]> Pileus Git - ~andy/linux/blob - drivers/tty/tty_io.c
Merge tag 'fcoe' into for-linus
[~andy/linux] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty->magic = 0xDEADDEAD;
190         kfree(tty);
191 }
192
193 static inline struct tty_struct *file_tty(struct file *file)
194 {
195         return ((struct tty_file_private *)file->private_data)->tty;
196 }
197
198 int tty_alloc_file(struct file *file)
199 {
200         struct tty_file_private *priv;
201
202         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203         if (!priv)
204                 return -ENOMEM;
205
206         file->private_data = priv;
207
208         return 0;
209 }
210
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
213 {
214         struct tty_file_private *priv = file->private_data;
215
216         priv->tty = tty;
217         priv->file = file;
218
219         spin_lock(&tty_files_lock);
220         list_add(&priv->list, &tty->tty_files);
221         spin_unlock(&tty_files_lock);
222 }
223
224 /**
225  * tty_free_file - free file->private_data
226  *
227  * This shall be used only for fail path handling when tty_add_file was not
228  * called yet.
229  */
230 void tty_free_file(struct file *file)
231 {
232         struct tty_file_private *priv = file->private_data;
233
234         file->private_data = NULL;
235         kfree(priv);
236 }
237
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
240 {
241         struct tty_file_private *priv = file->private_data;
242
243         spin_lock(&tty_files_lock);
244         list_del(&priv->list);
245         spin_unlock(&tty_files_lock);
246         tty_free_file(file);
247 }
248
249
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
251
252 /**
253  *      tty_name        -       return tty naming
254  *      @tty: tty structure
255  *      @buf: buffer for output
256  *
257  *      Convert a tty structure into a name. The name reflects the kernel
258  *      naming policy and if udev is in use may not reflect user space
259  *
260  *      Locking: none
261  */
262
263 char *tty_name(struct tty_struct *tty, char *buf)
264 {
265         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
266                 strcpy(buf, "NULL tty");
267         else
268                 strcpy(buf, tty->name);
269         return buf;
270 }
271
272 EXPORT_SYMBOL(tty_name);
273
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275                               const char *routine)
276 {
277 #ifdef TTY_PARANOIA_CHECK
278         if (!tty) {
279                 printk(KERN_WARNING
280                         "null TTY for (%d:%d) in %s\n",
281                         imajor(inode), iminor(inode), routine);
282                 return 1;
283         }
284         if (tty->magic != TTY_MAGIC) {
285                 printk(KERN_WARNING
286                         "bad magic number for tty struct (%d:%d) in %s\n",
287                         imajor(inode), iminor(inode), routine);
288                 return 1;
289         }
290 #endif
291         return 0;
292 }
293
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
295 {
296 #ifdef CHECK_TTY_COUNT
297         struct list_head *p;
298         int count = 0;
299
300         spin_lock(&tty_files_lock);
301         list_for_each(p, &tty->tty_files) {
302                 count++;
303         }
304         spin_unlock(&tty_files_lock);
305         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306             tty->driver->subtype == PTY_TYPE_SLAVE &&
307             tty->link && tty->link->count)
308                 count++;
309         if (tty->count != count) {
310                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311                                     "!= #fd's(%d) in %s\n",
312                        tty->name, tty->count, count, routine);
313                 return count;
314         }
315 #endif
316         return 0;
317 }
318
319 /**
320  *      get_tty_driver          -       find device of a tty
321  *      @dev_t: device identifier
322  *      @index: returns the index of the tty
323  *
324  *      This routine returns a tty driver structure, given a device number
325  *      and also passes back the index number.
326  *
327  *      Locking: caller must hold tty_mutex
328  */
329
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
331 {
332         struct tty_driver *p;
333
334         list_for_each_entry(p, &tty_drivers, tty_drivers) {
335                 dev_t base = MKDEV(p->major, p->minor_start);
336                 if (device < base || device >= base + p->num)
337                         continue;
338                 *index = device - base;
339                 return tty_driver_kref_get(p);
340         }
341         return NULL;
342 }
343
344 #ifdef CONFIG_CONSOLE_POLL
345
346 /**
347  *      tty_find_polling_driver -       find device of a polled tty
348  *      @name: name string to match
349  *      @line: pointer to resulting tty line nr
350  *
351  *      This routine returns a tty driver structure, given a name
352  *      and the condition that the tty driver is capable of polled
353  *      operation.
354  */
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
356 {
357         struct tty_driver *p, *res = NULL;
358         int tty_line = 0;
359         int len;
360         char *str, *stp;
361
362         for (str = name; *str; str++)
363                 if ((*str >= '0' && *str <= '9') || *str == ',')
364                         break;
365         if (!*str)
366                 return NULL;
367
368         len = str - name;
369         tty_line = simple_strtoul(str, &str, 10);
370
371         mutex_lock(&tty_mutex);
372         /* Search through the tty devices to look for a match */
373         list_for_each_entry(p, &tty_drivers, tty_drivers) {
374                 if (strncmp(name, p->name, len) != 0)
375                         continue;
376                 stp = str;
377                 if (*stp == ',')
378                         stp++;
379                 if (*stp == '\0')
380                         stp = NULL;
381
382                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384                         res = tty_driver_kref_get(p);
385                         *line = tty_line;
386                         break;
387                 }
388         }
389         mutex_unlock(&tty_mutex);
390
391         return res;
392 }
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
395
396 /**
397  *      tty_check_change        -       check for POSIX terminal changes
398  *      @tty: tty to check
399  *
400  *      If we try to write to, or set the state of, a terminal and we're
401  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
402  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
403  *
404  *      Locking: ctrl_lock
405  */
406
407 int tty_check_change(struct tty_struct *tty)
408 {
409         unsigned long flags;
410         int ret = 0;
411
412         if (current->signal->tty != tty)
413                 return 0;
414
415         spin_lock_irqsave(&tty->ctrl_lock, flags);
416
417         if (!tty->pgrp) {
418                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419                 goto out_unlock;
420         }
421         if (task_pgrp(current) == tty->pgrp)
422                 goto out_unlock;
423         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424         if (is_ignored(SIGTTOU))
425                 goto out;
426         if (is_current_pgrp_orphaned()) {
427                 ret = -EIO;
428                 goto out;
429         }
430         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431         set_thread_flag(TIF_SIGPENDING);
432         ret = -ERESTARTSYS;
433 out:
434         return ret;
435 out_unlock:
436         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437         return ret;
438 }
439
440 EXPORT_SYMBOL(tty_check_change);
441
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443                                 size_t count, loff_t *ppos)
444 {
445         return 0;
446 }
447
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449                                  size_t count, loff_t *ppos)
450 {
451         return -EIO;
452 }
453
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
456 {
457         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
458 }
459
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461                 unsigned long arg)
462 {
463         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
464 }
465
466 static long hung_up_tty_compat_ioctl(struct file *file,
467                                      unsigned int cmd, unsigned long arg)
468 {
469         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
470 }
471
472 static const struct file_operations tty_fops = {
473         .llseek         = no_llseek,
474         .read           = tty_read,
475         .write          = tty_write,
476         .poll           = tty_poll,
477         .unlocked_ioctl = tty_ioctl,
478         .compat_ioctl   = tty_compat_ioctl,
479         .open           = tty_open,
480         .release        = tty_release,
481         .fasync         = tty_fasync,
482 };
483
484 static const struct file_operations console_fops = {
485         .llseek         = no_llseek,
486         .read           = tty_read,
487         .write          = redirected_tty_write,
488         .poll           = tty_poll,
489         .unlocked_ioctl = tty_ioctl,
490         .compat_ioctl   = tty_compat_ioctl,
491         .open           = tty_open,
492         .release        = tty_release,
493         .fasync         = tty_fasync,
494 };
495
496 static const struct file_operations hung_up_tty_fops = {
497         .llseek         = no_llseek,
498         .read           = hung_up_tty_read,
499         .write          = hung_up_tty_write,
500         .poll           = hung_up_tty_poll,
501         .unlocked_ioctl = hung_up_tty_ioctl,
502         .compat_ioctl   = hung_up_tty_compat_ioctl,
503         .release        = tty_release,
504 };
505
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
508
509 /**
510  *      tty_wakeup      -       request more data
511  *      @tty: terminal
512  *
513  *      Internal and external helper for wakeups of tty. This function
514  *      informs the line discipline if present that the driver is ready
515  *      to receive more output data.
516  */
517
518 void tty_wakeup(struct tty_struct *tty)
519 {
520         struct tty_ldisc *ld;
521
522         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523                 ld = tty_ldisc_ref(tty);
524                 if (ld) {
525                         if (ld->ops->write_wakeup)
526                                 ld->ops->write_wakeup(tty);
527                         tty_ldisc_deref(ld);
528                 }
529         }
530         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
531 }
532
533 EXPORT_SYMBOL_GPL(tty_wakeup);
534
535 /**
536  *      tty_signal_session_leader       - sends SIGHUP to session leader
537  *      @tty            controlling tty
538  *      @exit_session   if non-zero, signal all foreground group processes
539  *
540  *      Send SIGHUP and SIGCONT to the session leader and its process group.
541  *      Optionally, signal all processes in the foreground process group.
542  *
543  *      Returns the number of processes in the session with this tty
544  *      as their controlling terminal. This value is used to drop
545  *      tty references for those processes.
546  */
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
548 {
549         struct task_struct *p;
550         int refs = 0;
551         struct pid *tty_pgrp = NULL;
552
553         read_lock(&tasklist_lock);
554         if (tty->session) {
555                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556                         spin_lock_irq(&p->sighand->siglock);
557                         if (p->signal->tty == tty) {
558                                 p->signal->tty = NULL;
559                                 /* We defer the dereferences outside fo
560                                    the tasklist lock */
561                                 refs++;
562                         }
563                         if (!p->signal->leader) {
564                                 spin_unlock_irq(&p->sighand->siglock);
565                                 continue;
566                         }
567                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
570                         spin_lock(&tty->ctrl_lock);
571                         tty_pgrp = get_pid(tty->pgrp);
572                         if (tty->pgrp)
573                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574                         spin_unlock(&tty->ctrl_lock);
575                         spin_unlock_irq(&p->sighand->siglock);
576                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
577         }
578         read_unlock(&tasklist_lock);
579
580         if (tty_pgrp) {
581                 if (exit_session)
582                         kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583                 put_pid(tty_pgrp);
584         }
585
586         return refs;
587 }
588
589 /**
590  *      __tty_hangup            -       actual handler for hangup events
591  *      @work: tty device
592  *
593  *      This can be called by a "kworker" kernel thread.  That is process
594  *      synchronous but doesn't hold any locks, so we need to make sure we
595  *      have the appropriate locks for what we're doing.
596  *
597  *      The hangup event clears any pending redirections onto the hung up
598  *      device. It ensures future writes will error and it does the needed
599  *      line discipline hangup and signal delivery. The tty object itself
600  *      remains intact.
601  *
602  *      Locking:
603  *              BTM
604  *                redirect lock for undoing redirection
605  *                file list lock for manipulating list of ttys
606  *                tty_ldisc_lock from called functions
607  *                termios_mutex resetting termios data
608  *                tasklist_lock to walk task list for hangup event
609  *                  ->siglock to protect ->signal/->sighand
610  */
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
612 {
613         struct file *cons_filp = NULL;
614         struct file *filp, *f = NULL;
615         struct tty_file_private *priv;
616         int    closecount = 0, n;
617         int refs;
618
619         if (!tty)
620                 return;
621
622
623         spin_lock(&redirect_lock);
624         if (redirect && file_tty(redirect) == tty) {
625                 f = redirect;
626                 redirect = NULL;
627         }
628         spin_unlock(&redirect_lock);
629
630         tty_lock(tty);
631
632         /* some functions below drop BTM, so we need this bit */
633         set_bit(TTY_HUPPING, &tty->flags);
634
635         /* inuse_filps is protected by the single tty lock,
636            this really needs to change if we want to flush the
637            workqueue with the lock held */
638         check_tty_count(tty, "tty_hangup");
639
640         spin_lock(&tty_files_lock);
641         /* This breaks for file handles being sent over AF_UNIX sockets ? */
642         list_for_each_entry(priv, &tty->tty_files, list) {
643                 filp = priv->file;
644                 if (filp->f_op->write == redirected_tty_write)
645                         cons_filp = filp;
646                 if (filp->f_op->write != tty_write)
647                         continue;
648                 closecount++;
649                 __tty_fasync(-1, filp, 0);      /* can't block */
650                 filp->f_op = &hung_up_tty_fops;
651         }
652         spin_unlock(&tty_files_lock);
653
654         refs = tty_signal_session_leader(tty, exit_session);
655         /* Account for the p->signal references we killed */
656         while (refs--)
657                 tty_kref_put(tty);
658
659         /*
660          * it drops BTM and thus races with reopen
661          * we protect the race by TTY_HUPPING
662          */
663         tty_ldisc_hangup(tty);
664
665         spin_lock_irq(&tty->ctrl_lock);
666         clear_bit(TTY_THROTTLED, &tty->flags);
667         clear_bit(TTY_PUSH, &tty->flags);
668         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
669         put_pid(tty->session);
670         put_pid(tty->pgrp);
671         tty->session = NULL;
672         tty->pgrp = NULL;
673         tty->ctrl_status = 0;
674         spin_unlock_irq(&tty->ctrl_lock);
675
676         /*
677          * If one of the devices matches a console pointer, we
678          * cannot just call hangup() because that will cause
679          * tty->count and state->count to go out of sync.
680          * So we just call close() the right number of times.
681          */
682         if (cons_filp) {
683                 if (tty->ops->close)
684                         for (n = 0; n < closecount; n++)
685                                 tty->ops->close(tty, cons_filp);
686         } else if (tty->ops->hangup)
687                 (tty->ops->hangup)(tty);
688         /*
689          * We don't want to have driver/ldisc interactions beyond
690          * the ones we did here. The driver layer expects no
691          * calls after ->hangup() from the ldisc side. However we
692          * can't yet guarantee all that.
693          */
694         set_bit(TTY_HUPPED, &tty->flags);
695         clear_bit(TTY_HUPPING, &tty->flags);
696
697         tty_unlock(tty);
698
699         if (f)
700                 fput(f);
701 }
702
703 static void do_tty_hangup(struct work_struct *work)
704 {
705         struct tty_struct *tty =
706                 container_of(work, struct tty_struct, hangup_work);
707
708         __tty_hangup(tty, 0);
709 }
710
711 /**
712  *      tty_hangup              -       trigger a hangup event
713  *      @tty: tty to hangup
714  *
715  *      A carrier loss (virtual or otherwise) has occurred on this like
716  *      schedule a hangup sequence to run after this event.
717  */
718
719 void tty_hangup(struct tty_struct *tty)
720 {
721 #ifdef TTY_DEBUG_HANGUP
722         char    buf[64];
723         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
724 #endif
725         schedule_work(&tty->hangup_work);
726 }
727
728 EXPORT_SYMBOL(tty_hangup);
729
730 /**
731  *      tty_vhangup             -       process vhangup
732  *      @tty: tty to hangup
733  *
734  *      The user has asked via system call for the terminal to be hung up.
735  *      We do this synchronously so that when the syscall returns the process
736  *      is complete. That guarantee is necessary for security reasons.
737  */
738
739 void tty_vhangup(struct tty_struct *tty)
740 {
741 #ifdef TTY_DEBUG_HANGUP
742         char    buf[64];
743
744         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
745 #endif
746         __tty_hangup(tty, 0);
747 }
748
749 EXPORT_SYMBOL(tty_vhangup);
750
751
752 /**
753  *      tty_vhangup_self        -       process vhangup for own ctty
754  *
755  *      Perform a vhangup on the current controlling tty
756  */
757
758 void tty_vhangup_self(void)
759 {
760         struct tty_struct *tty;
761
762         tty = get_current_tty();
763         if (tty) {
764                 tty_vhangup(tty);
765                 tty_kref_put(tty);
766         }
767 }
768
769 /**
770  *      tty_vhangup_session             -       hangup session leader exit
771  *      @tty: tty to hangup
772  *
773  *      The session leader is exiting and hanging up its controlling terminal.
774  *      Every process in the foreground process group is signalled SIGHUP.
775  *
776  *      We do this synchronously so that when the syscall returns the process
777  *      is complete. That guarantee is necessary for security reasons.
778  */
779
780 static void tty_vhangup_session(struct tty_struct *tty)
781 {
782 #ifdef TTY_DEBUG_HANGUP
783         char    buf[64];
784
785         printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
786 #endif
787         __tty_hangup(tty, 1);
788 }
789
790 /**
791  *      tty_hung_up_p           -       was tty hung up
792  *      @filp: file pointer of tty
793  *
794  *      Return true if the tty has been subject to a vhangup or a carrier
795  *      loss
796  */
797
798 int tty_hung_up_p(struct file *filp)
799 {
800         return (filp->f_op == &hung_up_tty_fops);
801 }
802
803 EXPORT_SYMBOL(tty_hung_up_p);
804
805 static void session_clear_tty(struct pid *session)
806 {
807         struct task_struct *p;
808         do_each_pid_task(session, PIDTYPE_SID, p) {
809                 proc_clear_tty(p);
810         } while_each_pid_task(session, PIDTYPE_SID, p);
811 }
812
813 /**
814  *      disassociate_ctty       -       disconnect controlling tty
815  *      @on_exit: true if exiting so need to "hang up" the session
816  *
817  *      This function is typically called only by the session leader, when
818  *      it wants to disassociate itself from its controlling tty.
819  *
820  *      It performs the following functions:
821  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
822  *      (2)  Clears the tty from being controlling the session
823  *      (3)  Clears the controlling tty for all processes in the
824  *              session group.
825  *
826  *      The argument on_exit is set to 1 if called when a process is
827  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
828  *
829  *      Locking:
830  *              BTM is taken for hysterical raisins, and held when
831  *                called from no_tty().
832  *                tty_mutex is taken to protect tty
833  *                ->siglock is taken to protect ->signal/->sighand
834  *                tasklist_lock is taken to walk process list for sessions
835  *                  ->siglock is taken to protect ->signal/->sighand
836  */
837
838 void disassociate_ctty(int on_exit)
839 {
840         struct tty_struct *tty;
841
842         if (!current->signal->leader)
843                 return;
844
845         tty = get_current_tty();
846         if (tty) {
847                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
848                         tty_vhangup_session(tty);
849                 } else {
850                         struct pid *tty_pgrp = tty_get_pgrp(tty);
851                         if (tty_pgrp) {
852                                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
853                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
854                                 put_pid(tty_pgrp);
855                         }
856                 }
857                 tty_kref_put(tty);
858
859         } else if (on_exit) {
860                 struct pid *old_pgrp;
861                 spin_lock_irq(&current->sighand->siglock);
862                 old_pgrp = current->signal->tty_old_pgrp;
863                 current->signal->tty_old_pgrp = NULL;
864                 spin_unlock_irq(&current->sighand->siglock);
865                 if (old_pgrp) {
866                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
867                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
868                         put_pid(old_pgrp);
869                 }
870                 return;
871         }
872
873         spin_lock_irq(&current->sighand->siglock);
874         put_pid(current->signal->tty_old_pgrp);
875         current->signal->tty_old_pgrp = NULL;
876         spin_unlock_irq(&current->sighand->siglock);
877
878         tty = get_current_tty();
879         if (tty) {
880                 unsigned long flags;
881                 spin_lock_irqsave(&tty->ctrl_lock, flags);
882                 put_pid(tty->session);
883                 put_pid(tty->pgrp);
884                 tty->session = NULL;
885                 tty->pgrp = NULL;
886                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
887                 tty_kref_put(tty);
888         } else {
889 #ifdef TTY_DEBUG_HANGUP
890                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
891                        " = NULL", tty);
892 #endif
893         }
894
895         /* Now clear signal->tty under the lock */
896         read_lock(&tasklist_lock);
897         session_clear_tty(task_session(current));
898         read_unlock(&tasklist_lock);
899 }
900
901 /**
902  *
903  *      no_tty  - Ensure the current process does not have a controlling tty
904  */
905 void no_tty(void)
906 {
907         /* FIXME: Review locking here. The tty_lock never covered any race
908            between a new association and proc_clear_tty but possible we need
909            to protect against this anyway */
910         struct task_struct *tsk = current;
911         disassociate_ctty(0);
912         proc_clear_tty(tsk);
913 }
914
915
916 /**
917  *      stop_tty        -       propagate flow control
918  *      @tty: tty to stop
919  *
920  *      Perform flow control to the driver. For PTY/TTY pairs we
921  *      must also propagate the TIOCKPKT status. May be called
922  *      on an already stopped device and will not re-call the driver
923  *      method.
924  *
925  *      This functionality is used by both the line disciplines for
926  *      halting incoming flow and by the driver. It may therefore be
927  *      called from any context, may be under the tty atomic_write_lock
928  *      but not always.
929  *
930  *      Locking:
931  *              Uses the tty control lock internally
932  */
933
934 void stop_tty(struct tty_struct *tty)
935 {
936         unsigned long flags;
937         spin_lock_irqsave(&tty->ctrl_lock, flags);
938         if (tty->stopped) {
939                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940                 return;
941         }
942         tty->stopped = 1;
943         if (tty->link && tty->link->packet) {
944                 tty->ctrl_status &= ~TIOCPKT_START;
945                 tty->ctrl_status |= TIOCPKT_STOP;
946                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
947         }
948         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
949         if (tty->ops->stop)
950                 (tty->ops->stop)(tty);
951 }
952
953 EXPORT_SYMBOL(stop_tty);
954
955 /**
956  *      start_tty       -       propagate flow control
957  *      @tty: tty to start
958  *
959  *      Start a tty that has been stopped if at all possible. Perform
960  *      any necessary wakeups and propagate the TIOCPKT status. If this
961  *      is the tty was previous stopped and is being started then the
962  *      driver start method is invoked and the line discipline woken.
963  *
964  *      Locking:
965  *              ctrl_lock
966  */
967
968 void start_tty(struct tty_struct *tty)
969 {
970         unsigned long flags;
971         spin_lock_irqsave(&tty->ctrl_lock, flags);
972         if (!tty->stopped || tty->flow_stopped) {
973                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
974                 return;
975         }
976         tty->stopped = 0;
977         if (tty->link && tty->link->packet) {
978                 tty->ctrl_status &= ~TIOCPKT_STOP;
979                 tty->ctrl_status |= TIOCPKT_START;
980                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
981         }
982         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
983         if (tty->ops->start)
984                 (tty->ops->start)(tty);
985         /* If we have a running line discipline it may need kicking */
986         tty_wakeup(tty);
987 }
988
989 EXPORT_SYMBOL(start_tty);
990
991 /* We limit tty time update visibility to every 8 seconds or so. */
992 static void tty_update_time(struct timespec *time)
993 {
994         unsigned long sec = get_seconds() & ~7;
995         if ((long)(sec - time->tv_sec) > 0)
996                 time->tv_sec = sec;
997 }
998
999 /**
1000  *      tty_read        -       read method for tty device files
1001  *      @file: pointer to tty file
1002  *      @buf: user buffer
1003  *      @count: size of user buffer
1004  *      @ppos: unused
1005  *
1006  *      Perform the read system call function on this terminal device. Checks
1007  *      for hung up devices before calling the line discipline method.
1008  *
1009  *      Locking:
1010  *              Locks the line discipline internally while needed. Multiple
1011  *      read calls may be outstanding in parallel.
1012  */
1013
1014 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1015                         loff_t *ppos)
1016 {
1017         int i;
1018         struct inode *inode = file_inode(file);
1019         struct tty_struct *tty = file_tty(file);
1020         struct tty_ldisc *ld;
1021
1022         if (tty_paranoia_check(tty, inode, "tty_read"))
1023                 return -EIO;
1024         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1025                 return -EIO;
1026
1027         /* We want to wait for the line discipline to sort out in this
1028            situation */
1029         ld = tty_ldisc_ref_wait(tty);
1030         if (ld->ops->read)
1031                 i = (ld->ops->read)(tty, file, buf, count);
1032         else
1033                 i = -EIO;
1034         tty_ldisc_deref(ld);
1035
1036         if (i > 0)
1037                 tty_update_time(&inode->i_atime);
1038
1039         return i;
1040 }
1041
1042 void tty_write_unlock(struct tty_struct *tty)
1043         __releases(&tty->atomic_write_lock)
1044 {
1045         mutex_unlock(&tty->atomic_write_lock);
1046         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1047 }
1048
1049 int tty_write_lock(struct tty_struct *tty, int ndelay)
1050         __acquires(&tty->atomic_write_lock)
1051 {
1052         if (!mutex_trylock(&tty->atomic_write_lock)) {
1053                 if (ndelay)
1054                         return -EAGAIN;
1055                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1056                         return -ERESTARTSYS;
1057         }
1058         return 0;
1059 }
1060
1061 /*
1062  * Split writes up in sane blocksizes to avoid
1063  * denial-of-service type attacks
1064  */
1065 static inline ssize_t do_tty_write(
1066         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1067         struct tty_struct *tty,
1068         struct file *file,
1069         const char __user *buf,
1070         size_t count)
1071 {
1072         ssize_t ret, written = 0;
1073         unsigned int chunk;
1074
1075         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1076         if (ret < 0)
1077                 return ret;
1078
1079         /*
1080          * We chunk up writes into a temporary buffer. This
1081          * simplifies low-level drivers immensely, since they
1082          * don't have locking issues and user mode accesses.
1083          *
1084          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1085          * big chunk-size..
1086          *
1087          * The default chunk-size is 2kB, because the NTTY
1088          * layer has problems with bigger chunks. It will
1089          * claim to be able to handle more characters than
1090          * it actually does.
1091          *
1092          * FIXME: This can probably go away now except that 64K chunks
1093          * are too likely to fail unless switched to vmalloc...
1094          */
1095         chunk = 2048;
1096         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1097                 chunk = 65536;
1098         if (count < chunk)
1099                 chunk = count;
1100
1101         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1102         if (tty->write_cnt < chunk) {
1103                 unsigned char *buf_chunk;
1104
1105                 if (chunk < 1024)
1106                         chunk = 1024;
1107
1108                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1109                 if (!buf_chunk) {
1110                         ret = -ENOMEM;
1111                         goto out;
1112                 }
1113                 kfree(tty->write_buf);
1114                 tty->write_cnt = chunk;
1115                 tty->write_buf = buf_chunk;
1116         }
1117
1118         /* Do the write .. */
1119         for (;;) {
1120                 size_t size = count;
1121                 if (size > chunk)
1122                         size = chunk;
1123                 ret = -EFAULT;
1124                 if (copy_from_user(tty->write_buf, buf, size))
1125                         break;
1126                 ret = write(tty, file, tty->write_buf, size);
1127                 if (ret <= 0)
1128                         break;
1129                 written += ret;
1130                 buf += ret;
1131                 count -= ret;
1132                 if (!count)
1133                         break;
1134                 ret = -ERESTARTSYS;
1135                 if (signal_pending(current))
1136                         break;
1137                 cond_resched();
1138         }
1139         if (written) {
1140                 tty_update_time(&file_inode(file)->i_mtime);
1141                 ret = written;
1142         }
1143 out:
1144         tty_write_unlock(tty);
1145         return ret;
1146 }
1147
1148 /**
1149  * tty_write_message - write a message to a certain tty, not just the console.
1150  * @tty: the destination tty_struct
1151  * @msg: the message to write
1152  *
1153  * This is used for messages that need to be redirected to a specific tty.
1154  * We don't put it into the syslog queue right now maybe in the future if
1155  * really needed.
1156  *
1157  * We must still hold the BTM and test the CLOSING flag for the moment.
1158  */
1159
1160 void tty_write_message(struct tty_struct *tty, char *msg)
1161 {
1162         if (tty) {
1163                 mutex_lock(&tty->atomic_write_lock);
1164                 tty_lock(tty);
1165                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1166                         tty_unlock(tty);
1167                         tty->ops->write(tty, msg, strlen(msg));
1168                 } else
1169                         tty_unlock(tty);
1170                 tty_write_unlock(tty);
1171         }
1172         return;
1173 }
1174
1175
1176 /**
1177  *      tty_write               -       write method for tty device file
1178  *      @file: tty file pointer
1179  *      @buf: user data to write
1180  *      @count: bytes to write
1181  *      @ppos: unused
1182  *
1183  *      Write data to a tty device via the line discipline.
1184  *
1185  *      Locking:
1186  *              Locks the line discipline as required
1187  *              Writes to the tty driver are serialized by the atomic_write_lock
1188  *      and are then processed in chunks to the device. The line discipline
1189  *      write method will not be invoked in parallel for each device.
1190  */
1191
1192 static ssize_t tty_write(struct file *file, const char __user *buf,
1193                                                 size_t count, loff_t *ppos)
1194 {
1195         struct tty_struct *tty = file_tty(file);
1196         struct tty_ldisc *ld;
1197         ssize_t ret;
1198
1199         if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1200                 return -EIO;
1201         if (!tty || !tty->ops->write ||
1202                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1203                         return -EIO;
1204         /* Short term debug to catch buggy drivers */
1205         if (tty->ops->write_room == NULL)
1206                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1207                         tty->driver->name);
1208         ld = tty_ldisc_ref_wait(tty);
1209         if (!ld->ops->write)
1210                 ret = -EIO;
1211         else
1212                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1213         tty_ldisc_deref(ld);
1214         return ret;
1215 }
1216
1217 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1218                                                 size_t count, loff_t *ppos)
1219 {
1220         struct file *p = NULL;
1221
1222         spin_lock(&redirect_lock);
1223         if (redirect)
1224                 p = get_file(redirect);
1225         spin_unlock(&redirect_lock);
1226
1227         if (p) {
1228                 ssize_t res;
1229                 res = vfs_write(p, buf, count, &p->f_pos);
1230                 fput(p);
1231                 return res;
1232         }
1233         return tty_write(file, buf, count, ppos);
1234 }
1235
1236 static char ptychar[] = "pqrstuvwxyzabcde";
1237
1238 /**
1239  *      pty_line_name   -       generate name for a pty
1240  *      @driver: the tty driver in use
1241  *      @index: the minor number
1242  *      @p: output buffer of at least 6 bytes
1243  *
1244  *      Generate a name from a driver reference and write it to the output
1245  *      buffer.
1246  *
1247  *      Locking: None
1248  */
1249 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1250 {
1251         int i = index + driver->name_base;
1252         /* ->name is initialized to "ttyp", but "tty" is expected */
1253         sprintf(p, "%s%c%x",
1254                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1255                 ptychar[i >> 4 & 0xf], i & 0xf);
1256 }
1257
1258 /**
1259  *      tty_line_name   -       generate name for a tty
1260  *      @driver: the tty driver in use
1261  *      @index: the minor number
1262  *      @p: output buffer of at least 7 bytes
1263  *
1264  *      Generate a name from a driver reference and write it to the output
1265  *      buffer.
1266  *
1267  *      Locking: None
1268  */
1269 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1270 {
1271         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1272                 strcpy(p, driver->name);
1273         else
1274                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1275 }
1276
1277 /**
1278  *      tty_driver_lookup_tty() - find an existing tty, if any
1279  *      @driver: the driver for the tty
1280  *      @idx:    the minor number
1281  *
1282  *      Return the tty, if found or ERR_PTR() otherwise.
1283  *
1284  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1285  *      be held until the 'fast-open' is also done. Will change once we
1286  *      have refcounting in the driver and per driver locking
1287  */
1288 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1289                 struct inode *inode, int idx)
1290 {
1291         if (driver->ops->lookup)
1292                 return driver->ops->lookup(driver, inode, idx);
1293
1294         return driver->ttys[idx];
1295 }
1296
1297 /**
1298  *      tty_init_termios        -  helper for termios setup
1299  *      @tty: the tty to set up
1300  *
1301  *      Initialise the termios structures for this tty. Thus runs under
1302  *      the tty_mutex currently so we can be relaxed about ordering.
1303  */
1304
1305 int tty_init_termios(struct tty_struct *tty)
1306 {
1307         struct ktermios *tp;
1308         int idx = tty->index;
1309
1310         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1311                 tty->termios = tty->driver->init_termios;
1312         else {
1313                 /* Check for lazy saved data */
1314                 tp = tty->driver->termios[idx];
1315                 if (tp != NULL)
1316                         tty->termios = *tp;
1317                 else
1318                         tty->termios = tty->driver->init_termios;
1319         }
1320         /* Compatibility until drivers always set this */
1321         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1322         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1323         return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(tty_init_termios);
1326
1327 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1328 {
1329         int ret = tty_init_termios(tty);
1330         if (ret)
1331                 return ret;
1332
1333         tty_driver_kref_get(driver);
1334         tty->count++;
1335         driver->ttys[tty->index] = tty;
1336         return 0;
1337 }
1338 EXPORT_SYMBOL_GPL(tty_standard_install);
1339
1340 /**
1341  *      tty_driver_install_tty() - install a tty entry in the driver
1342  *      @driver: the driver for the tty
1343  *      @tty: the tty
1344  *
1345  *      Install a tty object into the driver tables. The tty->index field
1346  *      will be set by the time this is called. This method is responsible
1347  *      for ensuring any need additional structures are allocated and
1348  *      configured.
1349  *
1350  *      Locking: tty_mutex for now
1351  */
1352 static int tty_driver_install_tty(struct tty_driver *driver,
1353                                                 struct tty_struct *tty)
1354 {
1355         return driver->ops->install ? driver->ops->install(driver, tty) :
1356                 tty_standard_install(driver, tty);
1357 }
1358
1359 /**
1360  *      tty_driver_remove_tty() - remove a tty from the driver tables
1361  *      @driver: the driver for the tty
1362  *      @idx:    the minor number
1363  *
1364  *      Remvoe a tty object from the driver tables. The tty->index field
1365  *      will be set by the time this is called.
1366  *
1367  *      Locking: tty_mutex for now
1368  */
1369 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1370 {
1371         if (driver->ops->remove)
1372                 driver->ops->remove(driver, tty);
1373         else
1374                 driver->ttys[tty->index] = NULL;
1375 }
1376
1377 /*
1378  *      tty_reopen()    - fast re-open of an open tty
1379  *      @tty    - the tty to open
1380  *
1381  *      Return 0 on success, -errno on error.
1382  *
1383  *      Locking: tty_mutex must be held from the time the tty was found
1384  *               till this open completes.
1385  */
1386 static int tty_reopen(struct tty_struct *tty)
1387 {
1388         struct tty_driver *driver = tty->driver;
1389
1390         if (test_bit(TTY_CLOSING, &tty->flags) ||
1391                         test_bit(TTY_HUPPING, &tty->flags) ||
1392                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1393                 return -EIO;
1394
1395         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1396             driver->subtype == PTY_TYPE_MASTER) {
1397                 /*
1398                  * special case for PTY masters: only one open permitted,
1399                  * and the slave side open count is incremented as well.
1400                  */
1401                 if (tty->count)
1402                         return -EIO;
1403
1404                 tty->link->count++;
1405         }
1406         tty->count++;
1407
1408         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1409
1410         return 0;
1411 }
1412
1413 /**
1414  *      tty_init_dev            -       initialise a tty device
1415  *      @driver: tty driver we are opening a device on
1416  *      @idx: device index
1417  *      @ret_tty: returned tty structure
1418  *
1419  *      Prepare a tty device. This may not be a "new" clean device but
1420  *      could also be an active device. The pty drivers require special
1421  *      handling because of this.
1422  *
1423  *      Locking:
1424  *              The function is called under the tty_mutex, which
1425  *      protects us from the tty struct or driver itself going away.
1426  *
1427  *      On exit the tty device has the line discipline attached and
1428  *      a reference count of 1. If a pair was created for pty/tty use
1429  *      and the other was a pty master then it too has a reference count of 1.
1430  *
1431  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1432  * failed open.  The new code protects the open with a mutex, so it's
1433  * really quite straightforward.  The mutex locking can probably be
1434  * relaxed for the (most common) case of reopening a tty.
1435  */
1436
1437 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1438 {
1439         struct tty_struct *tty;
1440         int retval;
1441
1442         /*
1443          * First time open is complex, especially for PTY devices.
1444          * This code guarantees that either everything succeeds and the
1445          * TTY is ready for operation, or else the table slots are vacated
1446          * and the allocated memory released.  (Except that the termios
1447          * and locked termios may be retained.)
1448          */
1449
1450         if (!try_module_get(driver->owner))
1451                 return ERR_PTR(-ENODEV);
1452
1453         tty = alloc_tty_struct();
1454         if (!tty) {
1455                 retval = -ENOMEM;
1456                 goto err_module_put;
1457         }
1458         initialize_tty_struct(tty, driver, idx);
1459
1460         tty_lock(tty);
1461         retval = tty_driver_install_tty(driver, tty);
1462         if (retval < 0)
1463                 goto err_deinit_tty;
1464
1465         if (!tty->port)
1466                 tty->port = driver->ports[idx];
1467
1468         WARN_RATELIMIT(!tty->port,
1469                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1470                         __func__, tty->driver->name);
1471
1472         tty->port->itty = tty;
1473
1474         /*
1475          * Structures all installed ... call the ldisc open routines.
1476          * If we fail here just call release_tty to clean up.  No need
1477          * to decrement the use counts, as release_tty doesn't care.
1478          */
1479         retval = tty_ldisc_setup(tty, tty->link);
1480         if (retval)
1481                 goto err_release_tty;
1482         /* Return the tty locked so that it cannot vanish under the caller */
1483         return tty;
1484
1485 err_deinit_tty:
1486         tty_unlock(tty);
1487         deinitialize_tty_struct(tty);
1488         free_tty_struct(tty);
1489 err_module_put:
1490         module_put(driver->owner);
1491         return ERR_PTR(retval);
1492
1493         /* call the tty release_tty routine to clean out this slot */
1494 err_release_tty:
1495         tty_unlock(tty);
1496         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1497                                  "clearing slot %d\n", idx);
1498         release_tty(tty, idx);
1499         return ERR_PTR(retval);
1500 }
1501
1502 void tty_free_termios(struct tty_struct *tty)
1503 {
1504         struct ktermios *tp;
1505         int idx = tty->index;
1506
1507         /* If the port is going to reset then it has no termios to save */
1508         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1509                 return;
1510
1511         /* Stash the termios data */
1512         tp = tty->driver->termios[idx];
1513         if (tp == NULL) {
1514                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1515                 if (tp == NULL) {
1516                         pr_warn("tty: no memory to save termios state.\n");
1517                         return;
1518                 }
1519                 tty->driver->termios[idx] = tp;
1520         }
1521         *tp = tty->termios;
1522 }
1523 EXPORT_SYMBOL(tty_free_termios);
1524
1525 /**
1526  *      tty_flush_works         -       flush all works of a tty
1527  *      @tty: tty device to flush works for
1528  *
1529  *      Sync flush all works belonging to @tty.
1530  */
1531 static void tty_flush_works(struct tty_struct *tty)
1532 {
1533         flush_work(&tty->SAK_work);
1534         flush_work(&tty->hangup_work);
1535 }
1536
1537 /**
1538  *      release_one_tty         -       release tty structure memory
1539  *      @kref: kref of tty we are obliterating
1540  *
1541  *      Releases memory associated with a tty structure, and clears out the
1542  *      driver table slots. This function is called when a device is no longer
1543  *      in use. It also gets called when setup of a device fails.
1544  *
1545  *      Locking:
1546  *              takes the file list lock internally when working on the list
1547  *      of ttys that the driver keeps.
1548  *
1549  *      This method gets called from a work queue so that the driver private
1550  *      cleanup ops can sleep (needed for USB at least)
1551  */
1552 static void release_one_tty(struct work_struct *work)
1553 {
1554         struct tty_struct *tty =
1555                 container_of(work, struct tty_struct, hangup_work);
1556         struct tty_driver *driver = tty->driver;
1557
1558         if (tty->ops->cleanup)
1559                 tty->ops->cleanup(tty);
1560
1561         tty->magic = 0;
1562         tty_driver_kref_put(driver);
1563         module_put(driver->owner);
1564
1565         spin_lock(&tty_files_lock);
1566         list_del_init(&tty->tty_files);
1567         spin_unlock(&tty_files_lock);
1568
1569         put_pid(tty->pgrp);
1570         put_pid(tty->session);
1571         free_tty_struct(tty);
1572 }
1573
1574 static void queue_release_one_tty(struct kref *kref)
1575 {
1576         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1577
1578         /* The hangup queue is now free so we can reuse it rather than
1579            waste a chunk of memory for each port */
1580         INIT_WORK(&tty->hangup_work, release_one_tty);
1581         schedule_work(&tty->hangup_work);
1582 }
1583
1584 /**
1585  *      tty_kref_put            -       release a tty kref
1586  *      @tty: tty device
1587  *
1588  *      Release a reference to a tty device and if need be let the kref
1589  *      layer destruct the object for us
1590  */
1591
1592 void tty_kref_put(struct tty_struct *tty)
1593 {
1594         if (tty)
1595                 kref_put(&tty->kref, queue_release_one_tty);
1596 }
1597 EXPORT_SYMBOL(tty_kref_put);
1598
1599 /**
1600  *      release_tty             -       release tty structure memory
1601  *
1602  *      Release both @tty and a possible linked partner (think pty pair),
1603  *      and decrement the refcount of the backing module.
1604  *
1605  *      Locking:
1606  *              tty_mutex
1607  *              takes the file list lock internally when working on the list
1608  *      of ttys that the driver keeps.
1609  *
1610  */
1611 static void release_tty(struct tty_struct *tty, int idx)
1612 {
1613         /* This should always be true but check for the moment */
1614         WARN_ON(tty->index != idx);
1615         WARN_ON(!mutex_is_locked(&tty_mutex));
1616         if (tty->ops->shutdown)
1617                 tty->ops->shutdown(tty);
1618         tty_free_termios(tty);
1619         tty_driver_remove_tty(tty->driver, tty);
1620         tty->port->itty = NULL;
1621         if (tty->link)
1622                 tty->link->port->itty = NULL;
1623         cancel_work_sync(&tty->port->buf.work);
1624
1625         if (tty->link)
1626                 tty_kref_put(tty->link);
1627         tty_kref_put(tty);
1628 }
1629
1630 /**
1631  *      tty_release_checks - check a tty before real release
1632  *      @tty: tty to check
1633  *      @o_tty: link of @tty (if any)
1634  *      @idx: index of the tty
1635  *
1636  *      Performs some paranoid checking before true release of the @tty.
1637  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1638  */
1639 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1640                 int idx)
1641 {
1642 #ifdef TTY_PARANOIA_CHECK
1643         if (idx < 0 || idx >= tty->driver->num) {
1644                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1645                                 __func__, tty->name);
1646                 return -1;
1647         }
1648
1649         /* not much to check for devpts */
1650         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1651                 return 0;
1652
1653         if (tty != tty->driver->ttys[idx]) {
1654                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1655                                 __func__, idx, tty->name);
1656                 return -1;
1657         }
1658         if (tty->driver->other) {
1659                 if (o_tty != tty->driver->other->ttys[idx]) {
1660                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1661                                         __func__, idx, tty->name);
1662                         return -1;
1663                 }
1664                 if (o_tty->link != tty) {
1665                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1666                         return -1;
1667                 }
1668         }
1669 #endif
1670         return 0;
1671 }
1672
1673 /**
1674  *      tty_release             -       vfs callback for close
1675  *      @inode: inode of tty
1676  *      @filp: file pointer for handle to tty
1677  *
1678  *      Called the last time each file handle is closed that references
1679  *      this tty. There may however be several such references.
1680  *
1681  *      Locking:
1682  *              Takes bkl. See tty_release_dev
1683  *
1684  * Even releasing the tty structures is a tricky business.. We have
1685  * to be very careful that the structures are all released at the
1686  * same time, as interrupts might otherwise get the wrong pointers.
1687  *
1688  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1689  * lead to double frees or releasing memory still in use.
1690  */
1691
1692 int tty_release(struct inode *inode, struct file *filp)
1693 {
1694         struct tty_struct *tty = file_tty(filp);
1695         struct tty_struct *o_tty;
1696         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1697         int     idx;
1698         char    buf[64];
1699
1700         if (tty_paranoia_check(tty, inode, __func__))
1701                 return 0;
1702
1703         tty_lock(tty);
1704         check_tty_count(tty, __func__);
1705
1706         __tty_fasync(-1, filp, 0);
1707
1708         idx = tty->index;
1709         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1710                       tty->driver->subtype == PTY_TYPE_MASTER);
1711         /* Review: parallel close */
1712         o_tty = tty->link;
1713
1714         if (tty_release_checks(tty, o_tty, idx)) {
1715                 tty_unlock(tty);
1716                 return 0;
1717         }
1718
1719 #ifdef TTY_DEBUG_HANGUP
1720         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1721                         tty_name(tty, buf), tty->count);
1722 #endif
1723
1724         if (tty->ops->close)
1725                 tty->ops->close(tty, filp);
1726
1727         tty_unlock(tty);
1728         /*
1729          * Sanity check: if tty->count is going to zero, there shouldn't be
1730          * any waiters on tty->read_wait or tty->write_wait.  We test the
1731          * wait queues and kick everyone out _before_ actually starting to
1732          * close.  This ensures that we won't block while releasing the tty
1733          * structure.
1734          *
1735          * The test for the o_tty closing is necessary, since the master and
1736          * slave sides may close in any order.  If the slave side closes out
1737          * first, its count will be one, since the master side holds an open.
1738          * Thus this test wouldn't be triggered at the time the slave closes,
1739          * so we do it now.
1740          *
1741          * Note that it's possible for the tty to be opened again while we're
1742          * flushing out waiters.  By recalculating the closing flags before
1743          * each iteration we avoid any problems.
1744          */
1745         while (1) {
1746                 /* Guard against races with tty->count changes elsewhere and
1747                    opens on /dev/tty */
1748
1749                 mutex_lock(&tty_mutex);
1750                 tty_lock_pair(tty, o_tty);
1751                 tty_closing = tty->count <= 1;
1752                 o_tty_closing = o_tty &&
1753                         (o_tty->count <= (pty_master ? 1 : 0));
1754                 do_sleep = 0;
1755
1756                 if (tty_closing) {
1757                         if (waitqueue_active(&tty->read_wait)) {
1758                                 wake_up_poll(&tty->read_wait, POLLIN);
1759                                 do_sleep++;
1760                         }
1761                         if (waitqueue_active(&tty->write_wait)) {
1762                                 wake_up_poll(&tty->write_wait, POLLOUT);
1763                                 do_sleep++;
1764                         }
1765                 }
1766                 if (o_tty_closing) {
1767                         if (waitqueue_active(&o_tty->read_wait)) {
1768                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1769                                 do_sleep++;
1770                         }
1771                         if (waitqueue_active(&o_tty->write_wait)) {
1772                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1773                                 do_sleep++;
1774                         }
1775                 }
1776                 if (!do_sleep)
1777                         break;
1778
1779                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1780                                 __func__, tty_name(tty, buf));
1781                 tty_unlock_pair(tty, o_tty);
1782                 mutex_unlock(&tty_mutex);
1783                 schedule();
1784         }
1785
1786         /*
1787          * The closing flags are now consistent with the open counts on
1788          * both sides, and we've completed the last operation that could
1789          * block, so it's safe to proceed with closing.
1790          *
1791          * We must *not* drop the tty_mutex until we ensure that a further
1792          * entry into tty_open can not pick up this tty.
1793          */
1794         if (pty_master) {
1795                 if (--o_tty->count < 0) {
1796                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1797                                 __func__, o_tty->count, tty_name(o_tty, buf));
1798                         o_tty->count = 0;
1799                 }
1800         }
1801         if (--tty->count < 0) {
1802                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1803                                 __func__, tty->count, tty_name(tty, buf));
1804                 tty->count = 0;
1805         }
1806
1807         /*
1808          * We've decremented tty->count, so we need to remove this file
1809          * descriptor off the tty->tty_files list; this serves two
1810          * purposes:
1811          *  - check_tty_count sees the correct number of file descriptors
1812          *    associated with this tty.
1813          *  - do_tty_hangup no longer sees this file descriptor as
1814          *    something that needs to be handled for hangups.
1815          */
1816         tty_del_file(filp);
1817
1818         /*
1819          * Perform some housekeeping before deciding whether to return.
1820          *
1821          * Set the TTY_CLOSING flag if this was the last open.  In the
1822          * case of a pty we may have to wait around for the other side
1823          * to close, and TTY_CLOSING makes sure we can't be reopened.
1824          */
1825         if (tty_closing)
1826                 set_bit(TTY_CLOSING, &tty->flags);
1827         if (o_tty_closing)
1828                 set_bit(TTY_CLOSING, &o_tty->flags);
1829
1830         /*
1831          * If _either_ side is closing, make sure there aren't any
1832          * processes that still think tty or o_tty is their controlling
1833          * tty.
1834          */
1835         if (tty_closing || o_tty_closing) {
1836                 read_lock(&tasklist_lock);
1837                 session_clear_tty(tty->session);
1838                 if (o_tty)
1839                         session_clear_tty(o_tty->session);
1840                 read_unlock(&tasklist_lock);
1841         }
1842
1843         mutex_unlock(&tty_mutex);
1844         tty_unlock_pair(tty, o_tty);
1845         /* At this point the TTY_CLOSING flag should ensure a dead tty
1846            cannot be re-opened by a racing opener */
1847
1848         /* check whether both sides are closing ... */
1849         if (!tty_closing || (o_tty && !o_tty_closing))
1850                 return 0;
1851
1852 #ifdef TTY_DEBUG_HANGUP
1853         printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1854 #endif
1855         /*
1856          * Ask the line discipline code to release its structures
1857          */
1858         tty_ldisc_release(tty, o_tty);
1859
1860         /* Wait for pending work before tty destruction commmences */
1861         tty_flush_works(tty);
1862         if (o_tty)
1863                 tty_flush_works(o_tty);
1864
1865 #ifdef TTY_DEBUG_HANGUP
1866         printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1867 #endif
1868         /*
1869          * The release_tty function takes care of the details of clearing
1870          * the slots and preserving the termios structure. The tty_unlock_pair
1871          * should be safe as we keep a kref while the tty is locked (so the
1872          * unlock never unlocks a freed tty).
1873          */
1874         mutex_lock(&tty_mutex);
1875         release_tty(tty, idx);
1876         mutex_unlock(&tty_mutex);
1877
1878         return 0;
1879 }
1880
1881 /**
1882  *      tty_open_current_tty - get tty of current task for open
1883  *      @device: device number
1884  *      @filp: file pointer to tty
1885  *      @return: tty of the current task iff @device is /dev/tty
1886  *
1887  *      We cannot return driver and index like for the other nodes because
1888  *      devpts will not work then. It expects inodes to be from devpts FS.
1889  *
1890  *      We need to move to returning a refcounted object from all the lookup
1891  *      paths including this one.
1892  */
1893 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1894 {
1895         struct tty_struct *tty;
1896
1897         if (device != MKDEV(TTYAUX_MAJOR, 0))
1898                 return NULL;
1899
1900         tty = get_current_tty();
1901         if (!tty)
1902                 return ERR_PTR(-ENXIO);
1903
1904         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1905         /* noctty = 1; */
1906         tty_kref_put(tty);
1907         /* FIXME: we put a reference and return a TTY! */
1908         /* This is only safe because the caller holds tty_mutex */
1909         return tty;
1910 }
1911
1912 /**
1913  *      tty_lookup_driver - lookup a tty driver for a given device file
1914  *      @device: device number
1915  *      @filp: file pointer to tty
1916  *      @noctty: set if the device should not become a controlling tty
1917  *      @index: index for the device in the @return driver
1918  *      @return: driver for this inode (with increased refcount)
1919  *
1920  *      If @return is not erroneous, the caller is responsible to decrement the
1921  *      refcount by tty_driver_kref_put.
1922  *
1923  *      Locking: tty_mutex protects get_tty_driver
1924  */
1925 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1926                 int *noctty, int *index)
1927 {
1928         struct tty_driver *driver;
1929
1930         switch (device) {
1931 #ifdef CONFIG_VT
1932         case MKDEV(TTY_MAJOR, 0): {
1933                 extern struct tty_driver *console_driver;
1934                 driver = tty_driver_kref_get(console_driver);
1935                 *index = fg_console;
1936                 *noctty = 1;
1937                 break;
1938         }
1939 #endif
1940         case MKDEV(TTYAUX_MAJOR, 1): {
1941                 struct tty_driver *console_driver = console_device(index);
1942                 if (console_driver) {
1943                         driver = tty_driver_kref_get(console_driver);
1944                         if (driver) {
1945                                 /* Don't let /dev/console block */
1946                                 filp->f_flags |= O_NONBLOCK;
1947                                 *noctty = 1;
1948                                 break;
1949                         }
1950                 }
1951                 return ERR_PTR(-ENODEV);
1952         }
1953         default:
1954                 driver = get_tty_driver(device, index);
1955                 if (!driver)
1956                         return ERR_PTR(-ENODEV);
1957                 break;
1958         }
1959         return driver;
1960 }
1961
1962 /**
1963  *      tty_open                -       open a tty device
1964  *      @inode: inode of device file
1965  *      @filp: file pointer to tty
1966  *
1967  *      tty_open and tty_release keep up the tty count that contains the
1968  *      number of opens done on a tty. We cannot use the inode-count, as
1969  *      different inodes might point to the same tty.
1970  *
1971  *      Open-counting is needed for pty masters, as well as for keeping
1972  *      track of serial lines: DTR is dropped when the last close happens.
1973  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1974  *
1975  *      The termios state of a pty is reset on first open so that
1976  *      settings don't persist across reuse.
1977  *
1978  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1979  *               tty->count should protect the rest.
1980  *               ->siglock protects ->signal/->sighand
1981  *
1982  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1983  *      tty_mutex
1984  */
1985
1986 static int tty_open(struct inode *inode, struct file *filp)
1987 {
1988         struct tty_struct *tty;
1989         int noctty, retval;
1990         struct tty_driver *driver = NULL;
1991         int index;
1992         dev_t device = inode->i_rdev;
1993         unsigned saved_flags = filp->f_flags;
1994
1995         nonseekable_open(inode, filp);
1996
1997 retry_open:
1998         retval = tty_alloc_file(filp);
1999         if (retval)
2000                 return -ENOMEM;
2001
2002         noctty = filp->f_flags & O_NOCTTY;
2003         index  = -1;
2004         retval = 0;
2005
2006         mutex_lock(&tty_mutex);
2007         /* This is protected by the tty_mutex */
2008         tty = tty_open_current_tty(device, filp);
2009         if (IS_ERR(tty)) {
2010                 retval = PTR_ERR(tty);
2011                 goto err_unlock;
2012         } else if (!tty) {
2013                 driver = tty_lookup_driver(device, filp, &noctty, &index);
2014                 if (IS_ERR(driver)) {
2015                         retval = PTR_ERR(driver);
2016                         goto err_unlock;
2017                 }
2018
2019                 /* check whether we're reopening an existing tty */
2020                 tty = tty_driver_lookup_tty(driver, inode, index);
2021                 if (IS_ERR(tty)) {
2022                         retval = PTR_ERR(tty);
2023                         goto err_unlock;
2024                 }
2025         }
2026
2027         if (tty) {
2028                 tty_lock(tty);
2029                 retval = tty_reopen(tty);
2030                 if (retval < 0) {
2031                         tty_unlock(tty);
2032                         tty = ERR_PTR(retval);
2033                 }
2034         } else  /* Returns with the tty_lock held for now */
2035                 tty = tty_init_dev(driver, index);
2036
2037         mutex_unlock(&tty_mutex);
2038         if (driver)
2039                 tty_driver_kref_put(driver);
2040         if (IS_ERR(tty)) {
2041                 retval = PTR_ERR(tty);
2042                 goto err_file;
2043         }
2044
2045         tty_add_file(tty, filp);
2046
2047         check_tty_count(tty, __func__);
2048         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2049             tty->driver->subtype == PTY_TYPE_MASTER)
2050                 noctty = 1;
2051 #ifdef TTY_DEBUG_HANGUP
2052         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2053 #endif
2054         if (tty->ops->open)
2055                 retval = tty->ops->open(tty, filp);
2056         else
2057                 retval = -ENODEV;
2058         filp->f_flags = saved_flags;
2059
2060         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2061                                                 !capable(CAP_SYS_ADMIN))
2062                 retval = -EBUSY;
2063
2064         if (retval) {
2065 #ifdef TTY_DEBUG_HANGUP
2066                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2067                                 retval, tty->name);
2068 #endif
2069                 tty_unlock(tty); /* need to call tty_release without BTM */
2070                 tty_release(inode, filp);
2071                 if (retval != -ERESTARTSYS)
2072                         return retval;
2073
2074                 if (signal_pending(current))
2075                         return retval;
2076
2077                 schedule();
2078                 /*
2079                  * Need to reset f_op in case a hangup happened.
2080                  */
2081                 if (filp->f_op == &hung_up_tty_fops)
2082                         filp->f_op = &tty_fops;
2083                 goto retry_open;
2084         }
2085         tty_unlock(tty);
2086
2087
2088         mutex_lock(&tty_mutex);
2089         tty_lock(tty);
2090         spin_lock_irq(&current->sighand->siglock);
2091         if (!noctty &&
2092             current->signal->leader &&
2093             !current->signal->tty &&
2094             tty->session == NULL)
2095                 __proc_set_tty(current, tty);
2096         spin_unlock_irq(&current->sighand->siglock);
2097         tty_unlock(tty);
2098         mutex_unlock(&tty_mutex);
2099         return 0;
2100 err_unlock:
2101         mutex_unlock(&tty_mutex);
2102         /* after locks to avoid deadlock */
2103         if (!IS_ERR_OR_NULL(driver))
2104                 tty_driver_kref_put(driver);
2105 err_file:
2106         tty_free_file(filp);
2107         return retval;
2108 }
2109
2110
2111
2112 /**
2113  *      tty_poll        -       check tty status
2114  *      @filp: file being polled
2115  *      @wait: poll wait structures to update
2116  *
2117  *      Call the line discipline polling method to obtain the poll
2118  *      status of the device.
2119  *
2120  *      Locking: locks called line discipline but ldisc poll method
2121  *      may be re-entered freely by other callers.
2122  */
2123
2124 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2125 {
2126         struct tty_struct *tty = file_tty(filp);
2127         struct tty_ldisc *ld;
2128         int ret = 0;
2129
2130         if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2131                 return 0;
2132
2133         ld = tty_ldisc_ref_wait(tty);
2134         if (ld->ops->poll)
2135                 ret = (ld->ops->poll)(tty, filp, wait);
2136         tty_ldisc_deref(ld);
2137         return ret;
2138 }
2139
2140 static int __tty_fasync(int fd, struct file *filp, int on)
2141 {
2142         struct tty_struct *tty = file_tty(filp);
2143         struct tty_ldisc *ldisc;
2144         unsigned long flags;
2145         int retval = 0;
2146
2147         if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2148                 goto out;
2149
2150         retval = fasync_helper(fd, filp, on, &tty->fasync);
2151         if (retval <= 0)
2152                 goto out;
2153
2154         ldisc = tty_ldisc_ref(tty);
2155         if (ldisc) {
2156                 if (ldisc->ops->fasync)
2157                         ldisc->ops->fasync(tty, on);
2158                 tty_ldisc_deref(ldisc);
2159         }
2160
2161         if (on) {
2162                 enum pid_type type;
2163                 struct pid *pid;
2164
2165                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2166                 if (tty->pgrp) {
2167                         pid = tty->pgrp;
2168                         type = PIDTYPE_PGID;
2169                 } else {
2170                         pid = task_pid(current);
2171                         type = PIDTYPE_PID;
2172                 }
2173                 get_pid(pid);
2174                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2175                 retval = __f_setown(filp, pid, type, 0);
2176                 put_pid(pid);
2177         }
2178 out:
2179         return retval;
2180 }
2181
2182 static int tty_fasync(int fd, struct file *filp, int on)
2183 {
2184         struct tty_struct *tty = file_tty(filp);
2185         int retval;
2186
2187         tty_lock(tty);
2188         retval = __tty_fasync(fd, filp, on);
2189         tty_unlock(tty);
2190
2191         return retval;
2192 }
2193
2194 /**
2195  *      tiocsti                 -       fake input character
2196  *      @tty: tty to fake input into
2197  *      @p: pointer to character
2198  *
2199  *      Fake input to a tty device. Does the necessary locking and
2200  *      input management.
2201  *
2202  *      FIXME: does not honour flow control ??
2203  *
2204  *      Locking:
2205  *              Called functions take tty_ldisc_lock
2206  *              current->signal->tty check is safe without locks
2207  *
2208  *      FIXME: may race normal receive processing
2209  */
2210
2211 static int tiocsti(struct tty_struct *tty, char __user *p)
2212 {
2213         char ch, mbz = 0;
2214         struct tty_ldisc *ld;
2215
2216         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2217                 return -EPERM;
2218         if (get_user(ch, p))
2219                 return -EFAULT;
2220         tty_audit_tiocsti(tty, ch);
2221         ld = tty_ldisc_ref_wait(tty);
2222         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2223         tty_ldisc_deref(ld);
2224         return 0;
2225 }
2226
2227 /**
2228  *      tiocgwinsz              -       implement window query ioctl
2229  *      @tty; tty
2230  *      @arg: user buffer for result
2231  *
2232  *      Copies the kernel idea of the window size into the user buffer.
2233  *
2234  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2235  *              is consistent.
2236  */
2237
2238 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2239 {
2240         int err;
2241
2242         mutex_lock(&tty->termios_mutex);
2243         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2244         mutex_unlock(&tty->termios_mutex);
2245
2246         return err ? -EFAULT: 0;
2247 }
2248
2249 /**
2250  *      tty_do_resize           -       resize event
2251  *      @tty: tty being resized
2252  *      @rows: rows (character)
2253  *      @cols: cols (character)
2254  *
2255  *      Update the termios variables and send the necessary signals to
2256  *      peform a terminal resize correctly
2257  */
2258
2259 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2260 {
2261         struct pid *pgrp;
2262         unsigned long flags;
2263
2264         /* Lock the tty */
2265         mutex_lock(&tty->termios_mutex);
2266         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2267                 goto done;
2268         /* Get the PID values and reference them so we can
2269            avoid holding the tty ctrl lock while sending signals */
2270         spin_lock_irqsave(&tty->ctrl_lock, flags);
2271         pgrp = get_pid(tty->pgrp);
2272         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2273
2274         if (pgrp)
2275                 kill_pgrp(pgrp, SIGWINCH, 1);
2276         put_pid(pgrp);
2277
2278         tty->winsize = *ws;
2279 done:
2280         mutex_unlock(&tty->termios_mutex);
2281         return 0;
2282 }
2283 EXPORT_SYMBOL(tty_do_resize);
2284
2285 /**
2286  *      tiocswinsz              -       implement window size set ioctl
2287  *      @tty; tty side of tty
2288  *      @arg: user buffer for result
2289  *
2290  *      Copies the user idea of the window size to the kernel. Traditionally
2291  *      this is just advisory information but for the Linux console it
2292  *      actually has driver level meaning and triggers a VC resize.
2293  *
2294  *      Locking:
2295  *              Driver dependent. The default do_resize method takes the
2296  *      tty termios mutex and ctrl_lock. The console takes its own lock
2297  *      then calls into the default method.
2298  */
2299
2300 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2301 {
2302         struct winsize tmp_ws;
2303         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2304                 return -EFAULT;
2305
2306         if (tty->ops->resize)
2307                 return tty->ops->resize(tty, &tmp_ws);
2308         else
2309                 return tty_do_resize(tty, &tmp_ws);
2310 }
2311
2312 /**
2313  *      tioccons        -       allow admin to move logical console
2314  *      @file: the file to become console
2315  *
2316  *      Allow the administrator to move the redirected console device
2317  *
2318  *      Locking: uses redirect_lock to guard the redirect information
2319  */
2320
2321 static int tioccons(struct file *file)
2322 {
2323         if (!capable(CAP_SYS_ADMIN))
2324                 return -EPERM;
2325         if (file->f_op->write == redirected_tty_write) {
2326                 struct file *f;
2327                 spin_lock(&redirect_lock);
2328                 f = redirect;
2329                 redirect = NULL;
2330                 spin_unlock(&redirect_lock);
2331                 if (f)
2332                         fput(f);
2333                 return 0;
2334         }
2335         spin_lock(&redirect_lock);
2336         if (redirect) {
2337                 spin_unlock(&redirect_lock);
2338                 return -EBUSY;
2339         }
2340         redirect = get_file(file);
2341         spin_unlock(&redirect_lock);
2342         return 0;
2343 }
2344
2345 /**
2346  *      fionbio         -       non blocking ioctl
2347  *      @file: file to set blocking value
2348  *      @p: user parameter
2349  *
2350  *      Historical tty interfaces had a blocking control ioctl before
2351  *      the generic functionality existed. This piece of history is preserved
2352  *      in the expected tty API of posix OS's.
2353  *
2354  *      Locking: none, the open file handle ensures it won't go away.
2355  */
2356
2357 static int fionbio(struct file *file, int __user *p)
2358 {
2359         int nonblock;
2360
2361         if (get_user(nonblock, p))
2362                 return -EFAULT;
2363
2364         spin_lock(&file->f_lock);
2365         if (nonblock)
2366                 file->f_flags |= O_NONBLOCK;
2367         else
2368                 file->f_flags &= ~O_NONBLOCK;
2369         spin_unlock(&file->f_lock);
2370         return 0;
2371 }
2372
2373 /**
2374  *      tiocsctty       -       set controlling tty
2375  *      @tty: tty structure
2376  *      @arg: user argument
2377  *
2378  *      This ioctl is used to manage job control. It permits a session
2379  *      leader to set this tty as the controlling tty for the session.
2380  *
2381  *      Locking:
2382  *              Takes tty_mutex() to protect tty instance
2383  *              Takes tasklist_lock internally to walk sessions
2384  *              Takes ->siglock() when updating signal->tty
2385  */
2386
2387 static int tiocsctty(struct tty_struct *tty, int arg)
2388 {
2389         int ret = 0;
2390         if (current->signal->leader && (task_session(current) == tty->session))
2391                 return ret;
2392
2393         mutex_lock(&tty_mutex);
2394         /*
2395          * The process must be a session leader and
2396          * not have a controlling tty already.
2397          */
2398         if (!current->signal->leader || current->signal->tty) {
2399                 ret = -EPERM;
2400                 goto unlock;
2401         }
2402
2403         if (tty->session) {
2404                 /*
2405                  * This tty is already the controlling
2406                  * tty for another session group!
2407                  */
2408                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2409                         /*
2410                          * Steal it away
2411                          */
2412                         read_lock(&tasklist_lock);
2413                         session_clear_tty(tty->session);
2414                         read_unlock(&tasklist_lock);
2415                 } else {
2416                         ret = -EPERM;
2417                         goto unlock;
2418                 }
2419         }
2420         proc_set_tty(current, tty);
2421 unlock:
2422         mutex_unlock(&tty_mutex);
2423         return ret;
2424 }
2425
2426 /**
2427  *      tty_get_pgrp    -       return a ref counted pgrp pid
2428  *      @tty: tty to read
2429  *
2430  *      Returns a refcounted instance of the pid struct for the process
2431  *      group controlling the tty.
2432  */
2433
2434 struct pid *tty_get_pgrp(struct tty_struct *tty)
2435 {
2436         unsigned long flags;
2437         struct pid *pgrp;
2438
2439         spin_lock_irqsave(&tty->ctrl_lock, flags);
2440         pgrp = get_pid(tty->pgrp);
2441         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2442
2443         return pgrp;
2444 }
2445 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2446
2447 /**
2448  *      tiocgpgrp               -       get process group
2449  *      @tty: tty passed by user
2450  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2451  *      @p: returned pid
2452  *
2453  *      Obtain the process group of the tty. If there is no process group
2454  *      return an error.
2455  *
2456  *      Locking: none. Reference to current->signal->tty is safe.
2457  */
2458
2459 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2460 {
2461         struct pid *pid;
2462         int ret;
2463         /*
2464          * (tty == real_tty) is a cheap way of
2465          * testing if the tty is NOT a master pty.
2466          */
2467         if (tty == real_tty && current->signal->tty != real_tty)
2468                 return -ENOTTY;
2469         pid = tty_get_pgrp(real_tty);
2470         ret =  put_user(pid_vnr(pid), p);
2471         put_pid(pid);
2472         return ret;
2473 }
2474
2475 /**
2476  *      tiocspgrp               -       attempt to set process group
2477  *      @tty: tty passed by user
2478  *      @real_tty: tty side device matching tty passed by user
2479  *      @p: pid pointer
2480  *
2481  *      Set the process group of the tty to the session passed. Only
2482  *      permitted where the tty session is our session.
2483  *
2484  *      Locking: RCU, ctrl lock
2485  */
2486
2487 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2488 {
2489         struct pid *pgrp;
2490         pid_t pgrp_nr;
2491         int retval = tty_check_change(real_tty);
2492         unsigned long flags;
2493
2494         if (retval == -EIO)
2495                 return -ENOTTY;
2496         if (retval)
2497                 return retval;
2498         if (!current->signal->tty ||
2499             (current->signal->tty != real_tty) ||
2500             (real_tty->session != task_session(current)))
2501                 return -ENOTTY;
2502         if (get_user(pgrp_nr, p))
2503                 return -EFAULT;
2504         if (pgrp_nr < 0)
2505                 return -EINVAL;
2506         rcu_read_lock();
2507         pgrp = find_vpid(pgrp_nr);
2508         retval = -ESRCH;
2509         if (!pgrp)
2510                 goto out_unlock;
2511         retval = -EPERM;
2512         if (session_of_pgrp(pgrp) != task_session(current))
2513                 goto out_unlock;
2514         retval = 0;
2515         spin_lock_irqsave(&tty->ctrl_lock, flags);
2516         put_pid(real_tty->pgrp);
2517         real_tty->pgrp = get_pid(pgrp);
2518         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2519 out_unlock:
2520         rcu_read_unlock();
2521         return retval;
2522 }
2523
2524 /**
2525  *      tiocgsid                -       get session id
2526  *      @tty: tty passed by user
2527  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2528  *      @p: pointer to returned session id
2529  *
2530  *      Obtain the session id of the tty. If there is no session
2531  *      return an error.
2532  *
2533  *      Locking: none. Reference to current->signal->tty is safe.
2534  */
2535
2536 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2537 {
2538         /*
2539          * (tty == real_tty) is a cheap way of
2540          * testing if the tty is NOT a master pty.
2541         */
2542         if (tty == real_tty && current->signal->tty != real_tty)
2543                 return -ENOTTY;
2544         if (!real_tty->session)
2545                 return -ENOTTY;
2546         return put_user(pid_vnr(real_tty->session), p);
2547 }
2548
2549 /**
2550  *      tiocsetd        -       set line discipline
2551  *      @tty: tty device
2552  *      @p: pointer to user data
2553  *
2554  *      Set the line discipline according to user request.
2555  *
2556  *      Locking: see tty_set_ldisc, this function is just a helper
2557  */
2558
2559 static int tiocsetd(struct tty_struct *tty, int __user *p)
2560 {
2561         int ldisc;
2562         int ret;
2563
2564         if (get_user(ldisc, p))
2565                 return -EFAULT;
2566
2567         ret = tty_set_ldisc(tty, ldisc);
2568
2569         return ret;
2570 }
2571
2572 /**
2573  *      send_break      -       performed time break
2574  *      @tty: device to break on
2575  *      @duration: timeout in mS
2576  *
2577  *      Perform a timed break on hardware that lacks its own driver level
2578  *      timed break functionality.
2579  *
2580  *      Locking:
2581  *              atomic_write_lock serializes
2582  *
2583  */
2584
2585 static int send_break(struct tty_struct *tty, unsigned int duration)
2586 {
2587         int retval;
2588
2589         if (tty->ops->break_ctl == NULL)
2590                 return 0;
2591
2592         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2593                 retval = tty->ops->break_ctl(tty, duration);
2594         else {
2595                 /* Do the work ourselves */
2596                 if (tty_write_lock(tty, 0) < 0)
2597                         return -EINTR;
2598                 retval = tty->ops->break_ctl(tty, -1);
2599                 if (retval)
2600                         goto out;
2601                 if (!signal_pending(current))
2602                         msleep_interruptible(duration);
2603                 retval = tty->ops->break_ctl(tty, 0);
2604 out:
2605                 tty_write_unlock(tty);
2606                 if (signal_pending(current))
2607                         retval = -EINTR;
2608         }
2609         return retval;
2610 }
2611
2612 /**
2613  *      tty_tiocmget            -       get modem status
2614  *      @tty: tty device
2615  *      @file: user file pointer
2616  *      @p: pointer to result
2617  *
2618  *      Obtain the modem status bits from the tty driver if the feature
2619  *      is supported. Return -EINVAL if it is not available.
2620  *
2621  *      Locking: none (up to the driver)
2622  */
2623
2624 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2625 {
2626         int retval = -EINVAL;
2627
2628         if (tty->ops->tiocmget) {
2629                 retval = tty->ops->tiocmget(tty);
2630
2631                 if (retval >= 0)
2632                         retval = put_user(retval, p);
2633         }
2634         return retval;
2635 }
2636
2637 /**
2638  *      tty_tiocmset            -       set modem status
2639  *      @tty: tty device
2640  *      @cmd: command - clear bits, set bits or set all
2641  *      @p: pointer to desired bits
2642  *
2643  *      Set the modem status bits from the tty driver if the feature
2644  *      is supported. Return -EINVAL if it is not available.
2645  *
2646  *      Locking: none (up to the driver)
2647  */
2648
2649 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2650              unsigned __user *p)
2651 {
2652         int retval;
2653         unsigned int set, clear, val;
2654
2655         if (tty->ops->tiocmset == NULL)
2656                 return -EINVAL;
2657
2658         retval = get_user(val, p);
2659         if (retval)
2660                 return retval;
2661         set = clear = 0;
2662         switch (cmd) {
2663         case TIOCMBIS:
2664                 set = val;
2665                 break;
2666         case TIOCMBIC:
2667                 clear = val;
2668                 break;
2669         case TIOCMSET:
2670                 set = val;
2671                 clear = ~val;
2672                 break;
2673         }
2674         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2675         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2676         return tty->ops->tiocmset(tty, set, clear);
2677 }
2678
2679 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2680 {
2681         int retval = -EINVAL;
2682         struct serial_icounter_struct icount;
2683         memset(&icount, 0, sizeof(icount));
2684         if (tty->ops->get_icount)
2685                 retval = tty->ops->get_icount(tty, &icount);
2686         if (retval != 0)
2687                 return retval;
2688         if (copy_to_user(arg, &icount, sizeof(icount)))
2689                 return -EFAULT;
2690         return 0;
2691 }
2692
2693 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2694 {
2695         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2696             tty->driver->subtype == PTY_TYPE_MASTER)
2697                 tty = tty->link;
2698         return tty;
2699 }
2700 EXPORT_SYMBOL(tty_pair_get_tty);
2701
2702 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2703 {
2704         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2705             tty->driver->subtype == PTY_TYPE_MASTER)
2706             return tty;
2707         return tty->link;
2708 }
2709 EXPORT_SYMBOL(tty_pair_get_pty);
2710
2711 /*
2712  * Split this up, as gcc can choke on it otherwise..
2713  */
2714 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2715 {
2716         struct tty_struct *tty = file_tty(file);
2717         struct tty_struct *real_tty;
2718         void __user *p = (void __user *)arg;
2719         int retval;
2720         struct tty_ldisc *ld;
2721
2722         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2723                 return -EINVAL;
2724
2725         real_tty = tty_pair_get_tty(tty);
2726
2727         /*
2728          * Factor out some common prep work
2729          */
2730         switch (cmd) {
2731         case TIOCSETD:
2732         case TIOCSBRK:
2733         case TIOCCBRK:
2734         case TCSBRK:
2735         case TCSBRKP:
2736                 retval = tty_check_change(tty);
2737                 if (retval)
2738                         return retval;
2739                 if (cmd != TIOCCBRK) {
2740                         tty_wait_until_sent(tty, 0);
2741                         if (signal_pending(current))
2742                                 return -EINTR;
2743                 }
2744                 break;
2745         }
2746
2747         /*
2748          *      Now do the stuff.
2749          */
2750         switch (cmd) {
2751         case TIOCSTI:
2752                 return tiocsti(tty, p);
2753         case TIOCGWINSZ:
2754                 return tiocgwinsz(real_tty, p);
2755         case TIOCSWINSZ:
2756                 return tiocswinsz(real_tty, p);
2757         case TIOCCONS:
2758                 return real_tty != tty ? -EINVAL : tioccons(file);
2759         case FIONBIO:
2760                 return fionbio(file, p);
2761         case TIOCEXCL:
2762                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2763                 return 0;
2764         case TIOCNXCL:
2765                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2766                 return 0;
2767         case TIOCGEXCL:
2768         {
2769                 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2770                 return put_user(excl, (int __user *)p);
2771         }
2772         case TIOCNOTTY:
2773                 if (current->signal->tty != tty)
2774                         return -ENOTTY;
2775                 no_tty();
2776                 return 0;
2777         case TIOCSCTTY:
2778                 return tiocsctty(tty, arg);
2779         case TIOCGPGRP:
2780                 return tiocgpgrp(tty, real_tty, p);
2781         case TIOCSPGRP:
2782                 return tiocspgrp(tty, real_tty, p);
2783         case TIOCGSID:
2784                 return tiocgsid(tty, real_tty, p);
2785         case TIOCGETD:
2786                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2787         case TIOCSETD:
2788                 return tiocsetd(tty, p);
2789         case TIOCVHANGUP:
2790                 if (!capable(CAP_SYS_ADMIN))
2791                         return -EPERM;
2792                 tty_vhangup(tty);
2793                 return 0;
2794         case TIOCGDEV:
2795         {
2796                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2797                 return put_user(ret, (unsigned int __user *)p);
2798         }
2799         /*
2800          * Break handling
2801          */
2802         case TIOCSBRK:  /* Turn break on, unconditionally */
2803                 if (tty->ops->break_ctl)
2804                         return tty->ops->break_ctl(tty, -1);
2805                 return 0;
2806         case TIOCCBRK:  /* Turn break off, unconditionally */
2807                 if (tty->ops->break_ctl)
2808                         return tty->ops->break_ctl(tty, 0);
2809                 return 0;
2810         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2811                 /* non-zero arg means wait for all output data
2812                  * to be sent (performed above) but don't send break.
2813                  * This is used by the tcdrain() termios function.
2814                  */
2815                 if (!arg)
2816                         return send_break(tty, 250);
2817                 return 0;
2818         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2819                 return send_break(tty, arg ? arg*100 : 250);
2820
2821         case TIOCMGET:
2822                 return tty_tiocmget(tty, p);
2823         case TIOCMSET:
2824         case TIOCMBIC:
2825         case TIOCMBIS:
2826                 return tty_tiocmset(tty, cmd, p);
2827         case TIOCGICOUNT:
2828                 retval = tty_tiocgicount(tty, p);
2829                 /* For the moment allow fall through to the old method */
2830                 if (retval != -EINVAL)
2831                         return retval;
2832                 break;
2833         case TCFLSH:
2834                 switch (arg) {
2835                 case TCIFLUSH:
2836                 case TCIOFLUSH:
2837                 /* flush tty buffer and allow ldisc to process ioctl */
2838                         tty_buffer_flush(tty);
2839                         break;
2840                 }
2841                 break;
2842         }
2843         if (tty->ops->ioctl) {
2844                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2845                 if (retval != -ENOIOCTLCMD)
2846                         return retval;
2847         }
2848         ld = tty_ldisc_ref_wait(tty);
2849         retval = -EINVAL;
2850         if (ld->ops->ioctl) {
2851                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2852                 if (retval == -ENOIOCTLCMD)
2853                         retval = -ENOTTY;
2854         }
2855         tty_ldisc_deref(ld);
2856         return retval;
2857 }
2858
2859 #ifdef CONFIG_COMPAT
2860 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2861                                 unsigned long arg)
2862 {
2863         struct tty_struct *tty = file_tty(file);
2864         struct tty_ldisc *ld;
2865         int retval = -ENOIOCTLCMD;
2866
2867         if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2868                 return -EINVAL;
2869
2870         if (tty->ops->compat_ioctl) {
2871                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2872                 if (retval != -ENOIOCTLCMD)
2873                         return retval;
2874         }
2875
2876         ld = tty_ldisc_ref_wait(tty);
2877         if (ld->ops->compat_ioctl)
2878                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2879         else
2880                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2881         tty_ldisc_deref(ld);
2882
2883         return retval;
2884 }
2885 #endif
2886
2887 static int this_tty(const void *t, struct file *file, unsigned fd)
2888 {
2889         if (likely(file->f_op->read != tty_read))
2890                 return 0;
2891         return file_tty(file) != t ? 0 : fd + 1;
2892 }
2893         
2894 /*
2895  * This implements the "Secure Attention Key" ---  the idea is to
2896  * prevent trojan horses by killing all processes associated with this
2897  * tty when the user hits the "Secure Attention Key".  Required for
2898  * super-paranoid applications --- see the Orange Book for more details.
2899  *
2900  * This code could be nicer; ideally it should send a HUP, wait a few
2901  * seconds, then send a INT, and then a KILL signal.  But you then
2902  * have to coordinate with the init process, since all processes associated
2903  * with the current tty must be dead before the new getty is allowed
2904  * to spawn.
2905  *
2906  * Now, if it would be correct ;-/ The current code has a nasty hole -
2907  * it doesn't catch files in flight. We may send the descriptor to ourselves
2908  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2909  *
2910  * Nasty bug: do_SAK is being called in interrupt context.  This can
2911  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2912  */
2913 void __do_SAK(struct tty_struct *tty)
2914 {
2915 #ifdef TTY_SOFT_SAK
2916         tty_hangup(tty);
2917 #else
2918         struct task_struct *g, *p;
2919         struct pid *session;
2920         int             i;
2921
2922         if (!tty)
2923                 return;
2924         session = tty->session;
2925
2926         tty_ldisc_flush(tty);
2927
2928         tty_driver_flush_buffer(tty);
2929
2930         read_lock(&tasklist_lock);
2931         /* Kill the entire session */
2932         do_each_pid_task(session, PIDTYPE_SID, p) {
2933                 printk(KERN_NOTICE "SAK: killed process %d"
2934                         " (%s): task_session(p)==tty->session\n",
2935                         task_pid_nr(p), p->comm);
2936                 send_sig(SIGKILL, p, 1);
2937         } while_each_pid_task(session, PIDTYPE_SID, p);
2938         /* Now kill any processes that happen to have the
2939          * tty open.
2940          */
2941         do_each_thread(g, p) {
2942                 if (p->signal->tty == tty) {
2943                         printk(KERN_NOTICE "SAK: killed process %d"
2944                             " (%s): task_session(p)==tty->session\n",
2945                             task_pid_nr(p), p->comm);
2946                         send_sig(SIGKILL, p, 1);
2947                         continue;
2948                 }
2949                 task_lock(p);
2950                 i = iterate_fd(p->files, 0, this_tty, tty);
2951                 if (i != 0) {
2952                         printk(KERN_NOTICE "SAK: killed process %d"
2953                             " (%s): fd#%d opened to the tty\n",
2954                                     task_pid_nr(p), p->comm, i - 1);
2955                         force_sig(SIGKILL, p);
2956                 }
2957                 task_unlock(p);
2958         } while_each_thread(g, p);
2959         read_unlock(&tasklist_lock);
2960 #endif
2961 }
2962
2963 static void do_SAK_work(struct work_struct *work)
2964 {
2965         struct tty_struct *tty =
2966                 container_of(work, struct tty_struct, SAK_work);
2967         __do_SAK(tty);
2968 }
2969
2970 /*
2971  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2972  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2973  * the values which we write to it will be identical to the values which it
2974  * already has. --akpm
2975  */
2976 void do_SAK(struct tty_struct *tty)
2977 {
2978         if (!tty)
2979                 return;
2980         schedule_work(&tty->SAK_work);
2981 }
2982
2983 EXPORT_SYMBOL(do_SAK);
2984
2985 static int dev_match_devt(struct device *dev, const void *data)
2986 {
2987         const dev_t *devt = data;
2988         return dev->devt == *devt;
2989 }
2990
2991 /* Must put_device() after it's unused! */
2992 static struct device *tty_get_device(struct tty_struct *tty)
2993 {
2994         dev_t devt = tty_devnum(tty);
2995         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2996 }
2997
2998
2999 /**
3000  *      initialize_tty_struct
3001  *      @tty: tty to initialize
3002  *
3003  *      This subroutine initializes a tty structure that has been newly
3004  *      allocated.
3005  *
3006  *      Locking: none - tty in question must not be exposed at this point
3007  */
3008
3009 void initialize_tty_struct(struct tty_struct *tty,
3010                 struct tty_driver *driver, int idx)
3011 {
3012         memset(tty, 0, sizeof(struct tty_struct));
3013         kref_init(&tty->kref);
3014         tty->magic = TTY_MAGIC;
3015         tty_ldisc_init(tty);
3016         tty->session = NULL;
3017         tty->pgrp = NULL;
3018         mutex_init(&tty->legacy_mutex);
3019         mutex_init(&tty->termios_mutex);
3020         mutex_init(&tty->ldisc_mutex);
3021         init_waitqueue_head(&tty->write_wait);
3022         init_waitqueue_head(&tty->read_wait);
3023         INIT_WORK(&tty->hangup_work, do_tty_hangup);
3024         mutex_init(&tty->atomic_write_lock);
3025         spin_lock_init(&tty->ctrl_lock);
3026         INIT_LIST_HEAD(&tty->tty_files);
3027         INIT_WORK(&tty->SAK_work, do_SAK_work);
3028
3029         tty->driver = driver;
3030         tty->ops = driver->ops;
3031         tty->index = idx;
3032         tty_line_name(driver, idx, tty->name);
3033         tty->dev = tty_get_device(tty);
3034 }
3035
3036 /**
3037  *      deinitialize_tty_struct
3038  *      @tty: tty to deinitialize
3039  *
3040  *      This subroutine deinitializes a tty structure that has been newly
3041  *      allocated but tty_release cannot be called on that yet.
3042  *
3043  *      Locking: none - tty in question must not be exposed at this point
3044  */
3045 void deinitialize_tty_struct(struct tty_struct *tty)
3046 {
3047         tty_ldisc_deinit(tty);
3048 }
3049
3050 /**
3051  *      tty_put_char    -       write one character to a tty
3052  *      @tty: tty
3053  *      @ch: character
3054  *
3055  *      Write one byte to the tty using the provided put_char method
3056  *      if present. Returns the number of characters successfully output.
3057  *
3058  *      Note: the specific put_char operation in the driver layer may go
3059  *      away soon. Don't call it directly, use this method
3060  */
3061
3062 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3063 {
3064         if (tty->ops->put_char)
3065                 return tty->ops->put_char(tty, ch);
3066         return tty->ops->write(tty, &ch, 1);
3067 }
3068 EXPORT_SYMBOL_GPL(tty_put_char);
3069
3070 struct class *tty_class;
3071
3072 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3073                 unsigned int index, unsigned int count)
3074 {
3075         /* init here, since reused cdevs cause crashes */
3076         cdev_init(&driver->cdevs[index], &tty_fops);
3077         driver->cdevs[index].owner = driver->owner;
3078         return cdev_add(&driver->cdevs[index], dev, count);
3079 }
3080
3081 /**
3082  *      tty_register_device - register a tty device
3083  *      @driver: the tty driver that describes the tty device
3084  *      @index: the index in the tty driver for this tty device
3085  *      @device: a struct device that is associated with this tty device.
3086  *              This field is optional, if there is no known struct device
3087  *              for this tty device it can be set to NULL safely.
3088  *
3089  *      Returns a pointer to the struct device for this tty device
3090  *      (or ERR_PTR(-EFOO) on error).
3091  *
3092  *      This call is required to be made to register an individual tty device
3093  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3094  *      that bit is not set, this function should not be called by a tty
3095  *      driver.
3096  *
3097  *      Locking: ??
3098  */
3099
3100 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3101                                    struct device *device)
3102 {
3103         return tty_register_device_attr(driver, index, device, NULL, NULL);
3104 }
3105 EXPORT_SYMBOL(tty_register_device);
3106
3107 static void tty_device_create_release(struct device *dev)
3108 {
3109         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3110         kfree(dev);
3111 }
3112
3113 /**
3114  *      tty_register_device_attr - register a tty device
3115  *      @driver: the tty driver that describes the tty device
3116  *      @index: the index in the tty driver for this tty device
3117  *      @device: a struct device that is associated with this tty device.
3118  *              This field is optional, if there is no known struct device
3119  *              for this tty device it can be set to NULL safely.
3120  *      @drvdata: Driver data to be set to device.
3121  *      @attr_grp: Attribute group to be set on device.
3122  *
3123  *      Returns a pointer to the struct device for this tty device
3124  *      (or ERR_PTR(-EFOO) on error).
3125  *
3126  *      This call is required to be made to register an individual tty device
3127  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3128  *      that bit is not set, this function should not be called by a tty
3129  *      driver.
3130  *
3131  *      Locking: ??
3132  */
3133 struct device *tty_register_device_attr(struct tty_driver *driver,
3134                                    unsigned index, struct device *device,
3135                                    void *drvdata,
3136                                    const struct attribute_group **attr_grp)
3137 {
3138         char name[64];
3139         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3140         struct device *dev = NULL;
3141         int retval = -ENODEV;
3142         bool cdev = false;
3143
3144         if (index >= driver->num) {
3145                 printk(KERN_ERR "Attempt to register invalid tty line number "
3146                        " (%d).\n", index);
3147                 return ERR_PTR(-EINVAL);
3148         }
3149
3150         if (driver->type == TTY_DRIVER_TYPE_PTY)
3151                 pty_line_name(driver, index, name);
3152         else
3153                 tty_line_name(driver, index, name);
3154
3155         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3156                 retval = tty_cdev_add(driver, devt, index, 1);
3157                 if (retval)
3158                         goto error;
3159                 cdev = true;
3160         }
3161
3162         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3163         if (!dev) {
3164                 retval = -ENOMEM;
3165                 goto error;
3166         }
3167
3168         dev->devt = devt;
3169         dev->class = tty_class;
3170         dev->parent = device;
3171         dev->release = tty_device_create_release;
3172         dev_set_name(dev, "%s", name);
3173         dev->groups = attr_grp;
3174         dev_set_drvdata(dev, drvdata);
3175
3176         retval = device_register(dev);
3177         if (retval)
3178                 goto error;
3179
3180         return dev;
3181
3182 error:
3183         put_device(dev);
3184         if (cdev)
3185                 cdev_del(&driver->cdevs[index]);
3186         return ERR_PTR(retval);
3187 }
3188 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3189
3190 /**
3191  *      tty_unregister_device - unregister a tty device
3192  *      @driver: the tty driver that describes the tty device
3193  *      @index: the index in the tty driver for this tty device
3194  *
3195  *      If a tty device is registered with a call to tty_register_device() then
3196  *      this function must be called when the tty device is gone.
3197  *
3198  *      Locking: ??
3199  */
3200
3201 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3202 {
3203         device_destroy(tty_class,
3204                 MKDEV(driver->major, driver->minor_start) + index);
3205         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3206                 cdev_del(&driver->cdevs[index]);
3207 }
3208 EXPORT_SYMBOL(tty_unregister_device);
3209
3210 /**
3211  * __tty_alloc_driver -- allocate tty driver
3212  * @lines: count of lines this driver can handle at most
3213  * @owner: module which is repsonsible for this driver
3214  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3215  *
3216  * This should not be called directly, some of the provided macros should be
3217  * used instead. Use IS_ERR and friends on @retval.
3218  */
3219 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3220                 unsigned long flags)
3221 {
3222         struct tty_driver *driver;
3223         unsigned int cdevs = 1;
3224         int err;
3225
3226         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3227                 return ERR_PTR(-EINVAL);
3228
3229         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3230         if (!driver)
3231                 return ERR_PTR(-ENOMEM);
3232
3233         kref_init(&driver->kref);
3234         driver->magic = TTY_DRIVER_MAGIC;
3235         driver->num = lines;
3236         driver->owner = owner;
3237         driver->flags = flags;
3238
3239         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3240                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3241                                 GFP_KERNEL);
3242                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3243                                 GFP_KERNEL);
3244                 if (!driver->ttys || !driver->termios) {
3245                         err = -ENOMEM;
3246                         goto err_free_all;
3247                 }
3248         }
3249
3250         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3251                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3252                                 GFP_KERNEL);
3253                 if (!driver->ports) {
3254                         err = -ENOMEM;
3255                         goto err_free_all;
3256                 }
3257                 cdevs = lines;
3258         }
3259
3260         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3261         if (!driver->cdevs) {
3262                 err = -ENOMEM;
3263                 goto err_free_all;
3264         }
3265
3266         return driver;
3267 err_free_all:
3268         kfree(driver->ports);
3269         kfree(driver->ttys);
3270         kfree(driver->termios);
3271         kfree(driver);
3272         return ERR_PTR(err);
3273 }
3274 EXPORT_SYMBOL(__tty_alloc_driver);
3275
3276 static void destruct_tty_driver(struct kref *kref)
3277 {
3278         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3279         int i;
3280         struct ktermios *tp;
3281
3282         if (driver->flags & TTY_DRIVER_INSTALLED) {
3283                 /*
3284                  * Free the termios and termios_locked structures because
3285                  * we don't want to get memory leaks when modular tty
3286                  * drivers are removed from the kernel.
3287                  */
3288                 for (i = 0; i < driver->num; i++) {
3289                         tp = driver->termios[i];
3290                         if (tp) {
3291                                 driver->termios[i] = NULL;
3292                                 kfree(tp);
3293                         }
3294                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3295                                 tty_unregister_device(driver, i);
3296                 }
3297                 proc_tty_unregister_driver(driver);
3298                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3299                         cdev_del(&driver->cdevs[0]);
3300         }
3301         kfree(driver->cdevs);
3302         kfree(driver->ports);
3303         kfree(driver->termios);
3304         kfree(driver->ttys);
3305         kfree(driver);
3306 }
3307
3308 void tty_driver_kref_put(struct tty_driver *driver)
3309 {
3310         kref_put(&driver->kref, destruct_tty_driver);
3311 }
3312 EXPORT_SYMBOL(tty_driver_kref_put);
3313
3314 void tty_set_operations(struct tty_driver *driver,
3315                         const struct tty_operations *op)
3316 {
3317         driver->ops = op;
3318 };
3319 EXPORT_SYMBOL(tty_set_operations);
3320
3321 void put_tty_driver(struct tty_driver *d)
3322 {
3323         tty_driver_kref_put(d);
3324 }
3325 EXPORT_SYMBOL(put_tty_driver);
3326
3327 /*
3328  * Called by a tty driver to register itself.
3329  */
3330 int tty_register_driver(struct tty_driver *driver)
3331 {
3332         int error;
3333         int i;
3334         dev_t dev;
3335         struct device *d;
3336
3337         if (!driver->major) {
3338                 error = alloc_chrdev_region(&dev, driver->minor_start,
3339                                                 driver->num, driver->name);
3340                 if (!error) {
3341                         driver->major = MAJOR(dev);
3342                         driver->minor_start = MINOR(dev);
3343                 }
3344         } else {
3345                 dev = MKDEV(driver->major, driver->minor_start);
3346                 error = register_chrdev_region(dev, driver->num, driver->name);
3347         }
3348         if (error < 0)
3349                 goto err;
3350
3351         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3352                 error = tty_cdev_add(driver, dev, 0, driver->num);
3353                 if (error)
3354                         goto err_unreg_char;
3355         }
3356
3357         mutex_lock(&tty_mutex);
3358         list_add(&driver->tty_drivers, &tty_drivers);
3359         mutex_unlock(&tty_mutex);
3360
3361         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3362                 for (i = 0; i < driver->num; i++) {
3363                         d = tty_register_device(driver, i, NULL);
3364                         if (IS_ERR(d)) {
3365                                 error = PTR_ERR(d);
3366                                 goto err_unreg_devs;
3367                         }
3368                 }
3369         }
3370         proc_tty_register_driver(driver);
3371         driver->flags |= TTY_DRIVER_INSTALLED;
3372         return 0;
3373
3374 err_unreg_devs:
3375         for (i--; i >= 0; i--)
3376                 tty_unregister_device(driver, i);
3377
3378         mutex_lock(&tty_mutex);
3379         list_del(&driver->tty_drivers);
3380         mutex_unlock(&tty_mutex);
3381
3382 err_unreg_char:
3383         unregister_chrdev_region(dev, driver->num);
3384 err:
3385         return error;
3386 }
3387 EXPORT_SYMBOL(tty_register_driver);
3388
3389 /*
3390  * Called by a tty driver to unregister itself.
3391  */
3392 int tty_unregister_driver(struct tty_driver *driver)
3393 {
3394 #if 0
3395         /* FIXME */
3396         if (driver->refcount)
3397                 return -EBUSY;
3398 #endif
3399         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3400                                 driver->num);
3401         mutex_lock(&tty_mutex);
3402         list_del(&driver->tty_drivers);
3403         mutex_unlock(&tty_mutex);
3404         return 0;
3405 }
3406
3407 EXPORT_SYMBOL(tty_unregister_driver);
3408
3409 dev_t tty_devnum(struct tty_struct *tty)
3410 {
3411         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3412 }
3413 EXPORT_SYMBOL(tty_devnum);
3414
3415 void proc_clear_tty(struct task_struct *p)
3416 {
3417         unsigned long flags;
3418         struct tty_struct *tty;
3419         spin_lock_irqsave(&p->sighand->siglock, flags);
3420         tty = p->signal->tty;
3421         p->signal->tty = NULL;
3422         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3423         tty_kref_put(tty);
3424 }
3425
3426 /* Called under the sighand lock */
3427
3428 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3429 {
3430         if (tty) {
3431                 unsigned long flags;
3432                 /* We should not have a session or pgrp to put here but.... */
3433                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3434                 put_pid(tty->session);
3435                 put_pid(tty->pgrp);
3436                 tty->pgrp = get_pid(task_pgrp(tsk));
3437                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3438                 tty->session = get_pid(task_session(tsk));
3439                 if (tsk->signal->tty) {
3440                         printk(KERN_DEBUG "tty not NULL!!\n");
3441                         tty_kref_put(tsk->signal->tty);
3442                 }
3443         }
3444         put_pid(tsk->signal->tty_old_pgrp);
3445         tsk->signal->tty = tty_kref_get(tty);
3446         tsk->signal->tty_old_pgrp = NULL;
3447 }
3448
3449 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3450 {
3451         spin_lock_irq(&tsk->sighand->siglock);
3452         __proc_set_tty(tsk, tty);
3453         spin_unlock_irq(&tsk->sighand->siglock);
3454 }
3455
3456 struct tty_struct *get_current_tty(void)
3457 {
3458         struct tty_struct *tty;
3459         unsigned long flags;
3460
3461         spin_lock_irqsave(&current->sighand->siglock, flags);
3462         tty = tty_kref_get(current->signal->tty);
3463         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3464         return tty;
3465 }
3466 EXPORT_SYMBOL_GPL(get_current_tty);
3467
3468 void tty_default_fops(struct file_operations *fops)
3469 {
3470         *fops = tty_fops;
3471 }
3472
3473 /*
3474  * Initialize the console device. This is called *early*, so
3475  * we can't necessarily depend on lots of kernel help here.
3476  * Just do some early initializations, and do the complex setup
3477  * later.
3478  */
3479 void __init console_init(void)
3480 {
3481         initcall_t *call;
3482
3483         /* Setup the default TTY line discipline. */
3484         tty_ldisc_begin();
3485
3486         /*
3487          * set up the console device so that later boot sequences can
3488          * inform about problems etc..
3489          */
3490         call = __con_initcall_start;
3491         while (call < __con_initcall_end) {
3492                 (*call)();
3493                 call++;
3494         }
3495 }
3496
3497 static char *tty_devnode(struct device *dev, umode_t *mode)
3498 {
3499         if (!mode)
3500                 return NULL;
3501         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3502             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3503                 *mode = 0666;
3504         return NULL;
3505 }
3506
3507 static int __init tty_class_init(void)
3508 {
3509         tty_class = class_create(THIS_MODULE, "tty");
3510         if (IS_ERR(tty_class))
3511                 return PTR_ERR(tty_class);
3512         tty_class->devnode = tty_devnode;
3513         return 0;
3514 }
3515
3516 postcore_initcall(tty_class_init);
3517
3518 /* 3/2004 jmc: why do these devices exist? */
3519 static struct cdev tty_cdev, console_cdev;
3520
3521 static ssize_t show_cons_active(struct device *dev,
3522                                 struct device_attribute *attr, char *buf)
3523 {
3524         struct console *cs[16];
3525         int i = 0;
3526         struct console *c;
3527         ssize_t count = 0;
3528
3529         console_lock();
3530         for_each_console(c) {
3531                 if (!c->device)
3532                         continue;
3533                 if (!c->write)
3534                         continue;
3535                 if ((c->flags & CON_ENABLED) == 0)
3536                         continue;
3537                 cs[i++] = c;
3538                 if (i >= ARRAY_SIZE(cs))
3539                         break;
3540         }
3541         while (i--)
3542                 count += sprintf(buf + count, "%s%d%c",
3543                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3544         console_unlock();
3545
3546         return count;
3547 }
3548 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3549
3550 static struct device *consdev;
3551
3552 void console_sysfs_notify(void)
3553 {
3554         if (consdev)
3555                 sysfs_notify(&consdev->kobj, NULL, "active");
3556 }
3557
3558 /*
3559  * Ok, now we can initialize the rest of the tty devices and can count
3560  * on memory allocations, interrupts etc..
3561  */
3562 int __init tty_init(void)
3563 {
3564         cdev_init(&tty_cdev, &tty_fops);
3565         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3566             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3567                 panic("Couldn't register /dev/tty driver\n");
3568         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3569
3570         cdev_init(&console_cdev, &console_fops);
3571         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3572             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3573                 panic("Couldn't register /dev/console driver\n");
3574         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3575                               "console");
3576         if (IS_ERR(consdev))
3577                 consdev = NULL;
3578         else
3579                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3580
3581 #ifdef CONFIG_VT
3582         vty_init(&console_fops);
3583 #endif
3584         return 0;
3585 }
3586