600                 /* Fall through */
601         case USB_SPEED_FULL:
602         case USB_SPEED_LOW:
603                 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
604                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
605                 break;
606         default:
607                 BUG();
608         }
609         /* FIXME Debug endpoint context */
610         return 0;
611 }
612
613 void xhci_endpoint_zero(struct xhci_hcd *xhci,
614                 struct xhci_virt_device *virt_dev,
615                 struct usb_host_endpoint *ep)
616 {
617         unsigned int ep_index;
618         struct xhci_ep_ctx *ep_ctx;
619
620         ep_index = xhci_get_endpoint_index(&ep->desc);
621         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
622
623         ep_ctx->ep_info = 0;
624         ep_ctx->ep_info2 = 0;
625         ep_ctx->deq = 0;
626         ep_ctx->tx_info = 0;
627         /* Don't free the endpoint ring until the set interface or configuration
628          * request succeeds.
629          */
630 }
631
632 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
633  * Useful when you want to change one particular aspect of the endpoint and then
634  * issue a configure endpoint command.
635  */
636 void xhci_endpoint_copy(struct xhci_hcd *xhci,
637                 struct xhci_container_ctx *in_ctx,
638                 struct xhci_container_ctx *out_ctx,
639                 unsigned int ep_index)
640 {
641         struct xhci_ep_ctx *out_ep_ctx;
642         struct xhci_ep_ctx *in_ep_ctx;
643
644         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
645         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
646
647         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
648         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
649         in_ep_ctx->deq = out_ep_ctx->deq;
650         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
651 }
652
653 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
654  * Useful when you want to change one particular aspect of the endpoint and then
655  * issue a configure endpoint command.  Only the context entries field matters,
656  * but we'll copy the whole thing anyway.
657  */
658 void xhci_slot_copy(struct xhci_hcd *xhci,
659                 struct xhci_container_ctx *in_ctx,
660                 struct xhci_container_ctx *out_ctx)
661 {
662         struct xhci_slot_ctx *in_slot_ctx;
663         struct xhci_slot_ctx *out_slot_ctx;
664
665         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
666         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
667
668         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
669         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
670         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
671         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
672 }
673
674 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
675 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
676 {
677         int i;
678         struct device *dev = xhci_to_hcd(xhci)->self.controller;
679         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
680
681         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
682
683         if (!num_sp)
684                 return 0;
685
686         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
687         if (!xhci->scratchpad)
688                 goto fail_sp;
689
690         xhci->scratchpad->sp_array =
691                 pci_alloc_consistent(to_pci_dev(dev),
692                                      num_sp * sizeof(u64),
693                                      &xhci->scratchpad->sp_dma);
694         if (!xhci->scratchpad->sp_array)
695                 goto fail_sp2;
696
697         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
698         if (!xhci->scratchpad->sp_buffers)
699                 goto fail_sp3;
700
701         xhci->scratchpad->sp_dma_buffers =
702                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
703
704         if (!xhci->scratchpad->sp_dma_buffers)
705                 goto fail_sp4;
706
707         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
708         for (i = 0; i < num_sp; i++) {
709                 dma_addr_t dma;
710                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
711                                                  xhci->page_size, &dma);
712                 if (!buf)
713                         goto fail_sp5;
714
715                 xhci->scratchpad->sp_array[i] = dma;
716                 xhci->scratchpad->sp_buffers[i] = buf;
717                 xhci->scratchpad->sp_dma_buffers[i] = dma;
718         }
719
720         return 0;
721
722  fail_sp5:
723         for (i = i - 1; i >= 0; i--) {
724                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
725                                     xhci->scratchpad->sp_buffers[i],
726                                     xhci->scratchpad->sp_dma_buffers[i]);
727         }
728         kfree(xhci->scratchpad->sp_dma_buffers);
729
730  fail_sp4:
731         kfree(xhci->scratchpad->sp_buffers);
732
733  fail_sp3:
734         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
735                             xhci->scratchpad->sp_array,
736                             xhci->scratchpad->sp_dma);
737
738  fail_sp2:
739         kfree(xhci->scratchpad);
740         xhci->scratchpad = NULL;
741
742  fail_sp:
743         return -ENOMEM;
744 }
745
746 static void scratchpad_free(struct xhci_hcd *xhci)
747 {
748         int num_sp;
749         int i;
750         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
751
752         if (!xhci->scratchpad)
753                 return;
754
755         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
756
757         for (i = 0; i < num_sp; i++) {
758                 pci_free_consistent(pdev, xhci->page_size,
759                                     xhci->scratchpad->sp_buffers[i],
760                                     xhci->scratchpad->sp_dma_buffers[i]);
761         }
762         kfree(xhci->scratchpad->sp_dma_buffers);
763         kfree(xhci->scratchpad->sp_buffers);
764         pci_free_consistent(pdev, num_sp * sizeof(u64),
765                             xhci->scratchpad->sp_array,
766                             xhci->scratchpad->sp_dma);
767         kfree(xhci->scratchpad);
768         xhci->scratchpad = NULL;
769 }
770
771 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
772                 bool allocate_completion, gfp_t mem_flags)
773 {
774         struct xhci_command *command;
775
776         command = kzalloc(sizeof(*command), mem_flags);
777         if (!command)
778                 return NULL;
779
780         command->in_ctx =
781                 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags);
782         if (!command->in_ctx) {
783                 kfree(command);
784                 return NULL;
785         }
786
787         if (allocate_completion) {
788                 command->completion =
789                         kzalloc(sizeof(struct completion), mem_flags);
790                 if (!command->completion) {
791                         xhci_free_container_ctx(xhci, command->in_ctx);
792                         kfree(command);
793                         return NULL;
794                 }
795                 init_completion(command->completion);
796         }
797
798         command->status = 0;
799         INIT_LIST_HEAD(&command->cmd_list);
800         return command;
801 }
802
803 void xhci_free_command(struct xhci_hcd *xhci,
804                 struct xhci_command *command)
805 {
806         xhci_free_container_ctx(xhci,
807                         command->in_ctx);
808         kfree(command->completion);
809         kfree(command);
810 }
811
812 void xhci_mem_cleanup(struct xhci_hcd *xhci)
813 {
814         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
815         int size;
816         int i;
817
818         /* Free the Event Ring Segment Table and the actual Event Ring */
819         if (xhci->ir_set) {
820                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
821                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
822                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
823         }
824         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
825         if (xhci->erst.entries)
826                 pci_free_consistent(pdev, size,
827                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
828         xhci->erst.entries = NULL;
829         xhci_dbg(xhci, "Freed ERST\n");
830         if (xhci->event_ring)
831                 xhci_ring_free(xhci, xhci->event_ring);
832         xhci->event_ring = NULL;
833         xhci_dbg(xhci, "Freed event ring\n");
834
835         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
836         if (xhci->cmd_ring)
837                 xhci_ring_free(xhci, xhci->cmd_ring);
838         xhci->cmd_ring = NULL;
839         xhci_dbg(xhci, "Freed command ring\n");
840
841         for (i = 1; i < MAX_HC_SLOTS; ++i)
842                 xhci_free_virt_device(xhci, i);
843
844         if (xhci->segment_pool)
845                 dma_pool_destroy(xhci->segment_pool);
846         xhci->segment_pool = NULL;
847         xhci_dbg(xhci, "Freed segment pool\n");
848
849         if (xhci->device_pool)
850                 dma_pool_destroy(xhci->device_pool);
851         xhci->device_pool = NULL;
852         xhci_dbg(xhci, "Freed device context pool\n");
853
854         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
855         if (xhci->dcbaa)
856                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
857                                 xhci->dcbaa, xhci->dcbaa->dma);
858         xhci->dcbaa = NULL;
859
860         scratchpad_free(xhci);
861         xhci->page_size = 0;
862         xhci->page_shift = 0;
863 }
864
865 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
866                 struct xhci_segment *input_seg,
867                 union xhci_trb *start_trb,
868                 union xhci_trb *end_trb,
869                 dma_addr_t input_dma,
870                 struct xhci_segment *result_seg,
871                 char *test_name, int test_number)
872 {
873         unsigned long long start_dma;
874         unsigned long long end_dma;
875         struct xhci_segment *seg;
876
877         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
878         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
879
880         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
881         if (seg != result_seg) {
882                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
883                                 test_name, test_number);
884                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
885                                 "input DMA 0x%llx\n",
886                                 input_seg,
887                                 (unsigned long long) input_dma);
888                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
889                                 "ending TRB %p (0x%llx DMA)\n",
890                                 start_trb, start_dma,
891                                 end_trb, end_dma);
892                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
893                                 result_seg, seg);
894                 return -1;
895         }
896         return 0;
897 }
898
899 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
900 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
901 {
902         struct {
903                 dma_addr_t              input_dma;
904                 struct xhci_segment     *result_seg;
905         } simple_test_vector [] = {
906                 /* A zeroed DMA field should fail */
907                 { 0, NULL },
908                 /* One TRB before the ring start should fail */
909                 { xhci->event_ring->first_seg->dma - 16, NULL },
910                 /* One byte before the ring start should fail */
911                 { xhci->event_ring->first_seg->dma - 1, NULL },
912                 /* Starting TRB should succeed */
913                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
914                 /* Ending TRB should succeed */
915                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
916                         xhci->event_ring->first_seg },
917                 /* One byte after the ring end should fail */
918                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
919                 /* One TRB after the ring end should fail */
920                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
921                 /* An address of all ones should fail */
922                 { (dma_addr_t) (~0), NULL },
923         };
924         struct {
925                 struct xhci_segment     *input_seg;
926                 union xhci_trb          *start_trb;
927                 union xhci_trb          *end_trb;
928                 dma_addr_t              input_dma;
929                 struct xhci_segment     *result_seg;
930         } complex_test_vector [] = {
931                 /* Test feeding a valid DMA address from a different ring */
932                 {       .input_seg = xhci->event_ring->first_seg,
933                         .start_trb = xhci->event_ring->first_seg->trbs,
934                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
935                         .input_dma = xhci->cmd_ring->first_seg->dma,
936                         .result_seg = NULL,
937                 },
938                 /* Test feeding a valid end TRB from a different ring */
939                 {       .input_seg = xhci->event_ring->first_seg,
940                         .start_trb = xhci->event_ring->first_seg->trbs,
941                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
942                         .input_dma = xhci->cmd_ring->first_seg->dma,
943                         .result_seg = NULL,
944                 },
945                 /* Test feeding a valid start and end TRB from a different ring */
946                 {       .input_seg = xhci->event_ring->first_seg,
947                         .start_trb = xhci->cmd_ring->first_seg->trbs,
948                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
949                         .input_dma = xhci->cmd_ring->first_seg->dma,
950                         .result_seg = NULL,
951                 },
952                 /* TRB in this ring, but after this TD */
953                 {       .input_seg = xhci->event_ring->first_seg,
954                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
955                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
956                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
957                         .result_seg = NULL,
958                 },
959                 /* TRB in this ring, but before this TD */
960                 {       .input_seg = xhci->event_ring->first_seg,
961                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
962                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
963                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
964                         .result_seg = NULL,
965                 },
966                 /* TRB in this ring, but after this wrapped TD */
967                 {       .input_seg = xhci->event_ring->first_seg,
968                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
969                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
970                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
971                         .result_seg = NULL,
972                 },
973                 /* TRB in this ring, but before this wrapped TD */
974                 {       .input_seg = xhci->event_ring->first_seg,
975                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
976                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
977                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
978                         .result_seg = NULL,
979                 },
980                 /* TRB not in this ring, and we have a wrapped TD */
981                 {       .input_seg = xhci->event_ring->first_seg,
982                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
983                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
984                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
985                         .result_seg = NULL,
986                 },
987         };
988
989         unsigned int num_tests;
990         int i, ret;
991
992         num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
993         for (i = 0; i < num_tests; i++) {
994                 ret = xhci_test_trb_in_td(xhci,
995                                 xhci->event_ring->first_seg,
996                                 xhci->event_ring->first_seg->trbs,
997                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
998                                 simple_test_vector[i].input_dma,
999                                 simple_test_vector[i].result_seg,
1000                                 "Simple", i);
1001                 if (ret < 0)
1002                         return ret;
1003         }
1004
1005         num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1006         for (i = 0; i < num_tests; i++) {
1007                 ret = xhci_test_trb_in_td(xhci,
1008                                 complex_test_vector[i].input_seg,
1009                                 complex_test_vector[i].start_trb,
1010                                 complex_test_vector[i].end_trb,
1011                                 complex_test_vector[i].input_dma,
1012                                 complex_test_vector[i].result_seg,
1013                                 "Complex", i);
1014                 if (ret < 0)
1015                         return ret;
1016         }
1017         xhci_dbg(xhci, "TRB math tests passed.\n");
1018         return 0;
1019 }
1020
1021
1022 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1023 {
1024         dma_addr_t      dma;
1025         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1026         unsigned int    val, val2;
1027         u64             val_64;
1028         struct xhci_segment     *seg;
1029         u32 page_size;
1030         int i;
1031
1032         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1033         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1034         for (i = 0; i < 16; i++) {
1035                 if ((0x1 & page_size) != 0)
1036                         break;
1037                 page_size = page_size >> 1;
1038         }
1039         if (i < 16)
1040                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1041         else
1042                 xhci_warn(xhci, "WARN: no supported page size\n");
1043         /* Use 4K pages, since that's common and the minimum the HC supports */
1044         xhci->page_shift = 12;
1045         xhci->page_size = 1 << xhci->page_shift;
1046         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1047
1048         /*
1049          * Program the Number of Device Slots Enabled field in the CONFIG
1050          * register with the max value of slots the HC can handle.
1051          */
1052         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1053         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1054                         (unsigned int) val);
1055         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1056         val |= (val2 & ~HCS_SLOTS_MASK);
1057         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1058                         (unsigned int) val);
1059         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1060
1061         /*
1062          * Section 5.4.8 - doorbell array must be
1063          * "physically contiguous and 64-byte (cache line) aligned".
1064          */
1065         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1066                         sizeof(*xhci->dcbaa), &dma);
1067         if (!xhci->dcbaa)
1068                 goto fail;
1069         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1070         xhci->dcbaa->dma = dma;
1071         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1072                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1073         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1074
1075         /*
1076          * Initialize the ring segment pool.  The ring must be a contiguous
1077          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1078          * however, the command ring segment needs 64-byte aligned segments,
1079          * so we pick the greater alignment need.
1080          */
1081         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1082                         SEGMENT_SIZE, 64, xhci->page_size);
1083
1084         /* See Table 46 and Note on Figure 55 */
1085         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1086                         2112, 64, xhci->page_size);
1087         if (!xhci->segment_pool || !xhci->device_pool)
1088                 goto fail;
1089
1090         /* Set up the command ring to have one segments for now. */
1091         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1092         if (!xhci->cmd_ring)
1093                 goto fail;
1094         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1095         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1096                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1097
1098         /* Set the address in the Command Ring Control register */
1099         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1100         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1101                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1102                 xhci->cmd_ring->cycle_state;
1103         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1104         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1105         xhci_dbg_cmd_ptrs(xhci);
1106
1107         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1108         val &= DBOFF_MASK;
1109         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1110                         " from cap regs base addr\n", val);
1111         xhci->dba = (void *) xhci->cap_regs + val;
1112         xhci_dbg_regs(xhci);
1113         xhci_print_run_regs(xhci);
1114         /* Set ir_set to interrupt register set 0 */
1115         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1116
1117         /*
1118          * Event ring setup: Allocate a normal ring, but also setup
1119          * the event ring segment table (ERST).  Section 4.9.3.
1120          */
1121         xhci_dbg(xhci, "// Allocating event ring\n");
1122         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1123         if (!xhci->event_ring)
1124                 goto fail;
1125         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1126                 goto fail;
1127
1128         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1129                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1130         if (!xhci->erst.entries)
1131                 goto fail;
1132         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1133                         (unsigned long long)dma);
1134
1135         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1136         xhci->erst.num_entries = ERST_NUM_SEGS;
1137         xhci->erst.erst_dma_addr = dma;
1138         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1139                         xhci->erst.num_entries,
1140                         xhci->erst.entries,
1141                         (unsigned long long)xhci->erst.erst_dma_addr);
1142
1143         /* set ring base address and size for each segment table entry */
1144         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1145                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1146                 entry->seg_addr = seg->dma;
1147                 entry->seg_size = TRBS_PER_SEGMENT;
1148                 entry->rsvd = 0;
1149                 seg = seg->next;
1150         }
1151
1152         /* set ERST count with the number of entries in the segment table */
1153         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1154         val &= ERST_SIZE_MASK;
1155         val |= ERST_NUM_SEGS;
1156         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1157                         val);
1158         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1159
1160         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1161         /* set the segment table base address */
1162         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1163                         (unsigned long long)xhci->erst.erst_dma_addr);
1164         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1165         val_64 &= ERST_PTR_MASK;
1166         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1167         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1168
1169         /* Set the event ring dequeue address */
1170         xhci_set_hc_event_deq(xhci);
1171         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1172         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1173
1174         /*
1175          * XXX: Might need to set the Interrupter Moderation Register to
1176          * something other than the default (~1ms minimum between interrupts).
1177          * See section 5.5.1.2.
1178          */
1179         init_completion(&xhci->addr_dev);
1180         for (i = 0; i < MAX_HC_SLOTS; ++i)
1181                 xhci->devs[i] = 0;
1182
1183         if (scratchpad_alloc(xhci, flags))
1184                 goto fail;
1185
1186         return 0;
1187
1188 fail:
1189         xhci_warn(xhci, "Couldn't initialize memory\n");
1190         xhci_mem_cleanup(xhci);
1191         return -ENOMEM;
1192 }