]> Pileus Git - ~andy/linux/blob - drivers/usb/gadget/s3c-hsudc.c
Merge branch 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / drivers / usb / gadget / s3c-hsudc.c
1 /* linux/drivers/usb/gadget/s3c-hsudc.c
2  *
3  * Copyright (c) 2010 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com/
5  *
6  * S3C24XX USB 2.0 High-speed USB controller gadget driver
7  *
8  * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
9  * Each endpoint can be configured as either in or out endpoint. Endpoints
10  * can be configured for Bulk or Interrupt transfer mode.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/platform_device.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/delay.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/clk.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/otg.h>
30 #include <linux/prefetch.h>
31 #include <linux/platform_data/s3c-hsudc.h>
32 #include <linux/regulator/consumer.h>
33 #include <linux/pm_runtime.h>
34
35 #include <mach/regs-s3c2443-clock.h>
36
37 #define S3C_HSUDC_REG(x)        (x)
38
39 /* Non-Indexed Registers */
40 #define S3C_IR                          S3C_HSUDC_REG(0x00) /* Index Register */
41 #define S3C_EIR                         S3C_HSUDC_REG(0x04) /* EP Intr Status */
42 #define S3C_EIR_EP0                     (1<<0)
43 #define S3C_EIER                        S3C_HSUDC_REG(0x08) /* EP Intr Enable */
44 #define S3C_FAR                         S3C_HSUDC_REG(0x0c) /* Gadget Address */
45 #define S3C_FNR                         S3C_HSUDC_REG(0x10) /* Frame Number */
46 #define S3C_EDR                         S3C_HSUDC_REG(0x14) /* EP Direction */
47 #define S3C_TR                          S3C_HSUDC_REG(0x18) /* Test Register */
48 #define S3C_SSR                         S3C_HSUDC_REG(0x1c) /* System Status */
49 #define S3C_SSR_DTZIEN_EN               (0xff8f)
50 #define S3C_SSR_ERR                     (0xff80)
51 #define S3C_SSR_VBUSON                  (1 << 8)
52 #define S3C_SSR_HSP                     (1 << 4)
53 #define S3C_SSR_SDE                     (1 << 3)
54 #define S3C_SSR_RESUME                  (1 << 2)
55 #define S3C_SSR_SUSPEND                 (1 << 1)
56 #define S3C_SSR_RESET                   (1 << 0)
57 #define S3C_SCR                         S3C_HSUDC_REG(0x20) /* System Control */
58 #define S3C_SCR_DTZIEN_EN               (1 << 14)
59 #define S3C_SCR_RRD_EN                  (1 << 5)
60 #define S3C_SCR_SUS_EN                  (1 << 1)
61 #define S3C_SCR_RST_EN                  (1 << 0)
62 #define S3C_EP0SR                       S3C_HSUDC_REG(0x24) /* EP0 Status */
63 #define S3C_EP0SR_EP0_LWO               (1 << 6)
64 #define S3C_EP0SR_STALL                 (1 << 4)
65 #define S3C_EP0SR_TX_SUCCESS            (1 << 1)
66 #define S3C_EP0SR_RX_SUCCESS            (1 << 0)
67 #define S3C_EP0CR                       S3C_HSUDC_REG(0x28) /* EP0 Control */
68 #define S3C_BR(_x)                      S3C_HSUDC_REG(0x60 + (_x * 4))
69
70 /* Indexed Registers */
71 #define S3C_ESR                         S3C_HSUDC_REG(0x2c) /* EPn Status */
72 #define S3C_ESR_FLUSH                   (1 << 6)
73 #define S3C_ESR_STALL                   (1 << 5)
74 #define S3C_ESR_LWO                     (1 << 4)
75 #define S3C_ESR_PSIF_ONE                (1 << 2)
76 #define S3C_ESR_PSIF_TWO                (2 << 2)
77 #define S3C_ESR_TX_SUCCESS              (1 << 1)
78 #define S3C_ESR_RX_SUCCESS              (1 << 0)
79 #define S3C_ECR                         S3C_HSUDC_REG(0x30) /* EPn Control */
80 #define S3C_ECR_DUEN                    (1 << 7)
81 #define S3C_ECR_FLUSH                   (1 << 6)
82 #define S3C_ECR_STALL                   (1 << 1)
83 #define S3C_ECR_IEMS                    (1 << 0)
84 #define S3C_BRCR                        S3C_HSUDC_REG(0x34) /* Read Count */
85 #define S3C_BWCR                        S3C_HSUDC_REG(0x38) /* Write Count */
86 #define S3C_MPR                         S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
87
88 #define WAIT_FOR_SETUP                  (0)
89 #define DATA_STATE_XMIT                 (1)
90 #define DATA_STATE_RECV                 (2)
91
92 static const char * const s3c_hsudc_supply_names[] = {
93         "vdda",         /* analog phy supply, 3.3V */
94         "vddi",         /* digital phy supply, 1.2V */
95         "vddosc",       /* oscillator supply, 1.8V - 3.3V */
96 };
97
98 /**
99  * struct s3c_hsudc_ep - Endpoint representation used by driver.
100  * @ep: USB gadget layer representation of device endpoint.
101  * @name: Endpoint name (as required by ep autoconfiguration).
102  * @dev: Reference to the device controller to which this EP belongs.
103  * @desc: Endpoint descriptor obtained from the gadget driver.
104  * @queue: Transfer request queue for the endpoint.
105  * @stopped: Maintains state of endpoint, set if EP is halted.
106  * @bEndpointAddress: EP address (including direction bit).
107  * @fifo: Base address of EP FIFO.
108  */
109 struct s3c_hsudc_ep {
110         struct usb_ep ep;
111         char name[20];
112         struct s3c_hsudc *dev;
113         struct list_head queue;
114         u8 stopped;
115         u8 wedge;
116         u8 bEndpointAddress;
117         void __iomem *fifo;
118 };
119
120 /**
121  * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
122  * @req: Reference to USB gadget transfer request.
123  * @queue: Used for inserting this request to the endpoint request queue.
124  */
125 struct s3c_hsudc_req {
126         struct usb_request req;
127         struct list_head queue;
128 };
129
130 /**
131  * struct s3c_hsudc - Driver's abstraction of the device controller.
132  * @gadget: Instance of usb_gadget which is referenced by gadget driver.
133  * @driver: Reference to currenty active gadget driver.
134  * @dev: The device reference used by probe function.
135  * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
136  * @regs: Remapped base address of controller's register space.
137  * @mem_rsrc: Device memory resource used for remapping device register space.
138  * irq: IRQ number used by the controller.
139  * uclk: Reference to the controller clock.
140  * ep0state: Current state of EP0.
141  * ep: List of endpoints supported by the controller.
142  */
143 struct s3c_hsudc {
144         struct usb_gadget gadget;
145         struct usb_gadget_driver *driver;
146         struct device *dev;
147         struct s3c24xx_hsudc_platdata *pd;
148         struct usb_phy *transceiver;
149         struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
150         spinlock_t lock;
151         void __iomem *regs;
152         struct resource *mem_rsrc;
153         int irq;
154         struct clk *uclk;
155         int ep0state;
156         struct s3c_hsudc_ep ep[];
157 };
158
159 #define ep_maxpacket(_ep)       ((_ep)->ep.maxpacket)
160 #define ep_is_in(_ep)           ((_ep)->bEndpointAddress & USB_DIR_IN)
161 #define ep_index(_ep)           ((_ep)->bEndpointAddress & \
162                                         USB_ENDPOINT_NUMBER_MASK)
163
164 static const char driver_name[] = "s3c-udc";
165 static const char ep0name[] = "ep0-control";
166
167 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
168 {
169         return container_of(req, struct s3c_hsudc_req, req);
170 }
171
172 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
173 {
174         return container_of(ep, struct s3c_hsudc_ep, ep);
175 }
176
177 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
178 {
179         return container_of(gadget, struct s3c_hsudc, gadget);
180 }
181
182 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
183 {
184         ep_addr &= USB_ENDPOINT_NUMBER_MASK;
185         writel(ep_addr, hsudc->regs + S3C_IR);
186 }
187
188 static inline void __orr32(void __iomem *ptr, u32 val)
189 {
190         writel(readl(ptr) | val, ptr);
191 }
192
193 static void s3c_hsudc_init_phy(void)
194 {
195         u32 cfg;
196
197         cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY;
198         writel(cfg, S3C2443_PWRCFG);
199
200         cfg = readl(S3C2443_URSTCON);
201         cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
202         writel(cfg, S3C2443_URSTCON);
203         mdelay(1);
204
205         cfg = readl(S3C2443_URSTCON);
206         cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST);
207         writel(cfg, S3C2443_URSTCON);
208
209         cfg = readl(S3C2443_PHYCTRL);
210         cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT);
211         cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL);
212         writel(cfg, S3C2443_PHYCTRL);
213
214         cfg = readl(S3C2443_PHYPWR);
215         cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN |
216                 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK |
217                 S3C2443_PHYPWR_ANALOG_PD);
218         cfg |= S3C2443_PHYPWR_COMMON_ON;
219         writel(cfg, S3C2443_PHYPWR);
220
221         cfg = readl(S3C2443_UCLKCON);
222         cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN |
223                 S3C2443_UCLKCON_TCLKEN);
224         writel(cfg, S3C2443_UCLKCON);
225 }
226
227 static void s3c_hsudc_uninit_phy(void)
228 {
229         u32 cfg;
230
231         cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY;
232         writel(cfg, S3C2443_PWRCFG);
233
234         writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR);
235
236         cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN;
237         writel(cfg, S3C2443_UCLKCON);
238 }
239
240 /**
241  * s3c_hsudc_complete_request - Complete a transfer request.
242  * @hsep: Endpoint to which the request belongs.
243  * @hsreq: Transfer request to be completed.
244  * @status: Transfer completion status for the transfer request.
245  */
246 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
247                                 struct s3c_hsudc_req *hsreq, int status)
248 {
249         unsigned int stopped = hsep->stopped;
250         struct s3c_hsudc *hsudc = hsep->dev;
251
252         list_del_init(&hsreq->queue);
253         hsreq->req.status = status;
254
255         if (!ep_index(hsep)) {
256                 hsudc->ep0state = WAIT_FOR_SETUP;
257                 hsep->bEndpointAddress &= ~USB_DIR_IN;
258         }
259
260         hsep->stopped = 1;
261         spin_unlock(&hsudc->lock);
262         if (hsreq->req.complete != NULL)
263                 hsreq->req.complete(&hsep->ep, &hsreq->req);
264         spin_lock(&hsudc->lock);
265         hsep->stopped = stopped;
266 }
267
268 /**
269  * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
270  * @hsep: Endpoint for which queued requests have to be terminated.
271  * @status: Transfer completion status for the transfer request.
272  */
273 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
274 {
275         struct s3c_hsudc_req *hsreq;
276
277         while (!list_empty(&hsep->queue)) {
278                 hsreq = list_entry(hsep->queue.next,
279                                 struct s3c_hsudc_req, queue);
280                 s3c_hsudc_complete_request(hsep, hsreq, status);
281         }
282 }
283
284 /**
285  * s3c_hsudc_stop_activity - Stop activity on all endpoints.
286  * @hsudc: Device controller for which EP activity is to be stopped.
287  * @driver: Reference to the gadget driver which is currently active.
288  *
289  * All the endpoints are stopped and any pending transfer requests if any on
290  * the endpoint are terminated.
291  */
292 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
293 {
294         struct s3c_hsudc_ep *hsep;
295         int epnum;
296
297         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
298
299         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
300                 hsep = &hsudc->ep[epnum];
301                 hsep->stopped = 1;
302                 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
303         }
304 }
305
306 /**
307  * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
308  * @hsudc: Device controller from which setup packet is to be read.
309  * @buf: The buffer into which the setup packet is read.
310  *
311  * The setup packet received in the EP0 fifo is read and stored into a
312  * given buffer address.
313  */
314
315 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
316 {
317         int count;
318
319         count = readl(hsudc->regs + S3C_BRCR);
320         while (count--)
321                 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
322
323         writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
324 }
325
326 /**
327  * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
328  * @hsep: Endpoint to which the data is to be written.
329  * @hsreq: Transfer request from which the next chunk of data is written.
330  *
331  * Write the next chunk of data from a transfer request to the endpoint FIFO.
332  * If the transfer request completes, 1 is returned, otherwise 0 is returned.
333  */
334 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
335                                 struct s3c_hsudc_req *hsreq)
336 {
337         u16 *buf;
338         u32 max = ep_maxpacket(hsep);
339         u32 count, length;
340         bool is_last;
341         void __iomem *fifo = hsep->fifo;
342
343         buf = hsreq->req.buf + hsreq->req.actual;
344         prefetch(buf);
345
346         length = hsreq->req.length - hsreq->req.actual;
347         length = min(length, max);
348         hsreq->req.actual += length;
349
350         writel(length, hsep->dev->regs + S3C_BWCR);
351         for (count = 0; count < length; count += 2)
352                 writel(*buf++, fifo);
353
354         if (count != max) {
355                 is_last = true;
356         } else {
357                 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
358                         is_last = false;
359                 else
360                         is_last = true;
361         }
362
363         if (is_last) {
364                 s3c_hsudc_complete_request(hsep, hsreq, 0);
365                 return 1;
366         }
367
368         return 0;
369 }
370
371 /**
372  * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
373  * @hsep: Endpoint from which the data is to be read.
374  * @hsreq: Transfer request to which the next chunk of data read is written.
375  *
376  * Read the next chunk of data from the endpoint FIFO and a write it to the
377  * transfer request buffer. If the transfer request completes, 1 is returned,
378  * otherwise 0 is returned.
379  */
380 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
381                                 struct s3c_hsudc_req *hsreq)
382 {
383         struct s3c_hsudc *hsudc = hsep->dev;
384         u32 csr, offset;
385         u16 *buf, word;
386         u32 buflen, rcnt, rlen;
387         void __iomem *fifo = hsep->fifo;
388         u32 is_short = 0;
389
390         offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
391         csr = readl(hsudc->regs + offset);
392         if (!(csr & S3C_ESR_RX_SUCCESS))
393                 return -EINVAL;
394
395         buf = hsreq->req.buf + hsreq->req.actual;
396         prefetchw(buf);
397         buflen = hsreq->req.length - hsreq->req.actual;
398
399         rcnt = readl(hsudc->regs + S3C_BRCR);
400         rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
401
402         hsreq->req.actual += min(rlen, buflen);
403         is_short = (rlen < hsep->ep.maxpacket);
404
405         while (rcnt-- != 0) {
406                 word = (u16)readl(fifo);
407                 if (buflen) {
408                         *buf++ = word;
409                         buflen--;
410                 } else {
411                         hsreq->req.status = -EOVERFLOW;
412                 }
413         }
414
415         writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
416
417         if (is_short || hsreq->req.actual == hsreq->req.length) {
418                 s3c_hsudc_complete_request(hsep, hsreq, 0);
419                 return 1;
420         }
421
422         return 0;
423 }
424
425 /**
426  * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
427  * @hsudc - Device controller for which the interrupt is to be handled.
428  * @ep_idx - Endpoint number on which an interrupt is pending.
429  *
430  * Handles interrupt for a in-endpoint. The interrupts that are handled are
431  * stall and data transmit complete interrupt.
432  */
433 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
434 {
435         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
436         struct s3c_hsudc_req *hsreq;
437         u32 csr;
438
439         csr = readl((u32)hsudc->regs + S3C_ESR);
440         if (csr & S3C_ESR_STALL) {
441                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
442                 return;
443         }
444
445         if (csr & S3C_ESR_TX_SUCCESS) {
446                 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
447                 if (list_empty(&hsep->queue))
448                         return;
449
450                 hsreq = list_entry(hsep->queue.next,
451                                 struct s3c_hsudc_req, queue);
452                 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
453                                 (csr & S3C_ESR_PSIF_TWO))
454                         s3c_hsudc_write_fifo(hsep, hsreq);
455         }
456 }
457
458 /**
459  * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
460  * @hsudc - Device controller for which the interrupt is to be handled.
461  * @ep_idx - Endpoint number on which an interrupt is pending.
462  *
463  * Handles interrupt for a out-endpoint. The interrupts that are handled are
464  * stall, flush and data ready interrupt.
465  */
466 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
467 {
468         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
469         struct s3c_hsudc_req *hsreq;
470         u32 csr;
471
472         csr = readl((u32)hsudc->regs + S3C_ESR);
473         if (csr & S3C_ESR_STALL) {
474                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
475                 return;
476         }
477
478         if (csr & S3C_ESR_FLUSH) {
479                 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
480                 return;
481         }
482
483         if (csr & S3C_ESR_RX_SUCCESS) {
484                 if (list_empty(&hsep->queue))
485                         return;
486
487                 hsreq = list_entry(hsep->queue.next,
488                                 struct s3c_hsudc_req, queue);
489                 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
490                                 (csr & S3C_ESR_PSIF_TWO))
491                         s3c_hsudc_read_fifo(hsep, hsreq);
492         }
493 }
494
495 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
496  * @_ep: Endpoint on which halt has to be set or cleared.
497  * @value: 1 for setting halt on endpoint, 0 to clear halt.
498  *
499  * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
500  * If halt is cleared, for in-endpoints, if there are any pending
501  * transfer requests, transfers are started.
502  */
503 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
504 {
505         struct s3c_hsudc_ep *hsep = our_ep(_ep);
506         struct s3c_hsudc *hsudc = hsep->dev;
507         struct s3c_hsudc_req *hsreq;
508         unsigned long irqflags;
509         u32 ecr;
510         u32 offset;
511
512         if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
513                 return -EAGAIN;
514
515         spin_lock_irqsave(&hsudc->lock, irqflags);
516         set_index(hsudc, ep_index(hsep));
517         offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
518         ecr = readl(hsudc->regs + offset);
519
520         if (value) {
521                 ecr |= S3C_ECR_STALL;
522                 if (ep_index(hsep))
523                         ecr |= S3C_ECR_FLUSH;
524                 hsep->stopped = 1;
525         } else {
526                 ecr &= ~S3C_ECR_STALL;
527                 hsep->stopped = hsep->wedge = 0;
528         }
529         writel(ecr, hsudc->regs + offset);
530
531         if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
532                 hsreq = list_entry(hsep->queue.next,
533                         struct s3c_hsudc_req, queue);
534                 if (hsreq)
535                         s3c_hsudc_write_fifo(hsep, hsreq);
536         }
537
538         spin_unlock_irqrestore(&hsudc->lock, irqflags);
539         return 0;
540 }
541
542 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
543  * @_ep: Endpoint on which wedge has to be set.
544  *
545  * Sets the halt feature with the clear requests ignored.
546  */
547 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
548 {
549         struct s3c_hsudc_ep *hsep = our_ep(_ep);
550
551         if (!hsep)
552                 return -EINVAL;
553
554         hsep->wedge = 1;
555         return usb_ep_set_halt(_ep);
556 }
557
558 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
559  * @_ep: Device controller on which the set/clear feature needs to be handled.
560  * @ctrl: Control request as received on the endpoint 0.
561  *
562  * Handle set feature or clear feature control requests on the control endpoint.
563  */
564 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
565                                         struct usb_ctrlrequest *ctrl)
566 {
567         struct s3c_hsudc_ep *hsep;
568         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
569         u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
570
571         if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
572                 hsep = &hsudc->ep[ep_num];
573                 switch (le16_to_cpu(ctrl->wValue)) {
574                 case USB_ENDPOINT_HALT:
575                         if (set || (!set && !hsep->wedge))
576                                 s3c_hsudc_set_halt(&hsep->ep, set);
577                         return 0;
578                 }
579         }
580
581         return -ENOENT;
582 }
583
584 /**
585  * s3c_hsudc_process_req_status - Handle get status control request.
586  * @hsudc: Device controller on which get status request has be handled.
587  * @ctrl: Control request as received on the endpoint 0.
588  *
589  * Handle get status control request received on control endpoint.
590  */
591 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
592                                         struct usb_ctrlrequest *ctrl)
593 {
594         struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
595         struct s3c_hsudc_req hsreq;
596         struct s3c_hsudc_ep *hsep;
597         __le16 reply;
598         u8 epnum;
599
600         switch (ctrl->bRequestType & USB_RECIP_MASK) {
601         case USB_RECIP_DEVICE:
602                 reply = cpu_to_le16(0);
603                 break;
604
605         case USB_RECIP_INTERFACE:
606                 reply = cpu_to_le16(0);
607                 break;
608
609         case USB_RECIP_ENDPOINT:
610                 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
611                 hsep = &hsudc->ep[epnum];
612                 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
613                 break;
614         }
615
616         INIT_LIST_HEAD(&hsreq.queue);
617         hsreq.req.length = 2;
618         hsreq.req.buf = &reply;
619         hsreq.req.actual = 0;
620         hsreq.req.complete = NULL;
621         s3c_hsudc_write_fifo(hsep0, &hsreq);
622 }
623
624 /**
625  * s3c_hsudc_process_setup - Process control request received on endpoint 0.
626  * @hsudc: Device controller on which control request has been received.
627  *
628  * Read the control request received on endpoint 0, decode it and handle
629  * the request.
630  */
631 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
632 {
633         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
634         struct usb_ctrlrequest ctrl = {0};
635         int ret;
636
637         s3c_hsudc_nuke_ep(hsep, -EPROTO);
638         s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
639
640         if (ctrl.bRequestType & USB_DIR_IN) {
641                 hsep->bEndpointAddress |= USB_DIR_IN;
642                 hsudc->ep0state = DATA_STATE_XMIT;
643         } else {
644                 hsep->bEndpointAddress &= ~USB_DIR_IN;
645                 hsudc->ep0state = DATA_STATE_RECV;
646         }
647
648         switch (ctrl.bRequest) {
649         case USB_REQ_SET_ADDRESS:
650                 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
651                         break;
652                 hsudc->ep0state = WAIT_FOR_SETUP;
653                 return;
654
655         case USB_REQ_GET_STATUS:
656                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
657                         break;
658                 s3c_hsudc_process_req_status(hsudc, &ctrl);
659                 return;
660
661         case USB_REQ_SET_FEATURE:
662         case USB_REQ_CLEAR_FEATURE:
663                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
664                         break;
665                 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
666                 hsudc->ep0state = WAIT_FOR_SETUP;
667                 return;
668         }
669
670         if (hsudc->driver) {
671                 spin_unlock(&hsudc->lock);
672                 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
673                 spin_lock(&hsudc->lock);
674
675                 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
676                         hsep->bEndpointAddress &= ~USB_DIR_IN;
677                         hsudc->ep0state = WAIT_FOR_SETUP;
678                 }
679
680                 if (ret < 0) {
681                         dev_err(hsudc->dev, "setup failed, returned %d\n",
682                                                 ret);
683                         s3c_hsudc_set_halt(&hsep->ep, 1);
684                         hsudc->ep0state = WAIT_FOR_SETUP;
685                         hsep->bEndpointAddress &= ~USB_DIR_IN;
686                 }
687         }
688 }
689
690 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
691  * @hsudc: Device controller on which endpoint 0 interrupt has occured.
692  *
693  * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
694  * when a stall handshake is sent to host or data is sent/received on
695  * endpoint 0.
696  */
697 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
698 {
699         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
700         struct s3c_hsudc_req *hsreq;
701         u32 csr = readl(hsudc->regs + S3C_EP0SR);
702         u32 ecr;
703
704         if (csr & S3C_EP0SR_STALL) {
705                 ecr = readl(hsudc->regs + S3C_EP0CR);
706                 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
707                 writel(ecr, hsudc->regs + S3C_EP0CR);
708
709                 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
710                 hsep->stopped = 0;
711
712                 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
713                 hsudc->ep0state = WAIT_FOR_SETUP;
714                 hsep->bEndpointAddress &= ~USB_DIR_IN;
715                 return;
716         }
717
718         if (csr & S3C_EP0SR_TX_SUCCESS) {
719                 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
720                 if (ep_is_in(hsep)) {
721                         if (list_empty(&hsep->queue))
722                                 return;
723
724                         hsreq = list_entry(hsep->queue.next,
725                                         struct s3c_hsudc_req, queue);
726                         s3c_hsudc_write_fifo(hsep, hsreq);
727                 }
728         }
729
730         if (csr & S3C_EP0SR_RX_SUCCESS) {
731                 if (hsudc->ep0state == WAIT_FOR_SETUP)
732                         s3c_hsudc_process_setup(hsudc);
733                 else {
734                         if (!ep_is_in(hsep)) {
735                                 if (list_empty(&hsep->queue))
736                                         return;
737                                 hsreq = list_entry(hsep->queue.next,
738                                         struct s3c_hsudc_req, queue);
739                                 s3c_hsudc_read_fifo(hsep, hsreq);
740                         }
741                 }
742         }
743 }
744
745 /**
746  * s3c_hsudc_ep_enable - Enable a endpoint.
747  * @_ep: The endpoint to be enabled.
748  * @desc: Endpoint descriptor.
749  *
750  * Enables a endpoint when called from the gadget driver. Endpoint stall if
751  * any is cleared, transfer type is configured and endpoint interrupt is
752  * enabled.
753  */
754 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
755                                 const struct usb_endpoint_descriptor *desc)
756 {
757         struct s3c_hsudc_ep *hsep;
758         struct s3c_hsudc *hsudc;
759         unsigned long flags;
760         u32 ecr = 0;
761
762         hsep = our_ep(_ep);
763         if (!_ep || !desc || _ep->name == ep0name
764                 || desc->bDescriptorType != USB_DT_ENDPOINT
765                 || hsep->bEndpointAddress != desc->bEndpointAddress
766                 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
767                 return -EINVAL;
768
769         if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
770                 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
771                 || !desc->wMaxPacketSize)
772                 return -ERANGE;
773
774         hsudc = hsep->dev;
775         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
776                 return -ESHUTDOWN;
777
778         spin_lock_irqsave(&hsudc->lock, flags);
779
780         set_index(hsudc, hsep->bEndpointAddress);
781         ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
782         writel(ecr, hsudc->regs + S3C_ECR);
783
784         hsep->stopped = hsep->wedge = 0;
785         hsep->ep.desc = desc;
786         hsep->ep.maxpacket = usb_endpoint_maxp(desc);
787
788         s3c_hsudc_set_halt(_ep, 0);
789         __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
790
791         spin_unlock_irqrestore(&hsudc->lock, flags);
792         return 0;
793 }
794
795 /**
796  * s3c_hsudc_ep_disable - Disable a endpoint.
797  * @_ep: The endpoint to be disabled.
798  * @desc: Endpoint descriptor.
799  *
800  * Disables a endpoint when called from the gadget driver.
801  */
802 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
803 {
804         struct s3c_hsudc_ep *hsep = our_ep(_ep);
805         struct s3c_hsudc *hsudc = hsep->dev;
806         unsigned long flags;
807
808         if (!_ep || !hsep->ep.desc)
809                 return -EINVAL;
810
811         spin_lock_irqsave(&hsudc->lock, flags);
812
813         set_index(hsudc, hsep->bEndpointAddress);
814         __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
815
816         s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
817
818         hsep->ep.desc = NULL;
819         hsep->stopped = 1;
820
821         spin_unlock_irqrestore(&hsudc->lock, flags);
822         return 0;
823 }
824
825 /**
826  * s3c_hsudc_alloc_request - Allocate a new request.
827  * @_ep: Endpoint for which request is allocated (not used).
828  * @gfp_flags: Flags used for the allocation.
829  *
830  * Allocates a single transfer request structure when called from gadget driver.
831  */
832 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
833                                                 gfp_t gfp_flags)
834 {
835         struct s3c_hsudc_req *hsreq;
836
837         hsreq = kzalloc(sizeof *hsreq, gfp_flags);
838         if (!hsreq)
839                 return 0;
840
841         INIT_LIST_HEAD(&hsreq->queue);
842         return &hsreq->req;
843 }
844
845 /**
846  * s3c_hsudc_free_request - Deallocate a request.
847  * @ep: Endpoint for which request is deallocated (not used).
848  * @_req: Request to be deallocated.
849  *
850  * Allocates a single transfer request structure when called from gadget driver.
851  */
852 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
853 {
854         struct s3c_hsudc_req *hsreq;
855
856         hsreq = our_req(_req);
857         WARN_ON(!list_empty(&hsreq->queue));
858         kfree(hsreq);
859 }
860
861 /**
862  * s3c_hsudc_queue - Queue a transfer request for the endpoint.
863  * @_ep: Endpoint for which the request is queued.
864  * @_req: Request to be queued.
865  * @gfp_flags: Not used.
866  *
867  * Start or enqueue a request for a endpoint when called from gadget driver.
868  */
869 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
870                         gfp_t gfp_flags)
871 {
872         struct s3c_hsudc_req *hsreq;
873         struct s3c_hsudc_ep *hsep;
874         struct s3c_hsudc *hsudc;
875         unsigned long flags;
876         u32 offset;
877         u32 csr;
878
879         hsreq = our_req(_req);
880         if ((!_req || !_req->complete || !_req->buf ||
881                 !list_empty(&hsreq->queue)))
882                 return -EINVAL;
883
884         hsep = our_ep(_ep);
885         hsudc = hsep->dev;
886         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
887                 return -ESHUTDOWN;
888
889         spin_lock_irqsave(&hsudc->lock, flags);
890         set_index(hsudc, hsep->bEndpointAddress);
891
892         _req->status = -EINPROGRESS;
893         _req->actual = 0;
894
895         if (!ep_index(hsep) && _req->length == 0) {
896                 hsudc->ep0state = WAIT_FOR_SETUP;
897                 s3c_hsudc_complete_request(hsep, hsreq, 0);
898                 spin_unlock_irqrestore(&hsudc->lock, flags);
899                 return 0;
900         }
901
902         if (list_empty(&hsep->queue) && !hsep->stopped) {
903                 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
904                 if (ep_is_in(hsep)) {
905                         csr = readl((u32)hsudc->regs + offset);
906                         if (!(csr & S3C_ESR_TX_SUCCESS) &&
907                                 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
908                                 hsreq = 0;
909                 } else {
910                         csr = readl((u32)hsudc->regs + offset);
911                         if ((csr & S3C_ESR_RX_SUCCESS)
912                                    && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
913                                 hsreq = 0;
914                 }
915         }
916
917         if (hsreq != 0)
918                 list_add_tail(&hsreq->queue, &hsep->queue);
919
920         spin_unlock_irqrestore(&hsudc->lock, flags);
921         return 0;
922 }
923
924 /**
925  * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
926  * @_ep: Endpoint from which the request is dequeued.
927  * @_req: Request to be dequeued.
928  *
929  * Dequeue a request from a endpoint when called from gadget driver.
930  */
931 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
932 {
933         struct s3c_hsudc_ep *hsep = our_ep(_ep);
934         struct s3c_hsudc *hsudc = hsep->dev;
935         struct s3c_hsudc_req *hsreq;
936         unsigned long flags;
937
938         hsep = our_ep(_ep);
939         if (!_ep || hsep->ep.name == ep0name)
940                 return -EINVAL;
941
942         spin_lock_irqsave(&hsudc->lock, flags);
943
944         list_for_each_entry(hsreq, &hsep->queue, queue) {
945                 if (&hsreq->req == _req)
946                         break;
947         }
948         if (&hsreq->req != _req) {
949                 spin_unlock_irqrestore(&hsudc->lock, flags);
950                 return -EINVAL;
951         }
952
953         set_index(hsudc, hsep->bEndpointAddress);
954         s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
955
956         spin_unlock_irqrestore(&hsudc->lock, flags);
957         return 0;
958 }
959
960 static struct usb_ep_ops s3c_hsudc_ep_ops = {
961         .enable = s3c_hsudc_ep_enable,
962         .disable = s3c_hsudc_ep_disable,
963         .alloc_request = s3c_hsudc_alloc_request,
964         .free_request = s3c_hsudc_free_request,
965         .queue = s3c_hsudc_queue,
966         .dequeue = s3c_hsudc_dequeue,
967         .set_halt = s3c_hsudc_set_halt,
968         .set_wedge = s3c_hsudc_set_wedge,
969 };
970
971 /**
972  * s3c_hsudc_initep - Initialize a endpoint to default state.
973  * @hsudc - Reference to the device controller.
974  * @hsep - Endpoint to be initialized.
975  * @epnum - Address to be assigned to the endpoint.
976  *
977  * Initialize a endpoint with default configuration.
978  */
979 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
980                                 struct s3c_hsudc_ep *hsep, int epnum)
981 {
982         char *dir;
983
984         if ((epnum % 2) == 0) {
985                 dir = "out";
986         } else {
987                 dir = "in";
988                 hsep->bEndpointAddress = USB_DIR_IN;
989         }
990
991         hsep->bEndpointAddress |= epnum;
992         if (epnum)
993                 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
994         else
995                 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
996
997         INIT_LIST_HEAD(&hsep->queue);
998         INIT_LIST_HEAD(&hsep->ep.ep_list);
999         if (epnum)
1000                 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
1001
1002         hsep->dev = hsudc;
1003         hsep->ep.name = hsep->name;
1004         hsep->ep.maxpacket = epnum ? 512 : 64;
1005         hsep->ep.ops = &s3c_hsudc_ep_ops;
1006         hsep->fifo = hsudc->regs + S3C_BR(epnum);
1007         hsep->ep.desc = NULL;
1008         hsep->stopped = 0;
1009         hsep->wedge = 0;
1010
1011         set_index(hsudc, epnum);
1012         writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
1013 }
1014
1015 /**
1016  * s3c_hsudc_setup_ep - Configure all endpoints to default state.
1017  * @hsudc: Reference to device controller.
1018  *
1019  * Configures all endpoints to default state.
1020  */
1021 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
1022 {
1023         int epnum;
1024
1025         hsudc->ep0state = WAIT_FOR_SETUP;
1026         INIT_LIST_HEAD(&hsudc->gadget.ep_list);
1027         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
1028                 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
1029 }
1030
1031 /**
1032  * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
1033  * @hsudc: Reference to device controller.
1034  *
1035  * Reconfigures the device controller registers to a default state.
1036  */
1037 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
1038 {
1039         writel(0xAA, hsudc->regs + S3C_EDR);
1040         writel(1, hsudc->regs + S3C_EIER);
1041         writel(0, hsudc->regs + S3C_TR);
1042         writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1043                         S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1044         writel(0, hsudc->regs + S3C_EP0CR);
1045
1046         s3c_hsudc_setup_ep(hsudc);
1047 }
1048
1049 /**
1050  * s3c_hsudc_irq - Interrupt handler for device controller.
1051  * @irq: Not used.
1052  * @_dev: Reference to the device controller.
1053  *
1054  * Interrupt handler for the device controller. This handler handles controller
1055  * interrupts and endpoint interrupts.
1056  */
1057 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1058 {
1059         struct s3c_hsudc *hsudc = _dev;
1060         struct s3c_hsudc_ep *hsep;
1061         u32 ep_intr;
1062         u32 sys_status;
1063         u32 ep_idx;
1064
1065         spin_lock(&hsudc->lock);
1066
1067         sys_status = readl(hsudc->regs + S3C_SSR);
1068         ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1069
1070         if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1071                 spin_unlock(&hsudc->lock);
1072                 return IRQ_HANDLED;
1073         }
1074
1075         if (sys_status) {
1076                 if (sys_status & S3C_SSR_VBUSON)
1077                         writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1078
1079                 if (sys_status & S3C_SSR_ERR)
1080                         writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1081
1082                 if (sys_status & S3C_SSR_SDE) {
1083                         writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1084                         hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1085                                 USB_SPEED_HIGH : USB_SPEED_FULL;
1086                 }
1087
1088                 if (sys_status & S3C_SSR_SUSPEND) {
1089                         writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1090                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1091                                 && hsudc->driver && hsudc->driver->suspend)
1092                                 hsudc->driver->suspend(&hsudc->gadget);
1093                 }
1094
1095                 if (sys_status & S3C_SSR_RESUME) {
1096                         writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1097                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1098                                 && hsudc->driver && hsudc->driver->resume)
1099                                 hsudc->driver->resume(&hsudc->gadget);
1100                 }
1101
1102                 if (sys_status & S3C_SSR_RESET) {
1103                         writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1104                         for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1105                                 hsep = &hsudc->ep[ep_idx];
1106                                 hsep->stopped = 1;
1107                                 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1108                         }
1109                         s3c_hsudc_reconfig(hsudc);
1110                         hsudc->ep0state = WAIT_FOR_SETUP;
1111                 }
1112         }
1113
1114         if (ep_intr & S3C_EIR_EP0) {
1115                 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1116                 set_index(hsudc, 0);
1117                 s3c_hsudc_handle_ep0_intr(hsudc);
1118         }
1119
1120         ep_intr >>= 1;
1121         ep_idx = 1;
1122         while (ep_intr) {
1123                 if (ep_intr & 1)  {
1124                         hsep = &hsudc->ep[ep_idx];
1125                         set_index(hsudc, ep_idx);
1126                         writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1127                         if (ep_is_in(hsep))
1128                                 s3c_hsudc_epin_intr(hsudc, ep_idx);
1129                         else
1130                                 s3c_hsudc_epout_intr(hsudc, ep_idx);
1131                 }
1132                 ep_intr >>= 1;
1133                 ep_idx++;
1134         }
1135
1136         spin_unlock(&hsudc->lock);
1137         return IRQ_HANDLED;
1138 }
1139
1140 static int s3c_hsudc_start(struct usb_gadget *gadget,
1141                 struct usb_gadget_driver *driver)
1142 {
1143         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1144         int ret;
1145
1146         if (!driver
1147                 || driver->max_speed < USB_SPEED_FULL
1148                 || !driver->setup)
1149                 return -EINVAL;
1150
1151         if (!hsudc)
1152                 return -ENODEV;
1153
1154         if (hsudc->driver)
1155                 return -EBUSY;
1156
1157         hsudc->driver = driver;
1158         hsudc->gadget.dev.driver = &driver->driver;
1159
1160         ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1161                                     hsudc->supplies);
1162         if (ret != 0) {
1163                 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1164                 goto err_supplies;
1165         }
1166
1167         /* connect to bus through transceiver */
1168         if (hsudc->transceiver) {
1169                 ret = otg_set_peripheral(hsudc->transceiver->otg,
1170                                         &hsudc->gadget);
1171                 if (ret) {
1172                         dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1173                                         hsudc->gadget.name);
1174                         goto err_otg;
1175                 }
1176         }
1177
1178         enable_irq(hsudc->irq);
1179         dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name);
1180
1181         s3c_hsudc_reconfig(hsudc);
1182
1183         pm_runtime_get_sync(hsudc->dev);
1184
1185         s3c_hsudc_init_phy();
1186         if (hsudc->pd->gpio_init)
1187                 hsudc->pd->gpio_init();
1188
1189         return 0;
1190 err_otg:
1191         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1192 err_supplies:
1193         hsudc->driver = NULL;
1194         hsudc->gadget.dev.driver = NULL;
1195         return ret;
1196 }
1197
1198 static int s3c_hsudc_stop(struct usb_gadget *gadget,
1199                 struct usb_gadget_driver *driver)
1200 {
1201         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1202         unsigned long flags;
1203
1204         if (!hsudc)
1205                 return -ENODEV;
1206
1207         if (!driver || driver != hsudc->driver)
1208                 return -EINVAL;
1209
1210         spin_lock_irqsave(&hsudc->lock, flags);
1211         hsudc->driver = NULL;
1212         hsudc->gadget.dev.driver = NULL;
1213         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1214         s3c_hsudc_uninit_phy();
1215
1216         pm_runtime_put(hsudc->dev);
1217
1218         if (hsudc->pd->gpio_uninit)
1219                 hsudc->pd->gpio_uninit();
1220         s3c_hsudc_stop_activity(hsudc);
1221         spin_unlock_irqrestore(&hsudc->lock, flags);
1222
1223         if (hsudc->transceiver)
1224                 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1225
1226         disable_irq(hsudc->irq);
1227
1228         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1229
1230         dev_info(hsudc->dev, "unregistered gadget driver '%s'\n",
1231                         driver->driver.name);
1232         return 0;
1233 }
1234
1235 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1236 {
1237         return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1238 }
1239
1240 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1241 {
1242         return s3c_hsudc_read_frameno(to_hsudc(gadget));
1243 }
1244
1245 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1246 {
1247         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1248
1249         if (!hsudc)
1250                 return -ENODEV;
1251
1252         if (hsudc->transceiver)
1253                 return usb_phy_set_power(hsudc->transceiver, mA);
1254
1255         return -EOPNOTSUPP;
1256 }
1257
1258 static struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1259         .get_frame      = s3c_hsudc_gadget_getframe,
1260         .udc_start      = s3c_hsudc_start,
1261         .udc_stop       = s3c_hsudc_stop,
1262         .vbus_draw      = s3c_hsudc_vbus_draw,
1263 };
1264
1265 static int __devinit s3c_hsudc_probe(struct platform_device *pdev)
1266 {
1267         struct device *dev = &pdev->dev;
1268         struct resource *res;
1269         struct s3c_hsudc *hsudc;
1270         struct s3c24xx_hsudc_platdata *pd = pdev->dev.platform_data;
1271         int ret, i;
1272
1273         hsudc = kzalloc(sizeof(struct s3c_hsudc) +
1274                         sizeof(struct s3c_hsudc_ep) * pd->epnum,
1275                         GFP_KERNEL);
1276         if (!hsudc) {
1277                 dev_err(dev, "cannot allocate memory\n");
1278                 return -ENOMEM;
1279         }
1280
1281         platform_set_drvdata(pdev, dev);
1282         hsudc->dev = dev;
1283         hsudc->pd = pdev->dev.platform_data;
1284
1285         hsudc->transceiver = usb_get_transceiver();
1286
1287         for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1288                 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1289
1290         ret = regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1291                                  hsudc->supplies);
1292         if (ret != 0) {
1293                 dev_err(dev, "failed to request supplies: %d\n", ret);
1294                 goto err_supplies;
1295         }
1296
1297         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1298         if (!res) {
1299                 dev_err(dev, "unable to obtain driver resource data\n");
1300                 ret = -ENODEV;
1301                 goto err_res;
1302         }
1303
1304         hsudc->mem_rsrc = request_mem_region(res->start, resource_size(res),
1305                                 dev_name(&pdev->dev));
1306         if (!hsudc->mem_rsrc) {
1307                 dev_err(dev, "failed to reserve register area\n");
1308                 ret = -ENODEV;
1309                 goto err_res;
1310         }
1311
1312         hsudc->regs = ioremap(res->start, resource_size(res));
1313         if (!hsudc->regs) {
1314                 dev_err(dev, "error mapping device register area\n");
1315                 ret = -EBUSY;
1316                 goto err_remap;
1317         }
1318
1319         spin_lock_init(&hsudc->lock);
1320
1321         dev_set_name(&hsudc->gadget.dev, "gadget");
1322
1323         hsudc->gadget.max_speed = USB_SPEED_HIGH;
1324         hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1325         hsudc->gadget.name = dev_name(dev);
1326         hsudc->gadget.dev.parent = dev;
1327         hsudc->gadget.dev.dma_mask = dev->dma_mask;
1328         hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1329
1330         hsudc->gadget.is_otg = 0;
1331         hsudc->gadget.is_a_peripheral = 0;
1332         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1333
1334         s3c_hsudc_setup_ep(hsudc);
1335
1336         ret = platform_get_irq(pdev, 0);
1337         if (ret < 0) {
1338                 dev_err(dev, "unable to obtain IRQ number\n");
1339                 goto err_irq;
1340         }
1341         hsudc->irq = ret;
1342
1343         ret = request_irq(hsudc->irq, s3c_hsudc_irq, 0, driver_name, hsudc);
1344         if (ret < 0) {
1345                 dev_err(dev, "irq request failed\n");
1346                 goto err_irq;
1347         }
1348
1349         hsudc->uclk = clk_get(&pdev->dev, "usb-device");
1350         if (IS_ERR(hsudc->uclk)) {
1351                 dev_err(dev, "failed to find usb-device clock source\n");
1352                 ret = PTR_ERR(hsudc->uclk);
1353                 goto err_clk;
1354         }
1355         clk_enable(hsudc->uclk);
1356
1357         local_irq_disable();
1358
1359         disable_irq(hsudc->irq);
1360         local_irq_enable();
1361
1362         ret = device_register(&hsudc->gadget.dev);
1363         if (ret) {
1364                 put_device(&hsudc->gadget.dev);
1365                 goto err_add_device;
1366         }
1367
1368         ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1369         if (ret)
1370                 goto err_add_udc;
1371
1372         pm_runtime_enable(dev);
1373
1374         return 0;
1375 err_add_udc:
1376         device_unregister(&hsudc->gadget.dev);
1377 err_add_device:
1378         clk_disable(hsudc->uclk);
1379         clk_put(hsudc->uclk);
1380 err_clk:
1381         free_irq(hsudc->irq, hsudc);
1382 err_irq:
1383         iounmap(hsudc->regs);
1384
1385 err_remap:
1386         release_mem_region(res->start, resource_size(res));
1387 err_res:
1388         if (hsudc->transceiver)
1389                 usb_put_transceiver(hsudc->transceiver);
1390
1391         regulator_bulk_free(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1392 err_supplies:
1393         kfree(hsudc);
1394         return ret;
1395 }
1396
1397 static struct platform_driver s3c_hsudc_driver = {
1398         .driver         = {
1399                 .owner  = THIS_MODULE,
1400                 .name   = "s3c-hsudc",
1401         },
1402         .probe          = s3c_hsudc_probe,
1403 };
1404
1405 module_platform_driver(s3c_hsudc_driver);
1406
1407 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1408 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1409 MODULE_LICENSE("GPL");
1410 MODULE_ALIAS("platform:s3c-hsudc");