]> Pileus Git - ~andy/linux/blob - drivers/usb/host/xhci-mem.c
USB: xhci: Refactor code to free or cache endpoint rings.
[~andy/linux] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
26
27 #include "xhci.h"
28
29 /*
30  * Allocates a generic ring segment from the ring pool, sets the dma address,
31  * initializes the segment to zero, and sets the private next pointer to NULL.
32  *
33  * Section 4.11.1.1:
34  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
35  */
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
37 {
38         struct xhci_segment *seg;
39         dma_addr_t      dma;
40
41         seg = kzalloc(sizeof *seg, flags);
42         if (!seg)
43                 return 0;
44         xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
45
46         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47         if (!seg->trbs) {
48                 kfree(seg);
49                 return 0;
50         }
51         xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52                         seg->trbs, (unsigned long long)dma);
53
54         memset(seg->trbs, 0, SEGMENT_SIZE);
55         seg->dma = dma;
56         seg->next = NULL;
57
58         return seg;
59 }
60
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
62 {
63         if (!seg)
64                 return;
65         if (seg->trbs) {
66                 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67                                 seg->trbs, (unsigned long long)seg->dma);
68                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69                 seg->trbs = NULL;
70         }
71         xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72         kfree(seg);
73 }
74
75 /*
76  * Make the prev segment point to the next segment.
77  *
78  * Change the last TRB in the prev segment to be a Link TRB which points to the
79  * DMA address of the next segment.  The caller needs to set any Link TRB
80  * related flags, such as End TRB, Toggle Cycle, and no snoop.
81  */
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83                 struct xhci_segment *next, bool link_trbs)
84 {
85         u32 val;
86
87         if (!prev || !next)
88                 return;
89         prev->next = next;
90         if (link_trbs) {
91                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
92
93                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94                 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95                 val &= ~TRB_TYPE_BITMASK;
96                 val |= TRB_TYPE(TRB_LINK);
97                 /* Always set the chain bit with 0.95 hardware */
98                 if (xhci_link_trb_quirk(xhci))
99                         val |= TRB_CHAIN;
100                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
101         }
102         xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
103                         (unsigned long long)prev->dma,
104                         (unsigned long long)next->dma);
105 }
106
107 /* XXX: Do we need the hcd structure in all these functions? */
108 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
109 {
110         struct xhci_segment *seg;
111         struct xhci_segment *first_seg;
112
113         if (!ring || !ring->first_seg)
114                 return;
115         first_seg = ring->first_seg;
116         seg = first_seg->next;
117         xhci_dbg(xhci, "Freeing ring at %p\n", ring);
118         while (seg != first_seg) {
119                 struct xhci_segment *next = seg->next;
120                 xhci_segment_free(xhci, seg);
121                 seg = next;
122         }
123         xhci_segment_free(xhci, first_seg);
124         ring->first_seg = NULL;
125         kfree(ring);
126 }
127
128 static void xhci_initialize_ring_info(struct xhci_ring *ring)
129 {
130         /* The ring is empty, so the enqueue pointer == dequeue pointer */
131         ring->enqueue = ring->first_seg->trbs;
132         ring->enq_seg = ring->first_seg;
133         ring->dequeue = ring->enqueue;
134         ring->deq_seg = ring->first_seg;
135         /* The ring is initialized to 0. The producer must write 1 to the cycle
136          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
137          * compare CCS to the cycle bit to check ownership, so CCS = 1.
138          */
139         ring->cycle_state = 1;
140         /* Not necessary for new rings, but needed for re-initialized rings */
141         ring->enq_updates = 0;
142         ring->deq_updates = 0;
143 }
144
145 /**
146  * Create a new ring with zero or more segments.
147  *
148  * Link each segment together into a ring.
149  * Set the end flag and the cycle toggle bit on the last segment.
150  * See section 4.9.1 and figures 15 and 16.
151  */
152 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
153                 unsigned int num_segs, bool link_trbs, gfp_t flags)
154 {
155         struct xhci_ring        *ring;
156         struct xhci_segment     *prev;
157
158         ring = kzalloc(sizeof *(ring), flags);
159         xhci_dbg(xhci, "Allocating ring at %p\n", ring);
160         if (!ring)
161                 return 0;
162
163         INIT_LIST_HEAD(&ring->td_list);
164         if (num_segs == 0)
165                 return ring;
166
167         ring->first_seg = xhci_segment_alloc(xhci, flags);
168         if (!ring->first_seg)
169                 goto fail;
170         num_segs--;
171
172         prev = ring->first_seg;
173         while (num_segs > 0) {
174                 struct xhci_segment     *next;
175
176                 next = xhci_segment_alloc(xhci, flags);
177                 if (!next)
178                         goto fail;
179                 xhci_link_segments(xhci, prev, next, link_trbs);
180
181                 prev = next;
182                 num_segs--;
183         }
184         xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
185
186         if (link_trbs) {
187                 /* See section 4.9.2.1 and 6.4.4.1 */
188                 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
189                 xhci_dbg(xhci, "Wrote link toggle flag to"
190                                 " segment %p (virtual), 0x%llx (DMA)\n",
191                                 prev, (unsigned long long)prev->dma);
192         }
193         xhci_initialize_ring_info(ring);
194         return ring;
195
196 fail:
197         xhci_ring_free(xhci, ring);
198         return 0;
199 }
200
201 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
202                 struct xhci_virt_device *virt_dev,
203                 unsigned int ep_index)
204 {
205         int rings_cached;
206
207         rings_cached = virt_dev->num_rings_cached;
208         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
209                 virt_dev->num_rings_cached++;
210                 rings_cached = virt_dev->num_rings_cached;
211                 virt_dev->ring_cache[rings_cached] =
212                         virt_dev->eps[ep_index].ring;
213                 xhci_dbg(xhci, "Cached old ring, "
214                                 "%d ring%s cached\n",
215                                 rings_cached,
216                                 (rings_cached > 1) ? "s" : "");
217         } else {
218                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
219                 xhci_dbg(xhci, "Ring cache full (%d rings), "
220                                 "freeing ring\n",
221                                 virt_dev->num_rings_cached);
222         }
223         virt_dev->eps[ep_index].ring = NULL;
224 }
225
226 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
227  * pointers to the beginning of the ring.
228  */
229 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
230                 struct xhci_ring *ring)
231 {
232         struct xhci_segment     *seg = ring->first_seg;
233         do {
234                 memset(seg->trbs, 0,
235                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
236                 /* All endpoint rings have link TRBs */
237                 xhci_link_segments(xhci, seg, seg->next, 1);
238                 seg = seg->next;
239         } while (seg != ring->first_seg);
240         xhci_initialize_ring_info(ring);
241         /* td list should be empty since all URBs have been cancelled,
242          * but just in case...
243          */
244         INIT_LIST_HEAD(&ring->td_list);
245 }
246
247 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
248
249 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
250                                                     int type, gfp_t flags)
251 {
252         struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
253         if (!ctx)
254                 return NULL;
255
256         BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
257         ctx->type = type;
258         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
259         if (type == XHCI_CTX_TYPE_INPUT)
260                 ctx->size += CTX_SIZE(xhci->hcc_params);
261
262         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
263         memset(ctx->bytes, 0, ctx->size);
264         return ctx;
265 }
266
267 void xhci_free_container_ctx(struct xhci_hcd *xhci,
268                              struct xhci_container_ctx *ctx)
269 {
270         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
271         kfree(ctx);
272 }
273
274 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
275                                               struct xhci_container_ctx *ctx)
276 {
277         BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
278         return (struct xhci_input_control_ctx *)ctx->bytes;
279 }
280
281 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
282                                         struct xhci_container_ctx *ctx)
283 {
284         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
285                 return (struct xhci_slot_ctx *)ctx->bytes;
286
287         return (struct xhci_slot_ctx *)
288                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
289 }
290
291 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
292                                     struct xhci_container_ctx *ctx,
293                                     unsigned int ep_index)
294 {
295         /* increment ep index by offset of start of ep ctx array */
296         ep_index++;
297         if (ctx->type == XHCI_CTX_TYPE_INPUT)
298                 ep_index++;
299
300         return (struct xhci_ep_ctx *)
301                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
302 }
303
304 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
305                 struct xhci_virt_ep *ep)
306 {
307         init_timer(&ep->stop_cmd_timer);
308         ep->stop_cmd_timer.data = (unsigned long) ep;
309         ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
310         ep->xhci = xhci;
311 }
312
313 /* All the xhci_tds in the ring's TD list should be freed at this point */
314 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
315 {
316         struct xhci_virt_device *dev;
317         int i;
318
319         /* Slot ID 0 is reserved */
320         if (slot_id == 0 || !xhci->devs[slot_id])
321                 return;
322
323         dev = xhci->devs[slot_id];
324         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
325         if (!dev)
326                 return;
327
328         for (i = 0; i < 31; ++i)
329                 if (dev->eps[i].ring)
330                         xhci_ring_free(xhci, dev->eps[i].ring);
331
332         if (dev->ring_cache) {
333                 for (i = 0; i < dev->num_rings_cached; i++)
334                         xhci_ring_free(xhci, dev->ring_cache[i]);
335                 kfree(dev->ring_cache);
336         }
337
338         if (dev->in_ctx)
339                 xhci_free_container_ctx(xhci, dev->in_ctx);
340         if (dev->out_ctx)
341                 xhci_free_container_ctx(xhci, dev->out_ctx);
342
343         kfree(xhci->devs[slot_id]);
344         xhci->devs[slot_id] = 0;
345 }
346
347 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
348                 struct usb_device *udev, gfp_t flags)
349 {
350         struct xhci_virt_device *dev;
351         int i;
352
353         /* Slot ID 0 is reserved */
354         if (slot_id == 0 || xhci->devs[slot_id]) {
355                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
356                 return 0;
357         }
358
359         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
360         if (!xhci->devs[slot_id])
361                 return 0;
362         dev = xhci->devs[slot_id];
363
364         /* Allocate the (output) device context that will be used in the HC. */
365         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
366         if (!dev->out_ctx)
367                 goto fail;
368
369         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
370                         (unsigned long long)dev->out_ctx->dma);
371
372         /* Allocate the (input) device context for address device command */
373         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
374         if (!dev->in_ctx)
375                 goto fail;
376
377         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
378                         (unsigned long long)dev->in_ctx->dma);
379
380         /* Initialize the cancellation list and watchdog timers for each ep */
381         for (i = 0; i < 31; i++) {
382                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
383                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
384         }
385
386         /* Allocate endpoint 0 ring */
387         dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
388         if (!dev->eps[0].ring)
389                 goto fail;
390
391         /* Allocate pointers to the ring cache */
392         dev->ring_cache = kzalloc(
393                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
394                         flags);
395         if (!dev->ring_cache)
396                 goto fail;
397         dev->num_rings_cached = 0;
398
399         init_completion(&dev->cmd_completion);
400         INIT_LIST_HEAD(&dev->cmd_list);
401
402         /* Point to output device context in dcbaa. */
403         xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
404         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
405                         slot_id,
406                         &xhci->dcbaa->dev_context_ptrs[slot_id],
407                         (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
408
409         return 1;
410 fail:
411         xhci_free_virt_device(xhci, slot_id);
412         return 0;
413 }
414
415 /* Setup an xHCI virtual device for a Set Address command */
416 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
417 {
418         struct xhci_virt_device *dev;
419         struct xhci_ep_ctx      *ep0_ctx;
420         struct usb_device       *top_dev;
421         struct xhci_slot_ctx    *slot_ctx;
422         struct xhci_input_control_ctx *ctrl_ctx;
423
424         dev = xhci->devs[udev->slot_id];
425         /* Slot ID 0 is reserved */
426         if (udev->slot_id == 0 || !dev) {
427                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
428                                 udev->slot_id);
429                 return -EINVAL;
430         }
431         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
432         ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
433         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
434
435         /* 2) New slot context and endpoint 0 context are valid*/
436         ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
437
438         /* 3) Only the control endpoint is valid - one endpoint context */
439         slot_ctx->dev_info |= LAST_CTX(1);
440
441         slot_ctx->dev_info |= (u32) udev->route;
442         switch (udev->speed) {
443         case USB_SPEED_SUPER:
444                 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
445                 break;
446         case USB_SPEED_HIGH:
447                 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
448                 break;
449         case USB_SPEED_FULL:
450                 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
451                 break;
452         case USB_SPEED_LOW:
453                 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
454                 break;
455         case USB_SPEED_VARIABLE:
456                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
457                 return -EINVAL;
458                 break;
459         default:
460                 /* Speed was set earlier, this shouldn't happen. */
461                 BUG();
462         }
463         /* Find the root hub port this device is under */
464         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
465                         top_dev = top_dev->parent)
466                 /* Found device below root hub */;
467         slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
468         xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
469
470         /* Is this a LS/FS device under a HS hub? */
471         if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
472                         udev->tt) {
473                 slot_ctx->tt_info = udev->tt->hub->slot_id;
474                 slot_ctx->tt_info |= udev->ttport << 8;
475                 if (udev->tt->multi)
476                         slot_ctx->dev_info |= DEV_MTT;
477         }
478         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
479         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
480
481         /* Step 4 - ring already allocated */
482         /* Step 5 */
483         ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
484         /*
485          * XXX: Not sure about wireless USB devices.
486          */
487         switch (udev->speed) {
488         case USB_SPEED_SUPER:
489                 ep0_ctx->ep_info2 |= MAX_PACKET(512);
490                 break;
491         case USB_SPEED_HIGH:
492         /* USB core guesses at a 64-byte max packet first for FS devices */
493         case USB_SPEED_FULL:
494                 ep0_ctx->ep_info2 |= MAX_PACKET(64);
495                 break;
496         case USB_SPEED_LOW:
497                 ep0_ctx->ep_info2 |= MAX_PACKET(8);
498                 break;
499         case USB_SPEED_VARIABLE:
500                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
501                 return -EINVAL;
502                 break;
503         default:
504                 /* New speed? */
505                 BUG();
506         }
507         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
508         ep0_ctx->ep_info2 |= MAX_BURST(0);
509         ep0_ctx->ep_info2 |= ERROR_COUNT(3);
510
511         ep0_ctx->deq =
512                 dev->eps[0].ring->first_seg->dma;
513         ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
514
515         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
516
517         return 0;
518 }
519
520 /* Return the polling or NAK interval.
521  *
522  * The polling interval is expressed in "microframes".  If xHCI's Interval field
523  * is set to N, it will service the endpoint every 2^(Interval)*125us.
524  *
525  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
526  * is set to 0.
527  */
528 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
529                 struct usb_host_endpoint *ep)
530 {
531         unsigned int interval = 0;
532
533         switch (udev->speed) {
534         case USB_SPEED_HIGH:
535                 /* Max NAK rate */
536                 if (usb_endpoint_xfer_control(&ep->desc) ||
537                                 usb_endpoint_xfer_bulk(&ep->desc))
538                         interval = ep->desc.bInterval;
539                 /* Fall through - SS and HS isoc/int have same decoding */
540         case USB_SPEED_SUPER:
541                 if (usb_endpoint_xfer_int(&ep->desc) ||
542                                 usb_endpoint_xfer_isoc(&ep->desc)) {
543                         if (ep->desc.bInterval == 0)
544                                 interval = 0;
545                         else
546                                 interval = ep->desc.bInterval - 1;
547                         if (interval > 15)
548                                 interval = 15;
549                         if (interval != ep->desc.bInterval + 1)
550                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
551                                                 ep->desc.bEndpointAddress, 1 << interval);
552                 }
553                 break;
554         /* Convert bInterval (in 1-255 frames) to microframes and round down to
555          * nearest power of 2.
556          */
557         case USB_SPEED_FULL:
558         case USB_SPEED_LOW:
559                 if (usb_endpoint_xfer_int(&ep->desc) ||
560                                 usb_endpoint_xfer_isoc(&ep->desc)) {
561                         interval = fls(8*ep->desc.bInterval) - 1;
562                         if (interval > 10)
563                                 interval = 10;
564                         if (interval < 3)
565                                 interval = 3;
566                         if ((1 << interval) != 8*ep->desc.bInterval)
567                                 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
568                                                 ep->desc.bEndpointAddress, 1 << interval);
569                 }
570                 break;
571         default:
572                 BUG();
573         }
574         return EP_INTERVAL(interval);
575 }
576
577 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
578                 struct usb_host_endpoint *ep)
579 {
580         int in;
581         u32 type;
582
583         in = usb_endpoint_dir_in(&ep->desc);
584         if (usb_endpoint_xfer_control(&ep->desc)) {
585                 type = EP_TYPE(CTRL_EP);
586         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
587                 if (in)
588                         type = EP_TYPE(BULK_IN_EP);
589                 else
590                         type = EP_TYPE(BULK_OUT_EP);
591         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
592                 if (in)
593                         type = EP_TYPE(ISOC_IN_EP);
594                 else
595                         type = EP_TYPE(ISOC_OUT_EP);
596         } else if (usb_endpoint_xfer_int(&ep->desc)) {
597                 if (in)
598                         type = EP_TYPE(INT_IN_EP);
599                 else
600                         type = EP_TYPE(INT_OUT_EP);
601         } else {
602                 BUG();
603         }
604         return type;
605 }
606
607 int xhci_endpoint_init(struct xhci_hcd *xhci,
608                 struct xhci_virt_device *virt_dev,
609                 struct usb_device *udev,
610                 struct usb_host_endpoint *ep,
611                 gfp_t mem_flags)
612 {
613         unsigned int ep_index;
614         struct xhci_ep_ctx *ep_ctx;
615         struct xhci_ring *ep_ring;
616         unsigned int max_packet;
617         unsigned int max_burst;
618
619         ep_index = xhci_get_endpoint_index(&ep->desc);
620         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
621
622         /* Set up the endpoint ring */
623         virt_dev->eps[ep_index].new_ring =
624                 xhci_ring_alloc(xhci, 1, true, mem_flags);
625         if (!virt_dev->eps[ep_index].new_ring) {
626                 /* Attempt to use the ring cache */
627                 if (virt_dev->num_rings_cached == 0)
628                         return -ENOMEM;
629                 virt_dev->eps[ep_index].new_ring =
630                         virt_dev->ring_cache[virt_dev->num_rings_cached];
631                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
632                 virt_dev->num_rings_cached--;
633                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
634         }
635         ep_ring = virt_dev->eps[ep_index].new_ring;
636         ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
637
638         ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
639
640         /* FIXME dig Mult and streams info out of ep companion desc */
641
642         /* Allow 3 retries for everything but isoc;
643          * error count = 0 means infinite retries.
644          */
645         if (!usb_endpoint_xfer_isoc(&ep->desc))
646                 ep_ctx->ep_info2 = ERROR_COUNT(3);
647         else
648                 ep_ctx->ep_info2 = ERROR_COUNT(1);
649
650         ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
651
652         /* Set the max packet size and max burst */
653         switch (udev->speed) {
654         case USB_SPEED_SUPER:
655                 max_packet = ep->desc.wMaxPacketSize;
656                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
657                 /* dig out max burst from ep companion desc */
658                 if (!ep->ss_ep_comp) {
659                         xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
660                         max_packet = 0;
661                 } else {
662                         max_packet = ep->ss_ep_comp->desc.bMaxBurst;
663                 }
664                 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
665                 break;
666         case USB_SPEED_HIGH:
667                 /* bits 11:12 specify the number of additional transaction
668                  * opportunities per microframe (USB 2.0, section 9.6.6)
669                  */
670                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
671                                 usb_endpoint_xfer_int(&ep->desc)) {
672                         max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
673                         ep_ctx->ep_info2 |= MAX_BURST(max_burst);
674                 }
675                 /* Fall through */
676         case USB_SPEED_FULL:
677         case USB_SPEED_LOW:
678                 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
679                 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
680                 break;
681         default:
682                 BUG();
683         }
684         /* FIXME Debug endpoint context */
685         return 0;
686 }
687
688 void xhci_endpoint_zero(struct xhci_hcd *xhci,
689                 struct xhci_virt_device *virt_dev,
690                 struct usb_host_endpoint *ep)
691 {
692         unsigned int ep_index;
693         struct xhci_ep_ctx *ep_ctx;
694
695         ep_index = xhci_get_endpoint_index(&ep->desc);
696         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
697
698         ep_ctx->ep_info = 0;
699         ep_ctx->ep_info2 = 0;
700         ep_ctx->deq = 0;
701         ep_ctx->tx_info = 0;
702         /* Don't free the endpoint ring until the set interface or configuration
703          * request succeeds.
704          */
705 }
706
707 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
708  * Useful when you want to change one particular aspect of the endpoint and then
709  * issue a configure endpoint command.
710  */
711 void xhci_endpoint_copy(struct xhci_hcd *xhci,
712                 struct xhci_container_ctx *in_ctx,
713                 struct xhci_container_ctx *out_ctx,
714                 unsigned int ep_index)
715 {
716         struct xhci_ep_ctx *out_ep_ctx;
717         struct xhci_ep_ctx *in_ep_ctx;
718
719         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
720         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
721
722         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
723         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
724         in_ep_ctx->deq = out_ep_ctx->deq;
725         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
726 }
727
728 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
729  * Useful when you want to change one particular aspect of the endpoint and then
730  * issue a configure endpoint command.  Only the context entries field matters,
731  * but we'll copy the whole thing anyway.
732  */
733 void xhci_slot_copy(struct xhci_hcd *xhci,
734                 struct xhci_container_ctx *in_ctx,
735                 struct xhci_container_ctx *out_ctx)
736 {
737         struct xhci_slot_ctx *in_slot_ctx;
738         struct xhci_slot_ctx *out_slot_ctx;
739
740         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
741         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
742
743         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
744         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
745         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
746         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
747 }
748
749 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
750 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
751 {
752         int i;
753         struct device *dev = xhci_to_hcd(xhci)->self.controller;
754         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
755
756         xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
757
758         if (!num_sp)
759                 return 0;
760
761         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
762         if (!xhci->scratchpad)
763                 goto fail_sp;
764
765         xhci->scratchpad->sp_array =
766                 pci_alloc_consistent(to_pci_dev(dev),
767                                      num_sp * sizeof(u64),
768                                      &xhci->scratchpad->sp_dma);
769         if (!xhci->scratchpad->sp_array)
770                 goto fail_sp2;
771
772         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
773         if (!xhci->scratchpad->sp_buffers)
774                 goto fail_sp3;
775
776         xhci->scratchpad->sp_dma_buffers =
777                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
778
779         if (!xhci->scratchpad->sp_dma_buffers)
780                 goto fail_sp4;
781
782         xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
783         for (i = 0; i < num_sp; i++) {
784                 dma_addr_t dma;
785                 void *buf = pci_alloc_consistent(to_pci_dev(dev),
786                                                  xhci->page_size, &dma);
787                 if (!buf)
788                         goto fail_sp5;
789
790                 xhci->scratchpad->sp_array[i] = dma;
791                 xhci->scratchpad->sp_buffers[i] = buf;
792                 xhci->scratchpad->sp_dma_buffers[i] = dma;
793         }
794
795         return 0;
796
797  fail_sp5:
798         for (i = i - 1; i >= 0; i--) {
799                 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
800                                     xhci->scratchpad->sp_buffers[i],
801                                     xhci->scratchpad->sp_dma_buffers[i]);
802         }
803         kfree(xhci->scratchpad->sp_dma_buffers);
804
805  fail_sp4:
806         kfree(xhci->scratchpad->sp_buffers);
807
808  fail_sp3:
809         pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
810                             xhci->scratchpad->sp_array,
811                             xhci->scratchpad->sp_dma);
812
813  fail_sp2:
814         kfree(xhci->scratchpad);
815         xhci->scratchpad = NULL;
816
817  fail_sp:
818         return -ENOMEM;
819 }
820
821 static void scratchpad_free(struct xhci_hcd *xhci)
822 {
823         int num_sp;
824         int i;
825         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
826
827         if (!xhci->scratchpad)
828                 return;
829
830         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
831
832         for (i = 0; i < num_sp; i++) {
833                 pci_free_consistent(pdev, xhci->page_size,
834                                     xhci->scratchpad->sp_buffers[i],
835                                     xhci->scratchpad->sp_dma_buffers[i]);
836         }
837         kfree(xhci->scratchpad->sp_dma_buffers);
838         kfree(xhci->scratchpad->sp_buffers);
839         pci_free_consistent(pdev, num_sp * sizeof(u64),
840                             xhci->scratchpad->sp_array,
841                             xhci->scratchpad->sp_dma);
842         kfree(xhci->scratchpad);
843         xhci->scratchpad = NULL;
844 }
845
846 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
847                 bool allocate_completion, gfp_t mem_flags)
848 {
849         struct xhci_command *command;
850
851         command = kzalloc(sizeof(*command), mem_flags);
852         if (!command)
853                 return NULL;
854
855         command->in_ctx =
856                 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, mem_flags);
857         if (!command->in_ctx) {
858                 kfree(command);
859                 return NULL;
860         }
861
862         if (allocate_completion) {
863                 command->completion =
864                         kzalloc(sizeof(struct completion), mem_flags);
865                 if (!command->completion) {
866                         xhci_free_container_ctx(xhci, command->in_ctx);
867                         kfree(command);
868                         return NULL;
869                 }
870                 init_completion(command->completion);
871         }
872
873         command->status = 0;
874         INIT_LIST_HEAD(&command->cmd_list);
875         return command;
876 }
877
878 void xhci_free_command(struct xhci_hcd *xhci,
879                 struct xhci_command *command)
880 {
881         xhci_free_container_ctx(xhci,
882                         command->in_ctx);
883         kfree(command->completion);
884         kfree(command);
885 }
886
887 void xhci_mem_cleanup(struct xhci_hcd *xhci)
888 {
889         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
890         int size;
891         int i;
892
893         /* Free the Event Ring Segment Table and the actual Event Ring */
894         if (xhci->ir_set) {
895                 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
896                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
897                 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
898         }
899         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
900         if (xhci->erst.entries)
901                 pci_free_consistent(pdev, size,
902                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
903         xhci->erst.entries = NULL;
904         xhci_dbg(xhci, "Freed ERST\n");
905         if (xhci->event_ring)
906                 xhci_ring_free(xhci, xhci->event_ring);
907         xhci->event_ring = NULL;
908         xhci_dbg(xhci, "Freed event ring\n");
909
910         xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
911         if (xhci->cmd_ring)
912                 xhci_ring_free(xhci, xhci->cmd_ring);
913         xhci->cmd_ring = NULL;
914         xhci_dbg(xhci, "Freed command ring\n");
915
916         for (i = 1; i < MAX_HC_SLOTS; ++i)
917                 xhci_free_virt_device(xhci, i);
918
919         if (xhci->segment_pool)
920                 dma_pool_destroy(xhci->segment_pool);
921         xhci->segment_pool = NULL;
922         xhci_dbg(xhci, "Freed segment pool\n");
923
924         if (xhci->device_pool)
925                 dma_pool_destroy(xhci->device_pool);
926         xhci->device_pool = NULL;
927         xhci_dbg(xhci, "Freed device context pool\n");
928
929         xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
930         if (xhci->dcbaa)
931                 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
932                                 xhci->dcbaa, xhci->dcbaa->dma);
933         xhci->dcbaa = NULL;
934
935         scratchpad_free(xhci);
936         xhci->page_size = 0;
937         xhci->page_shift = 0;
938 }
939
940 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
941                 struct xhci_segment *input_seg,
942                 union xhci_trb *start_trb,
943                 union xhci_trb *end_trb,
944                 dma_addr_t input_dma,
945                 struct xhci_segment *result_seg,
946                 char *test_name, int test_number)
947 {
948         unsigned long long start_dma;
949         unsigned long long end_dma;
950         struct xhci_segment *seg;
951
952         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
953         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
954
955         seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
956         if (seg != result_seg) {
957                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
958                                 test_name, test_number);
959                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
960                                 "input DMA 0x%llx\n",
961                                 input_seg,
962                                 (unsigned long long) input_dma);
963                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
964                                 "ending TRB %p (0x%llx DMA)\n",
965                                 start_trb, start_dma,
966                                 end_trb, end_dma);
967                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
968                                 result_seg, seg);
969                 return -1;
970         }
971         return 0;
972 }
973
974 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
975 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
976 {
977         struct {
978                 dma_addr_t              input_dma;
979                 struct xhci_segment     *result_seg;
980         } simple_test_vector [] = {
981                 /* A zeroed DMA field should fail */
982                 { 0, NULL },
983                 /* One TRB before the ring start should fail */
984                 { xhci->event_ring->first_seg->dma - 16, NULL },
985                 /* One byte before the ring start should fail */
986                 { xhci->event_ring->first_seg->dma - 1, NULL },
987                 /* Starting TRB should succeed */
988                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
989                 /* Ending TRB should succeed */
990                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
991                         xhci->event_ring->first_seg },
992                 /* One byte after the ring end should fail */
993                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
994                 /* One TRB after the ring end should fail */
995                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
996                 /* An address of all ones should fail */
997                 { (dma_addr_t) (~0), NULL },
998         };
999         struct {
1000                 struct xhci_segment     *input_seg;
1001                 union xhci_trb          *start_trb;
1002                 union xhci_trb          *end_trb;
1003                 dma_addr_t              input_dma;
1004                 struct xhci_segment     *result_seg;
1005         } complex_test_vector [] = {
1006                 /* Test feeding a valid DMA address from a different ring */
1007                 {       .input_seg = xhci->event_ring->first_seg,
1008                         .start_trb = xhci->event_ring->first_seg->trbs,
1009                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1010                         .input_dma = xhci->cmd_ring->first_seg->dma,
1011                         .result_seg = NULL,
1012                 },
1013                 /* Test feeding a valid end TRB from a different ring */
1014                 {       .input_seg = xhci->event_ring->first_seg,
1015                         .start_trb = xhci->event_ring->first_seg->trbs,
1016                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1017                         .input_dma = xhci->cmd_ring->first_seg->dma,
1018                         .result_seg = NULL,
1019                 },
1020                 /* Test feeding a valid start and end TRB from a different ring */
1021                 {       .input_seg = xhci->event_ring->first_seg,
1022                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1023                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1024                         .input_dma = xhci->cmd_ring->first_seg->dma,
1025                         .result_seg = NULL,
1026                 },
1027                 /* TRB in this ring, but after this TD */
1028                 {       .input_seg = xhci->event_ring->first_seg,
1029                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1030                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1031                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1032                         .result_seg = NULL,
1033                 },
1034                 /* TRB in this ring, but before this TD */
1035                 {       .input_seg = xhci->event_ring->first_seg,
1036                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1037                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1038                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1039                         .result_seg = NULL,
1040                 },
1041                 /* TRB in this ring, but after this wrapped TD */
1042                 {       .input_seg = xhci->event_ring->first_seg,
1043                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1044                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1045                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1046                         .result_seg = NULL,
1047                 },
1048                 /* TRB in this ring, but before this wrapped TD */
1049                 {       .input_seg = xhci->event_ring->first_seg,
1050                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1051                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1052                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1053                         .result_seg = NULL,
1054                 },
1055                 /* TRB not in this ring, and we have a wrapped TD */
1056                 {       .input_seg = xhci->event_ring->first_seg,
1057                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1058                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1059                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1060                         .result_seg = NULL,
1061                 },
1062         };
1063
1064         unsigned int num_tests;
1065         int i, ret;
1066
1067         num_tests = sizeof(simple_test_vector) / sizeof(simple_test_vector[0]);
1068         for (i = 0; i < num_tests; i++) {
1069                 ret = xhci_test_trb_in_td(xhci,
1070                                 xhci->event_ring->first_seg,
1071                                 xhci->event_ring->first_seg->trbs,
1072                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1073                                 simple_test_vector[i].input_dma,
1074                                 simple_test_vector[i].result_seg,
1075                                 "Simple", i);
1076                 if (ret < 0)
1077                         return ret;
1078         }
1079
1080         num_tests = sizeof(complex_test_vector) / sizeof(complex_test_vector[0]);
1081         for (i = 0; i < num_tests; i++) {
1082                 ret = xhci_test_trb_in_td(xhci,
1083                                 complex_test_vector[i].input_seg,
1084                                 complex_test_vector[i].start_trb,
1085                                 complex_test_vector[i].end_trb,
1086                                 complex_test_vector[i].input_dma,
1087                                 complex_test_vector[i].result_seg,
1088                                 "Complex", i);
1089                 if (ret < 0)
1090                         return ret;
1091         }
1092         xhci_dbg(xhci, "TRB math tests passed.\n");
1093         return 0;
1094 }
1095
1096
1097 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
1098 {
1099         dma_addr_t      dma;
1100         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1101         unsigned int    val, val2;
1102         u64             val_64;
1103         struct xhci_segment     *seg;
1104         u32 page_size;
1105         int i;
1106
1107         page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
1108         xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
1109         for (i = 0; i < 16; i++) {
1110                 if ((0x1 & page_size) != 0)
1111                         break;
1112                 page_size = page_size >> 1;
1113         }
1114         if (i < 16)
1115                 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
1116         else
1117                 xhci_warn(xhci, "WARN: no supported page size\n");
1118         /* Use 4K pages, since that's common and the minimum the HC supports */
1119         xhci->page_shift = 12;
1120         xhci->page_size = 1 << xhci->page_shift;
1121         xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
1122
1123         /*
1124          * Program the Number of Device Slots Enabled field in the CONFIG
1125          * register with the max value of slots the HC can handle.
1126          */
1127         val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
1128         xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
1129                         (unsigned int) val);
1130         val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
1131         val |= (val2 & ~HCS_SLOTS_MASK);
1132         xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
1133                         (unsigned int) val);
1134         xhci_writel(xhci, val, &xhci->op_regs->config_reg);
1135
1136         /*
1137          * Section 5.4.8 - doorbell array must be
1138          * "physically contiguous and 64-byte (cache line) aligned".
1139          */
1140         xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
1141                         sizeof(*xhci->dcbaa), &dma);
1142         if (!xhci->dcbaa)
1143                 goto fail;
1144         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
1145         xhci->dcbaa->dma = dma;
1146         xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
1147                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
1148         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
1149
1150         /*
1151          * Initialize the ring segment pool.  The ring must be a contiguous
1152          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
1153          * however, the command ring segment needs 64-byte aligned segments,
1154          * so we pick the greater alignment need.
1155          */
1156         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
1157                         SEGMENT_SIZE, 64, xhci->page_size);
1158
1159         /* See Table 46 and Note on Figure 55 */
1160         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
1161                         2112, 64, xhci->page_size);
1162         if (!xhci->segment_pool || !xhci->device_pool)
1163                 goto fail;
1164
1165         /* Set up the command ring to have one segments for now. */
1166         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
1167         if (!xhci->cmd_ring)
1168                 goto fail;
1169         xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
1170         xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
1171                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
1172
1173         /* Set the address in the Command Ring Control register */
1174         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1175         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
1176                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
1177                 xhci->cmd_ring->cycle_state;
1178         xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
1179         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
1180         xhci_dbg_cmd_ptrs(xhci);
1181
1182         val = xhci_readl(xhci, &xhci->cap_regs->db_off);
1183         val &= DBOFF_MASK;
1184         xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
1185                         " from cap regs base addr\n", val);
1186         xhci->dba = (void *) xhci->cap_regs + val;
1187         xhci_dbg_regs(xhci);
1188         xhci_print_run_regs(xhci);
1189         /* Set ir_set to interrupt register set 0 */
1190         xhci->ir_set = (void *) xhci->run_regs->ir_set;
1191
1192         /*
1193          * Event ring setup: Allocate a normal ring, but also setup
1194          * the event ring segment table (ERST).  Section 4.9.3.
1195          */
1196         xhci_dbg(xhci, "// Allocating event ring\n");
1197         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
1198         if (!xhci->event_ring)
1199                 goto fail;
1200         if (xhci_check_trb_in_td_math(xhci, flags) < 0)
1201                 goto fail;
1202
1203         xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
1204                         sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
1205         if (!xhci->erst.entries)
1206                 goto fail;
1207         xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
1208                         (unsigned long long)dma);
1209
1210         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
1211         xhci->erst.num_entries = ERST_NUM_SEGS;
1212         xhci->erst.erst_dma_addr = dma;
1213         xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
1214                         xhci->erst.num_entries,
1215                         xhci->erst.entries,
1216                         (unsigned long long)xhci->erst.erst_dma_addr);
1217
1218         /* set ring base address and size for each segment table entry */
1219         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
1220                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
1221                 entry->seg_addr = seg->dma;
1222                 entry->seg_size = TRBS_PER_SEGMENT;
1223                 entry->rsvd = 0;
1224                 seg = seg->next;
1225         }
1226
1227         /* set ERST count with the number of entries in the segment table */
1228         val = xhci_readl(xhci, &xhci->ir_set->erst_size);
1229         val &= ERST_SIZE_MASK;
1230         val |= ERST_NUM_SEGS;
1231         xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
1232                         val);
1233         xhci_writel(xhci, val, &xhci->ir_set->erst_size);
1234
1235         xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
1236         /* set the segment table base address */
1237         xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
1238                         (unsigned long long)xhci->erst.erst_dma_addr);
1239         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
1240         val_64 &= ERST_PTR_MASK;
1241         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
1242         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
1243
1244         /* Set the event ring dequeue address */
1245         xhci_set_hc_event_deq(xhci);
1246         xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
1247         xhci_print_ir_set(xhci, xhci->ir_set, 0);
1248
1249         /*
1250          * XXX: Might need to set the Interrupter Moderation Register to
1251          * something other than the default (~1ms minimum between interrupts).
1252          * See section 5.5.1.2.
1253          */
1254         init_completion(&xhci->addr_dev);
1255         for (i = 0; i < MAX_HC_SLOTS; ++i)
1256                 xhci->devs[i] = 0;
1257
1258         if (scratchpad_alloc(xhci, flags))
1259                 goto fail;
1260
1261         return 0;
1262
1263 fail:
1264         xhci_warn(xhci, "Couldn't initialize memory\n");
1265         xhci_mem_cleanup(xhci);
1266         return -ENOMEM;
1267 }