]> Pileus Git - ~andy/linux/blob - drivers/usb/host/fotg210-hcd.c
usb: phy: keystone: remove redundant return value check of platform_get_resource()
[~andy/linux] / drivers / usb / host / fotg210-hcd.c
1 /*
2  * Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *         Feng-Hsin Chiang <john453@faraday-tech.com>
8  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms of the GNU General Public License as published by the
14  * Free Software Foundation; either version 2 of the License, or (at your
15  * option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
19  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
20  * for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software Foundation,
24  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/dmapool.h>
29 #include <linux/kernel.h>
30 #include <linux/delay.h>
31 #include <linux/ioport.h>
32 #include <linux/sched.h>
33 #include <linux/vmalloc.h>
34 #include <linux/errno.h>
35 #include <linux/init.h>
36 #include <linux/hrtimer.h>
37 #include <linux/list.h>
38 #include <linux/interrupt.h>
39 #include <linux/usb.h>
40 #include <linux/usb/hcd.h>
41 #include <linux/moduleparam.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/debugfs.h>
44 #include <linux/slab.h>
45 #include <linux/uaccess.h>
46 #include <linux/platform_device.h>
47 #include <linux/io.h>
48
49 #include <asm/byteorder.h>
50 #include <asm/irq.h>
51 #include <asm/unaligned.h>
52
53 /*-------------------------------------------------------------------------*/
54 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
55 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
56
57 static const char       hcd_name[] = "fotg210_hcd";
58
59 #undef VERBOSE_DEBUG
60 #undef FOTG210_URB_TRACE
61
62 #ifdef DEBUG
63 #define FOTG210_STATS
64 #endif
65
66 /* magic numbers that can affect system performance */
67 #define FOTG210_TUNE_CERR               3 /* 0-3 qtd retries; 0 == don't stop */
68 #define FOTG210_TUNE_RL_HS              4 /* nak throttle; see 4.9 */
69 #define FOTG210_TUNE_RL_TT              0
70 #define FOTG210_TUNE_MULT_HS    1       /* 1-3 transactions/uframe; 4.10.3 */
71 #define FOTG210_TUNE_MULT_TT    1
72 /*
73  * Some drivers think it's safe to schedule isochronous transfers more than
74  * 256 ms into the future (partly as a result of an old bug in the scheduling
75  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
76  * length of 512 frames instead of 256.
77  */
78 #define FOTG210_TUNE_FLS                1 /* (medium) 512-frame schedule */
79
80 /* Initial IRQ latency:  faster than hw default */
81 static int log2_irq_thresh;             /* 0 to 6 */
82 module_param(log2_irq_thresh, int, S_IRUGO);
83 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
84
85 /* initial park setting:  slower than hw default */
86 static unsigned park;
87 module_param(park, uint, S_IRUGO);
88 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
89
90 /* for link power management(LPM) feature */
91 static unsigned int hird;
92 module_param(hird, int, S_IRUGO);
93 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
94
95 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
96
97 #include "fotg210.h"
98
99 /*-------------------------------------------------------------------------*/
100
101 #define fotg210_dbg(fotg210, fmt, args...) \
102         dev_dbg(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
103 #define fotg210_err(fotg210, fmt, args...) \
104         dev_err(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
105 #define fotg210_info(fotg210, fmt, args...) \
106         dev_info(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
107 #define fotg210_warn(fotg210, fmt, args...) \
108         dev_warn(fotg210_to_hcd(fotg210)->self.controller , fmt , ## args)
109
110 #ifdef VERBOSE_DEBUG
111 #       define fotg210_vdbg fotg210_dbg
112 #else
113         static inline void fotg210_vdbg(struct fotg210_hcd *fotg210, ...) {}
114 #endif
115
116 #ifdef  DEBUG
117
118 /* check the values in the HCSPARAMS register
119  * (host controller _Structural_ parameters)
120  * see EHCI spec, Table 2-4 for each value
121  */
122 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
123 {
124         u32     params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
125
126         fotg210_dbg(fotg210,
127                 "%s hcs_params 0x%x ports=%d\n",
128                 label, params,
129                 HCS_N_PORTS(params)
130                 );
131 }
132 #else
133
134 static inline void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label) {}
135
136 #endif
137
138 #ifdef  DEBUG
139
140 /* check the values in the HCCPARAMS register
141  * (host controller _Capability_ parameters)
142  * see EHCI Spec, Table 2-5 for each value
143  * */
144 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
145 {
146         u32     params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
147
148         fotg210_dbg(fotg210,
149                 "%s hcc_params %04x uframes %s%s\n",
150                 label,
151                 params,
152                 HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
153                 HCC_CANPARK(params) ? " park" : "");
154 }
155 #else
156
157 static inline void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label) {}
158
159 #endif
160
161 #ifdef  DEBUG
162
163 static void __maybe_unused
164 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
165 {
166         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
167                 hc32_to_cpup(fotg210, &qtd->hw_next),
168                 hc32_to_cpup(fotg210, &qtd->hw_alt_next),
169                 hc32_to_cpup(fotg210, &qtd->hw_token),
170                 hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
171         if (qtd->hw_buf[1])
172                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
173                         hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
174                         hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
175                         hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
176                         hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
177 }
178
179 static void __maybe_unused
180 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
181 {
182         struct fotg210_qh_hw *hw = qh->hw;
183
184         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label,
185                 qh, hw->hw_next, hw->hw_info1, hw->hw_info2, hw->hw_current);
186         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
187 }
188
189 static void __maybe_unused
190 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
191 {
192         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n",
193                 label, itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
194                 itd->urb);
195         fotg210_dbg(fotg210,
196                 "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
197                 hc32_to_cpu(fotg210, itd->hw_transaction[0]),
198                 hc32_to_cpu(fotg210, itd->hw_transaction[1]),
199                 hc32_to_cpu(fotg210, itd->hw_transaction[2]),
200                 hc32_to_cpu(fotg210, itd->hw_transaction[3]),
201                 hc32_to_cpu(fotg210, itd->hw_transaction[4]),
202                 hc32_to_cpu(fotg210, itd->hw_transaction[5]),
203                 hc32_to_cpu(fotg210, itd->hw_transaction[6]),
204                 hc32_to_cpu(fotg210, itd->hw_transaction[7]));
205         fotg210_dbg(fotg210,
206                 "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
207                 hc32_to_cpu(fotg210, itd->hw_bufp[0]),
208                 hc32_to_cpu(fotg210, itd->hw_bufp[1]),
209                 hc32_to_cpu(fotg210, itd->hw_bufp[2]),
210                 hc32_to_cpu(fotg210, itd->hw_bufp[3]),
211                 hc32_to_cpu(fotg210, itd->hw_bufp[4]),
212                 hc32_to_cpu(fotg210, itd->hw_bufp[5]),
213                 hc32_to_cpu(fotg210, itd->hw_bufp[6]));
214         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
215                 itd->index[0], itd->index[1], itd->index[2],
216                 itd->index[3], itd->index[4], itd->index[5],
217                 itd->index[6], itd->index[7]);
218 }
219
220 static int __maybe_unused
221 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
222 {
223         return scnprintf(buf, len,
224                 "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
225                 label, label[0] ? " " : "", status,
226                 (status & STS_ASS) ? " Async" : "",
227                 (status & STS_PSS) ? " Periodic" : "",
228                 (status & STS_RECL) ? " Recl" : "",
229                 (status & STS_HALT) ? " Halt" : "",
230                 (status & STS_IAA) ? " IAA" : "",
231                 (status & STS_FATAL) ? " FATAL" : "",
232                 (status & STS_FLR) ? " FLR" : "",
233                 (status & STS_PCD) ? " PCD" : "",
234                 (status & STS_ERR) ? " ERR" : "",
235                 (status & STS_INT) ? " INT" : ""
236                 );
237 }
238
239 static int __maybe_unused
240 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
241 {
242         return scnprintf(buf, len,
243                 "%s%sintrenable %02x%s%s%s%s%s%s",
244                 label, label[0] ? " " : "", enable,
245                 (enable & STS_IAA) ? " IAA" : "",
246                 (enable & STS_FATAL) ? " FATAL" : "",
247                 (enable & STS_FLR) ? " FLR" : "",
248                 (enable & STS_PCD) ? " PCD" : "",
249                 (enable & STS_ERR) ? " ERR" : "",
250                 (enable & STS_INT) ? " INT" : ""
251                 );
252 }
253
254 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
255
256 static int
257 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
258 {
259         return scnprintf(buf, len,
260                 "%s%scommand %07x %s=%d ithresh=%d%s%s%s "
261                 "period=%s%s %s",
262                 label, label[0] ? " " : "", command,
263                 (command & CMD_PARK) ? " park" : "(park)",
264                 CMD_PARK_CNT(command),
265                 (command >> 16) & 0x3f,
266                 (command & CMD_IAAD) ? " IAAD" : "",
267                 (command & CMD_ASE) ? " Async" : "",
268                 (command & CMD_PSE) ? " Periodic" : "",
269                 fls_strings[(command >> 2) & 0x3],
270                 (command & CMD_RESET) ? " Reset" : "",
271                 (command & CMD_RUN) ? "RUN" : "HALT"
272                 );
273 }
274
275 static int
276 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
277 {
278         char    *sig;
279
280         /* signaling state */
281         switch (status & (3 << 10)) {
282         case 0 << 10:
283                 sig = "se0";
284                 break;
285         case 1 << 10:
286                 sig = "k";
287                 break; /* low speed */
288         case 2 << 10:
289                 sig = "j";
290                 break;
291         default:
292                 sig = "?";
293                 break;
294         }
295
296         return scnprintf(buf, len,
297                 "%s%sport:%d status %06x %d "
298                 "sig=%s%s%s%s%s%s%s%s",
299                 label, label[0] ? " " : "", port, status,
300                 status>>25,/*device address */
301                 sig,
302                 (status & PORT_RESET) ? " RESET" : "",
303                 (status & PORT_SUSPEND) ? " SUSPEND" : "",
304                 (status & PORT_RESUME) ? " RESUME" : "",
305                 (status & PORT_PEC) ? " PEC" : "",
306                 (status & PORT_PE) ? " PE" : "",
307                 (status & PORT_CSC) ? " CSC" : "",
308                 (status & PORT_CONNECT) ? " CONNECT" : "");
309 }
310
311 #else
312 static inline void __maybe_unused
313 dbg_qh(char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
314 {}
315
316 static inline int __maybe_unused
317 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
318 { return 0; }
319
320 static inline int __maybe_unused
321 dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
322 { return 0; }
323
324 static inline int __maybe_unused
325 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
326 { return 0; }
327
328 static inline int __maybe_unused
329 dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
330 { return 0; }
331
332 #endif  /* DEBUG */
333
334 /* functions have the "wrong" filename when they're output... */
335 #define dbg_status(fotg210, label, status) { \
336         char _buf[80]; \
337         dbg_status_buf(_buf, sizeof(_buf), label, status); \
338         fotg210_dbg(fotg210, "%s\n", _buf); \
339 }
340
341 #define dbg_cmd(fotg210, label, command) { \
342         char _buf[80]; \
343         dbg_command_buf(_buf, sizeof(_buf), label, command); \
344         fotg210_dbg(fotg210, "%s\n", _buf); \
345 }
346
347 #define dbg_port(fotg210, label, port, status) { \
348         char _buf[80]; \
349         dbg_port_buf(_buf, sizeof(_buf), label, port, status); \
350         fotg210_dbg(fotg210, "%s\n", _buf); \
351 }
352
353 /*-------------------------------------------------------------------------*/
354
355 #ifdef STUB_DEBUG_FILES
356
357 static inline void create_debug_files(struct fotg210_hcd *bus) { }
358 static inline void remove_debug_files(struct fotg210_hcd *bus) { }
359
360 #else
361
362 /* troubleshooting help: expose state in debugfs */
363
364 static int debug_async_open(struct inode *, struct file *);
365 static int debug_periodic_open(struct inode *, struct file *);
366 static int debug_registers_open(struct inode *, struct file *);
367 static int debug_async_open(struct inode *, struct file *);
368
369 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
370 static int debug_close(struct inode *, struct file *);
371
372 static const struct file_operations debug_async_fops = {
373         .owner          = THIS_MODULE,
374         .open           = debug_async_open,
375         .read           = debug_output,
376         .release        = debug_close,
377         .llseek         = default_llseek,
378 };
379 static const struct file_operations debug_periodic_fops = {
380         .owner          = THIS_MODULE,
381         .open           = debug_periodic_open,
382         .read           = debug_output,
383         .release        = debug_close,
384         .llseek         = default_llseek,
385 };
386 static const struct file_operations debug_registers_fops = {
387         .owner          = THIS_MODULE,
388         .open           = debug_registers_open,
389         .read           = debug_output,
390         .release        = debug_close,
391         .llseek         = default_llseek,
392 };
393
394 static struct dentry *fotg210_debug_root;
395
396 struct debug_buffer {
397         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
398         struct usb_bus *bus;
399         struct mutex mutex;     /* protect filling of buffer */
400         size_t count;           /* number of characters filled into buffer */
401         char *output_buf;
402         size_t alloc_size;
403 };
404
405 #define speed_char(info1)({ char tmp; \
406                 switch (info1 & (3 << 12)) { \
407                 case QH_FULL_SPEED:     \
408                         tmp = 'f'; break; \
409                 case QH_LOW_SPEED:      \
410                         tmp = 'l'; break; \
411                 case QH_HIGH_SPEED:     \
412                         tmp = 'h'; break; \
413                 default:                \
414                         tmp = '?'; break; \
415                 } tmp; })
416
417 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
418 {
419         __u32 v = hc32_to_cpu(fotg210, token);
420
421         if (v & QTD_STS_ACTIVE)
422                 return '*';
423         if (v & QTD_STS_HALT)
424                 return '-';
425         if (!IS_SHORT_READ(v))
426                 return ' ';
427         /* tries to advance through hw_alt_next */
428         return '/';
429 }
430
431 static void qh_lines(
432         struct fotg210_hcd *fotg210,
433         struct fotg210_qh *qh,
434         char **nextp,
435         unsigned *sizep
436 )
437 {
438         u32                     scratch;
439         u32                     hw_curr;
440         struct fotg210_qtd      *td;
441         unsigned                temp;
442         unsigned                size = *sizep;
443         char                    *next = *nextp;
444         char                    mark;
445         __le32                  list_end = FOTG210_LIST_END(fotg210);
446         struct fotg210_qh_hw    *hw = qh->hw;
447
448         if (hw->hw_qtd_next == list_end)        /* NEC does this */
449                 mark = '@';
450         else
451                 mark = token_mark(fotg210, hw->hw_token);
452         if (mark == '/') {      /* qh_alt_next controls qh advance? */
453                 if ((hw->hw_alt_next & QTD_MASK(fotg210))
454                                 == fotg210->async->hw->hw_alt_next)
455                         mark = '#';     /* blocked */
456                 else if (hw->hw_alt_next == list_end)
457                         mark = '.';     /* use hw_qtd_next */
458                 /* else alt_next points to some other qtd */
459         }
460         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
461         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
462         temp = scnprintf(next, size,
463                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
464                         qh, scratch & 0x007f,
465                         speed_char(scratch),
466                         (scratch >> 8) & 0x000f,
467                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
468                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
469                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
470                                 ? "data1" : "data0",
471                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
472         size -= temp;
473         next += temp;
474
475         /* hc may be modifying the list as we read it ... */
476         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
477                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
478                 mark = ' ';
479                 if (hw_curr == td->qtd_dma)
480                         mark = '*';
481                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
482                         mark = '+';
483                 else if (QTD_LENGTH(scratch)) {
484                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
485                                 mark = '#';
486                         else if (td->hw_alt_next != list_end)
487                                 mark = '/';
488                 }
489                 temp = snprintf(next, size,
490                                 "\n\t%p%c%s len=%d %08x urb %p",
491                                 td, mark, ({ char *tmp;
492                                  switch ((scratch>>8)&0x03) {
493                                  case 0:
494                                         tmp = "out";
495                                         break;
496                                  case 1:
497                                         tmp = "in";
498                                         break;
499                                  case 2:
500                                         tmp = "setup";
501                                         break;
502                                  default:
503                                         tmp = "?";
504                                         break;
505                                  } tmp; }),
506                                 (scratch >> 16) & 0x7fff,
507                                 scratch,
508                                 td->urb);
509                 if (size < temp)
510                         temp = size;
511                 size -= temp;
512                 next += temp;
513                 if (temp == size)
514                         goto done;
515         }
516
517         temp = snprintf(next, size, "\n");
518         if (size < temp)
519                 temp = size;
520         size -= temp;
521         next += temp;
522
523 done:
524         *sizep = size;
525         *nextp = next;
526 }
527
528 static ssize_t fill_async_buffer(struct debug_buffer *buf)
529 {
530         struct usb_hcd          *hcd;
531         struct fotg210_hcd      *fotg210;
532         unsigned long           flags;
533         unsigned                temp, size;
534         char                    *next;
535         struct fotg210_qh               *qh;
536
537         hcd = bus_to_hcd(buf->bus);
538         fotg210 = hcd_to_fotg210(hcd);
539         next = buf->output_buf;
540         size = buf->alloc_size;
541
542         *next = 0;
543
544         /* dumps a snapshot of the async schedule.
545          * usually empty except for long-term bulk reads, or head.
546          * one QH per line, and TDs we know about
547          */
548         spin_lock_irqsave(&fotg210->lock, flags);
549         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
550              qh = qh->qh_next.qh)
551                 qh_lines(fotg210, qh, &next, &size);
552         if (fotg210->async_unlink && size > 0) {
553                 temp = scnprintf(next, size, "\nunlink =\n");
554                 size -= temp;
555                 next += temp;
556
557                 for (qh = fotg210->async_unlink; size > 0 && qh;
558                                 qh = qh->unlink_next)
559                         qh_lines(fotg210, qh, &next, &size);
560         }
561         spin_unlock_irqrestore(&fotg210->lock, flags);
562
563         return strlen(buf->output_buf);
564 }
565
566 #define DBG_SCHED_LIMIT 64
567 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
568 {
569         struct usb_hcd          *hcd;
570         struct fotg210_hcd              *fotg210;
571         unsigned long           flags;
572         union fotg210_shadow    p, *seen;
573         unsigned                temp, size, seen_count;
574         char                    *next;
575         unsigned                i;
576         __hc32                  tag;
577
578         seen = kmalloc(DBG_SCHED_LIMIT * sizeof(*seen), GFP_ATOMIC);
579         if (!seen)
580                 return 0;
581         seen_count = 0;
582
583         hcd = bus_to_hcd(buf->bus);
584         fotg210 = hcd_to_fotg210(hcd);
585         next = buf->output_buf;
586         size = buf->alloc_size;
587
588         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
589         size -= temp;
590         next += temp;
591
592         /* dump a snapshot of the periodic schedule.
593          * iso changes, interrupt usually doesn't.
594          */
595         spin_lock_irqsave(&fotg210->lock, flags);
596         for (i = 0; i < fotg210->periodic_size; i++) {
597                 p = fotg210->pshadow[i];
598                 if (likely(!p.ptr))
599                         continue;
600                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
601
602                 temp = scnprintf(next, size, "%4d: ", i);
603                 size -= temp;
604                 next += temp;
605
606                 do {
607                         struct fotg210_qh_hw *hw;
608
609                         switch (hc32_to_cpu(fotg210, tag)) {
610                         case Q_TYPE_QH:
611                                 hw = p.qh->hw;
612                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
613                                                 p.qh->period,
614                                                 hc32_to_cpup(fotg210,
615                                                         &hw->hw_info2)
616                                                         /* uframe masks */
617                                                         & (QH_CMASK | QH_SMASK),
618                                                 p.qh);
619                                 size -= temp;
620                                 next += temp;
621                                 /* don't repeat what follows this qh */
622                                 for (temp = 0; temp < seen_count; temp++) {
623                                         if (seen[temp].ptr != p.ptr)
624                                                 continue;
625                                         if (p.qh->qh_next.ptr) {
626                                                 temp = scnprintf(next, size,
627                                                         " ...");
628                                                 size -= temp;
629                                                 next += temp;
630                                         }
631                                         break;
632                                 }
633                                 /* show more info the first time around */
634                                 if (temp == seen_count) {
635                                         u32     scratch = hc32_to_cpup(fotg210,
636                                                         &hw->hw_info1);
637                                         struct fotg210_qtd      *qtd;
638                                         char            *type = "";
639
640                                         /* count tds, get ep direction */
641                                         temp = 0;
642                                         list_for_each_entry(qtd,
643                                                         &p.qh->qtd_list,
644                                                         qtd_list) {
645                                                 temp++;
646                                                 switch (0x03 & (hc32_to_cpu(
647                                                         fotg210,
648                                                         qtd->hw_token) >> 8)) {
649                                                 case 0:
650                                                         type = "out";
651                                                         continue;
652                                                 case 1:
653                                                         type = "in";
654                                                         continue;
655                                                 }
656                                         }
657
658                                         temp = scnprintf(next, size,
659                                                 "(%c%d ep%d%s "
660                                                 "[%d/%d] q%d p%d)",
661                                                 speed_char(scratch),
662                                                 scratch & 0x007f,
663                                                 (scratch >> 8) & 0x000f, type,
664                                                 p.qh->usecs, p.qh->c_usecs,
665                                                 temp,
666                                                 0x7ff & (scratch >> 16));
667
668                                         if (seen_count < DBG_SCHED_LIMIT)
669                                                 seen[seen_count++].qh = p.qh;
670                                 } else
671                                         temp = 0;
672                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
673                                 p = p.qh->qh_next;
674                                 break;
675                         case Q_TYPE_FSTN:
676                                 temp = scnprintf(next, size,
677                                         " fstn-%8x/%p", p.fstn->hw_prev,
678                                         p.fstn);
679                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
680                                 p = p.fstn->fstn_next;
681                                 break;
682                         case Q_TYPE_ITD:
683                                 temp = scnprintf(next, size,
684                                         " itd/%p", p.itd);
685                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
686                                 p = p.itd->itd_next;
687                                 break;
688                         }
689                         size -= temp;
690                         next += temp;
691                 } while (p.ptr);
692
693                 temp = scnprintf(next, size, "\n");
694                 size -= temp;
695                 next += temp;
696         }
697         spin_unlock_irqrestore(&fotg210->lock, flags);
698         kfree(seen);
699
700         return buf->alloc_size - size;
701 }
702 #undef DBG_SCHED_LIMIT
703
704 static const char *rh_state_string(struct fotg210_hcd *fotg210)
705 {
706         switch (fotg210->rh_state) {
707         case FOTG210_RH_HALTED:
708                 return "halted";
709         case FOTG210_RH_SUSPENDED:
710                 return "suspended";
711         case FOTG210_RH_RUNNING:
712                 return "running";
713         case FOTG210_RH_STOPPING:
714                 return "stopping";
715         }
716         return "?";
717 }
718
719 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
720 {
721         struct usb_hcd          *hcd;
722         struct fotg210_hcd      *fotg210;
723         unsigned long           flags;
724         unsigned                temp, size, i;
725         char                    *next, scratch[80];
726         static const char       fmt[] = "%*s\n";
727         static const char       label[] = "";
728
729         hcd = bus_to_hcd(buf->bus);
730         fotg210 = hcd_to_fotg210(hcd);
731         next = buf->output_buf;
732         size = buf->alloc_size;
733
734         spin_lock_irqsave(&fotg210->lock, flags);
735
736         if (!HCD_HW_ACCESSIBLE(hcd)) {
737                 size = scnprintf(next, size,
738                         "bus %s, device %s\n"
739                         "%s\n"
740                         "SUSPENDED(no register access)\n",
741                         hcd->self.controller->bus->name,
742                         dev_name(hcd->self.controller),
743                         hcd->product_desc);
744                 goto done;
745         }
746
747         /* Capability Registers */
748         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
749                                               &fotg210->caps->hc_capbase));
750         temp = scnprintf(next, size,
751                 "bus %s, device %s\n"
752                 "%s\n"
753                 "EHCI %x.%02x, rh state %s\n",
754                 hcd->self.controller->bus->name,
755                 dev_name(hcd->self.controller),
756                 hcd->product_desc,
757                 i >> 8, i & 0x0ff, rh_state_string(fotg210));
758         size -= temp;
759         next += temp;
760
761         /* FIXME interpret both types of params */
762         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
763         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
764         size -= temp;
765         next += temp;
766
767         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
768         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
769         size -= temp;
770         next += temp;
771
772         /* Operational Registers */
773         temp = dbg_status_buf(scratch, sizeof(scratch), label,
774                         fotg210_readl(fotg210, &fotg210->regs->status));
775         temp = scnprintf(next, size, fmt, temp, scratch);
776         size -= temp;
777         next += temp;
778
779         temp = dbg_command_buf(scratch, sizeof(scratch), label,
780                         fotg210_readl(fotg210, &fotg210->regs->command));
781         temp = scnprintf(next, size, fmt, temp, scratch);
782         size -= temp;
783         next += temp;
784
785         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
786                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
787         temp = scnprintf(next, size, fmt, temp, scratch);
788         size -= temp;
789         next += temp;
790
791         temp = scnprintf(next, size, "uframe %04x\n",
792                         fotg210_read_frame_index(fotg210));
793         size -= temp;
794         next += temp;
795
796         if (fotg210->async_unlink) {
797                 temp = scnprintf(next, size, "async unlink qh %p\n",
798                                 fotg210->async_unlink);
799                 size -= temp;
800                 next += temp;
801         }
802
803 #ifdef FOTG210_STATS
804         temp = scnprintf(next, size,
805                 "irq normal %ld err %ld iaa %ld(lost %ld)\n",
806                 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
807                 fotg210->stats.lost_iaa);
808         size -= temp;
809         next += temp;
810
811         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
812                 fotg210->stats.complete, fotg210->stats.unlink);
813         size -= temp;
814         next += temp;
815 #endif
816
817 done:
818         spin_unlock_irqrestore(&fotg210->lock, flags);
819
820         return buf->alloc_size - size;
821 }
822
823 static struct debug_buffer *alloc_buffer(struct usb_bus *bus,
824                                 ssize_t (*fill_func)(struct debug_buffer *))
825 {
826         struct debug_buffer *buf;
827
828         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
829
830         if (buf) {
831                 buf->bus = bus;
832                 buf->fill_func = fill_func;
833                 mutex_init(&buf->mutex);
834                 buf->alloc_size = PAGE_SIZE;
835         }
836
837         return buf;
838 }
839
840 static int fill_buffer(struct debug_buffer *buf)
841 {
842         int ret = 0;
843
844         if (!buf->output_buf)
845                 buf->output_buf = vmalloc(buf->alloc_size);
846
847         if (!buf->output_buf) {
848                 ret = -ENOMEM;
849                 goto out;
850         }
851
852         ret = buf->fill_func(buf);
853
854         if (ret >= 0) {
855                 buf->count = ret;
856                 ret = 0;
857         }
858
859 out:
860         return ret;
861 }
862
863 static ssize_t debug_output(struct file *file, char __user *user_buf,
864                             size_t len, loff_t *offset)
865 {
866         struct debug_buffer *buf = file->private_data;
867         int ret = 0;
868
869         mutex_lock(&buf->mutex);
870         if (buf->count == 0) {
871                 ret = fill_buffer(buf);
872                 if (ret != 0) {
873                         mutex_unlock(&buf->mutex);
874                         goto out;
875                 }
876         }
877         mutex_unlock(&buf->mutex);
878
879         ret = simple_read_from_buffer(user_buf, len, offset,
880                                       buf->output_buf, buf->count);
881
882 out:
883         return ret;
884
885 }
886
887 static int debug_close(struct inode *inode, struct file *file)
888 {
889         struct debug_buffer *buf = file->private_data;
890
891         if (buf) {
892                 vfree(buf->output_buf);
893                 kfree(buf);
894         }
895
896         return 0;
897 }
898 static int debug_async_open(struct inode *inode, struct file *file)
899 {
900         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
901
902         return file->private_data ? 0 : -ENOMEM;
903 }
904
905 static int debug_periodic_open(struct inode *inode, struct file *file)
906 {
907         struct debug_buffer *buf;
908         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
909         if (!buf)
910                 return -ENOMEM;
911
912         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
913         file->private_data = buf;
914         return 0;
915 }
916
917 static int debug_registers_open(struct inode *inode, struct file *file)
918 {
919         file->private_data = alloc_buffer(inode->i_private,
920                                           fill_registers_buffer);
921
922         return file->private_data ? 0 : -ENOMEM;
923 }
924
925 static inline void create_debug_files(struct fotg210_hcd *fotg210)
926 {
927         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
928
929         fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
930                                                 fotg210_debug_root);
931         if (!fotg210->debug_dir)
932                 return;
933
934         if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
935                                                 &debug_async_fops))
936                 goto file_error;
937
938         if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
939                                                 &debug_periodic_fops))
940                 goto file_error;
941
942         if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
943                                                     &debug_registers_fops))
944                 goto file_error;
945
946         return;
947
948 file_error:
949         debugfs_remove_recursive(fotg210->debug_dir);
950 }
951
952 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
953 {
954         debugfs_remove_recursive(fotg210->debug_dir);
955 }
956
957 #endif /* STUB_DEBUG_FILES */
958 /*-------------------------------------------------------------------------*/
959
960 /*
961  * handshake - spin reading hc until handshake completes or fails
962  * @ptr: address of hc register to be read
963  * @mask: bits to look at in result of read
964  * @done: value of those bits when handshake succeeds
965  * @usec: timeout in microseconds
966  *
967  * Returns negative errno, or zero on success
968  *
969  * Success happens when the "mask" bits have the specified value (hardware
970  * handshake done).  There are two failure modes:  "usec" have passed (major
971  * hardware flakeout), or the register reads as all-ones (hardware removed).
972  *
973  * That last failure should_only happen in cases like physical cardbus eject
974  * before driver shutdown. But it also seems to be caused by bugs in cardbus
975  * bridge shutdown:  shutting down the bridge before the devices using it.
976  */
977 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
978                       u32 mask, u32 done, int usec)
979 {
980         u32     result;
981
982         do {
983                 result = fotg210_readl(fotg210, ptr);
984                 if (result == ~(u32)0)          /* card removed */
985                         return -ENODEV;
986                 result &= mask;
987                 if (result == done)
988                         return 0;
989                 udelay(1);
990                 usec--;
991         } while (usec > 0);
992         return -ETIMEDOUT;
993 }
994
995 /*
996  * Force HC to halt state from unknown (EHCI spec section 2.3).
997  * Must be called with interrupts enabled and the lock not held.
998  */
999 static int fotg210_halt(struct fotg210_hcd *fotg210)
1000 {
1001         u32     temp;
1002
1003         spin_lock_irq(&fotg210->lock);
1004
1005         /* disable any irqs left enabled by previous code */
1006         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1007
1008         /*
1009          * This routine gets called during probe before fotg210->command
1010          * has been initialized, so we can't rely on its value.
1011          */
1012         fotg210->command &= ~CMD_RUN;
1013         temp = fotg210_readl(fotg210, &fotg210->regs->command);
1014         temp &= ~(CMD_RUN | CMD_IAAD);
1015         fotg210_writel(fotg210, temp, &fotg210->regs->command);
1016
1017         spin_unlock_irq(&fotg210->lock);
1018         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
1019
1020         return handshake(fotg210, &fotg210->regs->status,
1021                           STS_HALT, STS_HALT, 16 * 125);
1022 }
1023
1024 /*
1025  * Reset a non-running (STS_HALT == 1) controller.
1026  * Must be called with interrupts enabled and the lock not held.
1027  */
1028 static int fotg210_reset(struct fotg210_hcd *fotg210)
1029 {
1030         int     retval;
1031         u32     command = fotg210_readl(fotg210, &fotg210->regs->command);
1032
1033         /* If the EHCI debug controller is active, special care must be
1034          * taken before and after a host controller reset */
1035         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
1036                 fotg210->debug = NULL;
1037
1038         command |= CMD_RESET;
1039         dbg_cmd(fotg210, "reset", command);
1040         fotg210_writel(fotg210, command, &fotg210->regs->command);
1041         fotg210->rh_state = FOTG210_RH_HALTED;
1042         fotg210->next_statechange = jiffies;
1043         retval = handshake(fotg210, &fotg210->regs->command,
1044                             CMD_RESET, 0, 250 * 1000);
1045
1046         if (retval)
1047                 return retval;
1048
1049         if (fotg210->debug)
1050                 dbgp_external_startup(fotg210_to_hcd(fotg210));
1051
1052         fotg210->port_c_suspend = fotg210->suspended_ports =
1053                         fotg210->resuming_ports = 0;
1054         return retval;
1055 }
1056
1057 /*
1058  * Idle the controller (turn off the schedules).
1059  * Must be called with interrupts enabled and the lock not held.
1060  */
1061 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
1062 {
1063         u32     temp;
1064
1065         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1066                 return;
1067
1068         /* wait for any schedule enables/disables to take effect */
1069         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
1070         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
1071                   16 * 125);
1072
1073         /* then disable anything that's still active */
1074         spin_lock_irq(&fotg210->lock);
1075         fotg210->command &= ~(CMD_ASE | CMD_PSE);
1076         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1077         spin_unlock_irq(&fotg210->lock);
1078
1079         /* hardware can take 16 microframes to turn off ... */
1080         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1081                   16 * 125);
1082 }
1083
1084 /*-------------------------------------------------------------------------*/
1085
1086 static void end_unlink_async(struct fotg210_hcd *fotg210);
1087 static void unlink_empty_async(struct fotg210_hcd *fotg210);
1088 static void fotg210_work(struct fotg210_hcd *fotg210);
1089 static void start_unlink_intr(struct fotg210_hcd *fotg210,
1090                               struct fotg210_qh *qh);
1091 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1092
1093 /*-------------------------------------------------------------------------*/
1094
1095 /* Set a bit in the USBCMD register */
1096 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1097 {
1098         fotg210->command |= bit;
1099         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1100
1101         /* unblock posted write */
1102         fotg210_readl(fotg210, &fotg210->regs->command);
1103 }
1104
1105 /* Clear a bit in the USBCMD register */
1106 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1107 {
1108         fotg210->command &= ~bit;
1109         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1110
1111         /* unblock posted write */
1112         fotg210_readl(fotg210, &fotg210->regs->command);
1113 }
1114
1115 /*-------------------------------------------------------------------------*/
1116
1117 /*
1118  * EHCI timer support...  Now using hrtimers.
1119  *
1120  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1121  * the timer routine runs, it checks each possible event; events that are
1122  * currently enabled and whose expiration time has passed get handled.
1123  * The set of enabled events is stored as a collection of bitflags in
1124  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1125  * increasing delay values (ranging between 1 ms and 100 ms).
1126  *
1127  * Rather than implementing a sorted list or tree of all pending events,
1128  * we keep track only of the lowest-numbered pending event, in
1129  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1130  * expiration time is set to the timeout value for this event.
1131  *
1132  * As a result, events might not get handled right away; the actual delay
1133  * could be anywhere up to twice the requested delay.  This doesn't
1134  * matter, because none of the events are especially time-critical.  The
1135  * ones that matter most all have a delay of 1 ms, so they will be
1136  * handled after 2 ms at most, which is okay.  In addition to this, we
1137  * allow for an expiration range of 1 ms.
1138  */
1139
1140 /*
1141  * Delay lengths for the hrtimer event types.
1142  * Keep this list sorted by delay length, in the same order as
1143  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1144  */
1145 static unsigned event_delays_ns[] = {
1146         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1147         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1148         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1149         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1150         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1151         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1152         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1153         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1154         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1155         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1156 };
1157
1158 /* Enable a pending hrtimer event */
1159 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1160                 bool resched)
1161 {
1162         ktime_t         *timeout = &fotg210->hr_timeouts[event];
1163
1164         if (resched)
1165                 *timeout = ktime_add(ktime_get(),
1166                                 ktime_set(0, event_delays_ns[event]));
1167         fotg210->enabled_hrtimer_events |= (1 << event);
1168
1169         /* Track only the lowest-numbered pending event */
1170         if (event < fotg210->next_hrtimer_event) {
1171                 fotg210->next_hrtimer_event = event;
1172                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1173                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1174         }
1175 }
1176
1177
1178 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1179 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1180 {
1181         unsigned        actual, want;
1182
1183         /* Don't enable anything if the controller isn't running (e.g., died) */
1184         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1185                 return;
1186
1187         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1188         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1189
1190         if (want != actual) {
1191
1192                 /* Poll again later, but give up after about 20 ms */
1193                 if (fotg210->ASS_poll_count++ < 20) {
1194                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1195                                              true);
1196                         return;
1197                 }
1198                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1199                                 want, actual);
1200         }
1201         fotg210->ASS_poll_count = 0;
1202
1203         /* The status is up-to-date; restart or stop the schedule as needed */
1204         if (want == 0) {        /* Stopped */
1205                 if (fotg210->async_count > 0)
1206                         fotg210_set_command_bit(fotg210, CMD_ASE);
1207
1208         } else {                /* Running */
1209                 if (fotg210->async_count == 0) {
1210
1211                         /* Turn off the schedule after a while */
1212                         fotg210_enable_event(fotg210,
1213                                              FOTG210_HRTIMER_DISABLE_ASYNC,
1214                                              true);
1215                 }
1216         }
1217 }
1218
1219 /* Turn off the async schedule after a brief delay */
1220 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1221 {
1222         fotg210_clear_command_bit(fotg210, CMD_ASE);
1223 }
1224
1225
1226 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1227 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1228 {
1229         unsigned        actual, want;
1230
1231         /* Don't do anything if the controller isn't running (e.g., died) */
1232         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1233                 return;
1234
1235         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1236         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1237
1238         if (want != actual) {
1239
1240                 /* Poll again later, but give up after about 20 ms */
1241                 if (fotg210->PSS_poll_count++ < 20) {
1242                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1243                                              true);
1244                         return;
1245                 }
1246                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1247                                 want, actual);
1248         }
1249         fotg210->PSS_poll_count = 0;
1250
1251         /* The status is up-to-date; restart or stop the schedule as needed */
1252         if (want == 0) {        /* Stopped */
1253                 if (fotg210->periodic_count > 0)
1254                         fotg210_set_command_bit(fotg210, CMD_PSE);
1255
1256         } else {                /* Running */
1257                 if (fotg210->periodic_count == 0) {
1258
1259                         /* Turn off the schedule after a while */
1260                         fotg210_enable_event(fotg210,
1261                                              FOTG210_HRTIMER_DISABLE_PERIODIC,
1262                                              true);
1263                 }
1264         }
1265 }
1266
1267 /* Turn off the periodic schedule after a brief delay */
1268 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1269 {
1270         fotg210_clear_command_bit(fotg210, CMD_PSE);
1271 }
1272
1273
1274 /* Poll the STS_HALT status bit; see when a dead controller stops */
1275 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1276 {
1277         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1278
1279                 /* Give up after a few milliseconds */
1280                 if (fotg210->died_poll_count++ < 5) {
1281                         /* Try again later */
1282                         fotg210_enable_event(fotg210,
1283                                              FOTG210_HRTIMER_POLL_DEAD, true);
1284                         return;
1285                 }
1286                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1287         }
1288
1289         /* Clean up the mess */
1290         fotg210->rh_state = FOTG210_RH_HALTED;
1291         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1292         fotg210_work(fotg210);
1293         end_unlink_async(fotg210);
1294
1295         /* Not in process context, so don't try to reset the controller */
1296 }
1297
1298
1299 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1300 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1301 {
1302         bool            stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1303
1304         /*
1305          * Process all the QHs on the intr_unlink list that were added
1306          * before the current unlink cycle began.  The list is in
1307          * temporal order, so stop when we reach the first entry in the
1308          * current cycle.  But if the root hub isn't running then
1309          * process all the QHs on the list.
1310          */
1311         fotg210->intr_unlinking = true;
1312         while (fotg210->intr_unlink) {
1313                 struct fotg210_qh       *qh = fotg210->intr_unlink;
1314
1315                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1316                         break;
1317                 fotg210->intr_unlink = qh->unlink_next;
1318                 qh->unlink_next = NULL;
1319                 end_unlink_intr(fotg210, qh);
1320         }
1321
1322         /* Handle remaining entries later */
1323         if (fotg210->intr_unlink) {
1324                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1325                                      true);
1326                 ++fotg210->intr_unlink_cycle;
1327         }
1328         fotg210->intr_unlinking = false;
1329 }
1330
1331
1332 /* Start another free-iTDs/siTDs cycle */
1333 static void start_free_itds(struct fotg210_hcd *fotg210)
1334 {
1335         if (!(fotg210->enabled_hrtimer_events &
1336                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1337                 fotg210->last_itd_to_free = list_entry(
1338                                 fotg210->cached_itd_list.prev,
1339                                 struct fotg210_itd, itd_list);
1340                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1341         }
1342 }
1343
1344 /* Wait for controller to stop using old iTDs and siTDs */
1345 static void end_free_itds(struct fotg210_hcd *fotg210)
1346 {
1347         struct fotg210_itd              *itd, *n;
1348
1349         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1350                 fotg210->last_itd_to_free = NULL;
1351
1352         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1353                 list_del(&itd->itd_list);
1354                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1355                 if (itd == fotg210->last_itd_to_free)
1356                         break;
1357         }
1358
1359         if (!list_empty(&fotg210->cached_itd_list))
1360                 start_free_itds(fotg210);
1361 }
1362
1363
1364 /* Handle lost (or very late) IAA interrupts */
1365 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1366 {
1367         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1368                 return;
1369
1370         /*
1371          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1372          * So we need this watchdog, but must protect it against both
1373          * (a) SMP races against real IAA firing and retriggering, and
1374          * (b) clean HC shutdown, when IAA watchdog was pending.
1375          */
1376         if (fotg210->async_iaa) {
1377                 u32 cmd, status;
1378
1379                 /* If we get here, IAA is *REALLY* late.  It's barely
1380                  * conceivable that the system is so busy that CMD_IAAD
1381                  * is still legitimately set, so let's be sure it's
1382                  * clear before we read STS_IAA.  (The HC should clear
1383                  * CMD_IAAD when it sets STS_IAA.)
1384                  */
1385                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1386
1387                 /*
1388                  * If IAA is set here it either legitimately triggered
1389                  * after the watchdog timer expired (_way_ late, so we'll
1390                  * still count it as lost) ... or a silicon erratum:
1391                  * - VIA seems to set IAA without triggering the IRQ;
1392                  * - IAAD potentially cleared without setting IAA.
1393                  */
1394                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1395                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1396                         COUNT(fotg210->stats.lost_iaa);
1397                         fotg210_writel(fotg210, STS_IAA,
1398                                        &fotg210->regs->status);
1399                 }
1400
1401                 fotg210_vdbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1402                                 status, cmd);
1403                 end_unlink_async(fotg210);
1404         }
1405 }
1406
1407
1408 /* Enable the I/O watchdog, if appropriate */
1409 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1410 {
1411         /* Not needed if the controller isn't running or it's already enabled */
1412         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1413                         (fotg210->enabled_hrtimer_events &
1414                                 BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1415                 return;
1416
1417         /*
1418          * Isochronous transfers always need the watchdog.
1419          * For other sorts we use it only if the flag is set.
1420          */
1421         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1422                         fotg210->async_count + fotg210->intr_count > 0))
1423                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1424                                      true);
1425 }
1426
1427
1428 /*
1429  * Handler functions for the hrtimer event types.
1430  * Keep this array in the same order as the event types indexed by
1431  * enum fotg210_hrtimer_event in fotg210.h.
1432  */
1433 static void (*event_handlers[])(struct fotg210_hcd *) = {
1434         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1435         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1436         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1437         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1438         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1439         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1440         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1441         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1442         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1443         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1444 };
1445
1446 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1447 {
1448         struct fotg210_hcd *fotg210 =
1449                         container_of(t, struct fotg210_hcd, hrtimer);
1450         ktime_t         now;
1451         unsigned long   events;
1452         unsigned long   flags;
1453         unsigned        e;
1454
1455         spin_lock_irqsave(&fotg210->lock, flags);
1456
1457         events = fotg210->enabled_hrtimer_events;
1458         fotg210->enabled_hrtimer_events = 0;
1459         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1460
1461         /*
1462          * Check each pending event.  If its time has expired, handle
1463          * the event; otherwise re-enable it.
1464          */
1465         now = ktime_get();
1466         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1467                 if (now.tv64 >= fotg210->hr_timeouts[e].tv64)
1468                         event_handlers[e](fotg210);
1469                 else
1470                         fotg210_enable_event(fotg210, e, false);
1471         }
1472
1473         spin_unlock_irqrestore(&fotg210->lock, flags);
1474         return HRTIMER_NORESTART;
1475 }
1476
1477 /*-------------------------------------------------------------------------*/
1478
1479 #define fotg210_bus_suspend     NULL
1480 #define fotg210_bus_resume      NULL
1481
1482 /*-------------------------------------------------------------------------*/
1483
1484 static int check_reset_complete(
1485         struct fotg210_hcd      *fotg210,
1486         int             index,
1487         u32 __iomem     *status_reg,
1488         int             port_status
1489 ) {
1490         if (!(port_status & PORT_CONNECT))
1491                 return port_status;
1492
1493         /* if reset finished and it's still not enabled -- handoff */
1494         if (!(port_status & PORT_PE)) {
1495                 /* with integrated TT, there's nobody to hand it to! */
1496                 fotg210_dbg(fotg210,
1497                         "Failed to enable port %d on root hub TT\n",
1498                         index+1);
1499                 return port_status;
1500         } else {
1501                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1502                         index + 1);
1503         }
1504
1505         return port_status;
1506 }
1507
1508 /*-------------------------------------------------------------------------*/
1509
1510
1511 /* build "status change" packet (one or two bytes) from HC registers */
1512
1513 static int
1514 fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1515 {
1516         struct fotg210_hcd      *fotg210 = hcd_to_fotg210(hcd);
1517         u32             temp, status;
1518         u32             mask;
1519         int             retval = 1;
1520         unsigned long   flags;
1521
1522         /* init status to no-changes */
1523         buf[0] = 0;
1524
1525         /* Inform the core about resumes-in-progress by returning
1526          * a non-zero value even if there are no status changes.
1527          */
1528         status = fotg210->resuming_ports;
1529
1530         mask = PORT_CSC | PORT_PEC;
1531         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1532
1533         /* no hub change reports (bit 0) for now (power, ...) */
1534
1535         /* port N changes (bit N)? */
1536         spin_lock_irqsave(&fotg210->lock, flags);
1537
1538         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1539
1540         /*
1541          * Return status information even for ports with OWNER set.
1542          * Otherwise khubd wouldn't see the disconnect event when a
1543          * high-speed device is switched over to the companion
1544          * controller by the user.
1545          */
1546
1547         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend)
1548                         || (fotg210->reset_done[0] && time_after_eq(
1549                                 jiffies, fotg210->reset_done[0]))) {
1550                 buf[0] |= 1 << 1;
1551                 status = STS_PCD;
1552         }
1553         /* FIXME autosuspend idle root hubs */
1554         spin_unlock_irqrestore(&fotg210->lock, flags);
1555         return status ? retval : 0;
1556 }
1557
1558 /*-------------------------------------------------------------------------*/
1559
1560 static void
1561 fotg210_hub_descriptor(
1562         struct fotg210_hcd              *fotg210,
1563         struct usb_hub_descriptor       *desc
1564 ) {
1565         int             ports = HCS_N_PORTS(fotg210->hcs_params);
1566         u16             temp;
1567
1568         desc->bDescriptorType = 0x29;
1569         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1570         desc->bHubContrCurrent = 0;
1571
1572         desc->bNbrPorts = ports;
1573         temp = 1 + (ports / 8);
1574         desc->bDescLength = 7 + 2 * temp;
1575
1576         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1577         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1578         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1579
1580         temp = 0x0008;          /* per-port overcurrent reporting */
1581         temp |= 0x0002;         /* no power switching */
1582         desc->wHubCharacteristics = cpu_to_le16(temp);
1583 }
1584
1585 /*-------------------------------------------------------------------------*/
1586
1587 static int fotg210_hub_control(
1588         struct usb_hcd  *hcd,
1589         u16             typeReq,
1590         u16             wValue,
1591         u16             wIndex,
1592         char            *buf,
1593         u16             wLength
1594 ) {
1595         struct fotg210_hcd      *fotg210 = hcd_to_fotg210(hcd);
1596         int             ports = HCS_N_PORTS(fotg210->hcs_params);
1597         u32 __iomem     *status_reg = &fotg210->regs->port_status;
1598         u32             temp, temp1, status;
1599         unsigned long   flags;
1600         int             retval = 0;
1601         unsigned        selector;
1602
1603         /*
1604          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1605          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1606          * (track current state ourselves) ... blink for diagnostics,
1607          * power, "this is the one", etc.  EHCI spec supports this.
1608          */
1609
1610         spin_lock_irqsave(&fotg210->lock, flags);
1611         switch (typeReq) {
1612         case ClearHubFeature:
1613                 switch (wValue) {
1614                 case C_HUB_LOCAL_POWER:
1615                 case C_HUB_OVER_CURRENT:
1616                         /* no hub-wide feature/status flags */
1617                         break;
1618                 default:
1619                         goto error;
1620                 }
1621                 break;
1622         case ClearPortFeature:
1623                 if (!wIndex || wIndex > ports)
1624                         goto error;
1625                 wIndex--;
1626                 temp = fotg210_readl(fotg210, status_reg);
1627                 temp &= ~PORT_RWC_BITS;
1628
1629                 /*
1630                  * Even if OWNER is set, so the port is owned by the
1631                  * companion controller, khubd needs to be able to clear
1632                  * the port-change status bits (especially
1633                  * USB_PORT_STAT_C_CONNECTION).
1634                  */
1635
1636                 switch (wValue) {
1637                 case USB_PORT_FEAT_ENABLE:
1638                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1639                         break;
1640                 case USB_PORT_FEAT_C_ENABLE:
1641                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1642                         break;
1643                 case USB_PORT_FEAT_SUSPEND:
1644                         if (temp & PORT_RESET)
1645                                 goto error;
1646                         if (!(temp & PORT_SUSPEND))
1647                                 break;
1648                         if ((temp & PORT_PE) == 0)
1649                                 goto error;
1650
1651                         /* resume signaling for 20 msec */
1652                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1653                         fotg210->reset_done[wIndex] = jiffies
1654                                         + msecs_to_jiffies(20);
1655                         break;
1656                 case USB_PORT_FEAT_C_SUSPEND:
1657                         clear_bit(wIndex, &fotg210->port_c_suspend);
1658                         break;
1659                 case USB_PORT_FEAT_C_CONNECTION:
1660                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1661                         break;
1662                 case USB_PORT_FEAT_C_OVER_CURRENT:
1663                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1664                                        &fotg210->regs->otgisr);
1665                         break;
1666                 case USB_PORT_FEAT_C_RESET:
1667                         /* GetPortStatus clears reset */
1668                         break;
1669                 default:
1670                         goto error;
1671                 }
1672                 fotg210_readl(fotg210, &fotg210->regs->command);
1673                 break;
1674         case GetHubDescriptor:
1675                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1676                         buf);
1677                 break;
1678         case GetHubStatus:
1679                 /* no hub-wide feature/status flags */
1680                 memset(buf, 0, 4);
1681                 /*cpu_to_le32s ((u32 *) buf); */
1682                 break;
1683         case GetPortStatus:
1684                 if (!wIndex || wIndex > ports)
1685                         goto error;
1686                 wIndex--;
1687                 status = 0;
1688                 temp = fotg210_readl(fotg210, status_reg);
1689
1690                 /* wPortChange bits */
1691                 if (temp & PORT_CSC)
1692                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1693                 if (temp & PORT_PEC)
1694                         status |= USB_PORT_STAT_C_ENABLE << 16;
1695
1696                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1697                 if (temp1 & OTGISR_OVC)
1698                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1699
1700                 /* whoever resumes must GetPortStatus to complete it!! */
1701                 if (temp & PORT_RESUME) {
1702
1703                         /* Remote Wakeup received? */
1704                         if (!fotg210->reset_done[wIndex]) {
1705                                 /* resume signaling for 20 msec */
1706                                 fotg210->reset_done[wIndex] = jiffies
1707                                                 + msecs_to_jiffies(20);
1708                                 /* check the port again */
1709                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1710                                                 fotg210->reset_done[wIndex]);
1711                         }
1712
1713                         /* resume completed? */
1714                         else if (time_after_eq(jiffies,
1715                                         fotg210->reset_done[wIndex])) {
1716                                 clear_bit(wIndex, &fotg210->suspended_ports);
1717                                 set_bit(wIndex, &fotg210->port_c_suspend);
1718                                 fotg210->reset_done[wIndex] = 0;
1719
1720                                 /* stop resume signaling */
1721                                 temp = fotg210_readl(fotg210, status_reg);
1722                                 fotg210_writel(fotg210,
1723                                         temp & ~(PORT_RWC_BITS | PORT_RESUME),
1724                                         status_reg);
1725                                 clear_bit(wIndex, &fotg210->resuming_ports);
1726                                 retval = handshake(fotg210, status_reg,
1727                                            PORT_RESUME, 0, 2000 /* 2msec */);
1728                                 if (retval != 0) {
1729                                         fotg210_err(fotg210,
1730                                                 "port %d resume error %d\n",
1731                                                 wIndex + 1, retval);
1732                                         goto error;
1733                                 }
1734                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1735                         }
1736                 }
1737
1738                 /* whoever resets must GetPortStatus to complete it!! */
1739                 if ((temp & PORT_RESET)
1740                                 && time_after_eq(jiffies,
1741                                         fotg210->reset_done[wIndex])) {
1742                         status |= USB_PORT_STAT_C_RESET << 16;
1743                         fotg210->reset_done[wIndex] = 0;
1744                         clear_bit(wIndex, &fotg210->resuming_ports);
1745
1746                         /* force reset to complete */
1747                         fotg210_writel(fotg210,
1748                                        temp & ~(PORT_RWC_BITS | PORT_RESET),
1749                                        status_reg);
1750                         /* REVISIT:  some hardware needs 550+ usec to clear
1751                          * this bit; seems too long to spin routinely...
1752                          */
1753                         retval = handshake(fotg210, status_reg,
1754                                         PORT_RESET, 0, 1000);
1755                         if (retval != 0) {
1756                                 fotg210_err(fotg210, "port %d reset error %d\n",
1757                                         wIndex + 1, retval);
1758                                 goto error;
1759                         }
1760
1761                         /* see what we found out */
1762                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1763                                         fotg210_readl(fotg210, status_reg));
1764                 }
1765
1766                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1767                         fotg210->reset_done[wIndex] = 0;
1768                         clear_bit(wIndex, &fotg210->resuming_ports);
1769                 }
1770
1771                 /* transfer dedicated ports to the companion hc */
1772                 if ((temp & PORT_CONNECT) &&
1773                                 test_bit(wIndex, &fotg210->companion_ports)) {
1774                         temp &= ~PORT_RWC_BITS;
1775                         fotg210_writel(fotg210, temp, status_reg);
1776                         fotg210_dbg(fotg210, "port %d --> companion\n",
1777                                     wIndex + 1);
1778                         temp = fotg210_readl(fotg210, status_reg);
1779                 }
1780
1781                 /*
1782                  * Even if OWNER is set, there's no harm letting khubd
1783                  * see the wPortStatus values (they should all be 0 except
1784                  * for PORT_POWER anyway).
1785                  */
1786
1787                 if (temp & PORT_CONNECT) {
1788                         status |= USB_PORT_STAT_CONNECTION;
1789                         status |= fotg210_port_speed(fotg210, temp);
1790                 }
1791                 if (temp & PORT_PE)
1792                         status |= USB_PORT_STAT_ENABLE;
1793
1794                 /* maybe the port was unsuspended without our knowledge */
1795                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1796                         status |= USB_PORT_STAT_SUSPEND;
1797                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1798                         clear_bit(wIndex, &fotg210->suspended_ports);
1799                         clear_bit(wIndex, &fotg210->resuming_ports);
1800                         fotg210->reset_done[wIndex] = 0;
1801                         if (temp & PORT_PE)
1802                                 set_bit(wIndex, &fotg210->port_c_suspend);
1803                 }
1804
1805                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1806                 if (temp1 & OTGISR_OVC)
1807                         status |= USB_PORT_STAT_OVERCURRENT;
1808                 if (temp & PORT_RESET)
1809                         status |= USB_PORT_STAT_RESET;
1810                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1811                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1812
1813 #ifndef VERBOSE_DEBUG
1814         if (status & ~0xffff)   /* only if wPortChange is interesting */
1815 #endif
1816                 dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1817                 put_unaligned_le32(status, buf);
1818                 break;
1819         case SetHubFeature:
1820                 switch (wValue) {
1821                 case C_HUB_LOCAL_POWER:
1822                 case C_HUB_OVER_CURRENT:
1823                         /* no hub-wide feature/status flags */
1824                         break;
1825                 default:
1826                         goto error;
1827                 }
1828                 break;
1829         case SetPortFeature:
1830                 selector = wIndex >> 8;
1831                 wIndex &= 0xff;
1832
1833                 if (!wIndex || wIndex > ports)
1834                         goto error;
1835                 wIndex--;
1836                 temp = fotg210_readl(fotg210, status_reg);
1837                 temp &= ~PORT_RWC_BITS;
1838                 switch (wValue) {
1839                 case USB_PORT_FEAT_SUSPEND:
1840                         if ((temp & PORT_PE) == 0
1841                                         || (temp & PORT_RESET) != 0)
1842                                 goto error;
1843
1844                         /* After above check the port must be connected.
1845                          * Set appropriate bit thus could put phy into low power
1846                          * mode if we have hostpc feature
1847                          */
1848                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1849                                        status_reg);
1850                         set_bit(wIndex, &fotg210->suspended_ports);
1851                         break;
1852                 case USB_PORT_FEAT_RESET:
1853                         if (temp & PORT_RESUME)
1854                                 goto error;
1855                         /* line status bits may report this as low speed,
1856                          * which can be fine if this root hub has a
1857                          * transaction translator built in.
1858                          */
1859                         fotg210_vdbg(fotg210, "port %d reset\n", wIndex + 1);
1860                         temp |= PORT_RESET;
1861                         temp &= ~PORT_PE;
1862
1863                         /*
1864                          * caller must wait, then call GetPortStatus
1865                          * usb 2.0 spec says 50 ms resets on root
1866                          */
1867                         fotg210->reset_done[wIndex] = jiffies
1868                                         + msecs_to_jiffies(50);
1869                         fotg210_writel(fotg210, temp, status_reg);
1870                         break;
1871
1872                 /* For downstream facing ports (these):  one hub port is put
1873                  * into test mode according to USB2 11.24.2.13, then the hub
1874                  * must be reset (which for root hub now means rmmod+modprobe,
1875                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1876                  * about the EHCI-specific stuff.
1877                  */
1878                 case USB_PORT_FEAT_TEST:
1879                         if (!selector || selector > 5)
1880                                 goto error;
1881                         spin_unlock_irqrestore(&fotg210->lock, flags);
1882                         fotg210_quiesce(fotg210);
1883                         spin_lock_irqsave(&fotg210->lock, flags);
1884
1885                         /* Put all enabled ports into suspend */
1886                         temp = fotg210_readl(fotg210, status_reg) &
1887                                 ~PORT_RWC_BITS;
1888                         if (temp & PORT_PE)
1889                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1890                                                 status_reg);
1891
1892                         spin_unlock_irqrestore(&fotg210->lock, flags);
1893                         fotg210_halt(fotg210);
1894                         spin_lock_irqsave(&fotg210->lock, flags);
1895
1896                         temp = fotg210_readl(fotg210, status_reg);
1897                         temp |= selector << 16;
1898                         fotg210_writel(fotg210, temp, status_reg);
1899                         break;
1900
1901                 default:
1902                         goto error;
1903                 }
1904                 fotg210_readl(fotg210, &fotg210->regs->command);
1905                 break;
1906
1907         default:
1908 error:
1909                 /* "stall" on error */
1910                 retval = -EPIPE;
1911         }
1912         spin_unlock_irqrestore(&fotg210->lock, flags);
1913         return retval;
1914 }
1915
1916 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1917                 int portnum)
1918 {
1919         return;
1920 }
1921
1922 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1923                 int portnum)
1924 {
1925         return 0;
1926 }
1927 /*-------------------------------------------------------------------------*/
1928 /*
1929  * There's basically three types of memory:
1930  *      - data used only by the HCD ... kmalloc is fine
1931  *      - async and periodic schedules, shared by HC and HCD ... these
1932  *        need to use dma_pool or dma_alloc_coherent
1933  *      - driver buffers, read/written by HC ... single shot DMA mapped
1934  *
1935  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1936  * No memory seen by this driver is pageable.
1937  */
1938
1939 /*-------------------------------------------------------------------------*/
1940
1941 /* Allocate the key transfer structures from the previously allocated pool */
1942
1943 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1944                                     struct fotg210_qtd *qtd, dma_addr_t dma)
1945 {
1946         memset(qtd, 0, sizeof(*qtd));
1947         qtd->qtd_dma = dma;
1948         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1949         qtd->hw_next = FOTG210_LIST_END(fotg210);
1950         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1951         INIT_LIST_HEAD(&qtd->qtd_list);
1952 }
1953
1954 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1955                                              gfp_t flags)
1956 {
1957         struct fotg210_qtd              *qtd;
1958         dma_addr_t              dma;
1959
1960         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1961         if (qtd != NULL)
1962                 fotg210_qtd_init(fotg210, qtd, dma);
1963
1964         return qtd;
1965 }
1966
1967 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1968                                     struct fotg210_qtd *qtd)
1969 {
1970         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1971 }
1972
1973
1974 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1975 {
1976         /* clean qtds first, and know this is not linked */
1977         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1978                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1979                 BUG();
1980         }
1981         if (qh->dummy)
1982                 fotg210_qtd_free(fotg210, qh->dummy);
1983         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1984         kfree(qh);
1985 }
1986
1987 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1988                                            gfp_t flags)
1989 {
1990         struct fotg210_qh               *qh;
1991         dma_addr_t              dma;
1992
1993         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1994         if (!qh)
1995                 goto done;
1996         qh->hw = (struct fotg210_qh_hw *)
1997                 dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1998         if (!qh->hw)
1999                 goto fail;
2000         memset(qh->hw, 0, sizeof(*qh->hw));
2001         qh->qh_dma = dma;
2002         INIT_LIST_HEAD(&qh->qtd_list);
2003
2004         /* dummy td enables safe urb queuing */
2005         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
2006         if (qh->dummy == NULL) {
2007                 fotg210_dbg(fotg210, "no dummy td\n");
2008                 goto fail1;
2009         }
2010 done:
2011         return qh;
2012 fail1:
2013         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
2014 fail:
2015         kfree(qh);
2016         return NULL;
2017 }
2018
2019 /*-------------------------------------------------------------------------*/
2020
2021 /* The queue heads and transfer descriptors are managed from pools tied
2022  * to each of the "per device" structures.
2023  * This is the initialisation and cleanup code.
2024  */
2025
2026 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
2027 {
2028         if (fotg210->async)
2029                 qh_destroy(fotg210, fotg210->async);
2030         fotg210->async = NULL;
2031
2032         if (fotg210->dummy)
2033                 qh_destroy(fotg210, fotg210->dummy);
2034         fotg210->dummy = NULL;
2035
2036         /* DMA consistent memory and pools */
2037         if (fotg210->qtd_pool)
2038                 dma_pool_destroy(fotg210->qtd_pool);
2039         fotg210->qtd_pool = NULL;
2040
2041         if (fotg210->qh_pool) {
2042                 dma_pool_destroy(fotg210->qh_pool);
2043                 fotg210->qh_pool = NULL;
2044         }
2045
2046         if (fotg210->itd_pool)
2047                 dma_pool_destroy(fotg210->itd_pool);
2048         fotg210->itd_pool = NULL;
2049
2050         if (fotg210->periodic)
2051                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
2052                         fotg210->periodic_size * sizeof(u32),
2053                         fotg210->periodic, fotg210->periodic_dma);
2054         fotg210->periodic = NULL;
2055
2056         /* shadow periodic table */
2057         kfree(fotg210->pshadow);
2058         fotg210->pshadow = NULL;
2059 }
2060
2061 /* remember to add cleanup code (above) if you add anything here */
2062 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
2063 {
2064         int i;
2065
2066         /* QTDs for control/bulk/intr transfers */
2067         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
2068                         fotg210_to_hcd(fotg210)->self.controller,
2069                         sizeof(struct fotg210_qtd),
2070                         32 /* byte alignment (for hw parts) */,
2071                         4096 /* can't cross 4K */);
2072         if (!fotg210->qtd_pool)
2073                 goto fail;
2074
2075         /* QHs for control/bulk/intr transfers */
2076         fotg210->qh_pool = dma_pool_create("fotg210_qh",
2077                         fotg210_to_hcd(fotg210)->self.controller,
2078                         sizeof(struct fotg210_qh_hw),
2079                         32 /* byte alignment (for hw parts) */,
2080                         4096 /* can't cross 4K */);
2081         if (!fotg210->qh_pool)
2082                 goto fail;
2083
2084         fotg210->async = fotg210_qh_alloc(fotg210, flags);
2085         if (!fotg210->async)
2086                 goto fail;
2087
2088         /* ITD for high speed ISO transfers */
2089         fotg210->itd_pool = dma_pool_create("fotg210_itd",
2090                         fotg210_to_hcd(fotg210)->self.controller,
2091                         sizeof(struct fotg210_itd),
2092                         64 /* byte alignment (for hw parts) */,
2093                         4096 /* can't cross 4K */);
2094         if (!fotg210->itd_pool)
2095                 goto fail;
2096
2097         /* Hardware periodic table */
2098         fotg210->periodic = (__le32 *)
2099                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
2100                         fotg210->periodic_size * sizeof(__le32),
2101                         &fotg210->periodic_dma, 0);
2102         if (fotg210->periodic == NULL)
2103                 goto fail;
2104
2105         for (i = 0; i < fotg210->periodic_size; i++)
2106                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
2107
2108         /* software shadow of hardware table */
2109         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
2110                                    flags);
2111         if (fotg210->pshadow != NULL)
2112                 return 0;
2113
2114 fail:
2115         fotg210_dbg(fotg210, "couldn't init memory\n");
2116         fotg210_mem_cleanup(fotg210);
2117         return -ENOMEM;
2118 }
2119 /*-------------------------------------------------------------------------*/
2120 /*
2121  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
2122  *
2123  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2124  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2125  * buffers needed for the larger number).  We use one QH per endpoint, queue
2126  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2127  *
2128  * ISO traffic uses "ISO TD" (itd) records, and (along with
2129  * interrupts) needs careful scheduling.  Performance improvements can be
2130  * an ongoing challenge.  That's in "ehci-sched.c".
2131  *
2132  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2133  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2134  * (b) special fields in qh entries or (c) split iso entries.  TTs will
2135  * buffer low/full speed data so the host collects it at high speed.
2136  */
2137
2138 /*-------------------------------------------------------------------------*/
2139
2140 /* fill a qtd, returning how much of the buffer we were able to queue up */
2141
2142 static int
2143 qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd, dma_addr_t buf,
2144                   size_t len, int token, int maxpacket)
2145 {
2146         int     i, count;
2147         u64     addr = buf;
2148
2149         /* one buffer entry per 4K ... first might be short or unaligned */
2150         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2151         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2152         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2153         if (likely(len < count))                /* ... iff needed */
2154                 count = len;
2155         else {
2156                 buf +=  0x1000;
2157                 buf &= ~0x0fff;
2158
2159                 /* per-qtd limit: from 16K to 20K (best alignment) */
2160                 for (i = 1; count < len && i < 5; i++) {
2161                         addr = buf;
2162                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2163                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2164                                         (u32)(addr >> 32));
2165                         buf += 0x1000;
2166                         if ((count + 0x1000) < len)
2167                                 count += 0x1000;
2168                         else
2169                                 count = len;
2170                 }
2171
2172                 /* short packets may only terminate transfers */
2173                 if (count != len)
2174                         count -= (count % maxpacket);
2175         }
2176         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2177         qtd->length = count;
2178
2179         return count;
2180 }
2181
2182 /*-------------------------------------------------------------------------*/
2183
2184 static inline void
2185 qh_update(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
2186           struct fotg210_qtd *qtd)
2187 {
2188         struct fotg210_qh_hw *hw = qh->hw;
2189
2190         /* writes to an active overlay are unsafe */
2191         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2192
2193         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2194         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2195
2196         /* Except for control endpoints, we make hardware maintain data
2197          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2198          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2199          * ever clear it.
2200          */
2201         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2202                 unsigned        is_out, epnum;
2203
2204                 is_out = qh->is_out;
2205                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2206                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2207                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2208                         usb_settoggle(qh->dev, epnum, is_out, 1);
2209                 }
2210         }
2211
2212         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2213 }
2214
2215 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2216  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2217  * recovery (including urb dequeue) would need software changes to a QH...
2218  */
2219 static void
2220 qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2221 {
2222         struct fotg210_qtd *qtd;
2223
2224         if (list_empty(&qh->qtd_list))
2225                 qtd = qh->dummy;
2226         else {
2227                 qtd = list_entry(qh->qtd_list.next,
2228                                 struct fotg210_qtd, qtd_list);
2229                 /*
2230                  * first qtd may already be partially processed.
2231                  * If we come here during unlink, the QH overlay region
2232                  * might have reference to the just unlinked qtd. The
2233                  * qtd is updated in qh_completions(). Update the QH
2234                  * overlay here.
2235                  */
2236                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2237                         qh->hw->hw_qtd_next = qtd->hw_next;
2238                         qtd = NULL;
2239                 }
2240         }
2241
2242         if (qtd)
2243                 qh_update(fotg210, qh, qtd);
2244 }
2245
2246 /*-------------------------------------------------------------------------*/
2247
2248 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2249
2250 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2251                 struct usb_host_endpoint *ep)
2252 {
2253         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
2254         struct fotg210_qh               *qh = ep->hcpriv;
2255         unsigned long           flags;
2256
2257         spin_lock_irqsave(&fotg210->lock, flags);
2258         qh->clearing_tt = 0;
2259         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2260                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2261                 qh_link_async(fotg210, qh);
2262         spin_unlock_irqrestore(&fotg210->lock, flags);
2263 }
2264
2265 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2266                                     struct fotg210_qh *qh,
2267                                     struct urb *urb, u32 token)
2268 {
2269
2270         /* If an async split transaction gets an error or is unlinked,
2271          * the TT buffer may be left in an indeterminate state.  We
2272          * have to clear the TT buffer.
2273          *
2274          * Note: this routine is never called for Isochronous transfers.
2275          */
2276         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2277 #ifdef DEBUG
2278                 struct usb_device *tt = urb->dev->tt->hub;
2279                 dev_dbg(&tt->dev,
2280                         "clear tt buffer port %d, a%d ep%d t%08x\n",
2281                         urb->dev->ttport, urb->dev->devnum,
2282                         usb_pipeendpoint(urb->pipe), token);
2283 #endif /* DEBUG */
2284                 if (urb->dev->tt->hub !=
2285                     fotg210_to_hcd(fotg210)->self.root_hub) {
2286                         if (usb_hub_clear_tt_buffer(urb) == 0)
2287                                 qh->clearing_tt = 1;
2288                 }
2289         }
2290 }
2291
2292 static int qtd_copy_status(
2293         struct fotg210_hcd *fotg210,
2294         struct urb *urb,
2295         size_t length,
2296         u32 token
2297 )
2298 {
2299         int     status = -EINPROGRESS;
2300
2301         /* count IN/OUT bytes, not SETUP (even short packets) */
2302         if (likely(QTD_PID(token) != 2))
2303                 urb->actual_length += length - QTD_LENGTH(token);
2304
2305         /* don't modify error codes */
2306         if (unlikely(urb->unlinked))
2307                 return status;
2308
2309         /* force cleanup after short read; not always an error */
2310         if (unlikely(IS_SHORT_READ(token)))
2311                 status = -EREMOTEIO;
2312
2313         /* serious "can't proceed" faults reported by the hardware */
2314         if (token & QTD_STS_HALT) {
2315                 if (token & QTD_STS_BABBLE) {
2316                         /* FIXME "must" disable babbling device's port too */
2317                         status = -EOVERFLOW;
2318                 /* CERR nonzero + halt --> stall */
2319                 } else if (QTD_CERR(token)) {
2320                         status = -EPIPE;
2321
2322                 /* In theory, more than one of the following bits can be set
2323                  * since they are sticky and the transaction is retried.
2324                  * Which to test first is rather arbitrary.
2325                  */
2326                 } else if (token & QTD_STS_MMF) {
2327                         /* fs/ls interrupt xfer missed the complete-split */
2328                         status = -EPROTO;
2329                 } else if (token & QTD_STS_DBE) {
2330                         status = (QTD_PID(token) == 1) /* IN ? */
2331                                 ? -ENOSR  /* hc couldn't read data */
2332                                 : -ECOMM; /* hc couldn't write data */
2333                 } else if (token & QTD_STS_XACT) {
2334                         /* timeout, bad CRC, wrong PID, etc */
2335                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2336                                 urb->dev->devpath,
2337                                 usb_pipeendpoint(urb->pipe),
2338                                 usb_pipein(urb->pipe) ? "in" : "out");
2339                         status = -EPROTO;
2340                 } else {        /* unknown */
2341                         status = -EPROTO;
2342                 }
2343
2344                 fotg210_vdbg(fotg210,
2345                         "dev%d ep%d%s qtd token %08x --> status %d\n",
2346                         usb_pipedevice(urb->pipe),
2347                         usb_pipeendpoint(urb->pipe),
2348                         usb_pipein(urb->pipe) ? "in" : "out",
2349                         token, status);
2350         }
2351
2352         return status;
2353 }
2354
2355 static void
2356 fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb, int status)
2357 __releases(fotg210->lock)
2358 __acquires(fotg210->lock)
2359 {
2360         if (likely(urb->hcpriv != NULL)) {
2361                 struct fotg210_qh       *qh = (struct fotg210_qh *) urb->hcpriv;
2362
2363                 /* S-mask in a QH means it's an interrupt urb */
2364                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2365
2366                         /* ... update hc-wide periodic stats (for usbfs) */
2367                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2368                 }
2369         }
2370
2371         if (unlikely(urb->unlinked)) {
2372                 COUNT(fotg210->stats.unlink);
2373         } else {
2374                 /* report non-error and short read status as zero */
2375                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2376                         status = 0;
2377                 COUNT(fotg210->stats.complete);
2378         }
2379
2380 #ifdef FOTG210_URB_TRACE
2381         fotg210_dbg(fotg210,
2382                 "%s %s urb %p ep%d%s status %d len %d/%d\n",
2383                 __func__, urb->dev->devpath, urb,
2384                 usb_pipeendpoint(urb->pipe),
2385                 usb_pipein(urb->pipe) ? "in" : "out",
2386                 status,
2387                 urb->actual_length, urb->transfer_buffer_length);
2388 #endif
2389
2390         /* complete() can reenter this HCD */
2391         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2392         spin_unlock(&fotg210->lock);
2393         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2394         spin_lock(&fotg210->lock);
2395 }
2396
2397 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2398
2399 /*
2400  * Process and free completed qtds for a qh, returning URBs to drivers.
2401  * Chases up to qh->hw_current.  Returns number of completions called,
2402  * indicating how much "real" work we did.
2403  */
2404 static unsigned
2405 qh_completions(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2406 {
2407         struct fotg210_qtd              *last, *end = qh->dummy;
2408         struct list_head        *entry, *tmp;
2409         int                     last_status;
2410         int                     stopped;
2411         unsigned                count = 0;
2412         u8                      state;
2413         struct fotg210_qh_hw    *hw = qh->hw;
2414
2415         if (unlikely(list_empty(&qh->qtd_list)))
2416                 return count;
2417
2418         /* completions (or tasks on other cpus) must never clobber HALT
2419          * till we've gone through and cleaned everything up, even when
2420          * they add urbs to this qh's queue or mark them for unlinking.
2421          *
2422          * NOTE:  unlinking expects to be done in queue order.
2423          *
2424          * It's a bug for qh->qh_state to be anything other than
2425          * QH_STATE_IDLE, unless our caller is scan_async() or
2426          * scan_intr().
2427          */
2428         state = qh->qh_state;
2429         qh->qh_state = QH_STATE_COMPLETING;
2430         stopped = (state == QH_STATE_IDLE);
2431
2432  rescan:
2433         last = NULL;
2434         last_status = -EINPROGRESS;
2435         qh->needs_rescan = 0;
2436
2437         /* remove de-activated QTDs from front of queue.
2438          * after faults (including short reads), cleanup this urb
2439          * then let the queue advance.
2440          * if queue is stopped, handles unlinks.
2441          */
2442         list_for_each_safe(entry, tmp, &qh->qtd_list) {
2443                 struct fotg210_qtd      *qtd;
2444                 struct urb      *urb;
2445                 u32             token = 0;
2446
2447                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2448                 urb = qtd->urb;
2449
2450                 /* clean up any state from previous QTD ...*/
2451                 if (last) {
2452                         if (likely(last->urb != urb)) {
2453                                 fotg210_urb_done(fotg210, last->urb,
2454                                                  last_status);
2455                                 count++;
2456                                 last_status = -EINPROGRESS;
2457                         }
2458                         fotg210_qtd_free(fotg210, last);
2459                         last = NULL;
2460                 }
2461
2462                 /* ignore urbs submitted during completions we reported */
2463                 if (qtd == end)
2464                         break;
2465
2466                 /* hardware copies qtd out of qh overlay */
2467                 rmb();
2468                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2469
2470                 /* always clean up qtds the hc de-activated */
2471  retry_xacterr:
2472                 if ((token & QTD_STS_ACTIVE) == 0) {
2473
2474                         /* Report Data Buffer Error: non-fatal but useful */
2475                         if (token & QTD_STS_DBE)
2476                                 fotg210_dbg(fotg210,
2477                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2478                                         urb,
2479                                         usb_endpoint_num(&urb->ep->desc),
2480                                         usb_endpoint_dir_in(&urb->ep->desc)
2481                                                 ? "in" : "out",
2482                                         urb->transfer_buffer_length,
2483                                         qtd,
2484                                         qh);
2485
2486                         /* on STALL, error, and short reads this urb must
2487                          * complete and all its qtds must be recycled.
2488                          */
2489                         if ((token & QTD_STS_HALT) != 0) {
2490
2491                                 /* retry transaction errors until we
2492                                  * reach the software xacterr limit
2493                                  */
2494                                 if ((token & QTD_STS_XACT) &&
2495                                         QTD_CERR(token) == 0 &&
2496                                         ++qh->xacterrs < QH_XACTERR_MAX &&
2497                                         !urb->unlinked) {
2498                                         fotg210_dbg(fotg210,
2499         "detected XactErr len %zu/%zu retry %d\n",
2500         qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
2501
2502                                         /* reset the token in the qtd and the
2503                                          * qh overlay (which still contains
2504                                          * the qtd) so that we pick up from
2505                                          * where we left off
2506                                          */
2507                                         token &= ~QTD_STS_HALT;
2508                                         token |= QTD_STS_ACTIVE |
2509                                                  (FOTG210_TUNE_CERR << 10);
2510                                         qtd->hw_token = cpu_to_hc32(fotg210,
2511                                                         token);
2512                                         wmb();
2513                                         hw->hw_token = cpu_to_hc32(fotg210,
2514                                                         token);
2515                                         goto retry_xacterr;
2516                                 }
2517                                 stopped = 1;
2518
2519                         /* magic dummy for some short reads; qh won't advance.
2520                          * that silicon quirk can kick in with this dummy too.
2521                          *
2522                          * other short reads won't stop the queue, including
2523                          * control transfers (status stage handles that) or
2524                          * most other single-qtd reads ... the queue stops if
2525                          * URB_SHORT_NOT_OK was set so the driver submitting
2526                          * the urbs could clean it up.
2527                          */
2528                         } else if (IS_SHORT_READ(token)
2529                                         && !(qtd->hw_alt_next
2530                                                 & FOTG210_LIST_END(fotg210))) {
2531                                 stopped = 1;
2532                         }
2533
2534                 /* stop scanning when we reach qtds the hc is using */
2535                 } else if (likely(!stopped
2536                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2537                         break;
2538
2539                 /* scan the whole queue for unlinks whenever it stops */
2540                 } else {
2541                         stopped = 1;
2542
2543                         /* cancel everything if we halt, suspend, etc */
2544                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2545                                 last_status = -ESHUTDOWN;
2546
2547                         /* this qtd is active; skip it unless a previous qtd
2548                          * for its urb faulted, or its urb was canceled.
2549                          */
2550                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2551                                 continue;
2552
2553                         /* qh unlinked; token in overlay may be most current */
2554                         if (state == QH_STATE_IDLE
2555                                         && cpu_to_hc32(fotg210, qtd->qtd_dma)
2556                                                 == hw->hw_current) {
2557                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2558
2559                                 /* An unlink may leave an incomplete
2560                                  * async transaction in the TT buffer.
2561                                  * We have to clear it.
2562                                  */
2563                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2564                                                         token);
2565                         }
2566                 }
2567
2568                 /* unless we already know the urb's status, collect qtd status
2569                  * and update count of bytes transferred.  in common short read
2570                  * cases with only one data qtd (including control transfers),
2571                  * queue processing won't halt.  but with two or more qtds (for
2572                  * example, with a 32 KB transfer), when the first qtd gets a
2573                  * short read the second must be removed by hand.
2574                  */
2575                 if (last_status == -EINPROGRESS) {
2576                         last_status = qtd_copy_status(fotg210, urb,
2577                                         qtd->length, token);
2578                         if (last_status == -EREMOTEIO
2579                                         && (qtd->hw_alt_next
2580                                                 & FOTG210_LIST_END(fotg210)))
2581                                 last_status = -EINPROGRESS;
2582
2583                         /* As part of low/full-speed endpoint-halt processing
2584                          * we must clear the TT buffer (11.17.5).
2585                          */
2586                         if (unlikely(last_status != -EINPROGRESS &&
2587                                         last_status != -EREMOTEIO)) {
2588                                 /* The TT's in some hubs malfunction when they
2589                                  * receive this request following a STALL (they
2590                                  * stop sending isochronous packets).  Since a
2591                                  * STALL can't leave the TT buffer in a busy
2592                                  * state (if you believe Figures 11-48 - 11-51
2593                                  * in the USB 2.0 spec), we won't clear the TT
2594                                  * buffer in this case.  Strictly speaking this
2595                                  * is a violation of the spec.
2596                                  */
2597                                 if (last_status != -EPIPE)
2598                                         fotg210_clear_tt_buffer(fotg210, qh,
2599                                                                 urb, token);
2600                         }
2601                 }
2602
2603                 /* if we're removing something not at the queue head,
2604                  * patch the hardware queue pointer.
2605                  */
2606                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2607                         last = list_entry(qtd->qtd_list.prev,
2608                                         struct fotg210_qtd, qtd_list);
2609                         last->hw_next = qtd->hw_next;
2610                 }
2611
2612                 /* remove qtd; it's recycled after possible urb completion */
2613                 list_del(&qtd->qtd_list);
2614                 last = qtd;
2615
2616                 /* reinit the xacterr counter for the next qtd */
2617                 qh->xacterrs = 0;
2618         }
2619
2620         /* last urb's completion might still need calling */
2621         if (likely(last != NULL)) {
2622                 fotg210_urb_done(fotg210, last->urb, last_status);
2623                 count++;
2624                 fotg210_qtd_free(fotg210, last);
2625         }
2626
2627         /* Do we need to rescan for URBs dequeued during a giveback? */
2628         if (unlikely(qh->needs_rescan)) {
2629                 /* If the QH is already unlinked, do the rescan now. */
2630                 if (state == QH_STATE_IDLE)
2631                         goto rescan;
2632
2633                 /* Otherwise we have to wait until the QH is fully unlinked.
2634                  * Our caller will start an unlink if qh->needs_rescan is
2635                  * set.  But if an unlink has already started, nothing needs
2636                  * to be done.
2637                  */
2638                 if (state != QH_STATE_LINKED)
2639                         qh->needs_rescan = 0;
2640         }
2641
2642         /* restore original state; caller must unlink or relink */
2643         qh->qh_state = state;
2644
2645         /* be sure the hardware's done with the qh before refreshing
2646          * it after fault cleanup, or recovering from silicon wrongly
2647          * overlaying the dummy qtd (which reduces DMA chatter).
2648          */
2649         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2650                 switch (state) {
2651                 case QH_STATE_IDLE:
2652                         qh_refresh(fotg210, qh);
2653                         break;
2654                 case QH_STATE_LINKED:
2655                         /* We won't refresh a QH that's linked (after the HC
2656                          * stopped the queue).  That avoids a race:
2657                          *  - HC reads first part of QH;
2658                          *  - CPU updates that first part and the token;
2659                          *  - HC reads rest of that QH, including token
2660                          * Result:  HC gets an inconsistent image, and then
2661                          * DMAs to/from the wrong memory (corrupting it).
2662                          *
2663                          * That should be rare for interrupt transfers,
2664                          * except maybe high bandwidth ...
2665                          */
2666
2667                         /* Tell the caller to start an unlink */
2668                         qh->needs_rescan = 1;
2669                         break;
2670                 /* otherwise, unlink already started */
2671                 }
2672         }
2673
2674         return count;
2675 }
2676
2677 /*-------------------------------------------------------------------------*/
2678
2679 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2680 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2681 /* ... and packet size, for any kind of endpoint descriptor */
2682 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2683
2684 /*
2685  * reverse of qh_urb_transaction:  free a list of TDs.
2686  * used for cleanup after errors, before HC sees an URB's TDs.
2687  */
2688 static void qtd_list_free(
2689         struct fotg210_hcd              *fotg210,
2690         struct urb              *urb,
2691         struct list_head        *qtd_list
2692 ) {
2693         struct list_head        *entry, *temp;
2694
2695         list_for_each_safe(entry, temp, qtd_list) {
2696                 struct fotg210_qtd      *qtd;
2697
2698                 qtd = list_entry(entry, struct fotg210_qtd, qtd_list);
2699                 list_del(&qtd->qtd_list);
2700                 fotg210_qtd_free(fotg210, qtd);
2701         }
2702 }
2703
2704 /*
2705  * create a list of filled qtds for this URB; won't link into qh.
2706  */
2707 static struct list_head *
2708 qh_urb_transaction(
2709         struct fotg210_hcd              *fotg210,
2710         struct urb              *urb,
2711         struct list_head        *head,
2712         gfp_t                   flags
2713 ) {
2714         struct fotg210_qtd              *qtd, *qtd_prev;
2715         dma_addr_t              buf;
2716         int                     len, this_sg_len, maxpacket;
2717         int                     is_input;
2718         u32                     token;
2719         int                     i;
2720         struct scatterlist      *sg;
2721
2722         /*
2723          * URBs map to sequences of QTDs:  one logical transaction
2724          */
2725         qtd = fotg210_qtd_alloc(fotg210, flags);
2726         if (unlikely(!qtd))
2727                 return NULL;
2728         list_add_tail(&qtd->qtd_list, head);
2729         qtd->urb = urb;
2730
2731         token = QTD_STS_ACTIVE;
2732         token |= (FOTG210_TUNE_CERR << 10);
2733         /* for split transactions, SplitXState initialized to zero */
2734
2735         len = urb->transfer_buffer_length;
2736         is_input = usb_pipein(urb->pipe);
2737         if (usb_pipecontrol(urb->pipe)) {
2738                 /* SETUP pid */
2739                 qtd_fill(fotg210, qtd, urb->setup_dma,
2740                                 sizeof(struct usb_ctrlrequest),
2741                                 token | (2 /* "setup" */ << 8), 8);
2742
2743                 /* ... and always at least one more pid */
2744                 token ^= QTD_TOGGLE;
2745                 qtd_prev = qtd;
2746                 qtd = fotg210_qtd_alloc(fotg210, flags);
2747                 if (unlikely(!qtd))
2748                         goto cleanup;
2749                 qtd->urb = urb;
2750                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2751                 list_add_tail(&qtd->qtd_list, head);
2752
2753                 /* for zero length DATA stages, STATUS is always IN */
2754                 if (len == 0)
2755                         token |= (1 /* "in" */ << 8);
2756         }
2757
2758         /*
2759          * data transfer stage:  buffer setup
2760          */
2761         i = urb->num_mapped_sgs;
2762         if (len > 0 && i > 0) {
2763                 sg = urb->sg;
2764                 buf = sg_dma_address(sg);
2765
2766                 /* urb->transfer_buffer_length may be smaller than the
2767                  * size of the scatterlist (or vice versa)
2768                  */
2769                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2770         } else {
2771                 sg = NULL;
2772                 buf = urb->transfer_dma;
2773                 this_sg_len = len;
2774         }
2775
2776         if (is_input)
2777                 token |= (1 /* "in" */ << 8);
2778         /* else it's already initted to "out" pid (0 << 8) */
2779
2780         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2781
2782         /*
2783          * buffer gets wrapped in one or more qtds;
2784          * last one may be "short" (including zero len)
2785          * and may serve as a control status ack
2786          */
2787         for (;;) {
2788                 int this_qtd_len;
2789
2790                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2791                                 maxpacket);
2792                 this_sg_len -= this_qtd_len;
2793                 len -= this_qtd_len;
2794                 buf += this_qtd_len;
2795
2796                 /*
2797                  * short reads advance to a "magic" dummy instead of the next
2798                  * qtd ... that forces the queue to stop, for manual cleanup.
2799                  * (this will usually be overridden later.)
2800                  */
2801                 if (is_input)
2802                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2803
2804                 /* qh makes control packets use qtd toggle; maybe switch it */
2805                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2806                         token ^= QTD_TOGGLE;
2807
2808                 if (likely(this_sg_len <= 0)) {
2809                         if (--i <= 0 || len <= 0)
2810                                 break;
2811                         sg = sg_next(sg);
2812                         buf = sg_dma_address(sg);
2813                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2814                 }
2815
2816                 qtd_prev = qtd;
2817                 qtd = fotg210_qtd_alloc(fotg210, flags);
2818                 if (unlikely(!qtd))
2819                         goto cleanup;
2820                 qtd->urb = urb;
2821                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2822                 list_add_tail(&qtd->qtd_list, head);
2823         }
2824
2825         /*
2826          * unless the caller requires manual cleanup after short reads,
2827          * have the alt_next mechanism keep the queue running after the
2828          * last data qtd (the only one, for control and most other cases).
2829          */
2830         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
2831                                 || usb_pipecontrol(urb->pipe)))
2832                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2833
2834         /*
2835          * control requests may need a terminating data "status" ack;
2836          * other OUT ones may need a terminating short packet
2837          * (zero length).
2838          */
2839         if (likely(urb->transfer_buffer_length != 0)) {
2840                 int     one_more = 0;
2841
2842                 if (usb_pipecontrol(urb->pipe)) {
2843                         one_more = 1;
2844                         token ^= 0x0100;        /* "in" <--> "out"  */
2845                         token |= QTD_TOGGLE;    /* force DATA1 */
2846                 } else if (usb_pipeout(urb->pipe)
2847                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2848                                 && !(urb->transfer_buffer_length % maxpacket)) {
2849                         one_more = 1;
2850                 }
2851                 if (one_more) {
2852                         qtd_prev = qtd;
2853                         qtd = fotg210_qtd_alloc(fotg210, flags);
2854                         if (unlikely(!qtd))
2855                                 goto cleanup;
2856                         qtd->urb = urb;
2857                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2858                         list_add_tail(&qtd->qtd_list, head);
2859
2860                         /* never any data in such packets */
2861                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2862                 }
2863         }
2864
2865         /* by default, enable interrupt on urb completion */
2866         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2867                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2868         return head;
2869
2870 cleanup:
2871         qtd_list_free(fotg210, urb, head);
2872         return NULL;
2873 }
2874
2875 /*-------------------------------------------------------------------------*/
2876 /*
2877  * Would be best to create all qh's from config descriptors,
2878  * when each interface/altsetting is established.  Unlink
2879  * any previous qh and cancel its urbs first; endpoints are
2880  * implicitly reset then (data toggle too).
2881  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2882 */
2883
2884
2885 /*
2886  * Each QH holds a qtd list; a QH is used for everything except iso.
2887  *
2888  * For interrupt urbs, the scheduler must set the microframe scheduling
2889  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2890  * just one microframe in the s-mask.  For split interrupt transactions
2891  * there are additional complications: c-mask, maybe FSTNs.
2892  */
2893 static struct fotg210_qh *
2894 qh_make(
2895         struct fotg210_hcd              *fotg210,
2896         struct urb              *urb,
2897         gfp_t                   flags
2898 ) {
2899         struct fotg210_qh               *qh = fotg210_qh_alloc(fotg210, flags);
2900         u32                     info1 = 0, info2 = 0;
2901         int                     is_input, type;
2902         int                     maxp = 0;
2903         struct usb_tt           *tt = urb->dev->tt;
2904         struct fotg210_qh_hw    *hw;
2905
2906         if (!qh)
2907                 return qh;
2908
2909         /*
2910          * init endpoint/device data for this QH
2911          */
2912         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2913         info1 |= usb_pipedevice(urb->pipe) << 0;
2914
2915         is_input = usb_pipein(urb->pipe);
2916         type = usb_pipetype(urb->pipe);
2917         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2918
2919         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2920          * acts like up to 3KB, but is built from smaller packets.
2921          */
2922         if (max_packet(maxp) > 1024) {
2923                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2924                             max_packet(maxp));
2925                 goto done;
2926         }
2927
2928         /* Compute interrupt scheduling parameters just once, and save.
2929          * - allowing for high bandwidth, how many nsec/uframe are used?
2930          * - split transactions need a second CSPLIT uframe; same question
2931          * - splits also need a schedule gap (for full/low speed I/O)
2932          * - qh has a polling interval
2933          *
2934          * For control/bulk requests, the HC or TT handles these.
2935          */
2936         if (type == PIPE_INTERRUPT) {
2937                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2938                                 is_input, 0,
2939                                 hb_mult(maxp) * max_packet(maxp)));
2940                 qh->start = NO_FRAME;
2941
2942                 if (urb->dev->speed == USB_SPEED_HIGH) {
2943                         qh->c_usecs = 0;
2944                         qh->gap_uf = 0;
2945
2946                         qh->period = urb->interval >> 3;
2947                         if (qh->period == 0 && urb->interval != 1) {
2948                                 /* NOTE interval 2 or 4 uframes could work.
2949                                  * But interval 1 scheduling is simpler, and
2950                                  * includes high bandwidth.
2951                                  */
2952                                 urb->interval = 1;
2953                         } else if (qh->period > fotg210->periodic_size) {
2954                                 qh->period = fotg210->periodic_size;
2955                                 urb->interval = qh->period << 3;
2956                         }
2957                 } else {
2958                         int             think_time;
2959
2960                         /* gap is f(FS/LS transfer times) */
2961                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2962                                         is_input, 0, maxp) / (125 * 1000);
2963
2964                         /* FIXME this just approximates SPLIT/CSPLIT times */
2965                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2966                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2967                                 qh->usecs = HS_USECS(1);
2968                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2969                                 qh->usecs += HS_USECS(1);
2970                                 qh->c_usecs = HS_USECS(0);
2971                         }
2972
2973                         think_time = tt ? tt->think_time : 0;
2974                         qh->tt_usecs = NS_TO_US(think_time +
2975                                         usb_calc_bus_time(urb->dev->speed,
2976                                         is_input, 0, max_packet(maxp)));
2977                         qh->period = urb->interval;
2978                         if (qh->period > fotg210->periodic_size) {
2979                                 qh->period = fotg210->periodic_size;
2980                                 urb->interval = qh->period;
2981                         }
2982                 }
2983         }
2984
2985         /* support for tt scheduling, and access to toggles */
2986         qh->dev = urb->dev;
2987
2988         /* using TT? */
2989         switch (urb->dev->speed) {
2990         case USB_SPEED_LOW:
2991                 info1 |= QH_LOW_SPEED;
2992                 /* FALL THROUGH */
2993
2994         case USB_SPEED_FULL:
2995                 /* EPS 0 means "full" */
2996                 if (type != PIPE_INTERRUPT)
2997                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2998                 if (type == PIPE_CONTROL) {
2999                         info1 |= QH_CONTROL_EP;         /* for TT */
3000                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
3001                 }
3002                 info1 |= maxp << 16;
3003
3004                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
3005
3006                 /* Some Freescale processors have an erratum in which the
3007                  * port number in the queue head was 0..N-1 instead of 1..N.
3008                  */
3009                 if (fotg210_has_fsl_portno_bug(fotg210))
3010                         info2 |= (urb->dev->ttport-1) << 23;
3011                 else
3012                         info2 |= urb->dev->ttport << 23;
3013
3014                 /* set the address of the TT; for TDI's integrated
3015                  * root hub tt, leave it zeroed.
3016                  */
3017                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
3018                         info2 |= tt->hub->devnum << 16;
3019
3020                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
3021
3022                 break;
3023
3024         case USB_SPEED_HIGH:            /* no TT involved */
3025                 info1 |= QH_HIGH_SPEED;
3026                 if (type == PIPE_CONTROL) {
3027                         info1 |= (FOTG210_TUNE_RL_HS << 28);
3028                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
3029                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
3030                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
3031                 } else if (type == PIPE_BULK) {
3032                         info1 |= (FOTG210_TUNE_RL_HS << 28);
3033                         /* The USB spec says that high speed bulk endpoints
3034                          * always use 512 byte maxpacket.  But some device
3035                          * vendors decided to ignore that, and MSFT is happy
3036                          * to help them do so.  So now people expect to use
3037                          * such nonconformant devices with Linux too; sigh.
3038                          */
3039                         info1 |= max_packet(maxp) << 16;
3040                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
3041                 } else {                /* PIPE_INTERRUPT */
3042                         info1 |= max_packet(maxp) << 16;
3043                         info2 |= hb_mult(maxp) << 30;
3044                 }
3045                 break;
3046         default:
3047                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
3048                         urb->dev->speed);
3049 done:
3050                 qh_destroy(fotg210, qh);
3051                 return NULL;
3052         }
3053
3054         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
3055
3056         /* init as live, toggle clear, advance to dummy */
3057         qh->qh_state = QH_STATE_IDLE;
3058         hw = qh->hw;
3059         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
3060         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
3061         qh->is_out = !is_input;
3062         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
3063         qh_refresh(fotg210, qh);
3064         return qh;
3065 }
3066
3067 /*-------------------------------------------------------------------------*/
3068
3069 static void enable_async(struct fotg210_hcd *fotg210)
3070 {
3071         if (fotg210->async_count++)
3072                 return;
3073
3074         /* Stop waiting to turn off the async schedule */
3075         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
3076
3077         /* Don't start the schedule until ASS is 0 */
3078         fotg210_poll_ASS(fotg210);
3079         turn_on_io_watchdog(fotg210);
3080 }
3081
3082 static void disable_async(struct fotg210_hcd *fotg210)
3083 {
3084         if (--fotg210->async_count)
3085                 return;
3086
3087         /* The async schedule and async_unlink list are supposed to be empty */
3088         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
3089
3090         /* Don't turn off the schedule until ASS is 1 */
3091         fotg210_poll_ASS(fotg210);
3092 }
3093
3094 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
3095
3096 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3097 {
3098         __hc32          dma = QH_NEXT(fotg210, qh->qh_dma);
3099         struct fotg210_qh       *head;
3100
3101         /* Don't link a QH if there's a Clear-TT-Buffer pending */
3102         if (unlikely(qh->clearing_tt))
3103                 return;
3104
3105         WARN_ON(qh->qh_state != QH_STATE_IDLE);
3106
3107         /* clear halt and/or toggle; and maybe recover from silicon quirk */
3108         qh_refresh(fotg210, qh);
3109
3110         /* splice right after start */
3111         head = fotg210->async;
3112         qh->qh_next = head->qh_next;
3113         qh->hw->hw_next = head->hw->hw_next;
3114         wmb();
3115
3116         head->qh_next.qh = qh;
3117         head->hw->hw_next = dma;
3118
3119         qh->xacterrs = 0;
3120         qh->qh_state = QH_STATE_LINKED;
3121         /* qtd completions reported later by interrupt */
3122
3123         enable_async(fotg210);
3124 }
3125
3126 /*-------------------------------------------------------------------------*/
3127
3128 /*
3129  * For control/bulk/interrupt, return QH with these TDs appended.
3130  * Allocates and initializes the QH if necessary.
3131  * Returns null if it can't allocate a QH it needs to.
3132  * If the QH has TDs (urbs) already, that's great.
3133  */
3134 static struct fotg210_qh *qh_append_tds(
3135         struct fotg210_hcd              *fotg210,
3136         struct urb              *urb,
3137         struct list_head        *qtd_list,
3138         int                     epnum,
3139         void                    **ptr
3140 )
3141 {
3142         struct fotg210_qh               *qh = NULL;
3143         __hc32                  qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
3144
3145         qh = (struct fotg210_qh *) *ptr;
3146         if (unlikely(qh == NULL)) {
3147                 /* can't sleep here, we have fotg210->lock... */
3148                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
3149                 *ptr = qh;
3150         }
3151         if (likely(qh != NULL)) {
3152                 struct fotg210_qtd      *qtd;
3153
3154                 if (unlikely(list_empty(qtd_list)))
3155                         qtd = NULL;
3156                 else
3157                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
3158                                         qtd_list);
3159
3160                 /* control qh may need patching ... */
3161                 if (unlikely(epnum == 0)) {
3162                         /* usb_reset_device() briefly reverts to address 0 */
3163                         if (usb_pipedevice(urb->pipe) == 0)
3164                                 qh->hw->hw_info1 &= ~qh_addr_mask;
3165                 }
3166
3167                 /* just one way to queue requests: swap with the dummy qtd.
3168                  * only hc or qh_refresh() ever modify the overlay.
3169                  */
3170                 if (likely(qtd != NULL)) {
3171                         struct fotg210_qtd              *dummy;
3172                         dma_addr_t              dma;
3173                         __hc32                  token;
3174
3175                         /* to avoid racing the HC, use the dummy td instead of
3176                          * the first td of our list (becomes new dummy).  both
3177                          * tds stay deactivated until we're done, when the
3178                          * HC is allowed to fetch the old dummy (4.10.2).
3179                          */
3180                         token = qtd->hw_token;
3181                         qtd->hw_token = HALT_BIT(fotg210);
3182
3183                         dummy = qh->dummy;
3184
3185                         dma = dummy->qtd_dma;
3186                         *dummy = *qtd;
3187                         dummy->qtd_dma = dma;
3188
3189                         list_del(&qtd->qtd_list);
3190                         list_add(&dummy->qtd_list, qtd_list);
3191                         list_splice_tail(qtd_list, &qh->qtd_list);
3192
3193                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3194                         qh->dummy = qtd;
3195
3196                         /* hc must see the new dummy at list end */
3197                         dma = qtd->qtd_dma;
3198                         qtd = list_entry(qh->qtd_list.prev,
3199                                         struct fotg210_qtd, qtd_list);
3200                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3201
3202                         /* let the hc process these next qtds */
3203                         wmb();
3204                         dummy->hw_token = token;
3205
3206                         urb->hcpriv = qh;
3207                 }
3208         }
3209         return qh;
3210 }
3211
3212 /*-------------------------------------------------------------------------*/
3213
3214 static int
3215 submit_async(
3216         struct fotg210_hcd              *fotg210,
3217         struct urb              *urb,
3218         struct list_head        *qtd_list,
3219         gfp_t                   mem_flags
3220 ) {
3221         int                     epnum;
3222         unsigned long           flags;
3223         struct fotg210_qh               *qh = NULL;
3224         int                     rc;
3225
3226         epnum = urb->ep->desc.bEndpointAddress;
3227
3228 #ifdef FOTG210_URB_TRACE
3229         {
3230                 struct fotg210_qtd *qtd;
3231                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3232                 fotg210_dbg(fotg210,
3233                          "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3234                          __func__, urb->dev->devpath, urb,
3235                          epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
3236                          urb->transfer_buffer_length,
3237                          qtd, urb->ep->hcpriv);
3238         }
3239 #endif
3240
3241         spin_lock_irqsave(&fotg210->lock, flags);
3242         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3243                 rc = -ESHUTDOWN;
3244                 goto done;
3245         }
3246         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3247         if (unlikely(rc))
3248                 goto done;
3249
3250         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3251         if (unlikely(qh == NULL)) {
3252                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3253                 rc = -ENOMEM;
3254                 goto done;
3255         }
3256
3257         /* Control/bulk operations through TTs don't need scheduling,
3258          * the HC and TT handle it when the TT has a buffer ready.
3259          */
3260         if (likely(qh->qh_state == QH_STATE_IDLE))
3261                 qh_link_async(fotg210, qh);
3262  done:
3263         spin_unlock_irqrestore(&fotg210->lock, flags);
3264         if (unlikely(qh == NULL))
3265                 qtd_list_free(fotg210, urb, qtd_list);
3266         return rc;
3267 }
3268
3269 /*-------------------------------------------------------------------------*/
3270
3271 static void single_unlink_async(struct fotg210_hcd *fotg210,
3272                                 struct fotg210_qh *qh)
3273 {
3274         struct fotg210_qh               *prev;
3275
3276         /* Add to the end of the list of QHs waiting for the next IAAD */
3277         qh->qh_state = QH_STATE_UNLINK;
3278         if (fotg210->async_unlink)
3279                 fotg210->async_unlink_last->unlink_next = qh;
3280         else
3281                 fotg210->async_unlink = qh;
3282         fotg210->async_unlink_last = qh;
3283
3284         /* Unlink it from the schedule */
3285         prev = fotg210->async;
3286         while (prev->qh_next.qh != qh)
3287                 prev = prev->qh_next.qh;
3288
3289         prev->hw->hw_next = qh->hw->hw_next;
3290         prev->qh_next = qh->qh_next;
3291         if (fotg210->qh_scan_next == qh)
3292                 fotg210->qh_scan_next = qh->qh_next.qh;
3293 }
3294
3295 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3296 {
3297         /*
3298          * Do nothing if an IAA cycle is already running or
3299          * if one will be started shortly.
3300          */
3301         if (fotg210->async_iaa || fotg210->async_unlinking)
3302                 return;
3303
3304         /* Do all the waiting QHs at once */
3305         fotg210->async_iaa = fotg210->async_unlink;
3306         fotg210->async_unlink = NULL;
3307
3308         /* If the controller isn't running, we don't have to wait for it */
3309         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3310                 if (!nested)            /* Avoid recursion */
3311                         end_unlink_async(fotg210);
3312
3313         /* Otherwise start a new IAA cycle */
3314         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3315                 /* Make sure the unlinks are all visible to the hardware */
3316                 wmb();
3317
3318                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3319                                 &fotg210->regs->command);
3320                 fotg210_readl(fotg210, &fotg210->regs->command);
3321                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3322                                      true);
3323         }
3324 }
3325
3326 /* the async qh for the qtds being unlinked are now gone from the HC */
3327
3328 static void end_unlink_async(struct fotg210_hcd *fotg210)
3329 {
3330         struct fotg210_qh               *qh;
3331
3332         /* Process the idle QHs */
3333  restart:
3334         fotg210->async_unlinking = true;
3335         while (fotg210->async_iaa) {
3336                 qh = fotg210->async_iaa;
3337                 fotg210->async_iaa = qh->unlink_next;
3338                 qh->unlink_next = NULL;
3339
3340                 qh->qh_state = QH_STATE_IDLE;
3341                 qh->qh_next.qh = NULL;
3342
3343                 qh_completions(fotg210, qh);
3344                 if (!list_empty(&qh->qtd_list) &&
3345                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3346                         qh_link_async(fotg210, qh);
3347                 disable_async(fotg210);
3348         }
3349         fotg210->async_unlinking = false;
3350
3351         /* Start a new IAA cycle if any QHs are waiting for it */
3352         if (fotg210->async_unlink) {
3353                 start_iaa_cycle(fotg210, true);
3354                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3355                         goto restart;
3356         }
3357 }
3358
3359 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3360 {
3361         struct fotg210_qh *qh, *next;
3362         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3363         bool check_unlinks_later = false;
3364
3365         /* Unlink all the async QHs that have been empty for a timer cycle */
3366         next = fotg210->async->qh_next.qh;
3367         while (next) {
3368                 qh = next;
3369                 next = qh->qh_next.qh;
3370
3371                 if (list_empty(&qh->qtd_list) &&
3372                                 qh->qh_state == QH_STATE_LINKED) {
3373                         if (!stopped && qh->unlink_cycle ==
3374                                         fotg210->async_unlink_cycle)
3375                                 check_unlinks_later = true;
3376                         else
3377                                 single_unlink_async(fotg210, qh);
3378                 }
3379         }
3380
3381         /* Start a new IAA cycle if any QHs are waiting for it */
3382         if (fotg210->async_unlink)
3383                 start_iaa_cycle(fotg210, false);
3384
3385         /* QHs that haven't been empty for long enough will be handled later */
3386         if (check_unlinks_later) {
3387                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3388                                      true);
3389                 ++fotg210->async_unlink_cycle;
3390         }
3391 }
3392
3393 /* makes sure the async qh will become idle */
3394 /* caller must own fotg210->lock */
3395
3396 static void start_unlink_async(struct fotg210_hcd *fotg210,
3397                                struct fotg210_qh *qh)
3398 {
3399         /*
3400          * If the QH isn't linked then there's nothing we can do
3401          * unless we were called during a giveback, in which case
3402          * qh_completions() has to deal with it.
3403          */
3404         if (qh->qh_state != QH_STATE_LINKED) {
3405                 if (qh->qh_state == QH_STATE_COMPLETING)
3406                         qh->needs_rescan = 1;
3407                 return;
3408         }
3409
3410         single_unlink_async(fotg210, qh);
3411         start_iaa_cycle(fotg210, false);
3412 }
3413
3414 /*-------------------------------------------------------------------------*/
3415
3416 static void scan_async(struct fotg210_hcd *fotg210)
3417 {
3418         struct fotg210_qh               *qh;
3419         bool                    check_unlinks_later = false;
3420
3421         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3422         while (fotg210->qh_scan_next) {
3423                 qh = fotg210->qh_scan_next;
3424                 fotg210->qh_scan_next = qh->qh_next.qh;
3425  rescan:
3426                 /* clean any finished work for this qh */
3427                 if (!list_empty(&qh->qtd_list)) {
3428                         int temp;
3429
3430                         /*
3431                          * Unlinks could happen here; completion reporting
3432                          * drops the lock.  That's why fotg210->qh_scan_next
3433                          * always holds the next qh to scan; if the next qh
3434                          * gets unlinked then fotg210->qh_scan_next is adjusted
3435                          * in single_unlink_async().
3436                          */
3437                         temp = qh_completions(fotg210, qh);
3438                         if (qh->needs_rescan) {
3439                                 start_unlink_async(fotg210, qh);
3440                         } else if (list_empty(&qh->qtd_list)
3441                                         && qh->qh_state == QH_STATE_LINKED) {
3442                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3443                                 check_unlinks_later = true;
3444                         } else if (temp != 0)
3445                                 goto rescan;
3446                 }
3447         }
3448
3449         /*
3450          * Unlink empty entries, reducing DMA usage as well
3451          * as HCD schedule-scanning costs.  Delay for any qh
3452          * we just scanned, there's a not-unusual case that it
3453          * doesn't stay idle for long.
3454          */
3455         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3456                         !(fotg210->enabled_hrtimer_events &
3457                                 BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3458                 fotg210_enable_event(fotg210,
3459                                      FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3460                 ++fotg210->async_unlink_cycle;
3461         }
3462 }
3463 /*-------------------------------------------------------------------------*/
3464 /*
3465  * EHCI scheduled transaction support:  interrupt, iso, split iso
3466  * These are called "periodic" transactions in the EHCI spec.
3467  *
3468  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3469  * with the "asynchronous" transaction support (control/bulk transfers).
3470  * The only real difference is in how interrupt transfers are scheduled.
3471  *
3472  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3473  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3474  * pre-calculated schedule data to make appending to the queue be quick.
3475  */
3476
3477 static int fotg210_get_frame(struct usb_hcd *hcd);
3478
3479 /*-------------------------------------------------------------------------*/
3480
3481 /*
3482  * periodic_next_shadow - return "next" pointer on shadow list
3483  * @periodic: host pointer to qh/itd
3484  * @tag: hardware tag for type of this record
3485  */
3486 static union fotg210_shadow *
3487 periodic_next_shadow(struct fotg210_hcd *fotg210,
3488                      union fotg210_shadow *periodic, __hc32 tag)
3489 {
3490         switch (hc32_to_cpu(fotg210, tag)) {
3491         case Q_TYPE_QH:
3492                 return &periodic->qh->qh_next;
3493         case Q_TYPE_FSTN:
3494                 return &periodic->fstn->fstn_next;
3495         default:
3496                 return &periodic->itd->itd_next;
3497         }
3498 }
3499
3500 static __hc32 *
3501 shadow_next_periodic(struct fotg210_hcd *fotg210,
3502                      union fotg210_shadow *periodic, __hc32 tag)
3503 {
3504         switch (hc32_to_cpu(fotg210, tag)) {
3505         /* our fotg210_shadow.qh is actually software part */
3506         case Q_TYPE_QH:
3507                 return &periodic->qh->hw->hw_next;
3508         /* others are hw parts */
3509         default:
3510                 return periodic->hw_next;
3511         }
3512 }
3513
3514 /* caller must hold fotg210->lock */
3515 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3516                             void *ptr)
3517 {
3518         union fotg210_shadow    *prev_p = &fotg210->pshadow[frame];
3519         __hc32                  *hw_p = &fotg210->periodic[frame];
3520         union fotg210_shadow    here = *prev_p;
3521
3522         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3523         while (here.ptr && here.ptr != ptr) {
3524                 prev_p = periodic_next_shadow(fotg210, prev_p,
3525                                 Q_NEXT_TYPE(fotg210, *hw_p));
3526                 hw_p = shadow_next_periodic(fotg210, &here,
3527                                 Q_NEXT_TYPE(fotg210, *hw_p));
3528                 here = *prev_p;
3529         }
3530         /* an interrupt entry (at list end) could have been shared */
3531         if (!here.ptr)
3532                 return;
3533
3534         /* update shadow and hardware lists ... the old "next" pointers
3535          * from ptr may still be in use, the caller updates them.
3536          */
3537         *prev_p = *periodic_next_shadow(fotg210, &here,
3538                         Q_NEXT_TYPE(fotg210, *hw_p));
3539
3540         *hw_p = *shadow_next_periodic(fotg210, &here,
3541                                 Q_NEXT_TYPE(fotg210, *hw_p));
3542 }
3543
3544 /* how many of the uframe's 125 usecs are allocated? */
3545 static unsigned short
3546 periodic_usecs(struct fotg210_hcd *fotg210, unsigned frame, unsigned uframe)
3547 {
3548         __hc32                  *hw_p = &fotg210->periodic[frame];
3549         union fotg210_shadow    *q = &fotg210->pshadow[frame];
3550         unsigned                usecs = 0;
3551         struct fotg210_qh_hw    *hw;
3552
3553         while (q->ptr) {
3554                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3555                 case Q_TYPE_QH:
3556                         hw = q->qh->hw;
3557                         /* is it in the S-mask? */
3558                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3559                                 usecs += q->qh->usecs;
3560                         /* ... or C-mask? */
3561                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3562                                         1 << (8 + uframe)))
3563                                 usecs += q->qh->c_usecs;
3564                         hw_p = &hw->hw_next;
3565                         q = &q->qh->qh_next;
3566                         break;
3567                 /* case Q_TYPE_FSTN: */
3568                 default:
3569                         /* for "save place" FSTNs, count the relevant INTR
3570                          * bandwidth from the previous frame
3571                          */
3572                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3573                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3574
3575                         hw_p = &q->fstn->hw_next;
3576                         q = &q->fstn->fstn_next;
3577                         break;
3578                 case Q_TYPE_ITD:
3579                         if (q->itd->hw_transaction[uframe])
3580                                 usecs += q->itd->stream->usecs;
3581                         hw_p = &q->itd->hw_next;
3582                         q = &q->itd->itd_next;
3583                         break;
3584                 }
3585         }
3586 #ifdef  DEBUG
3587         if (usecs > fotg210->uframe_periodic_max)
3588                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3589                         frame * 8 + uframe, usecs);
3590 #endif
3591         return usecs;
3592 }
3593
3594 /*-------------------------------------------------------------------------*/
3595
3596 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3597 {
3598         if (!dev1->tt || !dev2->tt)
3599                 return 0;
3600         if (dev1->tt != dev2->tt)
3601                 return 0;
3602         if (dev1->tt->multi)
3603                 return dev1->ttport == dev2->ttport;
3604         else
3605                 return 1;
3606 }
3607
3608 /* return true iff the device's transaction translator is available
3609  * for a periodic transfer starting at the specified frame, using
3610  * all the uframes in the mask.
3611  */
3612 static int tt_no_collision(
3613         struct fotg210_hcd              *fotg210,
3614         unsigned                period,
3615         struct usb_device       *dev,
3616         unsigned                frame,
3617         u32                     uf_mask
3618 )
3619 {
3620         if (period == 0)        /* error */
3621                 return 0;
3622
3623         /* note bandwidth wastage:  split never follows csplit
3624          * (different dev or endpoint) until the next uframe.
3625          * calling convention doesn't make that distinction.
3626          */
3627         for (; frame < fotg210->periodic_size; frame += period) {
3628                 union fotg210_shadow    here;
3629                 __hc32                  type;
3630                 struct fotg210_qh_hw    *hw;
3631
3632                 here = fotg210->pshadow[frame];
3633                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3634                 while (here.ptr) {
3635                         switch (hc32_to_cpu(fotg210, type)) {
3636                         case Q_TYPE_ITD:
3637                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3638                                 here = here.itd->itd_next;
3639                                 continue;
3640                         case Q_TYPE_QH:
3641                                 hw = here.qh->hw;
3642                                 if (same_tt(dev, here.qh->dev)) {
3643                                         u32             mask;
3644
3645                                         mask = hc32_to_cpu(fotg210,
3646                                                         hw->hw_info2);
3647                                         /* "knows" no gap is needed */
3648                                         mask |= mask >> 8;
3649                                         if (mask & uf_mask)
3650                                                 break;
3651                                 }
3652                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3653                                 here = here.qh->qh_next;
3654                                 continue;
3655                         /* case Q_TYPE_FSTN: */
3656                         default:
3657                                 fotg210_dbg(fotg210,
3658                                         "periodic frame %d bogus type %d\n",
3659                                         frame, type);
3660                         }
3661
3662                         /* collision or error */
3663                         return 0;
3664                 }
3665         }
3666
3667         /* no collision */
3668         return 1;
3669 }
3670
3671 /*-------------------------------------------------------------------------*/
3672
3673 static void enable_periodic(struct fotg210_hcd *fotg210)
3674 {
3675         if (fotg210->periodic_count++)
3676                 return;
3677
3678         /* Stop waiting to turn off the periodic schedule */
3679         fotg210->enabled_hrtimer_events &=
3680                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3681
3682         /* Don't start the schedule until PSS is 0 */
3683         fotg210_poll_PSS(fotg210);
3684         turn_on_io_watchdog(fotg210);
3685 }
3686
3687 static void disable_periodic(struct fotg210_hcd *fotg210)
3688 {
3689         if (--fotg210->periodic_count)
3690                 return;
3691
3692         /* Don't turn off the schedule until PSS is 1 */
3693         fotg210_poll_PSS(fotg210);
3694 }
3695
3696 /*-------------------------------------------------------------------------*/
3697
3698 /* periodic schedule slots have iso tds (normal or split) first, then a
3699  * sparse tree for active interrupt transfers.
3700  *
3701  * this just links in a qh; caller guarantees uframe masks are set right.
3702  * no FSTN support (yet; fotg210 0.96+)
3703  */
3704 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3705 {
3706         unsigned        i;
3707         unsigned        period = qh->period;
3708
3709         dev_dbg(&qh->dev->dev,
3710                 "link qh%d-%04x/%p start %d [%d/%d us]\n",
3711                 period, hc32_to_cpup(fotg210, &qh->hw->hw_info2)
3712                         & (QH_CMASK | QH_SMASK),
3713                 qh, qh->start, qh->usecs, qh->c_usecs);
3714
3715         /* high bandwidth, or otherwise every microframe */
3716         if (period == 0)
3717                 period = 1;
3718
3719         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3720                 union fotg210_shadow    *prev = &fotg210->pshadow[i];
3721                 __hc32                  *hw_p = &fotg210->periodic[i];
3722                 union fotg210_shadow    here = *prev;
3723                 __hc32                  type = 0;
3724
3725                 /* skip the iso nodes at list head */
3726                 while (here.ptr) {
3727                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3728                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3729                                 break;
3730                         prev = periodic_next_shadow(fotg210, prev, type);
3731                         hw_p = shadow_next_periodic(fotg210, &here, type);
3732                         here = *prev;
3733                 }
3734
3735                 /* sorting each branch by period (slow-->fast)
3736                  * enables sharing interior tree nodes
3737                  */
3738                 while (here.ptr && qh != here.qh) {
3739                         if (qh->period > here.qh->period)
3740                                 break;
3741                         prev = &here.qh->qh_next;
3742                         hw_p = &here.qh->hw->hw_next;
3743                         here = *prev;
3744                 }
3745                 /* link in this qh, unless some earlier pass did that */
3746                 if (qh != here.qh) {
3747                         qh->qh_next = here;
3748                         if (here.qh)
3749                                 qh->hw->hw_next = *hw_p;
3750                         wmb();
3751                         prev->qh = qh;
3752                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3753                 }
3754         }
3755         qh->qh_state = QH_STATE_LINKED;
3756         qh->xacterrs = 0;
3757
3758         /* update per-qh bandwidth for usbfs */
3759         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3760                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3761                 : (qh->usecs * 8);
3762
3763         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3764
3765         /* maybe enable periodic schedule processing */
3766         ++fotg210->intr_count;
3767         enable_periodic(fotg210);
3768 }
3769
3770 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3771                                struct fotg210_qh *qh)
3772 {
3773         unsigned        i;
3774         unsigned        period;
3775
3776         /*
3777          * If qh is for a low/full-speed device, simply unlinking it
3778          * could interfere with an ongoing split transaction.  To unlink
3779          * it safely would require setting the QH_INACTIVATE bit and
3780          * waiting at least one frame, as described in EHCI 4.12.2.5.
3781          *
3782          * We won't bother with any of this.  Instead, we assume that the
3783          * only reason for unlinking an interrupt QH while the current URB
3784          * is still active is to dequeue all the URBs (flush the whole
3785          * endpoint queue).
3786          *
3787          * If rebalancing the periodic schedule is ever implemented, this
3788          * approach will no longer be valid.
3789          */
3790
3791         /* high bandwidth, or otherwise part of every microframe */
3792         period = qh->period;
3793         if (!period)
3794                 period = 1;
3795
3796         for (i = qh->start; i < fotg210->periodic_size; i += period)
3797                 periodic_unlink(fotg210, i, qh);
3798
3799         /* update per-qh bandwidth for usbfs */
3800         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3801                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3802                 : (qh->usecs * 8);
3803
3804         dev_dbg(&qh->dev->dev,
3805                 "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3806                 qh->period,
3807                 hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3808                 (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs, qh->c_usecs);
3809
3810         /* qh->qh_next still "live" to HC */
3811         qh->qh_state = QH_STATE_UNLINK;
3812         qh->qh_next.ptr = NULL;
3813
3814         if (fotg210->qh_scan_next == qh)
3815                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3816                                 struct fotg210_qh, intr_node);
3817         list_del(&qh->intr_node);
3818 }
3819
3820 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3821                               struct fotg210_qh *qh)
3822 {
3823         /* If the QH isn't linked then there's nothing we can do
3824          * unless we were called during a giveback, in which case
3825          * qh_completions() has to deal with it.
3826          */
3827         if (qh->qh_state != QH_STATE_LINKED) {
3828                 if (qh->qh_state == QH_STATE_COMPLETING)
3829                         qh->needs_rescan = 1;
3830                 return;
3831         }
3832
3833         qh_unlink_periodic(fotg210, qh);
3834
3835         /* Make sure the unlinks are visible before starting the timer */
3836         wmb();
3837
3838         /*
3839          * The EHCI spec doesn't say how long it takes the controller to
3840          * stop accessing an unlinked interrupt QH.  The timer delay is
3841          * 9 uframes; presumably that will be long enough.
3842          */
3843         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3844
3845         /* New entries go at the end of the intr_unlink list */
3846         if (fotg210->intr_unlink)
3847                 fotg210->intr_unlink_last->unlink_next = qh;
3848         else
3849                 fotg210->intr_unlink = qh;
3850         fotg210->intr_unlink_last = qh;
3851
3852         if (fotg210->intr_unlinking)
3853                 ;       /* Avoid recursive calls */
3854         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3855                 fotg210_handle_intr_unlinks(fotg210);
3856         else if (fotg210->intr_unlink == qh) {
3857                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3858                                      true);
3859                 ++fotg210->intr_unlink_cycle;
3860         }
3861 }
3862
3863 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3864 {
3865         struct fotg210_qh_hw    *hw = qh->hw;
3866         int                     rc;
3867
3868         qh->qh_state = QH_STATE_IDLE;
3869         hw->hw_next = FOTG210_LIST_END(fotg210);
3870
3871         qh_completions(fotg210, qh);
3872
3873         /* reschedule QH iff another request is queued */
3874         if (!list_empty(&qh->qtd_list) &&
3875             fotg210->rh_state == FOTG210_RH_RUNNING) {
3876                 rc = qh_schedule(fotg210, qh);
3877
3878                 /* An error here likely indicates handshake failure
3879                  * or no space left in the schedule.  Neither fault
3880                  * should happen often ...
3881                  *
3882                  * FIXME kill the now-dysfunctional queued urbs
3883                  */
3884                 if (rc != 0)
3885                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3886                                         qh, rc);
3887         }
3888
3889         /* maybe turn off periodic schedule */
3890         --fotg210->intr_count;
3891         disable_periodic(fotg210);
3892 }
3893
3894 /*-------------------------------------------------------------------------*/
3895
3896 static int check_period(
3897         struct fotg210_hcd *fotg210,
3898         unsigned        frame,
3899         unsigned        uframe,
3900         unsigned        period,
3901         unsigned        usecs
3902 ) {
3903         int             claimed;
3904
3905         /* complete split running into next frame?
3906          * given FSTN support, we could sometimes check...
3907          */
3908         if (uframe >= 8)
3909                 return 0;
3910
3911         /* convert "usecs we need" to "max already claimed" */
3912         usecs = fotg210->uframe_periodic_max - usecs;
3913
3914         /* we "know" 2 and 4 uframe intervals were rejected; so
3915          * for period 0, check _every_ microframe in the schedule.
3916          */
3917         if (unlikely(period == 0)) {
3918                 do {
3919                         for (uframe = 0; uframe < 7; uframe++) {
3920                                 claimed = periodic_usecs(fotg210, frame,
3921                                                          uframe);
3922                                 if (claimed > usecs)
3923                                         return 0;
3924                         }
3925                 } while ((frame += 1) < fotg210->periodic_size);
3926
3927         /* just check the specified uframe, at that period */
3928         } else {
3929                 do {
3930                         claimed = periodic_usecs(fotg210, frame, uframe);
3931                         if (claimed > usecs)
3932                                 return 0;
3933                 } while ((frame += period) < fotg210->periodic_size);
3934         }
3935
3936         /* success! */
3937         return 1;
3938 }
3939
3940 static int check_intr_schedule(
3941         struct fotg210_hcd              *fotg210,
3942         unsigned                frame,
3943         unsigned                uframe,
3944         const struct fotg210_qh *qh,
3945         __hc32                  *c_maskp
3946 )
3947 {
3948         int             retval = -ENOSPC;
3949         u8              mask = 0;
3950
3951         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3952                 goto done;
3953
3954         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3955                 goto done;
3956         if (!qh->c_usecs) {
3957                 retval = 0;
3958                 *c_maskp = 0;
3959                 goto done;
3960         }
3961
3962         /* Make sure this tt's buffer is also available for CSPLITs.
3963          * We pessimize a bit; probably the typical full speed case
3964          * doesn't need the second CSPLIT.
3965          *
3966          * NOTE:  both SPLIT and CSPLIT could be checked in just
3967          * one smart pass...
3968          */
3969         mask = 0x03 << (uframe + qh->gap_uf);
3970         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3971
3972         mask |= 1 << uframe;
3973         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3974                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3975                                         qh->period, qh->c_usecs))
3976                         goto done;
3977                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3978                                         qh->period, qh->c_usecs))
3979                         goto done;
3980                 retval = 0;
3981         }
3982 done:
3983         return retval;
3984 }
3985
3986 /* "first fit" scheduling policy used the first time through,
3987  * or when the previous schedule slot can't be re-used.
3988  */
3989 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3990 {
3991         int             status;
3992         unsigned        uframe;
3993         __hc32          c_mask;
3994         unsigned        frame;          /* 0..(qh->period - 1), or NO_FRAME */
3995         struct fotg210_qh_hw    *hw = qh->hw;
3996
3997         qh_refresh(fotg210, qh);
3998         hw->hw_next = FOTG210_LIST_END(fotg210);
3999         frame = qh->start;
4000
4001         /* reuse the previous schedule slots, if we can */
4002         if (frame < qh->period) {
4003                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
4004                 status = check_intr_schedule(fotg210, frame, --uframe,
4005                                 qh, &c_mask);
4006         } else {
4007                 uframe = 0;
4008                 c_mask = 0;
4009                 status = -ENOSPC;
4010         }
4011
4012         /* else scan the schedule to find a group of slots such that all
4013          * uframes have enough periodic bandwidth available.
4014          */
4015         if (status) {
4016                 /* "normal" case, uframing flexible except with splits */
4017                 if (qh->period) {
4018                         int             i;
4019
4020                         for (i = qh->period; status && i > 0; --i) {
4021                                 frame = ++fotg210->random_frame % qh->period;
4022                                 for (uframe = 0; uframe < 8; uframe++) {
4023                                         status = check_intr_schedule(fotg210,
4024                                                         frame, uframe, qh,
4025                                                         &c_mask);
4026                                         if (status == 0)
4027                                                 break;
4028                                 }
4029                         }
4030
4031                 /* qh->period == 0 means every uframe */
4032                 } else {
4033                         frame = 0;
4034                         status = check_intr_schedule(fotg210, 0, 0, qh,
4035                                                      &c_mask);
4036                 }
4037                 if (status)
4038                         goto done;
4039                 qh->start = frame;
4040
4041                 /* reset S-frame and (maybe) C-frame masks */
4042                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
4043                 hw->hw_info2 |= qh->period
4044                         ? cpu_to_hc32(fotg210, 1 << uframe)
4045                         : cpu_to_hc32(fotg210, QH_SMASK);
4046                 hw->hw_info2 |= c_mask;
4047         } else
4048                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
4049
4050         /* stuff into the periodic schedule */
4051         qh_link_periodic(fotg210, qh);
4052 done:
4053         return status;
4054 }
4055
4056 static int intr_submit(
4057         struct fotg210_hcd              *fotg210,
4058         struct urb              *urb,
4059         struct list_head        *qtd_list,
4060         gfp_t                   mem_flags
4061 ) {
4062         unsigned                epnum;
4063         unsigned long           flags;
4064         struct fotg210_qh               *qh;
4065         int                     status;
4066         struct list_head        empty;
4067
4068         /* get endpoint and transfer/schedule data */
4069         epnum = urb->ep->desc.bEndpointAddress;
4070
4071         spin_lock_irqsave(&fotg210->lock, flags);
4072
4073         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4074                 status = -ESHUTDOWN;
4075                 goto done_not_linked;
4076         }
4077         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4078         if (unlikely(status))
4079                 goto done_not_linked;
4080
4081         /* get qh and force any scheduling errors */
4082         INIT_LIST_HEAD(&empty);
4083         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
4084         if (qh == NULL) {
4085                 status = -ENOMEM;
4086                 goto done;
4087         }
4088         if (qh->qh_state == QH_STATE_IDLE) {
4089                 status = qh_schedule(fotg210, qh);
4090                 if (status)
4091                         goto done;
4092         }
4093
4094         /* then queue the urb's tds to the qh */
4095         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
4096         BUG_ON(qh == NULL);
4097
4098         /* ... update usbfs periodic stats */
4099         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
4100
4101 done:
4102         if (unlikely(status))
4103                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4104 done_not_linked:
4105         spin_unlock_irqrestore(&fotg210->lock, flags);
4106         if (status)
4107                 qtd_list_free(fotg210, urb, qtd_list);
4108
4109         return status;
4110 }
4111
4112 static void scan_intr(struct fotg210_hcd *fotg210)
4113 {
4114         struct fotg210_qh               *qh;
4115
4116         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
4117                                  &fotg210->intr_qh_list, intr_node) {
4118  rescan:
4119                 /* clean any finished work for this qh */
4120                 if (!list_empty(&qh->qtd_list)) {
4121                         int temp;
4122
4123                         /*
4124                          * Unlinks could happen here; completion reporting
4125                          * drops the lock.  That's why fotg210->qh_scan_next
4126                          * always holds the next qh to scan; if the next qh
4127                          * gets unlinked then fotg210->qh_scan_next is adjusted
4128                          * in qh_unlink_periodic().
4129                          */
4130                         temp = qh_completions(fotg210, qh);
4131                         if (unlikely(qh->needs_rescan ||
4132                                         (list_empty(&qh->qtd_list) &&
4133                                          qh->qh_state == QH_STATE_LINKED)))
4134                                 start_unlink_intr(fotg210, qh);
4135                         else if (temp != 0)
4136                                 goto rescan;
4137                 }
4138         }
4139 }
4140
4141 /*-------------------------------------------------------------------------*/
4142
4143 /* fotg210_iso_stream ops work with both ITD and SITD */
4144
4145 static struct fotg210_iso_stream *
4146 iso_stream_alloc(gfp_t mem_flags)
4147 {
4148         struct fotg210_iso_stream *stream;
4149
4150         stream = kzalloc(sizeof(*stream), mem_flags);
4151         if (likely(stream != NULL)) {
4152                 INIT_LIST_HEAD(&stream->td_list);
4153                 INIT_LIST_HEAD(&stream->free_list);
4154                 stream->next_uframe = -1;
4155         }
4156         return stream;
4157 }
4158
4159 static void
4160 iso_stream_init(
4161         struct fotg210_hcd              *fotg210,
4162         struct fotg210_iso_stream       *stream,
4163         struct usb_device       *dev,
4164         int                     pipe,
4165         unsigned                interval
4166 )
4167 {
4168         u32                     buf1;
4169         unsigned                epnum, maxp;
4170         int                     is_input;
4171         long                    bandwidth;
4172         unsigned                multi;
4173
4174         /*
4175          * this might be a "high bandwidth" highspeed endpoint,
4176          * as encoded in the ep descriptor's wMaxPacket field
4177          */
4178         epnum = usb_pipeendpoint(pipe);
4179         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
4180         maxp = usb_maxpacket(dev, pipe, !is_input);
4181         if (is_input)
4182                 buf1 = (1 << 11);
4183         else
4184                 buf1 = 0;
4185
4186         maxp = max_packet(maxp);
4187         multi = hb_mult(maxp);
4188         buf1 |= maxp;
4189         maxp *= multi;
4190
4191         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
4192         stream->buf1 = cpu_to_hc32(fotg210, buf1);
4193         stream->buf2 = cpu_to_hc32(fotg210, multi);
4194
4195         /* usbfs wants to report the average usecs per frame tied up
4196          * when transfers on this endpoint are scheduled ...
4197          */
4198         if (dev->speed == USB_SPEED_FULL) {
4199                 interval <<= 3;
4200                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
4201                                 is_input, 1, maxp));
4202                 stream->usecs /= 8;
4203         } else {
4204                 stream->highspeed = 1;
4205                 stream->usecs = HS_USECS_ISO(maxp);
4206         }
4207         bandwidth = stream->usecs * 8;
4208         bandwidth /= interval;
4209
4210         stream->bandwidth = bandwidth;
4211         stream->udev = dev;
4212         stream->bEndpointAddress = is_input | epnum;
4213         stream->interval = interval;
4214         stream->maxp = maxp;
4215 }
4216
4217 static struct fotg210_iso_stream *
4218 iso_stream_find(struct fotg210_hcd *fotg210, struct urb *urb)
4219 {
4220         unsigned                epnum;
4221         struct fotg210_iso_stream       *stream;
4222         struct usb_host_endpoint *ep;
4223         unsigned long           flags;
4224
4225         epnum = usb_pipeendpoint(urb->pipe);
4226         if (usb_pipein(urb->pipe))
4227                 ep = urb->dev->ep_in[epnum];
4228         else
4229                 ep = urb->dev->ep_out[epnum];
4230
4231         spin_lock_irqsave(&fotg210->lock, flags);
4232         stream = ep->hcpriv;
4233
4234         if (unlikely(stream == NULL)) {
4235                 stream = iso_stream_alloc(GFP_ATOMIC);
4236                 if (likely(stream != NULL)) {
4237                         ep->hcpriv = stream;
4238                         stream->ep = ep;
4239                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4240                                         urb->interval);
4241                 }
4242
4243         /* if dev->ep[epnum] is a QH, hw is set */
4244         } else if (unlikely(stream->hw != NULL)) {
4245                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4246                         urb->dev->devpath, epnum,
4247                         usb_pipein(urb->pipe) ? "in" : "out");
4248                 stream = NULL;
4249         }
4250
4251         spin_unlock_irqrestore(&fotg210->lock, flags);
4252         return stream;
4253 }
4254
4255 /*-------------------------------------------------------------------------*/
4256
4257 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4258
4259 static struct fotg210_iso_sched *
4260 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
4261 {
4262         struct fotg210_iso_sched        *iso_sched;
4263         int                     size = sizeof(*iso_sched);
4264
4265         size += packets * sizeof(struct fotg210_iso_packet);
4266         iso_sched = kzalloc(size, mem_flags);
4267         if (likely(iso_sched != NULL))
4268                 INIT_LIST_HEAD(&iso_sched->td_list);
4269
4270         return iso_sched;
4271 }
4272
4273 static inline void
4274 itd_sched_init(
4275         struct fotg210_hcd              *fotg210,
4276         struct fotg210_iso_sched        *iso_sched,
4277         struct fotg210_iso_stream       *stream,
4278         struct urb              *urb
4279 )
4280 {
4281         unsigned        i;
4282         dma_addr_t      dma = urb->transfer_dma;
4283
4284         /* how many uframes are needed for these transfers */
4285         iso_sched->span = urb->number_of_packets * stream->interval;
4286
4287         /* figure out per-uframe itd fields that we'll need later
4288          * when we fit new itds into the schedule.
4289          */
4290         for (i = 0; i < urb->number_of_packets; i++) {
4291                 struct fotg210_iso_packet       *uframe = &iso_sched->packet[i];
4292                 unsigned                length;
4293                 dma_addr_t              buf;
4294                 u32                     trans;
4295
4296                 length = urb->iso_frame_desc[i].length;
4297                 buf = dma + urb->iso_frame_desc[i].offset;
4298
4299                 trans = FOTG210_ISOC_ACTIVE;
4300                 trans |= buf & 0x0fff;
4301                 if (unlikely(((i + 1) == urb->number_of_packets))
4302                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4303                         trans |= FOTG210_ITD_IOC;
4304                 trans |= length << 16;
4305                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4306
4307                 /* might need to cross a buffer page within a uframe */
4308                 uframe->bufp = (buf & ~(u64)0x0fff);
4309                 buf += length;
4310                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4311                         uframe->cross = 1;
4312         }
4313 }
4314
4315 static void
4316 iso_sched_free(
4317         struct fotg210_iso_stream       *stream,
4318         struct fotg210_iso_sched        *iso_sched
4319 )
4320 {
4321         if (!iso_sched)
4322                 return;
4323         /* caller must hold fotg210->lock!*/
4324         list_splice(&iso_sched->td_list, &stream->free_list);
4325         kfree(iso_sched);
4326 }
4327
4328 static int
4329 itd_urb_transaction(
4330         struct fotg210_iso_stream       *stream,
4331         struct fotg210_hcd              *fotg210,
4332         struct urb              *urb,
4333         gfp_t                   mem_flags
4334 )
4335 {
4336         struct fotg210_itd              *itd;
4337         dma_addr_t              itd_dma;
4338         int                     i;
4339         unsigned                num_itds;
4340         struct fotg210_iso_sched        *sched;
4341         unsigned long           flags;
4342
4343         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4344         if (unlikely(sched == NULL))
4345                 return -ENOMEM;
4346
4347         itd_sched_init(fotg210, sched, stream, urb);
4348
4349         if (urb->interval < 8)
4350                 num_itds = 1 + (sched->span + 7) / 8;
4351         else
4352                 num_itds = urb->number_of_packets;
4353
4354         /* allocate/init ITDs */
4355         spin_lock_irqsave(&fotg210->lock, flags);
4356         for (i = 0; i < num_itds; i++) {
4357
4358                 /*
4359                  * Use iTDs from the free list, but not iTDs that may
4360                  * still be in use by the hardware.
4361                  */
4362                 if (likely(!list_empty(&stream->free_list))) {
4363                         itd = list_first_entry(&stream->free_list,
4364                                         struct fotg210_itd, itd_list);
4365                         if (itd->frame == fotg210->now_frame)
4366                                 goto alloc_itd;
4367                         list_del(&itd->itd_list);
4368                         itd_dma = itd->itd_dma;
4369                 } else {
4370  alloc_itd:
4371                         spin_unlock_irqrestore(&fotg210->lock, flags);
4372                         itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4373                                         &itd_dma);
4374                         spin_lock_irqsave(&fotg210->lock, flags);
4375                         if (!itd) {
4376                                 iso_sched_free(stream, sched);
4377                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4378                                 return -ENOMEM;
4379                         }
4380                 }
4381
4382                 memset(itd, 0, sizeof(*itd));
4383                 itd->itd_dma = itd_dma;
4384                 list_add(&itd->itd_list, &sched->td_list);
4385         }
4386         spin_unlock_irqrestore(&fotg210->lock, flags);
4387
4388         /* temporarily store schedule info in hcpriv */
4389         urb->hcpriv = sched;
4390         urb->error_count = 0;
4391         return 0;
4392 }
4393
4394 /*-------------------------------------------------------------------------*/
4395
4396 static inline int
4397 itd_slot_ok(
4398         struct fotg210_hcd              *fotg210,
4399         u32                     mod,
4400         u32                     uframe,
4401         u8                      usecs,
4402         u32                     period
4403 )
4404 {
4405         uframe %= period;
4406         do {
4407                 /* can't commit more than uframe_periodic_max usec */
4408                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4409                                 > (fotg210->uframe_periodic_max - usecs))
4410                         return 0;
4411
4412                 /* we know urb->interval is 2^N uframes */
4413                 uframe += period;
4414         } while (uframe < mod);
4415         return 1;
4416 }
4417
4418 /*
4419  * This scheduler plans almost as far into the future as it has actual
4420  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4421  * "as small as possible" to be cache-friendlier.)  That limits the size
4422  * transfers you can stream reliably; avoid more than 64 msec per urb.
4423  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4424  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4425  * and other factors); or more than about 230 msec total (for portability,
4426  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4427  */
4428
4429 #define SCHEDULE_SLOP   80      /* microframes */
4430
4431 static int
4432 iso_stream_schedule(
4433         struct fotg210_hcd              *fotg210,
4434         struct urb              *urb,
4435         struct fotg210_iso_stream       *stream
4436 )
4437 {
4438         u32                     now, next, start, period, span;
4439         int                     status;
4440         unsigned                mod = fotg210->periodic_size << 3;
4441         struct fotg210_iso_sched        *sched = urb->hcpriv;
4442
4443         period = urb->interval;
4444         span = sched->span;
4445
4446         if (span > mod - SCHEDULE_SLOP) {
4447                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4448                 status = -EFBIG;
4449                 goto fail;
4450         }
4451
4452         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4453
4454         /* Typical case: reuse current schedule, stream is still active.
4455          * Hopefully there are no gaps from the host falling behind
4456          * (irq delays etc), but if there are we'll take the next
4457          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4458          */
4459         if (likely(!list_empty(&stream->td_list))) {
4460                 u32     excess;
4461
4462                 /* For high speed devices, allow scheduling within the
4463                  * isochronous scheduling threshold.  For full speed devices
4464                  * and Intel PCI-based controllers, don't (work around for
4465                  * Intel ICH9 bug).
4466                  */
4467                 if (!stream->highspeed && fotg210->fs_i_thresh)
4468                         next = now + fotg210->i_thresh;
4469                 else
4470                         next = now;
4471
4472                 /* Fell behind (by up to twice the slop amount)?
4473                  * We decide based on the time of the last currently-scheduled
4474                  * slot, not the time of the next available slot.
4475                  */
4476                 excess = (stream->next_uframe - period - next) & (mod - 1);
4477                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4478                         start = next + excess - mod + period *
4479                                         DIV_ROUND_UP(mod - excess, period);
4480                 else
4481                         start = next + excess + period;
4482                 if (start - now >= mod) {
4483                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4484                                         urb, start - now - period, period,
4485                                         mod);
4486                         status = -EFBIG;
4487                         goto fail;
4488                 }
4489         }
4490
4491         /* need to schedule; when's the next (u)frame we could start?
4492          * this is bigger than fotg210->i_thresh allows; scheduling itself
4493          * isn't free, the slop should handle reasonably slow cpus.  it
4494          * can also help high bandwidth if the dma and irq loads don't
4495          * jump until after the queue is primed.
4496          */
4497         else {
4498                 int done = 0;
4499                 start = SCHEDULE_SLOP + (now & ~0x07);
4500
4501                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4502
4503                 /* find a uframe slot with enough bandwidth.
4504                  * Early uframes are more precious because full-speed
4505                  * iso IN transfers can't use late uframes,
4506                  * and therefore they should be allocated last.
4507                  */
4508                 next = start;
4509                 start += period;
4510                 do {
4511                         start--;
4512                         /* check schedule: enough space? */
4513                         if (itd_slot_ok(fotg210, mod, start,
4514                                         stream->usecs, period))
4515                                 done = 1;
4516                 } while (start > next && !done);
4517
4518                 /* no room in the schedule */
4519                 if (!done) {
4520                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4521                                 urb, now, now + mod);
4522                         status = -ENOSPC;
4523                         goto fail;
4524                 }
4525         }
4526
4527         /* Tried to schedule too far into the future? */
4528         if (unlikely(start - now + span - period
4529                                 >= mod - 2 * SCHEDULE_SLOP)) {
4530                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4531                                 urb, start - now, span - period,
4532                                 mod - 2 * SCHEDULE_SLOP);
4533                 status = -EFBIG;
4534                 goto fail;
4535         }
4536
4537         stream->next_uframe = start & (mod - 1);
4538
4539         /* report high speed start in uframes; full speed, in frames */
4540         urb->start_frame = stream->next_uframe;
4541         if (!stream->highspeed)
4542                 urb->start_frame >>= 3;
4543
4544         /* Make sure scan_isoc() sees these */
4545         if (fotg210->isoc_count == 0)
4546                 fotg210->next_frame = now >> 3;
4547         return 0;
4548
4549  fail:
4550         iso_sched_free(stream, sched);
4551         urb->hcpriv = NULL;
4552         return status;
4553 }
4554
4555 /*-------------------------------------------------------------------------*/
4556
4557 static inline void
4558 itd_init(struct fotg210_hcd *fotg210, struct fotg210_iso_stream *stream,
4559                 struct fotg210_itd *itd)
4560 {
4561         int i;
4562
4563         /* it's been recently zeroed */
4564         itd->hw_next = FOTG210_LIST_END(fotg210);
4565         itd->hw_bufp[0] = stream->buf0;
4566         itd->hw_bufp[1] = stream->buf1;
4567         itd->hw_bufp[2] = stream->buf2;
4568
4569         for (i = 0; i < 8; i++)
4570                 itd->index[i] = -1;
4571
4572         /* All other fields are filled when scheduling */
4573 }
4574
4575 static inline void
4576 itd_patch(
4577         struct fotg210_hcd              *fotg210,
4578         struct fotg210_itd              *itd,
4579         struct fotg210_iso_sched        *iso_sched,
4580         unsigned                index,
4581         u16                     uframe
4582 )
4583 {
4584         struct fotg210_iso_packet       *uf = &iso_sched->packet[index];
4585         unsigned                pg = itd->pg;
4586
4587         uframe &= 0x07;
4588         itd->index[uframe] = index;
4589
4590         itd->hw_transaction[uframe] = uf->transaction;
4591         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4592         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4593         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4594
4595         /* iso_frame_desc[].offset must be strictly increasing */
4596         if (unlikely(uf->cross)) {
4597                 u64     bufp = uf->bufp + 4096;
4598
4599                 itd->pg = ++pg;
4600                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4601                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4602         }
4603 }
4604
4605 static inline void
4606 itd_link(struct fotg210_hcd *fotg210, unsigned frame, struct fotg210_itd *itd)
4607 {
4608         union fotg210_shadow    *prev = &fotg210->pshadow[frame];
4609         __hc32                  *hw_p = &fotg210->periodic[frame];
4610         union fotg210_shadow    here = *prev;
4611         __hc32                  type = 0;
4612
4613         /* skip any iso nodes which might belong to previous microframes */
4614         while (here.ptr) {
4615                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4616                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4617                         break;
4618                 prev = periodic_next_shadow(fotg210, prev, type);
4619                 hw_p = shadow_next_periodic(fotg210, &here, type);
4620                 here = *prev;
4621         }
4622
4623         itd->itd_next = here;
4624         itd->hw_next = *hw_p;
4625         prev->itd = itd;
4626         itd->frame = frame;
4627         wmb();
4628         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4629 }
4630
4631 /* fit urb's itds into the selected schedule slot; activate as needed */
4632 static void itd_link_urb(
4633         struct fotg210_hcd              *fotg210,
4634         struct urb              *urb,
4635         unsigned                mod,
4636         struct fotg210_iso_stream       *stream
4637 )
4638 {
4639         int                     packet;
4640         unsigned                next_uframe, uframe, frame;
4641         struct fotg210_iso_sched        *iso_sched = urb->hcpriv;
4642         struct fotg210_itd              *itd;
4643
4644         next_uframe = stream->next_uframe & (mod - 1);
4645
4646         if (unlikely(list_empty(&stream->td_list))) {
4647                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4648                                 += stream->bandwidth;
4649                 fotg210_vdbg(fotg210,
4650                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4651                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4652                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4653                         urb->interval,
4654                         next_uframe >> 3, next_uframe & 0x7);
4655         }
4656
4657         /* fill iTDs uframe by uframe */
4658         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4659                 if (itd == NULL) {
4660                         /* ASSERT:  we have all necessary itds */
4661
4662                         /* ASSERT:  no itds for this endpoint in this uframe */
4663
4664                         itd = list_entry(iso_sched->td_list.next,
4665                                         struct fotg210_itd, itd_list);
4666                         list_move_tail(&itd->itd_list, &stream->td_list);
4667                         itd->stream = stream;
4668                         itd->urb = urb;
4669                         itd_init(fotg210, stream, itd);
4670                 }
4671
4672                 uframe = next_uframe & 0x07;
4673                 frame = next_uframe >> 3;
4674
4675                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4676
4677                 next_uframe += stream->interval;
4678                 next_uframe &= mod - 1;
4679                 packet++;
4680
4681                 /* link completed itds into the schedule */
4682                 if (((next_uframe >> 3) != frame)
4683                                 || packet == urb->number_of_packets) {
4684                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4685                                  itd);
4686                         itd = NULL;
4687                 }
4688         }
4689         stream->next_uframe = next_uframe;
4690
4691         /* don't need that schedule data any more */
4692         iso_sched_free(stream, iso_sched);
4693         urb->hcpriv = NULL;
4694
4695         ++fotg210->isoc_count;
4696         enable_periodic(fotg210);
4697 }
4698
4699 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4700                   FOTG210_ISOC_XACTERR)
4701
4702 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4703  * and hence its completion callback probably added things to the hardware
4704  * schedule.
4705  *
4706  * Note that we carefully avoid recycling this descriptor until after any
4707  * completion callback runs, so that it won't be reused quickly.  That is,
4708  * assuming (a) no more than two urbs per frame on this endpoint, and also
4709  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4710  * corrupts things if you reuse completed descriptors very quickly...
4711  */
4712 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4713 {
4714         struct urb                              *urb = itd->urb;
4715         struct usb_iso_packet_descriptor        *desc;
4716         u32                                     t;
4717         unsigned                                uframe;
4718         int                                     urb_index = -1;
4719         struct fotg210_iso_stream                       *stream = itd->stream;
4720         struct usb_device                       *dev;
4721         bool                                    retval = false;
4722
4723         /* for each uframe with a packet */
4724         for (uframe = 0; uframe < 8; uframe++) {
4725                 if (likely(itd->index[uframe] == -1))
4726                         continue;
4727                 urb_index = itd->index[uframe];
4728                 desc = &urb->iso_frame_desc[urb_index];
4729
4730                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4731                 itd->hw_transaction[uframe] = 0;
4732
4733                 /* report transfer status */
4734                 if (unlikely(t & ISO_ERRS)) {
4735                         urb->error_count++;
4736                         if (t & FOTG210_ISOC_BUF_ERR)
4737                                 desc->status = usb_pipein(urb->pipe)
4738                                         ? -ENOSR  /* hc couldn't read */
4739                                         : -ECOMM; /* hc couldn't write */
4740                         else if (t & FOTG210_ISOC_BABBLE)
4741                                 desc->status = -EOVERFLOW;
4742                         else /* (t & FOTG210_ISOC_XACTERR) */
4743                                 desc->status = -EPROTO;
4744
4745                         /* HC need not update length with this error */
4746                         if (!(t & FOTG210_ISOC_BABBLE)) {
4747                                 desc->actual_length =
4748                                         fotg210_itdlen(urb, desc, t);
4749                                 urb->actual_length += desc->actual_length;
4750                         }
4751                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4752                         desc->status = 0;
4753                         desc->actual_length = fotg210_itdlen(urb, desc, t);
4754                         urb->actual_length += desc->actual_length;
4755                 } else {
4756                         /* URB was too late */
4757                         desc->status = -EXDEV;
4758                 }
4759         }
4760
4761         /* handle completion now? */
4762         if (likely((urb_index + 1) != urb->number_of_packets))
4763                 goto done;
4764
4765         /* ASSERT: it's really the last itd for this urb
4766         list_for_each_entry (itd, &stream->td_list, itd_list)
4767                 BUG_ON (itd->urb == urb);
4768          */
4769
4770         /* give urb back to the driver; completion often (re)submits */
4771         dev = urb->dev;
4772         fotg210_urb_done(fotg210, urb, 0);
4773         retval = true;
4774         urb = NULL;
4775
4776         --fotg210->isoc_count;
4777         disable_periodic(fotg210);
4778
4779         if (unlikely(list_is_singular(&stream->td_list))) {
4780                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4781                                 -= stream->bandwidth;
4782                 fotg210_vdbg(fotg210,
4783                         "deschedule devp %s ep%d%s-iso\n",
4784                         dev->devpath, stream->bEndpointAddress & 0x0f,
4785                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4786         }
4787
4788 done:
4789         itd->urb = NULL;
4790
4791         /* Add to the end of the free list for later reuse */
4792         list_move_tail(&itd->itd_list, &stream->free_list);
4793
4794         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4795         if (list_empty(&stream->td_list)) {
4796                 list_splice_tail_init(&stream->free_list,
4797                                 &fotg210->cached_itd_list);
4798                 start_free_itds(fotg210);
4799         }
4800
4801         return retval;
4802 }
4803
4804 /*-------------------------------------------------------------------------*/
4805
4806 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4807         gfp_t mem_flags)
4808 {
4809         int                     status = -EINVAL;
4810         unsigned long           flags;
4811         struct fotg210_iso_stream       *stream;
4812
4813         /* Get iso_stream head */
4814         stream = iso_stream_find(fotg210, urb);
4815         if (unlikely(stream == NULL)) {
4816                 fotg210_dbg(fotg210, "can't get iso stream\n");
4817                 return -ENOMEM;
4818         }
4819         if (unlikely(urb->interval != stream->interval &&
4820                       fotg210_port_speed(fotg210, 0) ==
4821                                 USB_PORT_STAT_HIGH_SPEED)) {
4822                         fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4823                                 stream->interval, urb->interval);
4824                         goto done;
4825         }
4826
4827 #ifdef FOTG210_URB_TRACE
4828         fotg210_dbg(fotg210,
4829                 "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4830                 __func__, urb->dev->devpath, urb,
4831                 usb_pipeendpoint(urb->pipe),
4832                 usb_pipein(urb->pipe) ? "in" : "out",
4833                 urb->transfer_buffer_length,
4834                 urb->number_of_packets, urb->interval,
4835                 stream);
4836 #endif
4837
4838         /* allocate ITDs w/o locking anything */
4839         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4840         if (unlikely(status < 0)) {
4841                 fotg210_dbg(fotg210, "can't init itds\n");
4842                 goto done;
4843         }
4844
4845         /* schedule ... need to lock */
4846         spin_lock_irqsave(&fotg210->lock, flags);
4847         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4848                 status = -ESHUTDOWN;
4849                 goto done_not_linked;
4850         }
4851         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4852         if (unlikely(status))
4853                 goto done_not_linked;
4854         status = iso_stream_schedule(fotg210, urb, stream);
4855         if (likely(status == 0))
4856                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4857         else
4858                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4859  done_not_linked:
4860         spin_unlock_irqrestore(&fotg210->lock, flags);
4861  done:
4862         return status;
4863 }
4864
4865 /*-------------------------------------------------------------------------*/
4866
4867 static void scan_isoc(struct fotg210_hcd *fotg210)
4868 {
4869         unsigned        uf, now_frame, frame;
4870         unsigned        fmask = fotg210->periodic_size - 1;
4871         bool            modified, live;
4872
4873         /*
4874          * When running, scan from last scan point up to "now"
4875          * else clean up by scanning everything that's left.
4876          * Touches as few pages as possible:  cache-friendly.
4877          */
4878         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4879                 uf = fotg210_read_frame_index(fotg210);
4880                 now_frame = (uf >> 3) & fmask;
4881                 live = true;
4882         } else  {
4883                 now_frame = (fotg210->next_frame - 1) & fmask;
4884                 live = false;
4885         }
4886         fotg210->now_frame = now_frame;
4887
4888         frame = fotg210->next_frame;
4889         for (;;) {
4890                 union fotg210_shadow    q, *q_p;
4891                 __hc32                  type, *hw_p;
4892
4893 restart:
4894                 /* scan each element in frame's queue for completions */
4895                 q_p = &fotg210->pshadow[frame];
4896                 hw_p = &fotg210->periodic[frame];
4897                 q.ptr = q_p->ptr;
4898                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4899                 modified = false;
4900
4901                 while (q.ptr != NULL) {
4902                         switch (hc32_to_cpu(fotg210, type)) {
4903                         case Q_TYPE_ITD:
4904                                 /* If this ITD is still active, leave it for
4905                                  * later processing ... check the next entry.
4906                                  * No need to check for activity unless the
4907                                  * frame is current.
4908                                  */
4909                                 if (frame == now_frame && live) {
4910                                         rmb();
4911                                         for (uf = 0; uf < 8; uf++) {
4912                                                 if (q.itd->hw_transaction[uf] &
4913                                                             ITD_ACTIVE(fotg210))
4914                                                         break;
4915                                         }
4916                                         if (uf < 8) {
4917                                                 q_p = &q.itd->itd_next;
4918                                                 hw_p = &q.itd->hw_next;
4919                                                 type = Q_NEXT_TYPE(fotg210,
4920                                                         q.itd->hw_next);
4921                                                 q = *q_p;
4922                                                 break;
4923                                         }
4924                                 }
4925
4926                                 /* Take finished ITDs out of the schedule
4927                                  * and process them:  recycle, maybe report
4928                                  * URB completion.  HC won't cache the
4929                                  * pointer for much longer, if at all.
4930                                  */
4931                                 *q_p = q.itd->itd_next;
4932                                 *hw_p = q.itd->hw_next;
4933                                 type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4934                                 wmb();
4935                                 modified = itd_complete(fotg210, q.itd);
4936                                 q = *q_p;
4937                                 break;
4938                         default:
4939                                 fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4940                                         type, frame, q.ptr);
4941                                 /* FALL THROUGH */
4942                         case Q_TYPE_QH:
4943                         case Q_TYPE_FSTN:
4944                                 /* End of the iTDs and siTDs */
4945                                 q.ptr = NULL;
4946                                 break;
4947                         }
4948
4949                         /* assume completion callbacks modify the queue */
4950                         if (unlikely(modified && fotg210->isoc_count > 0))
4951                                 goto restart;
4952                 }
4953
4954                 /* Stop when we have reached the current frame */
4955                 if (frame == now_frame)
4956                         break;
4957                 frame = (frame + 1) & fmask;
4958         }
4959         fotg210->next_frame = now_frame;
4960 }
4961 /*-------------------------------------------------------------------------*/
4962 /*
4963  * Display / Set uframe_periodic_max
4964  */
4965 static ssize_t show_uframe_periodic_max(struct device *dev,
4966                                         struct device_attribute *attr,
4967                                         char *buf)
4968 {
4969         struct fotg210_hcd              *fotg210;
4970         int                     n;
4971
4972         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4973         n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4974         return n;
4975 }
4976
4977
4978 static ssize_t store_uframe_periodic_max(struct device *dev,
4979                                         struct device_attribute *attr,
4980                                         const char *buf, size_t count)
4981 {
4982         struct fotg210_hcd      *fotg210;
4983         unsigned                uframe_periodic_max;
4984         unsigned                frame, uframe;
4985         unsigned short          allocated_max;
4986         unsigned long           flags;
4987         ssize_t                 ret;
4988
4989         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4990         if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4991                 return -EINVAL;
4992
4993         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4994                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4995                              uframe_periodic_max);
4996                 return -EINVAL;
4997         }
4998
4999         ret = -EINVAL;
5000
5001         /*
5002          * lock, so that our checking does not race with possible periodic
5003          * bandwidth allocation through submitting new urbs.
5004          */
5005         spin_lock_irqsave(&fotg210->lock, flags);
5006
5007         /*
5008          * for request to decrease max periodic bandwidth, we have to check
5009          * every microframe in the schedule to see whether the decrease is
5010          * possible.
5011          */
5012         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
5013                 allocated_max = 0;
5014
5015                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
5016                         for (uframe = 0; uframe < 7; ++uframe)
5017                                 allocated_max = max(allocated_max,
5018                                                     periodic_usecs(fotg210, frame, uframe));
5019
5020                 if (allocated_max > uframe_periodic_max) {
5021                         fotg210_info(fotg210,
5022                                 "cannot decrease uframe_periodic_max becase "
5023                                 "periodic bandwidth is already allocated "
5024                                 "(%u > %u)\n",
5025                                 allocated_max, uframe_periodic_max);
5026                         goto out_unlock;
5027                 }
5028         }
5029
5030         /* increasing is always ok */
5031
5032         fotg210_info(fotg210, "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
5033                      100 * uframe_periodic_max/125, uframe_periodic_max);
5034
5035         if (uframe_periodic_max != 100)
5036                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
5037
5038         fotg210->uframe_periodic_max = uframe_periodic_max;
5039         ret = count;
5040
5041 out_unlock:
5042         spin_unlock_irqrestore(&fotg210->lock, flags);
5043         return ret;
5044 }
5045
5046 static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
5047                    store_uframe_periodic_max);
5048
5049 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
5050 {
5051         struct device   *controller = fotg210_to_hcd(fotg210)->self.controller;
5052         int     i = 0;
5053
5054         if (i)
5055                 goto out;
5056
5057         i = device_create_file(controller, &dev_attr_uframe_periodic_max);
5058 out:
5059         return i;
5060 }
5061
5062 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
5063 {
5064         struct device   *controller = fotg210_to_hcd(fotg210)->self.controller;
5065
5066         device_remove_file(controller, &dev_attr_uframe_periodic_max);
5067 }
5068 /*-------------------------------------------------------------------------*/
5069
5070 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
5071  * The firmware seems to think that powering off is a wakeup event!
5072  * This routine turns off remote wakeup and everything else, on all ports.
5073  */
5074 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
5075 {
5076         u32 __iomem *status_reg = &fotg210->regs->port_status;
5077
5078         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
5079 }
5080
5081 /*
5082  * Halt HC, turn off all ports, and let the BIOS use the companion controllers.
5083  * Must be called with interrupts enabled and the lock not held.
5084  */
5085 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
5086 {
5087         fotg210_halt(fotg210);
5088
5089         spin_lock_irq(&fotg210->lock);
5090         fotg210->rh_state = FOTG210_RH_HALTED;
5091         fotg210_turn_off_all_ports(fotg210);
5092         spin_unlock_irq(&fotg210->lock);
5093 }
5094
5095 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
5096  * This forcibly disables dma and IRQs, helping kexec and other cases
5097  * where the next system software may expect clean state.
5098  */
5099 static void fotg210_shutdown(struct usb_hcd *hcd)
5100 {
5101         struct fotg210_hcd      *fotg210 = hcd_to_fotg210(hcd);
5102
5103         spin_lock_irq(&fotg210->lock);
5104         fotg210->shutdown = true;
5105         fotg210->rh_state = FOTG210_RH_STOPPING;
5106         fotg210->enabled_hrtimer_events = 0;
5107         spin_unlock_irq(&fotg210->lock);
5108
5109         fotg210_silence_controller(fotg210);
5110
5111         hrtimer_cancel(&fotg210->hrtimer);
5112 }
5113
5114 /*-------------------------------------------------------------------------*/
5115
5116 /*
5117  * fotg210_work is called from some interrupts, timers, and so on.
5118  * it calls driver completion functions, after dropping fotg210->lock.
5119  */
5120 static void fotg210_work(struct fotg210_hcd *fotg210)
5121 {
5122         /* another CPU may drop fotg210->lock during a schedule scan while
5123          * it reports urb completions.  this flag guards against bogus
5124          * attempts at re-entrant schedule scanning.
5125          */
5126         if (fotg210->scanning) {
5127                 fotg210->need_rescan = true;
5128                 return;
5129         }
5130         fotg210->scanning = true;
5131
5132  rescan:
5133         fotg210->need_rescan = false;
5134         if (fotg210->async_count)
5135                 scan_async(fotg210);
5136         if (fotg210->intr_count > 0)
5137                 scan_intr(fotg210);
5138         if (fotg210->isoc_count > 0)
5139                 scan_isoc(fotg210);
5140         if (fotg210->need_rescan)
5141                 goto rescan;
5142         fotg210->scanning = false;
5143
5144         /* the IO watchdog guards against hardware or driver bugs that
5145          * misplace IRQs, and should let us run completely without IRQs.
5146          * such lossage has been observed on both VT6202 and VT8235.
5147          */
5148         turn_on_io_watchdog(fotg210);
5149 }
5150
5151 /*
5152  * Called when the fotg210_hcd module is removed.
5153  */
5154 static void fotg210_stop(struct usb_hcd *hcd)
5155 {
5156         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5157
5158         fotg210_dbg(fotg210, "stop\n");
5159
5160         /* no more interrupts ... */
5161
5162         spin_lock_irq(&fotg210->lock);
5163         fotg210->enabled_hrtimer_events = 0;
5164         spin_unlock_irq(&fotg210->lock);
5165
5166         fotg210_quiesce(fotg210);
5167         fotg210_silence_controller(fotg210);
5168         fotg210_reset(fotg210);
5169
5170         hrtimer_cancel(&fotg210->hrtimer);
5171         remove_sysfs_files(fotg210);
5172         remove_debug_files(fotg210);
5173
5174         /* root hub is shut down separately (first, when possible) */
5175         spin_lock_irq(&fotg210->lock);
5176         end_free_itds(fotg210);
5177         spin_unlock_irq(&fotg210->lock);
5178         fotg210_mem_cleanup(fotg210);
5179
5180 #ifdef  FOTG210_STATS
5181         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
5182                 fotg210->stats.normal, fotg210->stats.error, fotg210->stats.iaa,
5183                 fotg210->stats.lost_iaa);
5184         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
5185                 fotg210->stats.complete, fotg210->stats.unlink);
5186 #endif
5187
5188         dbg_status(fotg210, "fotg210_stop completed",
5189                     fotg210_readl(fotg210, &fotg210->regs->status));
5190 }
5191
5192 /* one-time init, only for memory state */
5193 static int hcd_fotg210_init(struct usb_hcd *hcd)
5194 {
5195         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5196         u32                     temp;
5197         int                     retval;
5198         u32                     hcc_params;
5199         struct fotg210_qh_hw    *hw;
5200
5201         spin_lock_init(&fotg210->lock);
5202
5203         /*
5204          * keep io watchdog by default, those good HCDs could turn off it later
5205          */
5206         fotg210->need_io_watchdog = 1;
5207
5208         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
5209         fotg210->hrtimer.function = fotg210_hrtimer_func;
5210         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
5211
5212         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5213
5214         /*
5215          * by default set standard 80% (== 100 usec/uframe) max periodic
5216          * bandwidth as required by USB 2.0
5217          */
5218         fotg210->uframe_periodic_max = 100;
5219
5220         /*
5221          * hw default: 1K periodic list heads, one per frame.
5222          * periodic_size can shrink by USBCMD update if hcc_params allows.
5223          */
5224         fotg210->periodic_size = DEFAULT_I_TDPS;
5225         INIT_LIST_HEAD(&fotg210->intr_qh_list);
5226         INIT_LIST_HEAD(&fotg210->cached_itd_list);
5227
5228         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5229                 /* periodic schedule size can be smaller than default */
5230                 switch (FOTG210_TUNE_FLS) {
5231                 case 0:
5232                         fotg210->periodic_size = 1024;
5233                         break;
5234                 case 1:
5235                         fotg210->periodic_size = 512;
5236                         break;
5237                 case 2:
5238                         fotg210->periodic_size = 256;
5239                         break;
5240                 default:
5241                         BUG();
5242                 }
5243         }
5244         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
5245         if (retval < 0)
5246                 return retval;
5247
5248         /* controllers may cache some of the periodic schedule ... */
5249         fotg210->i_thresh = 2;
5250
5251         /*
5252          * dedicate a qh for the async ring head, since we couldn't unlink
5253          * a 'real' qh without stopping the async schedule [4.8].  use it
5254          * as the 'reclamation list head' too.
5255          * its dummy is used in hw_alt_next of many tds, to prevent the qh
5256          * from automatically advancing to the next td after short reads.
5257          */
5258         fotg210->async->qh_next.qh = NULL;
5259         hw = fotg210->async->hw;
5260         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
5261         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
5262         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
5263         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
5264         fotg210->async->qh_state = QH_STATE_LINKED;
5265         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
5266
5267         /* clear interrupt enables, set irq latency */
5268         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5269                 log2_irq_thresh = 0;
5270         temp = 1 << (16 + log2_irq_thresh);
5271         if (HCC_CANPARK(hcc_params)) {
5272                 /* HW default park == 3, on hardware that supports it (like
5273                  * NVidia and ALI silicon), maximizes throughput on the async
5274                  * schedule by avoiding QH fetches between transfers.
5275                  *
5276                  * With fast usb storage devices and NForce2, "park" seems to
5277                  * make problems:  throughput reduction (!), data errors...
5278                  */
5279                 if (park) {
5280                         park = min_t(unsigned, park, 3);
5281                         temp |= CMD_PARK;
5282                         temp |= park << 8;
5283                 }
5284                 fotg210_dbg(fotg210, "park %d\n", park);
5285         }
5286         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5287                 /* periodic schedule size can be smaller than default */
5288                 temp &= ~(3 << 2);
5289                 temp |= (FOTG210_TUNE_FLS << 2);
5290         }
5291         fotg210->command = temp;
5292
5293         /* Accept arbitrarily long scatter-gather lists */
5294         if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5295                 hcd->self.sg_tablesize = ~0;
5296         return 0;
5297 }
5298
5299 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5300 static int fotg210_run(struct usb_hcd *hcd)
5301 {
5302         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5303         u32                     temp;
5304         u32                     hcc_params;
5305
5306         hcd->uses_new_polling = 1;
5307
5308         /* EHCI spec section 4.1 */
5309
5310         fotg210_writel(fotg210, fotg210->periodic_dma,
5311                        &fotg210->regs->frame_list);
5312         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5313                        &fotg210->regs->async_next);
5314
5315         /*
5316          * hcc_params controls whether fotg210->regs->segment must (!!!)
5317          * be used; it constrains QH/ITD/SITD and QTD locations.
5318          * pci_pool consistent memory always uses segment zero.
5319          * streaming mappings for I/O buffers, like pci_map_single(),
5320          * can return segments above 4GB, if the device allows.
5321          *
5322          * NOTE:  the dma mask is visible through dma_supported(), so
5323          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5324          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5325          * host side drivers though.
5326          */
5327         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5328
5329         /*
5330          * Philips, Intel, and maybe others need CMD_RUN before the
5331          * root hub will detect new devices (why?); NEC doesn't
5332          */
5333         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5334         fotg210->command |= CMD_RUN;
5335         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5336         dbg_cmd(fotg210, "init", fotg210->command);
5337
5338         /*
5339          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5340          * are explicitly handed to companion controller(s), so no TT is
5341          * involved with the root hub.  (Except where one is integrated,
5342          * and there's no companion controller unless maybe for USB OTG.)
5343          *
5344          * Turning on the CF flag will transfer ownership of all ports
5345          * from the companions to the EHCI controller.  If any of the
5346          * companions are in the middle of a port reset at the time, it
5347          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5348          * guarantees that no resets are in progress.  After we set CF,
5349          * a short delay lets the hardware catch up; new resets shouldn't
5350          * be started before the port switching actions could complete.
5351          */
5352         down_write(&ehci_cf_port_reset_rwsem);
5353         fotg210->rh_state = FOTG210_RH_RUNNING;
5354         /* unblock posted writes */
5355         fotg210_readl(fotg210, &fotg210->regs->command);
5356         msleep(5);
5357         up_write(&ehci_cf_port_reset_rwsem);
5358         fotg210->last_periodic_enable = ktime_get_real();
5359
5360         temp = HC_VERSION(fotg210,
5361                           fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5362         fotg210_info(fotg210,
5363                 "USB %x.%x started, EHCI %x.%02x\n",
5364                 ((fotg210->sbrn & 0xf0)>>4), (fotg210->sbrn & 0x0f),
5365                 temp >> 8, temp & 0xff);
5366
5367         fotg210_writel(fotg210, INTR_MASK,
5368                     &fotg210->regs->intr_enable); /* Turn On Interrupts */
5369
5370         /* GRR this is run-once init(), being done every time the HC starts.
5371          * So long as they're part of class devices, we can't do it init()
5372          * since the class device isn't created that early.
5373          */
5374         create_debug_files(fotg210);
5375         create_sysfs_files(fotg210);
5376
5377         return 0;
5378 }
5379
5380 static int fotg210_setup(struct usb_hcd *hcd)
5381 {
5382         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5383         int retval;
5384
5385         fotg210->regs = (void __iomem *)fotg210->caps +
5386             HC_LENGTH(fotg210,
5387                       fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5388         dbg_hcs_params(fotg210, "reset");
5389         dbg_hcc_params(fotg210, "reset");
5390
5391         /* cache this readonly data; minimize chip reads */
5392         fotg210->hcs_params = fotg210_readl(fotg210,
5393                                             &fotg210->caps->hcs_params);
5394
5395         fotg210->sbrn = HCD_USB2;
5396
5397         /* data structure init */
5398         retval = hcd_fotg210_init(hcd);
5399         if (retval)
5400                 return retval;
5401
5402         retval = fotg210_halt(fotg210);
5403         if (retval)
5404                 return retval;
5405
5406         fotg210_reset(fotg210);
5407
5408         return 0;
5409 }
5410
5411 /*-------------------------------------------------------------------------*/
5412
5413 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5414 {
5415         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5416         u32                     status, masked_status, pcd_status = 0, cmd;
5417         int                     bh;
5418
5419         spin_lock(&fotg210->lock);
5420
5421         status = fotg210_readl(fotg210, &fotg210->regs->status);
5422
5423         /* e.g. cardbus physical eject */
5424         if (status == ~(u32) 0) {
5425                 fotg210_dbg(fotg210, "device removed\n");
5426                 goto dead;
5427         }
5428
5429         /*
5430          * We don't use STS_FLR, but some controllers don't like it to
5431          * remain on, so mask it out along with the other status bits.
5432          */
5433         masked_status = status & (INTR_MASK | STS_FLR);
5434
5435         /* Shared IRQ? */
5436         if (!masked_status ||
5437             unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5438                 spin_unlock(&fotg210->lock);
5439                 return IRQ_NONE;
5440         }
5441
5442         /* clear (just) interrupts */
5443         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5444         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5445         bh = 0;
5446
5447 #ifdef  VERBOSE_DEBUG
5448         /* unrequested/ignored: Frame List Rollover */
5449         dbg_status(fotg210, "irq", status);
5450 #endif
5451
5452         /* INT, ERR, and IAA interrupt rates can be throttled */
5453
5454         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5455         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5456                 if (likely((status & STS_ERR) == 0))
5457                         COUNT(fotg210->stats.normal);
5458                 else
5459                         COUNT(fotg210->stats.error);
5460                 bh = 1;
5461         }
5462
5463         /* complete the unlinking of some qh [4.15.2.3] */
5464         if (status & STS_IAA) {
5465
5466                 /* Turn off the IAA watchdog */
5467                 fotg210->enabled_hrtimer_events &=
5468                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5469
5470                 /*
5471                  * Mild optimization: Allow another IAAD to reset the
5472                  * hrtimer, if one occurs before the next expiration.
5473                  * In theory we could always cancel the hrtimer, but
5474                  * tests show that about half the time it will be reset
5475                  * for some other event anyway.
5476                  */
5477                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5478                         ++fotg210->next_hrtimer_event;
5479
5480                 /* guard against (alleged) silicon errata */
5481                 if (cmd & CMD_IAAD)
5482                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5483                 if (fotg210->async_iaa) {
5484                         COUNT(fotg210->stats.iaa);
5485                         end_unlink_async(fotg210);
5486                 } else
5487                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5488         }
5489
5490         /* remote wakeup [4.3.1] */
5491         if (status & STS_PCD) {
5492                 int pstatus;
5493                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5494
5495                 /* kick root hub later */
5496                 pcd_status = status;
5497
5498                 /* resume root hub? */
5499                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5500                         usb_hcd_resume_root_hub(hcd);
5501
5502                 pstatus = fotg210_readl(fotg210, status_reg);
5503
5504                 if (test_bit(0, &fotg210->suspended_ports) &&
5505                                 ((pstatus & PORT_RESUME) ||
5506                                         !(pstatus & PORT_SUSPEND)) &&
5507                                 (pstatus & PORT_PE) &&
5508                                 fotg210->reset_done[0] == 0) {
5509
5510                         /* start 20 msec resume signaling from this port,
5511                          * and make khubd collect PORT_STAT_C_SUSPEND to
5512                          * stop that signaling.  Use 5 ms extra for safety,
5513                          * like usb_port_resume() does.
5514                          */
5515                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5516                         set_bit(0, &fotg210->resuming_ports);
5517                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5518                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5519                 }
5520         }
5521
5522         /* PCI errors [4.15.2.4] */
5523         if (unlikely((status & STS_FATAL) != 0)) {
5524                 fotg210_err(fotg210, "fatal error\n");
5525                 dbg_cmd(fotg210, "fatal", cmd);
5526                 dbg_status(fotg210, "fatal", status);
5527 dead:
5528                 usb_hc_died(hcd);
5529
5530                 /* Don't let the controller do anything more */
5531                 fotg210->shutdown = true;
5532                 fotg210->rh_state = FOTG210_RH_STOPPING;
5533                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5534                 fotg210_writel(fotg210, fotg210->command,
5535                                &fotg210->regs->command);
5536                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5537                 fotg210_handle_controller_death(fotg210);
5538
5539                 /* Handle completions when the controller stops */
5540                 bh = 0;
5541         }
5542
5543         if (bh)
5544                 fotg210_work(fotg210);
5545         spin_unlock(&fotg210->lock);
5546         if (pcd_status)
5547                 usb_hcd_poll_rh_status(hcd);
5548         return IRQ_HANDLED;
5549 }
5550
5551 /*-------------------------------------------------------------------------*/
5552
5553 /*
5554  * non-error returns are a promise to giveback() the urb later
5555  * we drop ownership so next owner (or urb unlink) can get it
5556  *
5557  * urb + dev is in hcd.self.controller.urb_list
5558  * we're queueing TDs onto software and hardware lists
5559  *
5560  * hcd-specific init for hcpriv hasn't been done yet
5561  *
5562  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5563  * to a (possibly active) QH, and the same QH scanning code.
5564  */
5565 static int fotg210_urb_enqueue(
5566         struct usb_hcd  *hcd,
5567         struct urb      *urb,
5568         gfp_t           mem_flags
5569 ) {
5570         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5571         struct list_head        qtd_list;
5572
5573         INIT_LIST_HEAD(&qtd_list);
5574
5575         switch (usb_pipetype(urb->pipe)) {
5576         case PIPE_CONTROL:
5577                 /* qh_completions() code doesn't handle all the fault cases
5578                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5579                  */
5580                 if (urb->transfer_buffer_length > (16 * 1024))
5581                         return -EMSGSIZE;
5582                 /* FALLTHROUGH */
5583         /* case PIPE_BULK: */
5584         default:
5585                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5586                         return -ENOMEM;
5587                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5588
5589         case PIPE_INTERRUPT:
5590                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5591                         return -ENOMEM;
5592                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5593
5594         case PIPE_ISOCHRONOUS:
5595                 return itd_submit(fotg210, urb, mem_flags);
5596         }
5597 }
5598
5599 /* remove from hardware lists
5600  * completions normally happen asynchronously
5601  */
5602
5603 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5604 {
5605         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5606         struct fotg210_qh               *qh;
5607         unsigned long           flags;
5608         int                     rc;
5609
5610         spin_lock_irqsave(&fotg210->lock, flags);
5611         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5612         if (rc)
5613                 goto done;
5614
5615         switch (usb_pipetype(urb->pipe)) {
5616         /* case PIPE_CONTROL: */
5617         /* case PIPE_BULK:*/
5618         default:
5619                 qh = (struct fotg210_qh *) urb->hcpriv;
5620                 if (!qh)
5621                         break;
5622                 switch (qh->qh_state) {
5623                 case QH_STATE_LINKED:
5624                 case QH_STATE_COMPLETING:
5625                         start_unlink_async(fotg210, qh);
5626                         break;
5627                 case QH_STATE_UNLINK:
5628                 case QH_STATE_UNLINK_WAIT:
5629                         /* already started */
5630                         break;
5631                 case QH_STATE_IDLE:
5632                         /* QH might be waiting for a Clear-TT-Buffer */
5633                         qh_completions(fotg210, qh);
5634                         break;
5635                 }
5636                 break;
5637
5638         case PIPE_INTERRUPT:
5639                 qh = (struct fotg210_qh *) urb->hcpriv;
5640                 if (!qh)
5641                         break;
5642                 switch (qh->qh_state) {
5643                 case QH_STATE_LINKED:
5644                 case QH_STATE_COMPLETING:
5645                         start_unlink_intr(fotg210, qh);
5646                         break;
5647                 case QH_STATE_IDLE:
5648                         qh_completions(fotg210, qh);
5649                         break;
5650                 default:
5651                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5652                                         qh, qh->qh_state);
5653                         goto done;
5654                 }
5655                 break;
5656
5657         case PIPE_ISOCHRONOUS:
5658                 /* itd... */
5659
5660                 /* wait till next completion, do it then. */
5661                 /* completion irqs can wait up to 1024 msec, */
5662                 break;
5663         }
5664 done:
5665         spin_unlock_irqrestore(&fotg210->lock, flags);
5666         return rc;
5667 }
5668
5669 /*-------------------------------------------------------------------------*/
5670
5671 /* bulk qh holds the data toggle */
5672
5673 static void
5674 fotg210_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5675 {
5676         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5677         unsigned long           flags;
5678         struct fotg210_qh               *qh, *tmp;
5679
5680         /* ASSERT:  any requests/urbs are being unlinked */
5681         /* ASSERT:  nobody can be submitting urbs for this any more */
5682
5683 rescan:
5684         spin_lock_irqsave(&fotg210->lock, flags);
5685         qh = ep->hcpriv;
5686         if (!qh)
5687                 goto done;
5688
5689         /* endpoints can be iso streams.  for now, we don't
5690          * accelerate iso completions ... so spin a while.
5691          */
5692         if (qh->hw == NULL) {
5693                 struct fotg210_iso_stream       *stream = ep->hcpriv;
5694
5695                 if (!list_empty(&stream->td_list))
5696                         goto idle_timeout;
5697
5698                 /* BUG_ON(!list_empty(&stream->free_list)); */
5699                 kfree(stream);
5700                 goto done;
5701         }
5702
5703         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5704                 qh->qh_state = QH_STATE_IDLE;
5705         switch (qh->qh_state) {
5706         case QH_STATE_LINKED:
5707         case QH_STATE_COMPLETING:
5708                 for (tmp = fotg210->async->qh_next.qh;
5709                                 tmp && tmp != qh;
5710                                 tmp = tmp->qh_next.qh)
5711                         continue;
5712                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5713                  * may already be unlinked.
5714                  */
5715                 if (tmp)
5716                         start_unlink_async(fotg210, qh);
5717                 /* FALL THROUGH */
5718         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5719         case QH_STATE_UNLINK_WAIT:
5720 idle_timeout:
5721                 spin_unlock_irqrestore(&fotg210->lock, flags);
5722                 schedule_timeout_uninterruptible(1);
5723                 goto rescan;
5724         case QH_STATE_IDLE:             /* fully unlinked */
5725                 if (qh->clearing_tt)
5726                         goto idle_timeout;
5727                 if (list_empty(&qh->qtd_list)) {
5728                         qh_destroy(fotg210, qh);
5729                         break;
5730                 }
5731                 /* else FALL THROUGH */
5732         default:
5733                 /* caller was supposed to have unlinked any requests;
5734                  * that's not our job.  just leak this memory.
5735                  */
5736                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5737                         qh, ep->desc.bEndpointAddress, qh->qh_state,
5738                         list_empty(&qh->qtd_list) ? "" : "(has tds)");
5739                 break;
5740         }
5741  done:
5742         ep->hcpriv = NULL;
5743         spin_unlock_irqrestore(&fotg210->lock, flags);
5744 }
5745
5746 static void
5747 fotg210_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep)
5748 {
5749         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5750         struct fotg210_qh               *qh;
5751         int                     eptype = usb_endpoint_type(&ep->desc);
5752         int                     epnum = usb_endpoint_num(&ep->desc);
5753         int                     is_out = usb_endpoint_dir_out(&ep->desc);
5754         unsigned long           flags;
5755
5756         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5757                 return;
5758
5759         spin_lock_irqsave(&fotg210->lock, flags);
5760         qh = ep->hcpriv;
5761
5762         /* For Bulk and Interrupt endpoints we maintain the toggle state
5763          * in the hardware; the toggle bits in udev aren't used at all.
5764          * When an endpoint is reset by usb_clear_halt() we must reset
5765          * the toggle bit in the QH.
5766          */
5767         if (qh) {
5768                 usb_settoggle(qh->dev, epnum, is_out, 0);
5769                 if (!list_empty(&qh->qtd_list)) {
5770                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5771                 } else if (qh->qh_state == QH_STATE_LINKED ||
5772                                 qh->qh_state == QH_STATE_COMPLETING) {
5773
5774                         /* The toggle value in the QH can't be updated
5775                          * while the QH is active.  Unlink it now;
5776                          * re-linking will call qh_refresh().
5777                          */
5778                         if (eptype == USB_ENDPOINT_XFER_BULK)
5779                                 start_unlink_async(fotg210, qh);
5780                         else
5781                                 start_unlink_intr(fotg210, qh);
5782                 }
5783         }
5784         spin_unlock_irqrestore(&fotg210->lock, flags);
5785 }
5786
5787 static int fotg210_get_frame(struct usb_hcd *hcd)
5788 {
5789         struct fotg210_hcd              *fotg210 = hcd_to_fotg210(hcd);
5790         return (fotg210_read_frame_index(fotg210) >> 3) %
5791                 fotg210->periodic_size;
5792 }
5793
5794 /*-------------------------------------------------------------------------*/
5795
5796 /*
5797  * The EHCI in ChipIdea HDRC cannot be a separate module or device,
5798  * because its registers (and irq) are shared between host/gadget/otg
5799  * functions  and in order to facilitate role switching we cannot
5800  * give the fotg210 driver exclusive access to those.
5801  */
5802 MODULE_DESCRIPTION(DRIVER_DESC);
5803 MODULE_AUTHOR(DRIVER_AUTHOR);
5804 MODULE_LICENSE("GPL");
5805
5806 static const struct hc_driver fotg210_fotg210_hc_driver = {
5807         .description            = hcd_name,
5808         .product_desc           = "Faraday USB2.0 Host Controller",
5809         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5810
5811         /*
5812          * generic hardware linkage
5813          */
5814         .irq                    = fotg210_irq,
5815         .flags                  = HCD_MEMORY | HCD_USB2,
5816
5817         /*
5818          * basic lifecycle operations
5819          */
5820         .reset                  = hcd_fotg210_init,
5821         .start                  = fotg210_run,
5822         .stop                   = fotg210_stop,
5823         .shutdown               = fotg210_shutdown,
5824
5825         /*
5826          * managing i/o requests and associated device resources
5827          */
5828         .urb_enqueue            = fotg210_urb_enqueue,
5829         .urb_dequeue            = fotg210_urb_dequeue,
5830         .endpoint_disable       = fotg210_endpoint_disable,
5831         .endpoint_reset         = fotg210_endpoint_reset,
5832
5833         /*
5834          * scheduling support
5835          */
5836         .get_frame_number       = fotg210_get_frame,
5837
5838         /*
5839          * root hub support
5840          */
5841         .hub_status_data        = fotg210_hub_status_data,
5842         .hub_control            = fotg210_hub_control,
5843         .bus_suspend            = fotg210_bus_suspend,
5844         .bus_resume             = fotg210_bus_resume,
5845
5846         .relinquish_port        = fotg210_relinquish_port,
5847         .port_handed_over       = fotg210_port_handed_over,
5848
5849         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5850 };
5851
5852 static void fotg210_init(struct fotg210_hcd *fotg210)
5853 {
5854         u32 value;
5855
5856         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5857                   &fotg210->regs->gmir);
5858
5859         value = ioread32(&fotg210->regs->otgcsr);
5860         value &= ~OTGCSR_A_BUS_DROP;
5861         value |= OTGCSR_A_BUS_REQ;
5862         iowrite32(value, &fotg210->regs->otgcsr);
5863 }
5864
5865 /**
5866  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5867  *
5868  * Allocates basic resources for this USB host controller, and
5869  * then invokes the start() method for the HCD associated with it
5870  * through the hotplug entry's driver_data.
5871  */
5872 static int fotg210_hcd_probe(struct platform_device *pdev)
5873 {
5874         struct device                   *dev = &pdev->dev;
5875         struct usb_hcd                  *hcd;
5876         struct resource                 *res;
5877         int                             irq;
5878         int                             retval = -ENODEV;
5879         struct fotg210_hcd              *fotg210;
5880
5881         if (usb_disabled())
5882                 return -ENODEV;
5883
5884         pdev->dev.power.power_state = PMSG_ON;
5885
5886         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5887         if (!res) {
5888                 dev_err(dev,
5889                         "Found HC with no IRQ. Check %s setup!\n",
5890                         dev_name(dev));
5891                 return -ENODEV;
5892         }
5893
5894         irq = res->start;
5895
5896         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5897                         dev_name(dev));
5898         if (!hcd) {
5899                 dev_err(dev, "failed to create hcd with err %d\n", retval);
5900                 retval = -ENOMEM;
5901                 goto fail_create_hcd;
5902         }
5903
5904         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5905         if (!res) {
5906                 dev_err(dev,
5907                         "Found HC with no register addr. Check %s setup!\n",
5908                         dev_name(dev));
5909                 retval = -ENODEV;
5910                 goto fail_request_resource;
5911         }
5912
5913         hcd->rsrc_start = res->start;
5914         hcd->rsrc_len = resource_size(res);
5915         hcd->has_tt = 1;
5916
5917         if (!request_mem_region(hcd->rsrc_start, hcd->rsrc_len,
5918                                 fotg210_fotg210_hc_driver.description)) {
5919                 dev_dbg(dev, "controller already in use\n");
5920                 retval = -EBUSY;
5921                 goto fail_request_resource;
5922         }
5923
5924         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
5925         if (!res) {
5926                 dev_err(dev,
5927                         "Found HC with no register addr. Check %s setup!\n",
5928                         dev_name(dev));
5929                 retval = -ENODEV;
5930                 goto fail_request_resource;
5931         }
5932
5933         hcd->regs = ioremap_nocache(res->start, resource_size(res));
5934         if (hcd->regs == NULL) {
5935                 dev_dbg(dev, "error mapping memory\n");
5936                 retval = -EFAULT;
5937                 goto fail_ioremap;
5938         }
5939
5940         fotg210 = hcd_to_fotg210(hcd);
5941
5942         fotg210->caps = hcd->regs;
5943
5944         retval = fotg210_setup(hcd);
5945         if (retval)
5946                 goto fail_add_hcd;
5947
5948         fotg210_init(fotg210);
5949
5950         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5951         if (retval) {
5952                 dev_err(dev, "failed to add hcd with err %d\n", retval);
5953                 goto fail_add_hcd;
5954         }
5955
5956         return retval;
5957
5958 fail_add_hcd:
5959         iounmap(hcd->regs);
5960 fail_ioremap:
5961         release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
5962 fail_request_resource:
5963         usb_put_hcd(hcd);
5964 fail_create_hcd:
5965         dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5966         return retval;
5967 }
5968
5969 /**
5970  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5971  * @dev: USB Host Controller being removed
5972  *
5973  */
5974 static int fotg210_hcd_remove(struct platform_device *pdev)
5975 {
5976         struct device *dev      = &pdev->dev;
5977         struct usb_hcd *hcd     = dev_get_drvdata(dev);
5978
5979         if (!hcd)
5980                 return 0;
5981
5982         usb_remove_hcd(hcd);
5983         iounmap(hcd->regs);
5984         release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
5985         usb_put_hcd(hcd);
5986
5987         return 0;
5988 }
5989
5990 static struct platform_driver fotg210_hcd_driver = {
5991         .driver = {
5992                 .name   = "fotg210-hcd",
5993         },
5994         .probe  = fotg210_hcd_probe,
5995         .remove = fotg210_hcd_remove,
5996 };
5997
5998 static int __init fotg210_hcd_init(void)
5999 {
6000         int retval = 0;
6001
6002         if (usb_disabled())
6003                 return -ENODEV;
6004
6005         pr_info("%s: " DRIVER_DESC "\n", hcd_name);
6006         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
6007         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
6008                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
6009                 pr_warn(KERN_WARNING "Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
6010
6011         pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
6012                  hcd_name,
6013                  sizeof(struct fotg210_qh), sizeof(struct fotg210_qtd),
6014                  sizeof(struct fotg210_itd));
6015
6016 #ifdef DEBUG
6017         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
6018         if (!fotg210_debug_root) {
6019                 retval = -ENOENT;
6020                 goto err_debug;
6021         }
6022 #endif
6023
6024         retval = platform_driver_register(&fotg210_hcd_driver);
6025         if (retval < 0)
6026                 goto clean;
6027         return retval;
6028
6029         platform_driver_unregister(&fotg210_hcd_driver);
6030 clean:
6031 #ifdef DEBUG
6032         debugfs_remove(fotg210_debug_root);
6033         fotg210_debug_root = NULL;
6034 err_debug:
6035 #endif
6036         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
6037         return retval;
6038 }
6039 module_init(fotg210_hcd_init);
6040
6041 static void __exit fotg210_hcd_cleanup(void)
6042 {
6043         platform_driver_unregister(&fotg210_hcd_driver);
6044 #ifdef DEBUG
6045         debugfs_remove(fotg210_debug_root);
6046 #endif
6047         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
6048 }
6049 module_exit(fotg210_hcd_cleanup);