]> Pileus Git - ~andy/linux/blob - drivers/target/target_core_transport.c
target/pscsi: fix PHV_VIRUTAL_HOST_ID typo
[~andy/linux] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
82 int init_se_kmem_caches(void)
83 {
84         se_sess_cache = kmem_cache_create("se_sess_cache",
85                         sizeof(struct se_session), __alignof__(struct se_session),
86                         0, NULL);
87         if (!se_sess_cache) {
88                 pr_err("kmem_cache_create() for struct se_session"
89                                 " failed\n");
90                 goto out;
91         }
92         se_ua_cache = kmem_cache_create("se_ua_cache",
93                         sizeof(struct se_ua), __alignof__(struct se_ua),
94                         0, NULL);
95         if (!se_ua_cache) {
96                 pr_err("kmem_cache_create() for struct se_ua failed\n");
97                 goto out_free_sess_cache;
98         }
99         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100                         sizeof(struct t10_pr_registration),
101                         __alignof__(struct t10_pr_registration), 0, NULL);
102         if (!t10_pr_reg_cache) {
103                 pr_err("kmem_cache_create() for struct t10_pr_registration"
104                                 " failed\n");
105                 goto out_free_ua_cache;
106         }
107         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109                         0, NULL);
110         if (!t10_alua_lu_gp_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112                                 " failed\n");
113                 goto out_free_pr_reg_cache;
114         }
115         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116                         sizeof(struct t10_alua_lu_gp_member),
117                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118         if (!t10_alua_lu_gp_mem_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_cache;
122         }
123         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124                         sizeof(struct t10_alua_tg_pt_gp),
125                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126         if (!t10_alua_tg_pt_gp_cache) {
127                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128                                 "cache failed\n");
129                 goto out_free_lu_gp_mem_cache;
130         }
131         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132                         "t10_alua_tg_pt_gp_mem_cache",
133                         sizeof(struct t10_alua_tg_pt_gp_member),
134                         __alignof__(struct t10_alua_tg_pt_gp_member),
135                         0, NULL);
136         if (!t10_alua_tg_pt_gp_mem_cache) {
137                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138                                 "mem_t failed\n");
139                 goto out_free_tg_pt_gp_cache;
140         }
141
142         target_completion_wq = alloc_workqueue("target_completion",
143                                                WQ_MEM_RECLAIM, 0);
144         if (!target_completion_wq)
145                 goto out_free_tg_pt_gp_mem_cache;
146
147         return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184  * Allocate a new row index for the entry type specified
185  */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188         u32 new_index;
189
190         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192         spin_lock(&scsi_mib_index_lock);
193         new_index = ++scsi_mib_index[type];
194         spin_unlock(&scsi_mib_index_lock);
195
196         return new_index;
197 }
198
199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201         atomic_set(&qobj->queue_cnt, 0);
202         INIT_LIST_HEAD(&qobj->qobj_list);
203         init_waitqueue_head(&qobj->thread_wq);
204         spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
207 void transport_subsystem_check_init(void)
208 {
209         int ret;
210
211         if (sub_api_initialized)
212                 return;
213
214         ret = request_module("target_core_iblock");
215         if (ret != 0)
216                 pr_err("Unable to load target_core_iblock\n");
217
218         ret = request_module("target_core_file");
219         if (ret != 0)
220                 pr_err("Unable to load target_core_file\n");
221
222         ret = request_module("target_core_pscsi");
223         if (ret != 0)
224                 pr_err("Unable to load target_core_pscsi\n");
225
226         ret = request_module("target_core_stgt");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_stgt\n");
229
230         sub_api_initialized = 1;
231         return;
232 }
233
234 struct se_session *transport_init_session(void)
235 {
236         struct se_session *se_sess;
237
238         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239         if (!se_sess) {
240                 pr_err("Unable to allocate struct se_session from"
241                                 " se_sess_cache\n");
242                 return ERR_PTR(-ENOMEM);
243         }
244         INIT_LIST_HEAD(&se_sess->sess_list);
245         INIT_LIST_HEAD(&se_sess->sess_acl_list);
246         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247         INIT_LIST_HEAD(&se_sess->sess_wait_list);
248         spin_lock_init(&se_sess->sess_cmd_lock);
249
250         return se_sess;
251 }
252 EXPORT_SYMBOL(transport_init_session);
253
254 /*
255  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
256  */
257 void __transport_register_session(
258         struct se_portal_group *se_tpg,
259         struct se_node_acl *se_nacl,
260         struct se_session *se_sess,
261         void *fabric_sess_ptr)
262 {
263         unsigned char buf[PR_REG_ISID_LEN];
264
265         se_sess->se_tpg = se_tpg;
266         se_sess->fabric_sess_ptr = fabric_sess_ptr;
267         /*
268          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
269          *
270          * Only set for struct se_session's that will actually be moving I/O.
271          * eg: *NOT* discovery sessions.
272          */
273         if (se_nacl) {
274                 /*
275                  * If the fabric module supports an ISID based TransportID,
276                  * save this value in binary from the fabric I_T Nexus now.
277                  */
278                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
279                         memset(&buf[0], 0, PR_REG_ISID_LEN);
280                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
281                                         &buf[0], PR_REG_ISID_LEN);
282                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
283                 }
284                 spin_lock_irq(&se_nacl->nacl_sess_lock);
285                 /*
286                  * The se_nacl->nacl_sess pointer will be set to the
287                  * last active I_T Nexus for each struct se_node_acl.
288                  */
289                 se_nacl->nacl_sess = se_sess;
290
291                 list_add_tail(&se_sess->sess_acl_list,
292                               &se_nacl->acl_sess_list);
293                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
294         }
295         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
296
297         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
298                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
299 }
300 EXPORT_SYMBOL(__transport_register_session);
301
302 void transport_register_session(
303         struct se_portal_group *se_tpg,
304         struct se_node_acl *se_nacl,
305         struct se_session *se_sess,
306         void *fabric_sess_ptr)
307 {
308         spin_lock_bh(&se_tpg->session_lock);
309         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
310         spin_unlock_bh(&se_tpg->session_lock);
311 }
312 EXPORT_SYMBOL(transport_register_session);
313
314 void transport_deregister_session_configfs(struct se_session *se_sess)
315 {
316         struct se_node_acl *se_nacl;
317         unsigned long flags;
318         /*
319          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
320          */
321         se_nacl = se_sess->se_node_acl;
322         if (se_nacl) {
323                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
324                 list_del(&se_sess->sess_acl_list);
325                 /*
326                  * If the session list is empty, then clear the pointer.
327                  * Otherwise, set the struct se_session pointer from the tail
328                  * element of the per struct se_node_acl active session list.
329                  */
330                 if (list_empty(&se_nacl->acl_sess_list))
331                         se_nacl->nacl_sess = NULL;
332                 else {
333                         se_nacl->nacl_sess = container_of(
334                                         se_nacl->acl_sess_list.prev,
335                                         struct se_session, sess_acl_list);
336                 }
337                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
338         }
339 }
340 EXPORT_SYMBOL(transport_deregister_session_configfs);
341
342 void transport_free_session(struct se_session *se_sess)
343 {
344         kmem_cache_free(se_sess_cache, se_sess);
345 }
346 EXPORT_SYMBOL(transport_free_session);
347
348 void transport_deregister_session(struct se_session *se_sess)
349 {
350         struct se_portal_group *se_tpg = se_sess->se_tpg;
351         struct se_node_acl *se_nacl;
352         unsigned long flags;
353
354         if (!se_tpg) {
355                 transport_free_session(se_sess);
356                 return;
357         }
358
359         spin_lock_irqsave(&se_tpg->session_lock, flags);
360         list_del(&se_sess->sess_list);
361         se_sess->se_tpg = NULL;
362         se_sess->fabric_sess_ptr = NULL;
363         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
364
365         /*
366          * Determine if we need to do extra work for this initiator node's
367          * struct se_node_acl if it had been previously dynamically generated.
368          */
369         se_nacl = se_sess->se_node_acl;
370         if (se_nacl) {
371                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
372                 if (se_nacl->dynamic_node_acl) {
373                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
374                                         se_tpg)) {
375                                 list_del(&se_nacl->acl_list);
376                                 se_tpg->num_node_acls--;
377                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
378
379                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
380                                 core_free_device_list_for_node(se_nacl, se_tpg);
381                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
382                                                 se_nacl);
383                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                         }
385                 }
386                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
387         }
388
389         transport_free_session(se_sess);
390
391         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
392                 se_tpg->se_tpg_tfo->get_fabric_name());
393 }
394 EXPORT_SYMBOL(transport_deregister_session);
395
396 /*
397  * Called with cmd->t_state_lock held.
398  */
399 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
400 {
401         struct se_device *dev = cmd->se_dev;
402         struct se_task *task;
403         unsigned long flags;
404
405         if (!dev)
406                 return;
407
408         list_for_each_entry(task, &cmd->t_task_list, t_list) {
409                 if (task->task_flags & TF_ACTIVE)
410                         continue;
411
412                 spin_lock_irqsave(&dev->execute_task_lock, flags);
413                 if (task->t_state_active) {
414                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
415                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
416
417                         list_del(&task->t_state_list);
418                         atomic_dec(&cmd->t_task_cdbs_ex_left);
419                         task->t_state_active = false;
420                 }
421                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
422         }
423
424 }
425
426 /*      transport_cmd_check_stop():
427  *
428  *      'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
429  *      'transport_off = 2' determines if task_dev_state should be removed.
430  *
431  *      A non-zero u8 t_state sets cmd->t_state.
432  *      Returns 1 when command is stopped, else 0.
433  */
434 static int transport_cmd_check_stop(
435         struct se_cmd *cmd,
436         int transport_off,
437         u8 t_state)
438 {
439         unsigned long flags;
440
441         spin_lock_irqsave(&cmd->t_state_lock, flags);
442         /*
443          * Determine if IOCTL context caller in requesting the stopping of this
444          * command for LUN shutdown purposes.
445          */
446         if (cmd->transport_state & CMD_T_LUN_STOP) {
447                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
448                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
449
450                 cmd->transport_state &= ~CMD_T_ACTIVE;
451                 if (transport_off == 2)
452                         transport_all_task_dev_remove_state(cmd);
453                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
454
455                 complete(&cmd->transport_lun_stop_comp);
456                 return 1;
457         }
458         /*
459          * Determine if frontend context caller is requesting the stopping of
460          * this command for frontend exceptions.
461          */
462         if (cmd->transport_state & CMD_T_STOP) {
463                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
464                         __func__, __LINE__,
465                         cmd->se_tfo->get_task_tag(cmd));
466
467                 if (transport_off == 2)
468                         transport_all_task_dev_remove_state(cmd);
469
470                 /*
471                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
472                  * to FE.
473                  */
474                 if (transport_off == 2)
475                         cmd->se_lun = NULL;
476                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
477
478                 complete(&cmd->t_transport_stop_comp);
479                 return 1;
480         }
481         if (transport_off) {
482                 cmd->transport_state &= ~CMD_T_ACTIVE;
483                 if (transport_off == 2) {
484                         transport_all_task_dev_remove_state(cmd);
485                         /*
486                          * Clear struct se_cmd->se_lun before the transport_off == 2
487                          * handoff to fabric module.
488                          */
489                         cmd->se_lun = NULL;
490                         /*
491                          * Some fabric modules like tcm_loop can release
492                          * their internally allocated I/O reference now and
493                          * struct se_cmd now.
494                          *
495                          * Fabric modules are expected to return '1' here if the
496                          * se_cmd being passed is released at this point,
497                          * or zero if not being released.
498                          */
499                         if (cmd->se_tfo->check_stop_free != NULL) {
500                                 spin_unlock_irqrestore(
501                                         &cmd->t_state_lock, flags);
502
503                                 return cmd->se_tfo->check_stop_free(cmd);
504                         }
505                 }
506                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
507
508                 return 0;
509         } else if (t_state)
510                 cmd->t_state = t_state;
511         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
512
513         return 0;
514 }
515
516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
517 {
518         return transport_cmd_check_stop(cmd, 2, 0);
519 }
520
521 static void transport_lun_remove_cmd(struct se_cmd *cmd)
522 {
523         struct se_lun *lun = cmd->se_lun;
524         unsigned long flags;
525
526         if (!lun)
527                 return;
528
529         spin_lock_irqsave(&cmd->t_state_lock, flags);
530         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
531                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
532                 transport_all_task_dev_remove_state(cmd);
533         }
534         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
535
536         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537         if (!list_empty(&cmd->se_lun_node))
538                 list_del_init(&cmd->se_lun_node);
539         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
545                 transport_lun_remove_cmd(cmd);
546
547         if (transport_cmd_check_stop_to_fabric(cmd))
548                 return;
549         if (remove) {
550                 transport_remove_cmd_from_queue(cmd);
551                 transport_put_cmd(cmd);
552         }
553 }
554
555 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
556                 bool at_head)
557 {
558         struct se_device *dev = cmd->se_dev;
559         struct se_queue_obj *qobj = &dev->dev_queue_obj;
560         unsigned long flags;
561
562         if (t_state) {
563                 spin_lock_irqsave(&cmd->t_state_lock, flags);
564                 cmd->t_state = t_state;
565                 cmd->transport_state |= CMD_T_ACTIVE;
566                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
567         }
568
569         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
570
571         /* If the cmd is already on the list, remove it before we add it */
572         if (!list_empty(&cmd->se_queue_node))
573                 list_del(&cmd->se_queue_node);
574         else
575                 atomic_inc(&qobj->queue_cnt);
576
577         if (at_head)
578                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
579         else
580                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
581         cmd->transport_state |= CMD_T_QUEUED;
582         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
583
584         wake_up_interruptible(&qobj->thread_wq);
585 }
586
587 static struct se_cmd *
588 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
589 {
590         struct se_cmd *cmd;
591         unsigned long flags;
592
593         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
594         if (list_empty(&qobj->qobj_list)) {
595                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
596                 return NULL;
597         }
598         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
599
600         cmd->transport_state &= ~CMD_T_QUEUED;
601         list_del_init(&cmd->se_queue_node);
602         atomic_dec(&qobj->queue_cnt);
603         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
604
605         return cmd;
606 }
607
608 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
609 {
610         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
611         unsigned long flags;
612
613         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
614         if (!(cmd->transport_state & CMD_T_QUEUED)) {
615                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
616                 return;
617         }
618         cmd->transport_state &= ~CMD_T_QUEUED;
619         atomic_dec(&qobj->queue_cnt);
620         list_del_init(&cmd->se_queue_node);
621         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
622 }
623
624 /*
625  * Completion function used by TCM subsystem plugins (such as FILEIO)
626  * for queueing up response from struct se_subsystem_api->do_task()
627  */
628 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
629 {
630         struct se_task *task = list_entry(cmd->t_task_list.next,
631                                 struct se_task, t_list);
632
633         if (good) {
634                 cmd->scsi_status = SAM_STAT_GOOD;
635                 task->task_scsi_status = GOOD;
636         } else {
637                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
638                 task->task_se_cmd->scsi_sense_reason =
639                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
640
641         }
642
643         transport_complete_task(task, good);
644 }
645 EXPORT_SYMBOL(transport_complete_sync_cache);
646
647 static void target_complete_failure_work(struct work_struct *work)
648 {
649         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
650
651         transport_generic_request_failure(cmd);
652 }
653
654 /*      transport_complete_task():
655  *
656  *      Called from interrupt and non interrupt context depending
657  *      on the transport plugin.
658  */
659 void transport_complete_task(struct se_task *task, int success)
660 {
661         struct se_cmd *cmd = task->task_se_cmd;
662         struct se_device *dev = cmd->se_dev;
663         unsigned long flags;
664
665         spin_lock_irqsave(&cmd->t_state_lock, flags);
666         task->task_flags &= ~TF_ACTIVE;
667
668         /*
669          * See if any sense data exists, if so set the TASK_SENSE flag.
670          * Also check for any other post completion work that needs to be
671          * done by the plugins.
672          */
673         if (dev && dev->transport->transport_complete) {
674                 if (dev->transport->transport_complete(task) != 0) {
675                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
676                         task->task_flags |= TF_HAS_SENSE;
677                         success = 1;
678                 }
679         }
680
681         /*
682          * See if we are waiting for outstanding struct se_task
683          * to complete for an exception condition
684          */
685         if (task->task_flags & TF_REQUEST_STOP) {
686                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
687                 complete(&task->task_stop_comp);
688                 return;
689         }
690
691         if (!success)
692                 cmd->transport_state |= CMD_T_FAILED;
693
694         /*
695          * Decrement the outstanding t_task_cdbs_left count.  The last
696          * struct se_task from struct se_cmd will complete itself into the
697          * device queue depending upon int success.
698          */
699         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
700                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701                 return;
702         }
703         /*
704          * Check for case where an explict ABORT_TASK has been received
705          * and transport_wait_for_tasks() will be waiting for completion..
706          */
707         if (cmd->transport_state & CMD_T_ABORTED &&
708             cmd->transport_state & CMD_T_STOP) {
709                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
710                 complete(&cmd->t_transport_stop_comp);
711                 return;
712         } else if (cmd->transport_state & CMD_T_FAILED) {
713                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
714                 INIT_WORK(&cmd->work, target_complete_failure_work);
715         } else {
716                 INIT_WORK(&cmd->work, target_complete_ok_work);
717         }
718
719         cmd->t_state = TRANSPORT_COMPLETE;
720         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
721         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722
723         queue_work(target_completion_wq, &cmd->work);
724 }
725 EXPORT_SYMBOL(transport_complete_task);
726
727 /*
728  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
729  * struct se_task list are ready to be added to the active execution list
730  * struct se_device
731
732  * Called with se_dev_t->execute_task_lock called.
733  */
734 static inline int transport_add_task_check_sam_attr(
735         struct se_task *task,
736         struct se_task *task_prev,
737         struct se_device *dev)
738 {
739         /*
740          * No SAM Task attribute emulation enabled, add to tail of
741          * execution queue
742          */
743         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
744                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
745                 return 0;
746         }
747         /*
748          * HEAD_OF_QUEUE attribute for received CDB, which means
749          * the first task that is associated with a struct se_cmd goes to
750          * head of the struct se_device->execute_task_list, and task_prev
751          * after that for each subsequent task
752          */
753         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
754                 list_add(&task->t_execute_list,
755                                 (task_prev != NULL) ?
756                                 &task_prev->t_execute_list :
757                                 &dev->execute_task_list);
758
759                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
760                                 " in execution queue\n",
761                                 task->task_se_cmd->t_task_cdb[0]);
762                 return 1;
763         }
764         /*
765          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
766          * transitioned from Dermant -> Active state, and are added to the end
767          * of the struct se_device->execute_task_list
768          */
769         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
770         return 0;
771 }
772
773 /*      __transport_add_task_to_execute_queue():
774  *
775  *      Called with se_dev_t->execute_task_lock called.
776  */
777 static void __transport_add_task_to_execute_queue(
778         struct se_task *task,
779         struct se_task *task_prev,
780         struct se_device *dev)
781 {
782         int head_of_queue;
783
784         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
785         atomic_inc(&dev->execute_tasks);
786
787         if (task->t_state_active)
788                 return;
789         /*
790          * Determine if this task needs to go to HEAD_OF_QUEUE for the
791          * state list as well.  Running with SAM Task Attribute emulation
792          * will always return head_of_queue == 0 here
793          */
794         if (head_of_queue)
795                 list_add(&task->t_state_list, (task_prev) ?
796                                 &task_prev->t_state_list :
797                                 &dev->state_task_list);
798         else
799                 list_add_tail(&task->t_state_list, &dev->state_task_list);
800
801         task->t_state_active = true;
802
803         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
804                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
805                 task, dev);
806 }
807
808 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
809 {
810         struct se_device *dev = cmd->se_dev;
811         struct se_task *task;
812         unsigned long flags;
813
814         spin_lock_irqsave(&cmd->t_state_lock, flags);
815         list_for_each_entry(task, &cmd->t_task_list, t_list) {
816                 spin_lock(&dev->execute_task_lock);
817                 if (!task->t_state_active) {
818                         list_add_tail(&task->t_state_list,
819                                       &dev->state_task_list);
820                         task->t_state_active = true;
821
822                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
823                                 task->task_se_cmd->se_tfo->get_task_tag(
824                                 task->task_se_cmd), task, dev);
825                 }
826                 spin_unlock(&dev->execute_task_lock);
827         }
828         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829 }
830
831 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task, *task_prev = NULL;
835
836         list_for_each_entry(task, &cmd->t_task_list, t_list) {
837                 if (!list_empty(&task->t_execute_list))
838                         continue;
839                 /*
840                  * __transport_add_task_to_execute_queue() handles the
841                  * SAM Task Attribute emulation if enabled
842                  */
843                 __transport_add_task_to_execute_queue(task, task_prev, dev);
844                 task_prev = task;
845         }
846 }
847
848 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
849 {
850         unsigned long flags;
851         struct se_device *dev = cmd->se_dev;
852
853         spin_lock_irqsave(&dev->execute_task_lock, flags);
854         __transport_add_tasks_from_cmd(cmd);
855         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
856 }
857
858 void __transport_remove_task_from_execute_queue(struct se_task *task,
859                 struct se_device *dev)
860 {
861         list_del_init(&task->t_execute_list);
862         atomic_dec(&dev->execute_tasks);
863 }
864
865 static void transport_remove_task_from_execute_queue(
866         struct se_task *task,
867         struct se_device *dev)
868 {
869         unsigned long flags;
870
871         if (WARN_ON(list_empty(&task->t_execute_list)))
872                 return;
873
874         spin_lock_irqsave(&dev->execute_task_lock, flags);
875         __transport_remove_task_from_execute_queue(task, dev);
876         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
877 }
878
879 /*
880  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
881  */
882
883 static void target_qf_do_work(struct work_struct *work)
884 {
885         struct se_device *dev = container_of(work, struct se_device,
886                                         qf_work_queue);
887         LIST_HEAD(qf_cmd_list);
888         struct se_cmd *cmd, *cmd_tmp;
889
890         spin_lock_irq(&dev->qf_cmd_lock);
891         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
892         spin_unlock_irq(&dev->qf_cmd_lock);
893
894         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
895                 list_del(&cmd->se_qf_node);
896                 atomic_dec(&dev->dev_qf_count);
897                 smp_mb__after_atomic_dec();
898
899                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
900                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
901                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
902                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
903                         : "UNKNOWN");
904
905                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
906         }
907 }
908
909 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
910 {
911         switch (cmd->data_direction) {
912         case DMA_NONE:
913                 return "NONE";
914         case DMA_FROM_DEVICE:
915                 return "READ";
916         case DMA_TO_DEVICE:
917                 return "WRITE";
918         case DMA_BIDIRECTIONAL:
919                 return "BIDI";
920         default:
921                 break;
922         }
923
924         return "UNKNOWN";
925 }
926
927 void transport_dump_dev_state(
928         struct se_device *dev,
929         char *b,
930         int *bl)
931 {
932         *bl += sprintf(b + *bl, "Status: ");
933         switch (dev->dev_status) {
934         case TRANSPORT_DEVICE_ACTIVATED:
935                 *bl += sprintf(b + *bl, "ACTIVATED");
936                 break;
937         case TRANSPORT_DEVICE_DEACTIVATED:
938                 *bl += sprintf(b + *bl, "DEACTIVATED");
939                 break;
940         case TRANSPORT_DEVICE_SHUTDOWN:
941                 *bl += sprintf(b + *bl, "SHUTDOWN");
942                 break;
943         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
944         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
945                 *bl += sprintf(b + *bl, "OFFLINE");
946                 break;
947         default:
948                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
949                 break;
950         }
951
952         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
953                 atomic_read(&dev->execute_tasks), dev->queue_depth);
954         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
955                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
956         *bl += sprintf(b + *bl, "        ");
957 }
958
959 void transport_dump_vpd_proto_id(
960         struct t10_vpd *vpd,
961         unsigned char *p_buf,
962         int p_buf_len)
963 {
964         unsigned char buf[VPD_TMP_BUF_SIZE];
965         int len;
966
967         memset(buf, 0, VPD_TMP_BUF_SIZE);
968         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
969
970         switch (vpd->protocol_identifier) {
971         case 0x00:
972                 sprintf(buf+len, "Fibre Channel\n");
973                 break;
974         case 0x10:
975                 sprintf(buf+len, "Parallel SCSI\n");
976                 break;
977         case 0x20:
978                 sprintf(buf+len, "SSA\n");
979                 break;
980         case 0x30:
981                 sprintf(buf+len, "IEEE 1394\n");
982                 break;
983         case 0x40:
984                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
985                                 " Protocol\n");
986                 break;
987         case 0x50:
988                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
989                 break;
990         case 0x60:
991                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
992                 break;
993         case 0x70:
994                 sprintf(buf+len, "Automation/Drive Interface Transport"
995                                 " Protocol\n");
996                 break;
997         case 0x80:
998                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
999                 break;
1000         default:
1001                 sprintf(buf+len, "Unknown 0x%02x\n",
1002                                 vpd->protocol_identifier);
1003                 break;
1004         }
1005
1006         if (p_buf)
1007                 strncpy(p_buf, buf, p_buf_len);
1008         else
1009                 pr_debug("%s", buf);
1010 }
1011
1012 void
1013 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1014 {
1015         /*
1016          * Check if the Protocol Identifier Valid (PIV) bit is set..
1017          *
1018          * from spc3r23.pdf section 7.5.1
1019          */
1020          if (page_83[1] & 0x80) {
1021                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1022                 vpd->protocol_identifier_set = 1;
1023                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1024         }
1025 }
1026 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1027
1028 int transport_dump_vpd_assoc(
1029         struct t10_vpd *vpd,
1030         unsigned char *p_buf,
1031         int p_buf_len)
1032 {
1033         unsigned char buf[VPD_TMP_BUF_SIZE];
1034         int ret = 0;
1035         int len;
1036
1037         memset(buf, 0, VPD_TMP_BUF_SIZE);
1038         len = sprintf(buf, "T10 VPD Identifier Association: ");
1039
1040         switch (vpd->association) {
1041         case 0x00:
1042                 sprintf(buf+len, "addressed logical unit\n");
1043                 break;
1044         case 0x10:
1045                 sprintf(buf+len, "target port\n");
1046                 break;
1047         case 0x20:
1048                 sprintf(buf+len, "SCSI target device\n");
1049                 break;
1050         default:
1051                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1052                 ret = -EINVAL;
1053                 break;
1054         }
1055
1056         if (p_buf)
1057                 strncpy(p_buf, buf, p_buf_len);
1058         else
1059                 pr_debug("%s", buf);
1060
1061         return ret;
1062 }
1063
1064 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1065 {
1066         /*
1067          * The VPD identification association..
1068          *
1069          * from spc3r23.pdf Section 7.6.3.1 Table 297
1070          */
1071         vpd->association = (page_83[1] & 0x30);
1072         return transport_dump_vpd_assoc(vpd, NULL, 0);
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_assoc);
1075
1076 int transport_dump_vpd_ident_type(
1077         struct t10_vpd *vpd,
1078         unsigned char *p_buf,
1079         int p_buf_len)
1080 {
1081         unsigned char buf[VPD_TMP_BUF_SIZE];
1082         int ret = 0;
1083         int len;
1084
1085         memset(buf, 0, VPD_TMP_BUF_SIZE);
1086         len = sprintf(buf, "T10 VPD Identifier Type: ");
1087
1088         switch (vpd->device_identifier_type) {
1089         case 0x00:
1090                 sprintf(buf+len, "Vendor specific\n");
1091                 break;
1092         case 0x01:
1093                 sprintf(buf+len, "T10 Vendor ID based\n");
1094                 break;
1095         case 0x02:
1096                 sprintf(buf+len, "EUI-64 based\n");
1097                 break;
1098         case 0x03:
1099                 sprintf(buf+len, "NAA\n");
1100                 break;
1101         case 0x04:
1102                 sprintf(buf+len, "Relative target port identifier\n");
1103                 break;
1104         case 0x08:
1105                 sprintf(buf+len, "SCSI name string\n");
1106                 break;
1107         default:
1108                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1109                                 vpd->device_identifier_type);
1110                 ret = -EINVAL;
1111                 break;
1112         }
1113
1114         if (p_buf) {
1115                 if (p_buf_len < strlen(buf)+1)
1116                         return -EINVAL;
1117                 strncpy(p_buf, buf, p_buf_len);
1118         } else {
1119                 pr_debug("%s", buf);
1120         }
1121
1122         return ret;
1123 }
1124
1125 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1126 {
1127         /*
1128          * The VPD identifier type..
1129          *
1130          * from spc3r23.pdf Section 7.6.3.1 Table 298
1131          */
1132         vpd->device_identifier_type = (page_83[1] & 0x0f);
1133         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1134 }
1135 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1136
1137 int transport_dump_vpd_ident(
1138         struct t10_vpd *vpd,
1139         unsigned char *p_buf,
1140         int p_buf_len)
1141 {
1142         unsigned char buf[VPD_TMP_BUF_SIZE];
1143         int ret = 0;
1144
1145         memset(buf, 0, VPD_TMP_BUF_SIZE);
1146
1147         switch (vpd->device_identifier_code_set) {
1148         case 0x01: /* Binary */
1149                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1150                         &vpd->device_identifier[0]);
1151                 break;
1152         case 0x02: /* ASCII */
1153                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1154                         &vpd->device_identifier[0]);
1155                 break;
1156         case 0x03: /* UTF-8 */
1157                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1158                         &vpd->device_identifier[0]);
1159                 break;
1160         default:
1161                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1162                         " 0x%02x", vpd->device_identifier_code_set);
1163                 ret = -EINVAL;
1164                 break;
1165         }
1166
1167         if (p_buf)
1168                 strncpy(p_buf, buf, p_buf_len);
1169         else
1170                 pr_debug("%s", buf);
1171
1172         return ret;
1173 }
1174
1175 int
1176 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1177 {
1178         static const char hex_str[] = "0123456789abcdef";
1179         int j = 0, i = 4; /* offset to start of the identifer */
1180
1181         /*
1182          * The VPD Code Set (encoding)
1183          *
1184          * from spc3r23.pdf Section 7.6.3.1 Table 296
1185          */
1186         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1187         switch (vpd->device_identifier_code_set) {
1188         case 0x01: /* Binary */
1189                 vpd->device_identifier[j++] =
1190                                 hex_str[vpd->device_identifier_type];
1191                 while (i < (4 + page_83[3])) {
1192                         vpd->device_identifier[j++] =
1193                                 hex_str[(page_83[i] & 0xf0) >> 4];
1194                         vpd->device_identifier[j++] =
1195                                 hex_str[page_83[i] & 0x0f];
1196                         i++;
1197                 }
1198                 break;
1199         case 0x02: /* ASCII */
1200         case 0x03: /* UTF-8 */
1201                 while (i < (4 + page_83[3]))
1202                         vpd->device_identifier[j++] = page_83[i++];
1203                 break;
1204         default:
1205                 break;
1206         }
1207
1208         return transport_dump_vpd_ident(vpd, NULL, 0);
1209 }
1210 EXPORT_SYMBOL(transport_set_vpd_ident);
1211
1212 static void core_setup_task_attr_emulation(struct se_device *dev)
1213 {
1214         /*
1215          * If this device is from Target_Core_Mod/pSCSI, disable the
1216          * SAM Task Attribute emulation.
1217          *
1218          * This is currently not available in upsream Linux/SCSI Target
1219          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1220          */
1221         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1222                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1223                 return;
1224         }
1225
1226         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1227         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1228                 " device\n", dev->transport->name,
1229                 dev->transport->get_device_rev(dev));
1230 }
1231
1232 static void scsi_dump_inquiry(struct se_device *dev)
1233 {
1234         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1235         char buf[17];
1236         int i, device_type;
1237         /*
1238          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1239          */
1240         for (i = 0; i < 8; i++)
1241                 if (wwn->vendor[i] >= 0x20)
1242                         buf[i] = wwn->vendor[i];
1243                 else
1244                         buf[i] = ' ';
1245         buf[i] = '\0';
1246         pr_debug("  Vendor: %s\n", buf);
1247
1248         for (i = 0; i < 16; i++)
1249                 if (wwn->model[i] >= 0x20)
1250                         buf[i] = wwn->model[i];
1251                 else
1252                         buf[i] = ' ';
1253         buf[i] = '\0';
1254         pr_debug("  Model: %s\n", buf);
1255
1256         for (i = 0; i < 4; i++)
1257                 if (wwn->revision[i] >= 0x20)
1258                         buf[i] = wwn->revision[i];
1259                 else
1260                         buf[i] = ' ';
1261         buf[i] = '\0';
1262         pr_debug("  Revision: %s\n", buf);
1263
1264         device_type = dev->transport->get_device_type(dev);
1265         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1266         pr_debug("                 ANSI SCSI revision: %02x\n",
1267                                 dev->transport->get_device_rev(dev));
1268 }
1269
1270 struct se_device *transport_add_device_to_core_hba(
1271         struct se_hba *hba,
1272         struct se_subsystem_api *transport,
1273         struct se_subsystem_dev *se_dev,
1274         u32 device_flags,
1275         void *transport_dev,
1276         struct se_dev_limits *dev_limits,
1277         const char *inquiry_prod,
1278         const char *inquiry_rev)
1279 {
1280         int force_pt;
1281         struct se_device  *dev;
1282
1283         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1284         if (!dev) {
1285                 pr_err("Unable to allocate memory for se_dev_t\n");
1286                 return NULL;
1287         }
1288
1289         transport_init_queue_obj(&dev->dev_queue_obj);
1290         dev->dev_flags          = device_flags;
1291         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1292         dev->dev_ptr            = transport_dev;
1293         dev->se_hba             = hba;
1294         dev->se_sub_dev         = se_dev;
1295         dev->transport          = transport;
1296         INIT_LIST_HEAD(&dev->dev_list);
1297         INIT_LIST_HEAD(&dev->dev_sep_list);
1298         INIT_LIST_HEAD(&dev->dev_tmr_list);
1299         INIT_LIST_HEAD(&dev->execute_task_list);
1300         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1301         INIT_LIST_HEAD(&dev->state_task_list);
1302         INIT_LIST_HEAD(&dev->qf_cmd_list);
1303         spin_lock_init(&dev->execute_task_lock);
1304         spin_lock_init(&dev->delayed_cmd_lock);
1305         spin_lock_init(&dev->dev_reservation_lock);
1306         spin_lock_init(&dev->dev_status_lock);
1307         spin_lock_init(&dev->se_port_lock);
1308         spin_lock_init(&dev->se_tmr_lock);
1309         spin_lock_init(&dev->qf_cmd_lock);
1310         atomic_set(&dev->dev_ordered_id, 0);
1311
1312         se_dev_set_default_attribs(dev, dev_limits);
1313
1314         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1315         dev->creation_time = get_jiffies_64();
1316         spin_lock_init(&dev->stats_lock);
1317
1318         spin_lock(&hba->device_lock);
1319         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1320         hba->dev_count++;
1321         spin_unlock(&hba->device_lock);
1322         /*
1323          * Setup the SAM Task Attribute emulation for struct se_device
1324          */
1325         core_setup_task_attr_emulation(dev);
1326         /*
1327          * Force PR and ALUA passthrough emulation with internal object use.
1328          */
1329         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1330         /*
1331          * Setup the Reservations infrastructure for struct se_device
1332          */
1333         core_setup_reservations(dev, force_pt);
1334         /*
1335          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1336          */
1337         if (core_setup_alua(dev, force_pt) < 0)
1338                 goto out;
1339
1340         /*
1341          * Startup the struct se_device processing thread
1342          */
1343         dev->process_thread = kthread_run(transport_processing_thread, dev,
1344                                           "LIO_%s", dev->transport->name);
1345         if (IS_ERR(dev->process_thread)) {
1346                 pr_err("Unable to create kthread: LIO_%s\n",
1347                         dev->transport->name);
1348                 goto out;
1349         }
1350         /*
1351          * Setup work_queue for QUEUE_FULL
1352          */
1353         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1354         /*
1355          * Preload the initial INQUIRY const values if we are doing
1356          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1357          * passthrough because this is being provided by the backend LLD.
1358          * This is required so that transport_get_inquiry() copies these
1359          * originals once back into DEV_T10_WWN(dev) for the virtual device
1360          * setup.
1361          */
1362         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1363                 if (!inquiry_prod || !inquiry_rev) {
1364                         pr_err("All non TCM/pSCSI plugins require"
1365                                 " INQUIRY consts\n");
1366                         goto out;
1367                 }
1368
1369                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1370                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1371                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1372         }
1373         scsi_dump_inquiry(dev);
1374
1375         return dev;
1376 out:
1377         kthread_stop(dev->process_thread);
1378
1379         spin_lock(&hba->device_lock);
1380         list_del(&dev->dev_list);
1381         hba->dev_count--;
1382         spin_unlock(&hba->device_lock);
1383
1384         se_release_vpd_for_dev(dev);
1385
1386         kfree(dev);
1387
1388         return NULL;
1389 }
1390 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1391
1392 /*      transport_generic_prepare_cdb():
1393  *
1394  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1395  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1396  *      The point of this is since we are mapping iSCSI LUNs to
1397  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1398  *      devices and HBAs for a loop.
1399  */
1400 static inline void transport_generic_prepare_cdb(
1401         unsigned char *cdb)
1402 {
1403         switch (cdb[0]) {
1404         case READ_10: /* SBC - RDProtect */
1405         case READ_12: /* SBC - RDProtect */
1406         case READ_16: /* SBC - RDProtect */
1407         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1408         case VERIFY: /* SBC - VRProtect */
1409         case VERIFY_16: /* SBC - VRProtect */
1410         case WRITE_VERIFY: /* SBC - VRProtect */
1411         case WRITE_VERIFY_12: /* SBC - VRProtect */
1412                 break;
1413         default:
1414                 cdb[1] &= 0x1f; /* clear logical unit number */
1415                 break;
1416         }
1417 }
1418
1419 static struct se_task *
1420 transport_generic_get_task(struct se_cmd *cmd,
1421                 enum dma_data_direction data_direction)
1422 {
1423         struct se_task *task;
1424         struct se_device *dev = cmd->se_dev;
1425
1426         task = dev->transport->alloc_task(cmd->t_task_cdb);
1427         if (!task) {
1428                 pr_err("Unable to allocate struct se_task\n");
1429                 return NULL;
1430         }
1431
1432         INIT_LIST_HEAD(&task->t_list);
1433         INIT_LIST_HEAD(&task->t_execute_list);
1434         INIT_LIST_HEAD(&task->t_state_list);
1435         init_completion(&task->task_stop_comp);
1436         task->task_se_cmd = cmd;
1437         task->task_data_direction = data_direction;
1438
1439         return task;
1440 }
1441
1442 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1443
1444 /*
1445  * Used by fabric modules containing a local struct se_cmd within their
1446  * fabric dependent per I/O descriptor.
1447  */
1448 void transport_init_se_cmd(
1449         struct se_cmd *cmd,
1450         struct target_core_fabric_ops *tfo,
1451         struct se_session *se_sess,
1452         u32 data_length,
1453         int data_direction,
1454         int task_attr,
1455         unsigned char *sense_buffer)
1456 {
1457         INIT_LIST_HEAD(&cmd->se_lun_node);
1458         INIT_LIST_HEAD(&cmd->se_delayed_node);
1459         INIT_LIST_HEAD(&cmd->se_qf_node);
1460         INIT_LIST_HEAD(&cmd->se_queue_node);
1461         INIT_LIST_HEAD(&cmd->se_cmd_list);
1462         INIT_LIST_HEAD(&cmd->t_task_list);
1463         init_completion(&cmd->transport_lun_fe_stop_comp);
1464         init_completion(&cmd->transport_lun_stop_comp);
1465         init_completion(&cmd->t_transport_stop_comp);
1466         init_completion(&cmd->cmd_wait_comp);
1467         spin_lock_init(&cmd->t_state_lock);
1468         cmd->transport_state = CMD_T_DEV_ACTIVE;
1469
1470         cmd->se_tfo = tfo;
1471         cmd->se_sess = se_sess;
1472         cmd->data_length = data_length;
1473         cmd->data_direction = data_direction;
1474         cmd->sam_task_attr = task_attr;
1475         cmd->sense_buffer = sense_buffer;
1476 }
1477 EXPORT_SYMBOL(transport_init_se_cmd);
1478
1479 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1480 {
1481         /*
1482          * Check if SAM Task Attribute emulation is enabled for this
1483          * struct se_device storage object
1484          */
1485         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1486                 return 0;
1487
1488         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1489                 pr_debug("SAM Task Attribute ACA"
1490                         " emulation is not supported\n");
1491                 return -EINVAL;
1492         }
1493         /*
1494          * Used to determine when ORDERED commands should go from
1495          * Dormant to Active status.
1496          */
1497         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1498         smp_mb__after_atomic_inc();
1499         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1500                         cmd->se_ordered_id, cmd->sam_task_attr,
1501                         cmd->se_dev->transport->name);
1502         return 0;
1503 }
1504
1505 /*      transport_generic_allocate_tasks():
1506  *
1507  *      Called from fabric RX Thread.
1508  */
1509 int transport_generic_allocate_tasks(
1510         struct se_cmd *cmd,
1511         unsigned char *cdb)
1512 {
1513         int ret;
1514
1515         transport_generic_prepare_cdb(cdb);
1516         /*
1517          * Ensure that the received CDB is less than the max (252 + 8) bytes
1518          * for VARIABLE_LENGTH_CMD
1519          */
1520         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1521                 pr_err("Received SCSI CDB with command_size: %d that"
1522                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1523                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1524                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1525                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1526                 return -EINVAL;
1527         }
1528         /*
1529          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1530          * allocate the additional extended CDB buffer now..  Otherwise
1531          * setup the pointer from __t_task_cdb to t_task_cdb.
1532          */
1533         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1534                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1535                                                 GFP_KERNEL);
1536                 if (!cmd->t_task_cdb) {
1537                         pr_err("Unable to allocate cmd->t_task_cdb"
1538                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1539                                 scsi_command_size(cdb),
1540                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1541                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1542                         cmd->scsi_sense_reason =
1543                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1544                         return -ENOMEM;
1545                 }
1546         } else
1547                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1548         /*
1549          * Copy the original CDB into cmd->
1550          */
1551         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1552         /*
1553          * Setup the received CDB based on SCSI defined opcodes and
1554          * perform unit attention, persistent reservations and ALUA
1555          * checks for virtual device backends.  The cmd->t_task_cdb
1556          * pointer is expected to be setup before we reach this point.
1557          */
1558         ret = transport_generic_cmd_sequencer(cmd, cdb);
1559         if (ret < 0)
1560                 return ret;
1561         /*
1562          * Check for SAM Task Attribute Emulation
1563          */
1564         if (transport_check_alloc_task_attr(cmd) < 0) {
1565                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1566                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1567                 return -EINVAL;
1568         }
1569         spin_lock(&cmd->se_lun->lun_sep_lock);
1570         if (cmd->se_lun->lun_sep)
1571                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1572         spin_unlock(&cmd->se_lun->lun_sep_lock);
1573         return 0;
1574 }
1575 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1576
1577 /*
1578  * Used by fabric module frontends to queue tasks directly.
1579  * Many only be used from process context only
1580  */
1581 int transport_handle_cdb_direct(
1582         struct se_cmd *cmd)
1583 {
1584         int ret;
1585
1586         if (!cmd->se_lun) {
1587                 dump_stack();
1588                 pr_err("cmd->se_lun is NULL\n");
1589                 return -EINVAL;
1590         }
1591         if (in_interrupt()) {
1592                 dump_stack();
1593                 pr_err("transport_generic_handle_cdb cannot be called"
1594                                 " from interrupt context\n");
1595                 return -EINVAL;
1596         }
1597         /*
1598          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1599          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1600          * in existing usage to ensure that outstanding descriptors are handled
1601          * correctly during shutdown via transport_wait_for_tasks()
1602          *
1603          * Also, we don't take cmd->t_state_lock here as we only expect
1604          * this to be called for initial descriptor submission.
1605          */
1606         cmd->t_state = TRANSPORT_NEW_CMD;
1607         cmd->transport_state |= CMD_T_ACTIVE;
1608
1609         /*
1610          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1611          * so follow TRANSPORT_NEW_CMD processing thread context usage
1612          * and call transport_generic_request_failure() if necessary..
1613          */
1614         ret = transport_generic_new_cmd(cmd);
1615         if (ret < 0)
1616                 transport_generic_request_failure(cmd);
1617
1618         return 0;
1619 }
1620 EXPORT_SYMBOL(transport_handle_cdb_direct);
1621
1622 /**
1623  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1624  *
1625  * @se_cmd: command descriptor to submit
1626  * @se_sess: associated se_sess for endpoint
1627  * @cdb: pointer to SCSI CDB
1628  * @sense: pointer to SCSI sense buffer
1629  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1630  * @data_length: fabric expected data transfer length
1631  * @task_addr: SAM task attribute
1632  * @data_dir: DMA data direction
1633  * @flags: flags for command submission from target_sc_flags_tables
1634  *
1635  * This may only be called from process context, and also currently
1636  * assumes internal allocation of fabric payload buffer by target-core.
1637  **/
1638 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1639                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1640                 u32 data_length, int task_attr, int data_dir, int flags)
1641 {
1642         struct se_portal_group *se_tpg;
1643         int rc;
1644
1645         se_tpg = se_sess->se_tpg;
1646         BUG_ON(!se_tpg);
1647         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1648         BUG_ON(in_interrupt());
1649         /*
1650          * Initialize se_cmd for target operation.  From this point
1651          * exceptions are handled by sending exception status via
1652          * target_core_fabric_ops->queue_status() callback
1653          */
1654         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1655                                 data_length, data_dir, task_attr, sense);
1656         /*
1657          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1658          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1659          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1660          * kref_put() to happen during fabric packet acknowledgement.
1661          */
1662         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1663         /*
1664          * Signal bidirectional data payloads to target-core
1665          */
1666         if (flags & TARGET_SCF_BIDI_OP)
1667                 se_cmd->se_cmd_flags |= SCF_BIDI;
1668         /*
1669          * Locate se_lun pointer and attach it to struct se_cmd
1670          */
1671         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1672                 transport_send_check_condition_and_sense(se_cmd,
1673                                 se_cmd->scsi_sense_reason, 0);
1674                 target_put_sess_cmd(se_sess, se_cmd);
1675                 return;
1676         }
1677         /*
1678          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1679          * allocate the necessary tasks to complete the received CDB+data
1680          */
1681         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1682         if (rc != 0) {
1683                 transport_generic_request_failure(se_cmd);
1684                 return;
1685         }
1686         /*
1687          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1688          * for immediate execution of READs, otherwise wait for
1689          * transport_generic_handle_data() to be called for WRITEs
1690          * when fabric has filled the incoming buffer.
1691          */
1692         transport_handle_cdb_direct(se_cmd);
1693         return;
1694 }
1695 EXPORT_SYMBOL(target_submit_cmd);
1696
1697 /**
1698  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1699  *                     for TMR CDBs
1700  *
1701  * @se_cmd: command descriptor to submit
1702  * @se_sess: associated se_sess for endpoint
1703  * @sense: pointer to SCSI sense buffer
1704  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1705  * @fabric_context: fabric context for TMR req
1706  * @tm_type: Type of TM request
1707  *
1708  * Callable from all contexts.
1709  **/
1710
1711 void target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1712                 unsigned char *sense, u32 unpacked_lun,
1713                 void *fabric_tmr_ptr, unsigned char tm_type, int flags)
1714 {
1715         struct se_portal_group *se_tpg;
1716         int ret;
1717
1718         se_tpg = se_sess->se_tpg;
1719         BUG_ON(!se_tpg);
1720
1721         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1722                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1723
1724         /* See target_submit_cmd for commentary */
1725         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1726
1727         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, GFP_KERNEL);
1728         if (ret < 0) {
1729                 dump_stack();
1730                 /* FIXME XXX */
1731                 return;
1732         }
1733
1734         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1735         if (ret) {
1736                 transport_send_check_condition_and_sense(se_cmd,
1737                         se_cmd->scsi_sense_reason, 0);
1738                 transport_generic_free_cmd(se_cmd, 0);
1739                 return;
1740         }
1741         transport_generic_handle_tmr(se_cmd);
1742 }
1743 EXPORT_SYMBOL(target_submit_tmr);
1744
1745 /*
1746  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1747  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1748  * complete setup in TCM process context w/ TFO->new_cmd_map().
1749  */
1750 int transport_generic_handle_cdb_map(
1751         struct se_cmd *cmd)
1752 {
1753         if (!cmd->se_lun) {
1754                 dump_stack();
1755                 pr_err("cmd->se_lun is NULL\n");
1756                 return -EINVAL;
1757         }
1758
1759         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1760         return 0;
1761 }
1762 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1763
1764 /*      transport_generic_handle_data():
1765  *
1766  *
1767  */
1768 int transport_generic_handle_data(
1769         struct se_cmd *cmd)
1770 {
1771         /*
1772          * For the software fabric case, then we assume the nexus is being
1773          * failed/shutdown when signals are pending from the kthread context
1774          * caller, so we return a failure.  For the HW target mode case running
1775          * in interrupt code, the signal_pending() check is skipped.
1776          */
1777         if (!in_interrupt() && signal_pending(current))
1778                 return -EPERM;
1779         /*
1780          * If the received CDB has aleady been ABORTED by the generic
1781          * target engine, we now call transport_check_aborted_status()
1782          * to queue any delated TASK_ABORTED status for the received CDB to the
1783          * fabric module as we are expecting no further incoming DATA OUT
1784          * sequences at this point.
1785          */
1786         if (transport_check_aborted_status(cmd, 1) != 0)
1787                 return 0;
1788
1789         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1790         return 0;
1791 }
1792 EXPORT_SYMBOL(transport_generic_handle_data);
1793
1794 /*      transport_generic_handle_tmr():
1795  *
1796  *
1797  */
1798 int transport_generic_handle_tmr(
1799         struct se_cmd *cmd)
1800 {
1801         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1802         return 0;
1803 }
1804 EXPORT_SYMBOL(transport_generic_handle_tmr);
1805
1806 /*
1807  * If the task is active, request it to be stopped and sleep until it
1808  * has completed.
1809  */
1810 bool target_stop_task(struct se_task *task, unsigned long *flags)
1811 {
1812         struct se_cmd *cmd = task->task_se_cmd;
1813         bool was_active = false;
1814
1815         if (task->task_flags & TF_ACTIVE) {
1816                 task->task_flags |= TF_REQUEST_STOP;
1817                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1818
1819                 pr_debug("Task %p waiting to complete\n", task);
1820                 wait_for_completion(&task->task_stop_comp);
1821                 pr_debug("Task %p stopped successfully\n", task);
1822
1823                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1824                 atomic_dec(&cmd->t_task_cdbs_left);
1825                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1826                 was_active = true;
1827         }
1828
1829         return was_active;
1830 }
1831
1832 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1833 {
1834         struct se_task *task, *task_tmp;
1835         unsigned long flags;
1836         int ret = 0;
1837
1838         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1839                 cmd->se_tfo->get_task_tag(cmd));
1840
1841         /*
1842          * No tasks remain in the execution queue
1843          */
1844         spin_lock_irqsave(&cmd->t_state_lock, flags);
1845         list_for_each_entry_safe(task, task_tmp,
1846                                 &cmd->t_task_list, t_list) {
1847                 pr_debug("Processing task %p\n", task);
1848                 /*
1849                  * If the struct se_task has not been sent and is not active,
1850                  * remove the struct se_task from the execution queue.
1851                  */
1852                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1853                         spin_unlock_irqrestore(&cmd->t_state_lock,
1854                                         flags);
1855                         transport_remove_task_from_execute_queue(task,
1856                                         cmd->se_dev);
1857
1858                         pr_debug("Task %p removed from execute queue\n", task);
1859                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1860                         continue;
1861                 }
1862
1863                 if (!target_stop_task(task, &flags)) {
1864                         pr_debug("Task %p - did nothing\n", task);
1865                         ret++;
1866                 }
1867         }
1868         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1869
1870         return ret;
1871 }
1872
1873 /*
1874  * Handle SAM-esque emulation for generic transport request failures.
1875  */
1876 void transport_generic_request_failure(struct se_cmd *cmd)
1877 {
1878         int ret = 0;
1879
1880         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1881                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1882                 cmd->t_task_cdb[0]);
1883         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1884                 cmd->se_tfo->get_cmd_state(cmd),
1885                 cmd->t_state, cmd->scsi_sense_reason);
1886         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1887                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1888                 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1889                 cmd->t_task_list_num,
1890                 atomic_read(&cmd->t_task_cdbs_left),
1891                 atomic_read(&cmd->t_task_cdbs_sent),
1892                 atomic_read(&cmd->t_task_cdbs_ex_left),
1893                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1894                 (cmd->transport_state & CMD_T_STOP) != 0,
1895                 (cmd->transport_state & CMD_T_SENT) != 0);
1896
1897         /*
1898          * For SAM Task Attribute emulation for failed struct se_cmd
1899          */
1900         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1901                 transport_complete_task_attr(cmd);
1902
1903         switch (cmd->scsi_sense_reason) {
1904         case TCM_NON_EXISTENT_LUN:
1905         case TCM_UNSUPPORTED_SCSI_OPCODE:
1906         case TCM_INVALID_CDB_FIELD:
1907         case TCM_INVALID_PARAMETER_LIST:
1908         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1909         case TCM_UNKNOWN_MODE_PAGE:
1910         case TCM_WRITE_PROTECTED:
1911         case TCM_CHECK_CONDITION_ABORT_CMD:
1912         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1913         case TCM_CHECK_CONDITION_NOT_READY:
1914                 break;
1915         case TCM_RESERVATION_CONFLICT:
1916                 /*
1917                  * No SENSE Data payload for this case, set SCSI Status
1918                  * and queue the response to $FABRIC_MOD.
1919                  *
1920                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1921                  */
1922                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1923                 /*
1924                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1925                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1926                  * CONFLICT STATUS.
1927                  *
1928                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1929                  */
1930                 if (cmd->se_sess &&
1931                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1932                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1933                                 cmd->orig_fe_lun, 0x2C,
1934                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1935
1936                 ret = cmd->se_tfo->queue_status(cmd);
1937                 if (ret == -EAGAIN || ret == -ENOMEM)
1938                         goto queue_full;
1939                 goto check_stop;
1940         default:
1941                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1942                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1943                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1944                 break;
1945         }
1946         /*
1947          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1948          * make the call to transport_send_check_condition_and_sense()
1949          * directly.  Otherwise expect the fabric to make the call to
1950          * transport_send_check_condition_and_sense() after handling
1951          * possible unsoliticied write data payloads.
1952          */
1953         ret = transport_send_check_condition_and_sense(cmd,
1954                         cmd->scsi_sense_reason, 0);
1955         if (ret == -EAGAIN || ret == -ENOMEM)
1956                 goto queue_full;
1957
1958 check_stop:
1959         transport_lun_remove_cmd(cmd);
1960         if (!transport_cmd_check_stop_to_fabric(cmd))
1961                 ;
1962         return;
1963
1964 queue_full:
1965         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1966         transport_handle_queue_full(cmd, cmd->se_dev);
1967 }
1968 EXPORT_SYMBOL(transport_generic_request_failure);
1969
1970 static inline u32 transport_lba_21(unsigned char *cdb)
1971 {
1972         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1973 }
1974
1975 static inline u32 transport_lba_32(unsigned char *cdb)
1976 {
1977         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1978 }
1979
1980 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1981 {
1982         unsigned int __v1, __v2;
1983
1984         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1985         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1986
1987         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1988 }
1989
1990 /*
1991  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1992  */
1993 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1994 {
1995         unsigned int __v1, __v2;
1996
1997         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1998         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1999
2000         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2001 }
2002
2003 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2004 {
2005         unsigned long flags;
2006
2007         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2008         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2009         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2010 }
2011
2012 /*
2013  * Called from Fabric Module context from transport_execute_tasks()
2014  *
2015  * The return of this function determins if the tasks from struct se_cmd
2016  * get added to the execution queue in transport_execute_tasks(),
2017  * or are added to the delayed or ordered lists here.
2018  */
2019 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2020 {
2021         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2022                 return 1;
2023         /*
2024          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2025          * to allow the passed struct se_cmd list of tasks to the front of the list.
2026          */
2027          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2028                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2029                         " 0x%02x, se_ordered_id: %u\n",
2030                         cmd->t_task_cdb[0],
2031                         cmd->se_ordered_id);
2032                 return 1;
2033         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2034                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2035                 smp_mb__after_atomic_inc();
2036
2037                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2038                                 " list, se_ordered_id: %u\n",
2039                                 cmd->t_task_cdb[0],
2040                                 cmd->se_ordered_id);
2041                 /*
2042                  * Add ORDERED command to tail of execution queue if
2043                  * no other older commands exist that need to be
2044                  * completed first.
2045                  */
2046                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2047                         return 1;
2048         } else {
2049                 /*
2050                  * For SIMPLE and UNTAGGED Task Attribute commands
2051                  */
2052                 atomic_inc(&cmd->se_dev->simple_cmds);
2053                 smp_mb__after_atomic_inc();
2054         }
2055         /*
2056          * Otherwise if one or more outstanding ORDERED task attribute exist,
2057          * add the dormant task(s) built for the passed struct se_cmd to the
2058          * execution queue and become in Active state for this struct se_device.
2059          */
2060         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2061                 /*
2062                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2063                  * will be drained upon completion of HEAD_OF_QUEUE task.
2064                  */
2065                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2066                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2067                 list_add_tail(&cmd->se_delayed_node,
2068                                 &cmd->se_dev->delayed_cmd_list);
2069                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2070
2071                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2072                         " delayed CMD list, se_ordered_id: %u\n",
2073                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2074                         cmd->se_ordered_id);
2075                 /*
2076                  * Return zero to let transport_execute_tasks() know
2077                  * not to add the delayed tasks to the execution list.
2078                  */
2079                 return 0;
2080         }
2081         /*
2082          * Otherwise, no ORDERED task attributes exist..
2083          */
2084         return 1;
2085 }
2086
2087 /*
2088  * Called from fabric module context in transport_generic_new_cmd() and
2089  * transport_generic_process_write()
2090  */
2091 static int transport_execute_tasks(struct se_cmd *cmd)
2092 {
2093         int add_tasks;
2094         struct se_device *se_dev = cmd->se_dev;
2095         /*
2096          * Call transport_cmd_check_stop() to see if a fabric exception
2097          * has occurred that prevents execution.
2098          */
2099         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2100                 /*
2101                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2102                  * attribute for the tasks of the received struct se_cmd CDB
2103                  */
2104                 add_tasks = transport_execute_task_attr(cmd);
2105                 if (!add_tasks)
2106                         goto execute_tasks;
2107                 /*
2108                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2109                  * adds associated se_tasks while holding dev->execute_task_lock
2110                  * before I/O dispath to avoid a double spinlock access.
2111                  */
2112                 __transport_execute_tasks(se_dev, cmd);
2113                 return 0;
2114         }
2115
2116 execute_tasks:
2117         __transport_execute_tasks(se_dev, NULL);
2118         return 0;
2119 }
2120
2121 /*
2122  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2123  * from struct se_device->execute_task_list and
2124  *
2125  * Called from transport_processing_thread()
2126  */
2127 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2128 {
2129         int error;
2130         struct se_cmd *cmd = NULL;
2131         struct se_task *task = NULL;
2132         unsigned long flags;
2133
2134 check_depth:
2135         spin_lock_irq(&dev->execute_task_lock);
2136         if (new_cmd != NULL)
2137                 __transport_add_tasks_from_cmd(new_cmd);
2138
2139         if (list_empty(&dev->execute_task_list)) {
2140                 spin_unlock_irq(&dev->execute_task_lock);
2141                 return 0;
2142         }
2143         task = list_first_entry(&dev->execute_task_list,
2144                                 struct se_task, t_execute_list);
2145         __transport_remove_task_from_execute_queue(task, dev);
2146         spin_unlock_irq(&dev->execute_task_lock);
2147
2148         cmd = task->task_se_cmd;
2149         spin_lock_irqsave(&cmd->t_state_lock, flags);
2150         task->task_flags |= (TF_ACTIVE | TF_SENT);
2151         atomic_inc(&cmd->t_task_cdbs_sent);
2152
2153         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2154             cmd->t_task_list_num)
2155                 cmd->transport_state |= CMD_T_SENT;
2156
2157         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2158
2159         if (cmd->execute_task)
2160                 error = cmd->execute_task(task);
2161         else
2162                 error = dev->transport->do_task(task);
2163         if (error != 0) {
2164                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2165                 task->task_flags &= ~TF_ACTIVE;
2166                 cmd->transport_state &= ~CMD_T_SENT;
2167                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2168
2169                 transport_stop_tasks_for_cmd(cmd);
2170                 transport_generic_request_failure(cmd);
2171         }
2172
2173         new_cmd = NULL;
2174         goto check_depth;
2175
2176         return 0;
2177 }
2178
2179 static inline u32 transport_get_sectors_6(
2180         unsigned char *cdb,
2181         struct se_cmd *cmd,
2182         int *ret)
2183 {
2184         struct se_device *dev = cmd->se_dev;
2185
2186         /*
2187          * Assume TYPE_DISK for non struct se_device objects.
2188          * Use 8-bit sector value.
2189          */
2190         if (!dev)
2191                 goto type_disk;
2192
2193         /*
2194          * Use 24-bit allocation length for TYPE_TAPE.
2195          */
2196         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2197                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2198
2199         /*
2200          * Everything else assume TYPE_DISK Sector CDB location.
2201          * Use 8-bit sector value.  SBC-3 says:
2202          *
2203          *   A TRANSFER LENGTH field set to zero specifies that 256
2204          *   logical blocks shall be written.  Any other value
2205          *   specifies the number of logical blocks that shall be
2206          *   written.
2207          */
2208 type_disk:
2209         return cdb[4] ? : 256;
2210 }
2211
2212 static inline u32 transport_get_sectors_10(
2213         unsigned char *cdb,
2214         struct se_cmd *cmd,
2215         int *ret)
2216 {
2217         struct se_device *dev = cmd->se_dev;
2218
2219         /*
2220          * Assume TYPE_DISK for non struct se_device objects.
2221          * Use 16-bit sector value.
2222          */
2223         if (!dev)
2224                 goto type_disk;
2225
2226         /*
2227          * XXX_10 is not defined in SSC, throw an exception
2228          */
2229         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2230                 *ret = -EINVAL;
2231                 return 0;
2232         }
2233
2234         /*
2235          * Everything else assume TYPE_DISK Sector CDB location.
2236          * Use 16-bit sector value.
2237          */
2238 type_disk:
2239         return (u32)(cdb[7] << 8) + cdb[8];
2240 }
2241
2242 static inline u32 transport_get_sectors_12(
2243         unsigned char *cdb,
2244         struct se_cmd *cmd,
2245         int *ret)
2246 {
2247         struct se_device *dev = cmd->se_dev;
2248
2249         /*
2250          * Assume TYPE_DISK for non struct se_device objects.
2251          * Use 32-bit sector value.
2252          */
2253         if (!dev)
2254                 goto type_disk;
2255
2256         /*
2257          * XXX_12 is not defined in SSC, throw an exception
2258          */
2259         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2260                 *ret = -EINVAL;
2261                 return 0;
2262         }
2263
2264         /*
2265          * Everything else assume TYPE_DISK Sector CDB location.
2266          * Use 32-bit sector value.
2267          */
2268 type_disk:
2269         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2270 }
2271
2272 static inline u32 transport_get_sectors_16(
2273         unsigned char *cdb,
2274         struct se_cmd *cmd,
2275         int *ret)
2276 {
2277         struct se_device *dev = cmd->se_dev;
2278
2279         /*
2280          * Assume TYPE_DISK for non struct se_device objects.
2281          * Use 32-bit sector value.
2282          */
2283         if (!dev)
2284                 goto type_disk;
2285
2286         /*
2287          * Use 24-bit allocation length for TYPE_TAPE.
2288          */
2289         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2290                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2291
2292 type_disk:
2293         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2294                     (cdb[12] << 8) + cdb[13];
2295 }
2296
2297 /*
2298  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2299  */
2300 static inline u32 transport_get_sectors_32(
2301         unsigned char *cdb,
2302         struct se_cmd *cmd,
2303         int *ret)
2304 {
2305         /*
2306          * Assume TYPE_DISK for non struct se_device objects.
2307          * Use 32-bit sector value.
2308          */
2309         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2310                     (cdb[30] << 8) + cdb[31];
2311
2312 }
2313
2314 static inline u32 transport_get_size(
2315         u32 sectors,
2316         unsigned char *cdb,
2317         struct se_cmd *cmd)
2318 {
2319         struct se_device *dev = cmd->se_dev;
2320
2321         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2322                 if (cdb[1] & 1) { /* sectors */
2323                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2324                 } else /* bytes */
2325                         return sectors;
2326         }
2327 #if 0
2328         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2329                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2330                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2331                         dev->transport->name);
2332 #endif
2333         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2334 }
2335
2336 static void transport_xor_callback(struct se_cmd *cmd)
2337 {
2338         unsigned char *buf, *addr;
2339         struct scatterlist *sg;
2340         unsigned int offset;
2341         int i;
2342         int count;
2343         /*
2344          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2345          *
2346          * 1) read the specified logical block(s);
2347          * 2) transfer logical blocks from the data-out buffer;
2348          * 3) XOR the logical blocks transferred from the data-out buffer with
2349          *    the logical blocks read, storing the resulting XOR data in a buffer;
2350          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2351          *    blocks transferred from the data-out buffer; and
2352          * 5) transfer the resulting XOR data to the data-in buffer.
2353          */
2354         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2355         if (!buf) {
2356                 pr_err("Unable to allocate xor_callback buf\n");
2357                 return;
2358         }
2359         /*
2360          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2361          * into the locally allocated *buf
2362          */
2363         sg_copy_to_buffer(cmd->t_data_sg,
2364                           cmd->t_data_nents,
2365                           buf,
2366                           cmd->data_length);
2367
2368         /*
2369          * Now perform the XOR against the BIDI read memory located at
2370          * cmd->t_mem_bidi_list
2371          */
2372
2373         offset = 0;
2374         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2375                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2376                 if (!addr)
2377                         goto out;
2378
2379                 for (i = 0; i < sg->length; i++)
2380                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2381
2382                 offset += sg->length;
2383                 kunmap_atomic(addr, KM_USER0);
2384         }
2385
2386 out:
2387         kfree(buf);
2388 }
2389
2390 /*
2391  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2392  */
2393 static int transport_get_sense_data(struct se_cmd *cmd)
2394 {
2395         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2396         struct se_device *dev = cmd->se_dev;
2397         struct se_task *task = NULL, *task_tmp;
2398         unsigned long flags;
2399         u32 offset = 0;
2400
2401         WARN_ON(!cmd->se_lun);
2402
2403         if (!dev)
2404                 return 0;
2405
2406         spin_lock_irqsave(&cmd->t_state_lock, flags);
2407         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2408                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2409                 return 0;
2410         }
2411
2412         list_for_each_entry_safe(task, task_tmp,
2413                                 &cmd->t_task_list, t_list) {
2414                 if (!(task->task_flags & TF_HAS_SENSE))
2415                         continue;
2416
2417                 if (!dev->transport->get_sense_buffer) {
2418                         pr_err("dev->transport->get_sense_buffer"
2419                                         " is NULL\n");
2420                         continue;
2421                 }
2422
2423                 sense_buffer = dev->transport->get_sense_buffer(task);
2424                 if (!sense_buffer) {
2425                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2426                                 " sense buffer for task with sense\n",
2427                                 cmd->se_tfo->get_task_tag(cmd), task);
2428                         continue;
2429                 }
2430                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2431
2432                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2433                                 TRANSPORT_SENSE_BUFFER);
2434
2435                 memcpy(&buffer[offset], sense_buffer,
2436                                 TRANSPORT_SENSE_BUFFER);
2437                 cmd->scsi_status = task->task_scsi_status;
2438                 /* Automatically padded */
2439                 cmd->scsi_sense_length =
2440                                 (TRANSPORT_SENSE_BUFFER + offset);
2441
2442                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2443                                 " and sense\n",
2444                         dev->se_hba->hba_id, dev->transport->name,
2445                                 cmd->scsi_status);
2446                 return 0;
2447         }
2448         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2449
2450         return -1;
2451 }
2452
2453 static inline long long transport_dev_end_lba(struct se_device *dev)
2454 {
2455         return dev->transport->get_blocks(dev) + 1;
2456 }
2457
2458 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2459 {
2460         struct se_device *dev = cmd->se_dev;
2461         u32 sectors;
2462
2463         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2464                 return 0;
2465
2466         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2467
2468         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2469                 pr_err("LBA: %llu Sectors: %u exceeds"
2470                         " transport_dev_end_lba(): %llu\n",
2471                         cmd->t_task_lba, sectors,
2472                         transport_dev_end_lba(dev));
2473                 return -EINVAL;
2474         }
2475
2476         return 0;
2477 }
2478
2479 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2480 {
2481         /*
2482          * Determine if the received WRITE_SAME is used to for direct
2483          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2484          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2485          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2486          */
2487         int passthrough = (dev->transport->transport_type ==
2488                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2489
2490         if (!passthrough) {
2491                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2492                         pr_err("WRITE_SAME PBDATA and LBDATA"
2493                                 " bits not supported for Block Discard"
2494                                 " Emulation\n");
2495                         return -ENOSYS;
2496                 }
2497                 /*
2498                  * Currently for the emulated case we only accept
2499                  * tpws with the UNMAP=1 bit set.
2500                  */
2501                 if (!(flags[0] & 0x08)) {
2502                         pr_err("WRITE_SAME w/o UNMAP bit not"
2503                                 " supported for Block Discard Emulation\n");
2504                         return -ENOSYS;
2505                 }
2506         }
2507
2508         return 0;
2509 }
2510
2511 /*      transport_generic_cmd_sequencer():
2512  *
2513  *      Generic Command Sequencer that should work for most DAS transport
2514  *      drivers.
2515  *
2516  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2517  *      RX Thread.
2518  *
2519  *      FIXME: Need to support other SCSI OPCODES where as well.
2520  */
2521 static int transport_generic_cmd_sequencer(
2522         struct se_cmd *cmd,
2523         unsigned char *cdb)
2524 {
2525         struct se_device *dev = cmd->se_dev;
2526         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2527         int ret = 0, sector_ret = 0, passthrough;
2528         u32 sectors = 0, size = 0, pr_reg_type = 0;
2529         u16 service_action;
2530         u8 alua_ascq = 0;
2531         /*
2532          * Check for an existing UNIT ATTENTION condition
2533          */
2534         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2535                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2536                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2537                 return -EINVAL;
2538         }
2539         /*
2540          * Check status of Asymmetric Logical Unit Assignment port
2541          */
2542         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2543         if (ret != 0) {
2544                 /*
2545                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2546                  * The ALUA additional sense code qualifier (ASCQ) is determined
2547                  * by the ALUA primary or secondary access state..
2548                  */
2549                 if (ret > 0) {
2550 #if 0
2551                         pr_debug("[%s]: ALUA TG Port not available,"
2552                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2553                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2554 #endif
2555                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2556                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2557                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2558                         return -EINVAL;
2559                 }
2560                 goto out_invalid_cdb_field;
2561         }
2562         /*
2563          * Check status for SPC-3 Persistent Reservations
2564          */
2565         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2566                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2567                                         cmd, cdb, pr_reg_type) != 0) {
2568                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2569                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2570                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2571                         return -EBUSY;
2572                 }
2573                 /*
2574                  * This means the CDB is allowed for the SCSI Initiator port
2575                  * when said port is *NOT* holding the legacy SPC-2 or
2576                  * SPC-3 Persistent Reservation.
2577                  */
2578         }
2579
2580         /*
2581          * If we operate in passthrough mode we skip most CDB emulation and
2582          * instead hand the commands down to the physical SCSI device.
2583          */
2584         passthrough =
2585                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2586
2587         switch (cdb[0]) {
2588         case READ_6:
2589                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2590                 if (sector_ret)
2591                         goto out_unsupported_cdb;
2592                 size = transport_get_size(sectors, cdb, cmd);
2593                 cmd->t_task_lba = transport_lba_21(cdb);
2594                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2595                 break;
2596         case READ_10:
2597                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2598                 if (sector_ret)
2599                         goto out_unsupported_cdb;
2600                 size = transport_get_size(sectors, cdb, cmd);
2601                 cmd->t_task_lba = transport_lba_32(cdb);
2602                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2603                 break;
2604         case READ_12:
2605                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2606                 if (sector_ret)
2607                         goto out_unsupported_cdb;
2608                 size = transport_get_size(sectors, cdb, cmd);
2609                 cmd->t_task_lba = transport_lba_32(cdb);
2610                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2611                 break;
2612         case READ_16:
2613                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2614                 if (sector_ret)
2615                         goto out_unsupported_cdb;
2616                 size = transport_get_size(sectors, cdb, cmd);
2617                 cmd->t_task_lba = transport_lba_64(cdb);
2618                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2619                 break;
2620         case WRITE_6:
2621                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2622                 if (sector_ret)
2623                         goto out_unsupported_cdb;
2624                 size = transport_get_size(sectors, cdb, cmd);
2625                 cmd->t_task_lba = transport_lba_21(cdb);
2626                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2627                 break;
2628         case WRITE_10:
2629                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2630                 if (sector_ret)
2631                         goto out_unsupported_cdb;
2632                 size = transport_get_size(sectors, cdb, cmd);
2633                 cmd->t_task_lba = transport_lba_32(cdb);
2634                 if (cdb[1] & 0x8)
2635                         cmd->se_cmd_flags |= SCF_FUA;
2636                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2637                 break;
2638         case WRITE_12:
2639                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2640                 if (sector_ret)
2641                         goto out_unsupported_cdb;
2642                 size = transport_get_size(sectors, cdb, cmd);
2643                 cmd->t_task_lba = transport_lba_32(cdb);
2644                 if (cdb[1] & 0x8)
2645                         cmd->se_cmd_flags |= SCF_FUA;
2646                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2647                 break;
2648         case WRITE_16:
2649                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2650                 if (sector_ret)
2651                         goto out_unsupported_cdb;
2652                 size = transport_get_size(sectors, cdb, cmd);
2653                 cmd->t_task_lba = transport_lba_64(cdb);
2654                 if (cdb[1] & 0x8)
2655                         cmd->se_cmd_flags |= SCF_FUA;
2656                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2657                 break;
2658         case XDWRITEREAD_10:
2659                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2660                     !(cmd->se_cmd_flags & SCF_BIDI))
2661                         goto out_invalid_cdb_field;
2662                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2663                 if (sector_ret)
2664                         goto out_unsupported_cdb;
2665                 size = transport_get_size(sectors, cdb, cmd);
2666                 cmd->t_task_lba = transport_lba_32(cdb);
2667                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2668
2669                 /*
2670                  * Do now allow BIDI commands for passthrough mode.
2671                  */
2672                 if (passthrough)
2673                         goto out_unsupported_cdb;
2674
2675                 /*
2676                  * Setup BIDI XOR callback to be run after I/O completion.
2677                  */
2678                 cmd->transport_complete_callback = &transport_xor_callback;
2679                 if (cdb[1] & 0x8)
2680                         cmd->se_cmd_flags |= SCF_FUA;
2681                 break;
2682         case VARIABLE_LENGTH_CMD:
2683                 service_action = get_unaligned_be16(&cdb[8]);
2684                 switch (service_action) {
2685                 case XDWRITEREAD_32:
2686                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2687                         if (sector_ret)
2688                                 goto out_unsupported_cdb;
2689                         size = transport_get_size(sectors, cdb, cmd);
2690                         /*
2691                          * Use WRITE_32 and READ_32 opcodes for the emulated
2692                          * XDWRITE_READ_32 logic.
2693                          */
2694                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2695                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2696
2697                         /*
2698                          * Do now allow BIDI commands for passthrough mode.
2699                          */
2700                         if (passthrough)
2701                                 goto out_unsupported_cdb;
2702
2703                         /*
2704                          * Setup BIDI XOR callback to be run during after I/O
2705                          * completion.
2706                          */
2707                         cmd->transport_complete_callback = &transport_xor_callback;
2708                         if (cdb[1] & 0x8)
2709                                 cmd->se_cmd_flags |= SCF_FUA;
2710                         break;
2711                 case WRITE_SAME_32:
2712                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2713                         if (sector_ret)
2714                                 goto out_unsupported_cdb;
2715
2716                         if (sectors)
2717                                 size = transport_get_size(1, cdb, cmd);
2718                         else {
2719                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2720                                        " supported\n");
2721                                 goto out_invalid_cdb_field;
2722                         }
2723
2724                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2725                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2726
2727                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2728                                 goto out_unsupported_cdb;
2729                         if (!passthrough)
2730                                 cmd->execute_task = target_emulate_write_same;
2731                         break;
2732                 default:
2733                         pr_err("VARIABLE_LENGTH_CMD service action"
2734                                 " 0x%04x not supported\n", service_action);
2735                         goto out_unsupported_cdb;
2736                 }
2737                 break;
2738         case MAINTENANCE_IN:
2739                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2740                         /* MAINTENANCE_IN from SCC-2 */
2741                         /*
2742                          * Check for emulated MI_REPORT_TARGET_PGS.
2743                          */
2744                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2745                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2746                                 cmd->execute_task =
2747                                         target_emulate_report_target_port_groups;
2748                         }
2749                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2750                                (cdb[8] << 8) | cdb[9];
2751                 } else {
2752                         /* GPCMD_SEND_KEY from multi media commands */
2753                         size = (cdb[8] << 8) + cdb[9];
2754                 }
2755                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2756                 break;
2757         case MODE_SELECT:
2758                 size = cdb[4];
2759                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2760                 break;
2761         case MODE_SELECT_10:
2762                 size = (cdb[7] << 8) + cdb[8];
2763                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2764                 break;
2765         case MODE_SENSE:
2766                 size = cdb[4];
2767                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2768                 if (!passthrough)
2769                         cmd->execute_task = target_emulate_modesense;
2770                 break;
2771         case MODE_SENSE_10:
2772                 size = (cdb[7] << 8) + cdb[8];
2773                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2774                 if (!passthrough)
2775                         cmd->execute_task = target_emulate_modesense;
2776                 break;
2777         case GPCMD_READ_BUFFER_CAPACITY:
2778         case GPCMD_SEND_OPC:
2779         case LOG_SELECT:
2780         case LOG_SENSE:
2781                 size = (cdb[7] << 8) + cdb[8];
2782                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2783                 break;
2784         case READ_BLOCK_LIMITS:
2785                 size = READ_BLOCK_LEN;
2786                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2787                 break;
2788         case GPCMD_GET_CONFIGURATION:
2789         case GPCMD_READ_FORMAT_CAPACITIES:
2790         case GPCMD_READ_DISC_INFO:
2791         case GPCMD_READ_TRACK_RZONE_INFO:
2792                 size = (cdb[7] << 8) + cdb[8];
2793                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2794                 break;
2795         case PERSISTENT_RESERVE_IN:
2796                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2797                         cmd->execute_task = target_scsi3_emulate_pr_in;
2798                 size = (cdb[7] << 8) + cdb[8];
2799                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2800                 break;
2801         case PERSISTENT_RESERVE_OUT:
2802                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2803                         cmd->execute_task = target_scsi3_emulate_pr_out;
2804                 size = (cdb[7] << 8) + cdb[8];
2805                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2806                 break;
2807         case GPCMD_MECHANISM_STATUS:
2808         case GPCMD_READ_DVD_STRUCTURE:
2809                 size = (cdb[8] << 8) + cdb[9];
2810                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2811                 break;
2812         case READ_POSITION:
2813                 size = READ_POSITION_LEN;
2814                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2815                 break;
2816         case MAINTENANCE_OUT:
2817                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2818                         /* MAINTENANCE_OUT from SCC-2
2819                          *
2820                          * Check for emulated MO_SET_TARGET_PGS.
2821                          */
2822                         if (cdb[1] == MO_SET_TARGET_PGS &&
2823                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2824                                 cmd->execute_task =
2825                                         target_emulate_set_target_port_groups;
2826                         }
2827
2828                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2829                                (cdb[8] << 8) | cdb[9];
2830                 } else  {
2831                         /* GPCMD_REPORT_KEY from multi media commands */
2832                         size = (cdb[8] << 8) + cdb[9];
2833                 }
2834                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2835                 break;
2836         case INQUIRY:
2837                 size = (cdb[3] << 8) + cdb[4];
2838                 /*
2839                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2840                  * See spc4r17 section 5.3
2841                  */
2842                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2843                         cmd->sam_task_attr = MSG_HEAD_TAG;
2844                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2845                 if (!passthrough)
2846                         cmd->execute_task = target_emulate_inquiry;
2847                 break;
2848         case READ_BUFFER:
2849                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2850                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2851                 break;
2852         case READ_CAPACITY:
2853                 size = READ_CAP_LEN;
2854                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855                 if (!passthrough)
2856                         cmd->execute_task = target_emulate_readcapacity;
2857                 break;
2858         case READ_MEDIA_SERIAL_NUMBER:
2859         case SECURITY_PROTOCOL_IN:
2860         case SECURITY_PROTOCOL_OUT:
2861                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2862                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2863                 break;
2864         case SERVICE_ACTION_IN:
2865                 switch (cmd->t_task_cdb[1] & 0x1f) {
2866                 case SAI_READ_CAPACITY_16:
2867                         if (!passthrough)
2868                                 cmd->execute_task =
2869                                         target_emulate_readcapacity_16;
2870                         break;
2871                 default:
2872                         if (passthrough)
2873                                 break;
2874
2875                         pr_err("Unsupported SA: 0x%02x\n",
2876                                 cmd->t_task_cdb[1] & 0x1f);
2877                         goto out_unsupported_cdb;
2878                 }
2879                 /*FALLTHROUGH*/
2880         case ACCESS_CONTROL_IN:
2881         case ACCESS_CONTROL_OUT:
2882         case EXTENDED_COPY:
2883         case READ_ATTRIBUTE:
2884         case RECEIVE_COPY_RESULTS:
2885         case WRITE_ATTRIBUTE:
2886                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2887                        (cdb[12] << 8) | cdb[13];
2888                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2889                 break;
2890         case RECEIVE_DIAGNOSTIC:
2891         case SEND_DIAGNOSTIC:
2892                 size = (cdb[3] << 8) | cdb[4];
2893                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2894                 break;
2895 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2896 #if 0
2897         case GPCMD_READ_CD:
2898                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2899                 size = (2336 * sectors);
2900                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2901                 break;
2902 #endif
2903         case READ_TOC:
2904                 size = cdb[8];
2905                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2906                 break;
2907         case REQUEST_SENSE:
2908                 size = cdb[4];
2909                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2910                 if (!passthrough)
2911                         cmd->execute_task = target_emulate_request_sense;
2912                 break;
2913         case READ_ELEMENT_STATUS:
2914                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2915                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2916                 break;
2917         case WRITE_BUFFER:
2918                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2919                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2920                 break;
2921         case RESERVE:
2922         case RESERVE_10:
2923                 /*
2924                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2925                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2926                  */
2927                 if (cdb[0] == RESERVE_10)
2928                         size = (cdb[7] << 8) | cdb[8];
2929                 else
2930                         size = cmd->data_length;
2931
2932                 /*
2933                  * Setup the legacy emulated handler for SPC-2 and
2934                  * >= SPC-3 compatible reservation handling (CRH=1)
2935                  * Otherwise, we assume the underlying SCSI logic is
2936                  * is running in SPC_PASSTHROUGH, and wants reservations
2937                  * emulation disabled.
2938                  */
2939                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2940                         cmd->execute_task = target_scsi2_reservation_reserve;
2941                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2942                 break;
2943         case RELEASE:
2944         case RELEASE_10:
2945                 /*
2946                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2947                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2948                 */
2949                 if (cdb[0] == RELEASE_10)
2950                         size = (cdb[7] << 8) | cdb[8];
2951                 else
2952                         size = cmd->data_length;
2953
2954                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2955                         cmd->execute_task = target_scsi2_reservation_release;
2956                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2957                 break;
2958         case SYNCHRONIZE_CACHE:
2959         case SYNCHRONIZE_CACHE_16:
2960                 /*
2961                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2962                  */
2963                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2964                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2965                         cmd->t_task_lba = transport_lba_32(cdb);
2966                 } else {
2967                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2968                         cmd->t_task_lba = transport_lba_64(cdb);
2969                 }
2970                 if (sector_ret)
2971                         goto out_unsupported_cdb;
2972
2973                 size = transport_get_size(sectors, cdb, cmd);
2974                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2975
2976                 if (passthrough)
2977                         break;
2978
2979                 /*
2980                  * Check to ensure that LBA + Range does not exceed past end of
2981                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2982                  */
2983                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2984                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2985                                 goto out_invalid_cdb_field;
2986                 }
2987                 cmd->execute_task = target_emulate_synchronize_cache;
2988                 break;
2989         case UNMAP:
2990                 size = get_unaligned_be16(&cdb[7]);
2991                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2992                 if (!passthrough)
2993                         cmd->execute_task = target_emulate_unmap;
2994                 break;
2995         case WRITE_SAME_16:
2996                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2997                 if (sector_ret)
2998                         goto out_unsupported_cdb;
2999
3000                 if (sectors)
3001                         size = transport_get_size(1, cdb, cmd);
3002                 else {
3003                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3004                         goto out_invalid_cdb_field;
3005                 }
3006
3007                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3008                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3009
3010                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3011                         goto out_unsupported_cdb;
3012                 if (!passthrough)
3013                         cmd->execute_task = target_emulate_write_same;
3014                 break;
3015         case WRITE_SAME:
3016                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3017                 if (sector_ret)
3018                         goto out_unsupported_cdb;
3019
3020                 if (sectors)
3021                         size = transport_get_size(1, cdb, cmd);
3022                 else {
3023                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3024                         goto out_invalid_cdb_field;
3025                 }
3026
3027                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3028                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3029                 /*
3030                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3031                  * of byte 1 bit 3 UNMAP instead of original reserved field
3032                  */
3033                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3034                         goto out_unsupported_cdb;
3035                 if (!passthrough)
3036                         cmd->execute_task = target_emulate_write_same;
3037                 break;
3038         case ALLOW_MEDIUM_REMOVAL:
3039         case ERASE:
3040         case REZERO_UNIT:
3041         case SEEK_10:
3042         case SPACE:
3043         case START_STOP:
3044         case TEST_UNIT_READY:
3045         case VERIFY:
3046         case WRITE_FILEMARKS:
3047                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3048                 if (!passthrough)
3049                         cmd->execute_task = target_emulate_noop;
3050                 break;
3051         case GPCMD_CLOSE_TRACK:
3052         case INITIALIZE_ELEMENT_STATUS:
3053         case GPCMD_LOAD_UNLOAD:
3054         case GPCMD_SET_SPEED:
3055         case MOVE_MEDIUM:
3056                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3057                 break;
3058         case REPORT_LUNS:
3059                 cmd->execute_task = target_report_luns;
3060                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3061                 /*
3062                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3063                  * See spc4r17 section 5.3
3064                  */
3065                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3066                         cmd->sam_task_attr = MSG_HEAD_TAG;
3067                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3068                 break;
3069         default:
3070                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3071                         " 0x%02x, sending CHECK_CONDITION.\n",
3072                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3073                 goto out_unsupported_cdb;
3074         }
3075
3076         if (size != cmd->data_length) {
3077                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3078                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3079                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3080                                 cmd->data_length, size, cdb[0]);
3081
3082                 cmd->cmd_spdtl = size;
3083
3084                 if (cmd->data_direction == DMA_TO_DEVICE) {
3085                         pr_err("Rejecting underflow/overflow"
3086                                         " WRITE data\n");
3087                         goto out_invalid_cdb_field;
3088                 }
3089                 /*
3090                  * Reject READ_* or WRITE_* with overflow/underflow for
3091                  * type SCF_SCSI_DATA_SG_IO_CDB.
3092                  */
3093                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3094                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3095                                 " CDB on non 512-byte sector setup subsystem"
3096                                 " plugin: %s\n", dev->transport->name);
3097                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3098                         goto out_invalid_cdb_field;
3099                 }
3100
3101                 if (size > cmd->data_length) {
3102                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3103                         cmd->residual_count = (size - cmd->data_length);
3104                 } else {
3105                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3106                         cmd->residual_count = (cmd->data_length - size);
3107                 }
3108                 cmd->data_length = size;
3109         }
3110
3111         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3112             sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3113                 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3114                                    cdb[0], sectors);
3115                 goto out_invalid_cdb_field;
3116         }
3117
3118         /* reject any command that we don't have a handler for */
3119         if (!(passthrough || cmd->execute_task ||
3120              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3121                 goto out_unsupported_cdb;
3122
3123         transport_set_supported_SAM_opcode(cmd);
3124         return ret;
3125
3126 out_unsupported_cdb:
3127         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3128         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3129         return -EINVAL;
3130 out_invalid_cdb_field:
3131         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3132         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3133         return -EINVAL;
3134 }
3135
3136 /*
3137  * Called from I/O completion to determine which dormant/delayed
3138  * and ordered cmds need to have their tasks added to the execution queue.
3139  */
3140 static void transport_complete_task_attr(struct se_cmd *cmd)
3141 {
3142         struct se_device *dev = cmd->se_dev;
3143         struct se_cmd *cmd_p, *cmd_tmp;
3144         int new_active_tasks = 0;
3145
3146         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3147                 atomic_dec(&dev->simple_cmds);
3148                 smp_mb__after_atomic_dec();
3149                 dev->dev_cur_ordered_id++;
3150                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3151                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3152                         cmd->se_ordered_id);
3153         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3154                 dev->dev_cur_ordered_id++;
3155                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3156                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3157                         cmd->se_ordered_id);
3158         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3159                 atomic_dec(&dev->dev_ordered_sync);
3160                 smp_mb__after_atomic_dec();
3161
3162                 dev->dev_cur_ordered_id++;
3163                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3164                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3165         }
3166         /*
3167          * Process all commands up to the last received
3168          * ORDERED task attribute which requires another blocking
3169          * boundary
3170          */
3171         spin_lock(&dev->delayed_cmd_lock);
3172         list_for_each_entry_safe(cmd_p, cmd_tmp,
3173                         &dev->delayed_cmd_list, se_delayed_node) {
3174
3175                 list_del(&cmd_p->se_delayed_node);
3176                 spin_unlock(&dev->delayed_cmd_lock);
3177
3178                 pr_debug("Calling add_tasks() for"
3179                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3180                         " Dormant -> Active, se_ordered_id: %u\n",
3181                         cmd_p->t_task_cdb[0],
3182                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3183
3184                 transport_add_tasks_from_cmd(cmd_p);
3185                 new_active_tasks++;
3186
3187                 spin_lock(&dev->delayed_cmd_lock);
3188                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3189                         break;
3190         }
3191         spin_unlock(&dev->delayed_cmd_lock);
3192         /*
3193          * If new tasks have become active, wake up the transport thread
3194          * to do the processing of the Active tasks.
3195          */
3196         if (new_active_tasks != 0)
3197                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3198 }
3199
3200 static void transport_complete_qf(struct se_cmd *cmd)
3201 {
3202         int ret = 0;
3203
3204         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3205                 transport_complete_task_attr(cmd);
3206
3207         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3208                 ret = cmd->se_tfo->queue_status(cmd);
3209                 if (ret)
3210                         goto out;
3211         }
3212
3213         switch (cmd->data_direction) {
3214         case DMA_FROM_DEVICE:
3215                 ret = cmd->se_tfo->queue_data_in(cmd);
3216                 break;
3217         case DMA_TO_DEVICE:
3218                 if (cmd->t_bidi_data_sg) {
3219                         ret = cmd->se_tfo->queue_data_in(cmd);
3220                         if (ret < 0)
3221                                 break;
3222                 }
3223                 /* Fall through for DMA_TO_DEVICE */
3224         case DMA_NONE:
3225                 ret = cmd->se_tfo->queue_status(cmd);
3226                 break;
3227         default:
3228                 break;
3229         }
3230
3231 out:
3232         if (ret < 0) {
3233                 transport_handle_queue_full(cmd, cmd->se_dev);
3234                 return;
3235         }
3236         transport_lun_remove_cmd(cmd);
3237         transport_cmd_check_stop_to_fabric(cmd);
3238 }
3239
3240 static void transport_handle_queue_full(
3241         struct se_cmd *cmd,
3242         struct se_device *dev)
3243 {
3244         spin_lock_irq(&dev->qf_cmd_lock);
3245         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3246         atomic_inc(&dev->dev_qf_count);
3247         smp_mb__after_atomic_inc();
3248         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3249
3250         schedule_work(&cmd->se_dev->qf_work_queue);
3251 }
3252
3253 static void target_complete_ok_work(struct work_struct *work)
3254 {
3255         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3256         int reason = 0, ret;
3257
3258         /*
3259          * Check if we need to move delayed/dormant tasks from cmds on the
3260          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3261          * Attribute.
3262          */
3263         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3264                 transport_complete_task_attr(cmd);
3265         /*
3266          * Check to schedule QUEUE_FULL work, or execute an existing
3267          * cmd->transport_qf_callback()
3268          */
3269         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3270                 schedule_work(&cmd->se_dev->qf_work_queue);
3271
3272         /*
3273          * Check if we need to retrieve a sense buffer from
3274          * the struct se_cmd in question.
3275          */
3276         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3277                 if (transport_get_sense_data(cmd) < 0)
3278                         reason = TCM_NON_EXISTENT_LUN;
3279
3280                 /*
3281                  * Only set when an struct se_task->task_scsi_status returned
3282                  * a non GOOD status.
3283                  */
3284                 if (cmd->scsi_status) {
3285                         ret = transport_send_check_condition_and_sense(
3286                                         cmd, reason, 1);
3287                         if (ret == -EAGAIN || ret == -ENOMEM)
3288                                 goto queue_full;
3289
3290                         transport_lun_remove_cmd(cmd);
3291                         transport_cmd_check_stop_to_fabric(cmd);
3292                         return;
3293                 }
3294         }
3295         /*
3296          * Check for a callback, used by amongst other things
3297          * XDWRITE_READ_10 emulation.
3298          */
3299         if (cmd->transport_complete_callback)
3300                 cmd->transport_complete_callback(cmd);
3301
3302         switch (cmd->data_direction) {
3303         case DMA_FROM_DEVICE:
3304                 spin_lock(&cmd->se_lun->lun_sep_lock);
3305                 if (cmd->se_lun->lun_sep) {
3306                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3307                                         cmd->data_length;
3308                 }
3309                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3310
3311                 ret = cmd->se_tfo->queue_data_in(cmd);
3312                 if (ret == -EAGAIN || ret == -ENOMEM)
3313                         goto queue_full;
3314                 break;
3315         case DMA_TO_DEVICE:
3316                 spin_lock(&cmd->se_lun->lun_sep_lock);
3317                 if (cmd->se_lun->lun_sep) {
3318                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3319                                 cmd->data_length;
3320                 }
3321                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3322                 /*
3323                  * Check if we need to send READ payload for BIDI-COMMAND
3324                  */
3325                 if (cmd->t_bidi_data_sg) {
3326                         spin_lock(&cmd->se_lun->lun_sep_lock);
3327                         if (cmd->se_lun->lun_sep) {
3328                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3329                                         cmd->data_length;
3330                         }
3331                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3332                         ret = cmd->se_tfo->queue_data_in(cmd);
3333                         if (ret == -EAGAIN || ret == -ENOMEM)
3334                                 goto queue_full;
3335                         break;
3336                 }
3337                 /* Fall through for DMA_TO_DEVICE */
3338         case DMA_NONE:
3339                 ret = cmd->se_tfo->queue_status(cmd);
3340                 if (ret == -EAGAIN || ret == -ENOMEM)
3341                         goto queue_full;
3342                 break;
3343         default:
3344                 break;
3345         }
3346
3347         transport_lun_remove_cmd(cmd);
3348         transport_cmd_check_stop_to_fabric(cmd);
3349         return;
3350
3351 queue_full:
3352         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3353                 " data_direction: %d\n", cmd, cmd->data_direction);
3354         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3355         transport_handle_queue_full(cmd, cmd->se_dev);
3356 }
3357
3358 static void transport_free_dev_tasks(struct se_cmd *cmd)
3359 {
3360         struct se_task *task, *task_tmp;
3361         unsigned long flags;
3362         LIST_HEAD(dispose_list);
3363
3364         spin_lock_irqsave(&cmd->t_state_lock, flags);
3365         list_for_each_entry_safe(task, task_tmp,
3366                                 &cmd->t_task_list, t_list) {
3367                 if (!(task->task_flags & TF_ACTIVE))
3368                         list_move_tail(&task->t_list, &dispose_list);
3369         }
3370         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3371
3372         while (!list_empty(&dispose_list)) {
3373                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3374
3375                 if (task->task_sg != cmd->t_data_sg &&
3376                     task->task_sg != cmd->t_bidi_data_sg)
3377                         kfree(task->task_sg);
3378
3379                 list_del(&task->t_list);
3380
3381                 cmd->se_dev->transport->free_task(task);
3382         }
3383 }
3384
3385 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3386 {
3387         struct scatterlist *sg;
3388         int count;
3389
3390         for_each_sg(sgl, sg, nents, count)
3391                 __free_page(sg_page(sg));
3392
3393         kfree(sgl);
3394 }
3395
3396 static inline void transport_free_pages(struct se_cmd *cmd)
3397 {
3398         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3399                 return;
3400
3401         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3402         cmd->t_data_sg = NULL;
3403         cmd->t_data_nents = 0;
3404
3405         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3406         cmd->t_bidi_data_sg = NULL;
3407         cmd->t_bidi_data_nents = 0;
3408 }
3409
3410 /**
3411  * transport_release_cmd - free a command
3412  * @cmd:       command to free
3413  *
3414  * This routine unconditionally frees a command, and reference counting
3415  * or list removal must be done in the caller.
3416  */
3417 static void transport_release_cmd(struct se_cmd *cmd)
3418 {
3419         BUG_ON(!cmd->se_tfo);
3420
3421         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3422                 core_tmr_release_req(cmd->se_tmr_req);
3423         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3424                 kfree(cmd->t_task_cdb);
3425         /*
3426          * If this cmd has been setup with target_get_sess_cmd(), drop
3427          * the kref and call ->release_cmd() in kref callback.
3428          */
3429          if (cmd->check_release != 0) {
3430                 target_put_sess_cmd(cmd->se_sess, cmd);
3431                 return;
3432         }
3433         cmd->se_tfo->release_cmd(cmd);
3434 }
3435
3436 /**
3437  * transport_put_cmd - release a reference to a command
3438  * @cmd:       command to release
3439  *
3440  * This routine releases our reference to the command and frees it if possible.
3441  */
3442 static void transport_put_cmd(struct se_cmd *cmd)
3443 {
3444         unsigned long flags;
3445         int free_tasks = 0;
3446
3447         spin_lock_irqsave(&cmd->t_state_lock, flags);
3448         if (atomic_read(&cmd->t_fe_count)) {
3449                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3450                         goto out_busy;
3451         }
3452
3453         if (atomic_read(&cmd->t_se_count)) {
3454                 if (!atomic_dec_and_test(&cmd->t_se_count))
3455                         goto out_busy;
3456         }
3457
3458         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3459                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3460                 transport_all_task_dev_remove_state(cmd);
3461                 free_tasks = 1;
3462         }
3463         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3464
3465         if (free_tasks != 0)
3466                 transport_free_dev_tasks(cmd);
3467
3468         transport_free_pages(cmd);
3469         transport_release_cmd(cmd);
3470         return;
3471 out_busy:
3472         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3473 }
3474
3475 /*
3476  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3477  * allocating in the core.
3478  * @cmd:  Associated se_cmd descriptor
3479  * @mem:  SGL style memory for TCM WRITE / READ
3480  * @sg_mem_num: Number of SGL elements
3481  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3482  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3483  *
3484  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3485  * of parameters.
3486  */
3487 int transport_generic_map_mem_to_cmd(
3488         struct se_cmd *cmd,
3489         struct scatterlist *sgl,
3490         u32 sgl_count,
3491         struct scatterlist *sgl_bidi,
3492         u32 sgl_bidi_count)
3493 {
3494         if (!sgl || !sgl_count)
3495                 return 0;
3496
3497         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3498             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3499                 /*
3500                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3501                  * scatterlists already have been set to follow what the fabric
3502                  * passes for the original expected data transfer length.
3503                  */
3504                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3505                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3506                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3507                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3508                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3509                         return -EINVAL;
3510                 }
3511
3512                 cmd->t_data_sg = sgl;
3513                 cmd->t_data_nents = sgl_count;
3514
3515                 if (sgl_bidi && sgl_bidi_count) {
3516                         cmd->t_bidi_data_sg = sgl_bidi;
3517                         cmd->t_bidi_data_nents = sgl_bidi_count;
3518                 }
3519                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3520         }
3521
3522         return 0;
3523 }
3524 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3525
3526 void *transport_kmap_data_sg(struct se_cmd *cmd)
3527 {
3528         struct scatterlist *sg = cmd->t_data_sg;
3529         struct page **pages;
3530         int i;
3531
3532         BUG_ON(!sg);
3533         /*
3534          * We need to take into account a possible offset here for fabrics like
3535          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3536          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3537          */
3538         if (!cmd->t_data_nents)
3539                 return NULL;
3540         else if (cmd->t_data_nents == 1)
3541                 return kmap(sg_page(sg)) + sg->offset;
3542
3543         /* >1 page. use vmap */
3544         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3545         if (!pages)
3546                 return NULL;
3547
3548         /* convert sg[] to pages[] */
3549         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3550                 pages[i] = sg_page(sg);
3551         }
3552
3553         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3554         kfree(pages);
3555         if (!cmd->t_data_vmap)
3556                 return NULL;
3557
3558         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3559 }
3560 EXPORT_SYMBOL(transport_kmap_data_sg);
3561
3562 void transport_kunmap_data_sg(struct se_cmd *cmd)
3563 {
3564         if (!cmd->t_data_nents) {
3565                 return;
3566         } else if (cmd->t_data_nents == 1) {
3567                 kunmap(sg_page(cmd->t_data_sg));
3568                 return;
3569         }
3570
3571         vunmap(cmd->t_data_vmap);
3572         cmd->t_data_vmap = NULL;
3573 }
3574 EXPORT_SYMBOL(transport_kunmap_data_sg);
3575
3576 static int
3577 transport_generic_get_mem(struct se_cmd *cmd)
3578 {
3579         u32 length = cmd->data_length;
3580         unsigned int nents;
3581         struct page *page;
3582         gfp_t zero_flag;
3583         int i = 0;
3584
3585         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3586         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3587         if (!cmd->t_data_sg)
3588                 return -ENOMEM;
3589
3590         cmd->t_data_nents = nents;
3591         sg_init_table(cmd->t_data_sg, nents);
3592
3593         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3594
3595         while (length) {
3596                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3597                 page = alloc_page(GFP_KERNEL | zero_flag);
3598                 if (!page)
3599                         goto out;
3600
3601                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3602                 length -= page_len;
3603                 i++;
3604         }
3605         return 0;
3606
3607 out:
3608         while (i >= 0) {
3609                 __free_page(sg_page(&cmd->t_data_sg[i]));
3610                 i--;
3611         }
3612         kfree(cmd->t_data_sg);
3613         cmd->t_data_sg = NULL;
3614         return -ENOMEM;
3615 }
3616
3617 /* Reduce sectors if they are too long for the device */
3618 static inline sector_t transport_limit_task_sectors(
3619         struct se_device *dev,
3620         unsigned long long lba,
3621         sector_t sectors)
3622 {
3623         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3624
3625         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3626                 if ((lba + sectors) > transport_dev_end_lba(dev))
3627                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3628
3629         return sectors;
3630 }
3631
3632
3633 /*
3634  * This function can be used by HW target mode drivers to create a linked
3635  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3636  * This is intended to be called during the completion path by TCM Core
3637  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3638  */
3639 void transport_do_task_sg_chain(struct se_cmd *cmd)
3640 {
3641         struct scatterlist *sg_first = NULL;
3642         struct scatterlist *sg_prev = NULL;
3643         int sg_prev_nents = 0;
3644         struct scatterlist *sg;
3645         struct se_task *task;
3646         u32 chained_nents = 0;
3647         int i;
3648
3649         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3650
3651         /*
3652          * Walk the struct se_task list and setup scatterlist chains
3653          * for each contiguously allocated struct se_task->task_sg[].
3654          */
3655         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3656                 if (!task->task_sg)
3657                         continue;
3658
3659                 if (!sg_first) {
3660                         sg_first = task->task_sg;
3661                         chained_nents = task->task_sg_nents;
3662                 } else {
3663                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3664                         chained_nents += task->task_sg_nents;
3665                 }
3666                 /*
3667                  * For the padded tasks, use the extra SGL vector allocated
3668                  * in transport_allocate_data_tasks() for the sg_prev_nents
3669                  * offset into sg_chain() above.
3670                  *
3671                  * We do not need the padding for the last task (or a single
3672                  * task), but in that case we will never use the sg_prev_nents
3673                  * value below which would be incorrect.
3674                  */
3675                 sg_prev_nents = (task->task_sg_nents + 1);
3676                 sg_prev = task->task_sg;
3677         }
3678         /*
3679          * Setup the starting pointer and total t_tasks_sg_linked_no including
3680          * padding SGs for linking and to mark the end.
3681          */
3682         cmd->t_tasks_sg_chained = sg_first;
3683         cmd->t_tasks_sg_chained_no = chained_nents;
3684
3685         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3686                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3687                 cmd->t_tasks_sg_chained_no);
3688
3689         for_each_sg(cmd->t_tasks_sg_chained, sg,
3690                         cmd->t_tasks_sg_chained_no, i) {
3691
3692                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3693                         i, sg, sg_page(sg), sg->length, sg->offset);
3694                 if (sg_is_chain(sg))
3695                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3696                 if (sg_is_last(sg))
3697                         pr_debug("SG: %p sg_is_last=1\n", sg);
3698         }
3699 }
3700 EXPORT_SYMBOL(transport_do_task_sg_chain);
3701
3702 /*
3703  * Break up cmd into chunks transport can handle
3704  */
3705 static int
3706 transport_allocate_data_tasks(struct se_cmd *cmd,
3707         enum dma_data_direction data_direction,
3708         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3709 {
3710         struct se_device *dev = cmd->se_dev;
3711         int task_count, i;
3712         unsigned long long lba;
3713         sector_t sectors, dev_max_sectors;
3714         u32 sector_size;
3715
3716         if (transport_cmd_get_valid_sectors(cmd) < 0)
3717                 return -EINVAL;
3718
3719         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3720         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3721
3722         WARN_ON(cmd->data_length % sector_size);
3723
3724         lba = cmd->t_task_lba;
3725         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3726         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3727
3728         /*
3729          * If we need just a single task reuse the SG list in the command
3730          * and avoid a lot of work.
3731          */
3732         if (task_count == 1) {
3733                 struct se_task *task;
3734                 unsigned long flags;
3735
3736                 task = transport_generic_get_task(cmd, data_direction);
3737                 if (!task)
3738                         return -ENOMEM;
3739
3740                 task->task_sg = cmd_sg;
3741                 task->task_sg_nents = sgl_nents;
3742
3743                 task->task_lba = lba;
3744                 task->task_sectors = sectors;
3745                 task->task_size = task->task_sectors * sector_size;
3746
3747                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3748                 list_add_tail(&task->t_list, &cmd->t_task_list);
3749                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3750
3751                 return task_count;
3752         }
3753
3754         for (i = 0; i < task_count; i++) {
3755                 struct se_task *task;
3756                 unsigned int task_size, task_sg_nents_padded;
3757                 struct scatterlist *sg;
3758                 unsigned long flags;
3759                 int count;
3760
3761                 task = transport_generic_get_task(cmd, data_direction);
3762                 if (!task)
3763                         return -ENOMEM;
3764
3765                 task->task_lba = lba;
3766                 task->task_sectors = min(sectors, dev_max_sectors);
3767                 task->task_size = task->task_sectors * sector_size;
3768
3769                 /*
3770                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3771                  * in order to calculate the number per task SGL entries
3772                  */
3773                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3774                 /*
3775                  * Check if the fabric module driver is requesting that all
3776                  * struct se_task->task_sg[] be chained together..  If so,
3777                  * then allocate an extra padding SG entry for linking and
3778                  * marking the end of the chained SGL for every task except
3779                  * the last one for (task_count > 1) operation, or skipping
3780                  * the extra padding for the (task_count == 1) case.
3781                  */
3782                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3783                         task_sg_nents_padded = (task->task_sg_nents + 1);
3784                 } else
3785                         task_sg_nents_padded = task->task_sg_nents;
3786
3787                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3788                                         task_sg_nents_padded, GFP_KERNEL);
3789                 if (!task->task_sg) {
3790                         cmd->se_dev->transport->free_task(task);
3791                         return -ENOMEM;
3792                 }
3793
3794                 sg_init_table(task->task_sg, task_sg_nents_padded);
3795
3796                 task_size = task->task_size;
3797
3798                 /* Build new sgl, only up to task_size */
3799                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3800                         if (cmd_sg->length > task_size)
3801                                 break;
3802
3803                         *sg = *cmd_sg;
3804                         task_size -= cmd_sg->length;
3805                         cmd_sg = sg_next(cmd_sg);
3806                 }
3807
3808                 lba += task->task_sectors;
3809                 sectors -= task->task_sectors;
3810
3811                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3812                 list_add_tail(&task->t_list, &cmd->t_task_list);
3813                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3814         }
3815
3816         return task_count;
3817 }
3818
3819 static int
3820 transport_allocate_control_task(struct se_cmd *cmd)
3821 {
3822         struct se_task *task;
3823         unsigned long flags;
3824
3825         /* Workaround for handling zero-length control CDBs */
3826         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3827             !cmd->data_length)
3828                 return 0;
3829
3830         task = transport_generic_get_task(cmd, cmd->data_direction);
3831         if (!task)
3832                 return -ENOMEM;
3833
3834         task->task_sg = cmd->t_data_sg;
3835         task->task_size = cmd->data_length;
3836         task->task_sg_nents = cmd->t_data_nents;
3837
3838         spin_lock_irqsave(&cmd->t_state_lock, flags);
3839         list_add_tail(&task->t_list, &cmd->t_task_list);
3840         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3841
3842         /* Success! Return number of tasks allocated */
3843         return 1;
3844 }
3845
3846 /*
3847  * Allocate any required ressources to execute the command, and either place
3848  * it on the execution queue if possible.  For writes we might not have the
3849  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3850  */
3851 int transport_generic_new_cmd(struct se_cmd *cmd)
3852 {
3853         struct se_device *dev = cmd->se_dev;
3854         int task_cdbs, task_cdbs_bidi = 0;
3855         int set_counts = 1;
3856         int ret = 0;
3857
3858         /*
3859          * Determine is the TCM fabric module has already allocated physical
3860          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3861          * beforehand.
3862          */
3863         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3864             cmd->data_length) {
3865                 ret = transport_generic_get_mem(cmd);
3866                 if (ret < 0)
3867                         goto out_fail;
3868         }
3869
3870         /*
3871          * For BIDI command set up the read tasks first.
3872          */
3873         if (cmd->t_bidi_data_sg &&
3874             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3875                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3876
3877                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3878                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3879                                 cmd->t_bidi_data_nents);
3880                 if (task_cdbs_bidi <= 0)
3881                         goto out_fail;
3882
3883                 atomic_inc(&cmd->t_fe_count);
3884                 atomic_inc(&cmd->t_se_count);
3885                 set_counts = 0;
3886         }
3887
3888         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3889                 task_cdbs = transport_allocate_data_tasks(cmd,
3890                                         cmd->data_direction, cmd->t_data_sg,
3891                                         cmd->t_data_nents);
3892         } else {
3893                 task_cdbs = transport_allocate_control_task(cmd);
3894         }
3895
3896         if (task_cdbs < 0)
3897                 goto out_fail;
3898         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3899                 spin_lock_irq(&cmd->t_state_lock);
3900                 cmd->t_state = TRANSPORT_COMPLETE;
3901                 cmd->transport_state |= CMD_T_ACTIVE;
3902                 spin_unlock_irq(&cmd->t_state_lock);
3903
3904                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3905                         u8 ua_asc = 0, ua_ascq = 0;
3906
3907                         core_scsi3_ua_clear_for_request_sense(cmd,
3908                                         &ua_asc, &ua_ascq);
3909                 }
3910
3911                 INIT_WORK(&cmd->work, target_complete_ok_work);
3912                 queue_work(target_completion_wq, &cmd->work);
3913                 return 0;
3914         }
3915
3916         if (set_counts) {
3917                 atomic_inc(&cmd->t_fe_count);
3918                 atomic_inc(&cmd->t_se_count);
3919         }
3920
3921         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3922         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3923         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3924
3925         /*
3926          * For WRITEs, let the fabric know its buffer is ready..
3927          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3928          * will be added to the struct se_device execution queue after its WRITE
3929          * data has arrived. (ie: It gets handled by the transport processing
3930          * thread a second time)
3931          */
3932         if (cmd->data_direction == DMA_TO_DEVICE) {
3933                 transport_add_tasks_to_state_queue(cmd);
3934                 return transport_generic_write_pending(cmd);
3935         }
3936         /*
3937          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3938          * to the execution queue.
3939          */
3940         transport_execute_tasks(cmd);
3941         return 0;
3942
3943 out_fail:
3944         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3945         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3946         return -EINVAL;
3947 }
3948 EXPORT_SYMBOL(transport_generic_new_cmd);
3949
3950 /*      transport_generic_process_write():
3951  *
3952  *
3953  */
3954 void transport_generic_process_write(struct se_cmd *cmd)
3955 {
3956         transport_execute_tasks(cmd);
3957 }
3958 EXPORT_SYMBOL(transport_generic_process_write);
3959
3960 static void transport_write_pending_qf(struct se_cmd *cmd)
3961 {
3962         int ret;
3963
3964         ret = cmd->se_tfo->write_pending(cmd);
3965         if (ret == -EAGAIN || ret == -ENOMEM) {
3966                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3967                          cmd);
3968                 transport_handle_queue_full(cmd, cmd->se_dev);
3969         }
3970 }
3971
3972 static int transport_generic_write_pending(struct se_cmd *cmd)
3973 {
3974         unsigned long flags;
3975         int ret;
3976
3977         spin_lock_irqsave(&cmd->t_state_lock, flags);
3978         cmd->t_state = TRANSPORT_WRITE_PENDING;
3979         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3980
3981         /*
3982          * Clear the se_cmd for WRITE_PENDING status in order to set
3983          * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3984          * from HW target mode interrupt code.  This is safe to be called
3985          * with transport_off=1 before the cmd->se_tfo->write_pending
3986          * because the se_cmd->se_lun pointer is not being cleared.
3987          */
3988         transport_cmd_check_stop(cmd, 1, 0);
3989
3990         /*
3991          * Call the fabric write_pending function here to let the
3992          * frontend know that WRITE buffers are ready.
3993          */
3994         ret = cmd->se_tfo->write_pending(cmd);
3995         if (ret == -EAGAIN || ret == -ENOMEM)
3996                 goto queue_full;
3997         else if (ret < 0)
3998                 return ret;
3999
4000         return 1;
4001
4002 queue_full:
4003         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4004         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4005         transport_handle_queue_full(cmd, cmd->se_dev);
4006         return 0;
4007 }
4008
4009 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4010 {
4011         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4012                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4013                          transport_wait_for_tasks(cmd);
4014
4015                 transport_release_cmd(cmd);
4016         } else {
4017                 if (wait_for_tasks)
4018                         transport_wait_for_tasks(cmd);
4019
4020                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4021
4022                 if (cmd->se_lun)
4023                         transport_lun_remove_cmd(cmd);
4024
4025                 transport_free_dev_tasks(cmd);
4026
4027                 transport_put_cmd(cmd);
4028         }
4029 }
4030 EXPORT_SYMBOL(transport_generic_free_cmd);
4031
4032 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4033  * @se_sess:    session to reference
4034  * @se_cmd:     command descriptor to add
4035  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
4036  */
4037 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4038                         bool ack_kref)
4039 {
4040         unsigned long flags;
4041
4042         kref_init(&se_cmd->cmd_kref);
4043         /*
4044          * Add a second kref if the fabric caller is expecting to handle
4045          * fabric acknowledgement that requires two target_put_sess_cmd()
4046          * invocations before se_cmd descriptor release.
4047          */
4048         if (ack_kref == true) {
4049                 kref_get(&se_cmd->cmd_kref);
4050                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4051         }
4052
4053         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4054         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4055         se_cmd->check_release = 1;
4056         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4057 }
4058 EXPORT_SYMBOL(target_get_sess_cmd);
4059
4060 static void target_release_cmd_kref(struct kref *kref)
4061 {
4062         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4063         struct se_session *se_sess = se_cmd->se_sess;
4064         unsigned long flags;
4065
4066         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4067         if (list_empty(&se_cmd->se_cmd_list)) {
4068                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4069                 se_cmd->se_tfo->release_cmd(se_cmd);
4070                 return;
4071         }
4072         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4073                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4074                 complete(&se_cmd->cmd_wait_comp);
4075                 return;
4076         }
4077         list_del(&se_cmd->se_cmd_list);
4078         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4079
4080         se_cmd->se_tfo->release_cmd(se_cmd);
4081 }
4082
4083 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4084  * @se_sess:    session to reference
4085  * @se_cmd:     command descriptor to drop
4086  */
4087 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4088 {
4089         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4090 }
4091 EXPORT_SYMBOL(target_put_sess_cmd);
4092
4093 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4094  * @se_sess:    session to split
4095  */
4096 void target_splice_sess_cmd_list(struct se_session *se_sess)
4097 {
4098         struct se_cmd *se_cmd;
4099         unsigned long flags;
4100
4101         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4102         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4103
4104         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4105         se_sess->sess_tearing_down = 1;
4106
4107         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4108
4109         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4110                 se_cmd->cmd_wait_set = 1;
4111
4112         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4113 }
4114 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4115
4116 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4117  * @se_sess:    session to wait for active I/O
4118  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4119  */
4120 void target_wait_for_sess_cmds(
4121         struct se_session *se_sess,
4122         int wait_for_tasks)
4123 {
4124         struct se_cmd *se_cmd, *tmp_cmd;
4125         bool rc = false;
4126
4127         list_for_each_entry_safe(se_cmd, tmp_cmd,
4128                                 &se_sess->sess_wait_list, se_cmd_list) {
4129                 list_del(&se_cmd->se_cmd_list);
4130
4131                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4132                         " %d\n", se_cmd, se_cmd->t_state,
4133                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4134
4135                 if (wait_for_tasks) {
4136                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4137                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4138                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4139
4140                         rc = transport_wait_for_tasks(se_cmd);
4141
4142                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4143                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4144                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4145                 }
4146
4147                 if (!rc) {
4148                         wait_for_completion(&se_cmd->cmd_wait_comp);
4149                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4150                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4151                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4152                 }
4153
4154                 se_cmd->se_tfo->release_cmd(se_cmd);
4155         }
4156 }
4157 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4158
4159 /*      transport_lun_wait_for_tasks():
4160  *
4161  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4162  *      an struct se_lun to be successfully shutdown.
4163  */
4164 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4165 {
4166         unsigned long flags;
4167         int ret;
4168         /*
4169          * If the frontend has already requested this struct se_cmd to
4170          * be stopped, we can safely ignore this struct se_cmd.
4171          */
4172         spin_lock_irqsave(&cmd->t_state_lock, flags);
4173         if (cmd->transport_state & CMD_T_STOP) {
4174                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4175
4176                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4177                          cmd->se_tfo->get_task_tag(cmd));
4178                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4179                 transport_cmd_check_stop(cmd, 1, 0);
4180                 return -EPERM;
4181         }
4182         cmd->transport_state |= CMD_T_LUN_FE_STOP;
4183         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4184
4185         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4186
4187         ret = transport_stop_tasks_for_cmd(cmd);
4188
4189         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4190                         " %d\n", cmd, cmd->t_task_list_num, ret);
4191         if (!ret) {
4192                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4193                                 cmd->se_tfo->get_task_tag(cmd));
4194                 wait_for_completion(&cmd->transport_lun_stop_comp);
4195                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4196                                 cmd->se_tfo->get_task_tag(cmd));
4197         }
4198         transport_remove_cmd_from_queue(cmd);
4199
4200         return 0;
4201 }
4202
4203 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4204 {
4205         struct se_cmd *cmd = NULL;
4206         unsigned long lun_flags, cmd_flags;
4207         /*
4208          * Do exception processing and return CHECK_CONDITION status to the
4209          * Initiator Port.
4210          */
4211         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4212         while (!list_empty(&lun->lun_cmd_list)) {
4213                 cmd = list_first_entry(&lun->lun_cmd_list,
4214                        struct se_cmd, se_lun_node);
4215                 list_del_init(&cmd->se_lun_node);
4216
4217                 /*
4218                  * This will notify iscsi_target_transport.c:
4219                  * transport_cmd_check_stop() that a LUN shutdown is in
4220                  * progress for the iscsi_cmd_t.
4221                  */
4222                 spin_lock(&cmd->t_state_lock);
4223                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4224                         "_lun_stop for  ITT: 0x%08x\n",
4225                         cmd->se_lun->unpacked_lun,
4226                         cmd->se_tfo->get_task_tag(cmd));
4227                 cmd->transport_state |= CMD_T_LUN_STOP;
4228                 spin_unlock(&cmd->t_state_lock);
4229
4230                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4231
4232                 if (!cmd->se_lun) {
4233                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4234                                 cmd->se_tfo->get_task_tag(cmd),
4235                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4236                         BUG();
4237                 }
4238                 /*
4239                  * If the Storage engine still owns the iscsi_cmd_t, determine
4240                  * and/or stop its context.
4241                  */
4242                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4243                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4244                         cmd->se_tfo->get_task_tag(cmd));
4245
4246                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4247                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4248                         continue;
4249                 }
4250
4251                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4252                         "_wait_for_tasks(): SUCCESS\n",
4253                         cmd->se_lun->unpacked_lun,
4254                         cmd->se_tfo->get_task_tag(cmd));
4255
4256                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4257                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4258                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4259                         goto check_cond;
4260                 }
4261                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4262                 transport_all_task_dev_remove_state(cmd);
4263                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4264
4265                 transport_free_dev_tasks(cmd);
4266                 /*
4267                  * The Storage engine stopped this struct se_cmd before it was
4268                  * send to the fabric frontend for delivery back to the
4269                  * Initiator Node.  Return this SCSI CDB back with an
4270                  * CHECK_CONDITION status.
4271                  */
4272 check_cond:
4273                 transport_send_check_condition_and_sense(cmd,
4274                                 TCM_NON_EXISTENT_LUN, 0);
4275                 /*
4276                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4277                  * be released, notify the waiting thread now that LU has
4278                  * finished accessing it.
4279                  */
4280                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4281                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4282                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4283                                 " struct se_cmd: %p ITT: 0x%08x\n",
4284                                 lun->unpacked_lun,
4285                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4286
4287                         spin_unlock_irqrestore(&cmd->t_state_lock,
4288                                         cmd_flags);
4289                         transport_cmd_check_stop(cmd, 1, 0);
4290                         complete(&cmd->transport_lun_fe_stop_comp);
4291                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4292                         continue;
4293                 }
4294                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4295                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4296
4297                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4298                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4299         }
4300         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4301 }
4302
4303 static int transport_clear_lun_thread(void *p)
4304 {
4305         struct se_lun *lun = p;
4306
4307         __transport_clear_lun_from_sessions(lun);
4308         complete(&lun->lun_shutdown_comp);
4309
4310         return 0;
4311 }
4312
4313 int transport_clear_lun_from_sessions(struct se_lun *lun)
4314 {
4315         struct task_struct *kt;
4316
4317         kt = kthread_run(transport_clear_lun_thread, lun,
4318                         "tcm_cl_%u", lun->unpacked_lun);
4319         if (IS_ERR(kt)) {
4320                 pr_err("Unable to start clear_lun thread\n");
4321                 return PTR_ERR(kt);
4322         }
4323         wait_for_completion(&lun->lun_shutdown_comp);
4324
4325         return 0;
4326 }
4327
4328 /**
4329  * transport_wait_for_tasks - wait for completion to occur
4330  * @cmd:        command to wait
4331  *
4332  * Called from frontend fabric context to wait for storage engine
4333  * to pause and/or release frontend generated struct se_cmd.
4334  */
4335 bool transport_wait_for_tasks(struct se_cmd *cmd)
4336 {
4337         unsigned long flags;
4338
4339         spin_lock_irqsave(&cmd->t_state_lock, flags);
4340         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4341             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4342                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4343                 return false;
4344         }
4345         /*
4346          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4347          * has been set in transport_set_supported_SAM_opcode().
4348          */
4349         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4350             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4351                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4352                 return false;
4353         }
4354         /*
4355          * If we are already stopped due to an external event (ie: LUN shutdown)
4356          * sleep until the connection can have the passed struct se_cmd back.
4357          * The cmd->transport_lun_stopped_sem will be upped by
4358          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4359          * has completed its operation on the struct se_cmd.
4360          */
4361         if (cmd->transport_state & CMD_T_LUN_STOP) {
4362                 pr_debug("wait_for_tasks: Stopping"
4363                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4364                         "_stop_comp); for ITT: 0x%08x\n",
4365                         cmd->se_tfo->get_task_tag(cmd));
4366                 /*
4367                  * There is a special case for WRITES where a FE exception +
4368                  * LUN shutdown means ConfigFS context is still sleeping on
4369                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4370                  * We go ahead and up transport_lun_stop_comp just to be sure
4371                  * here.
4372                  */
4373                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4374                 complete(&cmd->transport_lun_stop_comp);
4375                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4376                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4377
4378                 transport_all_task_dev_remove_state(cmd);
4379                 /*
4380                  * At this point, the frontend who was the originator of this
4381                  * struct se_cmd, now owns the structure and can be released through
4382                  * normal means below.
4383                  */
4384                 pr_debug("wait_for_tasks: Stopped"
4385                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4386                         "stop_comp); for ITT: 0x%08x\n",
4387                         cmd->se_tfo->get_task_tag(cmd));
4388
4389                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4390         }
4391
4392         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4393                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4394                 return false;
4395         }
4396
4397         cmd->transport_state |= CMD_T_STOP;
4398
4399         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4400                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4401                 cmd, cmd->se_tfo->get_task_tag(cmd),
4402                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4403
4404         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4405
4406         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4407
4408         wait_for_completion(&cmd->t_transport_stop_comp);
4409
4410         spin_lock_irqsave(&cmd->t_state_lock, flags);
4411         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4412
4413         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4414                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4415                 cmd->se_tfo->get_task_tag(cmd));
4416
4417         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4418
4419         return true;
4420 }
4421 EXPORT_SYMBOL(transport_wait_for_tasks);
4422
4423 static int transport_get_sense_codes(
4424         struct se_cmd *cmd,
4425         u8 *asc,
4426         u8 *ascq)
4427 {
4428         *asc = cmd->scsi_asc;
4429         *ascq = cmd->scsi_ascq;
4430
4431         return 0;
4432 }
4433
4434 static int transport_set_sense_codes(
4435         struct se_cmd *cmd,
4436         u8 asc,
4437         u8 ascq)
4438 {
4439         cmd->scsi_asc = asc;
4440         cmd->scsi_ascq = ascq;
4441
4442         return 0;
4443 }
4444
4445 int transport_send_check_condition_and_sense(
4446         struct se_cmd *cmd,
4447         u8 reason,
4448         int from_transport)
4449 {
4450         unsigned char *buffer = cmd->sense_buffer;
4451         unsigned long flags;
4452         int offset;
4453         u8 asc = 0, ascq = 0;
4454
4455         spin_lock_irqsave(&cmd->t_state_lock, flags);
4456         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4457                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4458                 return 0;
4459         }
4460         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4461         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4462
4463         if (!reason && from_transport)
4464                 goto after_reason;
4465
4466         if (!from_transport)
4467                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4468         /*
4469          * Data Segment and SenseLength of the fabric response PDU.
4470          *
4471          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4472          * from include/scsi/scsi_cmnd.h
4473          */
4474         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4475                                 TRANSPORT_SENSE_BUFFER);
4476         /*
4477          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4478          * SENSE KEY values from include/scsi/scsi.h
4479          */
4480         switch (reason) {
4481         case TCM_NON_EXISTENT_LUN:
4482                 /* CURRENT ERROR */
4483                 buffer[offset] = 0x70;
4484                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4485                 /* ILLEGAL REQUEST */
4486                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4487                 /* LOGICAL UNIT NOT SUPPORTED */
4488                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4489                 break;
4490         case TCM_UNSUPPORTED_SCSI_OPCODE:
4491         case TCM_SECTOR_COUNT_TOO_MANY:
4492                 /* CURRENT ERROR */
4493                 buffer[offset] = 0x70;
4494                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4495                 /* ILLEGAL REQUEST */
4496                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4497                 /* INVALID COMMAND OPERATION CODE */
4498                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4499                 break;
4500         case TCM_UNKNOWN_MODE_PAGE:
4501                 /* CURRENT ERROR */
4502                 buffer[offset] = 0x70;
4503                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4504                 /* ILLEGAL REQUEST */
4505                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4506                 /* INVALID FIELD IN CDB */
4507                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4508                 break;
4509         case TCM_CHECK_CONDITION_ABORT_CMD:
4510                 /* CURRENT ERROR */
4511                 buffer[offset] = 0x70;
4512                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4513                 /* ABORTED COMMAND */
4514                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4515                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4516                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4517                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4518                 break;
4519         case TCM_INCORRECT_AMOUNT_OF_DATA:
4520                 /* CURRENT ERROR */
4521                 buffer[offset] = 0x70;
4522                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4523                 /* ABORTED COMMAND */
4524                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4525                 /* WRITE ERROR */
4526                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4527                 /* NOT ENOUGH UNSOLICITED DATA */
4528                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4529                 break;
4530         case TCM_INVALID_CDB_FIELD:
4531                 /* CURRENT ERROR */
4532                 buffer[offset] = 0x70;
4533                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4534                 /* ILLEGAL REQUEST */
4535                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4536                 /* INVALID FIELD IN CDB */
4537                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4538                 break;
4539         case TCM_INVALID_PARAMETER_LIST:
4540                 /* CURRENT ERROR */
4541                 buffer[offset] = 0x70;
4542                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4543                 /* ILLEGAL REQUEST */
4544                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4545                 /* INVALID FIELD IN PARAMETER LIST */
4546                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4547                 break;
4548         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4549                 /* CURRENT ERROR */
4550                 buffer[offset] = 0x70;
4551                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4552                 /* ABORTED COMMAND */
4553                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4554                 /* WRITE ERROR */
4555                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4556                 /* UNEXPECTED_UNSOLICITED_DATA */
4557                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4558                 break;
4559         case TCM_SERVICE_CRC_ERROR:
4560                 /* CURRENT ERROR */
4561                 buffer[offset] = 0x70;
4562                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4563                 /* ABORTED COMMAND */
4564                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4565                 /* PROTOCOL SERVICE CRC ERROR */
4566                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4567                 /* N/A */
4568                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4569                 break;
4570         case TCM_SNACK_REJECTED:
4571                 /* CURRENT ERROR */
4572                 buffer[offset] = 0x70;
4573                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4574                 /* ABORTED COMMAND */
4575                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4576                 /* READ ERROR */
4577                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4578                 /* FAILED RETRANSMISSION REQUEST */
4579                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4580                 break;
4581         case TCM_WRITE_PROTECTED:
4582                 /* CURRENT ERROR */
4583                 buffer[offset] = 0x70;
4584                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4585                 /* DATA PROTECT */
4586                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4587                 /* WRITE PROTECTED */
4588                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4589                 break;
4590         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4591                 /* CURRENT ERROR */
4592                 buffer[offset] = 0x70;
4593                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4594                 /* UNIT ATTENTION */
4595                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4596                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4597                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4598                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4599                 break;
4600         case TCM_CHECK_CONDITION_NOT_READY:
4601                 /* CURRENT ERROR */
4602                 buffer[offset] = 0x70;
4603                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4604                 /* Not Ready */
4605                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4606                 transport_get_sense_codes(cmd, &asc, &ascq);
4607                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4608                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4609                 break;
4610         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4611         default:
4612                 /* CURRENT ERROR */
4613                 buffer[offset] = 0x70;
4614                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4615                 /* ILLEGAL REQUEST */
4616                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4617                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4618                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4619                 break;
4620         }
4621         /*
4622          * This code uses linux/include/scsi/scsi.h SAM status codes!
4623          */
4624         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4625         /*
4626          * Automatically padded, this value is encoded in the fabric's
4627          * data_length response PDU containing the SCSI defined sense data.
4628          */
4629         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4630
4631 after_reason:
4632         return cmd->se_tfo->queue_status(cmd);
4633 }
4634 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4635
4636 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4637 {
4638         int ret = 0;
4639
4640         if (cmd->transport_state & CMD_T_ABORTED) {
4641                 if (!send_status ||
4642                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4643                         return 1;
4644 #if 0
4645                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4646                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4647                         cmd->t_task_cdb[0],
4648                         cmd->se_tfo->get_task_tag(cmd));
4649 #endif
4650                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4651                 cmd->se_tfo->queue_status(cmd);
4652                 ret = 1;
4653         }
4654         return ret;
4655 }
4656 EXPORT_SYMBOL(transport_check_aborted_status);
4657
4658 void transport_send_task_abort(struct se_cmd *cmd)
4659 {
4660         unsigned long flags;
4661
4662         spin_lock_irqsave(&cmd->t_state_lock, flags);
4663         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4664                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4665                 return;
4666         }
4667         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4668
4669         /*
4670          * If there are still expected incoming fabric WRITEs, we wait
4671          * until until they have completed before sending a TASK_ABORTED
4672          * response.  This response with TASK_ABORTED status will be
4673          * queued back to fabric module by transport_check_aborted_status().
4674          */
4675         if (cmd->data_direction == DMA_TO_DEVICE) {
4676                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4677                         cmd->transport_state |= CMD_T_ABORTED;
4678                         smp_mb__after_atomic_inc();
4679                 }
4680         }
4681         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4682 #if 0
4683         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4684                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4685                 cmd->se_tfo->get_task_tag(cmd));
4686 #endif
4687         cmd->se_tfo->queue_status(cmd);
4688 }
4689
4690 static int transport_generic_do_tmr(struct se_cmd *cmd)
4691 {
4692         struct se_device *dev = cmd->se_dev;
4693         struct se_tmr_req *tmr = cmd->se_tmr_req;
4694         int ret;
4695
4696         switch (tmr->function) {
4697         case TMR_ABORT_TASK:
4698                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4699                 break;
4700         case TMR_ABORT_TASK_SET:
4701         case TMR_CLEAR_ACA:
4702         case TMR_CLEAR_TASK_SET:
4703                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4704                 break;
4705         case TMR_LUN_RESET:
4706                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4707                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4708                                          TMR_FUNCTION_REJECTED;
4709                 break;
4710         case TMR_TARGET_WARM_RESET:
4711                 tmr->response = TMR_FUNCTION_REJECTED;
4712                 break;
4713         case TMR_TARGET_COLD_RESET:
4714                 tmr->response = TMR_FUNCTION_REJECTED;
4715                 break;
4716         default:
4717                 pr_err("Uknown TMR function: 0x%02x.\n",
4718                                 tmr->function);
4719                 tmr->response = TMR_FUNCTION_REJECTED;
4720                 break;
4721         }
4722
4723         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4724         cmd->se_tfo->queue_tm_rsp(cmd);
4725
4726         transport_cmd_check_stop_to_fabric(cmd);
4727         return 0;
4728 }
4729
4730 /*      transport_processing_thread():
4731  *
4732  *
4733  */
4734 static int transport_processing_thread(void *param)
4735 {
4736         int ret;
4737         struct se_cmd *cmd;
4738         struct se_device *dev = param;
4739
4740         while (!kthread_should_stop()) {
4741                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4742                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4743                                 kthread_should_stop());
4744                 if (ret < 0)
4745                         goto out;
4746
4747 get_cmd:
4748                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4749                 if (!cmd)
4750                         continue;
4751
4752                 switch (cmd->t_state) {
4753                 case TRANSPORT_NEW_CMD:
4754                         BUG();
4755                         break;
4756                 case TRANSPORT_NEW_CMD_MAP:
4757                         if (!cmd->se_tfo->new_cmd_map) {
4758                                 pr_err("cmd->se_tfo->new_cmd_map is"
4759                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4760                                 BUG();
4761                         }
4762                         ret = cmd->se_tfo->new_cmd_map(cmd);
4763                         if (ret < 0) {
4764                                 transport_generic_request_failure(cmd);
4765                                 break;
4766                         }
4767                         ret = transport_generic_new_cmd(cmd);
4768                         if (ret < 0) {
4769                                 transport_generic_request_failure(cmd);
4770                                 break;
4771                         }
4772                         break;
4773                 case TRANSPORT_PROCESS_WRITE:
4774                         transport_generic_process_write(cmd);
4775                         break;
4776                 case TRANSPORT_PROCESS_TMR:
4777                         transport_generic_do_tmr(cmd);
4778                         break;
4779                 case TRANSPORT_COMPLETE_QF_WP:
4780                         transport_write_pending_qf(cmd);
4781                         break;
4782                 case TRANSPORT_COMPLETE_QF_OK:
4783                         transport_complete_qf(cmd);
4784                         break;
4785                 default:
4786                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4787                                 "i_state: %d on SE LUN: %u\n",
4788                                 cmd->t_state,
4789                                 cmd->se_tfo->get_task_tag(cmd),
4790                                 cmd->se_tfo->get_cmd_state(cmd),
4791                                 cmd->se_lun->unpacked_lun);
4792                         BUG();
4793                 }
4794
4795                 goto get_cmd;
4796         }
4797
4798 out:
4799         WARN_ON(!list_empty(&dev->state_task_list));
4800         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4801         dev->process_thread = NULL;
4802         return 0;
4803 }