]> Pileus Git - ~andy/linux/blob - drivers/usb/core/urb.c
Merge tag 'remoteproc-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad...
[~andy/linux] / drivers / usb / core / urb.c
1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/init.h>
6 #include <linux/log2.h>
7 #include <linux/usb.h>
8 #include <linux/wait.h>
9 #include <linux/usb/hcd.h>
10
11 #define to_urb(d) container_of(d, struct urb, kref)
12
13
14 static void urb_destroy(struct kref *kref)
15 {
16         struct urb *urb = to_urb(kref);
17
18         if (urb->transfer_flags & URB_FREE_BUFFER)
19                 kfree(urb->transfer_buffer);
20
21         kfree(urb);
22 }
23
24 /**
25  * usb_init_urb - initializes a urb so that it can be used by a USB driver
26  * @urb: pointer to the urb to initialize
27  *
28  * Initializes a urb so that the USB subsystem can use it properly.
29  *
30  * If a urb is created with a call to usb_alloc_urb() it is not
31  * necessary to call this function.  Only use this if you allocate the
32  * space for a struct urb on your own.  If you call this function, be
33  * careful when freeing the memory for your urb that it is no longer in
34  * use by the USB core.
35  *
36  * Only use this function if you _really_ understand what you are doing.
37  */
38 void usb_init_urb(struct urb *urb)
39 {
40         if (urb) {
41                 memset(urb, 0, sizeof(*urb));
42                 kref_init(&urb->kref);
43                 INIT_LIST_HEAD(&urb->anchor_list);
44         }
45 }
46 EXPORT_SYMBOL_GPL(usb_init_urb);
47
48 /**
49  * usb_alloc_urb - creates a new urb for a USB driver to use
50  * @iso_packets: number of iso packets for this urb
51  * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52  *      valid options for this.
53  *
54  * Creates an urb for the USB driver to use, initializes a few internal
55  * structures, incrementes the usage counter, and returns a pointer to it.
56  *
57  * If no memory is available, NULL is returned.
58  *
59  * If the driver want to use this urb for interrupt, control, or bulk
60  * endpoints, pass '0' as the number of iso packets.
61  *
62  * The driver must call usb_free_urb() when it is finished with the urb.
63  */
64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 {
66         struct urb *urb;
67
68         urb = kmalloc(sizeof(struct urb) +
69                 iso_packets * sizeof(struct usb_iso_packet_descriptor),
70                 mem_flags);
71         if (!urb) {
72                 printk(KERN_ERR "alloc_urb: kmalloc failed\n");
73                 return NULL;
74         }
75         usb_init_urb(urb);
76         return urb;
77 }
78 EXPORT_SYMBOL_GPL(usb_alloc_urb);
79
80 /**
81  * usb_free_urb - frees the memory used by a urb when all users of it are finished
82  * @urb: pointer to the urb to free, may be NULL
83  *
84  * Must be called when a user of a urb is finished with it.  When the last user
85  * of the urb calls this function, the memory of the urb is freed.
86  *
87  * Note: The transfer buffer associated with the urb is not freed unless the
88  * URB_FREE_BUFFER transfer flag is set.
89  */
90 void usb_free_urb(struct urb *urb)
91 {
92         if (urb)
93                 kref_put(&urb->kref, urb_destroy);
94 }
95 EXPORT_SYMBOL_GPL(usb_free_urb);
96
97 /**
98  * usb_get_urb - increments the reference count of the urb
99  * @urb: pointer to the urb to modify, may be NULL
100  *
101  * This must be  called whenever a urb is transferred from a device driver to a
102  * host controller driver.  This allows proper reference counting to happen
103  * for urbs.
104  *
105  * A pointer to the urb with the incremented reference counter is returned.
106  */
107 struct urb *usb_get_urb(struct urb *urb)
108 {
109         if (urb)
110                 kref_get(&urb->kref);
111         return urb;
112 }
113 EXPORT_SYMBOL_GPL(usb_get_urb);
114
115 /**
116  * usb_anchor_urb - anchors an URB while it is processed
117  * @urb: pointer to the urb to anchor
118  * @anchor: pointer to the anchor
119  *
120  * This can be called to have access to URBs which are to be executed
121  * without bothering to track them
122  */
123 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124 {
125         unsigned long flags;
126
127         spin_lock_irqsave(&anchor->lock, flags);
128         usb_get_urb(urb);
129         list_add_tail(&urb->anchor_list, &anchor->urb_list);
130         urb->anchor = anchor;
131
132         if (unlikely(anchor->poisoned)) {
133                 atomic_inc(&urb->reject);
134         }
135
136         spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139
140 /* Callers must hold anchor->lock */
141 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
142 {
143         urb->anchor = NULL;
144         list_del(&urb->anchor_list);
145         usb_put_urb(urb);
146         if (list_empty(&anchor->urb_list))
147                 wake_up(&anchor->wait);
148 }
149
150 /**
151  * usb_unanchor_urb - unanchors an URB
152  * @urb: pointer to the urb to anchor
153  *
154  * Call this to stop the system keeping track of this URB
155  */
156 void usb_unanchor_urb(struct urb *urb)
157 {
158         unsigned long flags;
159         struct usb_anchor *anchor;
160
161         if (!urb)
162                 return;
163
164         anchor = urb->anchor;
165         if (!anchor)
166                 return;
167
168         spin_lock_irqsave(&anchor->lock, flags);
169         /*
170          * At this point, we could be competing with another thread which
171          * has the same intention. To protect the urb from being unanchored
172          * twice, only the winner of the race gets the job.
173          */
174         if (likely(anchor == urb->anchor))
175                 __usb_unanchor_urb(urb, anchor);
176         spin_unlock_irqrestore(&anchor->lock, flags);
177 }
178 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
179
180 /*-------------------------------------------------------------------*/
181
182 /**
183  * usb_submit_urb - issue an asynchronous transfer request for an endpoint
184  * @urb: pointer to the urb describing the request
185  * @mem_flags: the type of memory to allocate, see kmalloc() for a list
186  *      of valid options for this.
187  *
188  * This submits a transfer request, and transfers control of the URB
189  * describing that request to the USB subsystem.  Request completion will
190  * be indicated later, asynchronously, by calling the completion handler.
191  * The three types of completion are success, error, and unlink
192  * (a software-induced fault, also called "request cancellation").
193  *
194  * URBs may be submitted in interrupt context.
195  *
196  * The caller must have correctly initialized the URB before submitting
197  * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
198  * available to ensure that most fields are correctly initialized, for
199  * the particular kind of transfer, although they will not initialize
200  * any transfer flags.
201  *
202  * Successful submissions return 0; otherwise this routine returns a
203  * negative error number.  If the submission is successful, the complete()
204  * callback from the URB will be called exactly once, when the USB core and
205  * Host Controller Driver (HCD) are finished with the URB.  When the completion
206  * function is called, control of the URB is returned to the device
207  * driver which issued the request.  The completion handler may then
208  * immediately free or reuse that URB.
209  *
210  * With few exceptions, USB device drivers should never access URB fields
211  * provided by usbcore or the HCD until its complete() is called.
212  * The exceptions relate to periodic transfer scheduling.  For both
213  * interrupt and isochronous urbs, as part of successful URB submission
214  * urb->interval is modified to reflect the actual transfer period used
215  * (normally some power of two units).  And for isochronous urbs,
216  * urb->start_frame is modified to reflect when the URB's transfers were
217  * scheduled to start.
218  *
219  * Not all isochronous transfer scheduling policies will work, but most
220  * host controller drivers should easily handle ISO queues going from now
221  * until 10-200 msec into the future.  Drivers should try to keep at
222  * least one or two msec of data in the queue; many controllers require
223  * that new transfers start at least 1 msec in the future when they are
224  * added.  If the driver is unable to keep up and the queue empties out,
225  * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
226  * If the flag is set, or if the queue is idle, then the URB is always
227  * assigned to the first available (and not yet expired) slot in the
228  * endpoint's schedule.  If the flag is not set and the queue is active
229  * then the URB is always assigned to the next slot in the schedule
230  * following the end of the endpoint's previous URB, even if that slot is
231  * in the past.  When a packet is assigned in this way to a slot that has
232  * already expired, the packet is not transmitted and the corresponding
233  * usb_iso_packet_descriptor's status field will return -EXDEV.  If this
234  * would happen to all the packets in the URB, submission fails with a
235  * -EXDEV error code.
236  *
237  * For control endpoints, the synchronous usb_control_msg() call is
238  * often used (in non-interrupt context) instead of this call.
239  * That is often used through convenience wrappers, for the requests
240  * that are standardized in the USB 2.0 specification.  For bulk
241  * endpoints, a synchronous usb_bulk_msg() call is available.
242  *
243  * Request Queuing:
244  *
245  * URBs may be submitted to endpoints before previous ones complete, to
246  * minimize the impact of interrupt latencies and system overhead on data
247  * throughput.  With that queuing policy, an endpoint's queue would never
248  * be empty.  This is required for continuous isochronous data streams,
249  * and may also be required for some kinds of interrupt transfers. Such
250  * queuing also maximizes bandwidth utilization by letting USB controllers
251  * start work on later requests before driver software has finished the
252  * completion processing for earlier (successful) requests.
253  *
254  * As of Linux 2.6, all USB endpoint transfer queues support depths greater
255  * than one.  This was previously a HCD-specific behavior, except for ISO
256  * transfers.  Non-isochronous endpoint queues are inactive during cleanup
257  * after faults (transfer errors or cancellation).
258  *
259  * Reserved Bandwidth Transfers:
260  *
261  * Periodic transfers (interrupt or isochronous) are performed repeatedly,
262  * using the interval specified in the urb.  Submitting the first urb to
263  * the endpoint reserves the bandwidth necessary to make those transfers.
264  * If the USB subsystem can't allocate sufficient bandwidth to perform
265  * the periodic request, submitting such a periodic request should fail.
266  *
267  * For devices under xHCI, the bandwidth is reserved at configuration time, or
268  * when the alt setting is selected.  If there is not enough bus bandwidth, the
269  * configuration/alt setting request will fail.  Therefore, submissions to
270  * periodic endpoints on devices under xHCI should never fail due to bandwidth
271  * constraints.
272  *
273  * Device drivers must explicitly request that repetition, by ensuring that
274  * some URB is always on the endpoint's queue (except possibly for short
275  * periods during completion callacks).  When there is no longer an urb
276  * queued, the endpoint's bandwidth reservation is canceled.  This means
277  * drivers can use their completion handlers to ensure they keep bandwidth
278  * they need, by reinitializing and resubmitting the just-completed urb
279  * until the driver longer needs that periodic bandwidth.
280  *
281  * Memory Flags:
282  *
283  * The general rules for how to decide which mem_flags to use
284  * are the same as for kmalloc.  There are four
285  * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
286  * GFP_ATOMIC.
287  *
288  * GFP_NOFS is not ever used, as it has not been implemented yet.
289  *
290  * GFP_ATOMIC is used when
291  *   (a) you are inside a completion handler, an interrupt, bottom half,
292  *       tasklet or timer, or
293  *   (b) you are holding a spinlock or rwlock (does not apply to
294  *       semaphores), or
295  *   (c) current->state != TASK_RUNNING, this is the case only after
296  *       you've changed it.
297  *
298  * GFP_NOIO is used in the block io path and error handling of storage
299  * devices.
300  *
301  * All other situations use GFP_KERNEL.
302  *
303  * Some more specific rules for mem_flags can be inferred, such as
304  *  (1) start_xmit, timeout, and receive methods of network drivers must
305  *      use GFP_ATOMIC (they are called with a spinlock held);
306  *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
307  *      called with a spinlock held);
308  *  (3) If you use a kernel thread with a network driver you must use
309  *      GFP_NOIO, unless (b) or (c) apply;
310  *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
311  *      apply or your are in a storage driver's block io path;
312  *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
313  *  (6) changing firmware on a running storage or net device uses
314  *      GFP_NOIO, unless b) or c) apply
315  *
316  */
317 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
318 {
319         int                             xfertype, max;
320         struct usb_device               *dev;
321         struct usb_host_endpoint        *ep;
322         int                             is_out;
323
324         if (!urb || !urb->complete)
325                 return -EINVAL;
326         if (urb->hcpriv) {
327                 WARN_ONCE(1, "URB %p submitted while active\n", urb);
328                 return -EBUSY;
329         }
330
331         dev = urb->dev;
332         if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
333                 return -ENODEV;
334
335         /* For now, get the endpoint from the pipe.  Eventually drivers
336          * will be required to set urb->ep directly and we will eliminate
337          * urb->pipe.
338          */
339         ep = usb_pipe_endpoint(dev, urb->pipe);
340         if (!ep)
341                 return -ENOENT;
342
343         urb->ep = ep;
344         urb->status = -EINPROGRESS;
345         urb->actual_length = 0;
346
347         /* Lots of sanity checks, so HCDs can rely on clean data
348          * and don't need to duplicate tests
349          */
350         xfertype = usb_endpoint_type(&ep->desc);
351         if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
352                 struct usb_ctrlrequest *setup =
353                                 (struct usb_ctrlrequest *) urb->setup_packet;
354
355                 if (!setup)
356                         return -ENOEXEC;
357                 is_out = !(setup->bRequestType & USB_DIR_IN) ||
358                                 !setup->wLength;
359         } else {
360                 is_out = usb_endpoint_dir_out(&ep->desc);
361         }
362
363         /* Clear the internal flags and cache the direction for later use */
364         urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
365                         URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
366                         URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
367                         URB_DMA_SG_COMBINED);
368         urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
369
370         if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
371                         dev->state < USB_STATE_CONFIGURED)
372                 return -ENODEV;
373
374         max = usb_endpoint_maxp(&ep->desc);
375         if (max <= 0) {
376                 dev_dbg(&dev->dev,
377                         "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
378                         usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
379                         __func__, max);
380                 return -EMSGSIZE;
381         }
382
383         /* periodic transfers limit size per frame/uframe,
384          * but drivers only control those sizes for ISO.
385          * while we're checking, initialize return status.
386          */
387         if (xfertype == USB_ENDPOINT_XFER_ISOC) {
388                 int     n, len;
389
390                 /* SuperSpeed isoc endpoints have up to 16 bursts of up to
391                  * 3 packets each
392                  */
393                 if (dev->speed == USB_SPEED_SUPER) {
394                         int     burst = 1 + ep->ss_ep_comp.bMaxBurst;
395                         int     mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
396                         max *= burst;
397                         max *= mult;
398                 }
399
400                 /* "high bandwidth" mode, 1-3 packets/uframe? */
401                 if (dev->speed == USB_SPEED_HIGH) {
402                         int     mult = 1 + ((max >> 11) & 0x03);
403                         max &= 0x07ff;
404                         max *= mult;
405                 }
406
407                 if (urb->number_of_packets <= 0)
408                         return -EINVAL;
409                 for (n = 0; n < urb->number_of_packets; n++) {
410                         len = urb->iso_frame_desc[n].length;
411                         if (len < 0 || len > max)
412                                 return -EMSGSIZE;
413                         urb->iso_frame_desc[n].status = -EXDEV;
414                         urb->iso_frame_desc[n].actual_length = 0;
415                 }
416         }
417
418         /* the I/O buffer must be mapped/unmapped, except when length=0 */
419         if (urb->transfer_buffer_length > INT_MAX)
420                 return -EMSGSIZE;
421
422 #ifdef DEBUG
423         /* stuff that drivers shouldn't do, but which shouldn't
424          * cause problems in HCDs if they get it wrong.
425          */
426         {
427         unsigned int    allowed;
428         static int pipetypes[4] = {
429                 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
430         };
431
432         /* Check that the pipe's type matches the endpoint's type */
433         if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
434                 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
435                         usb_pipetype(urb->pipe), pipetypes[xfertype]);
436
437         /* Check against a simple/standard policy */
438         allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
439                         URB_FREE_BUFFER);
440         switch (xfertype) {
441         case USB_ENDPOINT_XFER_BULK:
442                 if (is_out)
443                         allowed |= URB_ZERO_PACKET;
444                 /* FALLTHROUGH */
445         case USB_ENDPOINT_XFER_CONTROL:
446                 allowed |= URB_NO_FSBR; /* only affects UHCI */
447                 /* FALLTHROUGH */
448         default:                        /* all non-iso endpoints */
449                 if (!is_out)
450                         allowed |= URB_SHORT_NOT_OK;
451                 break;
452         case USB_ENDPOINT_XFER_ISOC:
453                 allowed |= URB_ISO_ASAP;
454                 break;
455         }
456         allowed &= urb->transfer_flags;
457
458         /* warn if submitter gave bogus flags */
459         if (allowed != urb->transfer_flags)
460                 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
461                         urb->transfer_flags, allowed);
462         }
463 #endif
464         /*
465          * Force periodic transfer intervals to be legal values that are
466          * a power of two (so HCDs don't need to).
467          *
468          * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
469          * supports different values... this uses EHCI/UHCI defaults (and
470          * EHCI can use smaller non-default values).
471          */
472         switch (xfertype) {
473         case USB_ENDPOINT_XFER_ISOC:
474         case USB_ENDPOINT_XFER_INT:
475                 /* too small? */
476                 switch (dev->speed) {
477                 case USB_SPEED_WIRELESS:
478                         if (urb->interval < 6)
479                                 return -EINVAL;
480                         break;
481                 default:
482                         if (urb->interval <= 0)
483                                 return -EINVAL;
484                         break;
485                 }
486                 /* too big? */
487                 switch (dev->speed) {
488                 case USB_SPEED_SUPER:   /* units are 125us */
489                         /* Handle up to 2^(16-1) microframes */
490                         if (urb->interval > (1 << 15))
491                                 return -EINVAL;
492                         max = 1 << 15;
493                         break;
494                 case USB_SPEED_WIRELESS:
495                         if (urb->interval > 16)
496                                 return -EINVAL;
497                         break;
498                 case USB_SPEED_HIGH:    /* units are microframes */
499                         /* NOTE usb handles 2^15 */
500                         if (urb->interval > (1024 * 8))
501                                 urb->interval = 1024 * 8;
502                         max = 1024 * 8;
503                         break;
504                 case USB_SPEED_FULL:    /* units are frames/msec */
505                 case USB_SPEED_LOW:
506                         if (xfertype == USB_ENDPOINT_XFER_INT) {
507                                 if (urb->interval > 255)
508                                         return -EINVAL;
509                                 /* NOTE ohci only handles up to 32 */
510                                 max = 128;
511                         } else {
512                                 if (urb->interval > 1024)
513                                         urb->interval = 1024;
514                                 /* NOTE usb and ohci handle up to 2^15 */
515                                 max = 1024;
516                         }
517                         break;
518                 default:
519                         return -EINVAL;
520                 }
521                 if (dev->speed != USB_SPEED_WIRELESS) {
522                         /* Round down to a power of 2, no more than max */
523                         urb->interval = min(max, 1 << ilog2(urb->interval));
524                 }
525         }
526
527         return usb_hcd_submit_urb(urb, mem_flags);
528 }
529 EXPORT_SYMBOL_GPL(usb_submit_urb);
530
531 /*-------------------------------------------------------------------*/
532
533 /**
534  * usb_unlink_urb - abort/cancel a transfer request for an endpoint
535  * @urb: pointer to urb describing a previously submitted request,
536  *      may be NULL
537  *
538  * This routine cancels an in-progress request.  URBs complete only once
539  * per submission, and may be canceled only once per submission.
540  * Successful cancellation means termination of @urb will be expedited
541  * and the completion handler will be called with a status code
542  * indicating that the request has been canceled (rather than any other
543  * code).
544  *
545  * Drivers should not call this routine or related routines, such as
546  * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
547  * method has returned.  The disconnect function should synchronize with
548  * a driver's I/O routines to insure that all URB-related activity has
549  * completed before it returns.
550  *
551  * This request is asynchronous, however the HCD might call the ->complete()
552  * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
553  * must not hold any locks that may be taken by the completion function.
554  * Success is indicated by returning -EINPROGRESS, at which time the URB will
555  * probably not yet have been given back to the device driver. When it is
556  * eventually called, the completion function will see @urb->status ==
557  * -ECONNRESET.
558  * Failure is indicated by usb_unlink_urb() returning any other value.
559  * Unlinking will fail when @urb is not currently "linked" (i.e., it was
560  * never submitted, or it was unlinked before, or the hardware is already
561  * finished with it), even if the completion handler has not yet run.
562  *
563  * The URB must not be deallocated while this routine is running.  In
564  * particular, when a driver calls this routine, it must insure that the
565  * completion handler cannot deallocate the URB.
566  *
567  * Unlinking and Endpoint Queues:
568  *
569  * [The behaviors and guarantees described below do not apply to virtual
570  * root hubs but only to endpoint queues for physical USB devices.]
571  *
572  * Host Controller Drivers (HCDs) place all the URBs for a particular
573  * endpoint in a queue.  Normally the queue advances as the controller
574  * hardware processes each request.  But when an URB terminates with an
575  * error its queue generally stops (see below), at least until that URB's
576  * completion routine returns.  It is guaranteed that a stopped queue
577  * will not restart until all its unlinked URBs have been fully retired,
578  * with their completion routines run, even if that's not until some time
579  * after the original completion handler returns.  The same behavior and
580  * guarantee apply when an URB terminates because it was unlinked.
581  *
582  * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
583  * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
584  * and -EREMOTEIO.  Control endpoint queues behave the same way except
585  * that they are not guaranteed to stop for -EREMOTEIO errors.  Queues
586  * for isochronous endpoints are treated differently, because they must
587  * advance at fixed rates.  Such queues do not stop when an URB
588  * encounters an error or is unlinked.  An unlinked isochronous URB may
589  * leave a gap in the stream of packets; it is undefined whether such
590  * gaps can be filled in.
591  *
592  * Note that early termination of an URB because a short packet was
593  * received will generate a -EREMOTEIO error if and only if the
594  * URB_SHORT_NOT_OK flag is set.  By setting this flag, USB device
595  * drivers can build deep queues for large or complex bulk transfers
596  * and clean them up reliably after any sort of aborted transfer by
597  * unlinking all pending URBs at the first fault.
598  *
599  * When a control URB terminates with an error other than -EREMOTEIO, it
600  * is quite likely that the status stage of the transfer will not take
601  * place.
602  */
603 int usb_unlink_urb(struct urb *urb)
604 {
605         if (!urb)
606                 return -EINVAL;
607         if (!urb->dev)
608                 return -ENODEV;
609         if (!urb->ep)
610                 return -EIDRM;
611         return usb_hcd_unlink_urb(urb, -ECONNRESET);
612 }
613 EXPORT_SYMBOL_GPL(usb_unlink_urb);
614
615 /**
616  * usb_kill_urb - cancel a transfer request and wait for it to finish
617  * @urb: pointer to URB describing a previously submitted request,
618  *      may be NULL
619  *
620  * This routine cancels an in-progress request.  It is guaranteed that
621  * upon return all completion handlers will have finished and the URB
622  * will be totally idle and available for reuse.  These features make
623  * this an ideal way to stop I/O in a disconnect() callback or close()
624  * function.  If the request has not already finished or been unlinked
625  * the completion handler will see urb->status == -ENOENT.
626  *
627  * While the routine is running, attempts to resubmit the URB will fail
628  * with error -EPERM.  Thus even if the URB's completion handler always
629  * tries to resubmit, it will not succeed and the URB will become idle.
630  *
631  * The URB must not be deallocated while this routine is running.  In
632  * particular, when a driver calls this routine, it must insure that the
633  * completion handler cannot deallocate the URB.
634  *
635  * This routine may not be used in an interrupt context (such as a bottom
636  * half or a completion handler), or when holding a spinlock, or in other
637  * situations where the caller can't schedule().
638  *
639  * This routine should not be called by a driver after its disconnect
640  * method has returned.
641  */
642 void usb_kill_urb(struct urb *urb)
643 {
644         might_sleep();
645         if (!(urb && urb->dev && urb->ep))
646                 return;
647         atomic_inc(&urb->reject);
648
649         usb_hcd_unlink_urb(urb, -ENOENT);
650         wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
651
652         atomic_dec(&urb->reject);
653 }
654 EXPORT_SYMBOL_GPL(usb_kill_urb);
655
656 /**
657  * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
658  * @urb: pointer to URB describing a previously submitted request,
659  *      may be NULL
660  *
661  * This routine cancels an in-progress request.  It is guaranteed that
662  * upon return all completion handlers will have finished and the URB
663  * will be totally idle and cannot be reused.  These features make
664  * this an ideal way to stop I/O in a disconnect() callback.
665  * If the request has not already finished or been unlinked
666  * the completion handler will see urb->status == -ENOENT.
667  *
668  * After and while the routine runs, attempts to resubmit the URB will fail
669  * with error -EPERM.  Thus even if the URB's completion handler always
670  * tries to resubmit, it will not succeed and the URB will become idle.
671  *
672  * The URB must not be deallocated while this routine is running.  In
673  * particular, when a driver calls this routine, it must insure that the
674  * completion handler cannot deallocate the URB.
675  *
676  * This routine may not be used in an interrupt context (such as a bottom
677  * half or a completion handler), or when holding a spinlock, or in other
678  * situations where the caller can't schedule().
679  *
680  * This routine should not be called by a driver after its disconnect
681  * method has returned.
682  */
683 void usb_poison_urb(struct urb *urb)
684 {
685         might_sleep();
686         if (!urb)
687                 return;
688         atomic_inc(&urb->reject);
689
690         if (!urb->dev || !urb->ep)
691                 return;
692
693         usb_hcd_unlink_urb(urb, -ENOENT);
694         wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
695 }
696 EXPORT_SYMBOL_GPL(usb_poison_urb);
697
698 void usb_unpoison_urb(struct urb *urb)
699 {
700         if (!urb)
701                 return;
702
703         atomic_dec(&urb->reject);
704 }
705 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
706
707 /**
708  * usb_block_urb - reliably prevent further use of an URB
709  * @urb: pointer to URB to be blocked, may be NULL
710  *
711  * After the routine has run, attempts to resubmit the URB will fail
712  * with error -EPERM.  Thus even if the URB's completion handler always
713  * tries to resubmit, it will not succeed and the URB will become idle.
714  *
715  * The URB must not be deallocated while this routine is running.  In
716  * particular, when a driver calls this routine, it must insure that the
717  * completion handler cannot deallocate the URB.
718  */
719 void usb_block_urb(struct urb *urb)
720 {
721         if (!urb)
722                 return;
723
724         atomic_inc(&urb->reject);
725 }
726 EXPORT_SYMBOL_GPL(usb_block_urb);
727
728 /**
729  * usb_kill_anchored_urbs - cancel transfer requests en masse
730  * @anchor: anchor the requests are bound to
731  *
732  * this allows all outstanding URBs to be killed starting
733  * from the back of the queue
734  *
735  * This routine should not be called by a driver after its disconnect
736  * method has returned.
737  */
738 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
739 {
740         struct urb *victim;
741
742         spin_lock_irq(&anchor->lock);
743         while (!list_empty(&anchor->urb_list)) {
744                 victim = list_entry(anchor->urb_list.prev, struct urb,
745                                     anchor_list);
746                 /* we must make sure the URB isn't freed before we kill it*/
747                 usb_get_urb(victim);
748                 spin_unlock_irq(&anchor->lock);
749                 /* this will unanchor the URB */
750                 usb_kill_urb(victim);
751                 usb_put_urb(victim);
752                 spin_lock_irq(&anchor->lock);
753         }
754         spin_unlock_irq(&anchor->lock);
755 }
756 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
757
758
759 /**
760  * usb_poison_anchored_urbs - cease all traffic from an anchor
761  * @anchor: anchor the requests are bound to
762  *
763  * this allows all outstanding URBs to be poisoned starting
764  * from the back of the queue. Newly added URBs will also be
765  * poisoned
766  *
767  * This routine should not be called by a driver after its disconnect
768  * method has returned.
769  */
770 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
771 {
772         struct urb *victim;
773
774         spin_lock_irq(&anchor->lock);
775         anchor->poisoned = 1;
776         while (!list_empty(&anchor->urb_list)) {
777                 victim = list_entry(anchor->urb_list.prev, struct urb,
778                                     anchor_list);
779                 /* we must make sure the URB isn't freed before we kill it*/
780                 usb_get_urb(victim);
781                 spin_unlock_irq(&anchor->lock);
782                 /* this will unanchor the URB */
783                 usb_poison_urb(victim);
784                 usb_put_urb(victim);
785                 spin_lock_irq(&anchor->lock);
786         }
787         spin_unlock_irq(&anchor->lock);
788 }
789 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
790
791 /**
792  * usb_unpoison_anchored_urbs - let an anchor be used successfully again
793  * @anchor: anchor the requests are bound to
794  *
795  * Reverses the effect of usb_poison_anchored_urbs
796  * the anchor can be used normally after it returns
797  */
798 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
799 {
800         unsigned long flags;
801         struct urb *lazarus;
802
803         spin_lock_irqsave(&anchor->lock, flags);
804         list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
805                 usb_unpoison_urb(lazarus);
806         }
807         anchor->poisoned = 0;
808         spin_unlock_irqrestore(&anchor->lock, flags);
809 }
810 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
811 /**
812  * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
813  * @anchor: anchor the requests are bound to
814  *
815  * this allows all outstanding URBs to be unlinked starting
816  * from the back of the queue. This function is asynchronous.
817  * The unlinking is just tiggered. It may happen after this
818  * function has returned.
819  *
820  * This routine should not be called by a driver after its disconnect
821  * method has returned.
822  */
823 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
824 {
825         struct urb *victim;
826
827         while ((victim = usb_get_from_anchor(anchor)) != NULL) {
828                 usb_unlink_urb(victim);
829                 usb_put_urb(victim);
830         }
831 }
832 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
833
834 /**
835  * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
836  * @anchor: the anchor you want to become unused
837  * @timeout: how long you are willing to wait in milliseconds
838  *
839  * Call this is you want to be sure all an anchor's
840  * URBs have finished
841  */
842 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
843                                   unsigned int timeout)
844 {
845         return wait_event_timeout(anchor->wait, list_empty(&anchor->urb_list),
846                                   msecs_to_jiffies(timeout));
847 }
848 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
849
850 /**
851  * usb_get_from_anchor - get an anchor's oldest urb
852  * @anchor: the anchor whose urb you want
853  *
854  * this will take the oldest urb from an anchor,
855  * unanchor and return it
856  */
857 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
858 {
859         struct urb *victim;
860         unsigned long flags;
861
862         spin_lock_irqsave(&anchor->lock, flags);
863         if (!list_empty(&anchor->urb_list)) {
864                 victim = list_entry(anchor->urb_list.next, struct urb,
865                                     anchor_list);
866                 usb_get_urb(victim);
867                 __usb_unanchor_urb(victim, anchor);
868         } else {
869                 victim = NULL;
870         }
871         spin_unlock_irqrestore(&anchor->lock, flags);
872
873         return victim;
874 }
875
876 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
877
878 /**
879  * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
880  * @anchor: the anchor whose urbs you want to unanchor
881  *
882  * use this to get rid of all an anchor's urbs
883  */
884 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
885 {
886         struct urb *victim;
887         unsigned long flags;
888
889         spin_lock_irqsave(&anchor->lock, flags);
890         while (!list_empty(&anchor->urb_list)) {
891                 victim = list_entry(anchor->urb_list.prev, struct urb,
892                                     anchor_list);
893                 __usb_unanchor_urb(victim, anchor);
894         }
895         spin_unlock_irqrestore(&anchor->lock, flags);
896 }
897
898 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
899
900 /**
901  * usb_anchor_empty - is an anchor empty
902  * @anchor: the anchor you want to query
903  *
904  * returns 1 if the anchor has no urbs associated with it
905  */
906 int usb_anchor_empty(struct usb_anchor *anchor)
907 {
908         return list_empty(&anchor->urb_list);
909 }
910
911 EXPORT_SYMBOL_GPL(usb_anchor_empty);
912