]> Pileus Git - ~andy/linux/blob - drivers/usb/core/hcd.c
drivers: usb: core: hcd: replaced C99 // comments
[~andy/linux] / drivers / usb / core / hcd.c
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43
44 #include <linux/usb.h>
45 #include <linux/usb/hcd.h>
46
47 #include "usb.h"
48
49
50 /*-------------------------------------------------------------------------*/
51
52 /*
53  * USB Host Controller Driver framework
54  *
55  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56  * HCD-specific behaviors/bugs.
57  *
58  * This does error checks, tracks devices and urbs, and delegates to a
59  * "hc_driver" only for code (and data) that really needs to know about
60  * hardware differences.  That includes root hub registers, i/o queues,
61  * and so on ... but as little else as possible.
62  *
63  * Shared code includes most of the "root hub" code (these are emulated,
64  * though each HC's hardware works differently) and PCI glue, plus request
65  * tracking overhead.  The HCD code should only block on spinlocks or on
66  * hardware handshaking; blocking on software events (such as other kernel
67  * threads releasing resources, or completing actions) is all generic.
68  *
69  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71  * only by the hub driver ... and that neither should be seen or used by
72  * usb client device drivers.
73  *
74  * Contributors of ideas or unattributed patches include: David Brownell,
75  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76  *
77  * HISTORY:
78  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
79  *              associated cleanup.  "usb_hcd" still != "usb_bus".
80  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
81  */
82
83 /*-------------------------------------------------------------------------*/
84
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS              64
95 struct usb_busmap {
96         unsigned long busmap[USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);        /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118         return (udev->parent == NULL);
119 }
120
121 /*-------------------------------------------------------------------------*/
122
123 /*
124  * Sharable chunks of root hub code.
125  */
126
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL      bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER      bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor[18] = {
133         0x12,       /*  __u8  bLength; */
134         0x01,       /*  __u8  bDescriptorType; Device */
135         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136
137         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
138         0x00,       /*  __u8  bDeviceSubClass; */
139         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141
142         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145
146         0x03,       /*  __u8  iManufacturer; */
147         0x02,       /*  __u8  iProduct; */
148         0x01,       /*  __u8  iSerialNumber; */
149         0x01        /*  __u8  bNumConfigurations; */
150 };
151
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor[18] = {
154         0x12,       /*  __u8  bLength; */
155         0x01,       /*  __u8  bDescriptorType; Device */
156         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
157
158         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
159         0x00,       /*  __u8  bDeviceSubClass; */
160         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162
163         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166
167         0x03,       /*  __u8  iManufacturer; */
168         0x02,       /*  __u8  iProduct; */
169         0x01,       /*  __u8  iSerialNumber; */
170         0x01        /*  __u8  bNumConfigurations; */
171 };
172
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor[18] = {
175         0x12,       /*  __u8  bLength; */
176         0x01,       /*  __u8  bDescriptorType; Device */
177         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
178
179         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
180         0x00,       /*  __u8  bDeviceSubClass; */
181         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
183
184         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187
188         0x03,       /*  __u8  iManufacturer; */
189         0x02,       /*  __u8  iProduct; */
190         0x01,       /*  __u8  iSerialNumber; */
191         0x01        /*  __u8  bNumConfigurations; */
192 };
193
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor[18] = {
198         0x12,       /*  __u8  bLength; */
199         0x01,       /*  __u8  bDescriptorType; Device */
200         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
201
202         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
203         0x00,       /*  __u8  bDeviceSubClass; */
204         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
205         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
206
207         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
208         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
209         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
210
211         0x03,       /*  __u8  iManufacturer; */
212         0x02,       /*  __u8  iProduct; */
213         0x01,       /*  __u8  iSerialNumber; */
214         0x01        /*  __u8  bNumConfigurations; */
215 };
216
217
218 /*-------------------------------------------------------------------------*/
219
220 /* Configuration descriptors for our root hubs */
221
222 static const u8 fs_rh_config_descriptor[] = {
223
224         /* one configuration */
225         0x09,       /*  __u8  bLength; */
226         0x02,       /*  __u8  bDescriptorType; Configuration */
227         0x19, 0x00, /*  __le16 wTotalLength; */
228         0x01,       /*  __u8  bNumInterfaces; (1) */
229         0x01,       /*  __u8  bConfigurationValue; */
230         0x00,       /*  __u8  iConfiguration; */
231         0xc0,       /*  __u8  bmAttributes;
232                                  Bit 7: must be set,
233                                      6: Self-powered,
234                                      5: Remote wakeup,
235                                      4..0: resvd */
236         0x00,       /*  __u8  MaxPower; */
237
238         /* USB 1.1:
239          * USB 2.0, single TT organization (mandatory):
240          *      one interface, protocol 0
241          *
242          * USB 2.0, multiple TT organization (optional):
243          *      two interfaces, protocols 1 (like single TT)
244          *      and 2 (multiple TT mode) ... config is
245          *      sometimes settable
246          *      NOT IMPLEMENTED
247          */
248
249         /* one interface */
250         0x09,       /*  __u8  if_bLength; */
251         0x04,       /*  __u8  if_bDescriptorType; Interface */
252         0x00,       /*  __u8  if_bInterfaceNumber; */
253         0x00,       /*  __u8  if_bAlternateSetting; */
254         0x01,       /*  __u8  if_bNumEndpoints; */
255         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
256         0x00,       /*  __u8  if_bInterfaceSubClass; */
257         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
258         0x00,       /*  __u8  if_iInterface; */
259
260         /* one endpoint (status change endpoint) */
261         0x07,       /*  __u8  ep_bLength; */
262         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
263         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
264         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
265         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
267 };
268
269 static const u8 hs_rh_config_descriptor[] = {
270
271         /* one configuration */
272         0x09,       /*  __u8  bLength; */
273         0x02,       /*  __u8  bDescriptorType; Configuration */
274         0x19, 0x00, /*  __le16 wTotalLength; */
275         0x01,       /*  __u8  bNumInterfaces; (1) */
276         0x01,       /*  __u8  bConfigurationValue; */
277         0x00,       /*  __u8  iConfiguration; */
278         0xc0,       /*  __u8  bmAttributes;
279                                  Bit 7: must be set,
280                                      6: Self-powered,
281                                      5: Remote wakeup,
282                                      4..0: resvd */
283         0x00,       /*  __u8  MaxPower; */
284
285         /* USB 1.1:
286          * USB 2.0, single TT organization (mandatory):
287          *      one interface, protocol 0
288          *
289          * USB 2.0, multiple TT organization (optional):
290          *      two interfaces, protocols 1 (like single TT)
291          *      and 2 (multiple TT mode) ... config is
292          *      sometimes settable
293          *      NOT IMPLEMENTED
294          */
295
296         /* one interface */
297         0x09,       /*  __u8  if_bLength; */
298         0x04,       /*  __u8  if_bDescriptorType; Interface */
299         0x00,       /*  __u8  if_bInterfaceNumber; */
300         0x00,       /*  __u8  if_bAlternateSetting; */
301         0x01,       /*  __u8  if_bNumEndpoints; */
302         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
303         0x00,       /*  __u8  if_bInterfaceSubClass; */
304         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
305         0x00,       /*  __u8  if_iInterface; */
306
307         /* one endpoint (status change endpoint) */
308         0x07,       /*  __u8  ep_bLength; */
309         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
310         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
311         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
312                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313                      * see hub.c:hub_configure() for details. */
314         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
316 };
317
318 static const u8 ss_rh_config_descriptor[] = {
319         /* one configuration */
320         0x09,       /*  __u8  bLength; */
321         0x02,       /*  __u8  bDescriptorType; Configuration */
322         0x1f, 0x00, /*  __le16 wTotalLength; */
323         0x01,       /*  __u8  bNumInterfaces; (1) */
324         0x01,       /*  __u8  bConfigurationValue; */
325         0x00,       /*  __u8  iConfiguration; */
326         0xc0,       /*  __u8  bmAttributes;
327                                  Bit 7: must be set,
328                                      6: Self-powered,
329                                      5: Remote wakeup,
330                                      4..0: resvd */
331         0x00,       /*  __u8  MaxPower; */
332
333         /* one interface */
334         0x09,       /*  __u8  if_bLength; */
335         0x04,       /*  __u8  if_bDescriptorType; Interface */
336         0x00,       /*  __u8  if_bInterfaceNumber; */
337         0x00,       /*  __u8  if_bAlternateSetting; */
338         0x01,       /*  __u8  if_bNumEndpoints; */
339         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
340         0x00,       /*  __u8  if_bInterfaceSubClass; */
341         0x00,       /*  __u8  if_bInterfaceProtocol; */
342         0x00,       /*  __u8  if_iInterface; */
343
344         /* one endpoint (status change endpoint) */
345         0x07,       /*  __u8  ep_bLength; */
346         0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
347         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
348         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
349                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350                      * see hub.c:hub_configure() for details. */
351         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
353
354         /* one SuperSpeed endpoint companion descriptor */
355         0x06,        /* __u8 ss_bLength */
356         0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
357         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
358         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
359         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
360 };
361
362 /* authorized_default behaviour:
363  * -1 is authorized for all devices except wireless (old behaviour)
364  * 0 is unauthorized for all devices
365  * 1 is authorized for all devices
366  */
367 static int authorized_default = -1;
368 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
369 MODULE_PARM_DESC(authorized_default,
370                 "Default USB device authorization: 0 is not authorized, 1 is "
371                 "authorized, -1 is authorized except for wireless USB (default, "
372                 "old behaviour");
373 /*-------------------------------------------------------------------------*/
374
375 /**
376  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
377  * @s: Null-terminated ASCII (actually ISO-8859-1) string
378  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
379  * @len: Length (in bytes; may be odd) of descriptor buffer.
380  *
381  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
382  * whichever is less.
383  *
384  * Note:
385  * USB String descriptors can contain at most 126 characters; input
386  * strings longer than that are truncated.
387  */
388 static unsigned
389 ascii2desc(char const *s, u8 *buf, unsigned len)
390 {
391         unsigned n, t = 2 + 2*strlen(s);
392
393         if (t > 254)
394                 t = 254;        /* Longest possible UTF string descriptor */
395         if (len > t)
396                 len = t;
397
398         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
399
400         n = len;
401         while (n--) {
402                 *buf++ = t;
403                 if (!n--)
404                         break;
405                 *buf++ = t >> 8;
406                 t = (unsigned char)*s++;
407         }
408         return len;
409 }
410
411 /**
412  * rh_string() - provides string descriptors for root hub
413  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
414  * @hcd: the host controller for this root hub
415  * @data: buffer for output packet
416  * @len: length of the provided buffer
417  *
418  * Produces either a manufacturer, product or serial number string for the
419  * virtual root hub device.
420  *
421  * Return: The number of bytes filled in: the length of the descriptor or
422  * of the provided buffer, whichever is less.
423  */
424 static unsigned
425 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
426 {
427         char buf[100];
428         char const *s;
429         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
430
431         /* language ids */
432         switch (id) {
433         case 0:
434                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
435                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
436                 if (len > 4)
437                         len = 4;
438                 memcpy(data, langids, len);
439                 return len;
440         case 1:
441                 /* Serial number */
442                 s = hcd->self.bus_name;
443                 break;
444         case 2:
445                 /* Product name */
446                 s = hcd->product_desc;
447                 break;
448         case 3:
449                 /* Manufacturer */
450                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
451                         init_utsname()->release, hcd->driver->description);
452                 s = buf;
453                 break;
454         default:
455                 /* Can't happen; caller guarantees it */
456                 return 0;
457         }
458
459         return ascii2desc(s, data, len);
460 }
461
462
463 /* Root hub control transfers execute synchronously */
464 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
465 {
466         struct usb_ctrlrequest *cmd;
467         u16             typeReq, wValue, wIndex, wLength;
468         u8              *ubuf = urb->transfer_buffer;
469         unsigned        len = 0;
470         int             status;
471         u8              patch_wakeup = 0;
472         u8              patch_protocol = 0;
473         u16             tbuf_size;
474         u8              *tbuf = NULL;
475         const u8        *bufp;
476
477         might_sleep();
478
479         spin_lock_irq(&hcd_root_hub_lock);
480         status = usb_hcd_link_urb_to_ep(hcd, urb);
481         spin_unlock_irq(&hcd_root_hub_lock);
482         if (status)
483                 return status;
484         urb->hcpriv = hcd;      /* Indicate it's queued */
485
486         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
487         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
488         wValue   = le16_to_cpu (cmd->wValue);
489         wIndex   = le16_to_cpu (cmd->wIndex);
490         wLength  = le16_to_cpu (cmd->wLength);
491
492         if (wLength > urb->transfer_buffer_length)
493                 goto error;
494
495         /*
496          * tbuf should be at least as big as the
497          * USB hub descriptor.
498          */
499         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
500         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
501         if (!tbuf)
502                 return -ENOMEM;
503
504         bufp = tbuf;
505
506
507         urb->actual_length = 0;
508         switch (typeReq) {
509
510         /* DEVICE REQUESTS */
511
512         /* The root hub's remote wakeup enable bit is implemented using
513          * driver model wakeup flags.  If this system supports wakeup
514          * through USB, userspace may change the default "allow wakeup"
515          * policy through sysfs or these calls.
516          *
517          * Most root hubs support wakeup from downstream devices, for
518          * runtime power management (disabling USB clocks and reducing
519          * VBUS power usage).  However, not all of them do so; silicon,
520          * board, and BIOS bugs here are not uncommon, so these can't
521          * be treated quite like external hubs.
522          *
523          * Likewise, not all root hubs will pass wakeup events upstream,
524          * to wake up the whole system.  So don't assume root hub and
525          * controller capabilities are identical.
526          */
527
528         case DeviceRequest | USB_REQ_GET_STATUS:
529                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
530                                         << USB_DEVICE_REMOTE_WAKEUP)
531                                 | (1 << USB_DEVICE_SELF_POWERED);
532                 tbuf[1] = 0;
533                 len = 2;
534                 break;
535         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
536                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
537                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
538                 else
539                         goto error;
540                 break;
541         case DeviceOutRequest | USB_REQ_SET_FEATURE:
542                 if (device_can_wakeup(&hcd->self.root_hub->dev)
543                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
544                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
545                 else
546                         goto error;
547                 break;
548         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
549                 tbuf[0] = 1;
550                 len = 1;
551                         /* FALLTHROUGH */
552         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
553                 break;
554         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
555                 switch (wValue & 0xff00) {
556                 case USB_DT_DEVICE << 8:
557                         switch (hcd->speed) {
558                         case HCD_USB3:
559                                 bufp = usb3_rh_dev_descriptor;
560                                 break;
561                         case HCD_USB25:
562                                 bufp = usb25_rh_dev_descriptor;
563                                 break;
564                         case HCD_USB2:
565                                 bufp = usb2_rh_dev_descriptor;
566                                 break;
567                         case HCD_USB11:
568                                 bufp = usb11_rh_dev_descriptor;
569                                 break;
570                         default:
571                                 goto error;
572                         }
573                         len = 18;
574                         if (hcd->has_tt)
575                                 patch_protocol = 1;
576                         break;
577                 case USB_DT_CONFIG << 8:
578                         switch (hcd->speed) {
579                         case HCD_USB3:
580                                 bufp = ss_rh_config_descriptor;
581                                 len = sizeof ss_rh_config_descriptor;
582                                 break;
583                         case HCD_USB25:
584                         case HCD_USB2:
585                                 bufp = hs_rh_config_descriptor;
586                                 len = sizeof hs_rh_config_descriptor;
587                                 break;
588                         case HCD_USB11:
589                                 bufp = fs_rh_config_descriptor;
590                                 len = sizeof fs_rh_config_descriptor;
591                                 break;
592                         default:
593                                 goto error;
594                         }
595                         if (device_can_wakeup(&hcd->self.root_hub->dev))
596                                 patch_wakeup = 1;
597                         break;
598                 case USB_DT_STRING << 8:
599                         if ((wValue & 0xff) < 4)
600                                 urb->actual_length = rh_string(wValue & 0xff,
601                                                 hcd, ubuf, wLength);
602                         else /* unsupported IDs --> "protocol stall" */
603                                 goto error;
604                         break;
605                 case USB_DT_BOS << 8:
606                         goto nongeneric;
607                 default:
608                         goto error;
609                 }
610                 break;
611         case DeviceRequest | USB_REQ_GET_INTERFACE:
612                 tbuf[0] = 0;
613                 len = 1;
614                         /* FALLTHROUGH */
615         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
616                 break;
617         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
618                 /* wValue == urb->dev->devaddr */
619                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
620                         wValue);
621                 break;
622
623         /* INTERFACE REQUESTS (no defined feature/status flags) */
624
625         /* ENDPOINT REQUESTS */
626
627         case EndpointRequest | USB_REQ_GET_STATUS:
628                 /* ENDPOINT_HALT flag */
629                 tbuf[0] = 0;
630                 tbuf[1] = 0;
631                 len = 2;
632                         /* FALLTHROUGH */
633         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
634         case EndpointOutRequest | USB_REQ_SET_FEATURE:
635                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
636                 break;
637
638         /* CLASS REQUESTS (and errors) */
639
640         default:
641 nongeneric:
642                 /* non-generic request */
643                 switch (typeReq) {
644                 case GetHubStatus:
645                 case GetPortStatus:
646                         len = 4;
647                         break;
648                 case GetHubDescriptor:
649                         len = sizeof (struct usb_hub_descriptor);
650                         break;
651                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
652                         /* len is returned by hub_control */
653                         break;
654                 }
655                 status = hcd->driver->hub_control (hcd,
656                         typeReq, wValue, wIndex,
657                         tbuf, wLength);
658
659                 if (typeReq == GetHubDescriptor)
660                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
661                                 (struct usb_hub_descriptor *)tbuf);
662                 break;
663 error:
664                 /* "protocol stall" on error */
665                 status = -EPIPE;
666         }
667
668         if (status < 0) {
669                 len = 0;
670                 if (status != -EPIPE) {
671                         dev_dbg (hcd->self.controller,
672                                 "CTRL: TypeReq=0x%x val=0x%x "
673                                 "idx=0x%x len=%d ==> %d\n",
674                                 typeReq, wValue, wIndex,
675                                 wLength, status);
676                 }
677         } else if (status > 0) {
678                 /* hub_control may return the length of data copied. */
679                 len = status;
680                 status = 0;
681         }
682         if (len) {
683                 if (urb->transfer_buffer_length < len)
684                         len = urb->transfer_buffer_length;
685                 urb->actual_length = len;
686                 /* always USB_DIR_IN, toward host */
687                 memcpy (ubuf, bufp, len);
688
689                 /* report whether RH hardware supports remote wakeup */
690                 if (patch_wakeup &&
691                                 len > offsetof (struct usb_config_descriptor,
692                                                 bmAttributes))
693                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
694                                 |= USB_CONFIG_ATT_WAKEUP;
695
696                 /* report whether RH hardware has an integrated TT */
697                 if (patch_protocol &&
698                                 len > offsetof(struct usb_device_descriptor,
699                                                 bDeviceProtocol))
700                         ((struct usb_device_descriptor *) ubuf)->
701                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
702         }
703
704         kfree(tbuf);
705
706         /* any errors get returned through the urb completion */
707         spin_lock_irq(&hcd_root_hub_lock);
708         usb_hcd_unlink_urb_from_ep(hcd, urb);
709         usb_hcd_giveback_urb(hcd, urb, status);
710         spin_unlock_irq(&hcd_root_hub_lock);
711         return 0;
712 }
713
714 /*-------------------------------------------------------------------------*/
715
716 /*
717  * Root Hub interrupt transfers are polled using a timer if the
718  * driver requests it; otherwise the driver is responsible for
719  * calling usb_hcd_poll_rh_status() when an event occurs.
720  *
721  * Completions are called in_interrupt(), but they may or may not
722  * be in_irq().
723  */
724 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
725 {
726         struct urb      *urb;
727         int             length;
728         unsigned long   flags;
729         char            buffer[6];      /* Any root hubs with > 31 ports? */
730
731         if (unlikely(!hcd->rh_pollable))
732                 return;
733         if (!hcd->uses_new_polling && !hcd->status_urb)
734                 return;
735
736         length = hcd->driver->hub_status_data(hcd, buffer);
737         if (length > 0) {
738
739                 /* try to complete the status urb */
740                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
741                 urb = hcd->status_urb;
742                 if (urb) {
743                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
744                         hcd->status_urb = NULL;
745                         urb->actual_length = length;
746                         memcpy(urb->transfer_buffer, buffer, length);
747
748                         usb_hcd_unlink_urb_from_ep(hcd, urb);
749                         usb_hcd_giveback_urb(hcd, urb, 0);
750                 } else {
751                         length = 0;
752                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
753                 }
754                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
755         }
756
757         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
758          * exceed that limit if HZ is 100. The math is more clunky than
759          * maybe expected, this is to make sure that all timers for USB devices
760          * fire at the same time to give the CPU a break in between */
761         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
762                         (length == 0 && hcd->status_urb != NULL))
763                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
764 }
765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
766
767 /* timer callback */
768 static void rh_timer_func (unsigned long _hcd)
769 {
770         usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
771 }
772
773 /*-------------------------------------------------------------------------*/
774
775 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
776 {
777         int             retval;
778         unsigned long   flags;
779         unsigned        len = 1 + (urb->dev->maxchild / 8);
780
781         spin_lock_irqsave (&hcd_root_hub_lock, flags);
782         if (hcd->status_urb || urb->transfer_buffer_length < len) {
783                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
784                 retval = -EINVAL;
785                 goto done;
786         }
787
788         retval = usb_hcd_link_urb_to_ep(hcd, urb);
789         if (retval)
790                 goto done;
791
792         hcd->status_urb = urb;
793         urb->hcpriv = hcd;      /* indicate it's queued */
794         if (!hcd->uses_new_polling)
795                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
796
797         /* If a status change has already occurred, report it ASAP */
798         else if (HCD_POLL_PENDING(hcd))
799                 mod_timer(&hcd->rh_timer, jiffies);
800         retval = 0;
801  done:
802         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
803         return retval;
804 }
805
806 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
807 {
808         if (usb_endpoint_xfer_int(&urb->ep->desc))
809                 return rh_queue_status (hcd, urb);
810         if (usb_endpoint_xfer_control(&urb->ep->desc))
811                 return rh_call_control (hcd, urb);
812         return -EINVAL;
813 }
814
815 /*-------------------------------------------------------------------------*/
816
817 /* Unlinks of root-hub control URBs are legal, but they don't do anything
818  * since these URBs always execute synchronously.
819  */
820 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
821 {
822         unsigned long   flags;
823         int             rc;
824
825         spin_lock_irqsave(&hcd_root_hub_lock, flags);
826         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
827         if (rc)
828                 goto done;
829
830         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
831                 ;       /* Do nothing */
832
833         } else {                                /* Status URB */
834                 if (!hcd->uses_new_polling)
835                         del_timer (&hcd->rh_timer);
836                 if (urb == hcd->status_urb) {
837                         hcd->status_urb = NULL;
838                         usb_hcd_unlink_urb_from_ep(hcd, urb);
839                         usb_hcd_giveback_urb(hcd, urb, status);
840                 }
841         }
842  done:
843         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
844         return rc;
845 }
846
847
848
849 /*
850  * Show & store the current value of authorized_default
851  */
852 static ssize_t authorized_default_show(struct device *dev,
853                                        struct device_attribute *attr, char *buf)
854 {
855         struct usb_device *rh_usb_dev = to_usb_device(dev);
856         struct usb_bus *usb_bus = rh_usb_dev->bus;
857         struct usb_hcd *usb_hcd;
858
859         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
860                 return -ENODEV;
861         usb_hcd = bus_to_hcd(usb_bus);
862         return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
863 }
864
865 static ssize_t authorized_default_store(struct device *dev,
866                                         struct device_attribute *attr,
867                                         const char *buf, size_t size)
868 {
869         ssize_t result;
870         unsigned val;
871         struct usb_device *rh_usb_dev = to_usb_device(dev);
872         struct usb_bus *usb_bus = rh_usb_dev->bus;
873         struct usb_hcd *usb_hcd;
874
875         if (usb_bus == NULL)    /* FIXME: not sure if this case is possible */
876                 return -ENODEV;
877         usb_hcd = bus_to_hcd(usb_bus);
878         result = sscanf(buf, "%u\n", &val);
879         if (result == 1) {
880                 usb_hcd->authorized_default = val ? 1 : 0;
881                 result = size;
882         }
883         else
884                 result = -EINVAL;
885         return result;
886 }
887 static DEVICE_ATTR_RW(authorized_default);
888
889 /* Group all the USB bus attributes */
890 static struct attribute *usb_bus_attrs[] = {
891                 &dev_attr_authorized_default.attr,
892                 NULL,
893 };
894
895 static struct attribute_group usb_bus_attr_group = {
896         .name = NULL,   /* we want them in the same directory */
897         .attrs = usb_bus_attrs,
898 };
899
900
901
902 /*-------------------------------------------------------------------------*/
903
904 /**
905  * usb_bus_init - shared initialization code
906  * @bus: the bus structure being initialized
907  *
908  * This code is used to initialize a usb_bus structure, memory for which is
909  * separately managed.
910  */
911 static void usb_bus_init (struct usb_bus *bus)
912 {
913         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
914
915         bus->devnum_next = 1;
916
917         bus->root_hub = NULL;
918         bus->busnum = -1;
919         bus->bandwidth_allocated = 0;
920         bus->bandwidth_int_reqs  = 0;
921         bus->bandwidth_isoc_reqs = 0;
922
923         INIT_LIST_HEAD (&bus->bus_list);
924 }
925
926 /*-------------------------------------------------------------------------*/
927
928 /**
929  * usb_register_bus - registers the USB host controller with the usb core
930  * @bus: pointer to the bus to register
931  * Context: !in_interrupt()
932  *
933  * Assigns a bus number, and links the controller into usbcore data
934  * structures so that it can be seen by scanning the bus list.
935  *
936  * Return: 0 if successful. A negative error code otherwise.
937  */
938 static int usb_register_bus(struct usb_bus *bus)
939 {
940         int result = -E2BIG;
941         int busnum;
942
943         mutex_lock(&usb_bus_list_lock);
944         busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
945         if (busnum >= USB_MAXBUS) {
946                 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
947                 goto error_find_busnum;
948         }
949         set_bit (busnum, busmap.busmap);
950         bus->busnum = busnum;
951
952         /* Add it to the local list of buses */
953         list_add (&bus->bus_list, &usb_bus_list);
954         mutex_unlock(&usb_bus_list_lock);
955
956         usb_notify_add_bus(bus);
957
958         dev_info (bus->controller, "new USB bus registered, assigned bus "
959                   "number %d\n", bus->busnum);
960         return 0;
961
962 error_find_busnum:
963         mutex_unlock(&usb_bus_list_lock);
964         return result;
965 }
966
967 /**
968  * usb_deregister_bus - deregisters the USB host controller
969  * @bus: pointer to the bus to deregister
970  * Context: !in_interrupt()
971  *
972  * Recycles the bus number, and unlinks the controller from usbcore data
973  * structures so that it won't be seen by scanning the bus list.
974  */
975 static void usb_deregister_bus (struct usb_bus *bus)
976 {
977         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
978
979         /*
980          * NOTE: make sure that all the devices are removed by the
981          * controller code, as well as having it call this when cleaning
982          * itself up
983          */
984         mutex_lock(&usb_bus_list_lock);
985         list_del (&bus->bus_list);
986         mutex_unlock(&usb_bus_list_lock);
987
988         usb_notify_remove_bus(bus);
989
990         clear_bit (bus->busnum, busmap.busmap);
991 }
992
993 /**
994  * register_root_hub - called by usb_add_hcd() to register a root hub
995  * @hcd: host controller for this root hub
996  *
997  * This function registers the root hub with the USB subsystem.  It sets up
998  * the device properly in the device tree and then calls usb_new_device()
999  * to register the usb device.  It also assigns the root hub's USB address
1000  * (always 1).
1001  *
1002  * Return: 0 if successful. A negative error code otherwise.
1003  */
1004 static int register_root_hub(struct usb_hcd *hcd)
1005 {
1006         struct device *parent_dev = hcd->self.controller;
1007         struct usb_device *usb_dev = hcd->self.root_hub;
1008         const int devnum = 1;
1009         int retval;
1010
1011         usb_dev->devnum = devnum;
1012         usb_dev->bus->devnum_next = devnum + 1;
1013         memset (&usb_dev->bus->devmap.devicemap, 0,
1014                         sizeof usb_dev->bus->devmap.devicemap);
1015         set_bit (devnum, usb_dev->bus->devmap.devicemap);
1016         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1017
1018         mutex_lock(&usb_bus_list_lock);
1019
1020         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1021         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1022         if (retval != sizeof usb_dev->descriptor) {
1023                 mutex_unlock(&usb_bus_list_lock);
1024                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1025                                 dev_name(&usb_dev->dev), retval);
1026                 return (retval < 0) ? retval : -EMSGSIZE;
1027         }
1028         if (usb_dev->speed == USB_SPEED_SUPER) {
1029                 retval = usb_get_bos_descriptor(usb_dev);
1030                 if (retval < 0) {
1031                         mutex_unlock(&usb_bus_list_lock);
1032                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1033                                         dev_name(&usb_dev->dev), retval);
1034                         return retval;
1035                 }
1036                 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1037         }
1038
1039         retval = usb_new_device (usb_dev);
1040         if (retval) {
1041                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1042                                 dev_name(&usb_dev->dev), retval);
1043         } else {
1044                 spin_lock_irq (&hcd_root_hub_lock);
1045                 hcd->rh_registered = 1;
1046                 spin_unlock_irq (&hcd_root_hub_lock);
1047
1048                 /* Did the HC die before the root hub was registered? */
1049                 if (HCD_DEAD(hcd))
1050                         usb_hc_died (hcd);      /* This time clean up */
1051         }
1052         mutex_unlock(&usb_bus_list_lock);
1053
1054         return retval;
1055 }
1056
1057 /*
1058  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1059  * @bus: the bus which the root hub belongs to
1060  * @portnum: the port which is being resumed
1061  *
1062  * HCDs should call this function when they know that a resume signal is
1063  * being sent to a root-hub port.  The root hub will be prevented from
1064  * going into autosuspend until usb_hcd_end_port_resume() is called.
1065  *
1066  * The bus's private lock must be held by the caller.
1067  */
1068 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1069 {
1070         unsigned bit = 1 << portnum;
1071
1072         if (!(bus->resuming_ports & bit)) {
1073                 bus->resuming_ports |= bit;
1074                 pm_runtime_get_noresume(&bus->root_hub->dev);
1075         }
1076 }
1077 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1078
1079 /*
1080  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1081  * @bus: the bus which the root hub belongs to
1082  * @portnum: the port which is being resumed
1083  *
1084  * HCDs should call this function when they know that a resume signal has
1085  * stopped being sent to a root-hub port.  The root hub will be allowed to
1086  * autosuspend again.
1087  *
1088  * The bus's private lock must be held by the caller.
1089  */
1090 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1091 {
1092         unsigned bit = 1 << portnum;
1093
1094         if (bus->resuming_ports & bit) {
1095                 bus->resuming_ports &= ~bit;
1096                 pm_runtime_put_noidle(&bus->root_hub->dev);
1097         }
1098 }
1099 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1100
1101 /*-------------------------------------------------------------------------*/
1102
1103 /**
1104  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1105  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1106  * @is_input: true iff the transaction sends data to the host
1107  * @isoc: true for isochronous transactions, false for interrupt ones
1108  * @bytecount: how many bytes in the transaction.
1109  *
1110  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1111  *
1112  * Note:
1113  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1114  * scheduled in software, this function is only used for such scheduling.
1115  */
1116 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1117 {
1118         unsigned long   tmp;
1119
1120         switch (speed) {
1121         case USB_SPEED_LOW:     /* INTR only */
1122                 if (is_input) {
1123                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1124                         return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1125                 } else {
1126                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1127                         return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1128                 }
1129         case USB_SPEED_FULL:    /* ISOC or INTR */
1130                 if (isoc) {
1131                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1132                         return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1133                 } else {
1134                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1135                         return (9107L + BW_HOST_DELAY + tmp);
1136                 }
1137         case USB_SPEED_HIGH:    /* ISOC or INTR */
1138                 /* FIXME adjust for input vs output */
1139                 if (isoc)
1140                         tmp = HS_NSECS_ISO (bytecount);
1141                 else
1142                         tmp = HS_NSECS (bytecount);
1143                 return tmp;
1144         default:
1145                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1146                 return -1;
1147         }
1148 }
1149 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1150
1151
1152 /*-------------------------------------------------------------------------*/
1153
1154 /*
1155  * Generic HC operations.
1156  */
1157
1158 /*-------------------------------------------------------------------------*/
1159
1160 /**
1161  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1162  * @hcd: host controller to which @urb was submitted
1163  * @urb: URB being submitted
1164  *
1165  * Host controller drivers should call this routine in their enqueue()
1166  * method.  The HCD's private spinlock must be held and interrupts must
1167  * be disabled.  The actions carried out here are required for URB
1168  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1169  *
1170  * Return: 0 for no error, otherwise a negative error code (in which case
1171  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1172  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1173  * the private spinlock and returning.
1174  */
1175 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1176 {
1177         int             rc = 0;
1178
1179         spin_lock(&hcd_urb_list_lock);
1180
1181         /* Check that the URB isn't being killed */
1182         if (unlikely(atomic_read(&urb->reject))) {
1183                 rc = -EPERM;
1184                 goto done;
1185         }
1186
1187         if (unlikely(!urb->ep->enabled)) {
1188                 rc = -ENOENT;
1189                 goto done;
1190         }
1191
1192         if (unlikely(!urb->dev->can_submit)) {
1193                 rc = -EHOSTUNREACH;
1194                 goto done;
1195         }
1196
1197         /*
1198          * Check the host controller's state and add the URB to the
1199          * endpoint's queue.
1200          */
1201         if (HCD_RH_RUNNING(hcd)) {
1202                 urb->unlinked = 0;
1203                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1204         } else {
1205                 rc = -ESHUTDOWN;
1206                 goto done;
1207         }
1208  done:
1209         spin_unlock(&hcd_urb_list_lock);
1210         return rc;
1211 }
1212 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1213
1214 /**
1215  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1216  * @hcd: host controller to which @urb was submitted
1217  * @urb: URB being checked for unlinkability
1218  * @status: error code to store in @urb if the unlink succeeds
1219  *
1220  * Host controller drivers should call this routine in their dequeue()
1221  * method.  The HCD's private spinlock must be held and interrupts must
1222  * be disabled.  The actions carried out here are required for making
1223  * sure than an unlink is valid.
1224  *
1225  * Return: 0 for no error, otherwise a negative error code (in which case
1226  * the dequeue() method must fail).  The possible error codes are:
1227  *
1228  *      -EIDRM: @urb was not submitted or has already completed.
1229  *              The completion function may not have been called yet.
1230  *
1231  *      -EBUSY: @urb has already been unlinked.
1232  */
1233 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1234                 int status)
1235 {
1236         struct list_head        *tmp;
1237
1238         /* insist the urb is still queued */
1239         list_for_each(tmp, &urb->ep->urb_list) {
1240                 if (tmp == &urb->urb_list)
1241                         break;
1242         }
1243         if (tmp != &urb->urb_list)
1244                 return -EIDRM;
1245
1246         /* Any status except -EINPROGRESS means something already started to
1247          * unlink this URB from the hardware.  So there's no more work to do.
1248          */
1249         if (urb->unlinked)
1250                 return -EBUSY;
1251         urb->unlinked = status;
1252         return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1255
1256 /**
1257  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1258  * @hcd: host controller to which @urb was submitted
1259  * @urb: URB being unlinked
1260  *
1261  * Host controller drivers should call this routine before calling
1262  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1263  * interrupts must be disabled.  The actions carried out here are required
1264  * for URB completion.
1265  */
1266 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1267 {
1268         /* clear all state linking urb to this dev (and hcd) */
1269         spin_lock(&hcd_urb_list_lock);
1270         list_del_init(&urb->urb_list);
1271         spin_unlock(&hcd_urb_list_lock);
1272 }
1273 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1274
1275 /*
1276  * Some usb host controllers can only perform dma using a small SRAM area.
1277  * The usb core itself is however optimized for host controllers that can dma
1278  * using regular system memory - like pci devices doing bus mastering.
1279  *
1280  * To support host controllers with limited dma capabilites we provide dma
1281  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1282  * For this to work properly the host controller code must first use the
1283  * function dma_declare_coherent_memory() to point out which memory area
1284  * that should be used for dma allocations.
1285  *
1286  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1287  * dma using dma_alloc_coherent() which in turn allocates from the memory
1288  * area pointed out with dma_declare_coherent_memory().
1289  *
1290  * So, to summarize...
1291  *
1292  * - We need "local" memory, canonical example being
1293  *   a small SRAM on a discrete controller being the
1294  *   only memory that the controller can read ...
1295  *   (a) "normal" kernel memory is no good, and
1296  *   (b) there's not enough to share
1297  *
1298  * - The only *portable* hook for such stuff in the
1299  *   DMA framework is dma_declare_coherent_memory()
1300  *
1301  * - So we use that, even though the primary requirement
1302  *   is that the memory be "local" (hence addressible
1303  *   by that device), not "coherent".
1304  *
1305  */
1306
1307 static int hcd_alloc_coherent(struct usb_bus *bus,
1308                               gfp_t mem_flags, dma_addr_t *dma_handle,
1309                               void **vaddr_handle, size_t size,
1310                               enum dma_data_direction dir)
1311 {
1312         unsigned char *vaddr;
1313
1314         if (*vaddr_handle == NULL) {
1315                 WARN_ON_ONCE(1);
1316                 return -EFAULT;
1317         }
1318
1319         vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1320                                  mem_flags, dma_handle);
1321         if (!vaddr)
1322                 return -ENOMEM;
1323
1324         /*
1325          * Store the virtual address of the buffer at the end
1326          * of the allocated dma buffer. The size of the buffer
1327          * may be uneven so use unaligned functions instead
1328          * of just rounding up. It makes sense to optimize for
1329          * memory footprint over access speed since the amount
1330          * of memory available for dma may be limited.
1331          */
1332         put_unaligned((unsigned long)*vaddr_handle,
1333                       (unsigned long *)(vaddr + size));
1334
1335         if (dir == DMA_TO_DEVICE)
1336                 memcpy(vaddr, *vaddr_handle, size);
1337
1338         *vaddr_handle = vaddr;
1339         return 0;
1340 }
1341
1342 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1343                               void **vaddr_handle, size_t size,
1344                               enum dma_data_direction dir)
1345 {
1346         unsigned char *vaddr = *vaddr_handle;
1347
1348         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1349
1350         if (dir == DMA_FROM_DEVICE)
1351                 memcpy(vaddr, *vaddr_handle, size);
1352
1353         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1354
1355         *vaddr_handle = vaddr;
1356         *dma_handle = 0;
1357 }
1358
1359 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1360 {
1361         if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1362                 dma_unmap_single(hcd->self.controller,
1363                                 urb->setup_dma,
1364                                 sizeof(struct usb_ctrlrequest),
1365                                 DMA_TO_DEVICE);
1366         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1367                 hcd_free_coherent(urb->dev->bus,
1368                                 &urb->setup_dma,
1369                                 (void **) &urb->setup_packet,
1370                                 sizeof(struct usb_ctrlrequest),
1371                                 DMA_TO_DEVICE);
1372
1373         /* Make it safe to call this routine more than once */
1374         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1375 }
1376 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1377
1378 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1379 {
1380         if (hcd->driver->unmap_urb_for_dma)
1381                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1382         else
1383                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1384 }
1385
1386 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1387 {
1388         enum dma_data_direction dir;
1389
1390         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1391
1392         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1393         if (urb->transfer_flags & URB_DMA_MAP_SG)
1394                 dma_unmap_sg(hcd->self.controller,
1395                                 urb->sg,
1396                                 urb->num_sgs,
1397                                 dir);
1398         else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1399                 dma_unmap_page(hcd->self.controller,
1400                                 urb->transfer_dma,
1401                                 urb->transfer_buffer_length,
1402                                 dir);
1403         else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1404                 dma_unmap_single(hcd->self.controller,
1405                                 urb->transfer_dma,
1406                                 urb->transfer_buffer_length,
1407                                 dir);
1408         else if (urb->transfer_flags & URB_MAP_LOCAL)
1409                 hcd_free_coherent(urb->dev->bus,
1410                                 &urb->transfer_dma,
1411                                 &urb->transfer_buffer,
1412                                 urb->transfer_buffer_length,
1413                                 dir);
1414
1415         /* Make it safe to call this routine more than once */
1416         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1417                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1418 }
1419 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1420
1421 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1422                            gfp_t mem_flags)
1423 {
1424         if (hcd->driver->map_urb_for_dma)
1425                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1426         else
1427                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1428 }
1429
1430 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1431                             gfp_t mem_flags)
1432 {
1433         enum dma_data_direction dir;
1434         int ret = 0;
1435
1436         /* Map the URB's buffers for DMA access.
1437          * Lower level HCD code should use *_dma exclusively,
1438          * unless it uses pio or talks to another transport,
1439          * or uses the provided scatter gather list for bulk.
1440          */
1441
1442         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1443                 if (hcd->self.uses_pio_for_control)
1444                         return ret;
1445                 if (hcd->self.uses_dma) {
1446                         urb->setup_dma = dma_map_single(
1447                                         hcd->self.controller,
1448                                         urb->setup_packet,
1449                                         sizeof(struct usb_ctrlrequest),
1450                                         DMA_TO_DEVICE);
1451                         if (dma_mapping_error(hcd->self.controller,
1452                                                 urb->setup_dma))
1453                                 return -EAGAIN;
1454                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1455                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1456                         ret = hcd_alloc_coherent(
1457                                         urb->dev->bus, mem_flags,
1458                                         &urb->setup_dma,
1459                                         (void **)&urb->setup_packet,
1460                                         sizeof(struct usb_ctrlrequest),
1461                                         DMA_TO_DEVICE);
1462                         if (ret)
1463                                 return ret;
1464                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1465                 }
1466         }
1467
1468         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469         if (urb->transfer_buffer_length != 0
1470             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1471                 if (hcd->self.uses_dma) {
1472                         if (urb->num_sgs) {
1473                                 int n;
1474
1475                                 /* We don't support sg for isoc transfers ! */
1476                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1477                                         WARN_ON(1);
1478                                         return -EINVAL;
1479                                 }
1480
1481                                 n = dma_map_sg(
1482                                                 hcd->self.controller,
1483                                                 urb->sg,
1484                                                 urb->num_sgs,
1485                                                 dir);
1486                                 if (n <= 0)
1487                                         ret = -EAGAIN;
1488                                 else
1489                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1490                                 urb->num_mapped_sgs = n;
1491                                 if (n != urb->num_sgs)
1492                                         urb->transfer_flags |=
1493                                                         URB_DMA_SG_COMBINED;
1494                         } else if (urb->sg) {
1495                                 struct scatterlist *sg = urb->sg;
1496                                 urb->transfer_dma = dma_map_page(
1497                                                 hcd->self.controller,
1498                                                 sg_page(sg),
1499                                                 sg->offset,
1500                                                 urb->transfer_buffer_length,
1501                                                 dir);
1502                                 if (dma_mapping_error(hcd->self.controller,
1503                                                 urb->transfer_dma))
1504                                         ret = -EAGAIN;
1505                                 else
1506                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1507                         } else {
1508                                 urb->transfer_dma = dma_map_single(
1509                                                 hcd->self.controller,
1510                                                 urb->transfer_buffer,
1511                                                 urb->transfer_buffer_length,
1512                                                 dir);
1513                                 if (dma_mapping_error(hcd->self.controller,
1514                                                 urb->transfer_dma))
1515                                         ret = -EAGAIN;
1516                                 else
1517                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1518                         }
1519                 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1520                         ret = hcd_alloc_coherent(
1521                                         urb->dev->bus, mem_flags,
1522                                         &urb->transfer_dma,
1523                                         &urb->transfer_buffer,
1524                                         urb->transfer_buffer_length,
1525                                         dir);
1526                         if (ret == 0)
1527                                 urb->transfer_flags |= URB_MAP_LOCAL;
1528                 }
1529                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1530                                 URB_SETUP_MAP_LOCAL)))
1531                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1532         }
1533         return ret;
1534 }
1535 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1536
1537 /*-------------------------------------------------------------------------*/
1538
1539 /* may be called in any context with a valid urb->dev usecount
1540  * caller surrenders "ownership" of urb
1541  * expects usb_submit_urb() to have sanity checked and conditioned all
1542  * inputs in the urb
1543  */
1544 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1545 {
1546         int                     status;
1547         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1548
1549         /* increment urb's reference count as part of giving it to the HCD
1550          * (which will control it).  HCD guarantees that it either returns
1551          * an error or calls giveback(), but not both.
1552          */
1553         usb_get_urb(urb);
1554         atomic_inc(&urb->use_count);
1555         atomic_inc(&urb->dev->urbnum);
1556         usbmon_urb_submit(&hcd->self, urb);
1557
1558         /* NOTE requirements on root-hub callers (usbfs and the hub
1559          * driver, for now):  URBs' urb->transfer_buffer must be
1560          * valid and usb_buffer_{sync,unmap}() not be needed, since
1561          * they could clobber root hub response data.  Also, control
1562          * URBs must be submitted in process context with interrupts
1563          * enabled.
1564          */
1565
1566         if (is_root_hub(urb->dev)) {
1567                 status = rh_urb_enqueue(hcd, urb);
1568         } else {
1569                 status = map_urb_for_dma(hcd, urb, mem_flags);
1570                 if (likely(status == 0)) {
1571                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1572                         if (unlikely(status))
1573                                 unmap_urb_for_dma(hcd, urb);
1574                 }
1575         }
1576
1577         if (unlikely(status)) {
1578                 usbmon_urb_submit_error(&hcd->self, urb, status);
1579                 urb->hcpriv = NULL;
1580                 INIT_LIST_HEAD(&urb->urb_list);
1581                 atomic_dec(&urb->use_count);
1582                 atomic_dec(&urb->dev->urbnum);
1583                 if (atomic_read(&urb->reject))
1584                         wake_up(&usb_kill_urb_queue);
1585                 usb_put_urb(urb);
1586         }
1587         return status;
1588 }
1589
1590 /*-------------------------------------------------------------------------*/
1591
1592 /* this makes the hcd giveback() the urb more quickly, by kicking it
1593  * off hardware queues (which may take a while) and returning it as
1594  * soon as practical.  we've already set up the urb's return status,
1595  * but we can't know if the callback completed already.
1596  */
1597 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1598 {
1599         int             value;
1600
1601         if (is_root_hub(urb->dev))
1602                 value = usb_rh_urb_dequeue(hcd, urb, status);
1603         else {
1604
1605                 /* The only reason an HCD might fail this call is if
1606                  * it has not yet fully queued the urb to begin with.
1607                  * Such failures should be harmless. */
1608                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1609         }
1610         return value;
1611 }
1612
1613 /*
1614  * called in any context
1615  *
1616  * caller guarantees urb won't be recycled till both unlink()
1617  * and the urb's completion function return
1618  */
1619 int usb_hcd_unlink_urb (struct urb *urb, int status)
1620 {
1621         struct usb_hcd          *hcd;
1622         int                     retval = -EIDRM;
1623         unsigned long           flags;
1624
1625         /* Prevent the device and bus from going away while
1626          * the unlink is carried out.  If they are already gone
1627          * then urb->use_count must be 0, since disconnected
1628          * devices can't have any active URBs.
1629          */
1630         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1631         if (atomic_read(&urb->use_count) > 0) {
1632                 retval = 0;
1633                 usb_get_dev(urb->dev);
1634         }
1635         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1636         if (retval == 0) {
1637                 hcd = bus_to_hcd(urb->dev->bus);
1638                 retval = unlink1(hcd, urb, status);
1639                 usb_put_dev(urb->dev);
1640         }
1641
1642         if (retval == 0)
1643                 retval = -EINPROGRESS;
1644         else if (retval != -EIDRM && retval != -EBUSY)
1645                 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1646                                 urb, retval);
1647         return retval;
1648 }
1649
1650 /*-------------------------------------------------------------------------*/
1651
1652 static void __usb_hcd_giveback_urb(struct urb *urb)
1653 {
1654         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1655         int status = urb->unlinked;
1656         unsigned long flags;
1657
1658         urb->hcpriv = NULL;
1659         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1660             urb->actual_length < urb->transfer_buffer_length &&
1661             !status))
1662                 status = -EREMOTEIO;
1663
1664         unmap_urb_for_dma(hcd, urb);
1665         usbmon_urb_complete(&hcd->self, urb, status);
1666         usb_unanchor_urb(urb);
1667
1668         /* pass ownership to the completion handler */
1669         urb->status = status;
1670
1671         /*
1672          * We disable local IRQs here avoid possible deadlock because
1673          * drivers may call spin_lock() to hold lock which might be
1674          * acquired in one hard interrupt handler.
1675          *
1676          * The local_irq_save()/local_irq_restore() around complete()
1677          * will be removed if current USB drivers have been cleaned up
1678          * and no one may trigger the above deadlock situation when
1679          * running complete() in tasklet.
1680          */
1681         local_irq_save(flags);
1682         urb->complete(urb);
1683         local_irq_restore(flags);
1684
1685         atomic_dec(&urb->use_count);
1686         if (unlikely(atomic_read(&urb->reject)))
1687                 wake_up(&usb_kill_urb_queue);
1688         usb_put_urb(urb);
1689 }
1690
1691 static void usb_giveback_urb_bh(unsigned long param)
1692 {
1693         struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1694         struct list_head local_list;
1695
1696         spin_lock_irq(&bh->lock);
1697         bh->running = true;
1698  restart:
1699         list_replace_init(&bh->head, &local_list);
1700         spin_unlock_irq(&bh->lock);
1701
1702         while (!list_empty(&local_list)) {
1703                 struct urb *urb;
1704
1705                 urb = list_entry(local_list.next, struct urb, urb_list);
1706                 list_del_init(&urb->urb_list);
1707                 bh->completing_ep = urb->ep;
1708                 __usb_hcd_giveback_urb(urb);
1709                 bh->completing_ep = NULL;
1710         }
1711
1712         /* check if there are new URBs to giveback */
1713         spin_lock_irq(&bh->lock);
1714         if (!list_empty(&bh->head))
1715                 goto restart;
1716         bh->running = false;
1717         spin_unlock_irq(&bh->lock);
1718 }
1719
1720 /**
1721  * usb_hcd_giveback_urb - return URB from HCD to device driver
1722  * @hcd: host controller returning the URB
1723  * @urb: urb being returned to the USB device driver.
1724  * @status: completion status code for the URB.
1725  * Context: in_interrupt()
1726  *
1727  * This hands the URB from HCD to its USB device driver, using its
1728  * completion function.  The HCD has freed all per-urb resources
1729  * (and is done using urb->hcpriv).  It also released all HCD locks;
1730  * the device driver won't cause problems if it frees, modifies,
1731  * or resubmits this URB.
1732  *
1733  * If @urb was unlinked, the value of @status will be overridden by
1734  * @urb->unlinked.  Erroneous short transfers are detected in case
1735  * the HCD hasn't checked for them.
1736  */
1737 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1738 {
1739         struct giveback_urb_bh *bh;
1740         bool running, high_prio_bh;
1741
1742         /* pass status to tasklet via unlinked */
1743         if (likely(!urb->unlinked))
1744                 urb->unlinked = status;
1745
1746         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1747                 __usb_hcd_giveback_urb(urb);
1748                 return;
1749         }
1750
1751         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1752                 bh = &hcd->high_prio_bh;
1753                 high_prio_bh = true;
1754         } else {
1755                 bh = &hcd->low_prio_bh;
1756                 high_prio_bh = false;
1757         }
1758
1759         spin_lock(&bh->lock);
1760         list_add_tail(&urb->urb_list, &bh->head);
1761         running = bh->running;
1762         spin_unlock(&bh->lock);
1763
1764         if (running)
1765                 ;
1766         else if (high_prio_bh)
1767                 tasklet_hi_schedule(&bh->bh);
1768         else
1769                 tasklet_schedule(&bh->bh);
1770 }
1771 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1772
1773 /*-------------------------------------------------------------------------*/
1774
1775 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1776  * queue to drain completely.  The caller must first insure that no more
1777  * URBs can be submitted for this endpoint.
1778  */
1779 void usb_hcd_flush_endpoint(struct usb_device *udev,
1780                 struct usb_host_endpoint *ep)
1781 {
1782         struct usb_hcd          *hcd;
1783         struct urb              *urb;
1784
1785         if (!ep)
1786                 return;
1787         might_sleep();
1788         hcd = bus_to_hcd(udev->bus);
1789
1790         /* No more submits can occur */
1791         spin_lock_irq(&hcd_urb_list_lock);
1792 rescan:
1793         list_for_each_entry (urb, &ep->urb_list, urb_list) {
1794                 int     is_in;
1795
1796                 if (urb->unlinked)
1797                         continue;
1798                 usb_get_urb (urb);
1799                 is_in = usb_urb_dir_in(urb);
1800                 spin_unlock(&hcd_urb_list_lock);
1801
1802                 /* kick hcd */
1803                 unlink1(hcd, urb, -ESHUTDOWN);
1804                 dev_dbg (hcd->self.controller,
1805                         "shutdown urb %p ep%d%s%s\n",
1806                         urb, usb_endpoint_num(&ep->desc),
1807                         is_in ? "in" : "out",
1808                         ({      char *s;
1809
1810                                  switch (usb_endpoint_type(&ep->desc)) {
1811                                  case USB_ENDPOINT_XFER_CONTROL:
1812                                         s = ""; break;
1813                                  case USB_ENDPOINT_XFER_BULK:
1814                                         s = "-bulk"; break;
1815                                  case USB_ENDPOINT_XFER_INT:
1816                                         s = "-intr"; break;
1817                                  default:
1818                                         s = "-iso"; break;
1819                                 };
1820                                 s;
1821                         }));
1822                 usb_put_urb (urb);
1823
1824                 /* list contents may have changed */
1825                 spin_lock(&hcd_urb_list_lock);
1826                 goto rescan;
1827         }
1828         spin_unlock_irq(&hcd_urb_list_lock);
1829
1830         /* Wait until the endpoint queue is completely empty */
1831         while (!list_empty (&ep->urb_list)) {
1832                 spin_lock_irq(&hcd_urb_list_lock);
1833
1834                 /* The list may have changed while we acquired the spinlock */
1835                 urb = NULL;
1836                 if (!list_empty (&ep->urb_list)) {
1837                         urb = list_entry (ep->urb_list.prev, struct urb,
1838                                         urb_list);
1839                         usb_get_urb (urb);
1840                 }
1841                 spin_unlock_irq(&hcd_urb_list_lock);
1842
1843                 if (urb) {
1844                         usb_kill_urb (urb);
1845                         usb_put_urb (urb);
1846                 }
1847         }
1848 }
1849
1850 /**
1851  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1852  *                              the bus bandwidth
1853  * @udev: target &usb_device
1854  * @new_config: new configuration to install
1855  * @cur_alt: the current alternate interface setting
1856  * @new_alt: alternate interface setting that is being installed
1857  *
1858  * To change configurations, pass in the new configuration in new_config,
1859  * and pass NULL for cur_alt and new_alt.
1860  *
1861  * To reset a device's configuration (put the device in the ADDRESSED state),
1862  * pass in NULL for new_config, cur_alt, and new_alt.
1863  *
1864  * To change alternate interface settings, pass in NULL for new_config,
1865  * pass in the current alternate interface setting in cur_alt,
1866  * and pass in the new alternate interface setting in new_alt.
1867  *
1868  * Return: An error if the requested bandwidth change exceeds the
1869  * bus bandwidth or host controller internal resources.
1870  */
1871 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1872                 struct usb_host_config *new_config,
1873                 struct usb_host_interface *cur_alt,
1874                 struct usb_host_interface *new_alt)
1875 {
1876         int num_intfs, i, j;
1877         struct usb_host_interface *alt = NULL;
1878         int ret = 0;
1879         struct usb_hcd *hcd;
1880         struct usb_host_endpoint *ep;
1881
1882         hcd = bus_to_hcd(udev->bus);
1883         if (!hcd->driver->check_bandwidth)
1884                 return 0;
1885
1886         /* Configuration is being removed - set configuration 0 */
1887         if (!new_config && !cur_alt) {
1888                 for (i = 1; i < 16; ++i) {
1889                         ep = udev->ep_out[i];
1890                         if (ep)
1891                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1892                         ep = udev->ep_in[i];
1893                         if (ep)
1894                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1895                 }
1896                 hcd->driver->check_bandwidth(hcd, udev);
1897                 return 0;
1898         }
1899         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1900          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1901          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1902          * ok to exclude it.
1903          */
1904         if (new_config) {
1905                 num_intfs = new_config->desc.bNumInterfaces;
1906                 /* Remove endpoints (except endpoint 0, which is always on the
1907                  * schedule) from the old config from the schedule
1908                  */
1909                 for (i = 1; i < 16; ++i) {
1910                         ep = udev->ep_out[i];
1911                         if (ep) {
1912                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1913                                 if (ret < 0)
1914                                         goto reset;
1915                         }
1916                         ep = udev->ep_in[i];
1917                         if (ep) {
1918                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1919                                 if (ret < 0)
1920                                         goto reset;
1921                         }
1922                 }
1923                 for (i = 0; i < num_intfs; ++i) {
1924                         struct usb_host_interface *first_alt;
1925                         int iface_num;
1926
1927                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1928                         iface_num = first_alt->desc.bInterfaceNumber;
1929                         /* Set up endpoints for alternate interface setting 0 */
1930                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1931                         if (!alt)
1932                                 /* No alt setting 0? Pick the first setting. */
1933                                 alt = first_alt;
1934
1935                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1936                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1937                                 if (ret < 0)
1938                                         goto reset;
1939                         }
1940                 }
1941         }
1942         if (cur_alt && new_alt) {
1943                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1944                                 cur_alt->desc.bInterfaceNumber);
1945
1946                 if (!iface)
1947                         return -EINVAL;
1948                 if (iface->resetting_device) {
1949                         /*
1950                          * The USB core just reset the device, so the xHCI host
1951                          * and the device will think alt setting 0 is installed.
1952                          * However, the USB core will pass in the alternate
1953                          * setting installed before the reset as cur_alt.  Dig
1954                          * out the alternate setting 0 structure, or the first
1955                          * alternate setting if a broken device doesn't have alt
1956                          * setting 0.
1957                          */
1958                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1959                         if (!cur_alt)
1960                                 cur_alt = &iface->altsetting[0];
1961                 }
1962
1963                 /* Drop all the endpoints in the current alt setting */
1964                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1965                         ret = hcd->driver->drop_endpoint(hcd, udev,
1966                                         &cur_alt->endpoint[i]);
1967                         if (ret < 0)
1968                                 goto reset;
1969                 }
1970                 /* Add all the endpoints in the new alt setting */
1971                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1972                         ret = hcd->driver->add_endpoint(hcd, udev,
1973                                         &new_alt->endpoint[i]);
1974                         if (ret < 0)
1975                                 goto reset;
1976                 }
1977         }
1978         ret = hcd->driver->check_bandwidth(hcd, udev);
1979 reset:
1980         if (ret < 0)
1981                 hcd->driver->reset_bandwidth(hcd, udev);
1982         return ret;
1983 }
1984
1985 /* Disables the endpoint: synchronizes with the hcd to make sure all
1986  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1987  * have been called previously.  Use for set_configuration, set_interface,
1988  * driver removal, physical disconnect.
1989  *
1990  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1991  * type, maxpacket size, toggle, halt status, and scheduling.
1992  */
1993 void usb_hcd_disable_endpoint(struct usb_device *udev,
1994                 struct usb_host_endpoint *ep)
1995 {
1996         struct usb_hcd          *hcd;
1997
1998         might_sleep();
1999         hcd = bus_to_hcd(udev->bus);
2000         if (hcd->driver->endpoint_disable)
2001                 hcd->driver->endpoint_disable(hcd, ep);
2002 }
2003
2004 /**
2005  * usb_hcd_reset_endpoint - reset host endpoint state
2006  * @udev: USB device.
2007  * @ep:   the endpoint to reset.
2008  *
2009  * Resets any host endpoint state such as the toggle bit, sequence
2010  * number and current window.
2011  */
2012 void usb_hcd_reset_endpoint(struct usb_device *udev,
2013                             struct usb_host_endpoint *ep)
2014 {
2015         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2016
2017         if (hcd->driver->endpoint_reset)
2018                 hcd->driver->endpoint_reset(hcd, ep);
2019         else {
2020                 int epnum = usb_endpoint_num(&ep->desc);
2021                 int is_out = usb_endpoint_dir_out(&ep->desc);
2022                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2023
2024                 usb_settoggle(udev, epnum, is_out, 0);
2025                 if (is_control)
2026                         usb_settoggle(udev, epnum, !is_out, 0);
2027         }
2028 }
2029
2030 /**
2031  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2032  * @interface:          alternate setting that includes all endpoints.
2033  * @eps:                array of endpoints that need streams.
2034  * @num_eps:            number of endpoints in the array.
2035  * @num_streams:        number of streams to allocate.
2036  * @mem_flags:          flags hcd should use to allocate memory.
2037  *
2038  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2039  * Drivers may queue multiple transfers to different stream IDs, which may
2040  * complete in a different order than they were queued.
2041  *
2042  * Return: On success, the number of allocated streams. On failure, a negative
2043  * error code.
2044  */
2045 int usb_alloc_streams(struct usb_interface *interface,
2046                 struct usb_host_endpoint **eps, unsigned int num_eps,
2047                 unsigned int num_streams, gfp_t mem_flags)
2048 {
2049         struct usb_hcd *hcd;
2050         struct usb_device *dev;
2051         int i;
2052
2053         dev = interface_to_usbdev(interface);
2054         hcd = bus_to_hcd(dev->bus);
2055         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2056                 return -EINVAL;
2057         if (dev->speed != USB_SPEED_SUPER)
2058                 return -EINVAL;
2059
2060         /* Streams only apply to bulk endpoints. */
2061         for (i = 0; i < num_eps; i++)
2062                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2063                         return -EINVAL;
2064
2065         return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2066                         num_streams, mem_flags);
2067 }
2068 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2069
2070 /**
2071  * usb_free_streams - free bulk endpoint stream IDs.
2072  * @interface:  alternate setting that includes all endpoints.
2073  * @eps:        array of endpoints to remove streams from.
2074  * @num_eps:    number of endpoints in the array.
2075  * @mem_flags:  flags hcd should use to allocate memory.
2076  *
2077  * Reverts a group of bulk endpoints back to not using stream IDs.
2078  * Can fail if we are given bad arguments, or HCD is broken.
2079  *
2080  * Return: On success, the number of allocated streams. On failure, a negative
2081  * error code.
2082  */
2083 int usb_free_streams(struct usb_interface *interface,
2084                 struct usb_host_endpoint **eps, unsigned int num_eps,
2085                 gfp_t mem_flags)
2086 {
2087         struct usb_hcd *hcd;
2088         struct usb_device *dev;
2089         int i;
2090
2091         dev = interface_to_usbdev(interface);
2092         hcd = bus_to_hcd(dev->bus);
2093         if (dev->speed != USB_SPEED_SUPER)
2094                 return -EINVAL;
2095
2096         /* Streams only apply to bulk endpoints. */
2097         for (i = 0; i < num_eps; i++)
2098                 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
2099                         return -EINVAL;
2100
2101         return hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2102 }
2103 EXPORT_SYMBOL_GPL(usb_free_streams);
2104
2105 /* Protect against drivers that try to unlink URBs after the device
2106  * is gone, by waiting until all unlinks for @udev are finished.
2107  * Since we don't currently track URBs by device, simply wait until
2108  * nothing is running in the locked region of usb_hcd_unlink_urb().
2109  */
2110 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2111 {
2112         spin_lock_irq(&hcd_urb_unlink_lock);
2113         spin_unlock_irq(&hcd_urb_unlink_lock);
2114 }
2115
2116 /*-------------------------------------------------------------------------*/
2117
2118 /* called in any context */
2119 int usb_hcd_get_frame_number (struct usb_device *udev)
2120 {
2121         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2122
2123         if (!HCD_RH_RUNNING(hcd))
2124                 return -ESHUTDOWN;
2125         return hcd->driver->get_frame_number (hcd);
2126 }
2127
2128 /*-------------------------------------------------------------------------*/
2129
2130 #ifdef  CONFIG_PM
2131
2132 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2133 {
2134         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2135         int             status;
2136         int             old_state = hcd->state;
2137
2138         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2139                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2140                         rhdev->do_remote_wakeup);
2141         if (HCD_DEAD(hcd)) {
2142                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2143                 return 0;
2144         }
2145
2146         if (!hcd->driver->bus_suspend) {
2147                 status = -ENOENT;
2148         } else {
2149                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2150                 hcd->state = HC_STATE_QUIESCING;
2151                 status = hcd->driver->bus_suspend(hcd);
2152         }
2153         if (status == 0) {
2154                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2155                 hcd->state = HC_STATE_SUSPENDED;
2156
2157                 /* Did we race with a root-hub wakeup event? */
2158                 if (rhdev->do_remote_wakeup) {
2159                         char    buffer[6];
2160
2161                         status = hcd->driver->hub_status_data(hcd, buffer);
2162                         if (status != 0) {
2163                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2164                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2165                                 status = -EBUSY;
2166                         }
2167                 }
2168         } else {
2169                 spin_lock_irq(&hcd_root_hub_lock);
2170                 if (!HCD_DEAD(hcd)) {
2171                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2172                         hcd->state = old_state;
2173                 }
2174                 spin_unlock_irq(&hcd_root_hub_lock);
2175                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2176                                 "suspend", status);
2177         }
2178         return status;
2179 }
2180
2181 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2182 {
2183         struct usb_hcd  *hcd = container_of(rhdev->bus, struct usb_hcd, self);
2184         int             status;
2185         int             old_state = hcd->state;
2186
2187         dev_dbg(&rhdev->dev, "usb %sresume\n",
2188                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2189         if (HCD_DEAD(hcd)) {
2190                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2191                 return 0;
2192         }
2193         if (!hcd->driver->bus_resume)
2194                 return -ENOENT;
2195         if (HCD_RH_RUNNING(hcd))
2196                 return 0;
2197
2198         hcd->state = HC_STATE_RESUMING;
2199         status = hcd->driver->bus_resume(hcd);
2200         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2201         if (status == 0) {
2202                 struct usb_device *udev;
2203                 int port1;
2204
2205                 spin_lock_irq(&hcd_root_hub_lock);
2206                 if (!HCD_DEAD(hcd)) {
2207                         usb_set_device_state(rhdev, rhdev->actconfig
2208                                         ? USB_STATE_CONFIGURED
2209                                         : USB_STATE_ADDRESS);
2210                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2211                         hcd->state = HC_STATE_RUNNING;
2212                 }
2213                 spin_unlock_irq(&hcd_root_hub_lock);
2214
2215                 /*
2216                  * Check whether any of the enabled ports on the root hub are
2217                  * unsuspended.  If they are then a TRSMRCY delay is needed
2218                  * (this is what the USB-2 spec calls a "global resume").
2219                  * Otherwise we can skip the delay.
2220                  */
2221                 usb_hub_for_each_child(rhdev, port1, udev) {
2222                         if (udev->state != USB_STATE_NOTATTACHED &&
2223                                         !udev->port_is_suspended) {
2224                                 usleep_range(10000, 11000);     /* TRSMRCY */
2225                                 break;
2226                         }
2227                 }
2228         } else {
2229                 hcd->state = old_state;
2230                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2231                                 "resume", status);
2232                 if (status != -ESHUTDOWN)
2233                         usb_hc_died(hcd);
2234         }
2235         return status;
2236 }
2237
2238 #endif  /* CONFIG_PM */
2239
2240 #ifdef  CONFIG_PM_RUNTIME
2241
2242 /* Workqueue routine for root-hub remote wakeup */
2243 static void hcd_resume_work(struct work_struct *work)
2244 {
2245         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2246         struct usb_device *udev = hcd->self.root_hub;
2247
2248         usb_lock_device(udev);
2249         usb_remote_wakeup(udev);
2250         usb_unlock_device(udev);
2251 }
2252
2253 /**
2254  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2255  * @hcd: host controller for this root hub
2256  *
2257  * The USB host controller calls this function when its root hub is
2258  * suspended (with the remote wakeup feature enabled) and a remote
2259  * wakeup request is received.  The routine submits a workqueue request
2260  * to resume the root hub (that is, manage its downstream ports again).
2261  */
2262 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2263 {
2264         unsigned long flags;
2265
2266         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2267         if (hcd->rh_registered) {
2268                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2269                 queue_work(pm_wq, &hcd->wakeup_work);
2270         }
2271         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2272 }
2273 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2274
2275 #endif  /* CONFIG_PM_RUNTIME */
2276
2277 /*-------------------------------------------------------------------------*/
2278
2279 #ifdef  CONFIG_USB_OTG
2280
2281 /**
2282  * usb_bus_start_enum - start immediate enumeration (for OTG)
2283  * @bus: the bus (must use hcd framework)
2284  * @port_num: 1-based number of port; usually bus->otg_port
2285  * Context: in_interrupt()
2286  *
2287  * Starts enumeration, with an immediate reset followed later by
2288  * khubd identifying and possibly configuring the device.
2289  * This is needed by OTG controller drivers, where it helps meet
2290  * HNP protocol timing requirements for starting a port reset.
2291  *
2292  * Return: 0 if successful.
2293  */
2294 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2295 {
2296         struct usb_hcd          *hcd;
2297         int                     status = -EOPNOTSUPP;
2298
2299         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2300          * boards with root hubs hooked up to internal devices (instead of
2301          * just the OTG port) may need more attention to resetting...
2302          */
2303         hcd = container_of (bus, struct usb_hcd, self);
2304         if (port_num && hcd->driver->start_port_reset)
2305                 status = hcd->driver->start_port_reset(hcd, port_num);
2306
2307         /* run khubd shortly after (first) root port reset finishes;
2308          * it may issue others, until at least 50 msecs have passed.
2309          */
2310         if (status == 0)
2311                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2312         return status;
2313 }
2314 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2315
2316 #endif
2317
2318 /*-------------------------------------------------------------------------*/
2319
2320 /**
2321  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2322  * @irq: the IRQ being raised
2323  * @__hcd: pointer to the HCD whose IRQ is being signaled
2324  *
2325  * If the controller isn't HALTed, calls the driver's irq handler.
2326  * Checks whether the controller is now dead.
2327  *
2328  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2329  */
2330 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2331 {
2332         struct usb_hcd          *hcd = __hcd;
2333         unsigned long           flags;
2334         irqreturn_t             rc;
2335
2336         /* IRQF_DISABLED doesn't work correctly with shared IRQs
2337          * when the first handler doesn't use it.  So let's just
2338          * assume it's never used.
2339          */
2340         local_irq_save(flags);
2341
2342         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2343                 rc = IRQ_NONE;
2344         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2345                 rc = IRQ_NONE;
2346         else
2347                 rc = IRQ_HANDLED;
2348
2349         local_irq_restore(flags);
2350         return rc;
2351 }
2352 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2353
2354 /*-------------------------------------------------------------------------*/
2355
2356 /**
2357  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2358  * @hcd: pointer to the HCD representing the controller
2359  *
2360  * This is called by bus glue to report a USB host controller that died
2361  * while operations may still have been pending.  It's called automatically
2362  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2363  *
2364  * Only call this function with the primary HCD.
2365  */
2366 void usb_hc_died (struct usb_hcd *hcd)
2367 {
2368         unsigned long flags;
2369
2370         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2371
2372         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2373         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2374         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2375         if (hcd->rh_registered) {
2376                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2377
2378                 /* make khubd clean up old urbs and devices */
2379                 usb_set_device_state (hcd->self.root_hub,
2380                                 USB_STATE_NOTATTACHED);
2381                 usb_kick_khubd (hcd->self.root_hub);
2382         }
2383         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2384                 hcd = hcd->shared_hcd;
2385                 if (hcd->rh_registered) {
2386                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2387
2388                         /* make khubd clean up old urbs and devices */
2389                         usb_set_device_state(hcd->self.root_hub,
2390                                         USB_STATE_NOTATTACHED);
2391                         usb_kick_khubd(hcd->self.root_hub);
2392                 }
2393         }
2394         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2395         /* Make sure that the other roothub is also deallocated. */
2396 }
2397 EXPORT_SYMBOL_GPL (usb_hc_died);
2398
2399 /*-------------------------------------------------------------------------*/
2400
2401 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2402 {
2403
2404         spin_lock_init(&bh->lock);
2405         INIT_LIST_HEAD(&bh->head);
2406         tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2407 }
2408
2409 /**
2410  * usb_create_shared_hcd - create and initialize an HCD structure
2411  * @driver: HC driver that will use this hcd
2412  * @dev: device for this HC, stored in hcd->self.controller
2413  * @bus_name: value to store in hcd->self.bus_name
2414  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2415  *              PCI device.  Only allocate certain resources for the primary HCD
2416  * Context: !in_interrupt()
2417  *
2418  * Allocate a struct usb_hcd, with extra space at the end for the
2419  * HC driver's private data.  Initialize the generic members of the
2420  * hcd structure.
2421  *
2422  * Return: On success, a pointer to the created and initialized HCD structure.
2423  * On failure (e.g. if memory is unavailable), %NULL.
2424  */
2425 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2426                 struct device *dev, const char *bus_name,
2427                 struct usb_hcd *primary_hcd)
2428 {
2429         struct usb_hcd *hcd;
2430
2431         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2432         if (!hcd) {
2433                 dev_dbg (dev, "hcd alloc failed\n");
2434                 return NULL;
2435         }
2436         if (primary_hcd == NULL) {
2437                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2438                                 GFP_KERNEL);
2439                 if (!hcd->bandwidth_mutex) {
2440                         kfree(hcd);
2441                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2442                         return NULL;
2443                 }
2444                 mutex_init(hcd->bandwidth_mutex);
2445                 dev_set_drvdata(dev, hcd);
2446         } else {
2447                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2448                 hcd->primary_hcd = primary_hcd;
2449                 primary_hcd->primary_hcd = primary_hcd;
2450                 hcd->shared_hcd = primary_hcd;
2451                 primary_hcd->shared_hcd = hcd;
2452         }
2453
2454         kref_init(&hcd->kref);
2455
2456         usb_bus_init(&hcd->self);
2457         hcd->self.controller = dev;
2458         hcd->self.bus_name = bus_name;
2459         hcd->self.uses_dma = (dev->dma_mask != NULL);
2460
2461         init_timer(&hcd->rh_timer);
2462         hcd->rh_timer.function = rh_timer_func;
2463         hcd->rh_timer.data = (unsigned long) hcd;
2464 #ifdef CONFIG_PM_RUNTIME
2465         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2466 #endif
2467
2468         hcd->driver = driver;
2469         hcd->speed = driver->flags & HCD_MASK;
2470         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2471                         "USB Host Controller";
2472         return hcd;
2473 }
2474 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2475
2476 /**
2477  * usb_create_hcd - create and initialize an HCD structure
2478  * @driver: HC driver that will use this hcd
2479  * @dev: device for this HC, stored in hcd->self.controller
2480  * @bus_name: value to store in hcd->self.bus_name
2481  * Context: !in_interrupt()
2482  *
2483  * Allocate a struct usb_hcd, with extra space at the end for the
2484  * HC driver's private data.  Initialize the generic members of the
2485  * hcd structure.
2486  *
2487  * Return: On success, a pointer to the created and initialized HCD
2488  * structure. On failure (e.g. if memory is unavailable), %NULL.
2489  */
2490 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2491                 struct device *dev, const char *bus_name)
2492 {
2493         return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2494 }
2495 EXPORT_SYMBOL_GPL(usb_create_hcd);
2496
2497 /*
2498  * Roothubs that share one PCI device must also share the bandwidth mutex.
2499  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2500  * deallocated.
2501  *
2502  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2503  * freed.  When hcd_release() is called for the non-primary HCD, set the
2504  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2505  * freed shortly).
2506  */
2507 static void hcd_release (struct kref *kref)
2508 {
2509         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2510
2511         if (usb_hcd_is_primary_hcd(hcd))
2512                 kfree(hcd->bandwidth_mutex);
2513         else
2514                 hcd->shared_hcd->shared_hcd = NULL;
2515         kfree(hcd);
2516 }
2517
2518 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2519 {
2520         if (hcd)
2521                 kref_get (&hcd->kref);
2522         return hcd;
2523 }
2524 EXPORT_SYMBOL_GPL(usb_get_hcd);
2525
2526 void usb_put_hcd (struct usb_hcd *hcd)
2527 {
2528         if (hcd)
2529                 kref_put (&hcd->kref, hcd_release);
2530 }
2531 EXPORT_SYMBOL_GPL(usb_put_hcd);
2532
2533 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2534 {
2535         if (!hcd->primary_hcd)
2536                 return 1;
2537         return hcd == hcd->primary_hcd;
2538 }
2539 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2540
2541 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2542 {
2543         if (!hcd->driver->find_raw_port_number)
2544                 return port1;
2545
2546         return hcd->driver->find_raw_port_number(hcd, port1);
2547 }
2548
2549 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2550                 unsigned int irqnum, unsigned long irqflags)
2551 {
2552         int retval;
2553
2554         if (hcd->driver->irq) {
2555
2556                 /* IRQF_DISABLED doesn't work as advertised when used together
2557                  * with IRQF_SHARED. As usb_hcd_irq() will always disable
2558                  * interrupts we can remove it here.
2559                  */
2560                 if (irqflags & IRQF_SHARED)
2561                         irqflags &= ~IRQF_DISABLED;
2562
2563                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2564                                 hcd->driver->description, hcd->self.busnum);
2565                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2566                                 hcd->irq_descr, hcd);
2567                 if (retval != 0) {
2568                         dev_err(hcd->self.controller,
2569                                         "request interrupt %d failed\n",
2570                                         irqnum);
2571                         return retval;
2572                 }
2573                 hcd->irq = irqnum;
2574                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2575                                 (hcd->driver->flags & HCD_MEMORY) ?
2576                                         "io mem" : "io base",
2577                                         (unsigned long long)hcd->rsrc_start);
2578         } else {
2579                 hcd->irq = 0;
2580                 if (hcd->rsrc_start)
2581                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2582                                         (hcd->driver->flags & HCD_MEMORY) ?
2583                                         "io mem" : "io base",
2584                                         (unsigned long long)hcd->rsrc_start);
2585         }
2586         return 0;
2587 }
2588
2589 /**
2590  * usb_add_hcd - finish generic HCD structure initialization and register
2591  * @hcd: the usb_hcd structure to initialize
2592  * @irqnum: Interrupt line to allocate
2593  * @irqflags: Interrupt type flags
2594  *
2595  * Finish the remaining parts of generic HCD initialization: allocate the
2596  * buffers of consistent memory, register the bus, request the IRQ line,
2597  * and call the driver's reset() and start() routines.
2598  */
2599 int usb_add_hcd(struct usb_hcd *hcd,
2600                 unsigned int irqnum, unsigned long irqflags)
2601 {
2602         int retval;
2603         struct usb_device *rhdev;
2604
2605         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2606
2607         /* Keep old behaviour if authorized_default is not in [0, 1]. */
2608         if (authorized_default < 0 || authorized_default > 1)
2609                 hcd->authorized_default = hcd->wireless ? 0 : 1;
2610         else
2611                 hcd->authorized_default = authorized_default;
2612         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2613
2614         /* HC is in reset state, but accessible.  Now do the one-time init,
2615          * bottom up so that hcds can customize the root hubs before khubd
2616          * starts talking to them.  (Note, bus id is assigned early too.)
2617          */
2618         if ((retval = hcd_buffer_create(hcd)) != 0) {
2619                 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2620                 return retval;
2621         }
2622
2623         if ((retval = usb_register_bus(&hcd->self)) < 0)
2624                 goto err_register_bus;
2625
2626         if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2627                 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2628                 retval = -ENOMEM;
2629                 goto err_allocate_root_hub;
2630         }
2631         hcd->self.root_hub = rhdev;
2632
2633         switch (hcd->speed) {
2634         case HCD_USB11:
2635                 rhdev->speed = USB_SPEED_FULL;
2636                 break;
2637         case HCD_USB2:
2638                 rhdev->speed = USB_SPEED_HIGH;
2639                 break;
2640         case HCD_USB25:
2641                 rhdev->speed = USB_SPEED_WIRELESS;
2642                 break;
2643         case HCD_USB3:
2644                 rhdev->speed = USB_SPEED_SUPER;
2645                 break;
2646         default:
2647                 retval = -EINVAL;
2648                 goto err_set_rh_speed;
2649         }
2650
2651         /* wakeup flag init defaults to "everything works" for root hubs,
2652          * but drivers can override it in reset() if needed, along with
2653          * recording the overall controller's system wakeup capability.
2654          */
2655         device_set_wakeup_capable(&rhdev->dev, 1);
2656
2657         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2658          * registered.  But since the controller can die at any time,
2659          * let's initialize the flag before touching the hardware.
2660          */
2661         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2662
2663         /* "reset" is misnamed; its role is now one-time init. the controller
2664          * should already have been reset (and boot firmware kicked off etc).
2665          */
2666         if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2667                 dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2668                 goto err_hcd_driver_setup;
2669         }
2670         hcd->rh_pollable = 1;
2671
2672         /* NOTE: root hub and controller capabilities may not be the same */
2673         if (device_can_wakeup(hcd->self.controller)
2674                         && device_can_wakeup(&hcd->self.root_hub->dev))
2675                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2676
2677         /* initialize tasklets */
2678         init_giveback_urb_bh(&hcd->high_prio_bh);
2679         init_giveback_urb_bh(&hcd->low_prio_bh);
2680
2681         /* enable irqs just before we start the controller,
2682          * if the BIOS provides legacy PCI irqs.
2683          */
2684         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2685                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2686                 if (retval)
2687                         goto err_request_irq;
2688         }
2689
2690         hcd->state = HC_STATE_RUNNING;
2691         retval = hcd->driver->start(hcd);
2692         if (retval < 0) {
2693                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2694                 goto err_hcd_driver_start;
2695         }
2696
2697         /* starting here, usbcore will pay attention to this root hub */
2698         if ((retval = register_root_hub(hcd)) != 0)
2699                 goto err_register_root_hub;
2700
2701         retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2702         if (retval < 0) {
2703                 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2704                        retval);
2705                 goto error_create_attr_group;
2706         }
2707         if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2708                 usb_hcd_poll_rh_status(hcd);
2709
2710         /*
2711          * Host controllers don't generate their own wakeup requests;
2712          * they only forward requests from the root hub.  Therefore
2713          * controllers should always be enabled for remote wakeup.
2714          */
2715         device_wakeup_enable(hcd->self.controller);
2716         return retval;
2717
2718 error_create_attr_group:
2719         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2720         if (HC_IS_RUNNING(hcd->state))
2721                 hcd->state = HC_STATE_QUIESCING;
2722         spin_lock_irq(&hcd_root_hub_lock);
2723         hcd->rh_registered = 0;
2724         spin_unlock_irq(&hcd_root_hub_lock);
2725
2726 #ifdef CONFIG_PM_RUNTIME
2727         cancel_work_sync(&hcd->wakeup_work);
2728 #endif
2729         mutex_lock(&usb_bus_list_lock);
2730         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2731         mutex_unlock(&usb_bus_list_lock);
2732 err_register_root_hub:
2733         hcd->rh_pollable = 0;
2734         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2735         del_timer_sync(&hcd->rh_timer);
2736         hcd->driver->stop(hcd);
2737         hcd->state = HC_STATE_HALT;
2738         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2739         del_timer_sync(&hcd->rh_timer);
2740 err_hcd_driver_start:
2741         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2742                 free_irq(irqnum, hcd);
2743 err_request_irq:
2744 err_hcd_driver_setup:
2745 err_set_rh_speed:
2746         usb_put_dev(hcd->self.root_hub);
2747 err_allocate_root_hub:
2748         usb_deregister_bus(&hcd->self);
2749 err_register_bus:
2750         hcd_buffer_destroy(hcd);
2751         return retval;
2752 }
2753 EXPORT_SYMBOL_GPL(usb_add_hcd);
2754
2755 /**
2756  * usb_remove_hcd - shutdown processing for generic HCDs
2757  * @hcd: the usb_hcd structure to remove
2758  * Context: !in_interrupt()
2759  *
2760  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2761  * invoking the HCD's stop() method.
2762  */
2763 void usb_remove_hcd(struct usb_hcd *hcd)
2764 {
2765         struct usb_device *rhdev = hcd->self.root_hub;
2766
2767         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2768
2769         usb_get_dev(rhdev);
2770         sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2771
2772         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2773         if (HC_IS_RUNNING (hcd->state))
2774                 hcd->state = HC_STATE_QUIESCING;
2775
2776         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2777         spin_lock_irq (&hcd_root_hub_lock);
2778         hcd->rh_registered = 0;
2779         spin_unlock_irq (&hcd_root_hub_lock);
2780
2781 #ifdef CONFIG_PM_RUNTIME
2782         cancel_work_sync(&hcd->wakeup_work);
2783 #endif
2784
2785         mutex_lock(&usb_bus_list_lock);
2786         usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
2787         mutex_unlock(&usb_bus_list_lock);
2788
2789         /*
2790          * tasklet_kill() isn't needed here because:
2791          * - driver's disconnect() called from usb_disconnect() should
2792          *   make sure its URBs are completed during the disconnect()
2793          *   callback
2794          *
2795          * - it is too late to run complete() here since driver may have
2796          *   been removed already now
2797          */
2798
2799         /* Prevent any more root-hub status calls from the timer.
2800          * The HCD might still restart the timer (if a port status change
2801          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2802          * the hub_status_data() callback.
2803          */
2804         hcd->rh_pollable = 0;
2805         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2806         del_timer_sync(&hcd->rh_timer);
2807
2808         hcd->driver->stop(hcd);
2809         hcd->state = HC_STATE_HALT;
2810
2811         /* In case the HCD restarted the timer, stop it again. */
2812         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2813         del_timer_sync(&hcd->rh_timer);
2814
2815         if (usb_hcd_is_primary_hcd(hcd)) {
2816                 if (hcd->irq > 0)
2817                         free_irq(hcd->irq, hcd);
2818         }
2819
2820         usb_put_dev(hcd->self.root_hub);
2821         usb_deregister_bus(&hcd->self);
2822         hcd_buffer_destroy(hcd);
2823 }
2824 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2825
2826 void
2827 usb_hcd_platform_shutdown(struct platform_device *dev)
2828 {
2829         struct usb_hcd *hcd = platform_get_drvdata(dev);
2830
2831         if (hcd->driver->shutdown)
2832                 hcd->driver->shutdown(hcd);
2833 }
2834 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2835
2836 /*-------------------------------------------------------------------------*/
2837
2838 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2839
2840 struct usb_mon_operations *mon_ops;
2841
2842 /*
2843  * The registration is unlocked.
2844  * We do it this way because we do not want to lock in hot paths.
2845  *
2846  * Notice that the code is minimally error-proof. Because usbmon needs
2847  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2848  */
2849
2850 int usb_mon_register (struct usb_mon_operations *ops)
2851 {
2852
2853         if (mon_ops)
2854                 return -EBUSY;
2855
2856         mon_ops = ops;
2857         mb();
2858         return 0;
2859 }
2860 EXPORT_SYMBOL_GPL (usb_mon_register);
2861
2862 void usb_mon_deregister (void)
2863 {
2864
2865         if (mon_ops == NULL) {
2866                 printk(KERN_ERR "USB: monitor was not registered\n");
2867                 return;
2868         }
2869         mon_ops = NULL;
2870         mb();
2871 }
2872 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2873
2874 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */