]> Pileus Git - ~andy/linux/blob - drivers/tty/tty_io.c
cpsw: support the HWTSTAMP ioctl and the CPTS
[~andy/linux] / drivers / tty / tty_io.c
1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  */
4
5 /*
6  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7  * or rs-channels. It also implements echoing, cooked mode etc.
8  *
9  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10  *
11  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12  * tty_struct and tty_queue structures.  Previously there was an array
13  * of 256 tty_struct's which was statically allocated, and the
14  * tty_queue structures were allocated at boot time.  Both are now
15  * dynamically allocated only when the tty is open.
16  *
17  * Also restructured routines so that there is more of a separation
18  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19  * the low-level tty routines (serial.c, pty.c, console.c).  This
20  * makes for cleaner and more compact code.  -TYT, 9/17/92
21  *
22  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23  * which can be dynamically activated and de-activated by the line
24  * discipline handling modules (like SLIP).
25  *
26  * NOTE: pay no attention to the line discipline code (yet); its
27  * interface is still subject to change in this version...
28  * -- TYT, 1/31/92
29  *
30  * Added functionality to the OPOST tty handling.  No delays, but all
31  * other bits should be there.
32  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33  *
34  * Rewrote canonical mode and added more termios flags.
35  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36  *
37  * Reorganized FASYNC support so mouse code can share it.
38  *      -- ctm@ardi.com, 9Sep95
39  *
40  * New TIOCLINUX variants added.
41  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
42  *
43  * Restrict vt switching via ioctl()
44  *      -- grif@cs.ucr.edu, 5-Dec-95
45  *
46  * Move console and virtual terminal code to more appropriate files,
47  * implement CONFIG_VT and generalize console device interface.
48  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49  *
50  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51  *      -- Bill Hawes <whawes@star.net>, June 97
52  *
53  * Added devfs support.
54  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55  *
56  * Added support for a Unix98-style ptmx device.
57  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58  *
59  * Reduced memory usage for older ARM systems
60  *      -- Russell King <rmk@arm.linux.org.uk>
61  *
62  * Move do_SAK() into process context.  Less stack use in devfs functions.
63  * alloc_tty_struct() always uses kmalloc()
64  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65  */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
114         .c_iflag = ICRNL | IXON,
115         .c_oflag = OPOST | ONLCR,
116         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118                    ECHOCTL | ECHOKE | IEXTEN,
119         .c_cc = INIT_C_CC,
120         .c_ispeed = 38400,
121         .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127    could do with some rationalisation such as pulling the tty proc function
128    into this file */
129
130 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133    vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143                                                         size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149                                 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160  *      alloc_tty_struct        -       allocate a tty object
161  *
162  *      Return a new empty tty structure. The data fields have not
163  *      been initialized in any way but has been zeroed
164  *
165  *      Locking: none
166  */
167
168 struct tty_struct *alloc_tty_struct(void)
169 {
170         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171 }
172
173 /**
174  *      free_tty_struct         -       free a disused tty
175  *      @tty: tty struct to free
176  *
177  *      Free the write buffers, tty queue and tty memory itself.
178  *
179  *      Locking: none. Must be called after tty is definitely unused
180  */
181
182 void free_tty_struct(struct tty_struct *tty)
183 {
184         if (!tty)
185                 return;
186         if (tty->dev)
187                 put_device(tty->dev);
188         kfree(tty->write_buf);
189         tty_buffer_free_all(tty);
190         tty->magic = 0xDEADDEAD;
191         kfree(tty);
192 }
193
194 static inline struct tty_struct *file_tty(struct file *file)
195 {
196         return ((struct tty_file_private *)file->private_data)->tty;
197 }
198
199 int tty_alloc_file(struct file *file)
200 {
201         struct tty_file_private *priv;
202
203         priv = kmalloc(sizeof(*priv), GFP_KERNEL);
204         if (!priv)
205                 return -ENOMEM;
206
207         file->private_data = priv;
208
209         return 0;
210 }
211
212 /* Associate a new file with the tty structure */
213 void tty_add_file(struct tty_struct *tty, struct file *file)
214 {
215         struct tty_file_private *priv = file->private_data;
216
217         priv->tty = tty;
218         priv->file = file;
219
220         spin_lock(&tty_files_lock);
221         list_add(&priv->list, &tty->tty_files);
222         spin_unlock(&tty_files_lock);
223 }
224
225 /**
226  * tty_free_file - free file->private_data
227  *
228  * This shall be used only for fail path handling when tty_add_file was not
229  * called yet.
230  */
231 void tty_free_file(struct file *file)
232 {
233         struct tty_file_private *priv = file->private_data;
234
235         file->private_data = NULL;
236         kfree(priv);
237 }
238
239 /* Delete file from its tty */
240 void tty_del_file(struct file *file)
241 {
242         struct tty_file_private *priv = file->private_data;
243
244         spin_lock(&tty_files_lock);
245         list_del(&priv->list);
246         spin_unlock(&tty_files_lock);
247         tty_free_file(file);
248 }
249
250
251 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
252
253 /**
254  *      tty_name        -       return tty naming
255  *      @tty: tty structure
256  *      @buf: buffer for output
257  *
258  *      Convert a tty structure into a name. The name reflects the kernel
259  *      naming policy and if udev is in use may not reflect user space
260  *
261  *      Locking: none
262  */
263
264 char *tty_name(struct tty_struct *tty, char *buf)
265 {
266         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
267                 strcpy(buf, "NULL tty");
268         else
269                 strcpy(buf, tty->name);
270         return buf;
271 }
272
273 EXPORT_SYMBOL(tty_name);
274
275 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
276                               const char *routine)
277 {
278 #ifdef TTY_PARANOIA_CHECK
279         if (!tty) {
280                 printk(KERN_WARNING
281                         "null TTY for (%d:%d) in %s\n",
282                         imajor(inode), iminor(inode), routine);
283                 return 1;
284         }
285         if (tty->magic != TTY_MAGIC) {
286                 printk(KERN_WARNING
287                         "bad magic number for tty struct (%d:%d) in %s\n",
288                         imajor(inode), iminor(inode), routine);
289                 return 1;
290         }
291 #endif
292         return 0;
293 }
294
295 static int check_tty_count(struct tty_struct *tty, const char *routine)
296 {
297 #ifdef CHECK_TTY_COUNT
298         struct list_head *p;
299         int count = 0;
300
301         spin_lock(&tty_files_lock);
302         list_for_each(p, &tty->tty_files) {
303                 count++;
304         }
305         spin_unlock(&tty_files_lock);
306         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
307             tty->driver->subtype == PTY_TYPE_SLAVE &&
308             tty->link && tty->link->count)
309                 count++;
310         if (tty->count != count) {
311                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
312                                     "!= #fd's(%d) in %s\n",
313                        tty->name, tty->count, count, routine);
314                 return count;
315         }
316 #endif
317         return 0;
318 }
319
320 /**
321  *      get_tty_driver          -       find device of a tty
322  *      @dev_t: device identifier
323  *      @index: returns the index of the tty
324  *
325  *      This routine returns a tty driver structure, given a device number
326  *      and also passes back the index number.
327  *
328  *      Locking: caller must hold tty_mutex
329  */
330
331 static struct tty_driver *get_tty_driver(dev_t device, int *index)
332 {
333         struct tty_driver *p;
334
335         list_for_each_entry(p, &tty_drivers, tty_drivers) {
336                 dev_t base = MKDEV(p->major, p->minor_start);
337                 if (device < base || device >= base + p->num)
338                         continue;
339                 *index = device - base;
340                 return tty_driver_kref_get(p);
341         }
342         return NULL;
343 }
344
345 #ifdef CONFIG_CONSOLE_POLL
346
347 /**
348  *      tty_find_polling_driver -       find device of a polled tty
349  *      @name: name string to match
350  *      @line: pointer to resulting tty line nr
351  *
352  *      This routine returns a tty driver structure, given a name
353  *      and the condition that the tty driver is capable of polled
354  *      operation.
355  */
356 struct tty_driver *tty_find_polling_driver(char *name, int *line)
357 {
358         struct tty_driver *p, *res = NULL;
359         int tty_line = 0;
360         int len;
361         char *str, *stp;
362
363         for (str = name; *str; str++)
364                 if ((*str >= '0' && *str <= '9') || *str == ',')
365                         break;
366         if (!*str)
367                 return NULL;
368
369         len = str - name;
370         tty_line = simple_strtoul(str, &str, 10);
371
372         mutex_lock(&tty_mutex);
373         /* Search through the tty devices to look for a match */
374         list_for_each_entry(p, &tty_drivers, tty_drivers) {
375                 if (strncmp(name, p->name, len) != 0)
376                         continue;
377                 stp = str;
378                 if (*stp == ',')
379                         stp++;
380                 if (*stp == '\0')
381                         stp = NULL;
382
383                 if (tty_line >= 0 && tty_line < p->num && p->ops &&
384                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
385                         res = tty_driver_kref_get(p);
386                         *line = tty_line;
387                         break;
388                 }
389         }
390         mutex_unlock(&tty_mutex);
391
392         return res;
393 }
394 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
395 #endif
396
397 /**
398  *      tty_check_change        -       check for POSIX terminal changes
399  *      @tty: tty to check
400  *
401  *      If we try to write to, or set the state of, a terminal and we're
402  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
403  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
404  *
405  *      Locking: ctrl_lock
406  */
407
408 int tty_check_change(struct tty_struct *tty)
409 {
410         unsigned long flags;
411         int ret = 0;
412
413         if (current->signal->tty != tty)
414                 return 0;
415
416         spin_lock_irqsave(&tty->ctrl_lock, flags);
417
418         if (!tty->pgrp) {
419                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
420                 goto out_unlock;
421         }
422         if (task_pgrp(current) == tty->pgrp)
423                 goto out_unlock;
424         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
425         if (is_ignored(SIGTTOU))
426                 goto out;
427         if (is_current_pgrp_orphaned()) {
428                 ret = -EIO;
429                 goto out;
430         }
431         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
432         set_thread_flag(TIF_SIGPENDING);
433         ret = -ERESTARTSYS;
434 out:
435         return ret;
436 out_unlock:
437         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
438         return ret;
439 }
440
441 EXPORT_SYMBOL(tty_check_change);
442
443 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
444                                 size_t count, loff_t *ppos)
445 {
446         return 0;
447 }
448
449 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
450                                  size_t count, loff_t *ppos)
451 {
452         return -EIO;
453 }
454
455 /* No kernel lock held - none needed ;) */
456 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457 {
458         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
459 }
460
461 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
462                 unsigned long arg)
463 {
464         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
465 }
466
467 static long hung_up_tty_compat_ioctl(struct file *file,
468                                      unsigned int cmd, unsigned long arg)
469 {
470         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
471 }
472
473 static const struct file_operations tty_fops = {
474         .llseek         = no_llseek,
475         .read           = tty_read,
476         .write          = tty_write,
477         .poll           = tty_poll,
478         .unlocked_ioctl = tty_ioctl,
479         .compat_ioctl   = tty_compat_ioctl,
480         .open           = tty_open,
481         .release        = tty_release,
482         .fasync         = tty_fasync,
483 };
484
485 static const struct file_operations console_fops = {
486         .llseek         = no_llseek,
487         .read           = tty_read,
488         .write          = redirected_tty_write,
489         .poll           = tty_poll,
490         .unlocked_ioctl = tty_ioctl,
491         .compat_ioctl   = tty_compat_ioctl,
492         .open           = tty_open,
493         .release        = tty_release,
494         .fasync         = tty_fasync,
495 };
496
497 static const struct file_operations hung_up_tty_fops = {
498         .llseek         = no_llseek,
499         .read           = hung_up_tty_read,
500         .write          = hung_up_tty_write,
501         .poll           = hung_up_tty_poll,
502         .unlocked_ioctl = hung_up_tty_ioctl,
503         .compat_ioctl   = hung_up_tty_compat_ioctl,
504         .release        = tty_release,
505 };
506
507 static DEFINE_SPINLOCK(redirect_lock);
508 static struct file *redirect;
509
510 /**
511  *      tty_wakeup      -       request more data
512  *      @tty: terminal
513  *
514  *      Internal and external helper for wakeups of tty. This function
515  *      informs the line discipline if present that the driver is ready
516  *      to receive more output data.
517  */
518
519 void tty_wakeup(struct tty_struct *tty)
520 {
521         struct tty_ldisc *ld;
522
523         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
524                 ld = tty_ldisc_ref(tty);
525                 if (ld) {
526                         if (ld->ops->write_wakeup)
527                                 ld->ops->write_wakeup(tty);
528                         tty_ldisc_deref(ld);
529                 }
530         }
531         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
532 }
533
534 EXPORT_SYMBOL_GPL(tty_wakeup);
535
536 /**
537  *      __tty_hangup            -       actual handler for hangup events
538  *      @work: tty device
539  *
540  *      This can be called by the "eventd" kernel thread.  That is process
541  *      synchronous but doesn't hold any locks, so we need to make sure we
542  *      have the appropriate locks for what we're doing.
543  *
544  *      The hangup event clears any pending redirections onto the hung up
545  *      device. It ensures future writes will error and it does the needed
546  *      line discipline hangup and signal delivery. The tty object itself
547  *      remains intact.
548  *
549  *      Locking:
550  *              BTM
551  *                redirect lock for undoing redirection
552  *                file list lock for manipulating list of ttys
553  *                tty_ldisc_lock from called functions
554  *                termios_mutex resetting termios data
555  *                tasklist_lock to walk task list for hangup event
556  *                  ->siglock to protect ->signal/->sighand
557  */
558 void __tty_hangup(struct tty_struct *tty)
559 {
560         struct file *cons_filp = NULL;
561         struct file *filp, *f = NULL;
562         struct task_struct *p;
563         struct tty_file_private *priv;
564         int    closecount = 0, n;
565         unsigned long flags;
566         int refs = 0;
567
568         if (!tty)
569                 return;
570
571
572         spin_lock(&redirect_lock);
573         if (redirect && file_tty(redirect) == tty) {
574                 f = redirect;
575                 redirect = NULL;
576         }
577         spin_unlock(&redirect_lock);
578
579         tty_lock(tty);
580
581         /* some functions below drop BTM, so we need this bit */
582         set_bit(TTY_HUPPING, &tty->flags);
583
584         /* inuse_filps is protected by the single tty lock,
585            this really needs to change if we want to flush the
586            workqueue with the lock held */
587         check_tty_count(tty, "tty_hangup");
588
589         spin_lock(&tty_files_lock);
590         /* This breaks for file handles being sent over AF_UNIX sockets ? */
591         list_for_each_entry(priv, &tty->tty_files, list) {
592                 filp = priv->file;
593                 if (filp->f_op->write == redirected_tty_write)
594                         cons_filp = filp;
595                 if (filp->f_op->write != tty_write)
596                         continue;
597                 closecount++;
598                 __tty_fasync(-1, filp, 0);      /* can't block */
599                 filp->f_op = &hung_up_tty_fops;
600         }
601         spin_unlock(&tty_files_lock);
602
603         /*
604          * it drops BTM and thus races with reopen
605          * we protect the race by TTY_HUPPING
606          */
607         tty_ldisc_hangup(tty);
608
609         read_lock(&tasklist_lock);
610         if (tty->session) {
611                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
612                         spin_lock_irq(&p->sighand->siglock);
613                         if (p->signal->tty == tty) {
614                                 p->signal->tty = NULL;
615                                 /* We defer the dereferences outside fo
616                                    the tasklist lock */
617                                 refs++;
618                         }
619                         if (!p->signal->leader) {
620                                 spin_unlock_irq(&p->sighand->siglock);
621                                 continue;
622                         }
623                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
624                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
625                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
626                         spin_lock_irqsave(&tty->ctrl_lock, flags);
627                         if (tty->pgrp)
628                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
629                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
630                         spin_unlock_irq(&p->sighand->siglock);
631                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
632         }
633         read_unlock(&tasklist_lock);
634
635         spin_lock_irqsave(&tty->ctrl_lock, flags);
636         clear_bit(TTY_THROTTLED, &tty->flags);
637         clear_bit(TTY_PUSH, &tty->flags);
638         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
639         put_pid(tty->session);
640         put_pid(tty->pgrp);
641         tty->session = NULL;
642         tty->pgrp = NULL;
643         tty->ctrl_status = 0;
644         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
645
646         /* Account for the p->signal references we killed */
647         while (refs--)
648                 tty_kref_put(tty);
649
650         /*
651          * If one of the devices matches a console pointer, we
652          * cannot just call hangup() because that will cause
653          * tty->count and state->count to go out of sync.
654          * So we just call close() the right number of times.
655          */
656         if (cons_filp) {
657                 if (tty->ops->close)
658                         for (n = 0; n < closecount; n++)
659                                 tty->ops->close(tty, cons_filp);
660         } else if (tty->ops->hangup)
661                 (tty->ops->hangup)(tty);
662         /*
663          * We don't want to have driver/ldisc interactions beyond
664          * the ones we did here. The driver layer expects no
665          * calls after ->hangup() from the ldisc side. However we
666          * can't yet guarantee all that.
667          */
668         set_bit(TTY_HUPPED, &tty->flags);
669         clear_bit(TTY_HUPPING, &tty->flags);
670         tty_ldisc_enable(tty);
671
672         tty_unlock(tty);
673
674         if (f)
675                 fput(f);
676 }
677
678 static void do_tty_hangup(struct work_struct *work)
679 {
680         struct tty_struct *tty =
681                 container_of(work, struct tty_struct, hangup_work);
682
683         __tty_hangup(tty);
684 }
685
686 /**
687  *      tty_hangup              -       trigger a hangup event
688  *      @tty: tty to hangup
689  *
690  *      A carrier loss (virtual or otherwise) has occurred on this like
691  *      schedule a hangup sequence to run after this event.
692  */
693
694 void tty_hangup(struct tty_struct *tty)
695 {
696 #ifdef TTY_DEBUG_HANGUP
697         char    buf[64];
698         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
699 #endif
700         schedule_work(&tty->hangup_work);
701 }
702
703 EXPORT_SYMBOL(tty_hangup);
704
705 /**
706  *      tty_vhangup             -       process vhangup
707  *      @tty: tty to hangup
708  *
709  *      The user has asked via system call for the terminal to be hung up.
710  *      We do this synchronously so that when the syscall returns the process
711  *      is complete. That guarantee is necessary for security reasons.
712  */
713
714 void tty_vhangup(struct tty_struct *tty)
715 {
716 #ifdef TTY_DEBUG_HANGUP
717         char    buf[64];
718
719         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
720 #endif
721         __tty_hangup(tty);
722 }
723
724 EXPORT_SYMBOL(tty_vhangup);
725
726
727 /**
728  *      tty_vhangup_self        -       process vhangup for own ctty
729  *
730  *      Perform a vhangup on the current controlling tty
731  */
732
733 void tty_vhangup_self(void)
734 {
735         struct tty_struct *tty;
736
737         tty = get_current_tty();
738         if (tty) {
739                 tty_vhangup(tty);
740                 tty_kref_put(tty);
741         }
742 }
743
744 /**
745  *      tty_hung_up_p           -       was tty hung up
746  *      @filp: file pointer of tty
747  *
748  *      Return true if the tty has been subject to a vhangup or a carrier
749  *      loss
750  */
751
752 int tty_hung_up_p(struct file *filp)
753 {
754         return (filp->f_op == &hung_up_tty_fops);
755 }
756
757 EXPORT_SYMBOL(tty_hung_up_p);
758
759 static void session_clear_tty(struct pid *session)
760 {
761         struct task_struct *p;
762         do_each_pid_task(session, PIDTYPE_SID, p) {
763                 proc_clear_tty(p);
764         } while_each_pid_task(session, PIDTYPE_SID, p);
765 }
766
767 /**
768  *      disassociate_ctty       -       disconnect controlling tty
769  *      @on_exit: true if exiting so need to "hang up" the session
770  *
771  *      This function is typically called only by the session leader, when
772  *      it wants to disassociate itself from its controlling tty.
773  *
774  *      It performs the following functions:
775  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
776  *      (2)  Clears the tty from being controlling the session
777  *      (3)  Clears the controlling tty for all processes in the
778  *              session group.
779  *
780  *      The argument on_exit is set to 1 if called when a process is
781  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
782  *
783  *      Locking:
784  *              BTM is taken for hysterical raisins, and held when
785  *                called from no_tty().
786  *                tty_mutex is taken to protect tty
787  *                ->siglock is taken to protect ->signal/->sighand
788  *                tasklist_lock is taken to walk process list for sessions
789  *                  ->siglock is taken to protect ->signal/->sighand
790  */
791
792 void disassociate_ctty(int on_exit)
793 {
794         struct tty_struct *tty;
795
796         if (!current->signal->leader)
797                 return;
798
799         tty = get_current_tty();
800         if (tty) {
801                 struct pid *tty_pgrp = get_pid(tty->pgrp);
802                 if (on_exit) {
803                         if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
804                                 tty_vhangup(tty);
805                 }
806                 tty_kref_put(tty);
807                 if (tty_pgrp) {
808                         kill_pgrp(tty_pgrp, SIGHUP, on_exit);
809                         if (!on_exit)
810                                 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
811                         put_pid(tty_pgrp);
812                 }
813         } else if (on_exit) {
814                 struct pid *old_pgrp;
815                 spin_lock_irq(&current->sighand->siglock);
816                 old_pgrp = current->signal->tty_old_pgrp;
817                 current->signal->tty_old_pgrp = NULL;
818                 spin_unlock_irq(&current->sighand->siglock);
819                 if (old_pgrp) {
820                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
821                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
822                         put_pid(old_pgrp);
823                 }
824                 return;
825         }
826
827         spin_lock_irq(&current->sighand->siglock);
828         put_pid(current->signal->tty_old_pgrp);
829         current->signal->tty_old_pgrp = NULL;
830         spin_unlock_irq(&current->sighand->siglock);
831
832         tty = get_current_tty();
833         if (tty) {
834                 unsigned long flags;
835                 spin_lock_irqsave(&tty->ctrl_lock, flags);
836                 put_pid(tty->session);
837                 put_pid(tty->pgrp);
838                 tty->session = NULL;
839                 tty->pgrp = NULL;
840                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841                 tty_kref_put(tty);
842         } else {
843 #ifdef TTY_DEBUG_HANGUP
844                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
845                        " = NULL", tty);
846 #endif
847         }
848
849         /* Now clear signal->tty under the lock */
850         read_lock(&tasklist_lock);
851         session_clear_tty(task_session(current));
852         read_unlock(&tasklist_lock);
853 }
854
855 /**
856  *
857  *      no_tty  - Ensure the current process does not have a controlling tty
858  */
859 void no_tty(void)
860 {
861         /* FIXME: Review locking here. The tty_lock never covered any race
862            between a new association and proc_clear_tty but possible we need
863            to protect against this anyway */
864         struct task_struct *tsk = current;
865         disassociate_ctty(0);
866         proc_clear_tty(tsk);
867 }
868
869
870 /**
871  *      stop_tty        -       propagate flow control
872  *      @tty: tty to stop
873  *
874  *      Perform flow control to the driver. For PTY/TTY pairs we
875  *      must also propagate the TIOCKPKT status. May be called
876  *      on an already stopped device and will not re-call the driver
877  *      method.
878  *
879  *      This functionality is used by both the line disciplines for
880  *      halting incoming flow and by the driver. It may therefore be
881  *      called from any context, may be under the tty atomic_write_lock
882  *      but not always.
883  *
884  *      Locking:
885  *              Uses the tty control lock internally
886  */
887
888 void stop_tty(struct tty_struct *tty)
889 {
890         unsigned long flags;
891         spin_lock_irqsave(&tty->ctrl_lock, flags);
892         if (tty->stopped) {
893                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
894                 return;
895         }
896         tty->stopped = 1;
897         if (tty->link && tty->link->packet) {
898                 tty->ctrl_status &= ~TIOCPKT_START;
899                 tty->ctrl_status |= TIOCPKT_STOP;
900                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
901         }
902         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
903         if (tty->ops->stop)
904                 (tty->ops->stop)(tty);
905 }
906
907 EXPORT_SYMBOL(stop_tty);
908
909 /**
910  *      start_tty       -       propagate flow control
911  *      @tty: tty to start
912  *
913  *      Start a tty that has been stopped if at all possible. Perform
914  *      any necessary wakeups and propagate the TIOCPKT status. If this
915  *      is the tty was previous stopped and is being started then the
916  *      driver start method is invoked and the line discipline woken.
917  *
918  *      Locking:
919  *              ctrl_lock
920  */
921
922 void start_tty(struct tty_struct *tty)
923 {
924         unsigned long flags;
925         spin_lock_irqsave(&tty->ctrl_lock, flags);
926         if (!tty->stopped || tty->flow_stopped) {
927                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
928                 return;
929         }
930         tty->stopped = 0;
931         if (tty->link && tty->link->packet) {
932                 tty->ctrl_status &= ~TIOCPKT_STOP;
933                 tty->ctrl_status |= TIOCPKT_START;
934                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
935         }
936         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
937         if (tty->ops->start)
938                 (tty->ops->start)(tty);
939         /* If we have a running line discipline it may need kicking */
940         tty_wakeup(tty);
941 }
942
943 EXPORT_SYMBOL(start_tty);
944
945 /**
946  *      tty_read        -       read method for tty device files
947  *      @file: pointer to tty file
948  *      @buf: user buffer
949  *      @count: size of user buffer
950  *      @ppos: unused
951  *
952  *      Perform the read system call function on this terminal device. Checks
953  *      for hung up devices before calling the line discipline method.
954  *
955  *      Locking:
956  *              Locks the line discipline internally while needed. Multiple
957  *      read calls may be outstanding in parallel.
958  */
959
960 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
961                         loff_t *ppos)
962 {
963         int i;
964         struct inode *inode = file->f_path.dentry->d_inode;
965         struct tty_struct *tty = file_tty(file);
966         struct tty_ldisc *ld;
967
968         if (tty_paranoia_check(tty, inode, "tty_read"))
969                 return -EIO;
970         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
971                 return -EIO;
972
973         /* We want to wait for the line discipline to sort out in this
974            situation */
975         ld = tty_ldisc_ref_wait(tty);
976         if (ld->ops->read)
977                 i = (ld->ops->read)(tty, file, buf, count);
978         else
979                 i = -EIO;
980         tty_ldisc_deref(ld);
981         if (i > 0)
982                 inode->i_atime = current_fs_time(inode->i_sb);
983         return i;
984 }
985
986 void tty_write_unlock(struct tty_struct *tty)
987         __releases(&tty->atomic_write_lock)
988 {
989         mutex_unlock(&tty->atomic_write_lock);
990         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
991 }
992
993 int tty_write_lock(struct tty_struct *tty, int ndelay)
994         __acquires(&tty->atomic_write_lock)
995 {
996         if (!mutex_trylock(&tty->atomic_write_lock)) {
997                 if (ndelay)
998                         return -EAGAIN;
999                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1000                         return -ERESTARTSYS;
1001         }
1002         return 0;
1003 }
1004
1005 /*
1006  * Split writes up in sane blocksizes to avoid
1007  * denial-of-service type attacks
1008  */
1009 static inline ssize_t do_tty_write(
1010         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1011         struct tty_struct *tty,
1012         struct file *file,
1013         const char __user *buf,
1014         size_t count)
1015 {
1016         ssize_t ret, written = 0;
1017         unsigned int chunk;
1018
1019         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1020         if (ret < 0)
1021                 return ret;
1022
1023         /*
1024          * We chunk up writes into a temporary buffer. This
1025          * simplifies low-level drivers immensely, since they
1026          * don't have locking issues and user mode accesses.
1027          *
1028          * But if TTY_NO_WRITE_SPLIT is set, we should use a
1029          * big chunk-size..
1030          *
1031          * The default chunk-size is 2kB, because the NTTY
1032          * layer has problems with bigger chunks. It will
1033          * claim to be able to handle more characters than
1034          * it actually does.
1035          *
1036          * FIXME: This can probably go away now except that 64K chunks
1037          * are too likely to fail unless switched to vmalloc...
1038          */
1039         chunk = 2048;
1040         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1041                 chunk = 65536;
1042         if (count < chunk)
1043                 chunk = count;
1044
1045         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1046         if (tty->write_cnt < chunk) {
1047                 unsigned char *buf_chunk;
1048
1049                 if (chunk < 1024)
1050                         chunk = 1024;
1051
1052                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1053                 if (!buf_chunk) {
1054                         ret = -ENOMEM;
1055                         goto out;
1056                 }
1057                 kfree(tty->write_buf);
1058                 tty->write_cnt = chunk;
1059                 tty->write_buf = buf_chunk;
1060         }
1061
1062         /* Do the write .. */
1063         for (;;) {
1064                 size_t size = count;
1065                 if (size > chunk)
1066                         size = chunk;
1067                 ret = -EFAULT;
1068                 if (copy_from_user(tty->write_buf, buf, size))
1069                         break;
1070                 ret = write(tty, file, tty->write_buf, size);
1071                 if (ret <= 0)
1072                         break;
1073                 written += ret;
1074                 buf += ret;
1075                 count -= ret;
1076                 if (!count)
1077                         break;
1078                 ret = -ERESTARTSYS;
1079                 if (signal_pending(current))
1080                         break;
1081                 cond_resched();
1082         }
1083         if (written) {
1084                 struct inode *inode = file->f_path.dentry->d_inode;
1085                 inode->i_mtime = current_fs_time(inode->i_sb);
1086                 ret = written;
1087         }
1088 out:
1089         tty_write_unlock(tty);
1090         return ret;
1091 }
1092
1093 /**
1094  * tty_write_message - write a message to a certain tty, not just the console.
1095  * @tty: the destination tty_struct
1096  * @msg: the message to write
1097  *
1098  * This is used for messages that need to be redirected to a specific tty.
1099  * We don't put it into the syslog queue right now maybe in the future if
1100  * really needed.
1101  *
1102  * We must still hold the BTM and test the CLOSING flag for the moment.
1103  */
1104
1105 void tty_write_message(struct tty_struct *tty, char *msg)
1106 {
1107         if (tty) {
1108                 mutex_lock(&tty->atomic_write_lock);
1109                 tty_lock(tty);
1110                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1111                         tty_unlock(tty);
1112                         tty->ops->write(tty, msg, strlen(msg));
1113                 } else
1114                         tty_unlock(tty);
1115                 tty_write_unlock(tty);
1116         }
1117         return;
1118 }
1119
1120
1121 /**
1122  *      tty_write               -       write method for tty device file
1123  *      @file: tty file pointer
1124  *      @buf: user data to write
1125  *      @count: bytes to write
1126  *      @ppos: unused
1127  *
1128  *      Write data to a tty device via the line discipline.
1129  *
1130  *      Locking:
1131  *              Locks the line discipline as required
1132  *              Writes to the tty driver are serialized by the atomic_write_lock
1133  *      and are then processed in chunks to the device. The line discipline
1134  *      write method will not be invoked in parallel for each device.
1135  */
1136
1137 static ssize_t tty_write(struct file *file, const char __user *buf,
1138                                                 size_t count, loff_t *ppos)
1139 {
1140         struct inode *inode = file->f_path.dentry->d_inode;
1141         struct tty_struct *tty = file_tty(file);
1142         struct tty_ldisc *ld;
1143         ssize_t ret;
1144
1145         if (tty_paranoia_check(tty, inode, "tty_write"))
1146                 return -EIO;
1147         if (!tty || !tty->ops->write ||
1148                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1149                         return -EIO;
1150         /* Short term debug to catch buggy drivers */
1151         if (tty->ops->write_room == NULL)
1152                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1153                         tty->driver->name);
1154         ld = tty_ldisc_ref_wait(tty);
1155         if (!ld->ops->write)
1156                 ret = -EIO;
1157         else
1158                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1159         tty_ldisc_deref(ld);
1160         return ret;
1161 }
1162
1163 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1164                                                 size_t count, loff_t *ppos)
1165 {
1166         struct file *p = NULL;
1167
1168         spin_lock(&redirect_lock);
1169         if (redirect)
1170                 p = get_file(redirect);
1171         spin_unlock(&redirect_lock);
1172
1173         if (p) {
1174                 ssize_t res;
1175                 res = vfs_write(p, buf, count, &p->f_pos);
1176                 fput(p);
1177                 return res;
1178         }
1179         return tty_write(file, buf, count, ppos);
1180 }
1181
1182 static char ptychar[] = "pqrstuvwxyzabcde";
1183
1184 /**
1185  *      pty_line_name   -       generate name for a pty
1186  *      @driver: the tty driver in use
1187  *      @index: the minor number
1188  *      @p: output buffer of at least 6 bytes
1189  *
1190  *      Generate a name from a driver reference and write it to the output
1191  *      buffer.
1192  *
1193  *      Locking: None
1194  */
1195 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1196 {
1197         int i = index + driver->name_base;
1198         /* ->name is initialized to "ttyp", but "tty" is expected */
1199         sprintf(p, "%s%c%x",
1200                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1201                 ptychar[i >> 4 & 0xf], i & 0xf);
1202 }
1203
1204 /**
1205  *      tty_line_name   -       generate name for a tty
1206  *      @driver: the tty driver in use
1207  *      @index: the minor number
1208  *      @p: output buffer of at least 7 bytes
1209  *
1210  *      Generate a name from a driver reference and write it to the output
1211  *      buffer.
1212  *
1213  *      Locking: None
1214  */
1215 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1216 {
1217         if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1218                 strcpy(p, driver->name);
1219         else
1220                 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1221 }
1222
1223 /**
1224  *      tty_driver_lookup_tty() - find an existing tty, if any
1225  *      @driver: the driver for the tty
1226  *      @idx:    the minor number
1227  *
1228  *      Return the tty, if found or ERR_PTR() otherwise.
1229  *
1230  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1231  *      be held until the 'fast-open' is also done. Will change once we
1232  *      have refcounting in the driver and per driver locking
1233  */
1234 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1235                 struct inode *inode, int idx)
1236 {
1237         if (driver->ops->lookup)
1238                 return driver->ops->lookup(driver, inode, idx);
1239
1240         return driver->ttys[idx];
1241 }
1242
1243 /**
1244  *      tty_init_termios        -  helper for termios setup
1245  *      @tty: the tty to set up
1246  *
1247  *      Initialise the termios structures for this tty. Thus runs under
1248  *      the tty_mutex currently so we can be relaxed about ordering.
1249  */
1250
1251 int tty_init_termios(struct tty_struct *tty)
1252 {
1253         struct ktermios *tp;
1254         int idx = tty->index;
1255
1256         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1257                 tty->termios = tty->driver->init_termios;
1258         else {
1259                 /* Check for lazy saved data */
1260                 tp = tty->driver->termios[idx];
1261                 if (tp != NULL)
1262                         tty->termios = *tp;
1263                 else
1264                         tty->termios = tty->driver->init_termios;
1265         }
1266         /* Compatibility until drivers always set this */
1267         tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1268         tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1269         return 0;
1270 }
1271 EXPORT_SYMBOL_GPL(tty_init_termios);
1272
1273 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1274 {
1275         int ret = tty_init_termios(tty);
1276         if (ret)
1277                 return ret;
1278
1279         tty_driver_kref_get(driver);
1280         tty->count++;
1281         driver->ttys[tty->index] = tty;
1282         return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(tty_standard_install);
1285
1286 /**
1287  *      tty_driver_install_tty() - install a tty entry in the driver
1288  *      @driver: the driver for the tty
1289  *      @tty: the tty
1290  *
1291  *      Install a tty object into the driver tables. The tty->index field
1292  *      will be set by the time this is called. This method is responsible
1293  *      for ensuring any need additional structures are allocated and
1294  *      configured.
1295  *
1296  *      Locking: tty_mutex for now
1297  */
1298 static int tty_driver_install_tty(struct tty_driver *driver,
1299                                                 struct tty_struct *tty)
1300 {
1301         return driver->ops->install ? driver->ops->install(driver, tty) :
1302                 tty_standard_install(driver, tty);
1303 }
1304
1305 /**
1306  *      tty_driver_remove_tty() - remove a tty from the driver tables
1307  *      @driver: the driver for the tty
1308  *      @idx:    the minor number
1309  *
1310  *      Remvoe a tty object from the driver tables. The tty->index field
1311  *      will be set by the time this is called.
1312  *
1313  *      Locking: tty_mutex for now
1314  */
1315 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1316 {
1317         if (driver->ops->remove)
1318                 driver->ops->remove(driver, tty);
1319         else
1320                 driver->ttys[tty->index] = NULL;
1321 }
1322
1323 /*
1324  *      tty_reopen()    - fast re-open of an open tty
1325  *      @tty    - the tty to open
1326  *
1327  *      Return 0 on success, -errno on error.
1328  *
1329  *      Locking: tty_mutex must be held from the time the tty was found
1330  *               till this open completes.
1331  */
1332 static int tty_reopen(struct tty_struct *tty)
1333 {
1334         struct tty_driver *driver = tty->driver;
1335
1336         if (test_bit(TTY_CLOSING, &tty->flags) ||
1337                         test_bit(TTY_HUPPING, &tty->flags) ||
1338                         test_bit(TTY_LDISC_CHANGING, &tty->flags))
1339                 return -EIO;
1340
1341         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1342             driver->subtype == PTY_TYPE_MASTER) {
1343                 /*
1344                  * special case for PTY masters: only one open permitted,
1345                  * and the slave side open count is incremented as well.
1346                  */
1347                 if (tty->count)
1348                         return -EIO;
1349
1350                 tty->link->count++;
1351         }
1352         tty->count++;
1353
1354         mutex_lock(&tty->ldisc_mutex);
1355         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1356         mutex_unlock(&tty->ldisc_mutex);
1357
1358         return 0;
1359 }
1360
1361 /**
1362  *      tty_init_dev            -       initialise a tty device
1363  *      @driver: tty driver we are opening a device on
1364  *      @idx: device index
1365  *      @ret_tty: returned tty structure
1366  *
1367  *      Prepare a tty device. This may not be a "new" clean device but
1368  *      could also be an active device. The pty drivers require special
1369  *      handling because of this.
1370  *
1371  *      Locking:
1372  *              The function is called under the tty_mutex, which
1373  *      protects us from the tty struct or driver itself going away.
1374  *
1375  *      On exit the tty device has the line discipline attached and
1376  *      a reference count of 1. If a pair was created for pty/tty use
1377  *      and the other was a pty master then it too has a reference count of 1.
1378  *
1379  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1380  * failed open.  The new code protects the open with a mutex, so it's
1381  * really quite straightforward.  The mutex locking can probably be
1382  * relaxed for the (most common) case of reopening a tty.
1383  */
1384
1385 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1386 {
1387         struct tty_struct *tty;
1388         int retval;
1389
1390         /*
1391          * First time open is complex, especially for PTY devices.
1392          * This code guarantees that either everything succeeds and the
1393          * TTY is ready for operation, or else the table slots are vacated
1394          * and the allocated memory released.  (Except that the termios
1395          * and locked termios may be retained.)
1396          */
1397
1398         if (!try_module_get(driver->owner))
1399                 return ERR_PTR(-ENODEV);
1400
1401         tty = alloc_tty_struct();
1402         if (!tty) {
1403                 retval = -ENOMEM;
1404                 goto err_module_put;
1405         }
1406         initialize_tty_struct(tty, driver, idx);
1407
1408         tty_lock(tty);
1409         retval = tty_driver_install_tty(driver, tty);
1410         if (retval < 0)
1411                 goto err_deinit_tty;
1412
1413         if (!tty->port)
1414                 tty->port = driver->ports[idx];
1415
1416         WARN_RATELIMIT(!tty->port,
1417                         "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1418                         __func__, tty->driver->name);
1419
1420         /*
1421          * Structures all installed ... call the ldisc open routines.
1422          * If we fail here just call release_tty to clean up.  No need
1423          * to decrement the use counts, as release_tty doesn't care.
1424          */
1425         retval = tty_ldisc_setup(tty, tty->link);
1426         if (retval)
1427                 goto err_release_tty;
1428         /* Return the tty locked so that it cannot vanish under the caller */
1429         return tty;
1430
1431 err_deinit_tty:
1432         tty_unlock(tty);
1433         deinitialize_tty_struct(tty);
1434         free_tty_struct(tty);
1435 err_module_put:
1436         module_put(driver->owner);
1437         return ERR_PTR(retval);
1438
1439         /* call the tty release_tty routine to clean out this slot */
1440 err_release_tty:
1441         tty_unlock(tty);
1442         printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1443                                  "clearing slot %d\n", idx);
1444         release_tty(tty, idx);
1445         return ERR_PTR(retval);
1446 }
1447
1448 void tty_free_termios(struct tty_struct *tty)
1449 {
1450         struct ktermios *tp;
1451         int idx = tty->index;
1452
1453         /* If the port is going to reset then it has no termios to save */
1454         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1455                 return;
1456
1457         /* Stash the termios data */
1458         tp = tty->driver->termios[idx];
1459         if (tp == NULL) {
1460                 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1461                 if (tp == NULL) {
1462                         pr_warn("tty: no memory to save termios state.\n");
1463                         return;
1464                 }
1465                 tty->driver->termios[idx] = tp;
1466         }
1467         *tp = tty->termios;
1468 }
1469 EXPORT_SYMBOL(tty_free_termios);
1470
1471
1472 /**
1473  *      release_one_tty         -       release tty structure memory
1474  *      @kref: kref of tty we are obliterating
1475  *
1476  *      Releases memory associated with a tty structure, and clears out the
1477  *      driver table slots. This function is called when a device is no longer
1478  *      in use. It also gets called when setup of a device fails.
1479  *
1480  *      Locking:
1481  *              takes the file list lock internally when working on the list
1482  *      of ttys that the driver keeps.
1483  *
1484  *      This method gets called from a work queue so that the driver private
1485  *      cleanup ops can sleep (needed for USB at least)
1486  */
1487 static void release_one_tty(struct work_struct *work)
1488 {
1489         struct tty_struct *tty =
1490                 container_of(work, struct tty_struct, hangup_work);
1491         struct tty_driver *driver = tty->driver;
1492
1493         if (tty->ops->cleanup)
1494                 tty->ops->cleanup(tty);
1495
1496         tty->magic = 0;
1497         tty_driver_kref_put(driver);
1498         module_put(driver->owner);
1499
1500         spin_lock(&tty_files_lock);
1501         list_del_init(&tty->tty_files);
1502         spin_unlock(&tty_files_lock);
1503
1504         put_pid(tty->pgrp);
1505         put_pid(tty->session);
1506         free_tty_struct(tty);
1507 }
1508
1509 static void queue_release_one_tty(struct kref *kref)
1510 {
1511         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1512
1513         /* The hangup queue is now free so we can reuse it rather than
1514            waste a chunk of memory for each port */
1515         INIT_WORK(&tty->hangup_work, release_one_tty);
1516         schedule_work(&tty->hangup_work);
1517 }
1518
1519 /**
1520  *      tty_kref_put            -       release a tty kref
1521  *      @tty: tty device
1522  *
1523  *      Release a reference to a tty device and if need be let the kref
1524  *      layer destruct the object for us
1525  */
1526
1527 void tty_kref_put(struct tty_struct *tty)
1528 {
1529         if (tty)
1530                 kref_put(&tty->kref, queue_release_one_tty);
1531 }
1532 EXPORT_SYMBOL(tty_kref_put);
1533
1534 /**
1535  *      release_tty             -       release tty structure memory
1536  *
1537  *      Release both @tty and a possible linked partner (think pty pair),
1538  *      and decrement the refcount of the backing module.
1539  *
1540  *      Locking:
1541  *              tty_mutex
1542  *              takes the file list lock internally when working on the list
1543  *      of ttys that the driver keeps.
1544  *
1545  */
1546 static void release_tty(struct tty_struct *tty, int idx)
1547 {
1548         /* This should always be true but check for the moment */
1549         WARN_ON(tty->index != idx);
1550         WARN_ON(!mutex_is_locked(&tty_mutex));
1551         if (tty->ops->shutdown)
1552                 tty->ops->shutdown(tty);
1553         tty_free_termios(tty);
1554         tty_driver_remove_tty(tty->driver, tty);
1555
1556         if (tty->link)
1557                 tty_kref_put(tty->link);
1558         tty_kref_put(tty);
1559 }
1560
1561 /**
1562  *      tty_release_checks - check a tty before real release
1563  *      @tty: tty to check
1564  *      @o_tty: link of @tty (if any)
1565  *      @idx: index of the tty
1566  *
1567  *      Performs some paranoid checking before true release of the @tty.
1568  *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1569  */
1570 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1571                 int idx)
1572 {
1573 #ifdef TTY_PARANOIA_CHECK
1574         if (idx < 0 || idx >= tty->driver->num) {
1575                 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1576                                 __func__, tty->name);
1577                 return -1;
1578         }
1579
1580         /* not much to check for devpts */
1581         if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1582                 return 0;
1583
1584         if (tty != tty->driver->ttys[idx]) {
1585                 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1586                                 __func__, idx, tty->name);
1587                 return -1;
1588         }
1589         if (tty->driver->other) {
1590                 if (o_tty != tty->driver->other->ttys[idx]) {
1591                         printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1592                                         __func__, idx, tty->name);
1593                         return -1;
1594                 }
1595                 if (o_tty->link != tty) {
1596                         printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1597                         return -1;
1598                 }
1599         }
1600 #endif
1601         return 0;
1602 }
1603
1604 /**
1605  *      tty_release             -       vfs callback for close
1606  *      @inode: inode of tty
1607  *      @filp: file pointer for handle to tty
1608  *
1609  *      Called the last time each file handle is closed that references
1610  *      this tty. There may however be several such references.
1611  *
1612  *      Locking:
1613  *              Takes bkl. See tty_release_dev
1614  *
1615  * Even releasing the tty structures is a tricky business.. We have
1616  * to be very careful that the structures are all released at the
1617  * same time, as interrupts might otherwise get the wrong pointers.
1618  *
1619  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1620  * lead to double frees or releasing memory still in use.
1621  */
1622
1623 int tty_release(struct inode *inode, struct file *filp)
1624 {
1625         struct tty_struct *tty = file_tty(filp);
1626         struct tty_struct *o_tty;
1627         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1628         int     devpts;
1629         int     idx;
1630         char    buf[64];
1631
1632         if (tty_paranoia_check(tty, inode, __func__))
1633                 return 0;
1634
1635         tty_lock(tty);
1636         check_tty_count(tty, __func__);
1637
1638         __tty_fasync(-1, filp, 0);
1639
1640         idx = tty->index;
1641         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1642                       tty->driver->subtype == PTY_TYPE_MASTER);
1643         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1644         /* Review: parallel close */
1645         o_tty = tty->link;
1646
1647         if (tty_release_checks(tty, o_tty, idx)) {
1648                 tty_unlock(tty);
1649                 return 0;
1650         }
1651
1652 #ifdef TTY_DEBUG_HANGUP
1653         printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1654                         tty_name(tty, buf), tty->count);
1655 #endif
1656
1657         if (tty->ops->close)
1658                 tty->ops->close(tty, filp);
1659
1660         tty_unlock(tty);
1661         /*
1662          * Sanity check: if tty->count is going to zero, there shouldn't be
1663          * any waiters on tty->read_wait or tty->write_wait.  We test the
1664          * wait queues and kick everyone out _before_ actually starting to
1665          * close.  This ensures that we won't block while releasing the tty
1666          * structure.
1667          *
1668          * The test for the o_tty closing is necessary, since the master and
1669          * slave sides may close in any order.  If the slave side closes out
1670          * first, its count will be one, since the master side holds an open.
1671          * Thus this test wouldn't be triggered at the time the slave closes,
1672          * so we do it now.
1673          *
1674          * Note that it's possible for the tty to be opened again while we're
1675          * flushing out waiters.  By recalculating the closing flags before
1676          * each iteration we avoid any problems.
1677          */
1678         while (1) {
1679                 /* Guard against races with tty->count changes elsewhere and
1680                    opens on /dev/tty */
1681
1682                 mutex_lock(&tty_mutex);
1683                 tty_lock_pair(tty, o_tty);
1684                 tty_closing = tty->count <= 1;
1685                 o_tty_closing = o_tty &&
1686                         (o_tty->count <= (pty_master ? 1 : 0));
1687                 do_sleep = 0;
1688
1689                 if (tty_closing) {
1690                         if (waitqueue_active(&tty->read_wait)) {
1691                                 wake_up_poll(&tty->read_wait, POLLIN);
1692                                 do_sleep++;
1693                         }
1694                         if (waitqueue_active(&tty->write_wait)) {
1695                                 wake_up_poll(&tty->write_wait, POLLOUT);
1696                                 do_sleep++;
1697                         }
1698                 }
1699                 if (o_tty_closing) {
1700                         if (waitqueue_active(&o_tty->read_wait)) {
1701                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1702                                 do_sleep++;
1703                         }
1704                         if (waitqueue_active(&o_tty->write_wait)) {
1705                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1706                                 do_sleep++;
1707                         }
1708                 }
1709                 if (!do_sleep)
1710                         break;
1711
1712                 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1713                                 __func__, tty_name(tty, buf));
1714                 tty_unlock_pair(tty, o_tty);
1715                 mutex_unlock(&tty_mutex);
1716                 schedule();
1717         }
1718
1719         /*
1720          * The closing flags are now consistent with the open counts on
1721          * both sides, and we've completed the last operation that could
1722          * block, so it's safe to proceed with closing.
1723          *
1724          * We must *not* drop the tty_mutex until we ensure that a further
1725          * entry into tty_open can not pick up this tty.
1726          */
1727         if (pty_master) {
1728                 if (--o_tty->count < 0) {
1729                         printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1730                                 __func__, o_tty->count, tty_name(o_tty, buf));
1731                         o_tty->count = 0;
1732                 }
1733         }
1734         if (--tty->count < 0) {
1735                 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1736                                 __func__, tty->count, tty_name(tty, buf));
1737                 tty->count = 0;
1738         }
1739
1740         /*
1741          * We've decremented tty->count, so we need to remove this file
1742          * descriptor off the tty->tty_files list; this serves two
1743          * purposes:
1744          *  - check_tty_count sees the correct number of file descriptors
1745          *    associated with this tty.
1746          *  - do_tty_hangup no longer sees this file descriptor as
1747          *    something that needs to be handled for hangups.
1748          */
1749         tty_del_file(filp);
1750
1751         /*
1752          * Perform some housekeeping before deciding whether to return.
1753          *
1754          * Set the TTY_CLOSING flag if this was the last open.  In the
1755          * case of a pty we may have to wait around for the other side
1756          * to close, and TTY_CLOSING makes sure we can't be reopened.
1757          */
1758         if (tty_closing)
1759                 set_bit(TTY_CLOSING, &tty->flags);
1760         if (o_tty_closing)
1761                 set_bit(TTY_CLOSING, &o_tty->flags);
1762
1763         /*
1764          * If _either_ side is closing, make sure there aren't any
1765          * processes that still think tty or o_tty is their controlling
1766          * tty.
1767          */
1768         if (tty_closing || o_tty_closing) {
1769                 read_lock(&tasklist_lock);
1770                 session_clear_tty(tty->session);
1771                 if (o_tty)
1772                         session_clear_tty(o_tty->session);
1773                 read_unlock(&tasklist_lock);
1774         }
1775
1776         mutex_unlock(&tty_mutex);
1777         tty_unlock_pair(tty, o_tty);
1778         /* At this point the TTY_CLOSING flag should ensure a dead tty
1779            cannot be re-opened by a racing opener */
1780
1781         /* check whether both sides are closing ... */
1782         if (!tty_closing || (o_tty && !o_tty_closing))
1783                 return 0;
1784
1785 #ifdef TTY_DEBUG_HANGUP
1786         printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1787 #endif
1788         /*
1789          * Ask the line discipline code to release its structures
1790          */
1791         tty_ldisc_release(tty, o_tty);
1792         /*
1793          * The release_tty function takes care of the details of clearing
1794          * the slots and preserving the termios structure. The tty_unlock_pair
1795          * should be safe as we keep a kref while the tty is locked (so the
1796          * unlock never unlocks a freed tty).
1797          */
1798         mutex_lock(&tty_mutex);
1799         release_tty(tty, idx);
1800         mutex_unlock(&tty_mutex);
1801
1802         /* Make this pty number available for reallocation */
1803         if (devpts)
1804                 devpts_kill_index(inode, idx);
1805         return 0;
1806 }
1807
1808 /**
1809  *      tty_open_current_tty - get tty of current task for open
1810  *      @device: device number
1811  *      @filp: file pointer to tty
1812  *      @return: tty of the current task iff @device is /dev/tty
1813  *
1814  *      We cannot return driver and index like for the other nodes because
1815  *      devpts will not work then. It expects inodes to be from devpts FS.
1816  *
1817  *      We need to move to returning a refcounted object from all the lookup
1818  *      paths including this one.
1819  */
1820 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1821 {
1822         struct tty_struct *tty;
1823
1824         if (device != MKDEV(TTYAUX_MAJOR, 0))
1825                 return NULL;
1826
1827         tty = get_current_tty();
1828         if (!tty)
1829                 return ERR_PTR(-ENXIO);
1830
1831         filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1832         /* noctty = 1; */
1833         tty_kref_put(tty);
1834         /* FIXME: we put a reference and return a TTY! */
1835         /* This is only safe because the caller holds tty_mutex */
1836         return tty;
1837 }
1838
1839 /**
1840  *      tty_lookup_driver - lookup a tty driver for a given device file
1841  *      @device: device number
1842  *      @filp: file pointer to tty
1843  *      @noctty: set if the device should not become a controlling tty
1844  *      @index: index for the device in the @return driver
1845  *      @return: driver for this inode (with increased refcount)
1846  *
1847  *      If @return is not erroneous, the caller is responsible to decrement the
1848  *      refcount by tty_driver_kref_put.
1849  *
1850  *      Locking: tty_mutex protects get_tty_driver
1851  */
1852 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1853                 int *noctty, int *index)
1854 {
1855         struct tty_driver *driver;
1856
1857         switch (device) {
1858 #ifdef CONFIG_VT
1859         case MKDEV(TTY_MAJOR, 0): {
1860                 extern struct tty_driver *console_driver;
1861                 driver = tty_driver_kref_get(console_driver);
1862                 *index = fg_console;
1863                 *noctty = 1;
1864                 break;
1865         }
1866 #endif
1867         case MKDEV(TTYAUX_MAJOR, 1): {
1868                 struct tty_driver *console_driver = console_device(index);
1869                 if (console_driver) {
1870                         driver = tty_driver_kref_get(console_driver);
1871                         if (driver) {
1872                                 /* Don't let /dev/console block */
1873                                 filp->f_flags |= O_NONBLOCK;
1874                                 *noctty = 1;
1875                                 break;
1876                         }
1877                 }
1878                 return ERR_PTR(-ENODEV);
1879         }
1880         default:
1881                 driver = get_tty_driver(device, index);
1882                 if (!driver)
1883                         return ERR_PTR(-ENODEV);
1884                 break;
1885         }
1886         return driver;
1887 }
1888
1889 /**
1890  *      tty_open                -       open a tty device
1891  *      @inode: inode of device file
1892  *      @filp: file pointer to tty
1893  *
1894  *      tty_open and tty_release keep up the tty count that contains the
1895  *      number of opens done on a tty. We cannot use the inode-count, as
1896  *      different inodes might point to the same tty.
1897  *
1898  *      Open-counting is needed for pty masters, as well as for keeping
1899  *      track of serial lines: DTR is dropped when the last close happens.
1900  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1901  *
1902  *      The termios state of a pty is reset on first open so that
1903  *      settings don't persist across reuse.
1904  *
1905  *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1906  *               tty->count should protect the rest.
1907  *               ->siglock protects ->signal/->sighand
1908  *
1909  *      Note: the tty_unlock/lock cases without a ref are only safe due to
1910  *      tty_mutex
1911  */
1912
1913 static int tty_open(struct inode *inode, struct file *filp)
1914 {
1915         struct tty_struct *tty;
1916         int noctty, retval;
1917         struct tty_driver *driver = NULL;
1918         int index;
1919         dev_t device = inode->i_rdev;
1920         unsigned saved_flags = filp->f_flags;
1921
1922         nonseekable_open(inode, filp);
1923
1924 retry_open:
1925         retval = tty_alloc_file(filp);
1926         if (retval)
1927                 return -ENOMEM;
1928
1929         noctty = filp->f_flags & O_NOCTTY;
1930         index  = -1;
1931         retval = 0;
1932
1933         mutex_lock(&tty_mutex);
1934         /* This is protected by the tty_mutex */
1935         tty = tty_open_current_tty(device, filp);
1936         if (IS_ERR(tty)) {
1937                 retval = PTR_ERR(tty);
1938                 goto err_unlock;
1939         } else if (!tty) {
1940                 driver = tty_lookup_driver(device, filp, &noctty, &index);
1941                 if (IS_ERR(driver)) {
1942                         retval = PTR_ERR(driver);
1943                         goto err_unlock;
1944                 }
1945
1946                 /* check whether we're reopening an existing tty */
1947                 tty = tty_driver_lookup_tty(driver, inode, index);
1948                 if (IS_ERR(tty)) {
1949                         retval = PTR_ERR(tty);
1950                         goto err_unlock;
1951                 }
1952         }
1953
1954         if (tty) {
1955                 tty_lock(tty);
1956                 retval = tty_reopen(tty);
1957                 if (retval < 0) {
1958                         tty_unlock(tty);
1959                         tty = ERR_PTR(retval);
1960                 }
1961         } else  /* Returns with the tty_lock held for now */
1962                 tty = tty_init_dev(driver, index);
1963
1964         mutex_unlock(&tty_mutex);
1965         if (driver)
1966                 tty_driver_kref_put(driver);
1967         if (IS_ERR(tty)) {
1968                 retval = PTR_ERR(tty);
1969                 goto err_file;
1970         }
1971
1972         tty_add_file(tty, filp);
1973
1974         check_tty_count(tty, __func__);
1975         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1976             tty->driver->subtype == PTY_TYPE_MASTER)
1977                 noctty = 1;
1978 #ifdef TTY_DEBUG_HANGUP
1979         printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1980 #endif
1981         if (tty->ops->open)
1982                 retval = tty->ops->open(tty, filp);
1983         else
1984                 retval = -ENODEV;
1985         filp->f_flags = saved_flags;
1986
1987         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1988                                                 !capable(CAP_SYS_ADMIN))
1989                 retval = -EBUSY;
1990
1991         if (retval) {
1992 #ifdef TTY_DEBUG_HANGUP
1993                 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1994                                 retval, tty->name);
1995 #endif
1996                 tty_unlock(tty); /* need to call tty_release without BTM */
1997                 tty_release(inode, filp);
1998                 if (retval != -ERESTARTSYS)
1999                         return retval;
2000
2001                 if (signal_pending(current))
2002                         return retval;
2003
2004                 schedule();
2005                 /*
2006                  * Need to reset f_op in case a hangup happened.
2007                  */
2008                 if (filp->f_op == &hung_up_tty_fops)
2009                         filp->f_op = &tty_fops;
2010                 goto retry_open;
2011         }
2012         tty_unlock(tty);
2013
2014
2015         mutex_lock(&tty_mutex);
2016         tty_lock(tty);
2017         spin_lock_irq(&current->sighand->siglock);
2018         if (!noctty &&
2019             current->signal->leader &&
2020             !current->signal->tty &&
2021             tty->session == NULL)
2022                 __proc_set_tty(current, tty);
2023         spin_unlock_irq(&current->sighand->siglock);
2024         tty_unlock(tty);
2025         mutex_unlock(&tty_mutex);
2026         return 0;
2027 err_unlock:
2028         mutex_unlock(&tty_mutex);
2029         /* after locks to avoid deadlock */
2030         if (!IS_ERR_OR_NULL(driver))
2031                 tty_driver_kref_put(driver);
2032 err_file:
2033         tty_free_file(filp);
2034         return retval;
2035 }
2036
2037
2038
2039 /**
2040  *      tty_poll        -       check tty status
2041  *      @filp: file being polled
2042  *      @wait: poll wait structures to update
2043  *
2044  *      Call the line discipline polling method to obtain the poll
2045  *      status of the device.
2046  *
2047  *      Locking: locks called line discipline but ldisc poll method
2048  *      may be re-entered freely by other callers.
2049  */
2050
2051 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2052 {
2053         struct tty_struct *tty = file_tty(filp);
2054         struct tty_ldisc *ld;
2055         int ret = 0;
2056
2057         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2058                 return 0;
2059
2060         ld = tty_ldisc_ref_wait(tty);
2061         if (ld->ops->poll)
2062                 ret = (ld->ops->poll)(tty, filp, wait);
2063         tty_ldisc_deref(ld);
2064         return ret;
2065 }
2066
2067 static int __tty_fasync(int fd, struct file *filp, int on)
2068 {
2069         struct tty_struct *tty = file_tty(filp);
2070         unsigned long flags;
2071         int retval = 0;
2072
2073         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2074                 goto out;
2075
2076         retval = fasync_helper(fd, filp, on, &tty->fasync);
2077         if (retval <= 0)
2078                 goto out;
2079
2080         if (on) {
2081                 enum pid_type type;
2082                 struct pid *pid;
2083                 if (!waitqueue_active(&tty->read_wait))
2084                         tty->minimum_to_wake = 1;
2085                 spin_lock_irqsave(&tty->ctrl_lock, flags);
2086                 if (tty->pgrp) {
2087                         pid = tty->pgrp;
2088                         type = PIDTYPE_PGID;
2089                 } else {
2090                         pid = task_pid(current);
2091                         type = PIDTYPE_PID;
2092                 }
2093                 get_pid(pid);
2094                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2095                 retval = __f_setown(filp, pid, type, 0);
2096                 put_pid(pid);
2097                 if (retval)
2098                         goto out;
2099         } else {
2100                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2101                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
2102         }
2103         retval = 0;
2104 out:
2105         return retval;
2106 }
2107
2108 static int tty_fasync(int fd, struct file *filp, int on)
2109 {
2110         struct tty_struct *tty = file_tty(filp);
2111         int retval;
2112
2113         tty_lock(tty);
2114         retval = __tty_fasync(fd, filp, on);
2115         tty_unlock(tty);
2116
2117         return retval;
2118 }
2119
2120 /**
2121  *      tiocsti                 -       fake input character
2122  *      @tty: tty to fake input into
2123  *      @p: pointer to character
2124  *
2125  *      Fake input to a tty device. Does the necessary locking and
2126  *      input management.
2127  *
2128  *      FIXME: does not honour flow control ??
2129  *
2130  *      Locking:
2131  *              Called functions take tty_ldisc_lock
2132  *              current->signal->tty check is safe without locks
2133  *
2134  *      FIXME: may race normal receive processing
2135  */
2136
2137 static int tiocsti(struct tty_struct *tty, char __user *p)
2138 {
2139         char ch, mbz = 0;
2140         struct tty_ldisc *ld;
2141
2142         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2143                 return -EPERM;
2144         if (get_user(ch, p))
2145                 return -EFAULT;
2146         tty_audit_tiocsti(tty, ch);
2147         ld = tty_ldisc_ref_wait(tty);
2148         ld->ops->receive_buf(tty, &ch, &mbz, 1);
2149         tty_ldisc_deref(ld);
2150         return 0;
2151 }
2152
2153 /**
2154  *      tiocgwinsz              -       implement window query ioctl
2155  *      @tty; tty
2156  *      @arg: user buffer for result
2157  *
2158  *      Copies the kernel idea of the window size into the user buffer.
2159  *
2160  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2161  *              is consistent.
2162  */
2163
2164 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2165 {
2166         int err;
2167
2168         mutex_lock(&tty->termios_mutex);
2169         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2170         mutex_unlock(&tty->termios_mutex);
2171
2172         return err ? -EFAULT: 0;
2173 }
2174
2175 /**
2176  *      tty_do_resize           -       resize event
2177  *      @tty: tty being resized
2178  *      @rows: rows (character)
2179  *      @cols: cols (character)
2180  *
2181  *      Update the termios variables and send the necessary signals to
2182  *      peform a terminal resize correctly
2183  */
2184
2185 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2186 {
2187         struct pid *pgrp;
2188         unsigned long flags;
2189
2190         /* Lock the tty */
2191         mutex_lock(&tty->termios_mutex);
2192         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2193                 goto done;
2194         /* Get the PID values and reference them so we can
2195            avoid holding the tty ctrl lock while sending signals */
2196         spin_lock_irqsave(&tty->ctrl_lock, flags);
2197         pgrp = get_pid(tty->pgrp);
2198         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2199
2200         if (pgrp)
2201                 kill_pgrp(pgrp, SIGWINCH, 1);
2202         put_pid(pgrp);
2203
2204         tty->winsize = *ws;
2205 done:
2206         mutex_unlock(&tty->termios_mutex);
2207         return 0;
2208 }
2209
2210 /**
2211  *      tiocswinsz              -       implement window size set ioctl
2212  *      @tty; tty side of tty
2213  *      @arg: user buffer for result
2214  *
2215  *      Copies the user idea of the window size to the kernel. Traditionally
2216  *      this is just advisory information but for the Linux console it
2217  *      actually has driver level meaning and triggers a VC resize.
2218  *
2219  *      Locking:
2220  *              Driver dependent. The default do_resize method takes the
2221  *      tty termios mutex and ctrl_lock. The console takes its own lock
2222  *      then calls into the default method.
2223  */
2224
2225 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2226 {
2227         struct winsize tmp_ws;
2228         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2229                 return -EFAULT;
2230
2231         if (tty->ops->resize)
2232                 return tty->ops->resize(tty, &tmp_ws);
2233         else
2234                 return tty_do_resize(tty, &tmp_ws);
2235 }
2236
2237 /**
2238  *      tioccons        -       allow admin to move logical console
2239  *      @file: the file to become console
2240  *
2241  *      Allow the administrator to move the redirected console device
2242  *
2243  *      Locking: uses redirect_lock to guard the redirect information
2244  */
2245
2246 static int tioccons(struct file *file)
2247 {
2248         if (!capable(CAP_SYS_ADMIN))
2249                 return -EPERM;
2250         if (file->f_op->write == redirected_tty_write) {
2251                 struct file *f;
2252                 spin_lock(&redirect_lock);
2253                 f = redirect;
2254                 redirect = NULL;
2255                 spin_unlock(&redirect_lock);
2256                 if (f)
2257                         fput(f);
2258                 return 0;
2259         }
2260         spin_lock(&redirect_lock);
2261         if (redirect) {
2262                 spin_unlock(&redirect_lock);
2263                 return -EBUSY;
2264         }
2265         redirect = get_file(file);
2266         spin_unlock(&redirect_lock);
2267         return 0;
2268 }
2269
2270 /**
2271  *      fionbio         -       non blocking ioctl
2272  *      @file: file to set blocking value
2273  *      @p: user parameter
2274  *
2275  *      Historical tty interfaces had a blocking control ioctl before
2276  *      the generic functionality existed. This piece of history is preserved
2277  *      in the expected tty API of posix OS's.
2278  *
2279  *      Locking: none, the open file handle ensures it won't go away.
2280  */
2281
2282 static int fionbio(struct file *file, int __user *p)
2283 {
2284         int nonblock;
2285
2286         if (get_user(nonblock, p))
2287                 return -EFAULT;
2288
2289         spin_lock(&file->f_lock);
2290         if (nonblock)
2291                 file->f_flags |= O_NONBLOCK;
2292         else
2293                 file->f_flags &= ~O_NONBLOCK;
2294         spin_unlock(&file->f_lock);
2295         return 0;
2296 }
2297
2298 /**
2299  *      tiocsctty       -       set controlling tty
2300  *      @tty: tty structure
2301  *      @arg: user argument
2302  *
2303  *      This ioctl is used to manage job control. It permits a session
2304  *      leader to set this tty as the controlling tty for the session.
2305  *
2306  *      Locking:
2307  *              Takes tty_mutex() to protect tty instance
2308  *              Takes tasklist_lock internally to walk sessions
2309  *              Takes ->siglock() when updating signal->tty
2310  */
2311
2312 static int tiocsctty(struct tty_struct *tty, int arg)
2313 {
2314         int ret = 0;
2315         if (current->signal->leader && (task_session(current) == tty->session))
2316                 return ret;
2317
2318         mutex_lock(&tty_mutex);
2319         /*
2320          * The process must be a session leader and
2321          * not have a controlling tty already.
2322          */
2323         if (!current->signal->leader || current->signal->tty) {
2324                 ret = -EPERM;
2325                 goto unlock;
2326         }
2327
2328         if (tty->session) {
2329                 /*
2330                  * This tty is already the controlling
2331                  * tty for another session group!
2332                  */
2333                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2334                         /*
2335                          * Steal it away
2336                          */
2337                         read_lock(&tasklist_lock);
2338                         session_clear_tty(tty->session);
2339                         read_unlock(&tasklist_lock);
2340                 } else {
2341                         ret = -EPERM;
2342                         goto unlock;
2343                 }
2344         }
2345         proc_set_tty(current, tty);
2346 unlock:
2347         mutex_unlock(&tty_mutex);
2348         return ret;
2349 }
2350
2351 /**
2352  *      tty_get_pgrp    -       return a ref counted pgrp pid
2353  *      @tty: tty to read
2354  *
2355  *      Returns a refcounted instance of the pid struct for the process
2356  *      group controlling the tty.
2357  */
2358
2359 struct pid *tty_get_pgrp(struct tty_struct *tty)
2360 {
2361         unsigned long flags;
2362         struct pid *pgrp;
2363
2364         spin_lock_irqsave(&tty->ctrl_lock, flags);
2365         pgrp = get_pid(tty->pgrp);
2366         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2367
2368         return pgrp;
2369 }
2370 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2371
2372 /**
2373  *      tiocgpgrp               -       get process group
2374  *      @tty: tty passed by user
2375  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2376  *      @p: returned pid
2377  *
2378  *      Obtain the process group of the tty. If there is no process group
2379  *      return an error.
2380  *
2381  *      Locking: none. Reference to current->signal->tty is safe.
2382  */
2383
2384 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2385 {
2386         struct pid *pid;
2387         int ret;
2388         /*
2389          * (tty == real_tty) is a cheap way of
2390          * testing if the tty is NOT a master pty.
2391          */
2392         if (tty == real_tty && current->signal->tty != real_tty)
2393                 return -ENOTTY;
2394         pid = tty_get_pgrp(real_tty);
2395         ret =  put_user(pid_vnr(pid), p);
2396         put_pid(pid);
2397         return ret;
2398 }
2399
2400 /**
2401  *      tiocspgrp               -       attempt to set process group
2402  *      @tty: tty passed by user
2403  *      @real_tty: tty side device matching tty passed by user
2404  *      @p: pid pointer
2405  *
2406  *      Set the process group of the tty to the session passed. Only
2407  *      permitted where the tty session is our session.
2408  *
2409  *      Locking: RCU, ctrl lock
2410  */
2411
2412 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2413 {
2414         struct pid *pgrp;
2415         pid_t pgrp_nr;
2416         int retval = tty_check_change(real_tty);
2417         unsigned long flags;
2418
2419         if (retval == -EIO)
2420                 return -ENOTTY;
2421         if (retval)
2422                 return retval;
2423         if (!current->signal->tty ||
2424             (current->signal->tty != real_tty) ||
2425             (real_tty->session != task_session(current)))
2426                 return -ENOTTY;
2427         if (get_user(pgrp_nr, p))
2428                 return -EFAULT;
2429         if (pgrp_nr < 0)
2430                 return -EINVAL;
2431         rcu_read_lock();
2432         pgrp = find_vpid(pgrp_nr);
2433         retval = -ESRCH;
2434         if (!pgrp)
2435                 goto out_unlock;
2436         retval = -EPERM;
2437         if (session_of_pgrp(pgrp) != task_session(current))
2438                 goto out_unlock;
2439         retval = 0;
2440         spin_lock_irqsave(&tty->ctrl_lock, flags);
2441         put_pid(real_tty->pgrp);
2442         real_tty->pgrp = get_pid(pgrp);
2443         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2444 out_unlock:
2445         rcu_read_unlock();
2446         return retval;
2447 }
2448
2449 /**
2450  *      tiocgsid                -       get session id
2451  *      @tty: tty passed by user
2452  *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2453  *      @p: pointer to returned session id
2454  *
2455  *      Obtain the session id of the tty. If there is no session
2456  *      return an error.
2457  *
2458  *      Locking: none. Reference to current->signal->tty is safe.
2459  */
2460
2461 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2462 {
2463         /*
2464          * (tty == real_tty) is a cheap way of
2465          * testing if the tty is NOT a master pty.
2466         */
2467         if (tty == real_tty && current->signal->tty != real_tty)
2468                 return -ENOTTY;
2469         if (!real_tty->session)
2470                 return -ENOTTY;
2471         return put_user(pid_vnr(real_tty->session), p);
2472 }
2473
2474 /**
2475  *      tiocsetd        -       set line discipline
2476  *      @tty: tty device
2477  *      @p: pointer to user data
2478  *
2479  *      Set the line discipline according to user request.
2480  *
2481  *      Locking: see tty_set_ldisc, this function is just a helper
2482  */
2483
2484 static int tiocsetd(struct tty_struct *tty, int __user *p)
2485 {
2486         int ldisc;
2487         int ret;
2488
2489         if (get_user(ldisc, p))
2490                 return -EFAULT;
2491
2492         ret = tty_set_ldisc(tty, ldisc);
2493
2494         return ret;
2495 }
2496
2497 /**
2498  *      send_break      -       performed time break
2499  *      @tty: device to break on
2500  *      @duration: timeout in mS
2501  *
2502  *      Perform a timed break on hardware that lacks its own driver level
2503  *      timed break functionality.
2504  *
2505  *      Locking:
2506  *              atomic_write_lock serializes
2507  *
2508  */
2509
2510 static int send_break(struct tty_struct *tty, unsigned int duration)
2511 {
2512         int retval;
2513
2514         if (tty->ops->break_ctl == NULL)
2515                 return 0;
2516
2517         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2518                 retval = tty->ops->break_ctl(tty, duration);
2519         else {
2520                 /* Do the work ourselves */
2521                 if (tty_write_lock(tty, 0) < 0)
2522                         return -EINTR;
2523                 retval = tty->ops->break_ctl(tty, -1);
2524                 if (retval)
2525                         goto out;
2526                 if (!signal_pending(current))
2527                         msleep_interruptible(duration);
2528                 retval = tty->ops->break_ctl(tty, 0);
2529 out:
2530                 tty_write_unlock(tty);
2531                 if (signal_pending(current))
2532                         retval = -EINTR;
2533         }
2534         return retval;
2535 }
2536
2537 /**
2538  *      tty_tiocmget            -       get modem status
2539  *      @tty: tty device
2540  *      @file: user file pointer
2541  *      @p: pointer to result
2542  *
2543  *      Obtain the modem status bits from the tty driver if the feature
2544  *      is supported. Return -EINVAL if it is not available.
2545  *
2546  *      Locking: none (up to the driver)
2547  */
2548
2549 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2550 {
2551         int retval = -EINVAL;
2552
2553         if (tty->ops->tiocmget) {
2554                 retval = tty->ops->tiocmget(tty);
2555
2556                 if (retval >= 0)
2557                         retval = put_user(retval, p);
2558         }
2559         return retval;
2560 }
2561
2562 /**
2563  *      tty_tiocmset            -       set modem status
2564  *      @tty: tty device
2565  *      @cmd: command - clear bits, set bits or set all
2566  *      @p: pointer to desired bits
2567  *
2568  *      Set the modem status bits from the tty driver if the feature
2569  *      is supported. Return -EINVAL if it is not available.
2570  *
2571  *      Locking: none (up to the driver)
2572  */
2573
2574 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2575              unsigned __user *p)
2576 {
2577         int retval;
2578         unsigned int set, clear, val;
2579
2580         if (tty->ops->tiocmset == NULL)
2581                 return -EINVAL;
2582
2583         retval = get_user(val, p);
2584         if (retval)
2585                 return retval;
2586         set = clear = 0;
2587         switch (cmd) {
2588         case TIOCMBIS:
2589                 set = val;
2590                 break;
2591         case TIOCMBIC:
2592                 clear = val;
2593                 break;
2594         case TIOCMSET:
2595                 set = val;
2596                 clear = ~val;
2597                 break;
2598         }
2599         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2600         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2601         return tty->ops->tiocmset(tty, set, clear);
2602 }
2603
2604 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2605 {
2606         int retval = -EINVAL;
2607         struct serial_icounter_struct icount;
2608         memset(&icount, 0, sizeof(icount));
2609         if (tty->ops->get_icount)
2610                 retval = tty->ops->get_icount(tty, &icount);
2611         if (retval != 0)
2612                 return retval;
2613         if (copy_to_user(arg, &icount, sizeof(icount)))
2614                 return -EFAULT;
2615         return 0;
2616 }
2617
2618 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2619 {
2620         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2621             tty->driver->subtype == PTY_TYPE_MASTER)
2622                 tty = tty->link;
2623         return tty;
2624 }
2625 EXPORT_SYMBOL(tty_pair_get_tty);
2626
2627 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2628 {
2629         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2630             tty->driver->subtype == PTY_TYPE_MASTER)
2631             return tty;
2632         return tty->link;
2633 }
2634 EXPORT_SYMBOL(tty_pair_get_pty);
2635
2636 /*
2637  * Split this up, as gcc can choke on it otherwise..
2638  */
2639 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2640 {
2641         struct tty_struct *tty = file_tty(file);
2642         struct tty_struct *real_tty;
2643         void __user *p = (void __user *)arg;
2644         int retval;
2645         struct tty_ldisc *ld;
2646         struct inode *inode = file->f_dentry->d_inode;
2647
2648         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2649                 return -EINVAL;
2650
2651         real_tty = tty_pair_get_tty(tty);
2652
2653         /*
2654          * Factor out some common prep work
2655          */
2656         switch (cmd) {
2657         case TIOCSETD:
2658         case TIOCSBRK:
2659         case TIOCCBRK:
2660         case TCSBRK:
2661         case TCSBRKP:
2662                 retval = tty_check_change(tty);
2663                 if (retval)
2664                         return retval;
2665                 if (cmd != TIOCCBRK) {
2666                         tty_wait_until_sent(tty, 0);
2667                         if (signal_pending(current))
2668                                 return -EINTR;
2669                 }
2670                 break;
2671         }
2672
2673         /*
2674          *      Now do the stuff.
2675          */
2676         switch (cmd) {
2677         case TIOCSTI:
2678                 return tiocsti(tty, p);
2679         case TIOCGWINSZ:
2680                 return tiocgwinsz(real_tty, p);
2681         case TIOCSWINSZ:
2682                 return tiocswinsz(real_tty, p);
2683         case TIOCCONS:
2684                 return real_tty != tty ? -EINVAL : tioccons(file);
2685         case FIONBIO:
2686                 return fionbio(file, p);
2687         case TIOCEXCL:
2688                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2689                 return 0;
2690         case TIOCNXCL:
2691                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2692                 return 0;
2693         case TIOCNOTTY:
2694                 if (current->signal->tty != tty)
2695                         return -ENOTTY;
2696                 no_tty();
2697                 return 0;
2698         case TIOCSCTTY:
2699                 return tiocsctty(tty, arg);
2700         case TIOCGPGRP:
2701                 return tiocgpgrp(tty, real_tty, p);
2702         case TIOCSPGRP:
2703                 return tiocspgrp(tty, real_tty, p);
2704         case TIOCGSID:
2705                 return tiocgsid(tty, real_tty, p);
2706         case TIOCGETD:
2707                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2708         case TIOCSETD:
2709                 return tiocsetd(tty, p);
2710         case TIOCVHANGUP:
2711                 if (!capable(CAP_SYS_ADMIN))
2712                         return -EPERM;
2713                 tty_vhangup(tty);
2714                 return 0;
2715         case TIOCGDEV:
2716         {
2717                 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2718                 return put_user(ret, (unsigned int __user *)p);
2719         }
2720         /*
2721          * Break handling
2722          */
2723         case TIOCSBRK:  /* Turn break on, unconditionally */
2724                 if (tty->ops->break_ctl)
2725                         return tty->ops->break_ctl(tty, -1);
2726                 return 0;
2727         case TIOCCBRK:  /* Turn break off, unconditionally */
2728                 if (tty->ops->break_ctl)
2729                         return tty->ops->break_ctl(tty, 0);
2730                 return 0;
2731         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2732                 /* non-zero arg means wait for all output data
2733                  * to be sent (performed above) but don't send break.
2734                  * This is used by the tcdrain() termios function.
2735                  */
2736                 if (!arg)
2737                         return send_break(tty, 250);
2738                 return 0;
2739         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2740                 return send_break(tty, arg ? arg*100 : 250);
2741
2742         case TIOCMGET:
2743                 return tty_tiocmget(tty, p);
2744         case TIOCMSET:
2745         case TIOCMBIC:
2746         case TIOCMBIS:
2747                 return tty_tiocmset(tty, cmd, p);
2748         case TIOCGICOUNT:
2749                 retval = tty_tiocgicount(tty, p);
2750                 /* For the moment allow fall through to the old method */
2751                 if (retval != -EINVAL)
2752                         return retval;
2753                 break;
2754         case TCFLSH:
2755                 switch (arg) {
2756                 case TCIFLUSH:
2757                 case TCIOFLUSH:
2758                 /* flush tty buffer and allow ldisc to process ioctl */
2759                         tty_buffer_flush(tty);
2760                         break;
2761                 }
2762                 break;
2763         }
2764         if (tty->ops->ioctl) {
2765                 retval = (tty->ops->ioctl)(tty, cmd, arg);
2766                 if (retval != -ENOIOCTLCMD)
2767                         return retval;
2768         }
2769         ld = tty_ldisc_ref_wait(tty);
2770         retval = -EINVAL;
2771         if (ld->ops->ioctl) {
2772                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2773                 if (retval == -ENOIOCTLCMD)
2774                         retval = -ENOTTY;
2775         }
2776         tty_ldisc_deref(ld);
2777         return retval;
2778 }
2779
2780 #ifdef CONFIG_COMPAT
2781 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2782                                 unsigned long arg)
2783 {
2784         struct inode *inode = file->f_dentry->d_inode;
2785         struct tty_struct *tty = file_tty(file);
2786         struct tty_ldisc *ld;
2787         int retval = -ENOIOCTLCMD;
2788
2789         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2790                 return -EINVAL;
2791
2792         if (tty->ops->compat_ioctl) {
2793                 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2794                 if (retval != -ENOIOCTLCMD)
2795                         return retval;
2796         }
2797
2798         ld = tty_ldisc_ref_wait(tty);
2799         if (ld->ops->compat_ioctl)
2800                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2801         else
2802                 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2803         tty_ldisc_deref(ld);
2804
2805         return retval;
2806 }
2807 #endif
2808
2809 static int this_tty(const void *t, struct file *file, unsigned fd)
2810 {
2811         if (likely(file->f_op->read != tty_read))
2812                 return 0;
2813         return file_tty(file) != t ? 0 : fd + 1;
2814 }
2815         
2816 /*
2817  * This implements the "Secure Attention Key" ---  the idea is to
2818  * prevent trojan horses by killing all processes associated with this
2819  * tty when the user hits the "Secure Attention Key".  Required for
2820  * super-paranoid applications --- see the Orange Book for more details.
2821  *
2822  * This code could be nicer; ideally it should send a HUP, wait a few
2823  * seconds, then send a INT, and then a KILL signal.  But you then
2824  * have to coordinate with the init process, since all processes associated
2825  * with the current tty must be dead before the new getty is allowed
2826  * to spawn.
2827  *
2828  * Now, if it would be correct ;-/ The current code has a nasty hole -
2829  * it doesn't catch files in flight. We may send the descriptor to ourselves
2830  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2831  *
2832  * Nasty bug: do_SAK is being called in interrupt context.  This can
2833  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2834  */
2835 void __do_SAK(struct tty_struct *tty)
2836 {
2837 #ifdef TTY_SOFT_SAK
2838         tty_hangup(tty);
2839 #else
2840         struct task_struct *g, *p;
2841         struct pid *session;
2842         int             i;
2843
2844         if (!tty)
2845                 return;
2846         session = tty->session;
2847
2848         tty_ldisc_flush(tty);
2849
2850         tty_driver_flush_buffer(tty);
2851
2852         read_lock(&tasklist_lock);
2853         /* Kill the entire session */
2854         do_each_pid_task(session, PIDTYPE_SID, p) {
2855                 printk(KERN_NOTICE "SAK: killed process %d"
2856                         " (%s): task_session(p)==tty->session\n",
2857                         task_pid_nr(p), p->comm);
2858                 send_sig(SIGKILL, p, 1);
2859         } while_each_pid_task(session, PIDTYPE_SID, p);
2860         /* Now kill any processes that happen to have the
2861          * tty open.
2862          */
2863         do_each_thread(g, p) {
2864                 if (p->signal->tty == tty) {
2865                         printk(KERN_NOTICE "SAK: killed process %d"
2866                             " (%s): task_session(p)==tty->session\n",
2867                             task_pid_nr(p), p->comm);
2868                         send_sig(SIGKILL, p, 1);
2869                         continue;
2870                 }
2871                 task_lock(p);
2872                 i = iterate_fd(p->files, 0, this_tty, tty);
2873                 if (i != 0) {
2874                         printk(KERN_NOTICE "SAK: killed process %d"
2875                             " (%s): fd#%d opened to the tty\n",
2876                                     task_pid_nr(p), p->comm, i - 1);
2877                         force_sig(SIGKILL, p);
2878                 }
2879                 task_unlock(p);
2880         } while_each_thread(g, p);
2881         read_unlock(&tasklist_lock);
2882 #endif
2883 }
2884
2885 static void do_SAK_work(struct work_struct *work)
2886 {
2887         struct tty_struct *tty =
2888                 container_of(work, struct tty_struct, SAK_work);
2889         __do_SAK(tty);
2890 }
2891
2892 /*
2893  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2894  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2895  * the values which we write to it will be identical to the values which it
2896  * already has. --akpm
2897  */
2898 void do_SAK(struct tty_struct *tty)
2899 {
2900         if (!tty)
2901                 return;
2902         schedule_work(&tty->SAK_work);
2903 }
2904
2905 EXPORT_SYMBOL(do_SAK);
2906
2907 static int dev_match_devt(struct device *dev, void *data)
2908 {
2909         dev_t *devt = data;
2910         return dev->devt == *devt;
2911 }
2912
2913 /* Must put_device() after it's unused! */
2914 static struct device *tty_get_device(struct tty_struct *tty)
2915 {
2916         dev_t devt = tty_devnum(tty);
2917         return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2918 }
2919
2920
2921 /**
2922  *      initialize_tty_struct
2923  *      @tty: tty to initialize
2924  *
2925  *      This subroutine initializes a tty structure that has been newly
2926  *      allocated.
2927  *
2928  *      Locking: none - tty in question must not be exposed at this point
2929  */
2930
2931 void initialize_tty_struct(struct tty_struct *tty,
2932                 struct tty_driver *driver, int idx)
2933 {
2934         memset(tty, 0, sizeof(struct tty_struct));
2935         kref_init(&tty->kref);
2936         tty->magic = TTY_MAGIC;
2937         tty_ldisc_init(tty);
2938         tty->session = NULL;
2939         tty->pgrp = NULL;
2940         tty->overrun_time = jiffies;
2941         tty_buffer_init(tty);
2942         mutex_init(&tty->legacy_mutex);
2943         mutex_init(&tty->termios_mutex);
2944         mutex_init(&tty->ldisc_mutex);
2945         init_waitqueue_head(&tty->write_wait);
2946         init_waitqueue_head(&tty->read_wait);
2947         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2948         mutex_init(&tty->atomic_read_lock);
2949         mutex_init(&tty->atomic_write_lock);
2950         mutex_init(&tty->output_lock);
2951         mutex_init(&tty->echo_lock);
2952         spin_lock_init(&tty->read_lock);
2953         spin_lock_init(&tty->ctrl_lock);
2954         INIT_LIST_HEAD(&tty->tty_files);
2955         INIT_WORK(&tty->SAK_work, do_SAK_work);
2956
2957         tty->driver = driver;
2958         tty->ops = driver->ops;
2959         tty->index = idx;
2960         tty_line_name(driver, idx, tty->name);
2961         tty->dev = tty_get_device(tty);
2962 }
2963
2964 /**
2965  *      deinitialize_tty_struct
2966  *      @tty: tty to deinitialize
2967  *
2968  *      This subroutine deinitializes a tty structure that has been newly
2969  *      allocated but tty_release cannot be called on that yet.
2970  *
2971  *      Locking: none - tty in question must not be exposed at this point
2972  */
2973 void deinitialize_tty_struct(struct tty_struct *tty)
2974 {
2975         tty_ldisc_deinit(tty);
2976 }
2977
2978 /**
2979  *      tty_put_char    -       write one character to a tty
2980  *      @tty: tty
2981  *      @ch: character
2982  *
2983  *      Write one byte to the tty using the provided put_char method
2984  *      if present. Returns the number of characters successfully output.
2985  *
2986  *      Note: the specific put_char operation in the driver layer may go
2987  *      away soon. Don't call it directly, use this method
2988  */
2989
2990 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2991 {
2992         if (tty->ops->put_char)
2993                 return tty->ops->put_char(tty, ch);
2994         return tty->ops->write(tty, &ch, 1);
2995 }
2996 EXPORT_SYMBOL_GPL(tty_put_char);
2997
2998 struct class *tty_class;
2999
3000 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3001                 unsigned int index, unsigned int count)
3002 {
3003         /* init here, since reused cdevs cause crashes */
3004         cdev_init(&driver->cdevs[index], &tty_fops);
3005         driver->cdevs[index].owner = driver->owner;
3006         return cdev_add(&driver->cdevs[index], dev, count);
3007 }
3008
3009 /**
3010  *      tty_register_device - register a tty device
3011  *      @driver: the tty driver that describes the tty device
3012  *      @index: the index in the tty driver for this tty device
3013  *      @device: a struct device that is associated with this tty device.
3014  *              This field is optional, if there is no known struct device
3015  *              for this tty device it can be set to NULL safely.
3016  *
3017  *      Returns a pointer to the struct device for this tty device
3018  *      (or ERR_PTR(-EFOO) on error).
3019  *
3020  *      This call is required to be made to register an individual tty device
3021  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3022  *      that bit is not set, this function should not be called by a tty
3023  *      driver.
3024  *
3025  *      Locking: ??
3026  */
3027
3028 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3029                                    struct device *device)
3030 {
3031         return tty_register_device_attr(driver, index, device, NULL, NULL);
3032 }
3033 EXPORT_SYMBOL(tty_register_device);
3034
3035 static void tty_device_create_release(struct device *dev)
3036 {
3037         pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3038         kfree(dev);
3039 }
3040
3041 /**
3042  *      tty_register_device_attr - register a tty device
3043  *      @driver: the tty driver that describes the tty device
3044  *      @index: the index in the tty driver for this tty device
3045  *      @device: a struct device that is associated with this tty device.
3046  *              This field is optional, if there is no known struct device
3047  *              for this tty device it can be set to NULL safely.
3048  *      @drvdata: Driver data to be set to device.
3049  *      @attr_grp: Attribute group to be set on device.
3050  *
3051  *      Returns a pointer to the struct device for this tty device
3052  *      (or ERR_PTR(-EFOO) on error).
3053  *
3054  *      This call is required to be made to register an individual tty device
3055  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3056  *      that bit is not set, this function should not be called by a tty
3057  *      driver.
3058  *
3059  *      Locking: ??
3060  */
3061 struct device *tty_register_device_attr(struct tty_driver *driver,
3062                                    unsigned index, struct device *device,
3063                                    void *drvdata,
3064                                    const struct attribute_group **attr_grp)
3065 {
3066         char name[64];
3067         dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3068         struct device *dev = NULL;
3069         int retval = -ENODEV;
3070         bool cdev = false;
3071
3072         if (index >= driver->num) {
3073                 printk(KERN_ERR "Attempt to register invalid tty line number "
3074                        " (%d).\n", index);
3075                 return ERR_PTR(-EINVAL);
3076         }
3077
3078         if (driver->type == TTY_DRIVER_TYPE_PTY)
3079                 pty_line_name(driver, index, name);
3080         else
3081                 tty_line_name(driver, index, name);
3082
3083         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3084                 retval = tty_cdev_add(driver, devt, index, 1);
3085                 if (retval)
3086                         goto error;
3087                 cdev = true;
3088         }
3089
3090         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3091         if (!dev) {
3092                 retval = -ENOMEM;
3093                 goto error;
3094         }
3095
3096         dev->devt = devt;
3097         dev->class = tty_class;
3098         dev->parent = device;
3099         dev->release = tty_device_create_release;
3100         dev_set_name(dev, "%s", name);
3101         dev->groups = attr_grp;
3102         dev_set_drvdata(dev, drvdata);
3103
3104         retval = device_register(dev);
3105         if (retval)
3106                 goto error;
3107
3108         return dev;
3109
3110 error:
3111         put_device(dev);
3112         if (cdev)
3113                 cdev_del(&driver->cdevs[index]);
3114         return ERR_PTR(retval);
3115 }
3116 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3117
3118 /**
3119  *      tty_unregister_device - unregister a tty device
3120  *      @driver: the tty driver that describes the tty device
3121  *      @index: the index in the tty driver for this tty device
3122  *
3123  *      If a tty device is registered with a call to tty_register_device() then
3124  *      this function must be called when the tty device is gone.
3125  *
3126  *      Locking: ??
3127  */
3128
3129 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3130 {
3131         device_destroy(tty_class,
3132                 MKDEV(driver->major, driver->minor_start) + index);
3133         if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3134                 cdev_del(&driver->cdevs[index]);
3135 }
3136 EXPORT_SYMBOL(tty_unregister_device);
3137
3138 /**
3139  * __tty_alloc_driver -- allocate tty driver
3140  * @lines: count of lines this driver can handle at most
3141  * @owner: module which is repsonsible for this driver
3142  * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3143  *
3144  * This should not be called directly, some of the provided macros should be
3145  * used instead. Use IS_ERR and friends on @retval.
3146  */
3147 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3148                 unsigned long flags)
3149 {
3150         struct tty_driver *driver;
3151         unsigned int cdevs = 1;
3152         int err;
3153
3154         if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3155                 return ERR_PTR(-EINVAL);
3156
3157         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3158         if (!driver)
3159                 return ERR_PTR(-ENOMEM);
3160
3161         kref_init(&driver->kref);
3162         driver->magic = TTY_DRIVER_MAGIC;
3163         driver->num = lines;
3164         driver->owner = owner;
3165         driver->flags = flags;
3166
3167         if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3168                 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3169                                 GFP_KERNEL);
3170                 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3171                                 GFP_KERNEL);
3172                 if (!driver->ttys || !driver->termios) {
3173                         err = -ENOMEM;
3174                         goto err_free_all;
3175                 }
3176         }
3177
3178         if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3179                 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3180                                 GFP_KERNEL);
3181                 if (!driver->ports) {
3182                         err = -ENOMEM;
3183                         goto err_free_all;
3184                 }
3185                 cdevs = lines;
3186         }
3187
3188         driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3189         if (!driver->cdevs) {
3190                 err = -ENOMEM;
3191                 goto err_free_all;
3192         }
3193
3194         return driver;
3195 err_free_all:
3196         kfree(driver->ports);
3197         kfree(driver->ttys);
3198         kfree(driver->termios);
3199         kfree(driver);
3200         return ERR_PTR(err);
3201 }
3202 EXPORT_SYMBOL(__tty_alloc_driver);
3203
3204 static void destruct_tty_driver(struct kref *kref)
3205 {
3206         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3207         int i;
3208         struct ktermios *tp;
3209
3210         if (driver->flags & TTY_DRIVER_INSTALLED) {
3211                 /*
3212                  * Free the termios and termios_locked structures because
3213                  * we don't want to get memory leaks when modular tty
3214                  * drivers are removed from the kernel.
3215                  */
3216                 for (i = 0; i < driver->num; i++) {
3217                         tp = driver->termios[i];
3218                         if (tp) {
3219                                 driver->termios[i] = NULL;
3220                                 kfree(tp);
3221                         }
3222                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3223                                 tty_unregister_device(driver, i);
3224                 }
3225                 proc_tty_unregister_driver(driver);
3226                 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3227                         cdev_del(&driver->cdevs[0]);
3228         }
3229         kfree(driver->cdevs);
3230         kfree(driver->ports);
3231         kfree(driver->termios);
3232         kfree(driver->ttys);
3233         kfree(driver);
3234 }
3235
3236 void tty_driver_kref_put(struct tty_driver *driver)
3237 {
3238         kref_put(&driver->kref, destruct_tty_driver);
3239 }
3240 EXPORT_SYMBOL(tty_driver_kref_put);
3241
3242 void tty_set_operations(struct tty_driver *driver,
3243                         const struct tty_operations *op)
3244 {
3245         driver->ops = op;
3246 };
3247 EXPORT_SYMBOL(tty_set_operations);
3248
3249 void put_tty_driver(struct tty_driver *d)
3250 {
3251         tty_driver_kref_put(d);
3252 }
3253 EXPORT_SYMBOL(put_tty_driver);
3254
3255 /*
3256  * Called by a tty driver to register itself.
3257  */
3258 int tty_register_driver(struct tty_driver *driver)
3259 {
3260         int error;
3261         int i;
3262         dev_t dev;
3263         struct device *d;
3264
3265         if (!driver->major) {
3266                 error = alloc_chrdev_region(&dev, driver->minor_start,
3267                                                 driver->num, driver->name);
3268                 if (!error) {
3269                         driver->major = MAJOR(dev);
3270                         driver->minor_start = MINOR(dev);
3271                 }
3272         } else {
3273                 dev = MKDEV(driver->major, driver->minor_start);
3274                 error = register_chrdev_region(dev, driver->num, driver->name);
3275         }
3276         if (error < 0)
3277                 goto err;
3278
3279         if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3280                 error = tty_cdev_add(driver, dev, 0, driver->num);
3281                 if (error)
3282                         goto err_unreg_char;
3283         }
3284
3285         mutex_lock(&tty_mutex);
3286         list_add(&driver->tty_drivers, &tty_drivers);
3287         mutex_unlock(&tty_mutex);
3288
3289         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3290                 for (i = 0; i < driver->num; i++) {
3291                         d = tty_register_device(driver, i, NULL);
3292                         if (IS_ERR(d)) {
3293                                 error = PTR_ERR(d);
3294                                 goto err_unreg_devs;
3295                         }
3296                 }
3297         }
3298         proc_tty_register_driver(driver);
3299         driver->flags |= TTY_DRIVER_INSTALLED;
3300         return 0;
3301
3302 err_unreg_devs:
3303         for (i--; i >= 0; i--)
3304                 tty_unregister_device(driver, i);
3305
3306         mutex_lock(&tty_mutex);
3307         list_del(&driver->tty_drivers);
3308         mutex_unlock(&tty_mutex);
3309
3310 err_unreg_char:
3311         unregister_chrdev_region(dev, driver->num);
3312 err:
3313         return error;
3314 }
3315 EXPORT_SYMBOL(tty_register_driver);
3316
3317 /*
3318  * Called by a tty driver to unregister itself.
3319  */
3320 int tty_unregister_driver(struct tty_driver *driver)
3321 {
3322 #if 0
3323         /* FIXME */
3324         if (driver->refcount)
3325                 return -EBUSY;
3326 #endif
3327         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3328                                 driver->num);
3329         mutex_lock(&tty_mutex);
3330         list_del(&driver->tty_drivers);
3331         mutex_unlock(&tty_mutex);
3332         return 0;
3333 }
3334
3335 EXPORT_SYMBOL(tty_unregister_driver);
3336
3337 dev_t tty_devnum(struct tty_struct *tty)
3338 {
3339         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3340 }
3341 EXPORT_SYMBOL(tty_devnum);
3342
3343 void proc_clear_tty(struct task_struct *p)
3344 {
3345         unsigned long flags;
3346         struct tty_struct *tty;
3347         spin_lock_irqsave(&p->sighand->siglock, flags);
3348         tty = p->signal->tty;
3349         p->signal->tty = NULL;
3350         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3351         tty_kref_put(tty);
3352 }
3353
3354 /* Called under the sighand lock */
3355
3356 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3357 {
3358         if (tty) {
3359                 unsigned long flags;
3360                 /* We should not have a session or pgrp to put here but.... */
3361                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3362                 put_pid(tty->session);
3363                 put_pid(tty->pgrp);
3364                 tty->pgrp = get_pid(task_pgrp(tsk));
3365                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3366                 tty->session = get_pid(task_session(tsk));
3367                 if (tsk->signal->tty) {
3368                         printk(KERN_DEBUG "tty not NULL!!\n");
3369                         tty_kref_put(tsk->signal->tty);
3370                 }
3371         }
3372         put_pid(tsk->signal->tty_old_pgrp);
3373         tsk->signal->tty = tty_kref_get(tty);
3374         tsk->signal->tty_old_pgrp = NULL;
3375 }
3376
3377 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3378 {
3379         spin_lock_irq(&tsk->sighand->siglock);
3380         __proc_set_tty(tsk, tty);
3381         spin_unlock_irq(&tsk->sighand->siglock);
3382 }
3383
3384 struct tty_struct *get_current_tty(void)
3385 {
3386         struct tty_struct *tty;
3387         unsigned long flags;
3388
3389         spin_lock_irqsave(&current->sighand->siglock, flags);
3390         tty = tty_kref_get(current->signal->tty);
3391         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3392         return tty;
3393 }
3394 EXPORT_SYMBOL_GPL(get_current_tty);
3395
3396 void tty_default_fops(struct file_operations *fops)
3397 {
3398         *fops = tty_fops;
3399 }
3400
3401 /*
3402  * Initialize the console device. This is called *early*, so
3403  * we can't necessarily depend on lots of kernel help here.
3404  * Just do some early initializations, and do the complex setup
3405  * later.
3406  */
3407 void __init console_init(void)
3408 {
3409         initcall_t *call;
3410
3411         /* Setup the default TTY line discipline. */
3412         tty_ldisc_begin();
3413
3414         /*
3415          * set up the console device so that later boot sequences can
3416          * inform about problems etc..
3417          */
3418         call = __con_initcall_start;
3419         while (call < __con_initcall_end) {
3420                 (*call)();
3421                 call++;
3422         }
3423 }
3424
3425 static char *tty_devnode(struct device *dev, umode_t *mode)
3426 {
3427         if (!mode)
3428                 return NULL;
3429         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3430             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3431                 *mode = 0666;
3432         return NULL;
3433 }
3434
3435 static int __init tty_class_init(void)
3436 {
3437         tty_class = class_create(THIS_MODULE, "tty");
3438         if (IS_ERR(tty_class))
3439                 return PTR_ERR(tty_class);
3440         tty_class->devnode = tty_devnode;
3441         return 0;
3442 }
3443
3444 postcore_initcall(tty_class_init);
3445
3446 /* 3/2004 jmc: why do these devices exist? */
3447 static struct cdev tty_cdev, console_cdev;
3448
3449 static ssize_t show_cons_active(struct device *dev,
3450                                 struct device_attribute *attr, char *buf)
3451 {
3452         struct console *cs[16];
3453         int i = 0;
3454         struct console *c;
3455         ssize_t count = 0;
3456
3457         console_lock();
3458         for_each_console(c) {
3459                 if (!c->device)
3460                         continue;
3461                 if (!c->write)
3462                         continue;
3463                 if ((c->flags & CON_ENABLED) == 0)
3464                         continue;
3465                 cs[i++] = c;
3466                 if (i >= ARRAY_SIZE(cs))
3467                         break;
3468         }
3469         while (i--)
3470                 count += sprintf(buf + count, "%s%d%c",
3471                                  cs[i]->name, cs[i]->index, i ? ' ':'\n');
3472         console_unlock();
3473
3474         return count;
3475 }
3476 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3477
3478 static struct device *consdev;
3479
3480 void console_sysfs_notify(void)
3481 {
3482         if (consdev)
3483                 sysfs_notify(&consdev->kobj, NULL, "active");
3484 }
3485
3486 /*
3487  * Ok, now we can initialize the rest of the tty devices and can count
3488  * on memory allocations, interrupts etc..
3489  */
3490 int __init tty_init(void)
3491 {
3492         cdev_init(&tty_cdev, &tty_fops);
3493         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3494             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3495                 panic("Couldn't register /dev/tty driver\n");
3496         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3497
3498         cdev_init(&console_cdev, &console_fops);
3499         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3500             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3501                 panic("Couldn't register /dev/console driver\n");
3502         consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3503                               "console");
3504         if (IS_ERR(consdev))
3505                 consdev = NULL;
3506         else
3507                 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3508
3509 #ifdef CONFIG_VT
3510         vty_init(&console_fops);
3511 #endif
3512         return 0;
3513 }
3514