]> Pileus Git - ~andy/linux/blob - drivers/target/target_core_transport.c
target: Change target_submit_cmd() to return void
[~andy/linux] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
46
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
51
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
56
57 static int sub_api_initialized;
58
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
82
83 int init_se_kmem_caches(void)
84 {
85         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87                         0, NULL);
88         if (!se_tmr_req_cache) {
89                 pr_err("kmem_cache_create() for struct se_tmr_req"
90                                 " failed\n");
91                 goto out;
92         }
93         se_sess_cache = kmem_cache_create("se_sess_cache",
94                         sizeof(struct se_session), __alignof__(struct se_session),
95                         0, NULL);
96         if (!se_sess_cache) {
97                 pr_err("kmem_cache_create() for struct se_session"
98                                 " failed\n");
99                 goto out_free_tmr_req_cache;
100         }
101         se_ua_cache = kmem_cache_create("se_ua_cache",
102                         sizeof(struct se_ua), __alignof__(struct se_ua),
103                         0, NULL);
104         if (!se_ua_cache) {
105                 pr_err("kmem_cache_create() for struct se_ua failed\n");
106                 goto out_free_sess_cache;
107         }
108         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109                         sizeof(struct t10_pr_registration),
110                         __alignof__(struct t10_pr_registration), 0, NULL);
111         if (!t10_pr_reg_cache) {
112                 pr_err("kmem_cache_create() for struct t10_pr_registration"
113                                 " failed\n");
114                 goto out_free_ua_cache;
115         }
116         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118                         0, NULL);
119         if (!t10_alua_lu_gp_cache) {
120                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121                                 " failed\n");
122                 goto out_free_pr_reg_cache;
123         }
124         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125                         sizeof(struct t10_alua_lu_gp_member),
126                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127         if (!t10_alua_lu_gp_mem_cache) {
128                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129                                 "cache failed\n");
130                 goto out_free_lu_gp_cache;
131         }
132         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133                         sizeof(struct t10_alua_tg_pt_gp),
134                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135         if (!t10_alua_tg_pt_gp_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "cache failed\n");
138                 goto out_free_lu_gp_mem_cache;
139         }
140         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141                         "t10_alua_tg_pt_gp_mem_cache",
142                         sizeof(struct t10_alua_tg_pt_gp_member),
143                         __alignof__(struct t10_alua_tg_pt_gp_member),
144                         0, NULL);
145         if (!t10_alua_tg_pt_gp_mem_cache) {
146                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147                                 "mem_t failed\n");
148                 goto out_free_tg_pt_gp_cache;
149         }
150
151         target_completion_wq = alloc_workqueue("target_completion",
152                                                WQ_MEM_RECLAIM, 0);
153         if (!target_completion_wq)
154                 goto out_free_tg_pt_gp_mem_cache;
155
156         return 0;
157
158 out_free_tg_pt_gp_mem_cache:
159         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165         kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167         kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169         kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171         kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173         kmem_cache_destroy(se_tmr_req_cache);
174 out:
175         return -ENOMEM;
176 }
177
178 void release_se_kmem_caches(void)
179 {
180         destroy_workqueue(target_completion_wq);
181         kmem_cache_destroy(se_tmr_req_cache);
182         kmem_cache_destroy(se_sess_cache);
183         kmem_cache_destroy(se_ua_cache);
184         kmem_cache_destroy(t10_pr_reg_cache);
185         kmem_cache_destroy(t10_alua_lu_gp_cache);
186         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
189 }
190
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
194
195 /*
196  * Allocate a new row index for the entry type specified
197  */
198 u32 scsi_get_new_index(scsi_index_t type)
199 {
200         u32 new_index;
201
202         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
203
204         spin_lock(&scsi_mib_index_lock);
205         new_index = ++scsi_mib_index[type];
206         spin_unlock(&scsi_mib_index_lock);
207
208         return new_index;
209 }
210
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
212 {
213         atomic_set(&qobj->queue_cnt, 0);
214         INIT_LIST_HEAD(&qobj->qobj_list);
215         init_waitqueue_head(&qobj->thread_wq);
216         spin_lock_init(&qobj->cmd_queue_lock);
217 }
218
219 void transport_subsystem_check_init(void)
220 {
221         int ret;
222
223         if (sub_api_initialized)
224                 return;
225
226         ret = request_module("target_core_iblock");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_iblock\n");
229
230         ret = request_module("target_core_file");
231         if (ret != 0)
232                 pr_err("Unable to load target_core_file\n");
233
234         ret = request_module("target_core_pscsi");
235         if (ret != 0)
236                 pr_err("Unable to load target_core_pscsi\n");
237
238         ret = request_module("target_core_stgt");
239         if (ret != 0)
240                 pr_err("Unable to load target_core_stgt\n");
241
242         sub_api_initialized = 1;
243         return;
244 }
245
246 struct se_session *transport_init_session(void)
247 {
248         struct se_session *se_sess;
249
250         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251         if (!se_sess) {
252                 pr_err("Unable to allocate struct se_session from"
253                                 " se_sess_cache\n");
254                 return ERR_PTR(-ENOMEM);
255         }
256         INIT_LIST_HEAD(&se_sess->sess_list);
257         INIT_LIST_HEAD(&se_sess->sess_acl_list);
258         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259         INIT_LIST_HEAD(&se_sess->sess_wait_list);
260         spin_lock_init(&se_sess->sess_cmd_lock);
261
262         return se_sess;
263 }
264 EXPORT_SYMBOL(transport_init_session);
265
266 /*
267  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
268  */
269 void __transport_register_session(
270         struct se_portal_group *se_tpg,
271         struct se_node_acl *se_nacl,
272         struct se_session *se_sess,
273         void *fabric_sess_ptr)
274 {
275         unsigned char buf[PR_REG_ISID_LEN];
276
277         se_sess->se_tpg = se_tpg;
278         se_sess->fabric_sess_ptr = fabric_sess_ptr;
279         /*
280          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
281          *
282          * Only set for struct se_session's that will actually be moving I/O.
283          * eg: *NOT* discovery sessions.
284          */
285         if (se_nacl) {
286                 /*
287                  * If the fabric module supports an ISID based TransportID,
288                  * save this value in binary from the fabric I_T Nexus now.
289                  */
290                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291                         memset(&buf[0], 0, PR_REG_ISID_LEN);
292                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293                                         &buf[0], PR_REG_ISID_LEN);
294                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
295                 }
296                 spin_lock_irq(&se_nacl->nacl_sess_lock);
297                 /*
298                  * The se_nacl->nacl_sess pointer will be set to the
299                  * last active I_T Nexus for each struct se_node_acl.
300                  */
301                 se_nacl->nacl_sess = se_sess;
302
303                 list_add_tail(&se_sess->sess_acl_list,
304                               &se_nacl->acl_sess_list);
305                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
306         }
307         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
308
309         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
311 }
312 EXPORT_SYMBOL(__transport_register_session);
313
314 void transport_register_session(
315         struct se_portal_group *se_tpg,
316         struct se_node_acl *se_nacl,
317         struct se_session *se_sess,
318         void *fabric_sess_ptr)
319 {
320         spin_lock_bh(&se_tpg->session_lock);
321         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322         spin_unlock_bh(&se_tpg->session_lock);
323 }
324 EXPORT_SYMBOL(transport_register_session);
325
326 void transport_deregister_session_configfs(struct se_session *se_sess)
327 {
328         struct se_node_acl *se_nacl;
329         unsigned long flags;
330         /*
331          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
332          */
333         se_nacl = se_sess->se_node_acl;
334         if (se_nacl) {
335                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336                 list_del(&se_sess->sess_acl_list);
337                 /*
338                  * If the session list is empty, then clear the pointer.
339                  * Otherwise, set the struct se_session pointer from the tail
340                  * element of the per struct se_node_acl active session list.
341                  */
342                 if (list_empty(&se_nacl->acl_sess_list))
343                         se_nacl->nacl_sess = NULL;
344                 else {
345                         se_nacl->nacl_sess = container_of(
346                                         se_nacl->acl_sess_list.prev,
347                                         struct se_session, sess_acl_list);
348                 }
349                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
350         }
351 }
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
353
354 void transport_free_session(struct se_session *se_sess)
355 {
356         kmem_cache_free(se_sess_cache, se_sess);
357 }
358 EXPORT_SYMBOL(transport_free_session);
359
360 void transport_deregister_session(struct se_session *se_sess)
361 {
362         struct se_portal_group *se_tpg = se_sess->se_tpg;
363         struct se_node_acl *se_nacl;
364         unsigned long flags;
365
366         if (!se_tpg) {
367                 transport_free_session(se_sess);
368                 return;
369         }
370
371         spin_lock_irqsave(&se_tpg->session_lock, flags);
372         list_del(&se_sess->sess_list);
373         se_sess->se_tpg = NULL;
374         se_sess->fabric_sess_ptr = NULL;
375         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
376
377         /*
378          * Determine if we need to do extra work for this initiator node's
379          * struct se_node_acl if it had been previously dynamically generated.
380          */
381         se_nacl = se_sess->se_node_acl;
382         if (se_nacl) {
383                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                 if (se_nacl->dynamic_node_acl) {
385                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386                                         se_tpg)) {
387                                 list_del(&se_nacl->acl_list);
388                                 se_tpg->num_node_acls--;
389                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
390
391                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392                                 core_free_device_list_for_node(se_nacl, se_tpg);
393                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394                                                 se_nacl);
395                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
396                         }
397                 }
398                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
399         }
400
401         transport_free_session(se_sess);
402
403         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404                 se_tpg->se_tpg_tfo->get_fabric_name());
405 }
406 EXPORT_SYMBOL(transport_deregister_session);
407
408 /*
409  * Called with cmd->t_state_lock held.
410  */
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
412 {
413         struct se_device *dev = cmd->se_dev;
414         struct se_task *task;
415         unsigned long flags;
416
417         if (!dev)
418                 return;
419
420         list_for_each_entry(task, &cmd->t_task_list, t_list) {
421                 if (task->task_flags & TF_ACTIVE)
422                         continue;
423
424                 spin_lock_irqsave(&dev->execute_task_lock, flags);
425                 if (task->t_state_active) {
426                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
428
429                         list_del(&task->t_state_list);
430                         atomic_dec(&cmd->t_task_cdbs_ex_left);
431                         task->t_state_active = false;
432                 }
433                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
434         }
435
436 }
437
438 /*      transport_cmd_check_stop():
439  *
440  *      'transport_off = 1' determines if t_transport_active should be cleared.
441  *      'transport_off = 2' determines if task_dev_state should be removed.
442  *
443  *      A non-zero u8 t_state sets cmd->t_state.
444  *      Returns 1 when command is stopped, else 0.
445  */
446 static int transport_cmd_check_stop(
447         struct se_cmd *cmd,
448         int transport_off,
449         u8 t_state)
450 {
451         unsigned long flags;
452
453         spin_lock_irqsave(&cmd->t_state_lock, flags);
454         /*
455          * Determine if IOCTL context caller in requesting the stopping of this
456          * command for LUN shutdown purposes.
457          */
458         if (atomic_read(&cmd->transport_lun_stop)) {
459                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461                         cmd->se_tfo->get_task_tag(cmd));
462
463                 atomic_set(&cmd->t_transport_active, 0);
464                 if (transport_off == 2)
465                         transport_all_task_dev_remove_state(cmd);
466                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
467
468                 complete(&cmd->transport_lun_stop_comp);
469                 return 1;
470         }
471         /*
472          * Determine if frontend context caller is requesting the stopping of
473          * this command for frontend exceptions.
474          */
475         if (atomic_read(&cmd->t_transport_stop)) {
476                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478                         cmd->se_tfo->get_task_tag(cmd));
479
480                 if (transport_off == 2)
481                         transport_all_task_dev_remove_state(cmd);
482
483                 /*
484                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485                  * to FE.
486                  */
487                 if (transport_off == 2)
488                         cmd->se_lun = NULL;
489                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
490
491                 complete(&cmd->t_transport_stop_comp);
492                 return 1;
493         }
494         if (transport_off) {
495                 atomic_set(&cmd->t_transport_active, 0);
496                 if (transport_off == 2) {
497                         transport_all_task_dev_remove_state(cmd);
498                         /*
499                          * Clear struct se_cmd->se_lun before the transport_off == 2
500                          * handoff to fabric module.
501                          */
502                         cmd->se_lun = NULL;
503                         /*
504                          * Some fabric modules like tcm_loop can release
505                          * their internally allocated I/O reference now and
506                          * struct se_cmd now.
507                          *
508                          * Fabric modules are expected to return '1' here if the
509                          * se_cmd being passed is released at this point,
510                          * or zero if not being released.
511                          */
512                         if (cmd->se_tfo->check_stop_free != NULL) {
513                                 spin_unlock_irqrestore(
514                                         &cmd->t_state_lock, flags);
515
516                                 return cmd->se_tfo->check_stop_free(cmd);
517                         }
518                 }
519                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
520
521                 return 0;
522         } else if (t_state)
523                 cmd->t_state = t_state;
524         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
525
526         return 0;
527 }
528
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
530 {
531         return transport_cmd_check_stop(cmd, 2, 0);
532 }
533
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
535 {
536         struct se_lun *lun = cmd->se_lun;
537         unsigned long flags;
538
539         if (!lun)
540                 return;
541
542         spin_lock_irqsave(&cmd->t_state_lock, flags);
543         if (!atomic_read(&cmd->transport_dev_active)) {
544                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545                 goto check_lun;
546         }
547         atomic_set(&cmd->transport_dev_active, 0);
548         transport_all_task_dev_remove_state(cmd);
549         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
550
551
552 check_lun:
553         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554         if (atomic_read(&cmd->transport_lun_active)) {
555                 list_del(&cmd->se_lun_node);
556                 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
561         }
562         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
563 }
564
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
566 {
567         if (!cmd->se_tmr_req)
568                 transport_lun_remove_cmd(cmd);
569
570         if (transport_cmd_check_stop_to_fabric(cmd))
571                 return;
572         if (remove) {
573                 transport_remove_cmd_from_queue(cmd);
574                 transport_put_cmd(cmd);
575         }
576 }
577
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579                 bool at_head)
580 {
581         struct se_device *dev = cmd->se_dev;
582         struct se_queue_obj *qobj = &dev->dev_queue_obj;
583         unsigned long flags;
584
585         if (t_state) {
586                 spin_lock_irqsave(&cmd->t_state_lock, flags);
587                 cmd->t_state = t_state;
588                 atomic_set(&cmd->t_transport_active, 1);
589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
590         }
591
592         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
593
594         /* If the cmd is already on the list, remove it before we add it */
595         if (!list_empty(&cmd->se_queue_node))
596                 list_del(&cmd->se_queue_node);
597         else
598                 atomic_inc(&qobj->queue_cnt);
599
600         if (at_head)
601                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602         else
603                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604         atomic_set(&cmd->t_transport_queue_active, 1);
605         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
606
607         wake_up_interruptible(&qobj->thread_wq);
608 }
609
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
612 {
613         struct se_cmd *cmd;
614         unsigned long flags;
615
616         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617         if (list_empty(&qobj->qobj_list)) {
618                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619                 return NULL;
620         }
621         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
622
623         atomic_set(&cmd->t_transport_queue_active, 0);
624
625         list_del_init(&cmd->se_queue_node);
626         atomic_dec(&qobj->queue_cnt);
627         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
628
629         return cmd;
630 }
631
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
633 {
634         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635         unsigned long flags;
636
637         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638         if (!atomic_read(&cmd->t_transport_queue_active)) {
639                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640                 return;
641         }
642         atomic_set(&cmd->t_transport_queue_active, 0);
643         atomic_dec(&qobj->queue_cnt);
644         list_del_init(&cmd->se_queue_node);
645         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
646
647         if (atomic_read(&cmd->t_transport_queue_active)) {
648                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649                         cmd->se_tfo->get_task_tag(cmd),
650                         atomic_read(&cmd->t_transport_queue_active));
651         }
652 }
653
654 /*
655  * Completion function used by TCM subsystem plugins (such as FILEIO)
656  * for queueing up response from struct se_subsystem_api->do_task()
657  */
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
659 {
660         struct se_task *task = list_entry(cmd->t_task_list.next,
661                                 struct se_task, t_list);
662
663         if (good) {
664                 cmd->scsi_status = SAM_STAT_GOOD;
665                 task->task_scsi_status = GOOD;
666         } else {
667                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668                 task->task_se_cmd->scsi_sense_reason =
669                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
670
671         }
672
673         transport_complete_task(task, good);
674 }
675 EXPORT_SYMBOL(transport_complete_sync_cache);
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd);
682 }
683
684 /*      transport_complete_task():
685  *
686  *      Called from interrupt and non interrupt context depending
687  *      on the transport plugin.
688  */
689 void transport_complete_task(struct se_task *task, int success)
690 {
691         struct se_cmd *cmd = task->task_se_cmd;
692         struct se_device *dev = cmd->se_dev;
693         unsigned long flags;
694
695         spin_lock_irqsave(&cmd->t_state_lock, flags);
696         task->task_flags &= ~TF_ACTIVE;
697
698         /*
699          * See if any sense data exists, if so set the TASK_SENSE flag.
700          * Also check for any other post completion work that needs to be
701          * done by the plugins.
702          */
703         if (dev && dev->transport->transport_complete) {
704                 if (dev->transport->transport_complete(task) != 0) {
705                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706                         task->task_flags |= TF_HAS_SENSE;
707                         success = 1;
708                 }
709         }
710
711         /*
712          * See if we are waiting for outstanding struct se_task
713          * to complete for an exception condition
714          */
715         if (task->task_flags & TF_REQUEST_STOP) {
716                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717                 complete(&task->task_stop_comp);
718                 return;
719         }
720
721         if (!success)
722                 cmd->t_tasks_failed = 1;
723
724         /*
725          * Decrement the outstanding t_task_cdbs_left count.  The last
726          * struct se_task from struct se_cmd will complete itself into the
727          * device queue depending upon int success.
728          */
729         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731                 return;
732         }
733
734         if (cmd->t_tasks_failed) {
735                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736                 INIT_WORK(&cmd->work, target_complete_failure_work);
737         } else {
738                 atomic_set(&cmd->t_transport_complete, 1);
739                 INIT_WORK(&cmd->work, target_complete_ok_work);
740         }
741
742         cmd->t_state = TRANSPORT_COMPLETE;
743         atomic_set(&cmd->t_transport_active, 1);
744         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
745
746         queue_work(target_completion_wq, &cmd->work);
747 }
748 EXPORT_SYMBOL(transport_complete_task);
749
750 /*
751  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752  * struct se_task list are ready to be added to the active execution list
753  * struct se_device
754
755  * Called with se_dev_t->execute_task_lock called.
756  */
757 static inline int transport_add_task_check_sam_attr(
758         struct se_task *task,
759         struct se_task *task_prev,
760         struct se_device *dev)
761 {
762         /*
763          * No SAM Task attribute emulation enabled, add to tail of
764          * execution queue
765          */
766         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768                 return 0;
769         }
770         /*
771          * HEAD_OF_QUEUE attribute for received CDB, which means
772          * the first task that is associated with a struct se_cmd goes to
773          * head of the struct se_device->execute_task_list, and task_prev
774          * after that for each subsequent task
775          */
776         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777                 list_add(&task->t_execute_list,
778                                 (task_prev != NULL) ?
779                                 &task_prev->t_execute_list :
780                                 &dev->execute_task_list);
781
782                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783                                 " in execution queue\n",
784                                 task->task_se_cmd->t_task_cdb[0]);
785                 return 1;
786         }
787         /*
788          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789          * transitioned from Dermant -> Active state, and are added to the end
790          * of the struct se_device->execute_task_list
791          */
792         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793         return 0;
794 }
795
796 /*      __transport_add_task_to_execute_queue():
797  *
798  *      Called with se_dev_t->execute_task_lock called.
799  */
800 static void __transport_add_task_to_execute_queue(
801         struct se_task *task,
802         struct se_task *task_prev,
803         struct se_device *dev)
804 {
805         int head_of_queue;
806
807         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808         atomic_inc(&dev->execute_tasks);
809
810         if (task->t_state_active)
811                 return;
812         /*
813          * Determine if this task needs to go to HEAD_OF_QUEUE for the
814          * state list as well.  Running with SAM Task Attribute emulation
815          * will always return head_of_queue == 0 here
816          */
817         if (head_of_queue)
818                 list_add(&task->t_state_list, (task_prev) ?
819                                 &task_prev->t_state_list :
820                                 &dev->state_task_list);
821         else
822                 list_add_tail(&task->t_state_list, &dev->state_task_list);
823
824         task->t_state_active = true;
825
826         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828                 task, dev);
829 }
830
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task;
835         unsigned long flags;
836
837         spin_lock_irqsave(&cmd->t_state_lock, flags);
838         list_for_each_entry(task, &cmd->t_task_list, t_list) {
839                 spin_lock(&dev->execute_task_lock);
840                 if (!task->t_state_active) {
841                         list_add_tail(&task->t_state_list,
842                                       &dev->state_task_list);
843                         task->t_state_active = true;
844
845                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846                                 task->task_se_cmd->se_tfo->get_task_tag(
847                                 task->task_se_cmd), task, dev);
848                 }
849                 spin_unlock(&dev->execute_task_lock);
850         }
851         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
852 }
853
854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
855 {
856         struct se_device *dev = cmd->se_dev;
857         struct se_task *task, *task_prev = NULL;
858
859         list_for_each_entry(task, &cmd->t_task_list, t_list) {
860                 if (!list_empty(&task->t_execute_list))
861                         continue;
862                 /*
863                  * __transport_add_task_to_execute_queue() handles the
864                  * SAM Task Attribute emulation if enabled
865                  */
866                 __transport_add_task_to_execute_queue(task, task_prev, dev);
867                 task_prev = task;
868         }
869 }
870
871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
872 {
873         unsigned long flags;
874         struct se_device *dev = cmd->se_dev;
875
876         spin_lock_irqsave(&dev->execute_task_lock, flags);
877         __transport_add_tasks_from_cmd(cmd);
878         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
879 }
880
881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882                 struct se_device *dev)
883 {
884         list_del_init(&task->t_execute_list);
885         atomic_dec(&dev->execute_tasks);
886 }
887
888 static void transport_remove_task_from_execute_queue(
889         struct se_task *task,
890         struct se_device *dev)
891 {
892         unsigned long flags;
893
894         if (WARN_ON(list_empty(&task->t_execute_list)))
895                 return;
896
897         spin_lock_irqsave(&dev->execute_task_lock, flags);
898         __transport_remove_task_from_execute_queue(task, dev);
899         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
900 }
901
902 /*
903  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
904  */
905
906 static void target_qf_do_work(struct work_struct *work)
907 {
908         struct se_device *dev = container_of(work, struct se_device,
909                                         qf_work_queue);
910         LIST_HEAD(qf_cmd_list);
911         struct se_cmd *cmd, *cmd_tmp;
912
913         spin_lock_irq(&dev->qf_cmd_lock);
914         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915         spin_unlock_irq(&dev->qf_cmd_lock);
916
917         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918                 list_del(&cmd->se_qf_node);
919                 atomic_dec(&dev->dev_qf_count);
920                 smp_mb__after_atomic_dec();
921
922                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926                         : "UNKNOWN");
927
928                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
929         }
930 }
931
932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
933 {
934         switch (cmd->data_direction) {
935         case DMA_NONE:
936                 return "NONE";
937         case DMA_FROM_DEVICE:
938                 return "READ";
939         case DMA_TO_DEVICE:
940                 return "WRITE";
941         case DMA_BIDIRECTIONAL:
942                 return "BIDI";
943         default:
944                 break;
945         }
946
947         return "UNKNOWN";
948 }
949
950 void transport_dump_dev_state(
951         struct se_device *dev,
952         char *b,
953         int *bl)
954 {
955         *bl += sprintf(b + *bl, "Status: ");
956         switch (dev->dev_status) {
957         case TRANSPORT_DEVICE_ACTIVATED:
958                 *bl += sprintf(b + *bl, "ACTIVATED");
959                 break;
960         case TRANSPORT_DEVICE_DEACTIVATED:
961                 *bl += sprintf(b + *bl, "DEACTIVATED");
962                 break;
963         case TRANSPORT_DEVICE_SHUTDOWN:
964                 *bl += sprintf(b + *bl, "SHUTDOWN");
965                 break;
966         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968                 *bl += sprintf(b + *bl, "OFFLINE");
969                 break;
970         default:
971                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972                 break;
973         }
974
975         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
976                 atomic_read(&dev->execute_tasks), dev->queue_depth);
977         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
978                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979         *bl += sprintf(b + *bl, "        ");
980 }
981
982 void transport_dump_vpd_proto_id(
983         struct t10_vpd *vpd,
984         unsigned char *p_buf,
985         int p_buf_len)
986 {
987         unsigned char buf[VPD_TMP_BUF_SIZE];
988         int len;
989
990         memset(buf, 0, VPD_TMP_BUF_SIZE);
991         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
992
993         switch (vpd->protocol_identifier) {
994         case 0x00:
995                 sprintf(buf+len, "Fibre Channel\n");
996                 break;
997         case 0x10:
998                 sprintf(buf+len, "Parallel SCSI\n");
999                 break;
1000         case 0x20:
1001                 sprintf(buf+len, "SSA\n");
1002                 break;
1003         case 0x30:
1004                 sprintf(buf+len, "IEEE 1394\n");
1005                 break;
1006         case 0x40:
1007                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008                                 " Protocol\n");
1009                 break;
1010         case 0x50:
1011                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012                 break;
1013         case 0x60:
1014                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015                 break;
1016         case 0x70:
1017                 sprintf(buf+len, "Automation/Drive Interface Transport"
1018                                 " Protocol\n");
1019                 break;
1020         case 0x80:
1021                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022                 break;
1023         default:
1024                 sprintf(buf+len, "Unknown 0x%02x\n",
1025                                 vpd->protocol_identifier);
1026                 break;
1027         }
1028
1029         if (p_buf)
1030                 strncpy(p_buf, buf, p_buf_len);
1031         else
1032                 pr_debug("%s", buf);
1033 }
1034
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1037 {
1038         /*
1039          * Check if the Protocol Identifier Valid (PIV) bit is set..
1040          *
1041          * from spc3r23.pdf section 7.5.1
1042          */
1043          if (page_83[1] & 0x80) {
1044                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045                 vpd->protocol_identifier_set = 1;
1046                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1047         }
1048 }
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1050
1051 int transport_dump_vpd_assoc(
1052         struct t10_vpd *vpd,
1053         unsigned char *p_buf,
1054         int p_buf_len)
1055 {
1056         unsigned char buf[VPD_TMP_BUF_SIZE];
1057         int ret = 0;
1058         int len;
1059
1060         memset(buf, 0, VPD_TMP_BUF_SIZE);
1061         len = sprintf(buf, "T10 VPD Identifier Association: ");
1062
1063         switch (vpd->association) {
1064         case 0x00:
1065                 sprintf(buf+len, "addressed logical unit\n");
1066                 break;
1067         case 0x10:
1068                 sprintf(buf+len, "target port\n");
1069                 break;
1070         case 0x20:
1071                 sprintf(buf+len, "SCSI target device\n");
1072                 break;
1073         default:
1074                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075                 ret = -EINVAL;
1076                 break;
1077         }
1078
1079         if (p_buf)
1080                 strncpy(p_buf, buf, p_buf_len);
1081         else
1082                 pr_debug("%s", buf);
1083
1084         return ret;
1085 }
1086
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089         /*
1090          * The VPD identification association..
1091          *
1092          * from spc3r23.pdf Section 7.6.3.1 Table 297
1093          */
1094         vpd->association = (page_83[1] & 0x30);
1095         return transport_dump_vpd_assoc(vpd, NULL, 0);
1096 }
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1098
1099 int transport_dump_vpd_ident_type(
1100         struct t10_vpd *vpd,
1101         unsigned char *p_buf,
1102         int p_buf_len)
1103 {
1104         unsigned char buf[VPD_TMP_BUF_SIZE];
1105         int ret = 0;
1106         int len;
1107
1108         memset(buf, 0, VPD_TMP_BUF_SIZE);
1109         len = sprintf(buf, "T10 VPD Identifier Type: ");
1110
1111         switch (vpd->device_identifier_type) {
1112         case 0x00:
1113                 sprintf(buf+len, "Vendor specific\n");
1114                 break;
1115         case 0x01:
1116                 sprintf(buf+len, "T10 Vendor ID based\n");
1117                 break;
1118         case 0x02:
1119                 sprintf(buf+len, "EUI-64 based\n");
1120                 break;
1121         case 0x03:
1122                 sprintf(buf+len, "NAA\n");
1123                 break;
1124         case 0x04:
1125                 sprintf(buf+len, "Relative target port identifier\n");
1126                 break;
1127         case 0x08:
1128                 sprintf(buf+len, "SCSI name string\n");
1129                 break;
1130         default:
1131                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132                                 vpd->device_identifier_type);
1133                 ret = -EINVAL;
1134                 break;
1135         }
1136
1137         if (p_buf) {
1138                 if (p_buf_len < strlen(buf)+1)
1139                         return -EINVAL;
1140                 strncpy(p_buf, buf, p_buf_len);
1141         } else {
1142                 pr_debug("%s", buf);
1143         }
1144
1145         return ret;
1146 }
1147
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1149 {
1150         /*
1151          * The VPD identifier type..
1152          *
1153          * from spc3r23.pdf Section 7.6.3.1 Table 298
1154          */
1155         vpd->device_identifier_type = (page_83[1] & 0x0f);
1156         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1157 }
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1159
1160 int transport_dump_vpd_ident(
1161         struct t10_vpd *vpd,
1162         unsigned char *p_buf,
1163         int p_buf_len)
1164 {
1165         unsigned char buf[VPD_TMP_BUF_SIZE];
1166         int ret = 0;
1167
1168         memset(buf, 0, VPD_TMP_BUF_SIZE);
1169
1170         switch (vpd->device_identifier_code_set) {
1171         case 0x01: /* Binary */
1172                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173                         &vpd->device_identifier[0]);
1174                 break;
1175         case 0x02: /* ASCII */
1176                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177                         &vpd->device_identifier[0]);
1178                 break;
1179         case 0x03: /* UTF-8 */
1180                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181                         &vpd->device_identifier[0]);
1182                 break;
1183         default:
1184                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185                         " 0x%02x", vpd->device_identifier_code_set);
1186                 ret = -EINVAL;
1187                 break;
1188         }
1189
1190         if (p_buf)
1191                 strncpy(p_buf, buf, p_buf_len);
1192         else
1193                 pr_debug("%s", buf);
1194
1195         return ret;
1196 }
1197
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         static const char hex_str[] = "0123456789abcdef";
1202         int j = 0, i = 4; /* offset to start of the identifer */
1203
1204         /*
1205          * The VPD Code Set (encoding)
1206          *
1207          * from spc3r23.pdf Section 7.6.3.1 Table 296
1208          */
1209         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210         switch (vpd->device_identifier_code_set) {
1211         case 0x01: /* Binary */
1212                 vpd->device_identifier[j++] =
1213                                 hex_str[vpd->device_identifier_type];
1214                 while (i < (4 + page_83[3])) {
1215                         vpd->device_identifier[j++] =
1216                                 hex_str[(page_83[i] & 0xf0) >> 4];
1217                         vpd->device_identifier[j++] =
1218                                 hex_str[page_83[i] & 0x0f];
1219                         i++;
1220                 }
1221                 break;
1222         case 0x02: /* ASCII */
1223         case 0x03: /* UTF-8 */
1224                 while (i < (4 + page_83[3]))
1225                         vpd->device_identifier[j++] = page_83[i++];
1226                 break;
1227         default:
1228                 break;
1229         }
1230
1231         return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1236 {
1237         /*
1238          * If this device is from Target_Core_Mod/pSCSI, disable the
1239          * SAM Task Attribute emulation.
1240          *
1241          * This is currently not available in upsream Linux/SCSI Target
1242          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1243          */
1244         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246                 return;
1247         }
1248
1249         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251                 " device\n", dev->transport->name,
1252                 dev->transport->get_device_rev(dev));
1253 }
1254
1255 static void scsi_dump_inquiry(struct se_device *dev)
1256 {
1257         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258         char buf[17];
1259         int i, device_type;
1260         /*
1261          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1262          */
1263         for (i = 0; i < 8; i++)
1264                 if (wwn->vendor[i] >= 0x20)
1265                         buf[i] = wwn->vendor[i];
1266                 else
1267                         buf[i] = ' ';
1268         buf[i] = '\0';
1269         pr_debug("  Vendor: %s\n", buf);
1270
1271         for (i = 0; i < 16; i++)
1272                 if (wwn->model[i] >= 0x20)
1273                         buf[i] = wwn->model[i];
1274                 else
1275                         buf[i] = ' ';
1276         buf[i] = '\0';
1277         pr_debug("  Model: %s\n", buf);
1278
1279         for (i = 0; i < 4; i++)
1280                 if (wwn->revision[i] >= 0x20)
1281                         buf[i] = wwn->revision[i];
1282                 else
1283                         buf[i] = ' ';
1284         buf[i] = '\0';
1285         pr_debug("  Revision: %s\n", buf);
1286
1287         device_type = dev->transport->get_device_type(dev);
1288         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1289         pr_debug("                 ANSI SCSI revision: %02x\n",
1290                                 dev->transport->get_device_rev(dev));
1291 }
1292
1293 struct se_device *transport_add_device_to_core_hba(
1294         struct se_hba *hba,
1295         struct se_subsystem_api *transport,
1296         struct se_subsystem_dev *se_dev,
1297         u32 device_flags,
1298         void *transport_dev,
1299         struct se_dev_limits *dev_limits,
1300         const char *inquiry_prod,
1301         const char *inquiry_rev)
1302 {
1303         int force_pt;
1304         struct se_device  *dev;
1305
1306         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1307         if (!dev) {
1308                 pr_err("Unable to allocate memory for se_dev_t\n");
1309                 return NULL;
1310         }
1311
1312         transport_init_queue_obj(&dev->dev_queue_obj);
1313         dev->dev_flags          = device_flags;
1314         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1315         dev->dev_ptr            = transport_dev;
1316         dev->se_hba             = hba;
1317         dev->se_sub_dev         = se_dev;
1318         dev->transport          = transport;
1319         INIT_LIST_HEAD(&dev->dev_list);
1320         INIT_LIST_HEAD(&dev->dev_sep_list);
1321         INIT_LIST_HEAD(&dev->dev_tmr_list);
1322         INIT_LIST_HEAD(&dev->execute_task_list);
1323         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1324         INIT_LIST_HEAD(&dev->state_task_list);
1325         INIT_LIST_HEAD(&dev->qf_cmd_list);
1326         spin_lock_init(&dev->execute_task_lock);
1327         spin_lock_init(&dev->delayed_cmd_lock);
1328         spin_lock_init(&dev->dev_reservation_lock);
1329         spin_lock_init(&dev->dev_status_lock);
1330         spin_lock_init(&dev->se_port_lock);
1331         spin_lock_init(&dev->se_tmr_lock);
1332         spin_lock_init(&dev->qf_cmd_lock);
1333         atomic_set(&dev->dev_ordered_id, 0);
1334
1335         se_dev_set_default_attribs(dev, dev_limits);
1336
1337         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1338         dev->creation_time = get_jiffies_64();
1339         spin_lock_init(&dev->stats_lock);
1340
1341         spin_lock(&hba->device_lock);
1342         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1343         hba->dev_count++;
1344         spin_unlock(&hba->device_lock);
1345         /*
1346          * Setup the SAM Task Attribute emulation for struct se_device
1347          */
1348         core_setup_task_attr_emulation(dev);
1349         /*
1350          * Force PR and ALUA passthrough emulation with internal object use.
1351          */
1352         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1353         /*
1354          * Setup the Reservations infrastructure for struct se_device
1355          */
1356         core_setup_reservations(dev, force_pt);
1357         /*
1358          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1359          */
1360         if (core_setup_alua(dev, force_pt) < 0)
1361                 goto out;
1362
1363         /*
1364          * Startup the struct se_device processing thread
1365          */
1366         dev->process_thread = kthread_run(transport_processing_thread, dev,
1367                                           "LIO_%s", dev->transport->name);
1368         if (IS_ERR(dev->process_thread)) {
1369                 pr_err("Unable to create kthread: LIO_%s\n",
1370                         dev->transport->name);
1371                 goto out;
1372         }
1373         /*
1374          * Setup work_queue for QUEUE_FULL
1375          */
1376         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1377         /*
1378          * Preload the initial INQUIRY const values if we are doing
1379          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1380          * passthrough because this is being provided by the backend LLD.
1381          * This is required so that transport_get_inquiry() copies these
1382          * originals once back into DEV_T10_WWN(dev) for the virtual device
1383          * setup.
1384          */
1385         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1386                 if (!inquiry_prod || !inquiry_rev) {
1387                         pr_err("All non TCM/pSCSI plugins require"
1388                                 " INQUIRY consts\n");
1389                         goto out;
1390                 }
1391
1392                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1393                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1394                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1395         }
1396         scsi_dump_inquiry(dev);
1397
1398         return dev;
1399 out:
1400         kthread_stop(dev->process_thread);
1401
1402         spin_lock(&hba->device_lock);
1403         list_del(&dev->dev_list);
1404         hba->dev_count--;
1405         spin_unlock(&hba->device_lock);
1406
1407         se_release_vpd_for_dev(dev);
1408
1409         kfree(dev);
1410
1411         return NULL;
1412 }
1413 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1414
1415 /*      transport_generic_prepare_cdb():
1416  *
1417  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1418  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1419  *      The point of this is since we are mapping iSCSI LUNs to
1420  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1421  *      devices and HBAs for a loop.
1422  */
1423 static inline void transport_generic_prepare_cdb(
1424         unsigned char *cdb)
1425 {
1426         switch (cdb[0]) {
1427         case READ_10: /* SBC - RDProtect */
1428         case READ_12: /* SBC - RDProtect */
1429         case READ_16: /* SBC - RDProtect */
1430         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1431         case VERIFY: /* SBC - VRProtect */
1432         case VERIFY_16: /* SBC - VRProtect */
1433         case WRITE_VERIFY: /* SBC - VRProtect */
1434         case WRITE_VERIFY_12: /* SBC - VRProtect */
1435                 break;
1436         default:
1437                 cdb[1] &= 0x1f; /* clear logical unit number */
1438                 break;
1439         }
1440 }
1441
1442 static struct se_task *
1443 transport_generic_get_task(struct se_cmd *cmd,
1444                 enum dma_data_direction data_direction)
1445 {
1446         struct se_task *task;
1447         struct se_device *dev = cmd->se_dev;
1448
1449         task = dev->transport->alloc_task(cmd->t_task_cdb);
1450         if (!task) {
1451                 pr_err("Unable to allocate struct se_task\n");
1452                 return NULL;
1453         }
1454
1455         INIT_LIST_HEAD(&task->t_list);
1456         INIT_LIST_HEAD(&task->t_execute_list);
1457         INIT_LIST_HEAD(&task->t_state_list);
1458         init_completion(&task->task_stop_comp);
1459         task->task_se_cmd = cmd;
1460         task->task_data_direction = data_direction;
1461
1462         return task;
1463 }
1464
1465 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1466
1467 /*
1468  * Used by fabric modules containing a local struct se_cmd within their
1469  * fabric dependent per I/O descriptor.
1470  */
1471 void transport_init_se_cmd(
1472         struct se_cmd *cmd,
1473         struct target_core_fabric_ops *tfo,
1474         struct se_session *se_sess,
1475         u32 data_length,
1476         int data_direction,
1477         int task_attr,
1478         unsigned char *sense_buffer)
1479 {
1480         INIT_LIST_HEAD(&cmd->se_lun_node);
1481         INIT_LIST_HEAD(&cmd->se_delayed_node);
1482         INIT_LIST_HEAD(&cmd->se_qf_node);
1483         INIT_LIST_HEAD(&cmd->se_queue_node);
1484         INIT_LIST_HEAD(&cmd->se_cmd_list);
1485         INIT_LIST_HEAD(&cmd->t_task_list);
1486         init_completion(&cmd->transport_lun_fe_stop_comp);
1487         init_completion(&cmd->transport_lun_stop_comp);
1488         init_completion(&cmd->t_transport_stop_comp);
1489         init_completion(&cmd->cmd_wait_comp);
1490         spin_lock_init(&cmd->t_state_lock);
1491         atomic_set(&cmd->transport_dev_active, 1);
1492
1493         cmd->se_tfo = tfo;
1494         cmd->se_sess = se_sess;
1495         cmd->data_length = data_length;
1496         cmd->data_direction = data_direction;
1497         cmd->sam_task_attr = task_attr;
1498         cmd->sense_buffer = sense_buffer;
1499 }
1500 EXPORT_SYMBOL(transport_init_se_cmd);
1501
1502 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1503 {
1504         /*
1505          * Check if SAM Task Attribute emulation is enabled for this
1506          * struct se_device storage object
1507          */
1508         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1509                 return 0;
1510
1511         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1512                 pr_debug("SAM Task Attribute ACA"
1513                         " emulation is not supported\n");
1514                 return -EINVAL;
1515         }
1516         /*
1517          * Used to determine when ORDERED commands should go from
1518          * Dormant to Active status.
1519          */
1520         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1521         smp_mb__after_atomic_inc();
1522         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1523                         cmd->se_ordered_id, cmd->sam_task_attr,
1524                         cmd->se_dev->transport->name);
1525         return 0;
1526 }
1527
1528 /*      transport_generic_allocate_tasks():
1529  *
1530  *      Called from fabric RX Thread.
1531  */
1532 int transport_generic_allocate_tasks(
1533         struct se_cmd *cmd,
1534         unsigned char *cdb)
1535 {
1536         int ret;
1537
1538         transport_generic_prepare_cdb(cdb);
1539         /*
1540          * Ensure that the received CDB is less than the max (252 + 8) bytes
1541          * for VARIABLE_LENGTH_CMD
1542          */
1543         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1544                 pr_err("Received SCSI CDB with command_size: %d that"
1545                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1546                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1547                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1548                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1549                 return -EINVAL;
1550         }
1551         /*
1552          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1553          * allocate the additional extended CDB buffer now..  Otherwise
1554          * setup the pointer from __t_task_cdb to t_task_cdb.
1555          */
1556         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1557                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1558                                                 GFP_KERNEL);
1559                 if (!cmd->t_task_cdb) {
1560                         pr_err("Unable to allocate cmd->t_task_cdb"
1561                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1562                                 scsi_command_size(cdb),
1563                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1564                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1565                         cmd->scsi_sense_reason =
1566                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1567                         return -ENOMEM;
1568                 }
1569         } else
1570                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1571         /*
1572          * Copy the original CDB into cmd->
1573          */
1574         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1575         /*
1576          * Setup the received CDB based on SCSI defined opcodes and
1577          * perform unit attention, persistent reservations and ALUA
1578          * checks for virtual device backends.  The cmd->t_task_cdb
1579          * pointer is expected to be setup before we reach this point.
1580          */
1581         ret = transport_generic_cmd_sequencer(cmd, cdb);
1582         if (ret < 0)
1583                 return ret;
1584         /*
1585          * Check for SAM Task Attribute Emulation
1586          */
1587         if (transport_check_alloc_task_attr(cmd) < 0) {
1588                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1589                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1590                 return -EINVAL;
1591         }
1592         spin_lock(&cmd->se_lun->lun_sep_lock);
1593         if (cmd->se_lun->lun_sep)
1594                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1595         spin_unlock(&cmd->se_lun->lun_sep_lock);
1596         return 0;
1597 }
1598 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1599
1600 /*
1601  * Used by fabric module frontends to queue tasks directly.
1602  * Many only be used from process context only
1603  */
1604 int transport_handle_cdb_direct(
1605         struct se_cmd *cmd)
1606 {
1607         int ret;
1608
1609         if (!cmd->se_lun) {
1610                 dump_stack();
1611                 pr_err("cmd->se_lun is NULL\n");
1612                 return -EINVAL;
1613         }
1614         if (in_interrupt()) {
1615                 dump_stack();
1616                 pr_err("transport_generic_handle_cdb cannot be called"
1617                                 " from interrupt context\n");
1618                 return -EINVAL;
1619         }
1620         /*
1621          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1622          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1623          * in existing usage to ensure that outstanding descriptors are handled
1624          * correctly during shutdown via transport_wait_for_tasks()
1625          *
1626          * Also, we don't take cmd->t_state_lock here as we only expect
1627          * this to be called for initial descriptor submission.
1628          */
1629         cmd->t_state = TRANSPORT_NEW_CMD;
1630         atomic_set(&cmd->t_transport_active, 1);
1631         /*
1632          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1633          * so follow TRANSPORT_NEW_CMD processing thread context usage
1634          * and call transport_generic_request_failure() if necessary..
1635          */
1636         ret = transport_generic_new_cmd(cmd);
1637         if (ret < 0)
1638                 transport_generic_request_failure(cmd);
1639
1640         return 0;
1641 }
1642 EXPORT_SYMBOL(transport_handle_cdb_direct);
1643
1644 /**
1645  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1646  *
1647  * @se_cmd: command descriptor to submit
1648  * @se_sess: associated se_sess for endpoint
1649  * @cdb: pointer to SCSI CDB
1650  * @sense: pointer to SCSI sense buffer
1651  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1652  * @data_length: fabric expected data transfer length
1653  * @task_addr: SAM task attribute
1654  * @data_dir: DMA data direction
1655  * @flags: flags for command submission from target_sc_flags_tables
1656  *
1657  * This may only be called from process context, and also currently
1658  * assumes internal allocation of fabric payload buffer by target-core.
1659  **/
1660 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1661                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1662                 u32 data_length, int task_attr, int data_dir, int flags)
1663 {
1664         struct se_portal_group *se_tpg;
1665         int rc;
1666
1667         se_tpg = se_sess->se_tpg;
1668         BUG_ON(!se_tpg);
1669         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1670         BUG_ON(in_interrupt());
1671         /*
1672          * Initialize se_cmd for target operation.  From this point
1673          * exceptions are handled by sending exception status via
1674          * target_core_fabric_ops->queue_status() callback
1675          */
1676         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1677                                 data_length, data_dir, task_attr, sense);
1678         /*
1679          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1680          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1681          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1682          * kref_put() to happen during fabric packet acknowledgement.
1683          */
1684         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1685         /*
1686          * Signal bidirectional data payloads to target-core
1687          */
1688         if (flags & TARGET_SCF_BIDI_OP)
1689                 se_cmd->se_cmd_flags |= SCF_BIDI;
1690         /*
1691          * Locate se_lun pointer and attach it to struct se_cmd
1692          */
1693         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0)
1694                 goto out_check_cond;
1695         /*
1696          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1697          * allocate the necessary tasks to complete the received CDB+data
1698          */
1699         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1700         if (rc != 0)
1701                 goto out_check_cond;
1702         /*
1703          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1704          * for immediate execution of READs, otherwise wait for
1705          * transport_generic_handle_data() to be called for WRITEs
1706          * when fabric has filled the incoming buffer.
1707          */
1708         transport_handle_cdb_direct(se_cmd);
1709         return;
1710
1711 out_check_cond:
1712         transport_send_check_condition_and_sense(se_cmd,
1713                                 se_cmd->scsi_sense_reason, 0);
1714 }
1715 EXPORT_SYMBOL(target_submit_cmd);
1716
1717 /*
1718  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1719  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1720  * complete setup in TCM process context w/ TFO->new_cmd_map().
1721  */
1722 int transport_generic_handle_cdb_map(
1723         struct se_cmd *cmd)
1724 {
1725         if (!cmd->se_lun) {
1726                 dump_stack();
1727                 pr_err("cmd->se_lun is NULL\n");
1728                 return -EINVAL;
1729         }
1730
1731         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1732         return 0;
1733 }
1734 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1735
1736 /*      transport_generic_handle_data():
1737  *
1738  *
1739  */
1740 int transport_generic_handle_data(
1741         struct se_cmd *cmd)
1742 {
1743         /*
1744          * For the software fabric case, then we assume the nexus is being
1745          * failed/shutdown when signals are pending from the kthread context
1746          * caller, so we return a failure.  For the HW target mode case running
1747          * in interrupt code, the signal_pending() check is skipped.
1748          */
1749         if (!in_interrupt() && signal_pending(current))
1750                 return -EPERM;
1751         /*
1752          * If the received CDB has aleady been ABORTED by the generic
1753          * target engine, we now call transport_check_aborted_status()
1754          * to queue any delated TASK_ABORTED status for the received CDB to the
1755          * fabric module as we are expecting no further incoming DATA OUT
1756          * sequences at this point.
1757          */
1758         if (transport_check_aborted_status(cmd, 1) != 0)
1759                 return 0;
1760
1761         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1762         return 0;
1763 }
1764 EXPORT_SYMBOL(transport_generic_handle_data);
1765
1766 /*      transport_generic_handle_tmr():
1767  *
1768  *
1769  */
1770 int transport_generic_handle_tmr(
1771         struct se_cmd *cmd)
1772 {
1773         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1774         return 0;
1775 }
1776 EXPORT_SYMBOL(transport_generic_handle_tmr);
1777
1778 /*
1779  * If the task is active, request it to be stopped and sleep until it
1780  * has completed.
1781  */
1782 bool target_stop_task(struct se_task *task, unsigned long *flags)
1783 {
1784         struct se_cmd *cmd = task->task_se_cmd;
1785         bool was_active = false;
1786
1787         if (task->task_flags & TF_ACTIVE) {
1788                 task->task_flags |= TF_REQUEST_STOP;
1789                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1790
1791                 pr_debug("Task %p waiting to complete\n", task);
1792                 wait_for_completion(&task->task_stop_comp);
1793                 pr_debug("Task %p stopped successfully\n", task);
1794
1795                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1796                 atomic_dec(&cmd->t_task_cdbs_left);
1797                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1798                 was_active = true;
1799         }
1800
1801         return was_active;
1802 }
1803
1804 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1805 {
1806         struct se_task *task, *task_tmp;
1807         unsigned long flags;
1808         int ret = 0;
1809
1810         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1811                 cmd->se_tfo->get_task_tag(cmd));
1812
1813         /*
1814          * No tasks remain in the execution queue
1815          */
1816         spin_lock_irqsave(&cmd->t_state_lock, flags);
1817         list_for_each_entry_safe(task, task_tmp,
1818                                 &cmd->t_task_list, t_list) {
1819                 pr_debug("Processing task %p\n", task);
1820                 /*
1821                  * If the struct se_task has not been sent and is not active,
1822                  * remove the struct se_task from the execution queue.
1823                  */
1824                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1825                         spin_unlock_irqrestore(&cmd->t_state_lock,
1826                                         flags);
1827                         transport_remove_task_from_execute_queue(task,
1828                                         cmd->se_dev);
1829
1830                         pr_debug("Task %p removed from execute queue\n", task);
1831                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1832                         continue;
1833                 }
1834
1835                 if (!target_stop_task(task, &flags)) {
1836                         pr_debug("Task %p - did nothing\n", task);
1837                         ret++;
1838                 }
1839         }
1840         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1841
1842         return ret;
1843 }
1844
1845 /*
1846  * Handle SAM-esque emulation for generic transport request failures.
1847  */
1848 static void transport_generic_request_failure(struct se_cmd *cmd)
1849 {
1850         int ret = 0;
1851
1852         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1853                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1854                 cmd->t_task_cdb[0]);
1855         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1856                 cmd->se_tfo->get_cmd_state(cmd),
1857                 cmd->t_state, cmd->scsi_sense_reason);
1858         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1859                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1860                 " t_transport_active: %d t_transport_stop: %d"
1861                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1862                 atomic_read(&cmd->t_task_cdbs_left),
1863                 atomic_read(&cmd->t_task_cdbs_sent),
1864                 atomic_read(&cmd->t_task_cdbs_ex_left),
1865                 atomic_read(&cmd->t_transport_active),
1866                 atomic_read(&cmd->t_transport_stop),
1867                 atomic_read(&cmd->t_transport_sent));
1868
1869         /*
1870          * For SAM Task Attribute emulation for failed struct se_cmd
1871          */
1872         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1873                 transport_complete_task_attr(cmd);
1874
1875         switch (cmd->scsi_sense_reason) {
1876         case TCM_NON_EXISTENT_LUN:
1877         case TCM_UNSUPPORTED_SCSI_OPCODE:
1878         case TCM_INVALID_CDB_FIELD:
1879         case TCM_INVALID_PARAMETER_LIST:
1880         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1881         case TCM_UNKNOWN_MODE_PAGE:
1882         case TCM_WRITE_PROTECTED:
1883         case TCM_CHECK_CONDITION_ABORT_CMD:
1884         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1885         case TCM_CHECK_CONDITION_NOT_READY:
1886                 break;
1887         case TCM_RESERVATION_CONFLICT:
1888                 /*
1889                  * No SENSE Data payload for this case, set SCSI Status
1890                  * and queue the response to $FABRIC_MOD.
1891                  *
1892                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1893                  */
1894                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1895                 /*
1896                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1897                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1898                  * CONFLICT STATUS.
1899                  *
1900                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1901                  */
1902                 if (cmd->se_sess &&
1903                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1904                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1905                                 cmd->orig_fe_lun, 0x2C,
1906                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1907
1908                 ret = cmd->se_tfo->queue_status(cmd);
1909                 if (ret == -EAGAIN || ret == -ENOMEM)
1910                         goto queue_full;
1911                 goto check_stop;
1912         default:
1913                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1914                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1915                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1916                 break;
1917         }
1918         /*
1919          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1920          * make the call to transport_send_check_condition_and_sense()
1921          * directly.  Otherwise expect the fabric to make the call to
1922          * transport_send_check_condition_and_sense() after handling
1923          * possible unsoliticied write data payloads.
1924          */
1925         ret = transport_send_check_condition_and_sense(cmd,
1926                         cmd->scsi_sense_reason, 0);
1927         if (ret == -EAGAIN || ret == -ENOMEM)
1928                 goto queue_full;
1929
1930 check_stop:
1931         transport_lun_remove_cmd(cmd);
1932         if (!transport_cmd_check_stop_to_fabric(cmd))
1933                 ;
1934         return;
1935
1936 queue_full:
1937         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1938         transport_handle_queue_full(cmd, cmd->se_dev);
1939 }
1940
1941 static inline u32 transport_lba_21(unsigned char *cdb)
1942 {
1943         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1944 }
1945
1946 static inline u32 transport_lba_32(unsigned char *cdb)
1947 {
1948         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1949 }
1950
1951 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1952 {
1953         unsigned int __v1, __v2;
1954
1955         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1956         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1957
1958         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1959 }
1960
1961 /*
1962  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1963  */
1964 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1965 {
1966         unsigned int __v1, __v2;
1967
1968         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1969         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1970
1971         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1972 }
1973
1974 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1975 {
1976         unsigned long flags;
1977
1978         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1979         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1980         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1981 }
1982
1983 /*
1984  * Called from Fabric Module context from transport_execute_tasks()
1985  *
1986  * The return of this function determins if the tasks from struct se_cmd
1987  * get added to the execution queue in transport_execute_tasks(),
1988  * or are added to the delayed or ordered lists here.
1989  */
1990 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1991 {
1992         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1993                 return 1;
1994         /*
1995          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1996          * to allow the passed struct se_cmd list of tasks to the front of the list.
1997          */
1998          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1999                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2000                         " 0x%02x, se_ordered_id: %u\n",
2001                         cmd->t_task_cdb[0],
2002                         cmd->se_ordered_id);
2003                 return 1;
2004         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2005                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2006                 smp_mb__after_atomic_inc();
2007
2008                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2009                                 " list, se_ordered_id: %u\n",
2010                                 cmd->t_task_cdb[0],
2011                                 cmd->se_ordered_id);
2012                 /*
2013                  * Add ORDERED command to tail of execution queue if
2014                  * no other older commands exist that need to be
2015                  * completed first.
2016                  */
2017                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2018                         return 1;
2019         } else {
2020                 /*
2021                  * For SIMPLE and UNTAGGED Task Attribute commands
2022                  */
2023                 atomic_inc(&cmd->se_dev->simple_cmds);
2024                 smp_mb__after_atomic_inc();
2025         }
2026         /*
2027          * Otherwise if one or more outstanding ORDERED task attribute exist,
2028          * add the dormant task(s) built for the passed struct se_cmd to the
2029          * execution queue and become in Active state for this struct se_device.
2030          */
2031         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2032                 /*
2033                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2034                  * will be drained upon completion of HEAD_OF_QUEUE task.
2035                  */
2036                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2037                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2038                 list_add_tail(&cmd->se_delayed_node,
2039                                 &cmd->se_dev->delayed_cmd_list);
2040                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2041
2042                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2043                         " delayed CMD list, se_ordered_id: %u\n",
2044                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2045                         cmd->se_ordered_id);
2046                 /*
2047                  * Return zero to let transport_execute_tasks() know
2048                  * not to add the delayed tasks to the execution list.
2049                  */
2050                 return 0;
2051         }
2052         /*
2053          * Otherwise, no ORDERED task attributes exist..
2054          */
2055         return 1;
2056 }
2057
2058 /*
2059  * Called from fabric module context in transport_generic_new_cmd() and
2060  * transport_generic_process_write()
2061  */
2062 static int transport_execute_tasks(struct se_cmd *cmd)
2063 {
2064         int add_tasks;
2065         struct se_device *se_dev = cmd->se_dev;
2066         /*
2067          * Call transport_cmd_check_stop() to see if a fabric exception
2068          * has occurred that prevents execution.
2069          */
2070         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2071                 /*
2072                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2073                  * attribute for the tasks of the received struct se_cmd CDB
2074                  */
2075                 add_tasks = transport_execute_task_attr(cmd);
2076                 if (!add_tasks)
2077                         goto execute_tasks;
2078                 /*
2079                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2080                  * adds associated se_tasks while holding dev->execute_task_lock
2081                  * before I/O dispath to avoid a double spinlock access.
2082                  */
2083                 __transport_execute_tasks(se_dev, cmd);
2084                 return 0;
2085         }
2086
2087 execute_tasks:
2088         __transport_execute_tasks(se_dev, NULL);
2089         return 0;
2090 }
2091
2092 /*
2093  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2094  * from struct se_device->execute_task_list and
2095  *
2096  * Called from transport_processing_thread()
2097  */
2098 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2099 {
2100         int error;
2101         struct se_cmd *cmd = NULL;
2102         struct se_task *task = NULL;
2103         unsigned long flags;
2104
2105 check_depth:
2106         spin_lock_irq(&dev->execute_task_lock);
2107         if (new_cmd != NULL)
2108                 __transport_add_tasks_from_cmd(new_cmd);
2109
2110         if (list_empty(&dev->execute_task_list)) {
2111                 spin_unlock_irq(&dev->execute_task_lock);
2112                 return 0;
2113         }
2114         task = list_first_entry(&dev->execute_task_list,
2115                                 struct se_task, t_execute_list);
2116         __transport_remove_task_from_execute_queue(task, dev);
2117         spin_unlock_irq(&dev->execute_task_lock);
2118
2119         cmd = task->task_se_cmd;
2120         spin_lock_irqsave(&cmd->t_state_lock, flags);
2121         task->task_flags |= (TF_ACTIVE | TF_SENT);
2122         atomic_inc(&cmd->t_task_cdbs_sent);
2123
2124         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2125             cmd->t_task_list_num)
2126                 atomic_set(&cmd->t_transport_sent, 1);
2127
2128         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2129
2130         if (cmd->execute_task)
2131                 error = cmd->execute_task(task);
2132         else
2133                 error = dev->transport->do_task(task);
2134         if (error != 0) {
2135                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2136                 task->task_flags &= ~TF_ACTIVE;
2137                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2138                 atomic_set(&cmd->t_transport_sent, 0);
2139                 transport_stop_tasks_for_cmd(cmd);
2140                 transport_generic_request_failure(cmd);
2141         }
2142
2143         new_cmd = NULL;
2144         goto check_depth;
2145
2146         return 0;
2147 }
2148
2149 static inline u32 transport_get_sectors_6(
2150         unsigned char *cdb,
2151         struct se_cmd *cmd,
2152         int *ret)
2153 {
2154         struct se_device *dev = cmd->se_dev;
2155
2156         /*
2157          * Assume TYPE_DISK for non struct se_device objects.
2158          * Use 8-bit sector value.
2159          */
2160         if (!dev)
2161                 goto type_disk;
2162
2163         /*
2164          * Use 24-bit allocation length for TYPE_TAPE.
2165          */
2166         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2167                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2168
2169         /*
2170          * Everything else assume TYPE_DISK Sector CDB location.
2171          * Use 8-bit sector value.  SBC-3 says:
2172          *
2173          *   A TRANSFER LENGTH field set to zero specifies that 256
2174          *   logical blocks shall be written.  Any other value
2175          *   specifies the number of logical blocks that shall be
2176          *   written.
2177          */
2178 type_disk:
2179         return cdb[4] ? : 256;
2180 }
2181
2182 static inline u32 transport_get_sectors_10(
2183         unsigned char *cdb,
2184         struct se_cmd *cmd,
2185         int *ret)
2186 {
2187         struct se_device *dev = cmd->se_dev;
2188
2189         /*
2190          * Assume TYPE_DISK for non struct se_device objects.
2191          * Use 16-bit sector value.
2192          */
2193         if (!dev)
2194                 goto type_disk;
2195
2196         /*
2197          * XXX_10 is not defined in SSC, throw an exception
2198          */
2199         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2200                 *ret = -EINVAL;
2201                 return 0;
2202         }
2203
2204         /*
2205          * Everything else assume TYPE_DISK Sector CDB location.
2206          * Use 16-bit sector value.
2207          */
2208 type_disk:
2209         return (u32)(cdb[7] << 8) + cdb[8];
2210 }
2211
2212 static inline u32 transport_get_sectors_12(
2213         unsigned char *cdb,
2214         struct se_cmd *cmd,
2215         int *ret)
2216 {
2217         struct se_device *dev = cmd->se_dev;
2218
2219         /*
2220          * Assume TYPE_DISK for non struct se_device objects.
2221          * Use 32-bit sector value.
2222          */
2223         if (!dev)
2224                 goto type_disk;
2225
2226         /*
2227          * XXX_12 is not defined in SSC, throw an exception
2228          */
2229         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2230                 *ret = -EINVAL;
2231                 return 0;
2232         }
2233
2234         /*
2235          * Everything else assume TYPE_DISK Sector CDB location.
2236          * Use 32-bit sector value.
2237          */
2238 type_disk:
2239         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2240 }
2241
2242 static inline u32 transport_get_sectors_16(
2243         unsigned char *cdb,
2244         struct se_cmd *cmd,
2245         int *ret)
2246 {
2247         struct se_device *dev = cmd->se_dev;
2248
2249         /*
2250          * Assume TYPE_DISK for non struct se_device objects.
2251          * Use 32-bit sector value.
2252          */
2253         if (!dev)
2254                 goto type_disk;
2255
2256         /*
2257          * Use 24-bit allocation length for TYPE_TAPE.
2258          */
2259         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2260                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2261
2262 type_disk:
2263         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2264                     (cdb[12] << 8) + cdb[13];
2265 }
2266
2267 /*
2268  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2269  */
2270 static inline u32 transport_get_sectors_32(
2271         unsigned char *cdb,
2272         struct se_cmd *cmd,
2273         int *ret)
2274 {
2275         /*
2276          * Assume TYPE_DISK for non struct se_device objects.
2277          * Use 32-bit sector value.
2278          */
2279         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2280                     (cdb[30] << 8) + cdb[31];
2281
2282 }
2283
2284 static inline u32 transport_get_size(
2285         u32 sectors,
2286         unsigned char *cdb,
2287         struct se_cmd *cmd)
2288 {
2289         struct se_device *dev = cmd->se_dev;
2290
2291         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2292                 if (cdb[1] & 1) { /* sectors */
2293                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2294                 } else /* bytes */
2295                         return sectors;
2296         }
2297 #if 0
2298         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2299                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2300                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2301                         dev->transport->name);
2302 #endif
2303         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2304 }
2305
2306 static void transport_xor_callback(struct se_cmd *cmd)
2307 {
2308         unsigned char *buf, *addr;
2309         struct scatterlist *sg;
2310         unsigned int offset;
2311         int i;
2312         int count;
2313         /*
2314          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2315          *
2316          * 1) read the specified logical block(s);
2317          * 2) transfer logical blocks from the data-out buffer;
2318          * 3) XOR the logical blocks transferred from the data-out buffer with
2319          *    the logical blocks read, storing the resulting XOR data in a buffer;
2320          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2321          *    blocks transferred from the data-out buffer; and
2322          * 5) transfer the resulting XOR data to the data-in buffer.
2323          */
2324         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2325         if (!buf) {
2326                 pr_err("Unable to allocate xor_callback buf\n");
2327                 return;
2328         }
2329         /*
2330          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2331          * into the locally allocated *buf
2332          */
2333         sg_copy_to_buffer(cmd->t_data_sg,
2334                           cmd->t_data_nents,
2335                           buf,
2336                           cmd->data_length);
2337
2338         /*
2339          * Now perform the XOR against the BIDI read memory located at
2340          * cmd->t_mem_bidi_list
2341          */
2342
2343         offset = 0;
2344         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2345                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2346                 if (!addr)
2347                         goto out;
2348
2349                 for (i = 0; i < sg->length; i++)
2350                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2351
2352                 offset += sg->length;
2353                 kunmap_atomic(addr, KM_USER0);
2354         }
2355
2356 out:
2357         kfree(buf);
2358 }
2359
2360 /*
2361  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2362  */
2363 static int transport_get_sense_data(struct se_cmd *cmd)
2364 {
2365         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2366         struct se_device *dev = cmd->se_dev;
2367         struct se_task *task = NULL, *task_tmp;
2368         unsigned long flags;
2369         u32 offset = 0;
2370
2371         WARN_ON(!cmd->se_lun);
2372
2373         if (!dev)
2374                 return 0;
2375
2376         spin_lock_irqsave(&cmd->t_state_lock, flags);
2377         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2378                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2379                 return 0;
2380         }
2381
2382         list_for_each_entry_safe(task, task_tmp,
2383                                 &cmd->t_task_list, t_list) {
2384                 if (!(task->task_flags & TF_HAS_SENSE))
2385                         continue;
2386
2387                 if (!dev->transport->get_sense_buffer) {
2388                         pr_err("dev->transport->get_sense_buffer"
2389                                         " is NULL\n");
2390                         continue;
2391                 }
2392
2393                 sense_buffer = dev->transport->get_sense_buffer(task);
2394                 if (!sense_buffer) {
2395                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2396                                 " sense buffer for task with sense\n",
2397                                 cmd->se_tfo->get_task_tag(cmd), task);
2398                         continue;
2399                 }
2400                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2401
2402                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2403                                 TRANSPORT_SENSE_BUFFER);
2404
2405                 memcpy(&buffer[offset], sense_buffer,
2406                                 TRANSPORT_SENSE_BUFFER);
2407                 cmd->scsi_status = task->task_scsi_status;
2408                 /* Automatically padded */
2409                 cmd->scsi_sense_length =
2410                                 (TRANSPORT_SENSE_BUFFER + offset);
2411
2412                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2413                                 " and sense\n",
2414                         dev->se_hba->hba_id, dev->transport->name,
2415                                 cmd->scsi_status);
2416                 return 0;
2417         }
2418         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2419
2420         return -1;
2421 }
2422
2423 static inline long long transport_dev_end_lba(struct se_device *dev)
2424 {
2425         return dev->transport->get_blocks(dev) + 1;
2426 }
2427
2428 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2429 {
2430         struct se_device *dev = cmd->se_dev;
2431         u32 sectors;
2432
2433         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2434                 return 0;
2435
2436         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2437
2438         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2439                 pr_err("LBA: %llu Sectors: %u exceeds"
2440                         " transport_dev_end_lba(): %llu\n",
2441                         cmd->t_task_lba, sectors,
2442                         transport_dev_end_lba(dev));
2443                 return -EINVAL;
2444         }
2445
2446         return 0;
2447 }
2448
2449 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2450 {
2451         /*
2452          * Determine if the received WRITE_SAME is used to for direct
2453          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2454          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2455          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2456          */
2457         int passthrough = (dev->transport->transport_type ==
2458                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2459
2460         if (!passthrough) {
2461                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2462                         pr_err("WRITE_SAME PBDATA and LBDATA"
2463                                 " bits not supported for Block Discard"
2464                                 " Emulation\n");
2465                         return -ENOSYS;
2466                 }
2467                 /*
2468                  * Currently for the emulated case we only accept
2469                  * tpws with the UNMAP=1 bit set.
2470                  */
2471                 if (!(flags[0] & 0x08)) {
2472                         pr_err("WRITE_SAME w/o UNMAP bit not"
2473                                 " supported for Block Discard Emulation\n");
2474                         return -ENOSYS;
2475                 }
2476         }
2477
2478         return 0;
2479 }
2480
2481 /*      transport_generic_cmd_sequencer():
2482  *
2483  *      Generic Command Sequencer that should work for most DAS transport
2484  *      drivers.
2485  *
2486  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2487  *      RX Thread.
2488  *
2489  *      FIXME: Need to support other SCSI OPCODES where as well.
2490  */
2491 static int transport_generic_cmd_sequencer(
2492         struct se_cmd *cmd,
2493         unsigned char *cdb)
2494 {
2495         struct se_device *dev = cmd->se_dev;
2496         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2497         int ret = 0, sector_ret = 0, passthrough;
2498         u32 sectors = 0, size = 0, pr_reg_type = 0;
2499         u16 service_action;
2500         u8 alua_ascq = 0;
2501         /*
2502          * Check for an existing UNIT ATTENTION condition
2503          */
2504         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2505                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2506                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2507                 return -EINVAL;
2508         }
2509         /*
2510          * Check status of Asymmetric Logical Unit Assignment port
2511          */
2512         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2513         if (ret != 0) {
2514                 /*
2515                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2516                  * The ALUA additional sense code qualifier (ASCQ) is determined
2517                  * by the ALUA primary or secondary access state..
2518                  */
2519                 if (ret > 0) {
2520 #if 0
2521                         pr_debug("[%s]: ALUA TG Port not available,"
2522                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2523                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2524 #endif
2525                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2526                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2527                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2528                         return -EINVAL;
2529                 }
2530                 goto out_invalid_cdb_field;
2531         }
2532         /*
2533          * Check status for SPC-3 Persistent Reservations
2534          */
2535         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2536                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2537                                         cmd, cdb, pr_reg_type) != 0) {
2538                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2539                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2540                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2541                         return -EBUSY;
2542                 }
2543                 /*
2544                  * This means the CDB is allowed for the SCSI Initiator port
2545                  * when said port is *NOT* holding the legacy SPC-2 or
2546                  * SPC-3 Persistent Reservation.
2547                  */
2548         }
2549
2550         /*
2551          * If we operate in passthrough mode we skip most CDB emulation and
2552          * instead hand the commands down to the physical SCSI device.
2553          */
2554         passthrough =
2555                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2556
2557         switch (cdb[0]) {
2558         case READ_6:
2559                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2560                 if (sector_ret)
2561                         goto out_unsupported_cdb;
2562                 size = transport_get_size(sectors, cdb, cmd);
2563                 cmd->t_task_lba = transport_lba_21(cdb);
2564                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2565                 break;
2566         case READ_10:
2567                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2568                 if (sector_ret)
2569                         goto out_unsupported_cdb;
2570                 size = transport_get_size(sectors, cdb, cmd);
2571                 cmd->t_task_lba = transport_lba_32(cdb);
2572                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2573                 break;
2574         case READ_12:
2575                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2576                 if (sector_ret)
2577                         goto out_unsupported_cdb;
2578                 size = transport_get_size(sectors, cdb, cmd);
2579                 cmd->t_task_lba = transport_lba_32(cdb);
2580                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2581                 break;
2582         case READ_16:
2583                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2584                 if (sector_ret)
2585                         goto out_unsupported_cdb;
2586                 size = transport_get_size(sectors, cdb, cmd);
2587                 cmd->t_task_lba = transport_lba_64(cdb);
2588                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2589                 break;
2590         case WRITE_6:
2591                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2592                 if (sector_ret)
2593                         goto out_unsupported_cdb;
2594                 size = transport_get_size(sectors, cdb, cmd);
2595                 cmd->t_task_lba = transport_lba_21(cdb);
2596                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2597                 break;
2598         case WRITE_10:
2599                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2600                 if (sector_ret)
2601                         goto out_unsupported_cdb;
2602                 size = transport_get_size(sectors, cdb, cmd);
2603                 cmd->t_task_lba = transport_lba_32(cdb);
2604                 if (cdb[1] & 0x8)
2605                         cmd->se_cmd_flags |= SCF_FUA;
2606                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2607                 break;
2608         case WRITE_12:
2609                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2610                 if (sector_ret)
2611                         goto out_unsupported_cdb;
2612                 size = transport_get_size(sectors, cdb, cmd);
2613                 cmd->t_task_lba = transport_lba_32(cdb);
2614                 if (cdb[1] & 0x8)
2615                         cmd->se_cmd_flags |= SCF_FUA;
2616                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2617                 break;
2618         case WRITE_16:
2619                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2620                 if (sector_ret)
2621                         goto out_unsupported_cdb;
2622                 size = transport_get_size(sectors, cdb, cmd);
2623                 cmd->t_task_lba = transport_lba_64(cdb);
2624                 if (cdb[1] & 0x8)
2625                         cmd->se_cmd_flags |= SCF_FUA;
2626                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2627                 break;
2628         case XDWRITEREAD_10:
2629                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2630                     !(cmd->se_cmd_flags & SCF_BIDI))
2631                         goto out_invalid_cdb_field;
2632                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2633                 if (sector_ret)
2634                         goto out_unsupported_cdb;
2635                 size = transport_get_size(sectors, cdb, cmd);
2636                 cmd->t_task_lba = transport_lba_32(cdb);
2637                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2638
2639                 /*
2640                  * Do now allow BIDI commands for passthrough mode.
2641                  */
2642                 if (passthrough)
2643                         goto out_unsupported_cdb;
2644
2645                 /*
2646                  * Setup BIDI XOR callback to be run after I/O completion.
2647                  */
2648                 cmd->transport_complete_callback = &transport_xor_callback;
2649                 if (cdb[1] & 0x8)
2650                         cmd->se_cmd_flags |= SCF_FUA;
2651                 break;
2652         case VARIABLE_LENGTH_CMD:
2653                 service_action = get_unaligned_be16(&cdb[8]);
2654                 switch (service_action) {
2655                 case XDWRITEREAD_32:
2656                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2657                         if (sector_ret)
2658                                 goto out_unsupported_cdb;
2659                         size = transport_get_size(sectors, cdb, cmd);
2660                         /*
2661                          * Use WRITE_32 and READ_32 opcodes for the emulated
2662                          * XDWRITE_READ_32 logic.
2663                          */
2664                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2665                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2666
2667                         /*
2668                          * Do now allow BIDI commands for passthrough mode.
2669                          */
2670                         if (passthrough)
2671                                 goto out_unsupported_cdb;
2672
2673                         /*
2674                          * Setup BIDI XOR callback to be run during after I/O
2675                          * completion.
2676                          */
2677                         cmd->transport_complete_callback = &transport_xor_callback;
2678                         if (cdb[1] & 0x8)
2679                                 cmd->se_cmd_flags |= SCF_FUA;
2680                         break;
2681                 case WRITE_SAME_32:
2682                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2683                         if (sector_ret)
2684                                 goto out_unsupported_cdb;
2685
2686                         if (sectors)
2687                                 size = transport_get_size(1, cdb, cmd);
2688                         else {
2689                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2690                                        " supported\n");
2691                                 goto out_invalid_cdb_field;
2692                         }
2693
2694                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2695                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2696
2697                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2698                                 goto out_invalid_cdb_field;
2699                         if (!passthrough)
2700                                 cmd->execute_task = target_emulate_write_same;
2701                         break;
2702                 default:
2703                         pr_err("VARIABLE_LENGTH_CMD service action"
2704                                 " 0x%04x not supported\n", service_action);
2705                         goto out_unsupported_cdb;
2706                 }
2707                 break;
2708         case MAINTENANCE_IN:
2709                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2710                         /* MAINTENANCE_IN from SCC-2 */
2711                         /*
2712                          * Check for emulated MI_REPORT_TARGET_PGS.
2713                          */
2714                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2715                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2716                                 cmd->execute_task =
2717                                         target_emulate_report_target_port_groups;
2718                         }
2719                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2720                                (cdb[8] << 8) | cdb[9];
2721                 } else {
2722                         /* GPCMD_SEND_KEY from multi media commands */
2723                         size = (cdb[8] << 8) + cdb[9];
2724                 }
2725                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2726                 break;
2727         case MODE_SELECT:
2728                 size = cdb[4];
2729                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2730                 break;
2731         case MODE_SELECT_10:
2732                 size = (cdb[7] << 8) + cdb[8];
2733                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2734                 break;
2735         case MODE_SENSE:
2736                 size = cdb[4];
2737                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2738                 if (!passthrough)
2739                         cmd->execute_task = target_emulate_modesense;
2740                 break;
2741         case MODE_SENSE_10:
2742                 size = (cdb[7] << 8) + cdb[8];
2743                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2744                 if (!passthrough)
2745                         cmd->execute_task = target_emulate_modesense;
2746                 break;
2747         case GPCMD_READ_BUFFER_CAPACITY:
2748         case GPCMD_SEND_OPC:
2749         case LOG_SELECT:
2750         case LOG_SENSE:
2751                 size = (cdb[7] << 8) + cdb[8];
2752                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2753                 break;
2754         case READ_BLOCK_LIMITS:
2755                 size = READ_BLOCK_LEN;
2756                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2757                 break;
2758         case GPCMD_GET_CONFIGURATION:
2759         case GPCMD_READ_FORMAT_CAPACITIES:
2760         case GPCMD_READ_DISC_INFO:
2761         case GPCMD_READ_TRACK_RZONE_INFO:
2762                 size = (cdb[7] << 8) + cdb[8];
2763                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2764                 break;
2765         case PERSISTENT_RESERVE_IN:
2766                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2767                         cmd->execute_task = target_scsi3_emulate_pr_in;
2768                 size = (cdb[7] << 8) + cdb[8];
2769                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2770                 break;
2771         case PERSISTENT_RESERVE_OUT:
2772                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2773                         cmd->execute_task = target_scsi3_emulate_pr_out;
2774                 size = (cdb[7] << 8) + cdb[8];
2775                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2776                 break;
2777         case GPCMD_MECHANISM_STATUS:
2778         case GPCMD_READ_DVD_STRUCTURE:
2779                 size = (cdb[8] << 8) + cdb[9];
2780                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2781                 break;
2782         case READ_POSITION:
2783                 size = READ_POSITION_LEN;
2784                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2785                 break;
2786         case MAINTENANCE_OUT:
2787                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2788                         /* MAINTENANCE_OUT from SCC-2
2789                          *
2790                          * Check for emulated MO_SET_TARGET_PGS.
2791                          */
2792                         if (cdb[1] == MO_SET_TARGET_PGS &&
2793                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2794                                 cmd->execute_task =
2795                                         target_emulate_set_target_port_groups;
2796                         }
2797
2798                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2799                                (cdb[8] << 8) | cdb[9];
2800                 } else  {
2801                         /* GPCMD_REPORT_KEY from multi media commands */
2802                         size = (cdb[8] << 8) + cdb[9];
2803                 }
2804                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2805                 break;
2806         case INQUIRY:
2807                 size = (cdb[3] << 8) + cdb[4];
2808                 /*
2809                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2810                  * See spc4r17 section 5.3
2811                  */
2812                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2813                         cmd->sam_task_attr = MSG_HEAD_TAG;
2814                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2815                 if (!passthrough)
2816                         cmd->execute_task = target_emulate_inquiry;
2817                 break;
2818         case READ_BUFFER:
2819                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2820                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2821                 break;
2822         case READ_CAPACITY:
2823                 size = READ_CAP_LEN;
2824                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2825                 if (!passthrough)
2826                         cmd->execute_task = target_emulate_readcapacity;
2827                 break;
2828         case READ_MEDIA_SERIAL_NUMBER:
2829         case SECURITY_PROTOCOL_IN:
2830         case SECURITY_PROTOCOL_OUT:
2831                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2832                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2833                 break;
2834         case SERVICE_ACTION_IN:
2835                 switch (cmd->t_task_cdb[1] & 0x1f) {
2836                 case SAI_READ_CAPACITY_16:
2837                         if (!passthrough)
2838                                 cmd->execute_task =
2839                                         target_emulate_readcapacity_16;
2840                         break;
2841                 default:
2842                         if (passthrough)
2843                                 break;
2844
2845                         pr_err("Unsupported SA: 0x%02x\n",
2846                                 cmd->t_task_cdb[1] & 0x1f);
2847                         goto out_unsupported_cdb;
2848                 }
2849                 /*FALLTHROUGH*/
2850         case ACCESS_CONTROL_IN:
2851         case ACCESS_CONTROL_OUT:
2852         case EXTENDED_COPY:
2853         case READ_ATTRIBUTE:
2854         case RECEIVE_COPY_RESULTS:
2855         case WRITE_ATTRIBUTE:
2856                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2857                        (cdb[12] << 8) | cdb[13];
2858                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2859                 break;
2860         case RECEIVE_DIAGNOSTIC:
2861         case SEND_DIAGNOSTIC:
2862                 size = (cdb[3] << 8) | cdb[4];
2863                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2864                 break;
2865 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2866 #if 0
2867         case GPCMD_READ_CD:
2868                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2869                 size = (2336 * sectors);
2870                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2871                 break;
2872 #endif
2873         case READ_TOC:
2874                 size = cdb[8];
2875                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2876                 break;
2877         case REQUEST_SENSE:
2878                 size = cdb[4];
2879                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2880                 if (!passthrough)
2881                         cmd->execute_task = target_emulate_request_sense;
2882                 break;
2883         case READ_ELEMENT_STATUS:
2884                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2885                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2886                 break;
2887         case WRITE_BUFFER:
2888                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2889                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2890                 break;
2891         case RESERVE:
2892         case RESERVE_10:
2893                 /*
2894                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2895                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2896                  */
2897                 if (cdb[0] == RESERVE_10)
2898                         size = (cdb[7] << 8) | cdb[8];
2899                 else
2900                         size = cmd->data_length;
2901
2902                 /*
2903                  * Setup the legacy emulated handler for SPC-2 and
2904                  * >= SPC-3 compatible reservation handling (CRH=1)
2905                  * Otherwise, we assume the underlying SCSI logic is
2906                  * is running in SPC_PASSTHROUGH, and wants reservations
2907                  * emulation disabled.
2908                  */
2909                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2910                         cmd->execute_task = target_scsi2_reservation_reserve;
2911                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2912                 break;
2913         case RELEASE:
2914         case RELEASE_10:
2915                 /*
2916                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2917                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2918                 */
2919                 if (cdb[0] == RELEASE_10)
2920                         size = (cdb[7] << 8) | cdb[8];
2921                 else
2922                         size = cmd->data_length;
2923
2924                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2925                         cmd->execute_task = target_scsi2_reservation_release;
2926                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2927                 break;
2928         case SYNCHRONIZE_CACHE:
2929         case 0x91: /* SYNCHRONIZE_CACHE_16: */
2930                 /*
2931                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2932                  */
2933                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2934                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2935                         cmd->t_task_lba = transport_lba_32(cdb);
2936                 } else {
2937                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2938                         cmd->t_task_lba = transport_lba_64(cdb);
2939                 }
2940                 if (sector_ret)
2941                         goto out_unsupported_cdb;
2942
2943                 size = transport_get_size(sectors, cdb, cmd);
2944                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2945
2946                 if (passthrough)
2947                         break;
2948
2949                 /*
2950                  * Check to ensure that LBA + Range does not exceed past end of
2951                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2952                  */
2953                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2954                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2955                                 goto out_invalid_cdb_field;
2956                 }
2957                 cmd->execute_task = target_emulate_synchronize_cache;
2958                 break;
2959         case UNMAP:
2960                 size = get_unaligned_be16(&cdb[7]);
2961                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2962                 if (!passthrough)
2963                         cmd->execute_task = target_emulate_unmap;
2964                 break;
2965         case WRITE_SAME_16:
2966                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2967                 if (sector_ret)
2968                         goto out_unsupported_cdb;
2969
2970                 if (sectors)
2971                         size = transport_get_size(1, cdb, cmd);
2972                 else {
2973                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2974                         goto out_invalid_cdb_field;
2975                 }
2976
2977                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2978                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2979
2980                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2981                         goto out_invalid_cdb_field;
2982                 if (!passthrough)
2983                         cmd->execute_task = target_emulate_write_same;
2984                 break;
2985         case WRITE_SAME:
2986                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2987                 if (sector_ret)
2988                         goto out_unsupported_cdb;
2989
2990                 if (sectors)
2991                         size = transport_get_size(1, cdb, cmd);
2992                 else {
2993                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2994                         goto out_invalid_cdb_field;
2995                 }
2996
2997                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2998                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2999                 /*
3000                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3001                  * of byte 1 bit 3 UNMAP instead of original reserved field
3002                  */
3003                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3004                         goto out_invalid_cdb_field;
3005                 if (!passthrough)
3006                         cmd->execute_task = target_emulate_write_same;
3007                 break;
3008         case ALLOW_MEDIUM_REMOVAL:
3009         case ERASE:
3010         case REZERO_UNIT:
3011         case SEEK_10:
3012         case SPACE:
3013         case START_STOP:
3014         case TEST_UNIT_READY:
3015         case VERIFY:
3016         case WRITE_FILEMARKS:
3017                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3018                 if (!passthrough)
3019                         cmd->execute_task = target_emulate_noop;
3020                 break;
3021         case GPCMD_CLOSE_TRACK:
3022         case INITIALIZE_ELEMENT_STATUS:
3023         case GPCMD_LOAD_UNLOAD:
3024         case GPCMD_SET_SPEED:
3025         case MOVE_MEDIUM:
3026                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3027                 break;
3028         case REPORT_LUNS:
3029                 cmd->execute_task = target_report_luns;
3030                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3031                 /*
3032                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3033                  * See spc4r17 section 5.3
3034                  */
3035                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3036                         cmd->sam_task_attr = MSG_HEAD_TAG;
3037                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3038                 break;
3039         default:
3040                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3041                         " 0x%02x, sending CHECK_CONDITION.\n",
3042                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3043                 goto out_unsupported_cdb;
3044         }
3045
3046         if (size != cmd->data_length) {
3047                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3048                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3049                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3050                                 cmd->data_length, size, cdb[0]);
3051
3052                 cmd->cmd_spdtl = size;
3053
3054                 if (cmd->data_direction == DMA_TO_DEVICE) {
3055                         pr_err("Rejecting underflow/overflow"
3056                                         " WRITE data\n");
3057                         goto out_invalid_cdb_field;
3058                 }
3059                 /*
3060                  * Reject READ_* or WRITE_* with overflow/underflow for
3061                  * type SCF_SCSI_DATA_SG_IO_CDB.
3062                  */
3063                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3064                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3065                                 " CDB on non 512-byte sector setup subsystem"
3066                                 " plugin: %s\n", dev->transport->name);
3067                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3068                         goto out_invalid_cdb_field;
3069                 }
3070
3071                 if (size > cmd->data_length) {
3072                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3073                         cmd->residual_count = (size - cmd->data_length);
3074                 } else {
3075                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3076                         cmd->residual_count = (cmd->data_length - size);
3077                 }
3078                 cmd->data_length = size;
3079         }
3080
3081         /* reject any command that we don't have a handler for */
3082         if (!(passthrough || cmd->execute_task ||
3083              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3084                 goto out_unsupported_cdb;
3085
3086         transport_set_supported_SAM_opcode(cmd);
3087         return ret;
3088
3089 out_unsupported_cdb:
3090         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3091         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3092         return -EINVAL;
3093 out_invalid_cdb_field:
3094         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3095         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3096         return -EINVAL;
3097 }
3098
3099 /*
3100  * Called from I/O completion to determine which dormant/delayed
3101  * and ordered cmds need to have their tasks added to the execution queue.
3102  */
3103 static void transport_complete_task_attr(struct se_cmd *cmd)
3104 {
3105         struct se_device *dev = cmd->se_dev;
3106         struct se_cmd *cmd_p, *cmd_tmp;
3107         int new_active_tasks = 0;
3108
3109         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3110                 atomic_dec(&dev->simple_cmds);
3111                 smp_mb__after_atomic_dec();
3112                 dev->dev_cur_ordered_id++;
3113                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3114                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3115                         cmd->se_ordered_id);
3116         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3117                 dev->dev_cur_ordered_id++;
3118                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3119                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3120                         cmd->se_ordered_id);
3121         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3122                 atomic_dec(&dev->dev_ordered_sync);
3123                 smp_mb__after_atomic_dec();
3124
3125                 dev->dev_cur_ordered_id++;
3126                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3127                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3128         }
3129         /*
3130          * Process all commands up to the last received
3131          * ORDERED task attribute which requires another blocking
3132          * boundary
3133          */
3134         spin_lock(&dev->delayed_cmd_lock);
3135         list_for_each_entry_safe(cmd_p, cmd_tmp,
3136                         &dev->delayed_cmd_list, se_delayed_node) {
3137
3138                 list_del(&cmd_p->se_delayed_node);
3139                 spin_unlock(&dev->delayed_cmd_lock);
3140
3141                 pr_debug("Calling add_tasks() for"
3142                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3143                         " Dormant -> Active, se_ordered_id: %u\n",
3144                         cmd_p->t_task_cdb[0],
3145                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3146
3147                 transport_add_tasks_from_cmd(cmd_p);
3148                 new_active_tasks++;
3149
3150                 spin_lock(&dev->delayed_cmd_lock);
3151                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3152                         break;
3153         }
3154         spin_unlock(&dev->delayed_cmd_lock);
3155         /*
3156          * If new tasks have become active, wake up the transport thread
3157          * to do the processing of the Active tasks.
3158          */
3159         if (new_active_tasks != 0)
3160                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3161 }
3162
3163 static void transport_complete_qf(struct se_cmd *cmd)
3164 {
3165         int ret = 0;
3166
3167         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3168                 transport_complete_task_attr(cmd);
3169
3170         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3171                 ret = cmd->se_tfo->queue_status(cmd);
3172                 if (ret)
3173                         goto out;
3174         }
3175
3176         switch (cmd->data_direction) {
3177         case DMA_FROM_DEVICE:
3178                 ret = cmd->se_tfo->queue_data_in(cmd);
3179                 break;
3180         case DMA_TO_DEVICE:
3181                 if (cmd->t_bidi_data_sg) {
3182                         ret = cmd->se_tfo->queue_data_in(cmd);
3183                         if (ret < 0)
3184                                 break;
3185                 }
3186                 /* Fall through for DMA_TO_DEVICE */
3187         case DMA_NONE:
3188                 ret = cmd->se_tfo->queue_status(cmd);
3189                 break;
3190         default:
3191                 break;
3192         }
3193
3194 out:
3195         if (ret < 0) {
3196                 transport_handle_queue_full(cmd, cmd->se_dev);
3197                 return;
3198         }
3199         transport_lun_remove_cmd(cmd);
3200         transport_cmd_check_stop_to_fabric(cmd);
3201 }
3202
3203 static void transport_handle_queue_full(
3204         struct se_cmd *cmd,
3205         struct se_device *dev)
3206 {
3207         spin_lock_irq(&dev->qf_cmd_lock);
3208         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3209         atomic_inc(&dev->dev_qf_count);
3210         smp_mb__after_atomic_inc();
3211         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3212
3213         schedule_work(&cmd->se_dev->qf_work_queue);
3214 }
3215
3216 static void target_complete_ok_work(struct work_struct *work)
3217 {
3218         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3219         int reason = 0, ret;
3220
3221         /*
3222          * Check if we need to move delayed/dormant tasks from cmds on the
3223          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3224          * Attribute.
3225          */
3226         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3227                 transport_complete_task_attr(cmd);
3228         /*
3229          * Check to schedule QUEUE_FULL work, or execute an existing
3230          * cmd->transport_qf_callback()
3231          */
3232         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3233                 schedule_work(&cmd->se_dev->qf_work_queue);
3234
3235         /*
3236          * Check if we need to retrieve a sense buffer from
3237          * the struct se_cmd in question.
3238          */
3239         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3240                 if (transport_get_sense_data(cmd) < 0)
3241                         reason = TCM_NON_EXISTENT_LUN;
3242
3243                 /*
3244                  * Only set when an struct se_task->task_scsi_status returned
3245                  * a non GOOD status.
3246                  */
3247                 if (cmd->scsi_status) {
3248                         ret = transport_send_check_condition_and_sense(
3249                                         cmd, reason, 1);
3250                         if (ret == -EAGAIN || ret == -ENOMEM)
3251                                 goto queue_full;
3252
3253                         transport_lun_remove_cmd(cmd);
3254                         transport_cmd_check_stop_to_fabric(cmd);
3255                         return;
3256                 }
3257         }
3258         /*
3259          * Check for a callback, used by amongst other things
3260          * XDWRITE_READ_10 emulation.
3261          */
3262         if (cmd->transport_complete_callback)
3263                 cmd->transport_complete_callback(cmd);
3264
3265         switch (cmd->data_direction) {
3266         case DMA_FROM_DEVICE:
3267                 spin_lock(&cmd->se_lun->lun_sep_lock);
3268                 if (cmd->se_lun->lun_sep) {
3269                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3270                                         cmd->data_length;
3271                 }
3272                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3273
3274                 ret = cmd->se_tfo->queue_data_in(cmd);
3275                 if (ret == -EAGAIN || ret == -ENOMEM)
3276                         goto queue_full;
3277                 break;
3278         case DMA_TO_DEVICE:
3279                 spin_lock(&cmd->se_lun->lun_sep_lock);
3280                 if (cmd->se_lun->lun_sep) {
3281                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3282                                 cmd->data_length;
3283                 }
3284                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3285                 /*
3286                  * Check if we need to send READ payload for BIDI-COMMAND
3287                  */
3288                 if (cmd->t_bidi_data_sg) {
3289                         spin_lock(&cmd->se_lun->lun_sep_lock);
3290                         if (cmd->se_lun->lun_sep) {
3291                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3292                                         cmd->data_length;
3293                         }
3294                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3295                         ret = cmd->se_tfo->queue_data_in(cmd);
3296                         if (ret == -EAGAIN || ret == -ENOMEM)
3297                                 goto queue_full;
3298                         break;
3299                 }
3300                 /* Fall through for DMA_TO_DEVICE */
3301         case DMA_NONE:
3302                 ret = cmd->se_tfo->queue_status(cmd);
3303                 if (ret == -EAGAIN || ret == -ENOMEM)
3304                         goto queue_full;
3305                 break;
3306         default:
3307                 break;
3308         }
3309
3310         transport_lun_remove_cmd(cmd);
3311         transport_cmd_check_stop_to_fabric(cmd);
3312         return;
3313
3314 queue_full:
3315         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3316                 " data_direction: %d\n", cmd, cmd->data_direction);
3317         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3318         transport_handle_queue_full(cmd, cmd->se_dev);
3319 }
3320
3321 static void transport_free_dev_tasks(struct se_cmd *cmd)
3322 {
3323         struct se_task *task, *task_tmp;
3324         unsigned long flags;
3325         LIST_HEAD(dispose_list);
3326
3327         spin_lock_irqsave(&cmd->t_state_lock, flags);
3328         list_for_each_entry_safe(task, task_tmp,
3329                                 &cmd->t_task_list, t_list) {
3330                 if (!(task->task_flags & TF_ACTIVE))
3331                         list_move_tail(&task->t_list, &dispose_list);
3332         }
3333         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3334
3335         while (!list_empty(&dispose_list)) {
3336                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3337
3338                 if (task->task_sg != cmd->t_data_sg &&
3339                     task->task_sg != cmd->t_bidi_data_sg)
3340                         kfree(task->task_sg);
3341
3342                 list_del(&task->t_list);
3343
3344                 cmd->se_dev->transport->free_task(task);
3345         }
3346 }
3347
3348 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3349 {
3350         struct scatterlist *sg;
3351         int count;
3352
3353         for_each_sg(sgl, sg, nents, count)
3354                 __free_page(sg_page(sg));
3355
3356         kfree(sgl);
3357 }
3358
3359 static inline void transport_free_pages(struct se_cmd *cmd)
3360 {
3361         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3362                 return;
3363
3364         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3365         cmd->t_data_sg = NULL;
3366         cmd->t_data_nents = 0;
3367
3368         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3369         cmd->t_bidi_data_sg = NULL;
3370         cmd->t_bidi_data_nents = 0;
3371 }
3372
3373 /**
3374  * transport_release_cmd - free a command
3375  * @cmd:       command to free
3376  *
3377  * This routine unconditionally frees a command, and reference counting
3378  * or list removal must be done in the caller.
3379  */
3380 static void transport_release_cmd(struct se_cmd *cmd)
3381 {
3382         BUG_ON(!cmd->se_tfo);
3383
3384         if (cmd->se_tmr_req)
3385                 core_tmr_release_req(cmd->se_tmr_req);
3386         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3387                 kfree(cmd->t_task_cdb);
3388         /*
3389          * If this cmd has been setup with target_get_sess_cmd(), drop
3390          * the kref and call ->release_cmd() in kref callback.
3391          */
3392          if (cmd->check_release != 0) {
3393                 target_put_sess_cmd(cmd->se_sess, cmd);
3394                 return;
3395         }
3396         cmd->se_tfo->release_cmd(cmd);
3397 }
3398
3399 /**
3400  * transport_put_cmd - release a reference to a command
3401  * @cmd:       command to release
3402  *
3403  * This routine releases our reference to the command and frees it if possible.
3404  */
3405 static void transport_put_cmd(struct se_cmd *cmd)
3406 {
3407         unsigned long flags;
3408         int free_tasks = 0;
3409
3410         spin_lock_irqsave(&cmd->t_state_lock, flags);
3411         if (atomic_read(&cmd->t_fe_count)) {
3412                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3413                         goto out_busy;
3414         }
3415
3416         if (atomic_read(&cmd->t_se_count)) {
3417                 if (!atomic_dec_and_test(&cmd->t_se_count))
3418                         goto out_busy;
3419         }
3420
3421         if (atomic_read(&cmd->transport_dev_active)) {
3422                 atomic_set(&cmd->transport_dev_active, 0);
3423                 transport_all_task_dev_remove_state(cmd);
3424                 free_tasks = 1;
3425         }
3426         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3427
3428         if (free_tasks != 0)
3429                 transport_free_dev_tasks(cmd);
3430
3431         transport_free_pages(cmd);
3432         transport_release_cmd(cmd);
3433         return;
3434 out_busy:
3435         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3436 }
3437
3438 /*
3439  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3440  * allocating in the core.
3441  * @cmd:  Associated se_cmd descriptor
3442  * @mem:  SGL style memory for TCM WRITE / READ
3443  * @sg_mem_num: Number of SGL elements
3444  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3445  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3446  *
3447  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3448  * of parameters.
3449  */
3450 int transport_generic_map_mem_to_cmd(
3451         struct se_cmd *cmd,
3452         struct scatterlist *sgl,
3453         u32 sgl_count,
3454         struct scatterlist *sgl_bidi,
3455         u32 sgl_bidi_count)
3456 {
3457         if (!sgl || !sgl_count)
3458                 return 0;
3459
3460         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3461             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3462                 /*
3463                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3464                  * scatterlists already have been set to follow what the fabric
3465                  * passes for the original expected data transfer length.
3466                  */
3467                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3468                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3469                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3470                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3471                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3472                         return -EINVAL;
3473                 }
3474
3475                 cmd->t_data_sg = sgl;
3476                 cmd->t_data_nents = sgl_count;
3477
3478                 if (sgl_bidi && sgl_bidi_count) {
3479                         cmd->t_bidi_data_sg = sgl_bidi;
3480                         cmd->t_bidi_data_nents = sgl_bidi_count;
3481                 }
3482                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3483         }
3484
3485         return 0;
3486 }
3487 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3488
3489 void *transport_kmap_data_sg(struct se_cmd *cmd)
3490 {
3491         struct scatterlist *sg = cmd->t_data_sg;
3492         struct page **pages;
3493         int i;
3494
3495         BUG_ON(!sg);
3496         /*
3497          * We need to take into account a possible offset here for fabrics like
3498          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3499          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3500          */
3501         if (!cmd->t_data_nents)
3502                 return NULL;
3503         else if (cmd->t_data_nents == 1)
3504                 return kmap(sg_page(sg)) + sg->offset;
3505
3506         /* >1 page. use vmap */
3507         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3508         if (!pages)
3509                 return NULL;
3510
3511         /* convert sg[] to pages[] */
3512         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3513                 pages[i] = sg_page(sg);
3514         }
3515
3516         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3517         kfree(pages);
3518         if (!cmd->t_data_vmap)
3519                 return NULL;
3520
3521         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3522 }
3523 EXPORT_SYMBOL(transport_kmap_data_sg);
3524
3525 void transport_kunmap_data_sg(struct se_cmd *cmd)
3526 {
3527         if (!cmd->t_data_nents)
3528                 return;
3529         else if (cmd->t_data_nents == 1)
3530                 kunmap(sg_page(cmd->t_data_sg));
3531
3532         vunmap(cmd->t_data_vmap);
3533         cmd->t_data_vmap = NULL;
3534 }
3535 EXPORT_SYMBOL(transport_kunmap_data_sg);
3536
3537 static int
3538 transport_generic_get_mem(struct se_cmd *cmd)
3539 {
3540         u32 length = cmd->data_length;
3541         unsigned int nents;
3542         struct page *page;
3543         gfp_t zero_flag;
3544         int i = 0;
3545
3546         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3547         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3548         if (!cmd->t_data_sg)
3549                 return -ENOMEM;
3550
3551         cmd->t_data_nents = nents;
3552         sg_init_table(cmd->t_data_sg, nents);
3553
3554         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3555
3556         while (length) {
3557                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3558                 page = alloc_page(GFP_KERNEL | zero_flag);
3559                 if (!page)
3560                         goto out;
3561
3562                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3563                 length -= page_len;
3564                 i++;
3565         }
3566         return 0;
3567
3568 out:
3569         while (i >= 0) {
3570                 __free_page(sg_page(&cmd->t_data_sg[i]));
3571                 i--;
3572         }
3573         kfree(cmd->t_data_sg);
3574         cmd->t_data_sg = NULL;
3575         return -ENOMEM;
3576 }
3577
3578 /* Reduce sectors if they are too long for the device */
3579 static inline sector_t transport_limit_task_sectors(
3580         struct se_device *dev,
3581         unsigned long long lba,
3582         sector_t sectors)
3583 {
3584         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3585
3586         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3587                 if ((lba + sectors) > transport_dev_end_lba(dev))
3588                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3589
3590         return sectors;
3591 }
3592
3593
3594 /*
3595  * This function can be used by HW target mode drivers to create a linked
3596  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3597  * This is intended to be called during the completion path by TCM Core
3598  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3599  */
3600 void transport_do_task_sg_chain(struct se_cmd *cmd)
3601 {
3602         struct scatterlist *sg_first = NULL;
3603         struct scatterlist *sg_prev = NULL;
3604         int sg_prev_nents = 0;
3605         struct scatterlist *sg;
3606         struct se_task *task;
3607         u32 chained_nents = 0;
3608         int i;
3609
3610         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3611
3612         /*
3613          * Walk the struct se_task list and setup scatterlist chains
3614          * for each contiguously allocated struct se_task->task_sg[].
3615          */
3616         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3617                 if (!task->task_sg)
3618                         continue;
3619
3620                 if (!sg_first) {
3621                         sg_first = task->task_sg;
3622                         chained_nents = task->task_sg_nents;
3623                 } else {
3624                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3625                         chained_nents += task->task_sg_nents;
3626                 }
3627                 /*
3628                  * For the padded tasks, use the extra SGL vector allocated
3629                  * in transport_allocate_data_tasks() for the sg_prev_nents
3630                  * offset into sg_chain() above.
3631                  *
3632                  * We do not need the padding for the last task (or a single
3633                  * task), but in that case we will never use the sg_prev_nents
3634                  * value below which would be incorrect.
3635                  */
3636                 sg_prev_nents = (task->task_sg_nents + 1);
3637                 sg_prev = task->task_sg;
3638         }
3639         /*
3640          * Setup the starting pointer and total t_tasks_sg_linked_no including
3641          * padding SGs for linking and to mark the end.
3642          */
3643         cmd->t_tasks_sg_chained = sg_first;
3644         cmd->t_tasks_sg_chained_no = chained_nents;
3645
3646         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3647                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3648                 cmd->t_tasks_sg_chained_no);
3649
3650         for_each_sg(cmd->t_tasks_sg_chained, sg,
3651                         cmd->t_tasks_sg_chained_no, i) {
3652
3653                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3654                         i, sg, sg_page(sg), sg->length, sg->offset);
3655                 if (sg_is_chain(sg))
3656                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3657                 if (sg_is_last(sg))
3658                         pr_debug("SG: %p sg_is_last=1\n", sg);
3659         }
3660 }
3661 EXPORT_SYMBOL(transport_do_task_sg_chain);
3662
3663 /*
3664  * Break up cmd into chunks transport can handle
3665  */
3666 static int
3667 transport_allocate_data_tasks(struct se_cmd *cmd,
3668         enum dma_data_direction data_direction,
3669         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3670 {
3671         struct se_device *dev = cmd->se_dev;
3672         int task_count, i;
3673         unsigned long long lba;
3674         sector_t sectors, dev_max_sectors;
3675         u32 sector_size;
3676
3677         if (transport_cmd_get_valid_sectors(cmd) < 0)
3678                 return -EINVAL;
3679
3680         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3681         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3682
3683         WARN_ON(cmd->data_length % sector_size);
3684
3685         lba = cmd->t_task_lba;
3686         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3687         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3688
3689         /*
3690          * If we need just a single task reuse the SG list in the command
3691          * and avoid a lot of work.
3692          */
3693         if (task_count == 1) {
3694                 struct se_task *task;
3695                 unsigned long flags;
3696
3697                 task = transport_generic_get_task(cmd, data_direction);
3698                 if (!task)
3699                         return -ENOMEM;
3700
3701                 task->task_sg = cmd_sg;
3702                 task->task_sg_nents = sgl_nents;
3703
3704                 task->task_lba = lba;
3705                 task->task_sectors = sectors;
3706                 task->task_size = task->task_sectors * sector_size;
3707
3708                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3709                 list_add_tail(&task->t_list, &cmd->t_task_list);
3710                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3711
3712                 return task_count;
3713         }
3714
3715         for (i = 0; i < task_count; i++) {
3716                 struct se_task *task;
3717                 unsigned int task_size, task_sg_nents_padded;
3718                 struct scatterlist *sg;
3719                 unsigned long flags;
3720                 int count;
3721
3722                 task = transport_generic_get_task(cmd, data_direction);
3723                 if (!task)
3724                         return -ENOMEM;
3725
3726                 task->task_lba = lba;
3727                 task->task_sectors = min(sectors, dev_max_sectors);
3728                 task->task_size = task->task_sectors * sector_size;
3729
3730                 /*
3731                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3732                  * in order to calculate the number per task SGL entries
3733                  */
3734                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3735                 /*
3736                  * Check if the fabric module driver is requesting that all
3737                  * struct se_task->task_sg[] be chained together..  If so,
3738                  * then allocate an extra padding SG entry for linking and
3739                  * marking the end of the chained SGL for every task except
3740                  * the last one for (task_count > 1) operation, or skipping
3741                  * the extra padding for the (task_count == 1) case.
3742                  */
3743                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3744                         task_sg_nents_padded = (task->task_sg_nents + 1);
3745                 } else
3746                         task_sg_nents_padded = task->task_sg_nents;
3747
3748                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3749                                         task_sg_nents_padded, GFP_KERNEL);
3750                 if (!task->task_sg) {
3751                         cmd->se_dev->transport->free_task(task);
3752                         return -ENOMEM;
3753                 }
3754
3755                 sg_init_table(task->task_sg, task_sg_nents_padded);
3756
3757                 task_size = task->task_size;
3758
3759                 /* Build new sgl, only up to task_size */
3760                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3761                         if (cmd_sg->length > task_size)
3762                                 break;
3763
3764                         *sg = *cmd_sg;
3765                         task_size -= cmd_sg->length;
3766                         cmd_sg = sg_next(cmd_sg);
3767                 }
3768
3769                 lba += task->task_sectors;
3770                 sectors -= task->task_sectors;
3771
3772                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3773                 list_add_tail(&task->t_list, &cmd->t_task_list);
3774                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3775         }
3776
3777         return task_count;
3778 }
3779
3780 static int
3781 transport_allocate_control_task(struct se_cmd *cmd)
3782 {
3783         struct se_task *task;
3784         unsigned long flags;
3785
3786         /* Workaround for handling zero-length control CDBs */
3787         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3788             !cmd->data_length)
3789                 return 0;
3790
3791         task = transport_generic_get_task(cmd, cmd->data_direction);
3792         if (!task)
3793                 return -ENOMEM;
3794
3795         task->task_sg = cmd->t_data_sg;
3796         task->task_size = cmd->data_length;
3797         task->task_sg_nents = cmd->t_data_nents;
3798
3799         spin_lock_irqsave(&cmd->t_state_lock, flags);
3800         list_add_tail(&task->t_list, &cmd->t_task_list);
3801         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3802
3803         /* Success! Return number of tasks allocated */
3804         return 1;
3805 }
3806
3807 /*
3808  * Allocate any required ressources to execute the command, and either place
3809  * it on the execution queue if possible.  For writes we might not have the
3810  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3811  */
3812 int transport_generic_new_cmd(struct se_cmd *cmd)
3813 {
3814         struct se_device *dev = cmd->se_dev;
3815         int task_cdbs, task_cdbs_bidi = 0;
3816         int set_counts = 1;
3817         int ret = 0;
3818
3819         /*
3820          * Determine is the TCM fabric module has already allocated physical
3821          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3822          * beforehand.
3823          */
3824         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3825             cmd->data_length) {
3826                 ret = transport_generic_get_mem(cmd);
3827                 if (ret < 0)
3828                         goto out_fail;
3829         }
3830
3831         /*
3832          * For BIDI command set up the read tasks first.
3833          */
3834         if (cmd->t_bidi_data_sg &&
3835             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3836                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3837
3838                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3839                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3840                                 cmd->t_bidi_data_nents);
3841                 if (task_cdbs_bidi <= 0)
3842                         goto out_fail;
3843
3844                 atomic_inc(&cmd->t_fe_count);
3845                 atomic_inc(&cmd->t_se_count);
3846                 set_counts = 0;
3847         }
3848
3849         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3850                 task_cdbs = transport_allocate_data_tasks(cmd,
3851                                         cmd->data_direction, cmd->t_data_sg,
3852                                         cmd->t_data_nents);
3853         } else {
3854                 task_cdbs = transport_allocate_control_task(cmd);
3855         }
3856
3857         if (task_cdbs < 0)
3858                 goto out_fail;
3859         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3860                 cmd->t_state = TRANSPORT_COMPLETE;
3861                 atomic_set(&cmd->t_transport_active, 1);
3862
3863                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3864                         u8 ua_asc = 0, ua_ascq = 0;
3865
3866                         core_scsi3_ua_clear_for_request_sense(cmd,
3867                                         &ua_asc, &ua_ascq);
3868                 }
3869
3870                 INIT_WORK(&cmd->work, target_complete_ok_work);
3871                 queue_work(target_completion_wq, &cmd->work);
3872                 return 0;
3873         }
3874
3875         if (set_counts) {
3876                 atomic_inc(&cmd->t_fe_count);
3877                 atomic_inc(&cmd->t_se_count);
3878         }
3879
3880         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3881         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3882         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3883
3884         /*
3885          * For WRITEs, let the fabric know its buffer is ready..
3886          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3887          * will be added to the struct se_device execution queue after its WRITE
3888          * data has arrived. (ie: It gets handled by the transport processing
3889          * thread a second time)
3890          */
3891         if (cmd->data_direction == DMA_TO_DEVICE) {
3892                 transport_add_tasks_to_state_queue(cmd);
3893                 return transport_generic_write_pending(cmd);
3894         }
3895         /*
3896          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3897          * to the execution queue.
3898          */
3899         transport_execute_tasks(cmd);
3900         return 0;
3901
3902 out_fail:
3903         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3904         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3905         return -EINVAL;
3906 }
3907 EXPORT_SYMBOL(transport_generic_new_cmd);
3908
3909 /*      transport_generic_process_write():
3910  *
3911  *
3912  */
3913 void transport_generic_process_write(struct se_cmd *cmd)
3914 {
3915         transport_execute_tasks(cmd);
3916 }
3917 EXPORT_SYMBOL(transport_generic_process_write);
3918
3919 static void transport_write_pending_qf(struct se_cmd *cmd)
3920 {
3921         int ret;
3922
3923         ret = cmd->se_tfo->write_pending(cmd);
3924         if (ret == -EAGAIN || ret == -ENOMEM) {
3925                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3926                          cmd);
3927                 transport_handle_queue_full(cmd, cmd->se_dev);
3928         }
3929 }
3930
3931 static int transport_generic_write_pending(struct se_cmd *cmd)
3932 {
3933         unsigned long flags;
3934         int ret;
3935
3936         spin_lock_irqsave(&cmd->t_state_lock, flags);
3937         cmd->t_state = TRANSPORT_WRITE_PENDING;
3938         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3939
3940         /*
3941          * Clear the se_cmd for WRITE_PENDING status in order to set
3942          * cmd->t_transport_active=0 so that transport_generic_handle_data
3943          * can be called from HW target mode interrupt code.  This is safe
3944          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3945          * because the se_cmd->se_lun pointer is not being cleared.
3946          */
3947         transport_cmd_check_stop(cmd, 1, 0);
3948
3949         /*
3950          * Call the fabric write_pending function here to let the
3951          * frontend know that WRITE buffers are ready.
3952          */
3953         ret = cmd->se_tfo->write_pending(cmd);
3954         if (ret == -EAGAIN || ret == -ENOMEM)
3955                 goto queue_full;
3956         else if (ret < 0)
3957                 return ret;
3958
3959         return 1;
3960
3961 queue_full:
3962         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3963         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3964         transport_handle_queue_full(cmd, cmd->se_dev);
3965         return 0;
3966 }
3967
3968 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3969 {
3970         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3971                 if (wait_for_tasks && cmd->se_tmr_req)
3972                          transport_wait_for_tasks(cmd);
3973
3974                 transport_release_cmd(cmd);
3975         } else {
3976                 if (wait_for_tasks)
3977                         transport_wait_for_tasks(cmd);
3978
3979                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3980
3981                 if (cmd->se_lun)
3982                         transport_lun_remove_cmd(cmd);
3983
3984                 transport_free_dev_tasks(cmd);
3985
3986                 transport_put_cmd(cmd);
3987         }
3988 }
3989 EXPORT_SYMBOL(transport_generic_free_cmd);
3990
3991 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3992  * @se_sess:    session to reference
3993  * @se_cmd:     command descriptor to add
3994  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3995  */
3996 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3997                         bool ack_kref)
3998 {
3999         unsigned long flags;
4000
4001         kref_init(&se_cmd->cmd_kref);
4002         /*
4003          * Add a second kref if the fabric caller is expecting to handle
4004          * fabric acknowledgement that requires two target_put_sess_cmd()
4005          * invocations before se_cmd descriptor release.
4006          */
4007         if (ack_kref == true)
4008                 kref_get(&se_cmd->cmd_kref);
4009
4010         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4011         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4012         se_cmd->check_release = 1;
4013         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4014 }
4015 EXPORT_SYMBOL(target_get_sess_cmd);
4016
4017 static void target_release_cmd_kref(struct kref *kref)
4018 {
4019         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4020         struct se_session *se_sess = se_cmd->se_sess;
4021         unsigned long flags;
4022
4023         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4024         if (list_empty(&se_cmd->se_cmd_list)) {
4025                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4026                 WARN_ON(1);
4027                 return;
4028         }
4029         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4030                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4031                 complete(&se_cmd->cmd_wait_comp);
4032                 return;
4033         }
4034         list_del(&se_cmd->se_cmd_list);
4035         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4036
4037         se_cmd->se_tfo->release_cmd(se_cmd);
4038 }
4039
4040 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4041  * @se_sess:    session to reference
4042  * @se_cmd:     command descriptor to drop
4043  */
4044 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4045 {
4046         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4047 }
4048 EXPORT_SYMBOL(target_put_sess_cmd);
4049
4050 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4051  * @se_sess:    session to split
4052  */
4053 void target_splice_sess_cmd_list(struct se_session *se_sess)
4054 {
4055         struct se_cmd *se_cmd;
4056         unsigned long flags;
4057
4058         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4059         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4060
4061         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4062         se_sess->sess_tearing_down = 1;
4063
4064         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4065
4066         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4067                 se_cmd->cmd_wait_set = 1;
4068
4069         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4070 }
4071 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4072
4073 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4074  * @se_sess:    session to wait for active I/O
4075  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4076  */
4077 void target_wait_for_sess_cmds(
4078         struct se_session *se_sess,
4079         int wait_for_tasks)
4080 {
4081         struct se_cmd *se_cmd, *tmp_cmd;
4082         bool rc = false;
4083
4084         list_for_each_entry_safe(se_cmd, tmp_cmd,
4085                                 &se_sess->sess_wait_list, se_cmd_list) {
4086                 list_del(&se_cmd->se_cmd_list);
4087
4088                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4089                         " %d\n", se_cmd, se_cmd->t_state,
4090                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4091
4092                 if (wait_for_tasks) {
4093                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4094                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4095                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4096
4097                         rc = transport_wait_for_tasks(se_cmd);
4098
4099                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4100                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4101                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4102                 }
4103
4104                 if (!rc) {
4105                         wait_for_completion(&se_cmd->cmd_wait_comp);
4106                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4107                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4108                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4109                 }
4110
4111                 se_cmd->se_tfo->release_cmd(se_cmd);
4112         }
4113 }
4114 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4115
4116 /*      transport_lun_wait_for_tasks():
4117  *
4118  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4119  *      an struct se_lun to be successfully shutdown.
4120  */
4121 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4122 {
4123         unsigned long flags;
4124         int ret;
4125         /*
4126          * If the frontend has already requested this struct se_cmd to
4127          * be stopped, we can safely ignore this struct se_cmd.
4128          */
4129         spin_lock_irqsave(&cmd->t_state_lock, flags);
4130         if (atomic_read(&cmd->t_transport_stop)) {
4131                 atomic_set(&cmd->transport_lun_stop, 0);
4132                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4133                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4134                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4135                 transport_cmd_check_stop(cmd, 1, 0);
4136                 return -EPERM;
4137         }
4138         atomic_set(&cmd->transport_lun_fe_stop, 1);
4139         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4140
4141         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4142
4143         ret = transport_stop_tasks_for_cmd(cmd);
4144
4145         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4146                         " %d\n", cmd, cmd->t_task_list_num, ret);
4147         if (!ret) {
4148                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4149                                 cmd->se_tfo->get_task_tag(cmd));
4150                 wait_for_completion(&cmd->transport_lun_stop_comp);
4151                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4152                                 cmd->se_tfo->get_task_tag(cmd));
4153         }
4154         transport_remove_cmd_from_queue(cmd);
4155
4156         return 0;
4157 }
4158
4159 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4160 {
4161         struct se_cmd *cmd = NULL;
4162         unsigned long lun_flags, cmd_flags;
4163         /*
4164          * Do exception processing and return CHECK_CONDITION status to the
4165          * Initiator Port.
4166          */
4167         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4168         while (!list_empty(&lun->lun_cmd_list)) {
4169                 cmd = list_first_entry(&lun->lun_cmd_list,
4170                        struct se_cmd, se_lun_node);
4171                 list_del(&cmd->se_lun_node);
4172
4173                 atomic_set(&cmd->transport_lun_active, 0);
4174                 /*
4175                  * This will notify iscsi_target_transport.c:
4176                  * transport_cmd_check_stop() that a LUN shutdown is in
4177                  * progress for the iscsi_cmd_t.
4178                  */
4179                 spin_lock(&cmd->t_state_lock);
4180                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4181                         "_lun_stop for  ITT: 0x%08x\n",
4182                         cmd->se_lun->unpacked_lun,
4183                         cmd->se_tfo->get_task_tag(cmd));
4184                 atomic_set(&cmd->transport_lun_stop, 1);
4185                 spin_unlock(&cmd->t_state_lock);
4186
4187                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4188
4189                 if (!cmd->se_lun) {
4190                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4191                                 cmd->se_tfo->get_task_tag(cmd),
4192                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4193                         BUG();
4194                 }
4195                 /*
4196                  * If the Storage engine still owns the iscsi_cmd_t, determine
4197                  * and/or stop its context.
4198                  */
4199                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4200                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4201                         cmd->se_tfo->get_task_tag(cmd));
4202
4203                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4204                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4205                         continue;
4206                 }
4207
4208                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4209                         "_wait_for_tasks(): SUCCESS\n",
4210                         cmd->se_lun->unpacked_lun,
4211                         cmd->se_tfo->get_task_tag(cmd));
4212
4213                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4214                 if (!atomic_read(&cmd->transport_dev_active)) {
4215                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4216                         goto check_cond;
4217                 }
4218                 atomic_set(&cmd->transport_dev_active, 0);
4219                 transport_all_task_dev_remove_state(cmd);
4220                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4221
4222                 transport_free_dev_tasks(cmd);
4223                 /*
4224                  * The Storage engine stopped this struct se_cmd before it was
4225                  * send to the fabric frontend for delivery back to the
4226                  * Initiator Node.  Return this SCSI CDB back with an
4227                  * CHECK_CONDITION status.
4228                  */
4229 check_cond:
4230                 transport_send_check_condition_and_sense(cmd,
4231                                 TCM_NON_EXISTENT_LUN, 0);
4232                 /*
4233                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4234                  * be released, notify the waiting thread now that LU has
4235                  * finished accessing it.
4236                  */
4237                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4238                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4239                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4240                                 " struct se_cmd: %p ITT: 0x%08x\n",
4241                                 lun->unpacked_lun,
4242                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4243
4244                         spin_unlock_irqrestore(&cmd->t_state_lock,
4245                                         cmd_flags);
4246                         transport_cmd_check_stop(cmd, 1, 0);
4247                         complete(&cmd->transport_lun_fe_stop_comp);
4248                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4249                         continue;
4250                 }
4251                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4252                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4253
4254                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4255                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4256         }
4257         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4258 }
4259
4260 static int transport_clear_lun_thread(void *p)
4261 {
4262         struct se_lun *lun = p;
4263
4264         __transport_clear_lun_from_sessions(lun);
4265         complete(&lun->lun_shutdown_comp);
4266
4267         return 0;
4268 }
4269
4270 int transport_clear_lun_from_sessions(struct se_lun *lun)
4271 {
4272         struct task_struct *kt;
4273
4274         kt = kthread_run(transport_clear_lun_thread, lun,
4275                         "tcm_cl_%u", lun->unpacked_lun);
4276         if (IS_ERR(kt)) {
4277                 pr_err("Unable to start clear_lun thread\n");
4278                 return PTR_ERR(kt);
4279         }
4280         wait_for_completion(&lun->lun_shutdown_comp);
4281
4282         return 0;
4283 }
4284
4285 /**
4286  * transport_wait_for_tasks - wait for completion to occur
4287  * @cmd:        command to wait
4288  *
4289  * Called from frontend fabric context to wait for storage engine
4290  * to pause and/or release frontend generated struct se_cmd.
4291  */
4292 bool transport_wait_for_tasks(struct se_cmd *cmd)
4293 {
4294         unsigned long flags;
4295
4296         spin_lock_irqsave(&cmd->t_state_lock, flags);
4297         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4298                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4299                 return false;
4300         }
4301         /*
4302          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4303          * has been set in transport_set_supported_SAM_opcode().
4304          */
4305         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4306                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4307                 return false;
4308         }
4309         /*
4310          * If we are already stopped due to an external event (ie: LUN shutdown)
4311          * sleep until the connection can have the passed struct se_cmd back.
4312          * The cmd->transport_lun_stopped_sem will be upped by
4313          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4314          * has completed its operation on the struct se_cmd.
4315          */
4316         if (atomic_read(&cmd->transport_lun_stop)) {
4317
4318                 pr_debug("wait_for_tasks: Stopping"
4319                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4320                         "_stop_comp); for ITT: 0x%08x\n",
4321                         cmd->se_tfo->get_task_tag(cmd));
4322                 /*
4323                  * There is a special case for WRITES where a FE exception +
4324                  * LUN shutdown means ConfigFS context is still sleeping on
4325                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4326                  * We go ahead and up transport_lun_stop_comp just to be sure
4327                  * here.
4328                  */
4329                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4330                 complete(&cmd->transport_lun_stop_comp);
4331                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4332                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4333
4334                 transport_all_task_dev_remove_state(cmd);
4335                 /*
4336                  * At this point, the frontend who was the originator of this
4337                  * struct se_cmd, now owns the structure and can be released through
4338                  * normal means below.
4339                  */
4340                 pr_debug("wait_for_tasks: Stopped"
4341                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4342                         "stop_comp); for ITT: 0x%08x\n",
4343                         cmd->se_tfo->get_task_tag(cmd));
4344
4345                 atomic_set(&cmd->transport_lun_stop, 0);
4346         }
4347         if (!atomic_read(&cmd->t_transport_active) ||
4348              atomic_read(&cmd->t_transport_aborted)) {
4349                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4350                 return false;
4351         }
4352
4353         atomic_set(&cmd->t_transport_stop, 1);
4354
4355         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4356                 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4357                 cmd, cmd->se_tfo->get_task_tag(cmd),
4358                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4359
4360         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4361
4362         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4363
4364         wait_for_completion(&cmd->t_transport_stop_comp);
4365
4366         spin_lock_irqsave(&cmd->t_state_lock, flags);
4367         atomic_set(&cmd->t_transport_active, 0);
4368         atomic_set(&cmd->t_transport_stop, 0);
4369
4370         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4371                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4372                 cmd->se_tfo->get_task_tag(cmd));
4373
4374         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4375
4376         return true;
4377 }
4378 EXPORT_SYMBOL(transport_wait_for_tasks);
4379
4380 static int transport_get_sense_codes(
4381         struct se_cmd *cmd,
4382         u8 *asc,
4383         u8 *ascq)
4384 {
4385         *asc = cmd->scsi_asc;
4386         *ascq = cmd->scsi_ascq;
4387
4388         return 0;
4389 }
4390
4391 static int transport_set_sense_codes(
4392         struct se_cmd *cmd,
4393         u8 asc,
4394         u8 ascq)
4395 {
4396         cmd->scsi_asc = asc;
4397         cmd->scsi_ascq = ascq;
4398
4399         return 0;
4400 }
4401
4402 int transport_send_check_condition_and_sense(
4403         struct se_cmd *cmd,
4404         u8 reason,
4405         int from_transport)
4406 {
4407         unsigned char *buffer = cmd->sense_buffer;
4408         unsigned long flags;
4409         int offset;
4410         u8 asc = 0, ascq = 0;
4411
4412         spin_lock_irqsave(&cmd->t_state_lock, flags);
4413         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4414                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4415                 return 0;
4416         }
4417         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4418         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4419
4420         if (!reason && from_transport)
4421                 goto after_reason;
4422
4423         if (!from_transport)
4424                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4425         /*
4426          * Data Segment and SenseLength of the fabric response PDU.
4427          *
4428          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4429          * from include/scsi/scsi_cmnd.h
4430          */
4431         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4432                                 TRANSPORT_SENSE_BUFFER);
4433         /*
4434          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4435          * SENSE KEY values from include/scsi/scsi.h
4436          */
4437         switch (reason) {
4438         case TCM_NON_EXISTENT_LUN:
4439                 /* CURRENT ERROR */
4440                 buffer[offset] = 0x70;
4441                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4442                 /* ILLEGAL REQUEST */
4443                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4444                 /* LOGICAL UNIT NOT SUPPORTED */
4445                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4446                 break;
4447         case TCM_UNSUPPORTED_SCSI_OPCODE:
4448         case TCM_SECTOR_COUNT_TOO_MANY:
4449                 /* CURRENT ERROR */
4450                 buffer[offset] = 0x70;
4451                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4452                 /* ILLEGAL REQUEST */
4453                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4454                 /* INVALID COMMAND OPERATION CODE */
4455                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4456                 break;
4457         case TCM_UNKNOWN_MODE_PAGE:
4458                 /* CURRENT ERROR */
4459                 buffer[offset] = 0x70;
4460                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4461                 /* ILLEGAL REQUEST */
4462                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4463                 /* INVALID FIELD IN CDB */
4464                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4465                 break;
4466         case TCM_CHECK_CONDITION_ABORT_CMD:
4467                 /* CURRENT ERROR */
4468                 buffer[offset] = 0x70;
4469                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4470                 /* ABORTED COMMAND */
4471                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4472                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4473                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4474                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4475                 break;
4476         case TCM_INCORRECT_AMOUNT_OF_DATA:
4477                 /* CURRENT ERROR */
4478                 buffer[offset] = 0x70;
4479                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4480                 /* ABORTED COMMAND */
4481                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4482                 /* WRITE ERROR */
4483                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4484                 /* NOT ENOUGH UNSOLICITED DATA */
4485                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4486                 break;
4487         case TCM_INVALID_CDB_FIELD:
4488                 /* CURRENT ERROR */
4489                 buffer[offset] = 0x70;
4490                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4491                 /* ILLEGAL REQUEST */
4492                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4493                 /* INVALID FIELD IN CDB */
4494                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4495                 break;
4496         case TCM_INVALID_PARAMETER_LIST:
4497                 /* CURRENT ERROR */
4498                 buffer[offset] = 0x70;
4499                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4500                 /* ILLEGAL REQUEST */
4501                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4502                 /* INVALID FIELD IN PARAMETER LIST */
4503                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4504                 break;
4505         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4506                 /* CURRENT ERROR */
4507                 buffer[offset] = 0x70;
4508                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4509                 /* ABORTED COMMAND */
4510                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4511                 /* WRITE ERROR */
4512                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4513                 /* UNEXPECTED_UNSOLICITED_DATA */
4514                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4515                 break;
4516         case TCM_SERVICE_CRC_ERROR:
4517                 /* CURRENT ERROR */
4518                 buffer[offset] = 0x70;
4519                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4520                 /* ABORTED COMMAND */
4521                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4522                 /* PROTOCOL SERVICE CRC ERROR */
4523                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4524                 /* N/A */
4525                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4526                 break;
4527         case TCM_SNACK_REJECTED:
4528                 /* CURRENT ERROR */
4529                 buffer[offset] = 0x70;
4530                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4531                 /* ABORTED COMMAND */
4532                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4533                 /* READ ERROR */
4534                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4535                 /* FAILED RETRANSMISSION REQUEST */
4536                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4537                 break;
4538         case TCM_WRITE_PROTECTED:
4539                 /* CURRENT ERROR */
4540                 buffer[offset] = 0x70;
4541                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4542                 /* DATA PROTECT */
4543                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4544                 /* WRITE PROTECTED */
4545                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4546                 break;
4547         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4548                 /* CURRENT ERROR */
4549                 buffer[offset] = 0x70;
4550                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4551                 /* UNIT ATTENTION */
4552                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4553                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4554                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4555                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4556                 break;
4557         case TCM_CHECK_CONDITION_NOT_READY:
4558                 /* CURRENT ERROR */
4559                 buffer[offset] = 0x70;
4560                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4561                 /* Not Ready */
4562                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4563                 transport_get_sense_codes(cmd, &asc, &ascq);
4564                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4565                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4566                 break;
4567         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4568         default:
4569                 /* CURRENT ERROR */
4570                 buffer[offset] = 0x70;
4571                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4572                 /* ILLEGAL REQUEST */
4573                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4574                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4575                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4576                 break;
4577         }
4578         /*
4579          * This code uses linux/include/scsi/scsi.h SAM status codes!
4580          */
4581         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4582         /*
4583          * Automatically padded, this value is encoded in the fabric's
4584          * data_length response PDU containing the SCSI defined sense data.
4585          */
4586         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4587
4588 after_reason:
4589         return cmd->se_tfo->queue_status(cmd);
4590 }
4591 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4592
4593 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4594 {
4595         int ret = 0;
4596
4597         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4598                 if (!send_status ||
4599                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4600                         return 1;
4601 #if 0
4602                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4603                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4604                         cmd->t_task_cdb[0],
4605                         cmd->se_tfo->get_task_tag(cmd));
4606 #endif
4607                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4608                 cmd->se_tfo->queue_status(cmd);
4609                 ret = 1;
4610         }
4611         return ret;
4612 }
4613 EXPORT_SYMBOL(transport_check_aborted_status);
4614
4615 void transport_send_task_abort(struct se_cmd *cmd)
4616 {
4617         unsigned long flags;
4618
4619         spin_lock_irqsave(&cmd->t_state_lock, flags);
4620         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4621                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4622                 return;
4623         }
4624         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4625
4626         /*
4627          * If there are still expected incoming fabric WRITEs, we wait
4628          * until until they have completed before sending a TASK_ABORTED
4629          * response.  This response with TASK_ABORTED status will be
4630          * queued back to fabric module by transport_check_aborted_status().
4631          */
4632         if (cmd->data_direction == DMA_TO_DEVICE) {
4633                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4634                         atomic_inc(&cmd->t_transport_aborted);
4635                         smp_mb__after_atomic_inc();
4636                 }
4637         }
4638         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4639 #if 0
4640         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4641                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4642                 cmd->se_tfo->get_task_tag(cmd));
4643 #endif
4644         cmd->se_tfo->queue_status(cmd);
4645 }
4646
4647 static int transport_generic_do_tmr(struct se_cmd *cmd)
4648 {
4649         struct se_device *dev = cmd->se_dev;
4650         struct se_tmr_req *tmr = cmd->se_tmr_req;
4651         int ret;
4652
4653         switch (tmr->function) {
4654         case TMR_ABORT_TASK:
4655                 tmr->response = TMR_FUNCTION_REJECTED;
4656                 break;
4657         case TMR_ABORT_TASK_SET:
4658         case TMR_CLEAR_ACA:
4659         case TMR_CLEAR_TASK_SET:
4660                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4661                 break;
4662         case TMR_LUN_RESET:
4663                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4664                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4665                                          TMR_FUNCTION_REJECTED;
4666                 break;
4667         case TMR_TARGET_WARM_RESET:
4668                 tmr->response = TMR_FUNCTION_REJECTED;
4669                 break;
4670         case TMR_TARGET_COLD_RESET:
4671                 tmr->response = TMR_FUNCTION_REJECTED;
4672                 break;
4673         default:
4674                 pr_err("Uknown TMR function: 0x%02x.\n",
4675                                 tmr->function);
4676                 tmr->response = TMR_FUNCTION_REJECTED;
4677                 break;
4678         }
4679
4680         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4681         cmd->se_tfo->queue_tm_rsp(cmd);
4682
4683         transport_cmd_check_stop_to_fabric(cmd);
4684         return 0;
4685 }
4686
4687 /*      transport_processing_thread():
4688  *
4689  *
4690  */
4691 static int transport_processing_thread(void *param)
4692 {
4693         int ret;
4694         struct se_cmd *cmd;
4695         struct se_device *dev = param;
4696
4697         while (!kthread_should_stop()) {
4698                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4699                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4700                                 kthread_should_stop());
4701                 if (ret < 0)
4702                         goto out;
4703
4704 get_cmd:
4705                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4706                 if (!cmd)
4707                         continue;
4708
4709                 switch (cmd->t_state) {
4710                 case TRANSPORT_NEW_CMD:
4711                         BUG();
4712                         break;
4713                 case TRANSPORT_NEW_CMD_MAP:
4714                         if (!cmd->se_tfo->new_cmd_map) {
4715                                 pr_err("cmd->se_tfo->new_cmd_map is"
4716                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4717                                 BUG();
4718                         }
4719                         ret = cmd->se_tfo->new_cmd_map(cmd);
4720                         if (ret < 0) {
4721                                 transport_generic_request_failure(cmd);
4722                                 break;
4723                         }
4724                         ret = transport_generic_new_cmd(cmd);
4725                         if (ret < 0) {
4726                                 transport_generic_request_failure(cmd);
4727                                 break;
4728                         }
4729                         break;
4730                 case TRANSPORT_PROCESS_WRITE:
4731                         transport_generic_process_write(cmd);
4732                         break;
4733                 case TRANSPORT_PROCESS_TMR:
4734                         transport_generic_do_tmr(cmd);
4735                         break;
4736                 case TRANSPORT_COMPLETE_QF_WP:
4737                         transport_write_pending_qf(cmd);
4738                         break;
4739                 case TRANSPORT_COMPLETE_QF_OK:
4740                         transport_complete_qf(cmd);
4741                         break;
4742                 default:
4743                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4744                                 "i_state: %d on SE LUN: %u\n",
4745                                 cmd->t_state,
4746                                 cmd->se_tfo->get_task_tag(cmd),
4747                                 cmd->se_tfo->get_cmd_state(cmd),
4748                                 cmd->se_lun->unpacked_lun);
4749                         BUG();
4750                 }
4751
4752                 goto get_cmd;
4753         }
4754
4755 out:
4756         WARN_ON(!list_empty(&dev->state_task_list));
4757         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4758         dev->process_thread = NULL;
4759         return 0;
4760 }