]> Pileus Git - ~andy/linux/blob - drivers/usb/gadget/s3c-hsudc.c
Merge tag 'efi-for-3.9-rc4' into x86/urgent
[~andy/linux] / drivers / usb / gadget / s3c-hsudc.c
1 /* linux/drivers/usb/gadget/s3c-hsudc.c
2  *
3  * Copyright (c) 2010 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com/
5  *
6  * S3C24XX USB 2.0 High-speed USB controller gadget driver
7  *
8  * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
9  * Each endpoint can be configured as either in or out endpoint. Endpoints
10  * can be configured for Bulk or Interrupt transfer mode.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/err.h>
28 #include <linux/usb/ch9.h>
29 #include <linux/usb/gadget.h>
30 #include <linux/usb/otg.h>
31 #include <linux/prefetch.h>
32 #include <linux/platform_data/s3c-hsudc.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/pm_runtime.h>
35
36 #include <mach/regs-s3c2443-clock.h>
37
38 #define S3C_HSUDC_REG(x)        (x)
39
40 /* Non-Indexed Registers */
41 #define S3C_IR                          S3C_HSUDC_REG(0x00) /* Index Register */
42 #define S3C_EIR                         S3C_HSUDC_REG(0x04) /* EP Intr Status */
43 #define S3C_EIR_EP0                     (1<<0)
44 #define S3C_EIER                        S3C_HSUDC_REG(0x08) /* EP Intr Enable */
45 #define S3C_FAR                         S3C_HSUDC_REG(0x0c) /* Gadget Address */
46 #define S3C_FNR                         S3C_HSUDC_REG(0x10) /* Frame Number */
47 #define S3C_EDR                         S3C_HSUDC_REG(0x14) /* EP Direction */
48 #define S3C_TR                          S3C_HSUDC_REG(0x18) /* Test Register */
49 #define S3C_SSR                         S3C_HSUDC_REG(0x1c) /* System Status */
50 #define S3C_SSR_DTZIEN_EN               (0xff8f)
51 #define S3C_SSR_ERR                     (0xff80)
52 #define S3C_SSR_VBUSON                  (1 << 8)
53 #define S3C_SSR_HSP                     (1 << 4)
54 #define S3C_SSR_SDE                     (1 << 3)
55 #define S3C_SSR_RESUME                  (1 << 2)
56 #define S3C_SSR_SUSPEND                 (1 << 1)
57 #define S3C_SSR_RESET                   (1 << 0)
58 #define S3C_SCR                         S3C_HSUDC_REG(0x20) /* System Control */
59 #define S3C_SCR_DTZIEN_EN               (1 << 14)
60 #define S3C_SCR_RRD_EN                  (1 << 5)
61 #define S3C_SCR_SUS_EN                  (1 << 1)
62 #define S3C_SCR_RST_EN                  (1 << 0)
63 #define S3C_EP0SR                       S3C_HSUDC_REG(0x24) /* EP0 Status */
64 #define S3C_EP0SR_EP0_LWO               (1 << 6)
65 #define S3C_EP0SR_STALL                 (1 << 4)
66 #define S3C_EP0SR_TX_SUCCESS            (1 << 1)
67 #define S3C_EP0SR_RX_SUCCESS            (1 << 0)
68 #define S3C_EP0CR                       S3C_HSUDC_REG(0x28) /* EP0 Control */
69 #define S3C_BR(_x)                      S3C_HSUDC_REG(0x60 + (_x * 4))
70
71 /* Indexed Registers */
72 #define S3C_ESR                         S3C_HSUDC_REG(0x2c) /* EPn Status */
73 #define S3C_ESR_FLUSH                   (1 << 6)
74 #define S3C_ESR_STALL                   (1 << 5)
75 #define S3C_ESR_LWO                     (1 << 4)
76 #define S3C_ESR_PSIF_ONE                (1 << 2)
77 #define S3C_ESR_PSIF_TWO                (2 << 2)
78 #define S3C_ESR_TX_SUCCESS              (1 << 1)
79 #define S3C_ESR_RX_SUCCESS              (1 << 0)
80 #define S3C_ECR                         S3C_HSUDC_REG(0x30) /* EPn Control */
81 #define S3C_ECR_DUEN                    (1 << 7)
82 #define S3C_ECR_FLUSH                   (1 << 6)
83 #define S3C_ECR_STALL                   (1 << 1)
84 #define S3C_ECR_IEMS                    (1 << 0)
85 #define S3C_BRCR                        S3C_HSUDC_REG(0x34) /* Read Count */
86 #define S3C_BWCR                        S3C_HSUDC_REG(0x38) /* Write Count */
87 #define S3C_MPR                         S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
88
89 #define WAIT_FOR_SETUP                  (0)
90 #define DATA_STATE_XMIT                 (1)
91 #define DATA_STATE_RECV                 (2)
92
93 static const char * const s3c_hsudc_supply_names[] = {
94         "vdda",         /* analog phy supply, 3.3V */
95         "vddi",         /* digital phy supply, 1.2V */
96         "vddosc",       /* oscillator supply, 1.8V - 3.3V */
97 };
98
99 /**
100  * struct s3c_hsudc_ep - Endpoint representation used by driver.
101  * @ep: USB gadget layer representation of device endpoint.
102  * @name: Endpoint name (as required by ep autoconfiguration).
103  * @dev: Reference to the device controller to which this EP belongs.
104  * @desc: Endpoint descriptor obtained from the gadget driver.
105  * @queue: Transfer request queue for the endpoint.
106  * @stopped: Maintains state of endpoint, set if EP is halted.
107  * @bEndpointAddress: EP address (including direction bit).
108  * @fifo: Base address of EP FIFO.
109  */
110 struct s3c_hsudc_ep {
111         struct usb_ep ep;
112         char name[20];
113         struct s3c_hsudc *dev;
114         struct list_head queue;
115         u8 stopped;
116         u8 wedge;
117         u8 bEndpointAddress;
118         void __iomem *fifo;
119 };
120
121 /**
122  * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
123  * @req: Reference to USB gadget transfer request.
124  * @queue: Used for inserting this request to the endpoint request queue.
125  */
126 struct s3c_hsudc_req {
127         struct usb_request req;
128         struct list_head queue;
129 };
130
131 /**
132  * struct s3c_hsudc - Driver's abstraction of the device controller.
133  * @gadget: Instance of usb_gadget which is referenced by gadget driver.
134  * @driver: Reference to currenty active gadget driver.
135  * @dev: The device reference used by probe function.
136  * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
137  * @regs: Remapped base address of controller's register space.
138  * irq: IRQ number used by the controller.
139  * uclk: Reference to the controller clock.
140  * ep0state: Current state of EP0.
141  * ep: List of endpoints supported by the controller.
142  */
143 struct s3c_hsudc {
144         struct usb_gadget gadget;
145         struct usb_gadget_driver *driver;
146         struct device *dev;
147         struct s3c24xx_hsudc_platdata *pd;
148         struct usb_phy *transceiver;
149         struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
150         spinlock_t lock;
151         void __iomem *regs;
152         int irq;
153         struct clk *uclk;
154         int ep0state;
155         struct s3c_hsudc_ep ep[];
156 };
157
158 #define ep_maxpacket(_ep)       ((_ep)->ep.maxpacket)
159 #define ep_is_in(_ep)           ((_ep)->bEndpointAddress & USB_DIR_IN)
160 #define ep_index(_ep)           ((_ep)->bEndpointAddress & \
161                                         USB_ENDPOINT_NUMBER_MASK)
162
163 static const char driver_name[] = "s3c-udc";
164 static const char ep0name[] = "ep0-control";
165
166 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
167 {
168         return container_of(req, struct s3c_hsudc_req, req);
169 }
170
171 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
172 {
173         return container_of(ep, struct s3c_hsudc_ep, ep);
174 }
175
176 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
177 {
178         return container_of(gadget, struct s3c_hsudc, gadget);
179 }
180
181 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
182 {
183         ep_addr &= USB_ENDPOINT_NUMBER_MASK;
184         writel(ep_addr, hsudc->regs + S3C_IR);
185 }
186
187 static inline void __orr32(void __iomem *ptr, u32 val)
188 {
189         writel(readl(ptr) | val, ptr);
190 }
191
192 static void s3c_hsudc_init_phy(void)
193 {
194         u32 cfg;
195
196         cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
197         writel(cfg, S3C2443_PWRCFG);
198
199         cfg = readl(S3C2443_URSTCON);
200         cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
201         writel(cfg, S3C2443_URSTCON);
202         mdelay(1);
203
204         cfg = readl(S3C2443_URSTCON);
205         cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
206         writel(cfg, S3C2443_URSTCON);
207
208         cfg = readl(S3C2443_PHYCTRL);
209         cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
210         cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
211         writel(cfg, S3C2443_PHYCTRL);
212
213         cfg = readl(S3C2443_PHYPWR);
214         cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
215                 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
216                 S3C2443_PHYPWR_ANALOG_PD);
217         cfg |= S3C2443_PHYPWR_COMMON_ON;
218         writel(cfg, S3C2443_PHYPWR);
219
220         cfg = readl(S3C2443_UCLKCON);
221         cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
222                 S3C2443_UCLKCON_TCLKEN);
223         writel(cfg, S3C2443_UCLKCON);
224 }
225
226 static void s3c_hsudc_uninit_phy(void)
227 {
228         u32 cfg;
229
230         cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
231         writel(cfg, S3C2443_PWRCFG);
232
233         writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
234
235         cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
236         writel(cfg, S3C2443_UCLKCON);
237 }
238
239 /**
240  * s3c_hsudc_complete_request - Complete a transfer request.
241  * @hsep: Endpoint to which the request belongs.
242  * @hsreq: Transfer request to be completed.
243  * @status: Transfer completion status for the transfer request.
244  */
245 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
246                                 struct s3c_hsudc_req *hsreq, int status)
247 {
248         unsigned int stopped = hsep->stopped;
249         struct s3c_hsudc *hsudc = hsep->dev;
250
251         list_del_init(&hsreq->queue);
252         hsreq->req.status = status;
253
254         if (!ep_index(hsep)) {
255                 hsudc->ep0state = WAIT_FOR_SETUP;
256                 hsep->bEndpointAddress &= ~USB_DIR_IN;
257         }
258
259         hsep->stopped = 1;
260         spin_unlock(&hsudc->lock);
261         if (hsreq->req.complete != NULL)
262                 hsreq->req.complete(&hsep->ep, &hsreq->req);
263         spin_lock(&hsudc->lock);
264         hsep->stopped = stopped;
265 }
266
267 /**
268  * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
269  * @hsep: Endpoint for which queued requests have to be terminated.
270  * @status: Transfer completion status for the transfer request.
271  */
272 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
273 {
274         struct s3c_hsudc_req *hsreq;
275
276         while (!list_empty(&hsep->queue)) {
277                 hsreq = list_entry(hsep->queue.next,
278                                 struct s3c_hsudc_req, queue);
279                 s3c_hsudc_complete_request(hsep, hsreq, status);
280         }
281 }
282
283 /**
284  * s3c_hsudc_stop_activity - Stop activity on all endpoints.
285  * @hsudc: Device controller for which EP activity is to be stopped.
286  * @driver: Reference to the gadget driver which is currently active.
287  *
288  * All the endpoints are stopped and any pending transfer requests if any on
289  * the endpoint are terminated.
290  */
291 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
292 {
293         struct s3c_hsudc_ep *hsep;
294         int epnum;
295
296         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
297
298         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
299                 hsep = &hsudc->ep[epnum];
300                 hsep->stopped = 1;
301                 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
302         }
303 }
304
305 /**
306  * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
307  * @hsudc: Device controller from which setup packet is to be read.
308  * @buf: The buffer into which the setup packet is read.
309  *
310  * The setup packet received in the EP0 fifo is read and stored into a
311  * given buffer address.
312  */
313
314 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
315 {
316         int count;
317
318         count = readl(hsudc->regs + S3C_BRCR);
319         while (count--)
320                 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
321
322         writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
323 }
324
325 /**
326  * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
327  * @hsep: Endpoint to which the data is to be written.
328  * @hsreq: Transfer request from which the next chunk of data is written.
329  *
330  * Write the next chunk of data from a transfer request to the endpoint FIFO.
331  * If the transfer request completes, 1 is returned, otherwise 0 is returned.
332  */
333 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
334                                 struct s3c_hsudc_req *hsreq)
335 {
336         u16 *buf;
337         u32 max = ep_maxpacket(hsep);
338         u32 count, length;
339         bool is_last;
340         void __iomem *fifo = hsep->fifo;
341
342         buf = hsreq->req.buf + hsreq->req.actual;
343         prefetch(buf);
344
345         length = hsreq->req.length - hsreq->req.actual;
346         length = min(length, max);
347         hsreq->req.actual += length;
348
349         writel(length, hsep->dev->regs + S3C_BWCR);
350         for (count = 0; count < length; count += 2)
351                 writel(*buf++, fifo);
352
353         if (count != max) {
354                 is_last = true;
355         } else {
356                 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
357                         is_last = false;
358                 else
359                         is_last = true;
360         }
361
362         if (is_last) {
363                 s3c_hsudc_complete_request(hsep, hsreq, 0);
364                 return 1;
365         }
366
367         return 0;
368 }
369
370 /**
371  * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
372  * @hsep: Endpoint from which the data is to be read.
373  * @hsreq: Transfer request to which the next chunk of data read is written.
374  *
375  * Read the next chunk of data from the endpoint FIFO and a write it to the
376  * transfer request buffer. If the transfer request completes, 1 is returned,
377  * otherwise 0 is returned.
378  */
379 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
380                                 struct s3c_hsudc_req *hsreq)
381 {
382         struct s3c_hsudc *hsudc = hsep->dev;
383         u32 csr, offset;
384         u16 *buf, word;
385         u32 buflen, rcnt, rlen;
386         void __iomem *fifo = hsep->fifo;
387         u32 is_short = 0;
388
389         offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
390         csr = readl(hsudc->regs + offset);
391         if (!(csr & S3C_ESR_RX_SUCCESS))
392                 return -EINVAL;
393
394         buf = hsreq->req.buf + hsreq->req.actual;
395         prefetchw(buf);
396         buflen = hsreq->req.length - hsreq->req.actual;
397
398         rcnt = readl(hsudc->regs + S3C_BRCR);
399         rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
400
401         hsreq->req.actual += min(rlen, buflen);
402         is_short = (rlen < hsep->ep.maxpacket);
403
404         while (rcnt-- != 0) {
405                 word = (u16)readl(fifo);
406                 if (buflen) {
407                         *buf++ = word;
408                         buflen--;
409                 } else {
410                         hsreq->req.status = -EOVERFLOW;
411                 }
412         }
413
414         writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
415
416         if (is_short || hsreq->req.actual == hsreq->req.length) {
417                 s3c_hsudc_complete_request(hsep, hsreq, 0);
418                 return 1;
419         }
420
421         return 0;
422 }
423
424 /**
425  * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
426  * @hsudc - Device controller for which the interrupt is to be handled.
427  * @ep_idx - Endpoint number on which an interrupt is pending.
428  *
429  * Handles interrupt for a in-endpoint. The interrupts that are handled are
430  * stall and data transmit complete interrupt.
431  */
432 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
433 {
434         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
435         struct s3c_hsudc_req *hsreq;
436         u32 csr;
437
438         csr = readl(hsudc->regs + S3C_ESR);
439         if (csr & S3C_ESR_STALL) {
440                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
441                 return;
442         }
443
444         if (csr & S3C_ESR_TX_SUCCESS) {
445                 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
446                 if (list_empty(&hsep->queue))
447                         return;
448
449                 hsreq = list_entry(hsep->queue.next,
450                                 struct s3c_hsudc_req, queue);
451                 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
452                                 (csr & S3C_ESR_PSIF_TWO))
453                         s3c_hsudc_write_fifo(hsep, hsreq);
454         }
455 }
456
457 /**
458  * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
459  * @hsudc - Device controller for which the interrupt is to be handled.
460  * @ep_idx - Endpoint number on which an interrupt is pending.
461  *
462  * Handles interrupt for a out-endpoint. The interrupts that are handled are
463  * stall, flush and data ready interrupt.
464  */
465 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
466 {
467         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
468         struct s3c_hsudc_req *hsreq;
469         u32 csr;
470
471         csr = readl(hsudc->regs + S3C_ESR);
472         if (csr & S3C_ESR_STALL) {
473                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
474                 return;
475         }
476
477         if (csr & S3C_ESR_FLUSH) {
478                 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
479                 return;
480         }
481
482         if (csr & S3C_ESR_RX_SUCCESS) {
483                 if (list_empty(&hsep->queue))
484                         return;
485
486                 hsreq = list_entry(hsep->queue.next,
487                                 struct s3c_hsudc_req, queue);
488                 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
489                                 (csr & S3C_ESR_PSIF_TWO))
490                         s3c_hsudc_read_fifo(hsep, hsreq);
491         }
492 }
493
494 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
495  * @_ep: Endpoint on which halt has to be set or cleared.
496  * @value: 1 for setting halt on endpoint, 0 to clear halt.
497  *
498  * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
499  * If halt is cleared, for in-endpoints, if there are any pending
500  * transfer requests, transfers are started.
501  */
502 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
503 {
504         struct s3c_hsudc_ep *hsep = our_ep(_ep);
505         struct s3c_hsudc *hsudc = hsep->dev;
506         struct s3c_hsudc_req *hsreq;
507         unsigned long irqflags;
508         u32 ecr;
509         u32 offset;
510
511         if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
512                 return -EAGAIN;
513
514         spin_lock_irqsave(&hsudc->lock, irqflags);
515         set_index(hsudc, ep_index(hsep));
516         offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
517         ecr = readl(hsudc->regs + offset);
518
519         if (value) {
520                 ecr |= S3C_ECR_STALL;
521                 if (ep_index(hsep))
522                         ecr |= S3C_ECR_FLUSH;
523                 hsep->stopped = 1;
524         } else {
525                 ecr &= ~S3C_ECR_STALL;
526                 hsep->stopped = hsep->wedge = 0;
527         }
528         writel(ecr, hsudc->regs + offset);
529
530         if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
531                 hsreq = list_entry(hsep->queue.next,
532                         struct s3c_hsudc_req, queue);
533                 if (hsreq)
534                         s3c_hsudc_write_fifo(hsep, hsreq);
535         }
536
537         spin_unlock_irqrestore(&hsudc->lock, irqflags);
538         return 0;
539 }
540
541 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
542  * @_ep: Endpoint on which wedge has to be set.
543  *
544  * Sets the halt feature with the clear requests ignored.
545  */
546 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
547 {
548         struct s3c_hsudc_ep *hsep = our_ep(_ep);
549
550         if (!hsep)
551                 return -EINVAL;
552
553         hsep->wedge = 1;
554         return usb_ep_set_halt(_ep);
555 }
556
557 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
558  * @_ep: Device controller on which the set/clear feature needs to be handled.
559  * @ctrl: Control request as received on the endpoint 0.
560  *
561  * Handle set feature or clear feature control requests on the control endpoint.
562  */
563 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
564                                         struct usb_ctrlrequest *ctrl)
565 {
566         struct s3c_hsudc_ep *hsep;
567         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
568         u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
569
570         if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
571                 hsep = &hsudc->ep[ep_num];
572                 switch (le16_to_cpu(ctrl->wValue)) {
573                 case USB_ENDPOINT_HALT:
574                         if (set || (!set && !hsep->wedge))
575                                 s3c_hsudc_set_halt(&hsep->ep, set);
576                         return 0;
577                 }
578         }
579
580         return -ENOENT;
581 }
582
583 /**
584  * s3c_hsudc_process_req_status - Handle get status control request.
585  * @hsudc: Device controller on which get status request has be handled.
586  * @ctrl: Control request as received on the endpoint 0.
587  *
588  * Handle get status control request received on control endpoint.
589  */
590 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
591                                         struct usb_ctrlrequest *ctrl)
592 {
593         struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
594         struct s3c_hsudc_req hsreq;
595         struct s3c_hsudc_ep *hsep;
596         __le16 reply;
597         u8 epnum;
598
599         switch (ctrl->bRequestType & USB_RECIP_MASK) {
600         case USB_RECIP_DEVICE:
601                 reply = cpu_to_le16(0);
602                 break;
603
604         case USB_RECIP_INTERFACE:
605                 reply = cpu_to_le16(0);
606                 break;
607
608         case USB_RECIP_ENDPOINT:
609                 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
610                 hsep = &hsudc->ep[epnum];
611                 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
612                 break;
613         }
614
615         INIT_LIST_HEAD(&hsreq.queue);
616         hsreq.req.length = 2;
617         hsreq.req.buf = &reply;
618         hsreq.req.actual = 0;
619         hsreq.req.complete = NULL;
620         s3c_hsudc_write_fifo(hsep0, &hsreq);
621 }
622
623 /**
624  * s3c_hsudc_process_setup - Process control request received on endpoint 0.
625  * @hsudc: Device controller on which control request has been received.
626  *
627  * Read the control request received on endpoint 0, decode it and handle
628  * the request.
629  */
630 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
631 {
632         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
633         struct usb_ctrlrequest ctrl = {0};
634         int ret;
635
636         s3c_hsudc_nuke_ep(hsep, -EPROTO);
637         s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
638
639         if (ctrl.bRequestType & USB_DIR_IN) {
640                 hsep->bEndpointAddress |= USB_DIR_IN;
641                 hsudc->ep0state = DATA_STATE_XMIT;
642         } else {
643                 hsep->bEndpointAddress &= ~USB_DIR_IN;
644                 hsudc->ep0state = DATA_STATE_RECV;
645         }
646
647         switch (ctrl.bRequest) {
648         case USB_REQ_SET_ADDRESS:
649                 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
650                         break;
651                 hsudc->ep0state = WAIT_FOR_SETUP;
652                 return;
653
654         case USB_REQ_GET_STATUS:
655                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
656                         break;
657                 s3c_hsudc_process_req_status(hsudc, &ctrl);
658                 return;
659
660         case USB_REQ_SET_FEATURE:
661         case USB_REQ_CLEAR_FEATURE:
662                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
663                         break;
664                 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
665                 hsudc->ep0state = WAIT_FOR_SETUP;
666                 return;
667         }
668
669         if (hsudc->driver) {
670                 spin_unlock(&hsudc->lock);
671                 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
672                 spin_lock(&hsudc->lock);
673
674                 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
675                         hsep->bEndpointAddress &= ~USB_DIR_IN;
676                         hsudc->ep0state = WAIT_FOR_SETUP;
677                 }
678
679                 if (ret < 0) {
680                         dev_err(hsudc->dev, "setup failed, returned %d\n",
681                                                 ret);
682                         s3c_hsudc_set_halt(&hsep->ep, 1);
683                         hsudc->ep0state = WAIT_FOR_SETUP;
684                         hsep->bEndpointAddress &= ~USB_DIR_IN;
685                 }
686         }
687 }
688
689 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
690  * @hsudc: Device controller on which endpoint 0 interrupt has occured.
691  *
692  * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
693  * when a stall handshake is sent to host or data is sent/received on
694  * endpoint 0.
695  */
696 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
697 {
698         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
699         struct s3c_hsudc_req *hsreq;
700         u32 csr = readl(hsudc->regs + S3C_EP0SR);
701         u32 ecr;
702
703         if (csr & S3C_EP0SR_STALL) {
704                 ecr = readl(hsudc->regs + S3C_EP0CR);
705                 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
706                 writel(ecr, hsudc->regs + S3C_EP0CR);
707
708                 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
709                 hsep->stopped = 0;
710
711                 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
712                 hsudc->ep0state = WAIT_FOR_SETUP;
713                 hsep->bEndpointAddress &= ~USB_DIR_IN;
714                 return;
715         }
716
717         if (csr & S3C_EP0SR_TX_SUCCESS) {
718                 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
719                 if (ep_is_in(hsep)) {
720                         if (list_empty(&hsep->queue))
721                                 return;
722
723                         hsreq = list_entry(hsep->queue.next,
724                                         struct s3c_hsudc_req, queue);
725                         s3c_hsudc_write_fifo(hsep, hsreq);
726                 }
727         }
728
729         if (csr & S3C_EP0SR_RX_SUCCESS) {
730                 if (hsudc->ep0state == WAIT_FOR_SETUP)
731                         s3c_hsudc_process_setup(hsudc);
732                 else {
733                         if (!ep_is_in(hsep)) {
734                                 if (list_empty(&hsep->queue))
735                                         return;
736                                 hsreq = list_entry(hsep->queue.next,
737                                         struct s3c_hsudc_req, queue);
738                                 s3c_hsudc_read_fifo(hsep, hsreq);
739                         }
740                 }
741         }
742 }
743
744 /**
745  * s3c_hsudc_ep_enable - Enable a endpoint.
746  * @_ep: The endpoint to be enabled.
747  * @desc: Endpoint descriptor.
748  *
749  * Enables a endpoint when called from the gadget driver. Endpoint stall if
750  * any is cleared, transfer type is configured and endpoint interrupt is
751  * enabled.
752  */
753 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
754                                 const struct usb_endpoint_descriptor *desc)
755 {
756         struct s3c_hsudc_ep *hsep;
757         struct s3c_hsudc *hsudc;
758         unsigned long flags;
759         u32 ecr = 0;
760
761         hsep = our_ep(_ep);
762         if (!_ep || !desc || _ep->name == ep0name
763                 || desc->bDescriptorType != USB_DT_ENDPOINT
764                 || hsep->bEndpointAddress != desc->bEndpointAddress
765                 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
766                 return -EINVAL;
767
768         if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
769                 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
770                 || !desc->wMaxPacketSize)
771                 return -ERANGE;
772
773         hsudc = hsep->dev;
774         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
775                 return -ESHUTDOWN;
776
777         spin_lock_irqsave(&hsudc->lock, flags);
778
779         set_index(hsudc, hsep->bEndpointAddress);
780         ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
781         writel(ecr, hsudc->regs + S3C_ECR);
782
783         hsep->stopped = hsep->wedge = 0;
784         hsep->ep.desc = desc;
785         hsep->ep.maxpacket = usb_endpoint_maxp(desc);
786
787         s3c_hsudc_set_halt(_ep, 0);
788         __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
789
790         spin_unlock_irqrestore(&hsudc->lock, flags);
791         return 0;
792 }
793
794 /**
795  * s3c_hsudc_ep_disable - Disable a endpoint.
796  * @_ep: The endpoint to be disabled.
797  * @desc: Endpoint descriptor.
798  *
799  * Disables a endpoint when called from the gadget driver.
800  */
801 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
802 {
803         struct s3c_hsudc_ep *hsep = our_ep(_ep);
804         struct s3c_hsudc *hsudc = hsep->dev;
805         unsigned long flags;
806
807         if (!_ep || !hsep->ep.desc)
808                 return -EINVAL;
809
810         spin_lock_irqsave(&hsudc->lock, flags);
811
812         set_index(hsudc, hsep->bEndpointAddress);
813         __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
814
815         s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
816
817         hsep->ep.desc = NULL;
818         hsep->stopped = 1;
819
820         spin_unlock_irqrestore(&hsudc->lock, flags);
821         return 0;
822 }
823
824 /**
825  * s3c_hsudc_alloc_request - Allocate a new request.
826  * @_ep: Endpoint for which request is allocated (not used).
827  * @gfp_flags: Flags used for the allocation.
828  *
829  * Allocates a single transfer request structure when called from gadget driver.
830  */
831 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
832                                                 gfp_t gfp_flags)
833 {
834         struct s3c_hsudc_req *hsreq;
835
836         hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
837         if (!hsreq)
838                 return NULL;
839
840         INIT_LIST_HEAD(&hsreq->queue);
841         return &hsreq->req;
842 }
843
844 /**
845  * s3c_hsudc_free_request - Deallocate a request.
846  * @ep: Endpoint for which request is deallocated (not used).
847  * @_req: Request to be deallocated.
848  *
849  * Allocates a single transfer request structure when called from gadget driver.
850  */
851 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
852 {
853         struct s3c_hsudc_req *hsreq;
854
855         hsreq = our_req(_req);
856         WARN_ON(!list_empty(&hsreq->queue));
857         kfree(hsreq);
858 }
859
860 /**
861  * s3c_hsudc_queue - Queue a transfer request for the endpoint.
862  * @_ep: Endpoint for which the request is queued.
863  * @_req: Request to be queued.
864  * @gfp_flags: Not used.
865  *
866  * Start or enqueue a request for a endpoint when called from gadget driver.
867  */
868 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
869                         gfp_t gfp_flags)
870 {
871         struct s3c_hsudc_req *hsreq;
872         struct s3c_hsudc_ep *hsep;
873         struct s3c_hsudc *hsudc;
874         unsigned long flags;
875         u32 offset;
876         u32 csr;
877
878         hsreq = our_req(_req);
879         if ((!_req || !_req->complete || !_req->buf ||
880                 !list_empty(&hsreq->queue)))
881                 return -EINVAL;
882
883         hsep = our_ep(_ep);
884         hsudc = hsep->dev;
885         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
886                 return -ESHUTDOWN;
887
888         spin_lock_irqsave(&hsudc->lock, flags);
889         set_index(hsudc, hsep->bEndpointAddress);
890
891         _req->status = -EINPROGRESS;
892         _req->actual = 0;
893
894         if (!ep_index(hsep) && _req->length == 0) {
895                 hsudc->ep0state = WAIT_FOR_SETUP;
896                 s3c_hsudc_complete_request(hsep, hsreq, 0);
897                 spin_unlock_irqrestore(&hsudc->lock, flags);
898                 return 0;
899         }
900
901         if (list_empty(&hsep->queue) && !hsep->stopped) {
902                 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
903                 if (ep_is_in(hsep)) {
904                         csr = readl(hsudc->regs + offset);
905                         if (!(csr & S3C_ESR_TX_SUCCESS) &&
906                                 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
907                                 hsreq = NULL;
908                 } else {
909                         csr = readl(hsudc->regs + offset);
910                         if ((csr & S3C_ESR_RX_SUCCESS)
911                                    && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
912                                 hsreq = NULL;
913                 }
914         }
915
916         if (hsreq)
917                 list_add_tail(&hsreq->queue, &hsep->queue);
918
919         spin_unlock_irqrestore(&hsudc->lock, flags);
920         return 0;
921 }
922
923 /**
924  * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
925  * @_ep: Endpoint from which the request is dequeued.
926  * @_req: Request to be dequeued.
927  *
928  * Dequeue a request from a endpoint when called from gadget driver.
929  */
930 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
931 {
932         struct s3c_hsudc_ep *hsep = our_ep(_ep);
933         struct s3c_hsudc *hsudc = hsep->dev;
934         struct s3c_hsudc_req *hsreq;
935         unsigned long flags;
936
937         hsep = our_ep(_ep);
938         if (!_ep || hsep->ep.name == ep0name)
939                 return -EINVAL;
940
941         spin_lock_irqsave(&hsudc->lock, flags);
942
943         list_for_each_entry(hsreq, &hsep->queue, queue) {
944                 if (&hsreq->req == _req)
945                         break;
946         }
947         if (&hsreq->req != _req) {
948                 spin_unlock_irqrestore(&hsudc->lock, flags);
949                 return -EINVAL;
950         }
951
952         set_index(hsudc, hsep->bEndpointAddress);
953         s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
954
955         spin_unlock_irqrestore(&hsudc->lock, flags);
956         return 0;
957 }
958
959 static struct usb_ep_ops s3c_hsudc_ep_ops = {
960         .enable = s3c_hsudc_ep_enable,
961         .disable = s3c_hsudc_ep_disable,
962         .alloc_request = s3c_hsudc_alloc_request,
963         .free_request = s3c_hsudc_free_request,
964         .queue = s3c_hsudc_queue,
965         .dequeue = s3c_hsudc_dequeue,
966         .set_halt = s3c_hsudc_set_halt,
967         .set_wedge = s3c_hsudc_set_wedge,
968 };
969
970 /**
971  * s3c_hsudc_initep - Initialize a endpoint to default state.
972  * @hsudc - Reference to the device controller.
973  * @hsep - Endpoint to be initialized.
974  * @epnum - Address to be assigned to the endpoint.
975  *
976  * Initialize a endpoint with default configuration.
977  */
978 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
979                                 struct s3c_hsudc_ep *hsep, int epnum)
980 {
981         char *dir;
982
983         if ((epnum % 2) == 0) {
984                 dir = "out";
985         } else {
986                 dir = "in";
987                 hsep->bEndpointAddress = USB_DIR_IN;
988         }
989
990         hsep->bEndpointAddress |= epnum;
991         if (epnum)
992                 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
993         else
994                 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
995
996         INIT_LIST_HEAD(&hsep->queue);
997         INIT_LIST_HEAD(&hsep->ep.ep_list);
998         if (epnum)
999                 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
1000
1001         hsep->dev = hsudc;
1002         hsep->ep.name = hsep->name;
1003         hsep->ep.maxpacket = epnum ? 512 : 64;
1004         hsep->ep.ops = &s3c_hsudc_ep_ops;
1005         hsep->fifo = hsudc->regs + S3C_BR(epnum);
1006         hsep->ep.desc = NULL;
1007         hsep->stopped = 0;
1008         hsep->wedge = 0;
1009
1010         set_index(hsudc, epnum);
1011         writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1012 }
1013
1014 /**
1015  * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1016  * @hsudc: Reference to device controller.
1017  *
1018  * Configures all endpoints to default state.
1019  */
1020 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1021 {
1022         int epnum;
1023
1024         hsudc->ep0state = WAIT_FOR_SETUP;
1025         INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1026         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1027                 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1028 }
1029
1030 /**
1031  * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1032  * @hsudc: Reference to device controller.
1033  *
1034  * Reconfigures the device controller registers to a default state.
1035  */
1036 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1037 {
1038         writel(0xAA, hsudc->regs + S3C_EDR);
1039         writel(1, hsudc->regs + S3C_EIER);
1040         writel(0, hsudc->regs + S3C_TR);
1041         writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1042                         S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1043         writel(0, hsudc->regs + S3C_EP0CR);
1044
1045         s3c_hsudc_setup_ep(hsudc);
1046 }
1047
1048 /**
1049  * s3c_hsudc_irq - Interrupt handler for device controller.
1050  * @irq: Not used.
1051  * @_dev: Reference to the device controller.
1052  *
1053  * Interrupt handler for the device controller. This handler handles controller
1054  * interrupts and endpoint interrupts.
1055  */
1056 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1057 {
1058         struct s3c_hsudc *hsudc = _dev;
1059         struct s3c_hsudc_ep *hsep;
1060         u32 ep_intr;
1061         u32 sys_status;
1062         u32 ep_idx;
1063
1064         spin_lock(&hsudc->lock);
1065
1066         sys_status = readl(hsudc->regs + S3C_SSR);
1067         ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1068
1069         if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1070                 spin_unlock(&hsudc->lock);
1071                 return IRQ_HANDLED;
1072         }
1073
1074         if (sys_status) {
1075                 if (sys_status & S3C_SSR_VBUSON)
1076                         writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1077
1078                 if (sys_status & S3C_SSR_ERR)
1079                         writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1080
1081                 if (sys_status & S3C_SSR_SDE) {
1082                         writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1083                         hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1084                                 USB_SPEED_HIGH : USB_SPEED_FULL;
1085                 }
1086
1087                 if (sys_status & S3C_SSR_SUSPEND) {
1088                         writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1089                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1090                                 && hsudc->driver && hsudc->driver->suspend)
1091                                 hsudc->driver->suspend(&hsudc->gadget);
1092                 }
1093
1094                 if (sys_status & S3C_SSR_RESUME) {
1095                         writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1096                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1097                                 && hsudc->driver && hsudc->driver->resume)
1098                                 hsudc->driver->resume(&hsudc->gadget);
1099                 }
1100
1101                 if (sys_status & S3C_SSR_RESET) {
1102                         writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1103                         for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1104                                 hsep = &hsudc->ep[ep_idx];
1105                                 hsep->stopped = 1;
1106                                 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1107                         }
1108                         s3c_hsudc_reconfig(hsudc);
1109                         hsudc->ep0state = WAIT_FOR_SETUP;
1110                 }
1111         }
1112
1113         if (ep_intr & S3C_EIR_EP0) {
1114                 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1115                 set_index(hsudc, 0);
1116                 s3c_hsudc_handle_ep0_intr(hsudc);
1117         }
1118
1119         ep_intr >>= 1;
1120         ep_idx = 1;
1121         while (ep_intr) {
1122                 if (ep_intr & 1)  {
1123                         hsep = &hsudc->ep[ep_idx];
1124                         set_index(hsudc, ep_idx);
1125                         writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1126                         if (ep_is_in(hsep))
1127                                 s3c_hsudc_epin_intr(hsudc, ep_idx);
1128                         else
1129                                 s3c_hsudc_epout_intr(hsudc, ep_idx);
1130                 }
1131                 ep_intr >>= 1;
1132                 ep_idx++;
1133         }
1134
1135         spin_unlock(&hsudc->lock);
1136         return IRQ_HANDLED;
1137 }
1138
1139 static int s3c_hsudc_start(struct usb_gadget *gadget,
1140                 struct usb_gadget_driver *driver)
1141 {
1142         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1143         int ret;
1144
1145         if (!driver
1146                 || driver->max_speed < USB_SPEED_FULL
1147                 || !driver->setup)
1148                 return -EINVAL;
1149
1150         if (!hsudc)
1151                 return -ENODEV;
1152
1153         if (hsudc->driver)
1154                 return -EBUSY;
1155
1156         hsudc->driver = driver;
1157         hsudc->gadget.dev.driver = &driver->driver;
1158
1159         ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1160                                     hsudc->supplies);
1161         if (ret != 0) {
1162                 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1163                 goto err_supplies;
1164         }
1165
1166         /* connect to bus through transceiver */
1167         if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1168                 ret = otg_set_peripheral(hsudc->transceiver->otg,
1169                                         &hsudc->gadget);
1170                 if (ret) {
1171                         dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1172                                         hsudc->gadget.name);
1173                         goto err_otg;
1174                 }
1175         }
1176
1177         enable_irq(hsudc->irq);
1178         dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);
1179
1180         s3c_hsudc_reconfig(hsudc);
1181
1182         pm_runtime_get_sync(hsudc->dev);
1183
1184         s3c_hsudc_init_phy();
1185         if (hsudc->pd->gpio_init)
1186                 hsudc->pd->gpio_init();
1187
1188         return 0;
1189 err_otg:
1190         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1191 err_supplies:
1192         hsudc->driver = NULL;
1193         hsudc->gadget.dev.driver = NULL;
1194         return ret;
1195 }
1196
1197 static int s3c_hsudc_stop(struct usb_gadget *gadget,
1198                 struct usb_gadget_driver *driver)
1199 {
1200         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1201         unsigned long flags;
1202
1203         if (!hsudc)
1204                 return -ENODEV;
1205
1206         if (!driver || driver != hsudc->driver)
1207                 return -EINVAL;
1208
1209         spin_lock_irqsave(&hsudc->lock, flags);
1210         hsudc->driver = NULL;
1211         hsudc->gadget.dev.driver = NULL;
1212         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1213         s3c_hsudc_uninit_phy();
1214
1215         pm_runtime_put(hsudc->dev);
1216
1217         if (hsudc->pd->gpio_uninit)
1218                 hsudc->pd->gpio_uninit();
1219         s3c_hsudc_stop_activity(hsudc);
1220         spin_unlock_irqrestore(&hsudc->lock, flags);
1221
1222         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1223                 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1224
1225         disable_irq(hsudc->irq);
1226
1227         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1228
1229         dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
1230                         driver->driver.name);
1231         return 0;
1232 }
1233
1234 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1235 {
1236         return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1237 }
1238
1239 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1240 {
1241         return s3c_hsudc_read_frameno(to_hsudc(gadget));
1242 }
1243
1244 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1245 {
1246         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1247
1248         if (!hsudc)
1249                 return -ENODEV;
1250
1251         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1252                 return usb_phy_set_power(hsudc->transceiver, mA);
1253
1254         return -EOPNOTSUPP;
1255 }
1256
1257 static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1258         .get_frame      = s3c_hsudc_gadget_getframe,
1259         .udc_start      = s3c_hsudc_start,
1260         .udc_stop       = s3c_hsudc_stop,
1261         .vbus_draw      = s3c_hsudc_vbus_draw,
1262 };
1263
1264 static int s3c_hsudc_probe(struct platform_device *pdev)
1265 {
1266         struct device *dev = &pdev->dev;
1267         struct resource *res;
1268         struct s3c_hsudc *hsudc;
1269         struct s3c24xx_hsudc_platdata *pd = pdev->dev.platform_data;
1270         int ret, i;
1271
1272         hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
1273                         sizeof(struct s3c_hsudc_ep) * pd->epnum,
1274                         GFP_KERNEL);
1275         if (!hsudc) {
1276                 dev_err(dev, "cannot allocate memory\n");
1277                 return -ENOMEM;
1278         }
1279
1280         platform_set_drvdata(pdev, dev);
1281         hsudc->dev = dev;
1282         hsudc->pd = pdev->dev.platform_data;
1283
1284         hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1285
1286         for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1287                 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1288
1289         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1290                                  hsudc->supplies);
1291         if (ret != 0) {
1292                 dev_err(dev, "failed to request supplies: %d\n", ret);
1293                 goto err_supplies;
1294         }
1295
1296         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297
1298         hsudc->regs = devm_ioremap_resource(&pdev->dev, res);
1299         if (IS_ERR(hsudc->regs)) {
1300                 ret = PTR_ERR(hsudc->regs);
1301                 goto err_res;
1302         }
1303
1304         spin_lock_init(&hsudc->lock);
1305
1306         dev_set_name(&hsudc->gadget.dev, "gadget");
1307
1308         hsudc->gadget.max_speed = USB_SPEED_HIGH;
1309         hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1310         hsudc->gadget.name = dev_name(dev);
1311         hsudc->gadget.dev.parent = dev;
1312         hsudc->gadget.dev.dma_mask = dev->dma_mask;
1313         hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1314
1315         hsudc->gadget.is_otg = 0;
1316         hsudc->gadget.is_a_peripheral = 0;
1317         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1318
1319         s3c_hsudc_setup_ep(hsudc);
1320
1321         ret = platform_get_irq(pdev, 0);
1322         if (ret < 0) {
1323                 dev_err(dev, "unable to obtain IRQ number\n");
1324                 goto err_res;
1325         }
1326         hsudc->irq = ret;
1327
1328         ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1329                                 driver_name, hsudc);
1330         if (ret < 0) {
1331                 dev_err(dev, "irq request failed\n");
1332                 goto err_res;
1333         }
1334
1335         hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1336         if (IS_ERR(hsudc->uclk)) {
1337                 dev_err(dev, "failed to find usb-device clock source\n");
1338                 ret = PTR_ERR(hsudc->uclk);
1339                 goto err_res;
1340         }
1341         clk_enable(hsudc->uclk);
1342
1343         local_irq_disable();
1344
1345         disable_irq(hsudc->irq);
1346         local_irq_enable();
1347
1348         ret = device_register(&hsudc->gadget.dev);
1349         if (ret) {
1350                 put_device(&hsudc->gadget.dev);
1351                 goto err_add_device;
1352         }
1353
1354         ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1355         if (ret)
1356                 goto err_add_udc;
1357
1358         pm_runtime_enable(dev);
1359
1360         return 0;
1361 err_add_udc:
1362         device_unregister(&hsudc->gadget.dev);
1363 err_add_device:
1364         clk_disable(hsudc->uclk);
1365 err_res:
1366         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1367                 usb_put_phy(hsudc->transceiver);
1368
1369 err_supplies:
1370         return ret;
1371 }
1372
1373 static struct platform_driver s3c_hsudc_driver = {
1374         .driver         = {
1375                 .owner  = THIS_MODULE,
1376                 .name   = "s3c-hsudc",
1377         },
1378         .probe          = s3c_hsudc_probe,
1379 };
1380
1381 module_platform_driver(s3c_hsudc_driver);
1382
1383 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1384 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1385 MODULE_LICENSE("GPL");
1386 MODULE_ALIAS("platform:s3c-hsudc");