]> Pileus Git - ~andy/linux/blob - drivers/target/target_core_transport.c
59577568f9350684ecd06af9228eafe138499352
[~andy/linux] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static int transport_generic_get_mem(struct se_cmd *cmd);
76 static void transport_put_cmd(struct se_cmd *cmd);
77 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
78 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
79 static void target_complete_ok_work(struct work_struct *work);
80
81 int init_se_kmem_caches(void)
82 {
83         se_sess_cache = kmem_cache_create("se_sess_cache",
84                         sizeof(struct se_session), __alignof__(struct se_session),
85                         0, NULL);
86         if (!se_sess_cache) {
87                 pr_err("kmem_cache_create() for struct se_session"
88                                 " failed\n");
89                 goto out;
90         }
91         se_ua_cache = kmem_cache_create("se_ua_cache",
92                         sizeof(struct se_ua), __alignof__(struct se_ua),
93                         0, NULL);
94         if (!se_ua_cache) {
95                 pr_err("kmem_cache_create() for struct se_ua failed\n");
96                 goto out_free_sess_cache;
97         }
98         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
99                         sizeof(struct t10_pr_registration),
100                         __alignof__(struct t10_pr_registration), 0, NULL);
101         if (!t10_pr_reg_cache) {
102                 pr_err("kmem_cache_create() for struct t10_pr_registration"
103                                 " failed\n");
104                 goto out_free_ua_cache;
105         }
106         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
107                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
108                         0, NULL);
109         if (!t10_alua_lu_gp_cache) {
110                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
111                                 " failed\n");
112                 goto out_free_pr_reg_cache;
113         }
114         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
115                         sizeof(struct t10_alua_lu_gp_member),
116                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
117         if (!t10_alua_lu_gp_mem_cache) {
118                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
119                                 "cache failed\n");
120                 goto out_free_lu_gp_cache;
121         }
122         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
123                         sizeof(struct t10_alua_tg_pt_gp),
124                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
125         if (!t10_alua_tg_pt_gp_cache) {
126                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
127                                 "cache failed\n");
128                 goto out_free_lu_gp_mem_cache;
129         }
130         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
131                         "t10_alua_tg_pt_gp_mem_cache",
132                         sizeof(struct t10_alua_tg_pt_gp_member),
133                         __alignof__(struct t10_alua_tg_pt_gp_member),
134                         0, NULL);
135         if (!t10_alua_tg_pt_gp_mem_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137                                 "mem_t failed\n");
138                 goto out_free_tg_pt_gp_cache;
139         }
140
141         target_completion_wq = alloc_workqueue("target_completion",
142                                                WQ_MEM_RECLAIM, 0);
143         if (!target_completion_wq)
144                 goto out_free_tg_pt_gp_mem_cache;
145
146         return 0;
147
148 out_free_tg_pt_gp_mem_cache:
149         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
150 out_free_tg_pt_gp_cache:
151         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
152 out_free_lu_gp_mem_cache:
153         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
154 out_free_lu_gp_cache:
155         kmem_cache_destroy(t10_alua_lu_gp_cache);
156 out_free_pr_reg_cache:
157         kmem_cache_destroy(t10_pr_reg_cache);
158 out_free_ua_cache:
159         kmem_cache_destroy(se_ua_cache);
160 out_free_sess_cache:
161         kmem_cache_destroy(se_sess_cache);
162 out:
163         return -ENOMEM;
164 }
165
166 void release_se_kmem_caches(void)
167 {
168         destroy_workqueue(target_completion_wq);
169         kmem_cache_destroy(se_sess_cache);
170         kmem_cache_destroy(se_ua_cache);
171         kmem_cache_destroy(t10_pr_reg_cache);
172         kmem_cache_destroy(t10_alua_lu_gp_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
174         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
176 }
177
178 /* This code ensures unique mib indexes are handed out. */
179 static DEFINE_SPINLOCK(scsi_mib_index_lock);
180 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
181
182 /*
183  * Allocate a new row index for the entry type specified
184  */
185 u32 scsi_get_new_index(scsi_index_t type)
186 {
187         u32 new_index;
188
189         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
190
191         spin_lock(&scsi_mib_index_lock);
192         new_index = ++scsi_mib_index[type];
193         spin_unlock(&scsi_mib_index_lock);
194
195         return new_index;
196 }
197
198 static void transport_init_queue_obj(struct se_queue_obj *qobj)
199 {
200         atomic_set(&qobj->queue_cnt, 0);
201         INIT_LIST_HEAD(&qobj->qobj_list);
202         init_waitqueue_head(&qobj->thread_wq);
203         spin_lock_init(&qobj->cmd_queue_lock);
204 }
205
206 void transport_subsystem_check_init(void)
207 {
208         int ret;
209
210         if (sub_api_initialized)
211                 return;
212
213         ret = request_module("target_core_iblock");
214         if (ret != 0)
215                 pr_err("Unable to load target_core_iblock\n");
216
217         ret = request_module("target_core_file");
218         if (ret != 0)
219                 pr_err("Unable to load target_core_file\n");
220
221         ret = request_module("target_core_pscsi");
222         if (ret != 0)
223                 pr_err("Unable to load target_core_pscsi\n");
224
225         ret = request_module("target_core_stgt");
226         if (ret != 0)
227                 pr_err("Unable to load target_core_stgt\n");
228
229         sub_api_initialized = 1;
230         return;
231 }
232
233 struct se_session *transport_init_session(void)
234 {
235         struct se_session *se_sess;
236
237         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
238         if (!se_sess) {
239                 pr_err("Unable to allocate struct se_session from"
240                                 " se_sess_cache\n");
241                 return ERR_PTR(-ENOMEM);
242         }
243         INIT_LIST_HEAD(&se_sess->sess_list);
244         INIT_LIST_HEAD(&se_sess->sess_acl_list);
245         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
246         INIT_LIST_HEAD(&se_sess->sess_wait_list);
247         spin_lock_init(&se_sess->sess_cmd_lock);
248         kref_init(&se_sess->sess_kref);
249
250         return se_sess;
251 }
252 EXPORT_SYMBOL(transport_init_session);
253
254 /*
255  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
256  */
257 void __transport_register_session(
258         struct se_portal_group *se_tpg,
259         struct se_node_acl *se_nacl,
260         struct se_session *se_sess,
261         void *fabric_sess_ptr)
262 {
263         unsigned char buf[PR_REG_ISID_LEN];
264
265         se_sess->se_tpg = se_tpg;
266         se_sess->fabric_sess_ptr = fabric_sess_ptr;
267         /*
268          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
269          *
270          * Only set for struct se_session's that will actually be moving I/O.
271          * eg: *NOT* discovery sessions.
272          */
273         if (se_nacl) {
274                 /*
275                  * If the fabric module supports an ISID based TransportID,
276                  * save this value in binary from the fabric I_T Nexus now.
277                  */
278                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
279                         memset(&buf[0], 0, PR_REG_ISID_LEN);
280                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
281                                         &buf[0], PR_REG_ISID_LEN);
282                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
283                 }
284                 kref_get(&se_nacl->acl_kref);
285
286                 spin_lock_irq(&se_nacl->nacl_sess_lock);
287                 /*
288                  * The se_nacl->nacl_sess pointer will be set to the
289                  * last active I_T Nexus for each struct se_node_acl.
290                  */
291                 se_nacl->nacl_sess = se_sess;
292
293                 list_add_tail(&se_sess->sess_acl_list,
294                               &se_nacl->acl_sess_list);
295                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
296         }
297         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
298
299         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
300                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
301 }
302 EXPORT_SYMBOL(__transport_register_session);
303
304 void transport_register_session(
305         struct se_portal_group *se_tpg,
306         struct se_node_acl *se_nacl,
307         struct se_session *se_sess,
308         void *fabric_sess_ptr)
309 {
310         unsigned long flags;
311
312         spin_lock_irqsave(&se_tpg->session_lock, flags);
313         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
314         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
315 }
316 EXPORT_SYMBOL(transport_register_session);
317
318 static void target_release_session(struct kref *kref)
319 {
320         struct se_session *se_sess = container_of(kref,
321                         struct se_session, sess_kref);
322         struct se_portal_group *se_tpg = se_sess->se_tpg;
323
324         se_tpg->se_tpg_tfo->close_session(se_sess);
325 }
326
327 void target_get_session(struct se_session *se_sess)
328 {
329         kref_get(&se_sess->sess_kref);
330 }
331 EXPORT_SYMBOL(target_get_session);
332
333 int target_put_session(struct se_session *se_sess)
334 {
335         return kref_put(&se_sess->sess_kref, target_release_session);
336 }
337 EXPORT_SYMBOL(target_put_session);
338
339 static void target_complete_nacl(struct kref *kref)
340 {
341         struct se_node_acl *nacl = container_of(kref,
342                                 struct se_node_acl, acl_kref);
343
344         complete(&nacl->acl_free_comp);
345 }
346
347 void target_put_nacl(struct se_node_acl *nacl)
348 {
349         kref_put(&nacl->acl_kref, target_complete_nacl);
350 }
351
352 void transport_deregister_session_configfs(struct se_session *se_sess)
353 {
354         struct se_node_acl *se_nacl;
355         unsigned long flags;
356         /*
357          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
358          */
359         se_nacl = se_sess->se_node_acl;
360         if (se_nacl) {
361                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
362                 if (se_nacl->acl_stop == 0)
363                         list_del(&se_sess->sess_acl_list);
364                 /*
365                  * If the session list is empty, then clear the pointer.
366                  * Otherwise, set the struct se_session pointer from the tail
367                  * element of the per struct se_node_acl active session list.
368                  */
369                 if (list_empty(&se_nacl->acl_sess_list))
370                         se_nacl->nacl_sess = NULL;
371                 else {
372                         se_nacl->nacl_sess = container_of(
373                                         se_nacl->acl_sess_list.prev,
374                                         struct se_session, sess_acl_list);
375                 }
376                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
377         }
378 }
379 EXPORT_SYMBOL(transport_deregister_session_configfs);
380
381 void transport_free_session(struct se_session *se_sess)
382 {
383         kmem_cache_free(se_sess_cache, se_sess);
384 }
385 EXPORT_SYMBOL(transport_free_session);
386
387 void transport_deregister_session(struct se_session *se_sess)
388 {
389         struct se_portal_group *se_tpg = se_sess->se_tpg;
390         struct target_core_fabric_ops *se_tfo;
391         struct se_node_acl *se_nacl;
392         unsigned long flags;
393         bool comp_nacl = true;
394
395         if (!se_tpg) {
396                 transport_free_session(se_sess);
397                 return;
398         }
399         se_tfo = se_tpg->se_tpg_tfo;
400
401         spin_lock_irqsave(&se_tpg->session_lock, flags);
402         list_del(&se_sess->sess_list);
403         se_sess->se_tpg = NULL;
404         se_sess->fabric_sess_ptr = NULL;
405         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
406
407         /*
408          * Determine if we need to do extra work for this initiator node's
409          * struct se_node_acl if it had been previously dynamically generated.
410          */
411         se_nacl = se_sess->se_node_acl;
412
413         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
414         if (se_nacl && se_nacl->dynamic_node_acl) {
415                 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
416                         list_del(&se_nacl->acl_list);
417                         se_tpg->num_node_acls--;
418                         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
419                         core_tpg_wait_for_nacl_pr_ref(se_nacl);
420                         core_free_device_list_for_node(se_nacl, se_tpg);
421                         se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
422
423                         comp_nacl = false;
424                         spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
425                 }
426         }
427         spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
428
429         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
430                 se_tpg->se_tpg_tfo->get_fabric_name());
431         /*
432          * If last kref is dropping now for an explict NodeACL, awake sleeping
433          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
434          * removal context.
435          */
436         if (se_nacl && comp_nacl == true)
437                 target_put_nacl(se_nacl);
438
439         transport_free_session(se_sess);
440 }
441 EXPORT_SYMBOL(transport_deregister_session);
442
443 /*
444  * Called with cmd->t_state_lock held.
445  */
446 static void target_remove_from_state_list(struct se_cmd *cmd)
447 {
448         struct se_device *dev = cmd->se_dev;
449         unsigned long flags;
450
451         if (!dev)
452                 return;
453
454         if (cmd->transport_state & CMD_T_BUSY)
455                 return;
456
457         spin_lock_irqsave(&dev->execute_task_lock, flags);
458         if (cmd->state_active) {
459                 list_del(&cmd->state_list);
460                 cmd->state_active = false;
461         }
462         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
463 }
464
465 /*      transport_cmd_check_stop():
466  *
467  *      'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
468  *      'transport_off = 2' determines if task_dev_state should be removed.
469  *
470  *      A non-zero u8 t_state sets cmd->t_state.
471  *      Returns 1 when command is stopped, else 0.
472  */
473 static int transport_cmd_check_stop(
474         struct se_cmd *cmd,
475         int transport_off,
476         u8 t_state)
477 {
478         unsigned long flags;
479
480         spin_lock_irqsave(&cmd->t_state_lock, flags);
481         /*
482          * Determine if IOCTL context caller in requesting the stopping of this
483          * command for LUN shutdown purposes.
484          */
485         if (cmd->transport_state & CMD_T_LUN_STOP) {
486                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
487                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
488
489                 cmd->transport_state &= ~CMD_T_ACTIVE;
490                 if (transport_off == 2)
491                         target_remove_from_state_list(cmd);
492                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
493
494                 complete(&cmd->transport_lun_stop_comp);
495                 return 1;
496         }
497         /*
498          * Determine if frontend context caller is requesting the stopping of
499          * this command for frontend exceptions.
500          */
501         if (cmd->transport_state & CMD_T_STOP) {
502                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
503                         __func__, __LINE__,
504                         cmd->se_tfo->get_task_tag(cmd));
505
506                 if (transport_off == 2)
507                         target_remove_from_state_list(cmd);
508
509                 /*
510                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
511                  * to FE.
512                  */
513                 if (transport_off == 2)
514                         cmd->se_lun = NULL;
515                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
516
517                 complete(&cmd->t_transport_stop_comp);
518                 return 1;
519         }
520         if (transport_off) {
521                 cmd->transport_state &= ~CMD_T_ACTIVE;
522                 if (transport_off == 2) {
523                         target_remove_from_state_list(cmd);
524                         /*
525                          * Clear struct se_cmd->se_lun before the transport_off == 2
526                          * handoff to fabric module.
527                          */
528                         cmd->se_lun = NULL;
529                         /*
530                          * Some fabric modules like tcm_loop can release
531                          * their internally allocated I/O reference now and
532                          * struct se_cmd now.
533                          *
534                          * Fabric modules are expected to return '1' here if the
535                          * se_cmd being passed is released at this point,
536                          * or zero if not being released.
537                          */
538                         if (cmd->se_tfo->check_stop_free != NULL) {
539                                 spin_unlock_irqrestore(
540                                         &cmd->t_state_lock, flags);
541
542                                 return cmd->se_tfo->check_stop_free(cmd);
543                         }
544                 }
545                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
546
547                 return 0;
548         } else if (t_state)
549                 cmd->t_state = t_state;
550         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
551
552         return 0;
553 }
554
555 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
556 {
557         return transport_cmd_check_stop(cmd, 2, 0);
558 }
559
560 static void transport_lun_remove_cmd(struct se_cmd *cmd)
561 {
562         struct se_lun *lun = cmd->se_lun;
563         unsigned long flags;
564
565         if (!lun)
566                 return;
567
568         spin_lock_irqsave(&cmd->t_state_lock, flags);
569         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
570                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
571                 target_remove_from_state_list(cmd);
572         }
573         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
574
575         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
576         if (!list_empty(&cmd->se_lun_node))
577                 list_del_init(&cmd->se_lun_node);
578         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
579 }
580
581 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
582 {
583         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
584                 transport_lun_remove_cmd(cmd);
585
586         if (transport_cmd_check_stop_to_fabric(cmd))
587                 return;
588         if (remove) {
589                 transport_remove_cmd_from_queue(cmd);
590                 transport_put_cmd(cmd);
591         }
592 }
593
594 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
595                 bool at_head)
596 {
597         struct se_device *dev = cmd->se_dev;
598         struct se_queue_obj *qobj = &dev->dev_queue_obj;
599         unsigned long flags;
600
601         if (t_state) {
602                 spin_lock_irqsave(&cmd->t_state_lock, flags);
603                 cmd->t_state = t_state;
604                 cmd->transport_state |= CMD_T_ACTIVE;
605                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606         }
607
608         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
609
610         /* If the cmd is already on the list, remove it before we add it */
611         if (!list_empty(&cmd->se_queue_node))
612                 list_del(&cmd->se_queue_node);
613         else
614                 atomic_inc(&qobj->queue_cnt);
615
616         if (at_head)
617                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
618         else
619                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
620         cmd->transport_state |= CMD_T_QUEUED;
621         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
622
623         wake_up_interruptible(&qobj->thread_wq);
624 }
625
626 static struct se_cmd *
627 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
628 {
629         struct se_cmd *cmd;
630         unsigned long flags;
631
632         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
633         if (list_empty(&qobj->qobj_list)) {
634                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
635                 return NULL;
636         }
637         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
638
639         cmd->transport_state &= ~CMD_T_QUEUED;
640         list_del_init(&cmd->se_queue_node);
641         atomic_dec(&qobj->queue_cnt);
642         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
643
644         return cmd;
645 }
646
647 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
648 {
649         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
650         unsigned long flags;
651
652         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
653         if (!(cmd->transport_state & CMD_T_QUEUED)) {
654                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
655                 return;
656         }
657         cmd->transport_state &= ~CMD_T_QUEUED;
658         atomic_dec(&qobj->queue_cnt);
659         list_del_init(&cmd->se_queue_node);
660         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
661 }
662
663 static void target_complete_failure_work(struct work_struct *work)
664 {
665         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
666
667         transport_generic_request_failure(cmd);
668 }
669
670 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
671 {
672         struct se_device *dev = cmd->se_dev;
673         int success = scsi_status == GOOD;
674         unsigned long flags;
675
676         cmd->scsi_status = scsi_status;
677
678
679         spin_lock_irqsave(&cmd->t_state_lock, flags);
680         cmd->transport_state &= ~CMD_T_BUSY;
681
682         if (dev && dev->transport->transport_complete) {
683                 if (dev->transport->transport_complete(cmd,
684                                 cmd->t_data_sg) != 0) {
685                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
686                         success = 1;
687                 }
688         }
689
690         /*
691          * See if we are waiting to complete for an exception condition.
692          */
693         if (cmd->transport_state & CMD_T_REQUEST_STOP) {
694                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
695                 complete(&cmd->task_stop_comp);
696                 return;
697         }
698
699         if (!success)
700                 cmd->transport_state |= CMD_T_FAILED;
701
702         /*
703          * Check for case where an explict ABORT_TASK has been received
704          * and transport_wait_for_tasks() will be waiting for completion..
705          */
706         if (cmd->transport_state & CMD_T_ABORTED &&
707             cmd->transport_state & CMD_T_STOP) {
708                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
709                 complete(&cmd->t_transport_stop_comp);
710                 return;
711         } else if (cmd->transport_state & CMD_T_FAILED) {
712                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
713                 INIT_WORK(&cmd->work, target_complete_failure_work);
714         } else {
715                 INIT_WORK(&cmd->work, target_complete_ok_work);
716         }
717
718         cmd->t_state = TRANSPORT_COMPLETE;
719         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
720         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
721
722         queue_work(target_completion_wq, &cmd->work);
723 }
724 EXPORT_SYMBOL(target_complete_cmd);
725
726 static void target_add_to_state_list(struct se_cmd *cmd)
727 {
728         struct se_device *dev = cmd->se_dev;
729         unsigned long flags;
730
731         spin_lock_irqsave(&dev->execute_task_lock, flags);
732         if (!cmd->state_active) {
733                 list_add_tail(&cmd->state_list, &dev->state_list);
734                 cmd->state_active = true;
735         }
736         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
737 }
738
739 static void __target_add_to_execute_list(struct se_cmd *cmd)
740 {
741         struct se_device *dev = cmd->se_dev;
742         bool head_of_queue = false;
743
744         if (!list_empty(&cmd->execute_list))
745                 return;
746
747         if (dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED &&
748             cmd->sam_task_attr == MSG_HEAD_TAG)
749                 head_of_queue = true;
750
751         if (head_of_queue)
752                 list_add(&cmd->execute_list, &dev->execute_list);
753         else
754                 list_add_tail(&cmd->execute_list, &dev->execute_list);
755
756         atomic_inc(&dev->execute_tasks);
757
758         if (cmd->state_active)
759                 return;
760
761         if (head_of_queue)
762                 list_add(&cmd->state_list, &dev->state_list);
763         else
764                 list_add_tail(&cmd->state_list, &dev->state_list);
765
766         cmd->state_active = true;
767 }
768
769 static void target_add_to_execute_list(struct se_cmd *cmd)
770 {
771         unsigned long flags;
772         struct se_device *dev = cmd->se_dev;
773
774         spin_lock_irqsave(&dev->execute_task_lock, flags);
775         __target_add_to_execute_list(cmd);
776         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
777 }
778
779 void __target_remove_from_execute_list(struct se_cmd *cmd)
780 {
781         list_del_init(&cmd->execute_list);
782         atomic_dec(&cmd->se_dev->execute_tasks);
783 }
784
785 static void target_remove_from_execute_list(struct se_cmd *cmd)
786 {
787         struct se_device *dev = cmd->se_dev;
788         unsigned long flags;
789
790         if (WARN_ON(list_empty(&cmd->execute_list)))
791                 return;
792
793         spin_lock_irqsave(&dev->execute_task_lock, flags);
794         __target_remove_from_execute_list(cmd);
795         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
796 }
797
798 /*
799  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
800  */
801
802 static void target_qf_do_work(struct work_struct *work)
803 {
804         struct se_device *dev = container_of(work, struct se_device,
805                                         qf_work_queue);
806         LIST_HEAD(qf_cmd_list);
807         struct se_cmd *cmd, *cmd_tmp;
808
809         spin_lock_irq(&dev->qf_cmd_lock);
810         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
811         spin_unlock_irq(&dev->qf_cmd_lock);
812
813         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
814                 list_del(&cmd->se_qf_node);
815                 atomic_dec(&dev->dev_qf_count);
816                 smp_mb__after_atomic_dec();
817
818                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
819                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
820                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
821                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
822                         : "UNKNOWN");
823
824                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
825         }
826 }
827
828 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
829 {
830         switch (cmd->data_direction) {
831         case DMA_NONE:
832                 return "NONE";
833         case DMA_FROM_DEVICE:
834                 return "READ";
835         case DMA_TO_DEVICE:
836                 return "WRITE";
837         case DMA_BIDIRECTIONAL:
838                 return "BIDI";
839         default:
840                 break;
841         }
842
843         return "UNKNOWN";
844 }
845
846 void transport_dump_dev_state(
847         struct se_device *dev,
848         char *b,
849         int *bl)
850 {
851         *bl += sprintf(b + *bl, "Status: ");
852         switch (dev->dev_status) {
853         case TRANSPORT_DEVICE_ACTIVATED:
854                 *bl += sprintf(b + *bl, "ACTIVATED");
855                 break;
856         case TRANSPORT_DEVICE_DEACTIVATED:
857                 *bl += sprintf(b + *bl, "DEACTIVATED");
858                 break;
859         case TRANSPORT_DEVICE_SHUTDOWN:
860                 *bl += sprintf(b + *bl, "SHUTDOWN");
861                 break;
862         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
863         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
864                 *bl += sprintf(b + *bl, "OFFLINE");
865                 break;
866         default:
867                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
868                 break;
869         }
870
871         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
872                 atomic_read(&dev->execute_tasks), dev->queue_depth);
873         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
874                 dev->se_sub_dev->se_dev_attrib.block_size,
875                 dev->se_sub_dev->se_dev_attrib.hw_max_sectors);
876         *bl += sprintf(b + *bl, "        ");
877 }
878
879 void transport_dump_vpd_proto_id(
880         struct t10_vpd *vpd,
881         unsigned char *p_buf,
882         int p_buf_len)
883 {
884         unsigned char buf[VPD_TMP_BUF_SIZE];
885         int len;
886
887         memset(buf, 0, VPD_TMP_BUF_SIZE);
888         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
889
890         switch (vpd->protocol_identifier) {
891         case 0x00:
892                 sprintf(buf+len, "Fibre Channel\n");
893                 break;
894         case 0x10:
895                 sprintf(buf+len, "Parallel SCSI\n");
896                 break;
897         case 0x20:
898                 sprintf(buf+len, "SSA\n");
899                 break;
900         case 0x30:
901                 sprintf(buf+len, "IEEE 1394\n");
902                 break;
903         case 0x40:
904                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
905                                 " Protocol\n");
906                 break;
907         case 0x50:
908                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
909                 break;
910         case 0x60:
911                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
912                 break;
913         case 0x70:
914                 sprintf(buf+len, "Automation/Drive Interface Transport"
915                                 " Protocol\n");
916                 break;
917         case 0x80:
918                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
919                 break;
920         default:
921                 sprintf(buf+len, "Unknown 0x%02x\n",
922                                 vpd->protocol_identifier);
923                 break;
924         }
925
926         if (p_buf)
927                 strncpy(p_buf, buf, p_buf_len);
928         else
929                 pr_debug("%s", buf);
930 }
931
932 void
933 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
934 {
935         /*
936          * Check if the Protocol Identifier Valid (PIV) bit is set..
937          *
938          * from spc3r23.pdf section 7.5.1
939          */
940          if (page_83[1] & 0x80) {
941                 vpd->protocol_identifier = (page_83[0] & 0xf0);
942                 vpd->protocol_identifier_set = 1;
943                 transport_dump_vpd_proto_id(vpd, NULL, 0);
944         }
945 }
946 EXPORT_SYMBOL(transport_set_vpd_proto_id);
947
948 int transport_dump_vpd_assoc(
949         struct t10_vpd *vpd,
950         unsigned char *p_buf,
951         int p_buf_len)
952 {
953         unsigned char buf[VPD_TMP_BUF_SIZE];
954         int ret = 0;
955         int len;
956
957         memset(buf, 0, VPD_TMP_BUF_SIZE);
958         len = sprintf(buf, "T10 VPD Identifier Association: ");
959
960         switch (vpd->association) {
961         case 0x00:
962                 sprintf(buf+len, "addressed logical unit\n");
963                 break;
964         case 0x10:
965                 sprintf(buf+len, "target port\n");
966                 break;
967         case 0x20:
968                 sprintf(buf+len, "SCSI target device\n");
969                 break;
970         default:
971                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
972                 ret = -EINVAL;
973                 break;
974         }
975
976         if (p_buf)
977                 strncpy(p_buf, buf, p_buf_len);
978         else
979                 pr_debug("%s", buf);
980
981         return ret;
982 }
983
984 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
985 {
986         /*
987          * The VPD identification association..
988          *
989          * from spc3r23.pdf Section 7.6.3.1 Table 297
990          */
991         vpd->association = (page_83[1] & 0x30);
992         return transport_dump_vpd_assoc(vpd, NULL, 0);
993 }
994 EXPORT_SYMBOL(transport_set_vpd_assoc);
995
996 int transport_dump_vpd_ident_type(
997         struct t10_vpd *vpd,
998         unsigned char *p_buf,
999         int p_buf_len)
1000 {
1001         unsigned char buf[VPD_TMP_BUF_SIZE];
1002         int ret = 0;
1003         int len;
1004
1005         memset(buf, 0, VPD_TMP_BUF_SIZE);
1006         len = sprintf(buf, "T10 VPD Identifier Type: ");
1007
1008         switch (vpd->device_identifier_type) {
1009         case 0x00:
1010                 sprintf(buf+len, "Vendor specific\n");
1011                 break;
1012         case 0x01:
1013                 sprintf(buf+len, "T10 Vendor ID based\n");
1014                 break;
1015         case 0x02:
1016                 sprintf(buf+len, "EUI-64 based\n");
1017                 break;
1018         case 0x03:
1019                 sprintf(buf+len, "NAA\n");
1020                 break;
1021         case 0x04:
1022                 sprintf(buf+len, "Relative target port identifier\n");
1023                 break;
1024         case 0x08:
1025                 sprintf(buf+len, "SCSI name string\n");
1026                 break;
1027         default:
1028                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1029                                 vpd->device_identifier_type);
1030                 ret = -EINVAL;
1031                 break;
1032         }
1033
1034         if (p_buf) {
1035                 if (p_buf_len < strlen(buf)+1)
1036                         return -EINVAL;
1037                 strncpy(p_buf, buf, p_buf_len);
1038         } else {
1039                 pr_debug("%s", buf);
1040         }
1041
1042         return ret;
1043 }
1044
1045 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1046 {
1047         /*
1048          * The VPD identifier type..
1049          *
1050          * from spc3r23.pdf Section 7.6.3.1 Table 298
1051          */
1052         vpd->device_identifier_type = (page_83[1] & 0x0f);
1053         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1054 }
1055 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1056
1057 int transport_dump_vpd_ident(
1058         struct t10_vpd *vpd,
1059         unsigned char *p_buf,
1060         int p_buf_len)
1061 {
1062         unsigned char buf[VPD_TMP_BUF_SIZE];
1063         int ret = 0;
1064
1065         memset(buf, 0, VPD_TMP_BUF_SIZE);
1066
1067         switch (vpd->device_identifier_code_set) {
1068         case 0x01: /* Binary */
1069                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1070                         &vpd->device_identifier[0]);
1071                 break;
1072         case 0x02: /* ASCII */
1073                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1074                         &vpd->device_identifier[0]);
1075                 break;
1076         case 0x03: /* UTF-8 */
1077                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1078                         &vpd->device_identifier[0]);
1079                 break;
1080         default:
1081                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1082                         " 0x%02x", vpd->device_identifier_code_set);
1083                 ret = -EINVAL;
1084                 break;
1085         }
1086
1087         if (p_buf)
1088                 strncpy(p_buf, buf, p_buf_len);
1089         else
1090                 pr_debug("%s", buf);
1091
1092         return ret;
1093 }
1094
1095 int
1096 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1097 {
1098         static const char hex_str[] = "0123456789abcdef";
1099         int j = 0, i = 4; /* offset to start of the identifer */
1100
1101         /*
1102          * The VPD Code Set (encoding)
1103          *
1104          * from spc3r23.pdf Section 7.6.3.1 Table 296
1105          */
1106         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1107         switch (vpd->device_identifier_code_set) {
1108         case 0x01: /* Binary */
1109                 vpd->device_identifier[j++] =
1110                                 hex_str[vpd->device_identifier_type];
1111                 while (i < (4 + page_83[3])) {
1112                         vpd->device_identifier[j++] =
1113                                 hex_str[(page_83[i] & 0xf0) >> 4];
1114                         vpd->device_identifier[j++] =
1115                                 hex_str[page_83[i] & 0x0f];
1116                         i++;
1117                 }
1118                 break;
1119         case 0x02: /* ASCII */
1120         case 0x03: /* UTF-8 */
1121                 while (i < (4 + page_83[3]))
1122                         vpd->device_identifier[j++] = page_83[i++];
1123                 break;
1124         default:
1125                 break;
1126         }
1127
1128         return transport_dump_vpd_ident(vpd, NULL, 0);
1129 }
1130 EXPORT_SYMBOL(transport_set_vpd_ident);
1131
1132 static void core_setup_task_attr_emulation(struct se_device *dev)
1133 {
1134         /*
1135          * If this device is from Target_Core_Mod/pSCSI, disable the
1136          * SAM Task Attribute emulation.
1137          *
1138          * This is currently not available in upsream Linux/SCSI Target
1139          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1140          */
1141         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1142                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1143                 return;
1144         }
1145
1146         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1147         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1148                 " device\n", dev->transport->name,
1149                 dev->transport->get_device_rev(dev));
1150 }
1151
1152 static void scsi_dump_inquiry(struct se_device *dev)
1153 {
1154         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1155         char buf[17];
1156         int i, device_type;
1157         /*
1158          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1159          */
1160         for (i = 0; i < 8; i++)
1161                 if (wwn->vendor[i] >= 0x20)
1162                         buf[i] = wwn->vendor[i];
1163                 else
1164                         buf[i] = ' ';
1165         buf[i] = '\0';
1166         pr_debug("  Vendor: %s\n", buf);
1167
1168         for (i = 0; i < 16; i++)
1169                 if (wwn->model[i] >= 0x20)
1170                         buf[i] = wwn->model[i];
1171                 else
1172                         buf[i] = ' ';
1173         buf[i] = '\0';
1174         pr_debug("  Model: %s\n", buf);
1175
1176         for (i = 0; i < 4; i++)
1177                 if (wwn->revision[i] >= 0x20)
1178                         buf[i] = wwn->revision[i];
1179                 else
1180                         buf[i] = ' ';
1181         buf[i] = '\0';
1182         pr_debug("  Revision: %s\n", buf);
1183
1184         device_type = dev->transport->get_device_type(dev);
1185         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1186         pr_debug("                 ANSI SCSI revision: %02x\n",
1187                                 dev->transport->get_device_rev(dev));
1188 }
1189
1190 struct se_device *transport_add_device_to_core_hba(
1191         struct se_hba *hba,
1192         struct se_subsystem_api *transport,
1193         struct se_subsystem_dev *se_dev,
1194         u32 device_flags,
1195         void *transport_dev,
1196         struct se_dev_limits *dev_limits,
1197         const char *inquiry_prod,
1198         const char *inquiry_rev)
1199 {
1200         int force_pt;
1201         struct se_device  *dev;
1202
1203         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1204         if (!dev) {
1205                 pr_err("Unable to allocate memory for se_dev_t\n");
1206                 return NULL;
1207         }
1208
1209         transport_init_queue_obj(&dev->dev_queue_obj);
1210         dev->dev_flags          = device_flags;
1211         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1212         dev->dev_ptr            = transport_dev;
1213         dev->se_hba             = hba;
1214         dev->se_sub_dev         = se_dev;
1215         dev->transport          = transport;
1216         INIT_LIST_HEAD(&dev->dev_list);
1217         INIT_LIST_HEAD(&dev->dev_sep_list);
1218         INIT_LIST_HEAD(&dev->dev_tmr_list);
1219         INIT_LIST_HEAD(&dev->execute_list);
1220         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1221         INIT_LIST_HEAD(&dev->state_list);
1222         INIT_LIST_HEAD(&dev->qf_cmd_list);
1223         spin_lock_init(&dev->execute_task_lock);
1224         spin_lock_init(&dev->delayed_cmd_lock);
1225         spin_lock_init(&dev->dev_reservation_lock);
1226         spin_lock_init(&dev->dev_status_lock);
1227         spin_lock_init(&dev->se_port_lock);
1228         spin_lock_init(&dev->se_tmr_lock);
1229         spin_lock_init(&dev->qf_cmd_lock);
1230         atomic_set(&dev->dev_ordered_id, 0);
1231
1232         se_dev_set_default_attribs(dev, dev_limits);
1233
1234         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1235         dev->creation_time = get_jiffies_64();
1236         spin_lock_init(&dev->stats_lock);
1237
1238         spin_lock(&hba->device_lock);
1239         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1240         hba->dev_count++;
1241         spin_unlock(&hba->device_lock);
1242         /*
1243          * Setup the SAM Task Attribute emulation for struct se_device
1244          */
1245         core_setup_task_attr_emulation(dev);
1246         /*
1247          * Force PR and ALUA passthrough emulation with internal object use.
1248          */
1249         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1250         /*
1251          * Setup the Reservations infrastructure for struct se_device
1252          */
1253         core_setup_reservations(dev, force_pt);
1254         /*
1255          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1256          */
1257         if (core_setup_alua(dev, force_pt) < 0)
1258                 goto out;
1259
1260         /*
1261          * Startup the struct se_device processing thread
1262          */
1263         dev->process_thread = kthread_run(transport_processing_thread, dev,
1264                                           "LIO_%s", dev->transport->name);
1265         if (IS_ERR(dev->process_thread)) {
1266                 pr_err("Unable to create kthread: LIO_%s\n",
1267                         dev->transport->name);
1268                 goto out;
1269         }
1270         /*
1271          * Setup work_queue for QUEUE_FULL
1272          */
1273         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1274         /*
1275          * Preload the initial INQUIRY const values if we are doing
1276          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1277          * passthrough because this is being provided by the backend LLD.
1278          * This is required so that transport_get_inquiry() copies these
1279          * originals once back into DEV_T10_WWN(dev) for the virtual device
1280          * setup.
1281          */
1282         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1283                 if (!inquiry_prod || !inquiry_rev) {
1284                         pr_err("All non TCM/pSCSI plugins require"
1285                                 " INQUIRY consts\n");
1286                         goto out;
1287                 }
1288
1289                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1290                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1291                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1292         }
1293         scsi_dump_inquiry(dev);
1294
1295         return dev;
1296 out:
1297         kthread_stop(dev->process_thread);
1298
1299         spin_lock(&hba->device_lock);
1300         list_del(&dev->dev_list);
1301         hba->dev_count--;
1302         spin_unlock(&hba->device_lock);
1303
1304         se_release_vpd_for_dev(dev);
1305
1306         kfree(dev);
1307
1308         return NULL;
1309 }
1310 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1311
1312 /*      transport_generic_prepare_cdb():
1313  *
1314  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1315  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1316  *      The point of this is since we are mapping iSCSI LUNs to
1317  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1318  *      devices and HBAs for a loop.
1319  */
1320 static inline void transport_generic_prepare_cdb(
1321         unsigned char *cdb)
1322 {
1323         switch (cdb[0]) {
1324         case READ_10: /* SBC - RDProtect */
1325         case READ_12: /* SBC - RDProtect */
1326         case READ_16: /* SBC - RDProtect */
1327         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1328         case VERIFY: /* SBC - VRProtect */
1329         case VERIFY_16: /* SBC - VRProtect */
1330         case WRITE_VERIFY: /* SBC - VRProtect */
1331         case WRITE_VERIFY_12: /* SBC - VRProtect */
1332                 break;
1333         default:
1334                 cdb[1] &= 0x1f; /* clear logical unit number */
1335                 break;
1336         }
1337 }
1338
1339 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1340
1341 /*
1342  * Used by fabric modules containing a local struct se_cmd within their
1343  * fabric dependent per I/O descriptor.
1344  */
1345 void transport_init_se_cmd(
1346         struct se_cmd *cmd,
1347         struct target_core_fabric_ops *tfo,
1348         struct se_session *se_sess,
1349         u32 data_length,
1350         int data_direction,
1351         int task_attr,
1352         unsigned char *sense_buffer)
1353 {
1354         INIT_LIST_HEAD(&cmd->se_lun_node);
1355         INIT_LIST_HEAD(&cmd->se_delayed_node);
1356         INIT_LIST_HEAD(&cmd->se_qf_node);
1357         INIT_LIST_HEAD(&cmd->se_queue_node);
1358         INIT_LIST_HEAD(&cmd->se_cmd_list);
1359         INIT_LIST_HEAD(&cmd->execute_list);
1360         INIT_LIST_HEAD(&cmd->state_list);
1361         init_completion(&cmd->transport_lun_fe_stop_comp);
1362         init_completion(&cmd->transport_lun_stop_comp);
1363         init_completion(&cmd->t_transport_stop_comp);
1364         init_completion(&cmd->cmd_wait_comp);
1365         init_completion(&cmd->task_stop_comp);
1366         spin_lock_init(&cmd->t_state_lock);
1367         cmd->transport_state = CMD_T_DEV_ACTIVE;
1368
1369         cmd->se_tfo = tfo;
1370         cmd->se_sess = se_sess;
1371         cmd->data_length = data_length;
1372         cmd->data_direction = data_direction;
1373         cmd->sam_task_attr = task_attr;
1374         cmd->sense_buffer = sense_buffer;
1375
1376         cmd->state_active = false;
1377 }
1378 EXPORT_SYMBOL(transport_init_se_cmd);
1379
1380 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1381 {
1382         /*
1383          * Check if SAM Task Attribute emulation is enabled for this
1384          * struct se_device storage object
1385          */
1386         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1387                 return 0;
1388
1389         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1390                 pr_debug("SAM Task Attribute ACA"
1391                         " emulation is not supported\n");
1392                 return -EINVAL;
1393         }
1394         /*
1395          * Used to determine when ORDERED commands should go from
1396          * Dormant to Active status.
1397          */
1398         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1399         smp_mb__after_atomic_inc();
1400         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1401                         cmd->se_ordered_id, cmd->sam_task_attr,
1402                         cmd->se_dev->transport->name);
1403         return 0;
1404 }
1405
1406 /*      target_setup_cmd_from_cdb():
1407  *
1408  *      Called from fabric RX Thread.
1409  */
1410 int target_setup_cmd_from_cdb(
1411         struct se_cmd *cmd,
1412         unsigned char *cdb)
1413 {
1414         int ret;
1415
1416         transport_generic_prepare_cdb(cdb);
1417         /*
1418          * Ensure that the received CDB is less than the max (252 + 8) bytes
1419          * for VARIABLE_LENGTH_CMD
1420          */
1421         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1422                 pr_err("Received SCSI CDB with command_size: %d that"
1423                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1424                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1425                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1426                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1427                 return -EINVAL;
1428         }
1429         /*
1430          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1431          * allocate the additional extended CDB buffer now..  Otherwise
1432          * setup the pointer from __t_task_cdb to t_task_cdb.
1433          */
1434         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1435                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1436                                                 GFP_KERNEL);
1437                 if (!cmd->t_task_cdb) {
1438                         pr_err("Unable to allocate cmd->t_task_cdb"
1439                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1440                                 scsi_command_size(cdb),
1441                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1442                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1443                         cmd->scsi_sense_reason =
1444                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1445                         return -ENOMEM;
1446                 }
1447         } else
1448                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1449         /*
1450          * Copy the original CDB into cmd->
1451          */
1452         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1453         /*
1454          * Setup the received CDB based on SCSI defined opcodes and
1455          * perform unit attention, persistent reservations and ALUA
1456          * checks for virtual device backends.  The cmd->t_task_cdb
1457          * pointer is expected to be setup before we reach this point.
1458          */
1459         ret = transport_generic_cmd_sequencer(cmd, cdb);
1460         if (ret < 0)
1461                 return ret;
1462         /*
1463          * Check for SAM Task Attribute Emulation
1464          */
1465         if (transport_check_alloc_task_attr(cmd) < 0) {
1466                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1467                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1468                 return -EINVAL;
1469         }
1470         spin_lock(&cmd->se_lun->lun_sep_lock);
1471         if (cmd->se_lun->lun_sep)
1472                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1473         spin_unlock(&cmd->se_lun->lun_sep_lock);
1474         return 0;
1475 }
1476 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1477
1478 /*
1479  * Used by fabric module frontends to queue tasks directly.
1480  * Many only be used from process context only
1481  */
1482 int transport_handle_cdb_direct(
1483         struct se_cmd *cmd)
1484 {
1485         int ret;
1486
1487         if (!cmd->se_lun) {
1488                 dump_stack();
1489                 pr_err("cmd->se_lun is NULL\n");
1490                 return -EINVAL;
1491         }
1492         if (in_interrupt()) {
1493                 dump_stack();
1494                 pr_err("transport_generic_handle_cdb cannot be called"
1495                                 " from interrupt context\n");
1496                 return -EINVAL;
1497         }
1498         /*
1499          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1500          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1501          * in existing usage to ensure that outstanding descriptors are handled
1502          * correctly during shutdown via transport_wait_for_tasks()
1503          *
1504          * Also, we don't take cmd->t_state_lock here as we only expect
1505          * this to be called for initial descriptor submission.
1506          */
1507         cmd->t_state = TRANSPORT_NEW_CMD;
1508         cmd->transport_state |= CMD_T_ACTIVE;
1509
1510         /*
1511          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1512          * so follow TRANSPORT_NEW_CMD processing thread context usage
1513          * and call transport_generic_request_failure() if necessary..
1514          */
1515         ret = transport_generic_new_cmd(cmd);
1516         if (ret < 0)
1517                 transport_generic_request_failure(cmd);
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL(transport_handle_cdb_direct);
1522
1523 /**
1524  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1525  *
1526  * @se_cmd: command descriptor to submit
1527  * @se_sess: associated se_sess for endpoint
1528  * @cdb: pointer to SCSI CDB
1529  * @sense: pointer to SCSI sense buffer
1530  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1531  * @data_length: fabric expected data transfer length
1532  * @task_addr: SAM task attribute
1533  * @data_dir: DMA data direction
1534  * @flags: flags for command submission from target_sc_flags_tables
1535  *
1536  * This may only be called from process context, and also currently
1537  * assumes internal allocation of fabric payload buffer by target-core.
1538  **/
1539 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1540                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1541                 u32 data_length, int task_attr, int data_dir, int flags)
1542 {
1543         struct se_portal_group *se_tpg;
1544         int rc;
1545
1546         se_tpg = se_sess->se_tpg;
1547         BUG_ON(!se_tpg);
1548         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1549         BUG_ON(in_interrupt());
1550         /*
1551          * Initialize se_cmd for target operation.  From this point
1552          * exceptions are handled by sending exception status via
1553          * target_core_fabric_ops->queue_status() callback
1554          */
1555         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1556                                 data_length, data_dir, task_attr, sense);
1557         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1558                 se_cmd->unknown_data_length = 1;
1559         /*
1560          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1561          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1562          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1563          * kref_put() to happen during fabric packet acknowledgement.
1564          */
1565         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1566         /*
1567          * Signal bidirectional data payloads to target-core
1568          */
1569         if (flags & TARGET_SCF_BIDI_OP)
1570                 se_cmd->se_cmd_flags |= SCF_BIDI;
1571         /*
1572          * Locate se_lun pointer and attach it to struct se_cmd
1573          */
1574         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1575                 transport_send_check_condition_and_sense(se_cmd,
1576                                 se_cmd->scsi_sense_reason, 0);
1577                 target_put_sess_cmd(se_sess, se_cmd);
1578                 return;
1579         }
1580         /*
1581          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1582          * allocate the necessary tasks to complete the received CDB+data
1583          */
1584         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1585         if (rc != 0) {
1586                 transport_generic_request_failure(se_cmd);
1587                 return;
1588         }
1589
1590         /*
1591          * Check if we need to delay processing because of ALUA
1592          * Active/NonOptimized primary access state..
1593          */
1594         core_alua_check_nonop_delay(se_cmd);
1595
1596         /*
1597          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1598          * for immediate execution of READs, otherwise wait for
1599          * transport_generic_handle_data() to be called for WRITEs
1600          * when fabric has filled the incoming buffer.
1601          */
1602         transport_handle_cdb_direct(se_cmd);
1603         return;
1604 }
1605 EXPORT_SYMBOL(target_submit_cmd);
1606
1607 static void target_complete_tmr_failure(struct work_struct *work)
1608 {
1609         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1610
1611         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1612         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1613         transport_generic_free_cmd(se_cmd, 0);
1614 }
1615
1616 /**
1617  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1618  *                     for TMR CDBs
1619  *
1620  * @se_cmd: command descriptor to submit
1621  * @se_sess: associated se_sess for endpoint
1622  * @sense: pointer to SCSI sense buffer
1623  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1624  * @fabric_context: fabric context for TMR req
1625  * @tm_type: Type of TM request
1626  * @gfp: gfp type for caller
1627  * @tag: referenced task tag for TMR_ABORT_TASK
1628  * @flags: submit cmd flags
1629  *
1630  * Callable from all contexts.
1631  **/
1632
1633 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1634                 unsigned char *sense, u32 unpacked_lun,
1635                 void *fabric_tmr_ptr, unsigned char tm_type,
1636                 gfp_t gfp, unsigned int tag, int flags)
1637 {
1638         struct se_portal_group *se_tpg;
1639         int ret;
1640
1641         se_tpg = se_sess->se_tpg;
1642         BUG_ON(!se_tpg);
1643
1644         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1645                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1646         /*
1647          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1648          * allocation failure.
1649          */
1650         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1651         if (ret < 0)
1652                 return -ENOMEM;
1653
1654         if (tm_type == TMR_ABORT_TASK)
1655                 se_cmd->se_tmr_req->ref_task_tag = tag;
1656
1657         /* See target_submit_cmd for commentary */
1658         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1659
1660         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1661         if (ret) {
1662                 /*
1663                  * For callback during failure handling, push this work off
1664                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1665                  */
1666                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1667                 schedule_work(&se_cmd->work);
1668                 return 0;
1669         }
1670         transport_generic_handle_tmr(se_cmd);
1671         return 0;
1672 }
1673 EXPORT_SYMBOL(target_submit_tmr);
1674
1675 /*
1676  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1677  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1678  * complete setup in TCM process context w/ TFO->new_cmd_map().
1679  */
1680 int transport_generic_handle_cdb_map(
1681         struct se_cmd *cmd)
1682 {
1683         if (!cmd->se_lun) {
1684                 dump_stack();
1685                 pr_err("cmd->se_lun is NULL\n");
1686                 return -EINVAL;
1687         }
1688
1689         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1690         return 0;
1691 }
1692 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1693
1694 /*      transport_generic_handle_data():
1695  *
1696  *
1697  */
1698 int transport_generic_handle_data(
1699         struct se_cmd *cmd)
1700 {
1701         /*
1702          * For the software fabric case, then we assume the nexus is being
1703          * failed/shutdown when signals are pending from the kthread context
1704          * caller, so we return a failure.  For the HW target mode case running
1705          * in interrupt code, the signal_pending() check is skipped.
1706          */
1707         if (!in_interrupt() && signal_pending(current))
1708                 return -EPERM;
1709         /*
1710          * If the received CDB has aleady been ABORTED by the generic
1711          * target engine, we now call transport_check_aborted_status()
1712          * to queue any delated TASK_ABORTED status for the received CDB to the
1713          * fabric module as we are expecting no further incoming DATA OUT
1714          * sequences at this point.
1715          */
1716         if (transport_check_aborted_status(cmd, 1) != 0)
1717                 return 0;
1718
1719         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1720         return 0;
1721 }
1722 EXPORT_SYMBOL(transport_generic_handle_data);
1723
1724 /*      transport_generic_handle_tmr():
1725  *
1726  *
1727  */
1728 int transport_generic_handle_tmr(
1729         struct se_cmd *cmd)
1730 {
1731         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1732         return 0;
1733 }
1734 EXPORT_SYMBOL(transport_generic_handle_tmr);
1735
1736 /*
1737  * If the cmd is active, request it to be stopped and sleep until it
1738  * has completed.
1739  */
1740 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1741 {
1742         bool was_active = false;
1743
1744         if (cmd->transport_state & CMD_T_BUSY) {
1745                 cmd->transport_state |= CMD_T_REQUEST_STOP;
1746                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1747
1748                 pr_debug("cmd %p waiting to complete\n", cmd);
1749                 wait_for_completion(&cmd->task_stop_comp);
1750                 pr_debug("cmd %p stopped successfully\n", cmd);
1751
1752                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1753                 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1754                 cmd->transport_state &= ~CMD_T_BUSY;
1755                 was_active = true;
1756         }
1757
1758         return was_active;
1759 }
1760
1761 /*
1762  * Handle SAM-esque emulation for generic transport request failures.
1763  */
1764 void transport_generic_request_failure(struct se_cmd *cmd)
1765 {
1766         int ret = 0;
1767
1768         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1769                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1770                 cmd->t_task_cdb[0]);
1771         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1772                 cmd->se_tfo->get_cmd_state(cmd),
1773                 cmd->t_state, cmd->scsi_sense_reason);
1774         pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1775                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1776                 (cmd->transport_state & CMD_T_STOP) != 0,
1777                 (cmd->transport_state & CMD_T_SENT) != 0);
1778
1779         /*
1780          * For SAM Task Attribute emulation for failed struct se_cmd
1781          */
1782         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1783                 transport_complete_task_attr(cmd);
1784
1785         switch (cmd->scsi_sense_reason) {
1786         case TCM_NON_EXISTENT_LUN:
1787         case TCM_UNSUPPORTED_SCSI_OPCODE:
1788         case TCM_INVALID_CDB_FIELD:
1789         case TCM_INVALID_PARAMETER_LIST:
1790         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1791         case TCM_UNKNOWN_MODE_PAGE:
1792         case TCM_WRITE_PROTECTED:
1793         case TCM_CHECK_CONDITION_ABORT_CMD:
1794         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1795         case TCM_CHECK_CONDITION_NOT_READY:
1796                 break;
1797         case TCM_RESERVATION_CONFLICT:
1798                 /*
1799                  * No SENSE Data payload for this case, set SCSI Status
1800                  * and queue the response to $FABRIC_MOD.
1801                  *
1802                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1803                  */
1804                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1805                 /*
1806                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1807                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1808                  * CONFLICT STATUS.
1809                  *
1810                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1811                  */
1812                 if (cmd->se_sess &&
1813                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1814                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1815                                 cmd->orig_fe_lun, 0x2C,
1816                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1817
1818                 ret = cmd->se_tfo->queue_status(cmd);
1819                 if (ret == -EAGAIN || ret == -ENOMEM)
1820                         goto queue_full;
1821                 goto check_stop;
1822         default:
1823                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1824                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1825                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1826                 break;
1827         }
1828         /*
1829          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1830          * make the call to transport_send_check_condition_and_sense()
1831          * directly.  Otherwise expect the fabric to make the call to
1832          * transport_send_check_condition_and_sense() after handling
1833          * possible unsoliticied write data payloads.
1834          */
1835         ret = transport_send_check_condition_and_sense(cmd,
1836                         cmd->scsi_sense_reason, 0);
1837         if (ret == -EAGAIN || ret == -ENOMEM)
1838                 goto queue_full;
1839
1840 check_stop:
1841         transport_lun_remove_cmd(cmd);
1842         if (!transport_cmd_check_stop_to_fabric(cmd))
1843                 ;
1844         return;
1845
1846 queue_full:
1847         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1848         transport_handle_queue_full(cmd, cmd->se_dev);
1849 }
1850 EXPORT_SYMBOL(transport_generic_request_failure);
1851
1852 static inline u32 transport_lba_21(unsigned char *cdb)
1853 {
1854         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1855 }
1856
1857 static inline u32 transport_lba_32(unsigned char *cdb)
1858 {
1859         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1860 }
1861
1862 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1863 {
1864         unsigned int __v1, __v2;
1865
1866         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1867         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1868
1869         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1870 }
1871
1872 /*
1873  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1874  */
1875 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1876 {
1877         unsigned int __v1, __v2;
1878
1879         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1880         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1881
1882         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1883 }
1884
1885 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1886 {
1887         unsigned long flags;
1888
1889         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1890         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1891         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1892 }
1893
1894 /*
1895  * Called from Fabric Module context from transport_execute_tasks()
1896  *
1897  * The return of this function determins if the tasks from struct se_cmd
1898  * get added to the execution queue in transport_execute_tasks(),
1899  * or are added to the delayed or ordered lists here.
1900  */
1901 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1902 {
1903         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1904                 return 1;
1905         /*
1906          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1907          * to allow the passed struct se_cmd list of tasks to the front of the list.
1908          */
1909          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1910                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1911                         " 0x%02x, se_ordered_id: %u\n",
1912                         cmd->t_task_cdb[0],
1913                         cmd->se_ordered_id);
1914                 return 1;
1915         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1916                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1917                 smp_mb__after_atomic_inc();
1918
1919                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1920                                 " list, se_ordered_id: %u\n",
1921                                 cmd->t_task_cdb[0],
1922                                 cmd->se_ordered_id);
1923                 /*
1924                  * Add ORDERED command to tail of execution queue if
1925                  * no other older commands exist that need to be
1926                  * completed first.
1927                  */
1928                 if (!atomic_read(&cmd->se_dev->simple_cmds))
1929                         return 1;
1930         } else {
1931                 /*
1932                  * For SIMPLE and UNTAGGED Task Attribute commands
1933                  */
1934                 atomic_inc(&cmd->se_dev->simple_cmds);
1935                 smp_mb__after_atomic_inc();
1936         }
1937         /*
1938          * Otherwise if one or more outstanding ORDERED task attribute exist,
1939          * add the dormant task(s) built for the passed struct se_cmd to the
1940          * execution queue and become in Active state for this struct se_device.
1941          */
1942         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1943                 /*
1944                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
1945                  * will be drained upon completion of HEAD_OF_QUEUE task.
1946                  */
1947                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1948                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1949                 list_add_tail(&cmd->se_delayed_node,
1950                                 &cmd->se_dev->delayed_cmd_list);
1951                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1952
1953                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1954                         " delayed CMD list, se_ordered_id: %u\n",
1955                         cmd->t_task_cdb[0], cmd->sam_task_attr,
1956                         cmd->se_ordered_id);
1957                 /*
1958                  * Return zero to let transport_execute_tasks() know
1959                  * not to add the delayed tasks to the execution list.
1960                  */
1961                 return 0;
1962         }
1963         /*
1964          * Otherwise, no ORDERED task attributes exist..
1965          */
1966         return 1;
1967 }
1968
1969 /*
1970  * Called from fabric module context in transport_generic_new_cmd() and
1971  * transport_generic_process_write()
1972  */
1973 static int transport_execute_tasks(struct se_cmd *cmd)
1974 {
1975         int add_tasks;
1976         struct se_device *se_dev = cmd->se_dev;
1977         /*
1978          * Call transport_cmd_check_stop() to see if a fabric exception
1979          * has occurred that prevents execution.
1980          */
1981         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
1982                 /*
1983                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
1984                  * attribute for the tasks of the received struct se_cmd CDB
1985                  */
1986                 add_tasks = transport_execute_task_attr(cmd);
1987                 if (!add_tasks)
1988                         goto execute_tasks;
1989
1990                 __transport_execute_tasks(se_dev, cmd);
1991                 return 0;
1992         }
1993
1994 execute_tasks:
1995         __transport_execute_tasks(se_dev, NULL);
1996         return 0;
1997 }
1998
1999 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2000 {
2001         int error;
2002         struct se_cmd *cmd = NULL;
2003         unsigned long flags;
2004
2005 check_depth:
2006         spin_lock_irq(&dev->execute_task_lock);
2007         if (new_cmd != NULL)
2008                 __target_add_to_execute_list(new_cmd);
2009
2010         if (list_empty(&dev->execute_list)) {
2011                 spin_unlock_irq(&dev->execute_task_lock);
2012                 return 0;
2013         }
2014         cmd = list_first_entry(&dev->execute_list, struct se_cmd, execute_list);
2015         __target_remove_from_execute_list(cmd);
2016         spin_unlock_irq(&dev->execute_task_lock);
2017
2018         spin_lock_irqsave(&cmd->t_state_lock, flags);
2019         cmd->transport_state |= CMD_T_BUSY;
2020         cmd->transport_state |= CMD_T_SENT;
2021
2022         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2023
2024         if (cmd->execute_cmd)
2025                 error = cmd->execute_cmd(cmd);
2026         else {
2027                 error = dev->transport->execute_cmd(cmd, cmd->t_data_sg,
2028                                 cmd->t_data_nents, cmd->data_direction);
2029         }
2030
2031         if (error != 0) {
2032                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2033                 cmd->transport_state &= ~CMD_T_BUSY;
2034                 cmd->transport_state &= ~CMD_T_SENT;
2035                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2036
2037                 transport_generic_request_failure(cmd);
2038         }
2039
2040         new_cmd = NULL;
2041         goto check_depth;
2042
2043         return 0;
2044 }
2045
2046 static inline u32 transport_get_sectors_6(
2047         unsigned char *cdb,
2048         struct se_cmd *cmd,
2049         int *ret)
2050 {
2051         struct se_device *dev = cmd->se_dev;
2052
2053         /*
2054          * Assume TYPE_DISK for non struct se_device objects.
2055          * Use 8-bit sector value.
2056          */
2057         if (!dev)
2058                 goto type_disk;
2059
2060         /*
2061          * Use 24-bit allocation length for TYPE_TAPE.
2062          */
2063         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2064                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2065
2066         /*
2067          * Everything else assume TYPE_DISK Sector CDB location.
2068          * Use 8-bit sector value.  SBC-3 says:
2069          *
2070          *   A TRANSFER LENGTH field set to zero specifies that 256
2071          *   logical blocks shall be written.  Any other value
2072          *   specifies the number of logical blocks that shall be
2073          *   written.
2074          */
2075 type_disk:
2076         return cdb[4] ? : 256;
2077 }
2078
2079 static inline u32 transport_get_sectors_10(
2080         unsigned char *cdb,
2081         struct se_cmd *cmd,
2082         int *ret)
2083 {
2084         struct se_device *dev = cmd->se_dev;
2085
2086         /*
2087          * Assume TYPE_DISK for non struct se_device objects.
2088          * Use 16-bit sector value.
2089          */
2090         if (!dev)
2091                 goto type_disk;
2092
2093         /*
2094          * XXX_10 is not defined in SSC, throw an exception
2095          */
2096         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2097                 *ret = -EINVAL;
2098                 return 0;
2099         }
2100
2101         /*
2102          * Everything else assume TYPE_DISK Sector CDB location.
2103          * Use 16-bit sector value.
2104          */
2105 type_disk:
2106         return (u32)(cdb[7] << 8) + cdb[8];
2107 }
2108
2109 static inline u32 transport_get_sectors_12(
2110         unsigned char *cdb,
2111         struct se_cmd *cmd,
2112         int *ret)
2113 {
2114         struct se_device *dev = cmd->se_dev;
2115
2116         /*
2117          * Assume TYPE_DISK for non struct se_device objects.
2118          * Use 32-bit sector value.
2119          */
2120         if (!dev)
2121                 goto type_disk;
2122
2123         /*
2124          * XXX_12 is not defined in SSC, throw an exception
2125          */
2126         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2127                 *ret = -EINVAL;
2128                 return 0;
2129         }
2130
2131         /*
2132          * Everything else assume TYPE_DISK Sector CDB location.
2133          * Use 32-bit sector value.
2134          */
2135 type_disk:
2136         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2137 }
2138
2139 static inline u32 transport_get_sectors_16(
2140         unsigned char *cdb,
2141         struct se_cmd *cmd,
2142         int *ret)
2143 {
2144         struct se_device *dev = cmd->se_dev;
2145
2146         /*
2147          * Assume TYPE_DISK for non struct se_device objects.
2148          * Use 32-bit sector value.
2149          */
2150         if (!dev)
2151                 goto type_disk;
2152
2153         /*
2154          * Use 24-bit allocation length for TYPE_TAPE.
2155          */
2156         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2157                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2158
2159 type_disk:
2160         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2161                     (cdb[12] << 8) + cdb[13];
2162 }
2163
2164 /*
2165  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2166  */
2167 static inline u32 transport_get_sectors_32(
2168         unsigned char *cdb,
2169         struct se_cmd *cmd,
2170         int *ret)
2171 {
2172         /*
2173          * Assume TYPE_DISK for non struct se_device objects.
2174          * Use 32-bit sector value.
2175          */
2176         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2177                     (cdb[30] << 8) + cdb[31];
2178
2179 }
2180
2181 static inline u32 transport_get_size(
2182         u32 sectors,
2183         unsigned char *cdb,
2184         struct se_cmd *cmd)
2185 {
2186         struct se_device *dev = cmd->se_dev;
2187
2188         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2189                 if (cdb[1] & 1) { /* sectors */
2190                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2191                 } else /* bytes */
2192                         return sectors;
2193         }
2194
2195         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2196                 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size,
2197                 sectors, dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2198                 dev->transport->name);
2199
2200         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2201 }
2202
2203 static void transport_xor_callback(struct se_cmd *cmd)
2204 {
2205         unsigned char *buf, *addr;
2206         struct scatterlist *sg;
2207         unsigned int offset;
2208         int i;
2209         int count;
2210         /*
2211          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2212          *
2213          * 1) read the specified logical block(s);
2214          * 2) transfer logical blocks from the data-out buffer;
2215          * 3) XOR the logical blocks transferred from the data-out buffer with
2216          *    the logical blocks read, storing the resulting XOR data in a buffer;
2217          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2218          *    blocks transferred from the data-out buffer; and
2219          * 5) transfer the resulting XOR data to the data-in buffer.
2220          */
2221         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2222         if (!buf) {
2223                 pr_err("Unable to allocate xor_callback buf\n");
2224                 return;
2225         }
2226         /*
2227          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2228          * into the locally allocated *buf
2229          */
2230         sg_copy_to_buffer(cmd->t_data_sg,
2231                           cmd->t_data_nents,
2232                           buf,
2233                           cmd->data_length);
2234
2235         /*
2236          * Now perform the XOR against the BIDI read memory located at
2237          * cmd->t_mem_bidi_list
2238          */
2239
2240         offset = 0;
2241         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2242                 addr = kmap_atomic(sg_page(sg));
2243                 if (!addr)
2244                         goto out;
2245
2246                 for (i = 0; i < sg->length; i++)
2247                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2248
2249                 offset += sg->length;
2250                 kunmap_atomic(addr);
2251         }
2252
2253 out:
2254         kfree(buf);
2255 }
2256
2257 /*
2258  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2259  */
2260 static int transport_get_sense_data(struct se_cmd *cmd)
2261 {
2262         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2263         struct se_device *dev = cmd->se_dev;
2264         unsigned long flags;
2265         u32 offset = 0;
2266
2267         WARN_ON(!cmd->se_lun);
2268
2269         if (!dev)
2270                 return 0;
2271
2272         spin_lock_irqsave(&cmd->t_state_lock, flags);
2273         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2274                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2275                 return 0;
2276         }
2277
2278         if (!(cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE))
2279                 goto out;
2280
2281         if (!dev->transport->get_sense_buffer) {
2282                 pr_err("dev->transport->get_sense_buffer is NULL\n");
2283                 goto out;
2284         }
2285
2286         sense_buffer = dev->transport->get_sense_buffer(cmd);
2287         if (!sense_buffer) {
2288                 pr_err("ITT 0x%08x cmd %p: Unable to locate"
2289                         " sense buffer for task with sense\n",
2290                         cmd->se_tfo->get_task_tag(cmd), cmd);
2291                 goto out;
2292         }
2293
2294         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2295
2296         offset = cmd->se_tfo->set_fabric_sense_len(cmd, TRANSPORT_SENSE_BUFFER);
2297
2298         memcpy(&buffer[offset], sense_buffer, TRANSPORT_SENSE_BUFFER);
2299
2300         /* Automatically padded */
2301         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
2302
2303         pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x and sense\n",
2304                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
2305         return 0;
2306
2307 out:
2308         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2309         return -1;
2310 }
2311
2312 static inline long long transport_dev_end_lba(struct se_device *dev)
2313 {
2314         return dev->transport->get_blocks(dev) + 1;
2315 }
2316
2317 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2318 {
2319         struct se_device *dev = cmd->se_dev;
2320         u32 sectors;
2321
2322         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2323                 return 0;
2324
2325         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2326
2327         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2328                 pr_err("LBA: %llu Sectors: %u exceeds"
2329                         " transport_dev_end_lba(): %llu\n",
2330                         cmd->t_task_lba, sectors,
2331                         transport_dev_end_lba(dev));
2332                 return -EINVAL;
2333         }
2334
2335         return 0;
2336 }
2337
2338 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2339 {
2340         /*
2341          * Determine if the received WRITE_SAME is used to for direct
2342          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2343          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2344          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2345          */
2346         int passthrough = (dev->transport->transport_type ==
2347                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2348
2349         if (!passthrough) {
2350                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2351                         pr_err("WRITE_SAME PBDATA and LBDATA"
2352                                 " bits not supported for Block Discard"
2353                                 " Emulation\n");
2354                         return -ENOSYS;
2355                 }
2356                 /*
2357                  * Currently for the emulated case we only accept
2358                  * tpws with the UNMAP=1 bit set.
2359                  */
2360                 if (!(flags[0] & 0x08)) {
2361                         pr_err("WRITE_SAME w/o UNMAP bit not"
2362                                 " supported for Block Discard Emulation\n");
2363                         return -ENOSYS;
2364                 }
2365         }
2366
2367         return 0;
2368 }
2369
2370 /*      transport_generic_cmd_sequencer():
2371  *
2372  *      Generic Command Sequencer that should work for most DAS transport
2373  *      drivers.
2374  *
2375  *      Called from target_setup_cmd_from_cdb() in the $FABRIC_MOD
2376  *      RX Thread.
2377  *
2378  *      FIXME: Need to support other SCSI OPCODES where as well.
2379  */
2380 static int transport_generic_cmd_sequencer(
2381         struct se_cmd *cmd,
2382         unsigned char *cdb)
2383 {
2384         struct se_device *dev = cmd->se_dev;
2385         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2386         int ret = 0, sector_ret = 0, passthrough;
2387         u32 sectors = 0, size = 0, pr_reg_type = 0;
2388         u16 service_action;
2389         u8 alua_ascq = 0;
2390         /*
2391          * Check for an existing UNIT ATTENTION condition
2392          */
2393         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2394                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2395                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2396                 return -EINVAL;
2397         }
2398         /*
2399          * Check status of Asymmetric Logical Unit Assignment port
2400          */
2401         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2402         if (ret != 0) {
2403                 /*
2404                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2405                  * The ALUA additional sense code qualifier (ASCQ) is determined
2406                  * by the ALUA primary or secondary access state..
2407                  */
2408                 if (ret > 0) {
2409                         pr_debug("[%s]: ALUA TG Port not available,"
2410                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2411                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2412
2413                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2414                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2415                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2416                         return -EINVAL;
2417                 }
2418                 goto out_invalid_cdb_field;
2419         }
2420         /*
2421          * Check status for SPC-3 Persistent Reservations
2422          */
2423         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2424                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2425                                         cmd, cdb, pr_reg_type) != 0) {
2426                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2427                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2428                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2429                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2430                         return -EBUSY;
2431                 }
2432                 /*
2433                  * This means the CDB is allowed for the SCSI Initiator port
2434                  * when said port is *NOT* holding the legacy SPC-2 or
2435                  * SPC-3 Persistent Reservation.
2436                  */
2437         }
2438
2439         /*
2440          * If we operate in passthrough mode we skip most CDB emulation and
2441          * instead hand the commands down to the physical SCSI device.
2442          */
2443         passthrough =
2444                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2445
2446         switch (cdb[0]) {
2447         case READ_6:
2448                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2449                 if (sector_ret)
2450                         goto out_unsupported_cdb;
2451                 size = transport_get_size(sectors, cdb, cmd);
2452                 cmd->t_task_lba = transport_lba_21(cdb);
2453                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2454                 break;
2455         case READ_10:
2456                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2457                 if (sector_ret)
2458                         goto out_unsupported_cdb;
2459                 size = transport_get_size(sectors, cdb, cmd);
2460                 cmd->t_task_lba = transport_lba_32(cdb);
2461                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2462                 break;
2463         case READ_12:
2464                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2465                 if (sector_ret)
2466                         goto out_unsupported_cdb;
2467                 size = transport_get_size(sectors, cdb, cmd);
2468                 cmd->t_task_lba = transport_lba_32(cdb);
2469                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2470                 break;
2471         case READ_16:
2472                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2473                 if (sector_ret)
2474                         goto out_unsupported_cdb;
2475                 size = transport_get_size(sectors, cdb, cmd);
2476                 cmd->t_task_lba = transport_lba_64(cdb);
2477                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2478                 break;
2479         case WRITE_6:
2480                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2481                 if (sector_ret)
2482                         goto out_unsupported_cdb;
2483                 size = transport_get_size(sectors, cdb, cmd);
2484                 cmd->t_task_lba = transport_lba_21(cdb);
2485                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2486                 break;
2487         case WRITE_10:
2488                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2489                 if (sector_ret)
2490                         goto out_unsupported_cdb;
2491                 size = transport_get_size(sectors, cdb, cmd);
2492                 cmd->t_task_lba = transport_lba_32(cdb);
2493                 if (cdb[1] & 0x8)
2494                         cmd->se_cmd_flags |= SCF_FUA;
2495                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2496                 break;
2497         case WRITE_12:
2498                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2499                 if (sector_ret)
2500                         goto out_unsupported_cdb;
2501                 size = transport_get_size(sectors, cdb, cmd);
2502                 cmd->t_task_lba = transport_lba_32(cdb);
2503                 if (cdb[1] & 0x8)
2504                         cmd->se_cmd_flags |= SCF_FUA;
2505                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2506                 break;
2507         case WRITE_16:
2508                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2509                 if (sector_ret)
2510                         goto out_unsupported_cdb;
2511                 size = transport_get_size(sectors, cdb, cmd);
2512                 cmd->t_task_lba = transport_lba_64(cdb);
2513                 if (cdb[1] & 0x8)
2514                         cmd->se_cmd_flags |= SCF_FUA;
2515                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2516                 break;
2517         case XDWRITEREAD_10:
2518                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2519                     !(cmd->se_cmd_flags & SCF_BIDI))
2520                         goto out_invalid_cdb_field;
2521                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2522                 if (sector_ret)
2523                         goto out_unsupported_cdb;
2524                 size = transport_get_size(sectors, cdb, cmd);
2525                 cmd->t_task_lba = transport_lba_32(cdb);
2526                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2527
2528                 /*
2529                  * Do now allow BIDI commands for passthrough mode.
2530                  */
2531                 if (passthrough)
2532                         goto out_unsupported_cdb;
2533
2534                 /*
2535                  * Setup BIDI XOR callback to be run after I/O completion.
2536                  */
2537                 cmd->transport_complete_callback = &transport_xor_callback;
2538                 if (cdb[1] & 0x8)
2539                         cmd->se_cmd_flags |= SCF_FUA;
2540                 break;
2541         case VARIABLE_LENGTH_CMD:
2542                 service_action = get_unaligned_be16(&cdb[8]);
2543                 switch (service_action) {
2544                 case XDWRITEREAD_32:
2545                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2546                         if (sector_ret)
2547                                 goto out_unsupported_cdb;
2548                         size = transport_get_size(sectors, cdb, cmd);
2549                         /*
2550                          * Use WRITE_32 and READ_32 opcodes for the emulated
2551                          * XDWRITE_READ_32 logic.
2552                          */
2553                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2554                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2555
2556                         /*
2557                          * Do now allow BIDI commands for passthrough mode.
2558                          */
2559                         if (passthrough)
2560                                 goto out_unsupported_cdb;
2561
2562                         /*
2563                          * Setup BIDI XOR callback to be run during after I/O
2564                          * completion.
2565                          */
2566                         cmd->transport_complete_callback = &transport_xor_callback;
2567                         if (cdb[1] & 0x8)
2568                                 cmd->se_cmd_flags |= SCF_FUA;
2569                         break;
2570                 case WRITE_SAME_32:
2571                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2572                         if (sector_ret)
2573                                 goto out_unsupported_cdb;
2574
2575                         if (sectors)
2576                                 size = transport_get_size(1, cdb, cmd);
2577                         else {
2578                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2579                                        " supported\n");
2580                                 goto out_invalid_cdb_field;
2581                         }
2582
2583                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2584                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2585
2586                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2587                                 goto out_unsupported_cdb;
2588                         if (!passthrough)
2589                                 cmd->execute_cmd = target_emulate_write_same;
2590                         break;
2591                 default:
2592                         pr_err("VARIABLE_LENGTH_CMD service action"
2593                                 " 0x%04x not supported\n", service_action);
2594                         goto out_unsupported_cdb;
2595                 }
2596                 break;
2597         case MAINTENANCE_IN:
2598                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2599                         /* MAINTENANCE_IN from SCC-2 */
2600                         /*
2601                          * Check for emulated MI_REPORT_TARGET_PGS.
2602                          */
2603                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2604                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2605                                 cmd->execute_cmd =
2606                                         target_emulate_report_target_port_groups;
2607                         }
2608                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2609                                (cdb[8] << 8) | cdb[9];
2610                 } else {
2611                         /* GPCMD_SEND_KEY from multi media commands */
2612                         size = (cdb[8] << 8) + cdb[9];
2613                 }
2614                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2615                 break;
2616         case MODE_SELECT:
2617                 size = cdb[4];
2618                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2619                 break;
2620         case MODE_SELECT_10:
2621                 size = (cdb[7] << 8) + cdb[8];
2622                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2623                 break;
2624         case MODE_SENSE:
2625                 size = cdb[4];
2626                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2627                 if (!passthrough)
2628                         cmd->execute_cmd = target_emulate_modesense;
2629                 break;
2630         case MODE_SENSE_10:
2631                 size = (cdb[7] << 8) + cdb[8];
2632                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2633                 if (!passthrough)
2634                         cmd->execute_cmd = target_emulate_modesense;
2635                 break;
2636         case GPCMD_READ_BUFFER_CAPACITY:
2637         case GPCMD_SEND_OPC:
2638         case LOG_SELECT:
2639         case LOG_SENSE:
2640                 size = (cdb[7] << 8) + cdb[8];
2641                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2642                 break;
2643         case READ_BLOCK_LIMITS:
2644                 size = READ_BLOCK_LEN;
2645                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2646                 break;
2647         case GPCMD_GET_CONFIGURATION:
2648         case GPCMD_READ_FORMAT_CAPACITIES:
2649         case GPCMD_READ_DISC_INFO:
2650         case GPCMD_READ_TRACK_RZONE_INFO:
2651                 size = (cdb[7] << 8) + cdb[8];
2652                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2653                 break;
2654         case PERSISTENT_RESERVE_IN:
2655                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2656                         cmd->execute_cmd = target_scsi3_emulate_pr_in;
2657                 size = (cdb[7] << 8) + cdb[8];
2658                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2659                 break;
2660         case PERSISTENT_RESERVE_OUT:
2661                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2662                         cmd->execute_cmd = target_scsi3_emulate_pr_out;
2663                 size = (cdb[7] << 8) + cdb[8];
2664                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2665                 break;
2666         case GPCMD_MECHANISM_STATUS:
2667         case GPCMD_READ_DVD_STRUCTURE:
2668                 size = (cdb[8] << 8) + cdb[9];
2669                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2670                 break;
2671         case READ_POSITION:
2672                 size = READ_POSITION_LEN;
2673                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2674                 break;
2675         case MAINTENANCE_OUT:
2676                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2677                         /* MAINTENANCE_OUT from SCC-2
2678                          *
2679                          * Check for emulated MO_SET_TARGET_PGS.
2680                          */
2681                         if (cdb[1] == MO_SET_TARGET_PGS &&
2682                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2683                                 cmd->execute_cmd =
2684                                         target_emulate_set_target_port_groups;
2685                         }
2686
2687                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2688                                (cdb[8] << 8) | cdb[9];
2689                 } else  {
2690                         /* GPCMD_REPORT_KEY from multi media commands */
2691                         size = (cdb[8] << 8) + cdb[9];
2692                 }
2693                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2694                 break;
2695         case INQUIRY:
2696                 size = (cdb[3] << 8) + cdb[4];
2697                 /*
2698                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2699                  * See spc4r17 section 5.3
2700                  */
2701                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2702                         cmd->sam_task_attr = MSG_HEAD_TAG;
2703                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2704                 if (!passthrough)
2705                         cmd->execute_cmd = target_emulate_inquiry;
2706                 break;
2707         case READ_BUFFER:
2708                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2709                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2710                 break;
2711         case READ_CAPACITY:
2712                 size = READ_CAP_LEN;
2713                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2714                 if (!passthrough)
2715                         cmd->execute_cmd = target_emulate_readcapacity;
2716                 break;
2717         case READ_MEDIA_SERIAL_NUMBER:
2718         case SECURITY_PROTOCOL_IN:
2719         case SECURITY_PROTOCOL_OUT:
2720                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2721                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2722                 break;
2723         case SERVICE_ACTION_IN:
2724                 switch (cmd->t_task_cdb[1] & 0x1f) {
2725                 case SAI_READ_CAPACITY_16:
2726                         if (!passthrough)
2727                                 cmd->execute_cmd =
2728                                         target_emulate_readcapacity_16;
2729                         break;
2730                 default:
2731                         if (passthrough)
2732                                 break;
2733
2734                         pr_err("Unsupported SA: 0x%02x\n",
2735                                 cmd->t_task_cdb[1] & 0x1f);
2736                         goto out_invalid_cdb_field;
2737                 }
2738                 /*FALLTHROUGH*/
2739         case ACCESS_CONTROL_IN:
2740         case ACCESS_CONTROL_OUT:
2741         case EXTENDED_COPY:
2742         case READ_ATTRIBUTE:
2743         case RECEIVE_COPY_RESULTS:
2744         case WRITE_ATTRIBUTE:
2745                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2746                        (cdb[12] << 8) | cdb[13];
2747                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2748                 break;
2749         case RECEIVE_DIAGNOSTIC:
2750         case SEND_DIAGNOSTIC:
2751                 size = (cdb[3] << 8) | cdb[4];
2752                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2753                 break;
2754 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2755 #if 0
2756         case GPCMD_READ_CD:
2757                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2758                 size = (2336 * sectors);
2759                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2760                 break;
2761 #endif
2762         case READ_TOC:
2763                 size = cdb[8];
2764                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2765                 break;
2766         case REQUEST_SENSE:
2767                 size = cdb[4];
2768                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2769                 if (!passthrough)
2770                         cmd->execute_cmd = target_emulate_request_sense;
2771                 break;
2772         case READ_ELEMENT_STATUS:
2773                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2774                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2775                 break;
2776         case WRITE_BUFFER:
2777                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2778                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2779                 break;
2780         case RESERVE:
2781         case RESERVE_10:
2782                 /*
2783                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2784                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2785                  */
2786                 if (cdb[0] == RESERVE_10)
2787                         size = (cdb[7] << 8) | cdb[8];
2788                 else
2789                         size = cmd->data_length;
2790
2791                 /*
2792                  * Setup the legacy emulated handler for SPC-2 and
2793                  * >= SPC-3 compatible reservation handling (CRH=1)
2794                  * Otherwise, we assume the underlying SCSI logic is
2795                  * is running in SPC_PASSTHROUGH, and wants reservations
2796                  * emulation disabled.
2797                  */
2798                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2799                         cmd->execute_cmd = target_scsi2_reservation_reserve;
2800                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2801                 break;
2802         case RELEASE:
2803         case RELEASE_10:
2804                 /*
2805                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2806                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2807                 */
2808                 if (cdb[0] == RELEASE_10)
2809                         size = (cdb[7] << 8) | cdb[8];
2810                 else
2811                         size = cmd->data_length;
2812
2813                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2814                         cmd->execute_cmd = target_scsi2_reservation_release;
2815                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2816                 break;
2817         case SYNCHRONIZE_CACHE:
2818         case SYNCHRONIZE_CACHE_16:
2819                 /*
2820                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2821                  */
2822                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2823                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2824                         cmd->t_task_lba = transport_lba_32(cdb);
2825                 } else {
2826                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2827                         cmd->t_task_lba = transport_lba_64(cdb);
2828                 }
2829                 if (sector_ret)
2830                         goto out_unsupported_cdb;
2831
2832                 size = transport_get_size(sectors, cdb, cmd);
2833                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2834
2835                 if (passthrough)
2836                         break;
2837
2838                 /*
2839                  * Check to ensure that LBA + Range does not exceed past end of
2840                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2841                  */
2842                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2843                         if (transport_cmd_get_valid_sectors(cmd) < 0)
2844                                 goto out_invalid_cdb_field;
2845                 }
2846                 cmd->execute_cmd = target_emulate_synchronize_cache;
2847                 break;
2848         case UNMAP:
2849                 size = get_unaligned_be16(&cdb[7]);
2850                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2851                 if (!passthrough)
2852                         cmd->execute_cmd = target_emulate_unmap;
2853                 break;
2854         case WRITE_SAME_16:
2855                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2856                 if (sector_ret)
2857                         goto out_unsupported_cdb;
2858
2859                 if (sectors)
2860                         size = transport_get_size(1, cdb, cmd);
2861                 else {
2862                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2863                         goto out_invalid_cdb_field;
2864                 }
2865
2866                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2867                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2868
2869                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2870                         goto out_unsupported_cdb;
2871                 if (!passthrough)
2872                         cmd->execute_cmd = target_emulate_write_same;
2873                 break;
2874         case WRITE_SAME:
2875                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2876                 if (sector_ret)
2877                         goto out_unsupported_cdb;
2878
2879                 if (sectors)
2880                         size = transport_get_size(1, cdb, cmd);
2881                 else {
2882                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2883                         goto out_invalid_cdb_field;
2884                 }
2885
2886                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2887                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2888                 /*
2889                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2890                  * of byte 1 bit 3 UNMAP instead of original reserved field
2891                  */
2892                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2893                         goto out_unsupported_cdb;
2894                 if (!passthrough)
2895                         cmd->execute_cmd = target_emulate_write_same;
2896                 break;
2897         case ALLOW_MEDIUM_REMOVAL:
2898         case ERASE:
2899         case REZERO_UNIT:
2900         case SEEK_10:
2901         case SPACE:
2902         case START_STOP:
2903         case TEST_UNIT_READY:
2904         case VERIFY:
2905         case WRITE_FILEMARKS:
2906                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2907                 if (!passthrough)
2908                         cmd->execute_cmd = target_emulate_noop;
2909                 break;
2910         case GPCMD_CLOSE_TRACK:
2911         case INITIALIZE_ELEMENT_STATUS:
2912         case GPCMD_LOAD_UNLOAD:
2913         case GPCMD_SET_SPEED:
2914         case MOVE_MEDIUM:
2915                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2916                 break;
2917         case REPORT_LUNS:
2918                 cmd->execute_cmd = target_report_luns;
2919                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2920                 /*
2921                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
2922                  * See spc4r17 section 5.3
2923                  */
2924                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2925                         cmd->sam_task_attr = MSG_HEAD_TAG;
2926                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2927                 break;
2928         case GET_EVENT_STATUS_NOTIFICATION:
2929                 size = (cdb[7] << 8) | cdb[8];
2930                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2931                 break;
2932         default:
2933                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
2934                         " 0x%02x, sending CHECK_CONDITION.\n",
2935                         cmd->se_tfo->get_fabric_name(), cdb[0]);
2936                 goto out_unsupported_cdb;
2937         }
2938
2939         if (cmd->unknown_data_length)
2940                 cmd->data_length = size;
2941
2942         if (size != cmd->data_length) {
2943                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
2944                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
2945                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
2946                                 cmd->data_length, size, cdb[0]);
2947
2948                 cmd->cmd_spdtl = size;
2949
2950                 if (cmd->data_direction == DMA_TO_DEVICE) {
2951                         pr_err("Rejecting underflow/overflow"
2952                                         " WRITE data\n");
2953                         goto out_invalid_cdb_field;
2954                 }
2955                 /*
2956                  * Reject READ_* or WRITE_* with overflow/underflow for
2957                  * type SCF_SCSI_DATA_SG_IO_CDB.
2958                  */
2959                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
2960                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
2961                                 " CDB on non 512-byte sector setup subsystem"
2962                                 " plugin: %s\n", dev->transport->name);
2963                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
2964                         goto out_invalid_cdb_field;
2965                 }
2966
2967                 if (size > cmd->data_length) {
2968                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
2969                         cmd->residual_count = (size - cmd->data_length);
2970                 } else {
2971                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
2972                         cmd->residual_count = (cmd->data_length - size);
2973                 }
2974                 cmd->data_length = size;
2975         }
2976
2977         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
2978                 if (sectors > su_dev->se_dev_attrib.fabric_max_sectors) {
2979                         printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
2980                                 " big sectors %u exceeds fabric_max_sectors:"
2981                                 " %u\n", cdb[0], sectors,
2982                                 su_dev->se_dev_attrib.fabric_max_sectors);
2983                         goto out_invalid_cdb_field;
2984                 }
2985                 if (sectors > su_dev->se_dev_attrib.hw_max_sectors) {
2986                         printk_ratelimited(KERN_ERR "SCSI OP %02xh with too"
2987                                 " big sectors %u exceeds backend hw_max_sectors:"
2988                                 " %u\n", cdb[0], sectors,
2989                                 su_dev->se_dev_attrib.hw_max_sectors);
2990                         goto out_invalid_cdb_field;
2991                 }
2992         }
2993
2994         /* reject any command that we don't have a handler for */
2995         if (!(passthrough || cmd->execute_cmd ||
2996              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2997                 goto out_unsupported_cdb;
2998
2999         transport_set_supported_SAM_opcode(cmd);
3000         return ret;
3001
3002 out_unsupported_cdb:
3003         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3004         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3005         return -EINVAL;
3006 out_invalid_cdb_field:
3007         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3008         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3009         return -EINVAL;
3010 }
3011
3012 /*
3013  * Called from I/O completion to determine which dormant/delayed
3014  * and ordered cmds need to have their tasks added to the execution queue.
3015  */
3016 static void transport_complete_task_attr(struct se_cmd *cmd)
3017 {
3018         struct se_device *dev = cmd->se_dev;
3019         struct se_cmd *cmd_p, *cmd_tmp;
3020         int new_active_tasks = 0;
3021
3022         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3023                 atomic_dec(&dev->simple_cmds);
3024                 smp_mb__after_atomic_dec();
3025                 dev->dev_cur_ordered_id++;
3026                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3027                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3028                         cmd->se_ordered_id);
3029         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3030                 dev->dev_cur_ordered_id++;
3031                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3032                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3033                         cmd->se_ordered_id);
3034         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3035                 atomic_dec(&dev->dev_ordered_sync);
3036                 smp_mb__after_atomic_dec();
3037
3038                 dev->dev_cur_ordered_id++;
3039                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3040                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3041         }
3042         /*
3043          * Process all commands up to the last received
3044          * ORDERED task attribute which requires another blocking
3045          * boundary
3046          */
3047         spin_lock(&dev->delayed_cmd_lock);
3048         list_for_each_entry_safe(cmd_p, cmd_tmp,
3049                         &dev->delayed_cmd_list, se_delayed_node) {
3050
3051                 list_del(&cmd_p->se_delayed_node);
3052                 spin_unlock(&dev->delayed_cmd_lock);
3053
3054                 pr_debug("Calling add_tasks() for"
3055                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3056                         " Dormant -> Active, se_ordered_id: %u\n",
3057                         cmd_p->t_task_cdb[0],
3058                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3059
3060                 target_add_to_execute_list(cmd_p);
3061                 new_active_tasks++;
3062
3063                 spin_lock(&dev->delayed_cmd_lock);
3064                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3065                         break;
3066         }
3067         spin_unlock(&dev->delayed_cmd_lock);
3068         /*
3069          * If new tasks have become active, wake up the transport thread
3070          * to do the processing of the Active tasks.
3071          */
3072         if (new_active_tasks != 0)
3073                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3074 }
3075
3076 static void transport_complete_qf(struct se_cmd *cmd)
3077 {
3078         int ret = 0;
3079
3080         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3081                 transport_complete_task_attr(cmd);
3082
3083         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3084                 ret = cmd->se_tfo->queue_status(cmd);
3085                 if (ret)
3086                         goto out;
3087         }
3088
3089         switch (cmd->data_direction) {
3090         case DMA_FROM_DEVICE:
3091                 ret = cmd->se_tfo->queue_data_in(cmd);
3092                 break;
3093         case DMA_TO_DEVICE:
3094                 if (cmd->t_bidi_data_sg) {
3095                         ret = cmd->se_tfo->queue_data_in(cmd);
3096                         if (ret < 0)
3097                                 break;
3098                 }
3099                 /* Fall through for DMA_TO_DEVICE */
3100         case DMA_NONE:
3101                 ret = cmd->se_tfo->queue_status(cmd);
3102                 break;
3103         default:
3104                 break;
3105         }
3106
3107 out:
3108         if (ret < 0) {
3109                 transport_handle_queue_full(cmd, cmd->se_dev);
3110                 return;
3111         }
3112         transport_lun_remove_cmd(cmd);
3113         transport_cmd_check_stop_to_fabric(cmd);
3114 }
3115
3116 static void transport_handle_queue_full(
3117         struct se_cmd *cmd,
3118         struct se_device *dev)
3119 {
3120         spin_lock_irq(&dev->qf_cmd_lock);
3121         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3122         atomic_inc(&dev->dev_qf_count);
3123         smp_mb__after_atomic_inc();
3124         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3125
3126         schedule_work(&cmd->se_dev->qf_work_queue);
3127 }
3128
3129 static void target_complete_ok_work(struct work_struct *work)
3130 {
3131         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3132         int reason = 0, ret;
3133
3134         /*
3135          * Check if we need to move delayed/dormant tasks from cmds on the
3136          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3137          * Attribute.
3138          */
3139         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3140                 transport_complete_task_attr(cmd);
3141         /*
3142          * Check to schedule QUEUE_FULL work, or execute an existing
3143          * cmd->transport_qf_callback()
3144          */
3145         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3146                 schedule_work(&cmd->se_dev->qf_work_queue);
3147
3148         /*
3149          * Check if we need to retrieve a sense buffer from
3150          * the struct se_cmd in question.
3151          */
3152         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3153                 if (transport_get_sense_data(cmd) < 0)
3154                         reason = TCM_NON_EXISTENT_LUN;
3155
3156                 if (cmd->scsi_status) {
3157                         ret = transport_send_check_condition_and_sense(
3158                                         cmd, reason, 1);
3159                         if (ret == -EAGAIN || ret == -ENOMEM)
3160                                 goto queue_full;
3161
3162                         transport_lun_remove_cmd(cmd);
3163                         transport_cmd_check_stop_to_fabric(cmd);
3164                         return;
3165                 }
3166         }
3167         /*
3168          * Check for a callback, used by amongst other things
3169          * XDWRITE_READ_10 emulation.
3170          */
3171         if (cmd->transport_complete_callback)
3172                 cmd->transport_complete_callback(cmd);
3173
3174         switch (cmd->data_direction) {
3175         case DMA_FROM_DEVICE:
3176                 spin_lock(&cmd->se_lun->lun_sep_lock);
3177                 if (cmd->se_lun->lun_sep) {
3178                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3179                                         cmd->data_length;
3180                 }
3181                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3182
3183                 ret = cmd->se_tfo->queue_data_in(cmd);
3184                 if (ret == -EAGAIN || ret == -ENOMEM)
3185                         goto queue_full;
3186                 break;
3187         case DMA_TO_DEVICE:
3188                 spin_lock(&cmd->se_lun->lun_sep_lock);
3189                 if (cmd->se_lun->lun_sep) {
3190                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3191                                 cmd->data_length;
3192                 }
3193                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3194                 /*
3195                  * Check if we need to send READ payload for BIDI-COMMAND
3196                  */
3197                 if (cmd->t_bidi_data_sg) {
3198                         spin_lock(&cmd->se_lun->lun_sep_lock);
3199                         if (cmd->se_lun->lun_sep) {
3200                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3201                                         cmd->data_length;
3202                         }
3203                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3204                         ret = cmd->se_tfo->queue_data_in(cmd);
3205                         if (ret == -EAGAIN || ret == -ENOMEM)
3206                                 goto queue_full;
3207                         break;
3208                 }
3209                 /* Fall through for DMA_TO_DEVICE */
3210         case DMA_NONE:
3211                 ret = cmd->se_tfo->queue_status(cmd);
3212                 if (ret == -EAGAIN || ret == -ENOMEM)
3213                         goto queue_full;
3214                 break;
3215         default:
3216                 break;
3217         }
3218
3219         transport_lun_remove_cmd(cmd);
3220         transport_cmd_check_stop_to_fabric(cmd);
3221         return;
3222
3223 queue_full:
3224         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3225                 " data_direction: %d\n", cmd, cmd->data_direction);
3226         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3227         transport_handle_queue_full(cmd, cmd->se_dev);
3228 }
3229
3230 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3231 {
3232         struct scatterlist *sg;
3233         int count;
3234
3235         for_each_sg(sgl, sg, nents, count)
3236                 __free_page(sg_page(sg));
3237
3238         kfree(sgl);
3239 }
3240
3241 static inline void transport_free_pages(struct se_cmd *cmd)
3242 {
3243         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3244                 return;
3245
3246         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3247         cmd->t_data_sg = NULL;
3248         cmd->t_data_nents = 0;
3249
3250         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3251         cmd->t_bidi_data_sg = NULL;
3252         cmd->t_bidi_data_nents = 0;
3253 }
3254
3255 /**
3256  * transport_release_cmd - free a command
3257  * @cmd:       command to free
3258  *
3259  * This routine unconditionally frees a command, and reference counting
3260  * or list removal must be done in the caller.
3261  */
3262 static void transport_release_cmd(struct se_cmd *cmd)
3263 {
3264         BUG_ON(!cmd->se_tfo);
3265
3266         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3267                 core_tmr_release_req(cmd->se_tmr_req);
3268         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3269                 kfree(cmd->t_task_cdb);
3270         /*
3271          * If this cmd has been setup with target_get_sess_cmd(), drop
3272          * the kref and call ->release_cmd() in kref callback.
3273          */
3274          if (cmd->check_release != 0) {
3275                 target_put_sess_cmd(cmd->se_sess, cmd);
3276                 return;
3277         }
3278         cmd->se_tfo->release_cmd(cmd);
3279 }
3280
3281 /**
3282  * transport_put_cmd - release a reference to a command
3283  * @cmd:       command to release
3284  *
3285  * This routine releases our reference to the command and frees it if possible.
3286  */
3287 static void transport_put_cmd(struct se_cmd *cmd)
3288 {
3289         unsigned long flags;
3290
3291         spin_lock_irqsave(&cmd->t_state_lock, flags);
3292         if (atomic_read(&cmd->t_fe_count)) {
3293                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3294                         goto out_busy;
3295         }
3296
3297         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3298                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3299                 target_remove_from_state_list(cmd);
3300         }
3301         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3302
3303         transport_free_pages(cmd);
3304         transport_release_cmd(cmd);
3305         return;
3306 out_busy:
3307         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3308 }
3309
3310 /*
3311  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3312  * allocating in the core.
3313  * @cmd:  Associated se_cmd descriptor
3314  * @mem:  SGL style memory for TCM WRITE / READ
3315  * @sg_mem_num: Number of SGL elements
3316  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3317  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3318  *
3319  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3320  * of parameters.
3321  */
3322 int transport_generic_map_mem_to_cmd(
3323         struct se_cmd *cmd,
3324         struct scatterlist *sgl,
3325         u32 sgl_count,
3326         struct scatterlist *sgl_bidi,
3327         u32 sgl_bidi_count)
3328 {
3329         if (!sgl || !sgl_count)
3330                 return 0;
3331
3332         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3333             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3334                 /*
3335                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3336                  * scatterlists already have been set to follow what the fabric
3337                  * passes for the original expected data transfer length.
3338                  */
3339                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3340                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3341                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3342                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3343                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3344                         return -EINVAL;
3345                 }
3346
3347                 cmd->t_data_sg = sgl;
3348                 cmd->t_data_nents = sgl_count;
3349
3350                 if (sgl_bidi && sgl_bidi_count) {
3351                         cmd->t_bidi_data_sg = sgl_bidi;
3352                         cmd->t_bidi_data_nents = sgl_bidi_count;
3353                 }
3354                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3355         }
3356
3357         return 0;
3358 }
3359 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3360
3361 void *transport_kmap_data_sg(struct se_cmd *cmd)
3362 {
3363         struct scatterlist *sg = cmd->t_data_sg;
3364         struct page **pages;
3365         int i;
3366
3367         BUG_ON(!sg);
3368         /*
3369          * We need to take into account a possible offset here for fabrics like
3370          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3371          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3372          */
3373         if (!cmd->t_data_nents)
3374                 return NULL;
3375         else if (cmd->t_data_nents == 1)
3376                 return kmap(sg_page(sg)) + sg->offset;
3377
3378         /* >1 page. use vmap */
3379         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3380         if (!pages)
3381                 return NULL;
3382
3383         /* convert sg[] to pages[] */
3384         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3385                 pages[i] = sg_page(sg);
3386         }
3387
3388         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3389         kfree(pages);
3390         if (!cmd->t_data_vmap)
3391                 return NULL;
3392
3393         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3394 }
3395 EXPORT_SYMBOL(transport_kmap_data_sg);
3396
3397 void transport_kunmap_data_sg(struct se_cmd *cmd)
3398 {
3399         if (!cmd->t_data_nents) {
3400                 return;
3401         } else if (cmd->t_data_nents == 1) {
3402                 kunmap(sg_page(cmd->t_data_sg));
3403                 return;
3404         }
3405
3406         vunmap(cmd->t_data_vmap);
3407         cmd->t_data_vmap = NULL;
3408 }
3409 EXPORT_SYMBOL(transport_kunmap_data_sg);
3410
3411 static int
3412 transport_generic_get_mem(struct se_cmd *cmd)
3413 {
3414         u32 length = cmd->data_length;
3415         unsigned int nents;
3416         struct page *page;
3417         gfp_t zero_flag;
3418         int i = 0;
3419
3420         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3421         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3422         if (!cmd->t_data_sg)
3423                 return -ENOMEM;
3424
3425         cmd->t_data_nents = nents;
3426         sg_init_table(cmd->t_data_sg, nents);
3427
3428         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3429
3430         while (length) {
3431                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3432                 page = alloc_page(GFP_KERNEL | zero_flag);
3433                 if (!page)
3434                         goto out;
3435
3436                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3437                 length -= page_len;
3438                 i++;
3439         }
3440         return 0;
3441
3442 out:
3443         while (i >= 0) {
3444                 __free_page(sg_page(&cmd->t_data_sg[i]));
3445                 i--;
3446         }
3447         kfree(cmd->t_data_sg);
3448         cmd->t_data_sg = NULL;
3449         return -ENOMEM;
3450 }
3451
3452 /*
3453  * Allocate any required resources to execute the command.  For writes we
3454  * might not have the payload yet, so notify the fabric via a call to
3455  * ->write_pending instead. Otherwise place it on the execution queue.
3456  */
3457 int transport_generic_new_cmd(struct se_cmd *cmd)
3458 {
3459         struct se_device *dev = cmd->se_dev;
3460         int ret = 0;
3461
3462         /*
3463          * Determine is the TCM fabric module has already allocated physical
3464          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3465          * beforehand.
3466          */
3467         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3468             cmd->data_length) {
3469                 ret = transport_generic_get_mem(cmd);
3470                 if (ret < 0)
3471                         goto out_fail;
3472         }
3473
3474         /* Workaround for handling zero-length control CDBs */
3475         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3476             !cmd->data_length) {
3477                 spin_lock_irq(&cmd->t_state_lock);
3478                 cmd->t_state = TRANSPORT_COMPLETE;
3479                 cmd->transport_state |= CMD_T_ACTIVE;
3480                 spin_unlock_irq(&cmd->t_state_lock);
3481
3482                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3483                         u8 ua_asc = 0, ua_ascq = 0;
3484
3485                         core_scsi3_ua_clear_for_request_sense(cmd,
3486                                         &ua_asc, &ua_ascq);
3487                 }
3488
3489                 INIT_WORK(&cmd->work, target_complete_ok_work);
3490                 queue_work(target_completion_wq, &cmd->work);
3491                 return 0;
3492         }
3493
3494         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3495                 struct se_dev_attrib *attr = &dev->se_sub_dev->se_dev_attrib;
3496
3497                 if (transport_cmd_get_valid_sectors(cmd) < 0)
3498                         return -EINVAL;
3499
3500                 BUG_ON(cmd->data_length % attr->block_size);
3501                 BUG_ON(DIV_ROUND_UP(cmd->data_length, attr->block_size) >
3502                         attr->hw_max_sectors);
3503         }
3504
3505         atomic_inc(&cmd->t_fe_count);
3506
3507         /*
3508          * For WRITEs, let the fabric know its buffer is ready.
3509          *
3510          * The command will be added to the execution queue after its write
3511          * data has arrived.
3512          */
3513         if (cmd->data_direction == DMA_TO_DEVICE) {
3514                 target_add_to_state_list(cmd);
3515                 return transport_generic_write_pending(cmd);
3516         }
3517         /*
3518          * Everything else but a WRITE, add the command to the execution queue.
3519          */
3520         transport_execute_tasks(cmd);
3521         return 0;
3522
3523 out_fail:
3524         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3525         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3526         return -EINVAL;
3527 }
3528 EXPORT_SYMBOL(transport_generic_new_cmd);
3529
3530 /*      transport_generic_process_write():
3531  *
3532  *
3533  */
3534 void transport_generic_process_write(struct se_cmd *cmd)
3535 {
3536         transport_execute_tasks(cmd);
3537 }
3538 EXPORT_SYMBOL(transport_generic_process_write);
3539
3540 static void transport_write_pending_qf(struct se_cmd *cmd)
3541 {
3542         int ret;
3543
3544         ret = cmd->se_tfo->write_pending(cmd);
3545         if (ret == -EAGAIN || ret == -ENOMEM) {
3546                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3547                          cmd);
3548                 transport_handle_queue_full(cmd, cmd->se_dev);
3549         }
3550 }
3551
3552 static int transport_generic_write_pending(struct se_cmd *cmd)
3553 {
3554         unsigned long flags;
3555         int ret;
3556
3557         spin_lock_irqsave(&cmd->t_state_lock, flags);
3558         cmd->t_state = TRANSPORT_WRITE_PENDING;
3559         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3560
3561         /*
3562          * Clear the se_cmd for WRITE_PENDING status in order to set
3563          * CMD_T_ACTIVE so that transport_generic_handle_data can be called
3564          * from HW target mode interrupt code.  This is safe to be called
3565          * with transport_off=1 before the cmd->se_tfo->write_pending
3566          * because the se_cmd->se_lun pointer is not being cleared.
3567          */
3568         transport_cmd_check_stop(cmd, 1, 0);
3569
3570         /*
3571          * Call the fabric write_pending function here to let the
3572          * frontend know that WRITE buffers are ready.
3573          */
3574         ret = cmd->se_tfo->write_pending(cmd);
3575         if (ret == -EAGAIN || ret == -ENOMEM)
3576                 goto queue_full;
3577         else if (ret < 0)
3578                 return ret;
3579
3580         return 1;
3581
3582 queue_full:
3583         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3584         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3585         transport_handle_queue_full(cmd, cmd->se_dev);
3586         return 0;
3587 }
3588
3589 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3590 {
3591         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3592                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3593                          transport_wait_for_tasks(cmd);
3594
3595                 transport_release_cmd(cmd);
3596         } else {
3597                 if (wait_for_tasks)
3598                         transport_wait_for_tasks(cmd);
3599
3600                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3601
3602                 if (cmd->se_lun)
3603                         transport_lun_remove_cmd(cmd);
3604
3605                 transport_put_cmd(cmd);
3606         }
3607 }
3608 EXPORT_SYMBOL(transport_generic_free_cmd);
3609
3610 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3611  * @se_sess:    session to reference
3612  * @se_cmd:     command descriptor to add
3613  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
3614  */
3615 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
3616                         bool ack_kref)
3617 {
3618         unsigned long flags;
3619
3620         kref_init(&se_cmd->cmd_kref);
3621         /*
3622          * Add a second kref if the fabric caller is expecting to handle
3623          * fabric acknowledgement that requires two target_put_sess_cmd()
3624          * invocations before se_cmd descriptor release.
3625          */
3626         if (ack_kref == true) {
3627                 kref_get(&se_cmd->cmd_kref);
3628                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
3629         }
3630
3631         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3632         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3633         se_cmd->check_release = 1;
3634         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3635 }
3636 EXPORT_SYMBOL(target_get_sess_cmd);
3637
3638 static void target_release_cmd_kref(struct kref *kref)
3639 {
3640         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
3641         struct se_session *se_sess = se_cmd->se_sess;
3642         unsigned long flags;
3643
3644         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3645         if (list_empty(&se_cmd->se_cmd_list)) {
3646                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3647                 se_cmd->se_tfo->release_cmd(se_cmd);
3648                 return;
3649         }
3650         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3651                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3652                 complete(&se_cmd->cmd_wait_comp);
3653                 return;
3654         }
3655         list_del(&se_cmd->se_cmd_list);
3656         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3657
3658         se_cmd->se_tfo->release_cmd(se_cmd);
3659 }
3660
3661 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
3662  * @se_sess:    session to reference
3663  * @se_cmd:     command descriptor to drop
3664  */
3665 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3666 {
3667         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
3668 }
3669 EXPORT_SYMBOL(target_put_sess_cmd);
3670
3671 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3672  * @se_sess:    session to split
3673  */
3674 void target_splice_sess_cmd_list(struct se_session *se_sess)
3675 {
3676         struct se_cmd *se_cmd;
3677         unsigned long flags;
3678
3679         WARN_ON(!list_empty(&se_sess->sess_wait_list));
3680         INIT_LIST_HEAD(&se_sess->sess_wait_list);
3681
3682         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3683         se_sess->sess_tearing_down = 1;
3684
3685         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3686
3687         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3688                 se_cmd->cmd_wait_set = 1;
3689
3690         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3691 }
3692 EXPORT_SYMBOL(target_splice_sess_cmd_list);
3693
3694 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
3695  * @se_sess:    session to wait for active I/O
3696  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
3697  */
3698 void target_wait_for_sess_cmds(
3699         struct se_session *se_sess,
3700         int wait_for_tasks)
3701 {
3702         struct se_cmd *se_cmd, *tmp_cmd;
3703         bool rc = false;
3704
3705         list_for_each_entry_safe(se_cmd, tmp_cmd,
3706                                 &se_sess->sess_wait_list, se_cmd_list) {
3707                 list_del(&se_cmd->se_cmd_list);
3708
3709                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
3710                         " %d\n", se_cmd, se_cmd->t_state,
3711                         se_cmd->se_tfo->get_cmd_state(se_cmd));
3712
3713                 if (wait_for_tasks) {
3714                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
3715                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3716                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
3717
3718                         rc = transport_wait_for_tasks(se_cmd);
3719
3720                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
3721                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3722                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
3723                 }
3724
3725                 if (!rc) {
3726                         wait_for_completion(&se_cmd->cmd_wait_comp);
3727                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
3728                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3729                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
3730                 }
3731
3732                 se_cmd->se_tfo->release_cmd(se_cmd);
3733         }
3734 }
3735 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3736
3737 /*      transport_lun_wait_for_tasks():
3738  *
3739  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
3740  *      an struct se_lun to be successfully shutdown.
3741  */
3742 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
3743 {
3744         unsigned long flags;
3745         int ret = 0;
3746
3747         /*
3748          * If the frontend has already requested this struct se_cmd to
3749          * be stopped, we can safely ignore this struct se_cmd.
3750          */
3751         spin_lock_irqsave(&cmd->t_state_lock, flags);
3752         if (cmd->transport_state & CMD_T_STOP) {
3753                 cmd->transport_state &= ~CMD_T_LUN_STOP;
3754
3755                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
3756                          cmd->se_tfo->get_task_tag(cmd));
3757                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3758                 transport_cmd_check_stop(cmd, 1, 0);
3759                 return -EPERM;
3760         }
3761         cmd->transport_state |= CMD_T_LUN_FE_STOP;
3762         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3763
3764         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
3765
3766         // XXX: audit task_flags checks.
3767         spin_lock_irqsave(&cmd->t_state_lock, flags);
3768         if ((cmd->transport_state & CMD_T_BUSY) &&
3769             (cmd->transport_state & CMD_T_SENT)) {
3770                 if (!target_stop_cmd(cmd, &flags))
3771                         ret++;
3772                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3773         } else {
3774                 spin_unlock_irqrestore(&cmd->t_state_lock,
3775                                 flags);
3776                 target_remove_from_execute_list(cmd);
3777         }
3778
3779         pr_debug("ConfigFS: cmd: %p stop tasks ret:"
3780                         " %d\n", cmd, ret);
3781         if (!ret) {
3782                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
3783                                 cmd->se_tfo->get_task_tag(cmd));
3784                 wait_for_completion(&cmd->transport_lun_stop_comp);
3785                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
3786                                 cmd->se_tfo->get_task_tag(cmd));
3787         }
3788         transport_remove_cmd_from_queue(cmd);
3789
3790         return 0;
3791 }
3792
3793 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
3794 {
3795         struct se_cmd *cmd = NULL;
3796         unsigned long lun_flags, cmd_flags;
3797         /*
3798          * Do exception processing and return CHECK_CONDITION status to the
3799          * Initiator Port.
3800          */
3801         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3802         while (!list_empty(&lun->lun_cmd_list)) {
3803                 cmd = list_first_entry(&lun->lun_cmd_list,
3804                        struct se_cmd, se_lun_node);
3805                 list_del_init(&cmd->se_lun_node);
3806
3807                 /*
3808                  * This will notify iscsi_target_transport.c:
3809                  * transport_cmd_check_stop() that a LUN shutdown is in
3810                  * progress for the iscsi_cmd_t.
3811                  */
3812                 spin_lock(&cmd->t_state_lock);
3813                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
3814                         "_lun_stop for  ITT: 0x%08x\n",
3815                         cmd->se_lun->unpacked_lun,
3816                         cmd->se_tfo->get_task_tag(cmd));
3817                 cmd->transport_state |= CMD_T_LUN_STOP;
3818                 spin_unlock(&cmd->t_state_lock);
3819
3820                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3821
3822                 if (!cmd->se_lun) {
3823                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
3824                                 cmd->se_tfo->get_task_tag(cmd),
3825                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
3826                         BUG();
3827                 }
3828                 /*
3829                  * If the Storage engine still owns the iscsi_cmd_t, determine
3830                  * and/or stop its context.
3831                  */
3832                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
3833                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
3834                         cmd->se_tfo->get_task_tag(cmd));
3835
3836                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
3837                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3838                         continue;
3839                 }
3840
3841                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
3842                         "_wait_for_tasks(): SUCCESS\n",
3843                         cmd->se_lun->unpacked_lun,
3844                         cmd->se_tfo->get_task_tag(cmd));
3845
3846                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3847                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
3848                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3849                         goto check_cond;
3850                 }
3851                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3852                 target_remove_from_state_list(cmd);
3853                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3854
3855                 /*
3856                  * The Storage engine stopped this struct se_cmd before it was
3857                  * send to the fabric frontend for delivery back to the
3858                  * Initiator Node.  Return this SCSI CDB back with an
3859                  * CHECK_CONDITION status.
3860                  */
3861 check_cond:
3862                 transport_send_check_condition_and_sense(cmd,
3863                                 TCM_NON_EXISTENT_LUN, 0);
3864                 /*
3865                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
3866                  * be released, notify the waiting thread now that LU has
3867                  * finished accessing it.
3868                  */
3869                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
3870                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
3871                         pr_debug("SE_LUN[%d] - Detected FE stop for"
3872                                 " struct se_cmd: %p ITT: 0x%08x\n",
3873                                 lun->unpacked_lun,
3874                                 cmd, cmd->se_tfo->get_task_tag(cmd));
3875
3876                         spin_unlock_irqrestore(&cmd->t_state_lock,
3877                                         cmd_flags);
3878                         transport_cmd_check_stop(cmd, 1, 0);
3879                         complete(&cmd->transport_lun_fe_stop_comp);
3880                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3881                         continue;
3882                 }
3883                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
3884                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
3885
3886                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
3887                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
3888         }
3889         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
3890 }
3891
3892 static int transport_clear_lun_thread(void *p)
3893 {
3894         struct se_lun *lun = p;
3895
3896         __transport_clear_lun_from_sessions(lun);
3897         complete(&lun->lun_shutdown_comp);
3898
3899         return 0;
3900 }
3901
3902 int transport_clear_lun_from_sessions(struct se_lun *lun)
3903 {
3904         struct task_struct *kt;
3905
3906         kt = kthread_run(transport_clear_lun_thread, lun,
3907                         "tcm_cl_%u", lun->unpacked_lun);
3908         if (IS_ERR(kt)) {
3909                 pr_err("Unable to start clear_lun thread\n");
3910                 return PTR_ERR(kt);
3911         }
3912         wait_for_completion(&lun->lun_shutdown_comp);
3913
3914         return 0;
3915 }
3916
3917 /**
3918  * transport_wait_for_tasks - wait for completion to occur
3919  * @cmd:        command to wait
3920  *
3921  * Called from frontend fabric context to wait for storage engine
3922  * to pause and/or release frontend generated struct se_cmd.
3923  */
3924 bool transport_wait_for_tasks(struct se_cmd *cmd)
3925 {
3926         unsigned long flags;
3927
3928         spin_lock_irqsave(&cmd->t_state_lock, flags);
3929         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3930             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3931                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3932                 return false;
3933         }
3934         /*
3935          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
3936          * has been set in transport_set_supported_SAM_opcode().
3937          */
3938         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3939             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3940                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3941                 return false;
3942         }
3943         /*
3944          * If we are already stopped due to an external event (ie: LUN shutdown)
3945          * sleep until the connection can have the passed struct se_cmd back.
3946          * The cmd->transport_lun_stopped_sem will be upped by
3947          * transport_clear_lun_from_sessions() once the ConfigFS context caller
3948          * has completed its operation on the struct se_cmd.
3949          */
3950         if (cmd->transport_state & CMD_T_LUN_STOP) {
3951                 pr_debug("wait_for_tasks: Stopping"
3952                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
3953                         "_stop_comp); for ITT: 0x%08x\n",
3954                         cmd->se_tfo->get_task_tag(cmd));
3955                 /*
3956                  * There is a special case for WRITES where a FE exception +
3957                  * LUN shutdown means ConfigFS context is still sleeping on
3958                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
3959                  * We go ahead and up transport_lun_stop_comp just to be sure
3960                  * here.
3961                  */
3962                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3963                 complete(&cmd->transport_lun_stop_comp);
3964                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
3965                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3966
3967                 target_remove_from_state_list(cmd);
3968                 /*
3969                  * At this point, the frontend who was the originator of this
3970                  * struct se_cmd, now owns the structure and can be released through
3971                  * normal means below.
3972                  */
3973                 pr_debug("wait_for_tasks: Stopped"
3974                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
3975                         "stop_comp); for ITT: 0x%08x\n",
3976                         cmd->se_tfo->get_task_tag(cmd));
3977
3978                 cmd->transport_state &= ~CMD_T_LUN_STOP;
3979         }
3980
3981         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
3982                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3983                 return false;
3984         }
3985
3986         cmd->transport_state |= CMD_T_STOP;
3987
3988         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
3989                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
3990                 cmd, cmd->se_tfo->get_task_tag(cmd),
3991                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
3992
3993         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3994
3995         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
3996
3997         wait_for_completion(&cmd->t_transport_stop_comp);
3998
3999         spin_lock_irqsave(&cmd->t_state_lock, flags);
4000         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4001
4002         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4003                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4004                 cmd->se_tfo->get_task_tag(cmd));
4005
4006         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4007
4008         return true;
4009 }
4010 EXPORT_SYMBOL(transport_wait_for_tasks);
4011
4012 static int transport_get_sense_codes(
4013         struct se_cmd *cmd,
4014         u8 *asc,
4015         u8 *ascq)
4016 {
4017         *asc = cmd->scsi_asc;
4018         *ascq = cmd->scsi_ascq;
4019
4020         return 0;
4021 }
4022
4023 static int transport_set_sense_codes(
4024         struct se_cmd *cmd,
4025         u8 asc,
4026         u8 ascq)
4027 {
4028         cmd->scsi_asc = asc;
4029         cmd->scsi_ascq = ascq;
4030
4031         return 0;
4032 }
4033
4034 int transport_send_check_condition_and_sense(
4035         struct se_cmd *cmd,
4036         u8 reason,
4037         int from_transport)
4038 {
4039         unsigned char *buffer = cmd->sense_buffer;
4040         unsigned long flags;
4041         int offset;
4042         u8 asc = 0, ascq = 0;
4043
4044         spin_lock_irqsave(&cmd->t_state_lock, flags);
4045         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4046                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4047                 return 0;
4048         }
4049         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4050         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4051
4052         if (!reason && from_transport)
4053                 goto after_reason;
4054
4055         if (!from_transport)
4056                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4057         /*
4058          * Data Segment and SenseLength of the fabric response PDU.
4059          *
4060          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4061          * from include/scsi/scsi_cmnd.h
4062          */
4063         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4064                                 TRANSPORT_SENSE_BUFFER);
4065         /*
4066          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4067          * SENSE KEY values from include/scsi/scsi.h
4068          */
4069         switch (reason) {
4070         case TCM_NON_EXISTENT_LUN:
4071                 /* CURRENT ERROR */
4072                 buffer[offset] = 0x70;
4073                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4074                 /* ILLEGAL REQUEST */
4075                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4076                 /* LOGICAL UNIT NOT SUPPORTED */
4077                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4078                 break;
4079         case TCM_UNSUPPORTED_SCSI_OPCODE:
4080         case TCM_SECTOR_COUNT_TOO_MANY:
4081                 /* CURRENT ERROR */
4082                 buffer[offset] = 0x70;
4083                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4084                 /* ILLEGAL REQUEST */
4085                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4086                 /* INVALID COMMAND OPERATION CODE */
4087                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4088                 break;
4089         case TCM_UNKNOWN_MODE_PAGE:
4090                 /* CURRENT ERROR */
4091                 buffer[offset] = 0x70;
4092                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4093                 /* ILLEGAL REQUEST */
4094                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4095                 /* INVALID FIELD IN CDB */
4096                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4097                 break;
4098         case TCM_CHECK_CONDITION_ABORT_CMD:
4099                 /* CURRENT ERROR */
4100                 buffer[offset] = 0x70;
4101                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4102                 /* ABORTED COMMAND */
4103                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4104                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4105                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4106                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4107                 break;
4108         case TCM_INCORRECT_AMOUNT_OF_DATA:
4109                 /* CURRENT ERROR */
4110                 buffer[offset] = 0x70;
4111                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4112                 /* ABORTED COMMAND */
4113                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4114                 /* WRITE ERROR */
4115                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4116                 /* NOT ENOUGH UNSOLICITED DATA */
4117                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4118                 break;
4119         case TCM_INVALID_CDB_FIELD:
4120                 /* CURRENT ERROR */
4121                 buffer[offset] = 0x70;
4122                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4123                 /* ILLEGAL REQUEST */
4124                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4125                 /* INVALID FIELD IN CDB */
4126                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4127                 break;
4128         case TCM_INVALID_PARAMETER_LIST:
4129                 /* CURRENT ERROR */
4130                 buffer[offset] = 0x70;
4131                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4132                 /* ILLEGAL REQUEST */
4133                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4134                 /* INVALID FIELD IN PARAMETER LIST */
4135                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4136                 break;
4137         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4138                 /* CURRENT ERROR */
4139                 buffer[offset] = 0x70;
4140                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4141                 /* ABORTED COMMAND */
4142                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4143                 /* WRITE ERROR */
4144                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4145                 /* UNEXPECTED_UNSOLICITED_DATA */
4146                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4147                 break;
4148         case TCM_SERVICE_CRC_ERROR:
4149                 /* CURRENT ERROR */
4150                 buffer[offset] = 0x70;
4151                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4152                 /* ABORTED COMMAND */
4153                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4154                 /* PROTOCOL SERVICE CRC ERROR */
4155                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4156                 /* N/A */
4157                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4158                 break;
4159         case TCM_SNACK_REJECTED:
4160                 /* CURRENT ERROR */
4161                 buffer[offset] = 0x70;
4162                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4163                 /* ABORTED COMMAND */
4164                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4165                 /* READ ERROR */
4166                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4167                 /* FAILED RETRANSMISSION REQUEST */
4168                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4169                 break;
4170         case TCM_WRITE_PROTECTED:
4171                 /* CURRENT ERROR */
4172                 buffer[offset] = 0x70;
4173                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4174                 /* DATA PROTECT */
4175                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4176                 /* WRITE PROTECTED */
4177                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4178                 break;
4179         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4180                 /* CURRENT ERROR */
4181                 buffer[offset] = 0x70;
4182                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4183                 /* UNIT ATTENTION */
4184                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4185                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4186                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4187                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4188                 break;
4189         case TCM_CHECK_CONDITION_NOT_READY:
4190                 /* CURRENT ERROR */
4191                 buffer[offset] = 0x70;
4192                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4193                 /* Not Ready */
4194                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4195                 transport_get_sense_codes(cmd, &asc, &ascq);
4196                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4197                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4198                 break;
4199         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4200         default:
4201                 /* CURRENT ERROR */
4202                 buffer[offset] = 0x70;
4203                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4204                 /* ILLEGAL REQUEST */
4205                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4206                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4207                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4208                 break;
4209         }
4210         /*
4211          * This code uses linux/include/scsi/scsi.h SAM status codes!
4212          */
4213         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4214         /*
4215          * Automatically padded, this value is encoded in the fabric's
4216          * data_length response PDU containing the SCSI defined sense data.
4217          */
4218         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4219
4220 after_reason:
4221         return cmd->se_tfo->queue_status(cmd);
4222 }
4223 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4224
4225 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4226 {
4227         int ret = 0;
4228
4229         if (cmd->transport_state & CMD_T_ABORTED) {
4230                 if (!send_status ||
4231                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4232                         return 1;
4233
4234                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4235                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4236                         cmd->t_task_cdb[0],
4237                         cmd->se_tfo->get_task_tag(cmd));
4238
4239                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4240                 cmd->se_tfo->queue_status(cmd);
4241                 ret = 1;
4242         }
4243         return ret;
4244 }
4245 EXPORT_SYMBOL(transport_check_aborted_status);
4246
4247 void transport_send_task_abort(struct se_cmd *cmd)
4248 {
4249         unsigned long flags;
4250
4251         spin_lock_irqsave(&cmd->t_state_lock, flags);
4252         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4253                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4254                 return;
4255         }
4256         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4257
4258         /*
4259          * If there are still expected incoming fabric WRITEs, we wait
4260          * until until they have completed before sending a TASK_ABORTED
4261          * response.  This response with TASK_ABORTED status will be
4262          * queued back to fabric module by transport_check_aborted_status().
4263          */
4264         if (cmd->data_direction == DMA_TO_DEVICE) {
4265                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4266                         cmd->transport_state |= CMD_T_ABORTED;
4267                         smp_mb__after_atomic_inc();
4268                 }
4269         }
4270         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4271
4272         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4273                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4274                 cmd->se_tfo->get_task_tag(cmd));
4275
4276         cmd->se_tfo->queue_status(cmd);
4277 }
4278
4279 static int transport_generic_do_tmr(struct se_cmd *cmd)
4280 {
4281         struct se_device *dev = cmd->se_dev;
4282         struct se_tmr_req *tmr = cmd->se_tmr_req;
4283         int ret;
4284
4285         switch (tmr->function) {
4286         case TMR_ABORT_TASK:
4287                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4288                 break;
4289         case TMR_ABORT_TASK_SET:
4290         case TMR_CLEAR_ACA:
4291         case TMR_CLEAR_TASK_SET:
4292                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4293                 break;
4294         case TMR_LUN_RESET:
4295                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4296                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4297                                          TMR_FUNCTION_REJECTED;
4298                 break;
4299         case TMR_TARGET_WARM_RESET:
4300                 tmr->response = TMR_FUNCTION_REJECTED;
4301                 break;
4302         case TMR_TARGET_COLD_RESET:
4303                 tmr->response = TMR_FUNCTION_REJECTED;
4304                 break;
4305         default:
4306                 pr_err("Uknown TMR function: 0x%02x.\n",
4307                                 tmr->function);
4308                 tmr->response = TMR_FUNCTION_REJECTED;
4309                 break;
4310         }
4311
4312         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4313         cmd->se_tfo->queue_tm_rsp(cmd);
4314
4315         transport_cmd_check_stop_to_fabric(cmd);
4316         return 0;
4317 }
4318
4319 /*      transport_processing_thread():
4320  *
4321  *
4322  */
4323 static int transport_processing_thread(void *param)
4324 {
4325         int ret;
4326         struct se_cmd *cmd;
4327         struct se_device *dev = param;
4328
4329         while (!kthread_should_stop()) {
4330                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4331                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4332                                 kthread_should_stop());
4333                 if (ret < 0)
4334                         goto out;
4335
4336 get_cmd:
4337                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4338                 if (!cmd)
4339                         continue;
4340
4341                 switch (cmd->t_state) {
4342                 case TRANSPORT_NEW_CMD:
4343                         BUG();
4344                         break;
4345                 case TRANSPORT_NEW_CMD_MAP:
4346                         if (!cmd->se_tfo->new_cmd_map) {
4347                                 pr_err("cmd->se_tfo->new_cmd_map is"
4348                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4349                                 BUG();
4350                         }
4351                         ret = cmd->se_tfo->new_cmd_map(cmd);
4352                         if (ret < 0) {
4353                                 transport_generic_request_failure(cmd);
4354                                 break;
4355                         }
4356                         ret = transport_generic_new_cmd(cmd);
4357                         if (ret < 0) {
4358                                 transport_generic_request_failure(cmd);
4359                                 break;
4360                         }
4361                         break;
4362                 case TRANSPORT_PROCESS_WRITE:
4363                         transport_generic_process_write(cmd);
4364                         break;
4365                 case TRANSPORT_PROCESS_TMR:
4366                         transport_generic_do_tmr(cmd);
4367                         break;
4368                 case TRANSPORT_COMPLETE_QF_WP:
4369                         transport_write_pending_qf(cmd);
4370                         break;
4371                 case TRANSPORT_COMPLETE_QF_OK:
4372                         transport_complete_qf(cmd);
4373                         break;
4374                 default:
4375                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4376                                 "i_state: %d on SE LUN: %u\n",
4377                                 cmd->t_state,
4378                                 cmd->se_tfo->get_task_tag(cmd),
4379                                 cmd->se_tfo->get_cmd_state(cmd),
4380                                 cmd->se_lun->unpacked_lun);
4381                         BUG();
4382                 }
4383
4384                 goto get_cmd;
4385         }
4386
4387 out:
4388         WARN_ON(!list_empty(&dev->state_list));
4389         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4390         dev->process_thread = NULL;
4391         return 0;
4392 }