]> Pileus Git - ~andy/linux/blob - drivers/target/target_core_transport.c
iscsi-target: Fix dynamic -> explict NodeACL pointer reference
[~andy/linux] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <linux/ratelimit.h>
41 #include <asm/unaligned.h>
42 #include <net/sock.h>
43 #include <net/tcp.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_cmnd.h>
46 #include <scsi/scsi_tcq.h>
47
48 #include <target/target_core_base.h>
49 #include <target/target_core_backend.h>
50 #include <target/target_core_fabric.h>
51 #include <target/target_core_configfs.h>
52
53 #include "target_core_internal.h"
54 #include "target_core_alua.h"
55 #include "target_core_pr.h"
56 #include "target_core_ua.h"
57
58 static int sub_api_initialized;
59
60 static struct workqueue_struct *target_completion_wq;
61 static struct kmem_cache *se_sess_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
68
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74                 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void target_complete_ok_work(struct work_struct *work);
81
82 int init_se_kmem_caches(void)
83 {
84         se_sess_cache = kmem_cache_create("se_sess_cache",
85                         sizeof(struct se_session), __alignof__(struct se_session),
86                         0, NULL);
87         if (!se_sess_cache) {
88                 pr_err("kmem_cache_create() for struct se_session"
89                                 " failed\n");
90                 goto out;
91         }
92         se_ua_cache = kmem_cache_create("se_ua_cache",
93                         sizeof(struct se_ua), __alignof__(struct se_ua),
94                         0, NULL);
95         if (!se_ua_cache) {
96                 pr_err("kmem_cache_create() for struct se_ua failed\n");
97                 goto out_free_sess_cache;
98         }
99         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
100                         sizeof(struct t10_pr_registration),
101                         __alignof__(struct t10_pr_registration), 0, NULL);
102         if (!t10_pr_reg_cache) {
103                 pr_err("kmem_cache_create() for struct t10_pr_registration"
104                                 " failed\n");
105                 goto out_free_ua_cache;
106         }
107         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
108                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
109                         0, NULL);
110         if (!t10_alua_lu_gp_cache) {
111                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
112                                 " failed\n");
113                 goto out_free_pr_reg_cache;
114         }
115         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
116                         sizeof(struct t10_alua_lu_gp_member),
117                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
118         if (!t10_alua_lu_gp_mem_cache) {
119                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
120                                 "cache failed\n");
121                 goto out_free_lu_gp_cache;
122         }
123         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
124                         sizeof(struct t10_alua_tg_pt_gp),
125                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
126         if (!t10_alua_tg_pt_gp_cache) {
127                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
128                                 "cache failed\n");
129                 goto out_free_lu_gp_mem_cache;
130         }
131         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
132                         "t10_alua_tg_pt_gp_mem_cache",
133                         sizeof(struct t10_alua_tg_pt_gp_member),
134                         __alignof__(struct t10_alua_tg_pt_gp_member),
135                         0, NULL);
136         if (!t10_alua_tg_pt_gp_mem_cache) {
137                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
138                                 "mem_t failed\n");
139                 goto out_free_tg_pt_gp_cache;
140         }
141
142         target_completion_wq = alloc_workqueue("target_completion",
143                                                WQ_MEM_RECLAIM, 0);
144         if (!target_completion_wq)
145                 goto out_free_tg_pt_gp_mem_cache;
146
147         return 0;
148
149 out_free_tg_pt_gp_mem_cache:
150         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
151 out_free_tg_pt_gp_cache:
152         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156         kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158         kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160         kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162         kmem_cache_destroy(se_sess_cache);
163 out:
164         return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169         destroy_workqueue(target_completion_wq);
170         kmem_cache_destroy(se_sess_cache);
171         kmem_cache_destroy(se_ua_cache);
172         kmem_cache_destroy(t10_pr_reg_cache);
173         kmem_cache_destroy(t10_alua_lu_gp_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
177 }
178
179 /* This code ensures unique mib indexes are handed out. */
180 static DEFINE_SPINLOCK(scsi_mib_index_lock);
181 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
182
183 /*
184  * Allocate a new row index for the entry type specified
185  */
186 u32 scsi_get_new_index(scsi_index_t type)
187 {
188         u32 new_index;
189
190         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
191
192         spin_lock(&scsi_mib_index_lock);
193         new_index = ++scsi_mib_index[type];
194         spin_unlock(&scsi_mib_index_lock);
195
196         return new_index;
197 }
198
199 static void transport_init_queue_obj(struct se_queue_obj *qobj)
200 {
201         atomic_set(&qobj->queue_cnt, 0);
202         INIT_LIST_HEAD(&qobj->qobj_list);
203         init_waitqueue_head(&qobj->thread_wq);
204         spin_lock_init(&qobj->cmd_queue_lock);
205 }
206
207 void transport_subsystem_check_init(void)
208 {
209         int ret;
210
211         if (sub_api_initialized)
212                 return;
213
214         ret = request_module("target_core_iblock");
215         if (ret != 0)
216                 pr_err("Unable to load target_core_iblock\n");
217
218         ret = request_module("target_core_file");
219         if (ret != 0)
220                 pr_err("Unable to load target_core_file\n");
221
222         ret = request_module("target_core_pscsi");
223         if (ret != 0)
224                 pr_err("Unable to load target_core_pscsi\n");
225
226         ret = request_module("target_core_stgt");
227         if (ret != 0)
228                 pr_err("Unable to load target_core_stgt\n");
229
230         sub_api_initialized = 1;
231         return;
232 }
233
234 struct se_session *transport_init_session(void)
235 {
236         struct se_session *se_sess;
237
238         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
239         if (!se_sess) {
240                 pr_err("Unable to allocate struct se_session from"
241                                 " se_sess_cache\n");
242                 return ERR_PTR(-ENOMEM);
243         }
244         INIT_LIST_HEAD(&se_sess->sess_list);
245         INIT_LIST_HEAD(&se_sess->sess_acl_list);
246         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
247         INIT_LIST_HEAD(&se_sess->sess_wait_list);
248         spin_lock_init(&se_sess->sess_cmd_lock);
249
250         return se_sess;
251 }
252 EXPORT_SYMBOL(transport_init_session);
253
254 /*
255  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
256  */
257 void __transport_register_session(
258         struct se_portal_group *se_tpg,
259         struct se_node_acl *se_nacl,
260         struct se_session *se_sess,
261         void *fabric_sess_ptr)
262 {
263         unsigned char buf[PR_REG_ISID_LEN];
264
265         se_sess->se_tpg = se_tpg;
266         se_sess->fabric_sess_ptr = fabric_sess_ptr;
267         /*
268          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
269          *
270          * Only set for struct se_session's that will actually be moving I/O.
271          * eg: *NOT* discovery sessions.
272          */
273         if (se_nacl) {
274                 /*
275                  * If the fabric module supports an ISID based TransportID,
276                  * save this value in binary from the fabric I_T Nexus now.
277                  */
278                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
279                         memset(&buf[0], 0, PR_REG_ISID_LEN);
280                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
281                                         &buf[0], PR_REG_ISID_LEN);
282                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
283                 }
284                 spin_lock_irq(&se_nacl->nacl_sess_lock);
285                 /*
286                  * The se_nacl->nacl_sess pointer will be set to the
287                  * last active I_T Nexus for each struct se_node_acl.
288                  */
289                 se_nacl->nacl_sess = se_sess;
290
291                 list_add_tail(&se_sess->sess_acl_list,
292                               &se_nacl->acl_sess_list);
293                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
294         }
295         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
296
297         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
298                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
299 }
300 EXPORT_SYMBOL(__transport_register_session);
301
302 void transport_register_session(
303         struct se_portal_group *se_tpg,
304         struct se_node_acl *se_nacl,
305         struct se_session *se_sess,
306         void *fabric_sess_ptr)
307 {
308         spin_lock_bh(&se_tpg->session_lock);
309         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
310         spin_unlock_bh(&se_tpg->session_lock);
311 }
312 EXPORT_SYMBOL(transport_register_session);
313
314 void transport_deregister_session_configfs(struct se_session *se_sess)
315 {
316         struct se_node_acl *se_nacl;
317         unsigned long flags;
318         /*
319          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
320          */
321         se_nacl = se_sess->se_node_acl;
322         if (se_nacl) {
323                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
324                 list_del(&se_sess->sess_acl_list);
325                 /*
326                  * If the session list is empty, then clear the pointer.
327                  * Otherwise, set the struct se_session pointer from the tail
328                  * element of the per struct se_node_acl active session list.
329                  */
330                 if (list_empty(&se_nacl->acl_sess_list))
331                         se_nacl->nacl_sess = NULL;
332                 else {
333                         se_nacl->nacl_sess = container_of(
334                                         se_nacl->acl_sess_list.prev,
335                                         struct se_session, sess_acl_list);
336                 }
337                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
338         }
339 }
340 EXPORT_SYMBOL(transport_deregister_session_configfs);
341
342 void transport_free_session(struct se_session *se_sess)
343 {
344         kmem_cache_free(se_sess_cache, se_sess);
345 }
346 EXPORT_SYMBOL(transport_free_session);
347
348 void transport_deregister_session(struct se_session *se_sess)
349 {
350         struct se_portal_group *se_tpg = se_sess->se_tpg;
351         struct se_node_acl *se_nacl;
352         unsigned long flags;
353
354         if (!se_tpg) {
355                 transport_free_session(se_sess);
356                 return;
357         }
358
359         spin_lock_irqsave(&se_tpg->session_lock, flags);
360         list_del(&se_sess->sess_list);
361         se_sess->se_tpg = NULL;
362         se_sess->fabric_sess_ptr = NULL;
363         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
364
365         /*
366          * Determine if we need to do extra work for this initiator node's
367          * struct se_node_acl if it had been previously dynamically generated.
368          */
369         se_nacl = se_sess->se_node_acl;
370         if (se_nacl) {
371                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
372                 if (se_nacl->dynamic_node_acl) {
373                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
374                                         se_tpg)) {
375                                 list_del(&se_nacl->acl_list);
376                                 se_tpg->num_node_acls--;
377                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
378
379                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
380                                 core_free_device_list_for_node(se_nacl, se_tpg);
381                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
382                                                 se_nacl);
383                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384                         }
385                 }
386                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
387         }
388
389         transport_free_session(se_sess);
390
391         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
392                 se_tpg->se_tpg_tfo->get_fabric_name());
393 }
394 EXPORT_SYMBOL(transport_deregister_session);
395
396 /*
397  * Called with cmd->t_state_lock held.
398  */
399 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
400 {
401         struct se_device *dev = cmd->se_dev;
402         struct se_task *task;
403         unsigned long flags;
404
405         if (!dev)
406                 return;
407
408         list_for_each_entry(task, &cmd->t_task_list, t_list) {
409                 if (task->task_flags & TF_ACTIVE)
410                         continue;
411
412                 spin_lock_irqsave(&dev->execute_task_lock, flags);
413                 if (task->t_state_active) {
414                         pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
415                                 cmd->se_tfo->get_task_tag(cmd), dev, task);
416
417                         list_del(&task->t_state_list);
418                         atomic_dec(&cmd->t_task_cdbs_ex_left);
419                         task->t_state_active = false;
420                 }
421                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
422         }
423
424 }
425
426 /*      transport_cmd_check_stop():
427  *
428  *      'transport_off = 1' determines if CMD_T_ACTIVE should be cleared.
429  *      'transport_off = 2' determines if task_dev_state should be removed.
430  *
431  *      A non-zero u8 t_state sets cmd->t_state.
432  *      Returns 1 when command is stopped, else 0.
433  */
434 static int transport_cmd_check_stop(
435         struct se_cmd *cmd,
436         int transport_off,
437         u8 t_state)
438 {
439         unsigned long flags;
440
441         spin_lock_irqsave(&cmd->t_state_lock, flags);
442         /*
443          * Determine if IOCTL context caller in requesting the stopping of this
444          * command for LUN shutdown purposes.
445          */
446         if (cmd->transport_state & CMD_T_LUN_STOP) {
447                 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
448                         __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
449
450                 cmd->transport_state &= ~CMD_T_ACTIVE;
451                 if (transport_off == 2)
452                         transport_all_task_dev_remove_state(cmd);
453                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
454
455                 complete(&cmd->transport_lun_stop_comp);
456                 return 1;
457         }
458         /*
459          * Determine if frontend context caller is requesting the stopping of
460          * this command for frontend exceptions.
461          */
462         if (cmd->transport_state & CMD_T_STOP) {
463                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
464                         __func__, __LINE__,
465                         cmd->se_tfo->get_task_tag(cmd));
466
467                 if (transport_off == 2)
468                         transport_all_task_dev_remove_state(cmd);
469
470                 /*
471                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
472                  * to FE.
473                  */
474                 if (transport_off == 2)
475                         cmd->se_lun = NULL;
476                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
477
478                 complete(&cmd->t_transport_stop_comp);
479                 return 1;
480         }
481         if (transport_off) {
482                 cmd->transport_state &= ~CMD_T_ACTIVE;
483                 if (transport_off == 2) {
484                         transport_all_task_dev_remove_state(cmd);
485                         /*
486                          * Clear struct se_cmd->se_lun before the transport_off == 2
487                          * handoff to fabric module.
488                          */
489                         cmd->se_lun = NULL;
490                         /*
491                          * Some fabric modules like tcm_loop can release
492                          * their internally allocated I/O reference now and
493                          * struct se_cmd now.
494                          *
495                          * Fabric modules are expected to return '1' here if the
496                          * se_cmd being passed is released at this point,
497                          * or zero if not being released.
498                          */
499                         if (cmd->se_tfo->check_stop_free != NULL) {
500                                 spin_unlock_irqrestore(
501                                         &cmd->t_state_lock, flags);
502
503                                 return cmd->se_tfo->check_stop_free(cmd);
504                         }
505                 }
506                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
507
508                 return 0;
509         } else if (t_state)
510                 cmd->t_state = t_state;
511         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
512
513         return 0;
514 }
515
516 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
517 {
518         return transport_cmd_check_stop(cmd, 2, 0);
519 }
520
521 static void transport_lun_remove_cmd(struct se_cmd *cmd)
522 {
523         struct se_lun *lun = cmd->se_lun;
524         unsigned long flags;
525
526         if (!lun)
527                 return;
528
529         spin_lock_irqsave(&cmd->t_state_lock, flags);
530         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
531                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
532                 transport_all_task_dev_remove_state(cmd);
533         }
534         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
535
536         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
537         if (!list_empty(&cmd->se_lun_node))
538                 list_del_init(&cmd->se_lun_node);
539         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
540 }
541
542 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
543 {
544         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
545                 transport_lun_remove_cmd(cmd);
546
547         if (transport_cmd_check_stop_to_fabric(cmd))
548                 return;
549         if (remove) {
550                 transport_remove_cmd_from_queue(cmd);
551                 transport_put_cmd(cmd);
552         }
553 }
554
555 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
556                 bool at_head)
557 {
558         struct se_device *dev = cmd->se_dev;
559         struct se_queue_obj *qobj = &dev->dev_queue_obj;
560         unsigned long flags;
561
562         if (t_state) {
563                 spin_lock_irqsave(&cmd->t_state_lock, flags);
564                 cmd->t_state = t_state;
565                 cmd->transport_state |= CMD_T_ACTIVE;
566                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
567         }
568
569         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
570
571         /* If the cmd is already on the list, remove it before we add it */
572         if (!list_empty(&cmd->se_queue_node))
573                 list_del(&cmd->se_queue_node);
574         else
575                 atomic_inc(&qobj->queue_cnt);
576
577         if (at_head)
578                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
579         else
580                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
581         cmd->transport_state |= CMD_T_QUEUED;
582         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
583
584         wake_up_interruptible(&qobj->thread_wq);
585 }
586
587 static struct se_cmd *
588 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
589 {
590         struct se_cmd *cmd;
591         unsigned long flags;
592
593         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
594         if (list_empty(&qobj->qobj_list)) {
595                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
596                 return NULL;
597         }
598         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
599
600         cmd->transport_state &= ~CMD_T_QUEUED;
601         list_del_init(&cmd->se_queue_node);
602         atomic_dec(&qobj->queue_cnt);
603         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
604
605         return cmd;
606 }
607
608 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
609 {
610         struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
611         unsigned long flags;
612
613         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
614         if (!(cmd->transport_state & CMD_T_QUEUED)) {
615                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
616                 return;
617         }
618         cmd->transport_state &= ~CMD_T_QUEUED;
619         atomic_dec(&qobj->queue_cnt);
620         list_del_init(&cmd->se_queue_node);
621         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
622 }
623
624 /*
625  * Completion function used by TCM subsystem plugins (such as FILEIO)
626  * for queueing up response from struct se_subsystem_api->do_task()
627  */
628 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
629 {
630         struct se_task *task = list_entry(cmd->t_task_list.next,
631                                 struct se_task, t_list);
632
633         if (good) {
634                 cmd->scsi_status = SAM_STAT_GOOD;
635                 task->task_scsi_status = GOOD;
636         } else {
637                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
638                 task->task_se_cmd->scsi_sense_reason =
639                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
640
641         }
642
643         transport_complete_task(task, good);
644 }
645 EXPORT_SYMBOL(transport_complete_sync_cache);
646
647 static void target_complete_failure_work(struct work_struct *work)
648 {
649         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
650
651         transport_generic_request_failure(cmd);
652 }
653
654 /*      transport_complete_task():
655  *
656  *      Called from interrupt and non interrupt context depending
657  *      on the transport plugin.
658  */
659 void transport_complete_task(struct se_task *task, int success)
660 {
661         struct se_cmd *cmd = task->task_se_cmd;
662         struct se_device *dev = cmd->se_dev;
663         unsigned long flags;
664
665         spin_lock_irqsave(&cmd->t_state_lock, flags);
666         task->task_flags &= ~TF_ACTIVE;
667
668         /*
669          * See if any sense data exists, if so set the TASK_SENSE flag.
670          * Also check for any other post completion work that needs to be
671          * done by the plugins.
672          */
673         if (dev && dev->transport->transport_complete) {
674                 if (dev->transport->transport_complete(task) != 0) {
675                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
676                         task->task_flags |= TF_HAS_SENSE;
677                         success = 1;
678                 }
679         }
680
681         /*
682          * See if we are waiting for outstanding struct se_task
683          * to complete for an exception condition
684          */
685         if (task->task_flags & TF_REQUEST_STOP) {
686                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
687                 complete(&task->task_stop_comp);
688                 return;
689         }
690
691         if (!success)
692                 cmd->transport_state |= CMD_T_FAILED;
693
694         /*
695          * Decrement the outstanding t_task_cdbs_left count.  The last
696          * struct se_task from struct se_cmd will complete itself into the
697          * device queue depending upon int success.
698          */
699         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
700                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701                 return;
702         }
703         /*
704          * Check for case where an explict ABORT_TASK has been received
705          * and transport_wait_for_tasks() will be waiting for completion..
706          */
707         if (cmd->transport_state & CMD_T_ABORTED &&
708             cmd->transport_state & CMD_T_STOP) {
709                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
710                 complete(&cmd->t_transport_stop_comp);
711                 return;
712         } else if (cmd->transport_state & CMD_T_FAILED) {
713                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
714                 INIT_WORK(&cmd->work, target_complete_failure_work);
715         } else {
716                 INIT_WORK(&cmd->work, target_complete_ok_work);
717         }
718
719         cmd->t_state = TRANSPORT_COMPLETE;
720         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
721         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722
723         queue_work(target_completion_wq, &cmd->work);
724 }
725 EXPORT_SYMBOL(transport_complete_task);
726
727 /*
728  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
729  * struct se_task list are ready to be added to the active execution list
730  * struct se_device
731
732  * Called with se_dev_t->execute_task_lock called.
733  */
734 static inline int transport_add_task_check_sam_attr(
735         struct se_task *task,
736         struct se_task *task_prev,
737         struct se_device *dev)
738 {
739         /*
740          * No SAM Task attribute emulation enabled, add to tail of
741          * execution queue
742          */
743         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
744                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
745                 return 0;
746         }
747         /*
748          * HEAD_OF_QUEUE attribute for received CDB, which means
749          * the first task that is associated with a struct se_cmd goes to
750          * head of the struct se_device->execute_task_list, and task_prev
751          * after that for each subsequent task
752          */
753         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
754                 list_add(&task->t_execute_list,
755                                 (task_prev != NULL) ?
756                                 &task_prev->t_execute_list :
757                                 &dev->execute_task_list);
758
759                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
760                                 " in execution queue\n",
761                                 task->task_se_cmd->t_task_cdb[0]);
762                 return 1;
763         }
764         /*
765          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
766          * transitioned from Dermant -> Active state, and are added to the end
767          * of the struct se_device->execute_task_list
768          */
769         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
770         return 0;
771 }
772
773 /*      __transport_add_task_to_execute_queue():
774  *
775  *      Called with se_dev_t->execute_task_lock called.
776  */
777 static void __transport_add_task_to_execute_queue(
778         struct se_task *task,
779         struct se_task *task_prev,
780         struct se_device *dev)
781 {
782         int head_of_queue;
783
784         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
785         atomic_inc(&dev->execute_tasks);
786
787         if (task->t_state_active)
788                 return;
789         /*
790          * Determine if this task needs to go to HEAD_OF_QUEUE for the
791          * state list as well.  Running with SAM Task Attribute emulation
792          * will always return head_of_queue == 0 here
793          */
794         if (head_of_queue)
795                 list_add(&task->t_state_list, (task_prev) ?
796                                 &task_prev->t_state_list :
797                                 &dev->state_task_list);
798         else
799                 list_add_tail(&task->t_state_list, &dev->state_task_list);
800
801         task->t_state_active = true;
802
803         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
804                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
805                 task, dev);
806 }
807
808 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
809 {
810         struct se_device *dev = cmd->se_dev;
811         struct se_task *task;
812         unsigned long flags;
813
814         spin_lock_irqsave(&cmd->t_state_lock, flags);
815         list_for_each_entry(task, &cmd->t_task_list, t_list) {
816                 spin_lock(&dev->execute_task_lock);
817                 if (!task->t_state_active) {
818                         list_add_tail(&task->t_state_list,
819                                       &dev->state_task_list);
820                         task->t_state_active = true;
821
822                         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
823                                 task->task_se_cmd->se_tfo->get_task_tag(
824                                 task->task_se_cmd), task, dev);
825                 }
826                 spin_unlock(&dev->execute_task_lock);
827         }
828         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
829 }
830
831 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
832 {
833         struct se_device *dev = cmd->se_dev;
834         struct se_task *task, *task_prev = NULL;
835
836         list_for_each_entry(task, &cmd->t_task_list, t_list) {
837                 if (!list_empty(&task->t_execute_list))
838                         continue;
839                 /*
840                  * __transport_add_task_to_execute_queue() handles the
841                  * SAM Task Attribute emulation if enabled
842                  */
843                 __transport_add_task_to_execute_queue(task, task_prev, dev);
844                 task_prev = task;
845         }
846 }
847
848 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
849 {
850         unsigned long flags;
851         struct se_device *dev = cmd->se_dev;
852
853         spin_lock_irqsave(&dev->execute_task_lock, flags);
854         __transport_add_tasks_from_cmd(cmd);
855         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
856 }
857
858 void __transport_remove_task_from_execute_queue(struct se_task *task,
859                 struct se_device *dev)
860 {
861         list_del_init(&task->t_execute_list);
862         atomic_dec(&dev->execute_tasks);
863 }
864
865 static void transport_remove_task_from_execute_queue(
866         struct se_task *task,
867         struct se_device *dev)
868 {
869         unsigned long flags;
870
871         if (WARN_ON(list_empty(&task->t_execute_list)))
872                 return;
873
874         spin_lock_irqsave(&dev->execute_task_lock, flags);
875         __transport_remove_task_from_execute_queue(task, dev);
876         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
877 }
878
879 /*
880  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
881  */
882
883 static void target_qf_do_work(struct work_struct *work)
884 {
885         struct se_device *dev = container_of(work, struct se_device,
886                                         qf_work_queue);
887         LIST_HEAD(qf_cmd_list);
888         struct se_cmd *cmd, *cmd_tmp;
889
890         spin_lock_irq(&dev->qf_cmd_lock);
891         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
892         spin_unlock_irq(&dev->qf_cmd_lock);
893
894         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
895                 list_del(&cmd->se_qf_node);
896                 atomic_dec(&dev->dev_qf_count);
897                 smp_mb__after_atomic_dec();
898
899                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
900                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
901                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
902                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
903                         : "UNKNOWN");
904
905                 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
906         }
907 }
908
909 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
910 {
911         switch (cmd->data_direction) {
912         case DMA_NONE:
913                 return "NONE";
914         case DMA_FROM_DEVICE:
915                 return "READ";
916         case DMA_TO_DEVICE:
917                 return "WRITE";
918         case DMA_BIDIRECTIONAL:
919                 return "BIDI";
920         default:
921                 break;
922         }
923
924         return "UNKNOWN";
925 }
926
927 void transport_dump_dev_state(
928         struct se_device *dev,
929         char *b,
930         int *bl)
931 {
932         *bl += sprintf(b + *bl, "Status: ");
933         switch (dev->dev_status) {
934         case TRANSPORT_DEVICE_ACTIVATED:
935                 *bl += sprintf(b + *bl, "ACTIVATED");
936                 break;
937         case TRANSPORT_DEVICE_DEACTIVATED:
938                 *bl += sprintf(b + *bl, "DEACTIVATED");
939                 break;
940         case TRANSPORT_DEVICE_SHUTDOWN:
941                 *bl += sprintf(b + *bl, "SHUTDOWN");
942                 break;
943         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
944         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
945                 *bl += sprintf(b + *bl, "OFFLINE");
946                 break;
947         default:
948                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
949                 break;
950         }
951
952         *bl += sprintf(b + *bl, "  Execute/Max Queue Depth: %d/%d",
953                 atomic_read(&dev->execute_tasks), dev->queue_depth);
954         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
955                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
956         *bl += sprintf(b + *bl, "        ");
957 }
958
959 void transport_dump_vpd_proto_id(
960         struct t10_vpd *vpd,
961         unsigned char *p_buf,
962         int p_buf_len)
963 {
964         unsigned char buf[VPD_TMP_BUF_SIZE];
965         int len;
966
967         memset(buf, 0, VPD_TMP_BUF_SIZE);
968         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
969
970         switch (vpd->protocol_identifier) {
971         case 0x00:
972                 sprintf(buf+len, "Fibre Channel\n");
973                 break;
974         case 0x10:
975                 sprintf(buf+len, "Parallel SCSI\n");
976                 break;
977         case 0x20:
978                 sprintf(buf+len, "SSA\n");
979                 break;
980         case 0x30:
981                 sprintf(buf+len, "IEEE 1394\n");
982                 break;
983         case 0x40:
984                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
985                                 " Protocol\n");
986                 break;
987         case 0x50:
988                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
989                 break;
990         case 0x60:
991                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
992                 break;
993         case 0x70:
994                 sprintf(buf+len, "Automation/Drive Interface Transport"
995                                 " Protocol\n");
996                 break;
997         case 0x80:
998                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
999                 break;
1000         default:
1001                 sprintf(buf+len, "Unknown 0x%02x\n",
1002                                 vpd->protocol_identifier);
1003                 break;
1004         }
1005
1006         if (p_buf)
1007                 strncpy(p_buf, buf, p_buf_len);
1008         else
1009                 pr_debug("%s", buf);
1010 }
1011
1012 void
1013 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1014 {
1015         /*
1016          * Check if the Protocol Identifier Valid (PIV) bit is set..
1017          *
1018          * from spc3r23.pdf section 7.5.1
1019          */
1020          if (page_83[1] & 0x80) {
1021                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1022                 vpd->protocol_identifier_set = 1;
1023                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1024         }
1025 }
1026 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1027
1028 int transport_dump_vpd_assoc(
1029         struct t10_vpd *vpd,
1030         unsigned char *p_buf,
1031         int p_buf_len)
1032 {
1033         unsigned char buf[VPD_TMP_BUF_SIZE];
1034         int ret = 0;
1035         int len;
1036
1037         memset(buf, 0, VPD_TMP_BUF_SIZE);
1038         len = sprintf(buf, "T10 VPD Identifier Association: ");
1039
1040         switch (vpd->association) {
1041         case 0x00:
1042                 sprintf(buf+len, "addressed logical unit\n");
1043                 break;
1044         case 0x10:
1045                 sprintf(buf+len, "target port\n");
1046                 break;
1047         case 0x20:
1048                 sprintf(buf+len, "SCSI target device\n");
1049                 break;
1050         default:
1051                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1052                 ret = -EINVAL;
1053                 break;
1054         }
1055
1056         if (p_buf)
1057                 strncpy(p_buf, buf, p_buf_len);
1058         else
1059                 pr_debug("%s", buf);
1060
1061         return ret;
1062 }
1063
1064 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1065 {
1066         /*
1067          * The VPD identification association..
1068          *
1069          * from spc3r23.pdf Section 7.6.3.1 Table 297
1070          */
1071         vpd->association = (page_83[1] & 0x30);
1072         return transport_dump_vpd_assoc(vpd, NULL, 0);
1073 }
1074 EXPORT_SYMBOL(transport_set_vpd_assoc);
1075
1076 int transport_dump_vpd_ident_type(
1077         struct t10_vpd *vpd,
1078         unsigned char *p_buf,
1079         int p_buf_len)
1080 {
1081         unsigned char buf[VPD_TMP_BUF_SIZE];
1082         int ret = 0;
1083         int len;
1084
1085         memset(buf, 0, VPD_TMP_BUF_SIZE);
1086         len = sprintf(buf, "T10 VPD Identifier Type: ");
1087
1088         switch (vpd->device_identifier_type) {
1089         case 0x00:
1090                 sprintf(buf+len, "Vendor specific\n");
1091                 break;
1092         case 0x01:
1093                 sprintf(buf+len, "T10 Vendor ID based\n");
1094                 break;
1095         case 0x02:
1096                 sprintf(buf+len, "EUI-64 based\n");
1097                 break;
1098         case 0x03:
1099                 sprintf(buf+len, "NAA\n");
1100                 break;
1101         case 0x04:
1102                 sprintf(buf+len, "Relative target port identifier\n");
1103                 break;
1104         case 0x08:
1105                 sprintf(buf+len, "SCSI name string\n");
1106                 break;
1107         default:
1108                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1109                                 vpd->device_identifier_type);
1110                 ret = -EINVAL;
1111                 break;
1112         }
1113
1114         if (p_buf) {
1115                 if (p_buf_len < strlen(buf)+1)
1116                         return -EINVAL;
1117                 strncpy(p_buf, buf, p_buf_len);
1118         } else {
1119                 pr_debug("%s", buf);
1120         }
1121
1122         return ret;
1123 }
1124
1125 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1126 {
1127         /*
1128          * The VPD identifier type..
1129          *
1130          * from spc3r23.pdf Section 7.6.3.1 Table 298
1131          */
1132         vpd->device_identifier_type = (page_83[1] & 0x0f);
1133         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1134 }
1135 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1136
1137 int transport_dump_vpd_ident(
1138         struct t10_vpd *vpd,
1139         unsigned char *p_buf,
1140         int p_buf_len)
1141 {
1142         unsigned char buf[VPD_TMP_BUF_SIZE];
1143         int ret = 0;
1144
1145         memset(buf, 0, VPD_TMP_BUF_SIZE);
1146
1147         switch (vpd->device_identifier_code_set) {
1148         case 0x01: /* Binary */
1149                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1150                         &vpd->device_identifier[0]);
1151                 break;
1152         case 0x02: /* ASCII */
1153                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1154                         &vpd->device_identifier[0]);
1155                 break;
1156         case 0x03: /* UTF-8 */
1157                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1158                         &vpd->device_identifier[0]);
1159                 break;
1160         default:
1161                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1162                         " 0x%02x", vpd->device_identifier_code_set);
1163                 ret = -EINVAL;
1164                 break;
1165         }
1166
1167         if (p_buf)
1168                 strncpy(p_buf, buf, p_buf_len);
1169         else
1170                 pr_debug("%s", buf);
1171
1172         return ret;
1173 }
1174
1175 int
1176 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1177 {
1178         static const char hex_str[] = "0123456789abcdef";
1179         int j = 0, i = 4; /* offset to start of the identifer */
1180
1181         /*
1182          * The VPD Code Set (encoding)
1183          *
1184          * from spc3r23.pdf Section 7.6.3.1 Table 296
1185          */
1186         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1187         switch (vpd->device_identifier_code_set) {
1188         case 0x01: /* Binary */
1189                 vpd->device_identifier[j++] =
1190                                 hex_str[vpd->device_identifier_type];
1191                 while (i < (4 + page_83[3])) {
1192                         vpd->device_identifier[j++] =
1193                                 hex_str[(page_83[i] & 0xf0) >> 4];
1194                         vpd->device_identifier[j++] =
1195                                 hex_str[page_83[i] & 0x0f];
1196                         i++;
1197                 }
1198                 break;
1199         case 0x02: /* ASCII */
1200         case 0x03: /* UTF-8 */
1201                 while (i < (4 + page_83[3]))
1202                         vpd->device_identifier[j++] = page_83[i++];
1203                 break;
1204         default:
1205                 break;
1206         }
1207
1208         return transport_dump_vpd_ident(vpd, NULL, 0);
1209 }
1210 EXPORT_SYMBOL(transport_set_vpd_ident);
1211
1212 static void core_setup_task_attr_emulation(struct se_device *dev)
1213 {
1214         /*
1215          * If this device is from Target_Core_Mod/pSCSI, disable the
1216          * SAM Task Attribute emulation.
1217          *
1218          * This is currently not available in upsream Linux/SCSI Target
1219          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1220          */
1221         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1222                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1223                 return;
1224         }
1225
1226         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1227         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1228                 " device\n", dev->transport->name,
1229                 dev->transport->get_device_rev(dev));
1230 }
1231
1232 static void scsi_dump_inquiry(struct se_device *dev)
1233 {
1234         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1235         char buf[17];
1236         int i, device_type;
1237         /*
1238          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1239          */
1240         for (i = 0; i < 8; i++)
1241                 if (wwn->vendor[i] >= 0x20)
1242                         buf[i] = wwn->vendor[i];
1243                 else
1244                         buf[i] = ' ';
1245         buf[i] = '\0';
1246         pr_debug("  Vendor: %s\n", buf);
1247
1248         for (i = 0; i < 16; i++)
1249                 if (wwn->model[i] >= 0x20)
1250                         buf[i] = wwn->model[i];
1251                 else
1252                         buf[i] = ' ';
1253         buf[i] = '\0';
1254         pr_debug("  Model: %s\n", buf);
1255
1256         for (i = 0; i < 4; i++)
1257                 if (wwn->revision[i] >= 0x20)
1258                         buf[i] = wwn->revision[i];
1259                 else
1260                         buf[i] = ' ';
1261         buf[i] = '\0';
1262         pr_debug("  Revision: %s\n", buf);
1263
1264         device_type = dev->transport->get_device_type(dev);
1265         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1266         pr_debug("                 ANSI SCSI revision: %02x\n",
1267                                 dev->transport->get_device_rev(dev));
1268 }
1269
1270 struct se_device *transport_add_device_to_core_hba(
1271         struct se_hba *hba,
1272         struct se_subsystem_api *transport,
1273         struct se_subsystem_dev *se_dev,
1274         u32 device_flags,
1275         void *transport_dev,
1276         struct se_dev_limits *dev_limits,
1277         const char *inquiry_prod,
1278         const char *inquiry_rev)
1279 {
1280         int force_pt;
1281         struct se_device  *dev;
1282
1283         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1284         if (!dev) {
1285                 pr_err("Unable to allocate memory for se_dev_t\n");
1286                 return NULL;
1287         }
1288
1289         transport_init_queue_obj(&dev->dev_queue_obj);
1290         dev->dev_flags          = device_flags;
1291         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1292         dev->dev_ptr            = transport_dev;
1293         dev->se_hba             = hba;
1294         dev->se_sub_dev         = se_dev;
1295         dev->transport          = transport;
1296         INIT_LIST_HEAD(&dev->dev_list);
1297         INIT_LIST_HEAD(&dev->dev_sep_list);
1298         INIT_LIST_HEAD(&dev->dev_tmr_list);
1299         INIT_LIST_HEAD(&dev->execute_task_list);
1300         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1301         INIT_LIST_HEAD(&dev->state_task_list);
1302         INIT_LIST_HEAD(&dev->qf_cmd_list);
1303         spin_lock_init(&dev->execute_task_lock);
1304         spin_lock_init(&dev->delayed_cmd_lock);
1305         spin_lock_init(&dev->dev_reservation_lock);
1306         spin_lock_init(&dev->dev_status_lock);
1307         spin_lock_init(&dev->se_port_lock);
1308         spin_lock_init(&dev->se_tmr_lock);
1309         spin_lock_init(&dev->qf_cmd_lock);
1310         atomic_set(&dev->dev_ordered_id, 0);
1311
1312         se_dev_set_default_attribs(dev, dev_limits);
1313
1314         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1315         dev->creation_time = get_jiffies_64();
1316         spin_lock_init(&dev->stats_lock);
1317
1318         spin_lock(&hba->device_lock);
1319         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1320         hba->dev_count++;
1321         spin_unlock(&hba->device_lock);
1322         /*
1323          * Setup the SAM Task Attribute emulation for struct se_device
1324          */
1325         core_setup_task_attr_emulation(dev);
1326         /*
1327          * Force PR and ALUA passthrough emulation with internal object use.
1328          */
1329         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1330         /*
1331          * Setup the Reservations infrastructure for struct se_device
1332          */
1333         core_setup_reservations(dev, force_pt);
1334         /*
1335          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1336          */
1337         if (core_setup_alua(dev, force_pt) < 0)
1338                 goto out;
1339
1340         /*
1341          * Startup the struct se_device processing thread
1342          */
1343         dev->process_thread = kthread_run(transport_processing_thread, dev,
1344                                           "LIO_%s", dev->transport->name);
1345         if (IS_ERR(dev->process_thread)) {
1346                 pr_err("Unable to create kthread: LIO_%s\n",
1347                         dev->transport->name);
1348                 goto out;
1349         }
1350         /*
1351          * Setup work_queue for QUEUE_FULL
1352          */
1353         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1354         /*
1355          * Preload the initial INQUIRY const values if we are doing
1356          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1357          * passthrough because this is being provided by the backend LLD.
1358          * This is required so that transport_get_inquiry() copies these
1359          * originals once back into DEV_T10_WWN(dev) for the virtual device
1360          * setup.
1361          */
1362         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1363                 if (!inquiry_prod || !inquiry_rev) {
1364                         pr_err("All non TCM/pSCSI plugins require"
1365                                 " INQUIRY consts\n");
1366                         goto out;
1367                 }
1368
1369                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1370                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1371                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1372         }
1373         scsi_dump_inquiry(dev);
1374
1375         return dev;
1376 out:
1377         kthread_stop(dev->process_thread);
1378
1379         spin_lock(&hba->device_lock);
1380         list_del(&dev->dev_list);
1381         hba->dev_count--;
1382         spin_unlock(&hba->device_lock);
1383
1384         se_release_vpd_for_dev(dev);
1385
1386         kfree(dev);
1387
1388         return NULL;
1389 }
1390 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1391
1392 /*      transport_generic_prepare_cdb():
1393  *
1394  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1395  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1396  *      The point of this is since we are mapping iSCSI LUNs to
1397  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1398  *      devices and HBAs for a loop.
1399  */
1400 static inline void transport_generic_prepare_cdb(
1401         unsigned char *cdb)
1402 {
1403         switch (cdb[0]) {
1404         case READ_10: /* SBC - RDProtect */
1405         case READ_12: /* SBC - RDProtect */
1406         case READ_16: /* SBC - RDProtect */
1407         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1408         case VERIFY: /* SBC - VRProtect */
1409         case VERIFY_16: /* SBC - VRProtect */
1410         case WRITE_VERIFY: /* SBC - VRProtect */
1411         case WRITE_VERIFY_12: /* SBC - VRProtect */
1412                 break;
1413         default:
1414                 cdb[1] &= 0x1f; /* clear logical unit number */
1415                 break;
1416         }
1417 }
1418
1419 static struct se_task *
1420 transport_generic_get_task(struct se_cmd *cmd,
1421                 enum dma_data_direction data_direction)
1422 {
1423         struct se_task *task;
1424         struct se_device *dev = cmd->se_dev;
1425
1426         task = dev->transport->alloc_task(cmd->t_task_cdb);
1427         if (!task) {
1428                 pr_err("Unable to allocate struct se_task\n");
1429                 return NULL;
1430         }
1431
1432         INIT_LIST_HEAD(&task->t_list);
1433         INIT_LIST_HEAD(&task->t_execute_list);
1434         INIT_LIST_HEAD(&task->t_state_list);
1435         init_completion(&task->task_stop_comp);
1436         task->task_se_cmd = cmd;
1437         task->task_data_direction = data_direction;
1438
1439         return task;
1440 }
1441
1442 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1443
1444 /*
1445  * Used by fabric modules containing a local struct se_cmd within their
1446  * fabric dependent per I/O descriptor.
1447  */
1448 void transport_init_se_cmd(
1449         struct se_cmd *cmd,
1450         struct target_core_fabric_ops *tfo,
1451         struct se_session *se_sess,
1452         u32 data_length,
1453         int data_direction,
1454         int task_attr,
1455         unsigned char *sense_buffer)
1456 {
1457         INIT_LIST_HEAD(&cmd->se_lun_node);
1458         INIT_LIST_HEAD(&cmd->se_delayed_node);
1459         INIT_LIST_HEAD(&cmd->se_qf_node);
1460         INIT_LIST_HEAD(&cmd->se_queue_node);
1461         INIT_LIST_HEAD(&cmd->se_cmd_list);
1462         INIT_LIST_HEAD(&cmd->t_task_list);
1463         init_completion(&cmd->transport_lun_fe_stop_comp);
1464         init_completion(&cmd->transport_lun_stop_comp);
1465         init_completion(&cmd->t_transport_stop_comp);
1466         init_completion(&cmd->cmd_wait_comp);
1467         spin_lock_init(&cmd->t_state_lock);
1468         cmd->transport_state = CMD_T_DEV_ACTIVE;
1469
1470         cmd->se_tfo = tfo;
1471         cmd->se_sess = se_sess;
1472         cmd->data_length = data_length;
1473         cmd->data_direction = data_direction;
1474         cmd->sam_task_attr = task_attr;
1475         cmd->sense_buffer = sense_buffer;
1476 }
1477 EXPORT_SYMBOL(transport_init_se_cmd);
1478
1479 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1480 {
1481         /*
1482          * Check if SAM Task Attribute emulation is enabled for this
1483          * struct se_device storage object
1484          */
1485         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1486                 return 0;
1487
1488         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1489                 pr_debug("SAM Task Attribute ACA"
1490                         " emulation is not supported\n");
1491                 return -EINVAL;
1492         }
1493         /*
1494          * Used to determine when ORDERED commands should go from
1495          * Dormant to Active status.
1496          */
1497         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1498         smp_mb__after_atomic_inc();
1499         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1500                         cmd->se_ordered_id, cmd->sam_task_attr,
1501                         cmd->se_dev->transport->name);
1502         return 0;
1503 }
1504
1505 /*      transport_generic_allocate_tasks():
1506  *
1507  *      Called from fabric RX Thread.
1508  */
1509 int transport_generic_allocate_tasks(
1510         struct se_cmd *cmd,
1511         unsigned char *cdb)
1512 {
1513         int ret;
1514
1515         transport_generic_prepare_cdb(cdb);
1516         /*
1517          * Ensure that the received CDB is less than the max (252 + 8) bytes
1518          * for VARIABLE_LENGTH_CMD
1519          */
1520         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1521                 pr_err("Received SCSI CDB with command_size: %d that"
1522                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1523                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1524                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1525                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1526                 return -EINVAL;
1527         }
1528         /*
1529          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1530          * allocate the additional extended CDB buffer now..  Otherwise
1531          * setup the pointer from __t_task_cdb to t_task_cdb.
1532          */
1533         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1534                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1535                                                 GFP_KERNEL);
1536                 if (!cmd->t_task_cdb) {
1537                         pr_err("Unable to allocate cmd->t_task_cdb"
1538                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1539                                 scsi_command_size(cdb),
1540                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1541                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1542                         cmd->scsi_sense_reason =
1543                                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1544                         return -ENOMEM;
1545                 }
1546         } else
1547                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1548         /*
1549          * Copy the original CDB into cmd->
1550          */
1551         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1552         /*
1553          * Setup the received CDB based on SCSI defined opcodes and
1554          * perform unit attention, persistent reservations and ALUA
1555          * checks for virtual device backends.  The cmd->t_task_cdb
1556          * pointer is expected to be setup before we reach this point.
1557          */
1558         ret = transport_generic_cmd_sequencer(cmd, cdb);
1559         if (ret < 0)
1560                 return ret;
1561         /*
1562          * Check for SAM Task Attribute Emulation
1563          */
1564         if (transport_check_alloc_task_attr(cmd) < 0) {
1565                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1566                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1567                 return -EINVAL;
1568         }
1569         spin_lock(&cmd->se_lun->lun_sep_lock);
1570         if (cmd->se_lun->lun_sep)
1571                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1572         spin_unlock(&cmd->se_lun->lun_sep_lock);
1573         return 0;
1574 }
1575 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1576
1577 /*
1578  * Used by fabric module frontends to queue tasks directly.
1579  * Many only be used from process context only
1580  */
1581 int transport_handle_cdb_direct(
1582         struct se_cmd *cmd)
1583 {
1584         int ret;
1585
1586         if (!cmd->se_lun) {
1587                 dump_stack();
1588                 pr_err("cmd->se_lun is NULL\n");
1589                 return -EINVAL;
1590         }
1591         if (in_interrupt()) {
1592                 dump_stack();
1593                 pr_err("transport_generic_handle_cdb cannot be called"
1594                                 " from interrupt context\n");
1595                 return -EINVAL;
1596         }
1597         /*
1598          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE following
1599          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1600          * in existing usage to ensure that outstanding descriptors are handled
1601          * correctly during shutdown via transport_wait_for_tasks()
1602          *
1603          * Also, we don't take cmd->t_state_lock here as we only expect
1604          * this to be called for initial descriptor submission.
1605          */
1606         cmd->t_state = TRANSPORT_NEW_CMD;
1607         cmd->transport_state |= CMD_T_ACTIVE;
1608
1609         /*
1610          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1611          * so follow TRANSPORT_NEW_CMD processing thread context usage
1612          * and call transport_generic_request_failure() if necessary..
1613          */
1614         ret = transport_generic_new_cmd(cmd);
1615         if (ret < 0)
1616                 transport_generic_request_failure(cmd);
1617
1618         return 0;
1619 }
1620 EXPORT_SYMBOL(transport_handle_cdb_direct);
1621
1622 /**
1623  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1624  *
1625  * @se_cmd: command descriptor to submit
1626  * @se_sess: associated se_sess for endpoint
1627  * @cdb: pointer to SCSI CDB
1628  * @sense: pointer to SCSI sense buffer
1629  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1630  * @data_length: fabric expected data transfer length
1631  * @task_addr: SAM task attribute
1632  * @data_dir: DMA data direction
1633  * @flags: flags for command submission from target_sc_flags_tables
1634  *
1635  * This may only be called from process context, and also currently
1636  * assumes internal allocation of fabric payload buffer by target-core.
1637  **/
1638 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1639                 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1640                 u32 data_length, int task_attr, int data_dir, int flags)
1641 {
1642         struct se_portal_group *se_tpg;
1643         int rc;
1644
1645         se_tpg = se_sess->se_tpg;
1646         BUG_ON(!se_tpg);
1647         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1648         BUG_ON(in_interrupt());
1649         /*
1650          * Initialize se_cmd for target operation.  From this point
1651          * exceptions are handled by sending exception status via
1652          * target_core_fabric_ops->queue_status() callback
1653          */
1654         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1655                                 data_length, data_dir, task_attr, sense);
1656         /*
1657          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1658          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1659          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1660          * kref_put() to happen during fabric packet acknowledgement.
1661          */
1662         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1663         /*
1664          * Signal bidirectional data payloads to target-core
1665          */
1666         if (flags & TARGET_SCF_BIDI_OP)
1667                 se_cmd->se_cmd_flags |= SCF_BIDI;
1668         /*
1669          * Locate se_lun pointer and attach it to struct se_cmd
1670          */
1671         if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1672                 transport_send_check_condition_and_sense(se_cmd,
1673                                 se_cmd->scsi_sense_reason, 0);
1674                 target_put_sess_cmd(se_sess, se_cmd);
1675                 return;
1676         }
1677         /*
1678          * Sanitize CDBs via transport_generic_cmd_sequencer() and
1679          * allocate the necessary tasks to complete the received CDB+data
1680          */
1681         rc = transport_generic_allocate_tasks(se_cmd, cdb);
1682         if (rc != 0) {
1683                 transport_generic_request_failure(se_cmd);
1684                 return;
1685         }
1686         /*
1687          * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1688          * for immediate execution of READs, otherwise wait for
1689          * transport_generic_handle_data() to be called for WRITEs
1690          * when fabric has filled the incoming buffer.
1691          */
1692         transport_handle_cdb_direct(se_cmd);
1693         return;
1694 }
1695 EXPORT_SYMBOL(target_submit_cmd);
1696
1697 static void target_complete_tmr_failure(struct work_struct *work)
1698 {
1699         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1700
1701         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1702         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1703         transport_generic_free_cmd(se_cmd, 0);
1704 }
1705
1706 /**
1707  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1708  *                     for TMR CDBs
1709  *
1710  * @se_cmd: command descriptor to submit
1711  * @se_sess: associated se_sess for endpoint
1712  * @sense: pointer to SCSI sense buffer
1713  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1714  * @fabric_context: fabric context for TMR req
1715  * @tm_type: Type of TM request
1716  * @gfp: gfp type for caller
1717  * @tag: referenced task tag for TMR_ABORT_TASK
1718  * @flags: submit cmd flags
1719  *
1720  * Callable from all contexts.
1721  **/
1722
1723 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1724                 unsigned char *sense, u32 unpacked_lun,
1725                 void *fabric_tmr_ptr, unsigned char tm_type,
1726                 gfp_t gfp, unsigned int tag, int flags)
1727 {
1728         struct se_portal_group *se_tpg;
1729         int ret;
1730
1731         se_tpg = se_sess->se_tpg;
1732         BUG_ON(!se_tpg);
1733
1734         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1735                               0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1736         /*
1737          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1738          * allocation failure.
1739          */
1740         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1741         if (ret < 0)
1742                 return -ENOMEM;
1743
1744         if (tm_type == TMR_ABORT_TASK)
1745                 se_cmd->se_tmr_req->ref_task_tag = tag;
1746
1747         /* See target_submit_cmd for commentary */
1748         target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1749
1750         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1751         if (ret) {
1752                 /*
1753                  * For callback during failure handling, push this work off
1754                  * to process context with TMR_LUN_DOES_NOT_EXIST status.
1755                  */
1756                 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1757                 schedule_work(&se_cmd->work);
1758                 return 0;
1759         }
1760         transport_generic_handle_tmr(se_cmd);
1761         return 0;
1762 }
1763 EXPORT_SYMBOL(target_submit_tmr);
1764
1765 /*
1766  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1767  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1768  * complete setup in TCM process context w/ TFO->new_cmd_map().
1769  */
1770 int transport_generic_handle_cdb_map(
1771         struct se_cmd *cmd)
1772 {
1773         if (!cmd->se_lun) {
1774                 dump_stack();
1775                 pr_err("cmd->se_lun is NULL\n");
1776                 return -EINVAL;
1777         }
1778
1779         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1780         return 0;
1781 }
1782 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1783
1784 /*      transport_generic_handle_data():
1785  *
1786  *
1787  */
1788 int transport_generic_handle_data(
1789         struct se_cmd *cmd)
1790 {
1791         /*
1792          * For the software fabric case, then we assume the nexus is being
1793          * failed/shutdown when signals are pending from the kthread context
1794          * caller, so we return a failure.  For the HW target mode case running
1795          * in interrupt code, the signal_pending() check is skipped.
1796          */
1797         if (!in_interrupt() && signal_pending(current))
1798                 return -EPERM;
1799         /*
1800          * If the received CDB has aleady been ABORTED by the generic
1801          * target engine, we now call transport_check_aborted_status()
1802          * to queue any delated TASK_ABORTED status for the received CDB to the
1803          * fabric module as we are expecting no further incoming DATA OUT
1804          * sequences at this point.
1805          */
1806         if (transport_check_aborted_status(cmd, 1) != 0)
1807                 return 0;
1808
1809         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1810         return 0;
1811 }
1812 EXPORT_SYMBOL(transport_generic_handle_data);
1813
1814 /*      transport_generic_handle_tmr():
1815  *
1816  *
1817  */
1818 int transport_generic_handle_tmr(
1819         struct se_cmd *cmd)
1820 {
1821         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1822         return 0;
1823 }
1824 EXPORT_SYMBOL(transport_generic_handle_tmr);
1825
1826 /*
1827  * If the task is active, request it to be stopped and sleep until it
1828  * has completed.
1829  */
1830 bool target_stop_task(struct se_task *task, unsigned long *flags)
1831 {
1832         struct se_cmd *cmd = task->task_se_cmd;
1833         bool was_active = false;
1834
1835         if (task->task_flags & TF_ACTIVE) {
1836                 task->task_flags |= TF_REQUEST_STOP;
1837                 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1838
1839                 pr_debug("Task %p waiting to complete\n", task);
1840                 wait_for_completion(&task->task_stop_comp);
1841                 pr_debug("Task %p stopped successfully\n", task);
1842
1843                 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1844                 atomic_dec(&cmd->t_task_cdbs_left);
1845                 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1846                 was_active = true;
1847         }
1848
1849         return was_active;
1850 }
1851
1852 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1853 {
1854         struct se_task *task, *task_tmp;
1855         unsigned long flags;
1856         int ret = 0;
1857
1858         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1859                 cmd->se_tfo->get_task_tag(cmd));
1860
1861         /*
1862          * No tasks remain in the execution queue
1863          */
1864         spin_lock_irqsave(&cmd->t_state_lock, flags);
1865         list_for_each_entry_safe(task, task_tmp,
1866                                 &cmd->t_task_list, t_list) {
1867                 pr_debug("Processing task %p\n", task);
1868                 /*
1869                  * If the struct se_task has not been sent and is not active,
1870                  * remove the struct se_task from the execution queue.
1871                  */
1872                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1873                         spin_unlock_irqrestore(&cmd->t_state_lock,
1874                                         flags);
1875                         transport_remove_task_from_execute_queue(task,
1876                                         cmd->se_dev);
1877
1878                         pr_debug("Task %p removed from execute queue\n", task);
1879                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1880                         continue;
1881                 }
1882
1883                 if (!target_stop_task(task, &flags)) {
1884                         pr_debug("Task %p - did nothing\n", task);
1885                         ret++;
1886                 }
1887         }
1888         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1889
1890         return ret;
1891 }
1892
1893 /*
1894  * Handle SAM-esque emulation for generic transport request failures.
1895  */
1896 void transport_generic_request_failure(struct se_cmd *cmd)
1897 {
1898         int ret = 0;
1899
1900         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1901                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1902                 cmd->t_task_cdb[0]);
1903         pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1904                 cmd->se_tfo->get_cmd_state(cmd),
1905                 cmd->t_state, cmd->scsi_sense_reason);
1906         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1907                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1908                 " CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1909                 cmd->t_task_list_num,
1910                 atomic_read(&cmd->t_task_cdbs_left),
1911                 atomic_read(&cmd->t_task_cdbs_sent),
1912                 atomic_read(&cmd->t_task_cdbs_ex_left),
1913                 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1914                 (cmd->transport_state & CMD_T_STOP) != 0,
1915                 (cmd->transport_state & CMD_T_SENT) != 0);
1916
1917         /*
1918          * For SAM Task Attribute emulation for failed struct se_cmd
1919          */
1920         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1921                 transport_complete_task_attr(cmd);
1922
1923         switch (cmd->scsi_sense_reason) {
1924         case TCM_NON_EXISTENT_LUN:
1925         case TCM_UNSUPPORTED_SCSI_OPCODE:
1926         case TCM_INVALID_CDB_FIELD:
1927         case TCM_INVALID_PARAMETER_LIST:
1928         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1929         case TCM_UNKNOWN_MODE_PAGE:
1930         case TCM_WRITE_PROTECTED:
1931         case TCM_CHECK_CONDITION_ABORT_CMD:
1932         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1933         case TCM_CHECK_CONDITION_NOT_READY:
1934                 break;
1935         case TCM_RESERVATION_CONFLICT:
1936                 /*
1937                  * No SENSE Data payload for this case, set SCSI Status
1938                  * and queue the response to $FABRIC_MOD.
1939                  *
1940                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1941                  */
1942                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1943                 /*
1944                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1945                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1946                  * CONFLICT STATUS.
1947                  *
1948                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1949                  */
1950                 if (cmd->se_sess &&
1951                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1952                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1953                                 cmd->orig_fe_lun, 0x2C,
1954                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1955
1956                 ret = cmd->se_tfo->queue_status(cmd);
1957                 if (ret == -EAGAIN || ret == -ENOMEM)
1958                         goto queue_full;
1959                 goto check_stop;
1960         default:
1961                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1962                         cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1963                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1964                 break;
1965         }
1966         /*
1967          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1968          * make the call to transport_send_check_condition_and_sense()
1969          * directly.  Otherwise expect the fabric to make the call to
1970          * transport_send_check_condition_and_sense() after handling
1971          * possible unsoliticied write data payloads.
1972          */
1973         ret = transport_send_check_condition_and_sense(cmd,
1974                         cmd->scsi_sense_reason, 0);
1975         if (ret == -EAGAIN || ret == -ENOMEM)
1976                 goto queue_full;
1977
1978 check_stop:
1979         transport_lun_remove_cmd(cmd);
1980         if (!transport_cmd_check_stop_to_fabric(cmd))
1981                 ;
1982         return;
1983
1984 queue_full:
1985         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1986         transport_handle_queue_full(cmd, cmd->se_dev);
1987 }
1988 EXPORT_SYMBOL(transport_generic_request_failure);
1989
1990 static inline u32 transport_lba_21(unsigned char *cdb)
1991 {
1992         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1993 }
1994
1995 static inline u32 transport_lba_32(unsigned char *cdb)
1996 {
1997         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1998 }
1999
2000 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2001 {
2002         unsigned int __v1, __v2;
2003
2004         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2005         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2006
2007         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2008 }
2009
2010 /*
2011  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2012  */
2013 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2014 {
2015         unsigned int __v1, __v2;
2016
2017         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2018         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2019
2020         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2021 }
2022
2023 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2024 {
2025         unsigned long flags;
2026
2027         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2028         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2029         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2030 }
2031
2032 /*
2033  * Called from Fabric Module context from transport_execute_tasks()
2034  *
2035  * The return of this function determins if the tasks from struct se_cmd
2036  * get added to the execution queue in transport_execute_tasks(),
2037  * or are added to the delayed or ordered lists here.
2038  */
2039 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2040 {
2041         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2042                 return 1;
2043         /*
2044          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2045          * to allow the passed struct se_cmd list of tasks to the front of the list.
2046          */
2047          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2048                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2049                         " 0x%02x, se_ordered_id: %u\n",
2050                         cmd->t_task_cdb[0],
2051                         cmd->se_ordered_id);
2052                 return 1;
2053         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2054                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2055                 smp_mb__after_atomic_inc();
2056
2057                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2058                                 " list, se_ordered_id: %u\n",
2059                                 cmd->t_task_cdb[0],
2060                                 cmd->se_ordered_id);
2061                 /*
2062                  * Add ORDERED command to tail of execution queue if
2063                  * no other older commands exist that need to be
2064                  * completed first.
2065                  */
2066                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2067                         return 1;
2068         } else {
2069                 /*
2070                  * For SIMPLE and UNTAGGED Task Attribute commands
2071                  */
2072                 atomic_inc(&cmd->se_dev->simple_cmds);
2073                 smp_mb__after_atomic_inc();
2074         }
2075         /*
2076          * Otherwise if one or more outstanding ORDERED task attribute exist,
2077          * add the dormant task(s) built for the passed struct se_cmd to the
2078          * execution queue and become in Active state for this struct se_device.
2079          */
2080         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2081                 /*
2082                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2083                  * will be drained upon completion of HEAD_OF_QUEUE task.
2084                  */
2085                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2086                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2087                 list_add_tail(&cmd->se_delayed_node,
2088                                 &cmd->se_dev->delayed_cmd_list);
2089                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2090
2091                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2092                         " delayed CMD list, se_ordered_id: %u\n",
2093                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2094                         cmd->se_ordered_id);
2095                 /*
2096                  * Return zero to let transport_execute_tasks() know
2097                  * not to add the delayed tasks to the execution list.
2098                  */
2099                 return 0;
2100         }
2101         /*
2102          * Otherwise, no ORDERED task attributes exist..
2103          */
2104         return 1;
2105 }
2106
2107 /*
2108  * Called from fabric module context in transport_generic_new_cmd() and
2109  * transport_generic_process_write()
2110  */
2111 static int transport_execute_tasks(struct se_cmd *cmd)
2112 {
2113         int add_tasks;
2114         struct se_device *se_dev = cmd->se_dev;
2115         /*
2116          * Call transport_cmd_check_stop() to see if a fabric exception
2117          * has occurred that prevents execution.
2118          */
2119         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2120                 /*
2121                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2122                  * attribute for the tasks of the received struct se_cmd CDB
2123                  */
2124                 add_tasks = transport_execute_task_attr(cmd);
2125                 if (!add_tasks)
2126                         goto execute_tasks;
2127                 /*
2128                  * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2129                  * adds associated se_tasks while holding dev->execute_task_lock
2130                  * before I/O dispath to avoid a double spinlock access.
2131                  */
2132                 __transport_execute_tasks(se_dev, cmd);
2133                 return 0;
2134         }
2135
2136 execute_tasks:
2137         __transport_execute_tasks(se_dev, NULL);
2138         return 0;
2139 }
2140
2141 /*
2142  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2143  * from struct se_device->execute_task_list and
2144  *
2145  * Called from transport_processing_thread()
2146  */
2147 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2148 {
2149         int error;
2150         struct se_cmd *cmd = NULL;
2151         struct se_task *task = NULL;
2152         unsigned long flags;
2153
2154 check_depth:
2155         spin_lock_irq(&dev->execute_task_lock);
2156         if (new_cmd != NULL)
2157                 __transport_add_tasks_from_cmd(new_cmd);
2158
2159         if (list_empty(&dev->execute_task_list)) {
2160                 spin_unlock_irq(&dev->execute_task_lock);
2161                 return 0;
2162         }
2163         task = list_first_entry(&dev->execute_task_list,
2164                                 struct se_task, t_execute_list);
2165         __transport_remove_task_from_execute_queue(task, dev);
2166         spin_unlock_irq(&dev->execute_task_lock);
2167
2168         cmd = task->task_se_cmd;
2169         spin_lock_irqsave(&cmd->t_state_lock, flags);
2170         task->task_flags |= (TF_ACTIVE | TF_SENT);
2171         atomic_inc(&cmd->t_task_cdbs_sent);
2172
2173         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2174             cmd->t_task_list_num)
2175                 cmd->transport_state |= CMD_T_SENT;
2176
2177         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2178
2179         if (cmd->execute_task)
2180                 error = cmd->execute_task(task);
2181         else
2182                 error = dev->transport->do_task(task);
2183         if (error != 0) {
2184                 spin_lock_irqsave(&cmd->t_state_lock, flags);
2185                 task->task_flags &= ~TF_ACTIVE;
2186                 cmd->transport_state &= ~CMD_T_SENT;
2187                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2188
2189                 transport_stop_tasks_for_cmd(cmd);
2190                 transport_generic_request_failure(cmd);
2191         }
2192
2193         new_cmd = NULL;
2194         goto check_depth;
2195
2196         return 0;
2197 }
2198
2199 static inline u32 transport_get_sectors_6(
2200         unsigned char *cdb,
2201         struct se_cmd *cmd,
2202         int *ret)
2203 {
2204         struct se_device *dev = cmd->se_dev;
2205
2206         /*
2207          * Assume TYPE_DISK for non struct se_device objects.
2208          * Use 8-bit sector value.
2209          */
2210         if (!dev)
2211                 goto type_disk;
2212
2213         /*
2214          * Use 24-bit allocation length for TYPE_TAPE.
2215          */
2216         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2217                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2218
2219         /*
2220          * Everything else assume TYPE_DISK Sector CDB location.
2221          * Use 8-bit sector value.  SBC-3 says:
2222          *
2223          *   A TRANSFER LENGTH field set to zero specifies that 256
2224          *   logical blocks shall be written.  Any other value
2225          *   specifies the number of logical blocks that shall be
2226          *   written.
2227          */
2228 type_disk:
2229         return cdb[4] ? : 256;
2230 }
2231
2232 static inline u32 transport_get_sectors_10(
2233         unsigned char *cdb,
2234         struct se_cmd *cmd,
2235         int *ret)
2236 {
2237         struct se_device *dev = cmd->se_dev;
2238
2239         /*
2240          * Assume TYPE_DISK for non struct se_device objects.
2241          * Use 16-bit sector value.
2242          */
2243         if (!dev)
2244                 goto type_disk;
2245
2246         /*
2247          * XXX_10 is not defined in SSC, throw an exception
2248          */
2249         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2250                 *ret = -EINVAL;
2251                 return 0;
2252         }
2253
2254         /*
2255          * Everything else assume TYPE_DISK Sector CDB location.
2256          * Use 16-bit sector value.
2257          */
2258 type_disk:
2259         return (u32)(cdb[7] << 8) + cdb[8];
2260 }
2261
2262 static inline u32 transport_get_sectors_12(
2263         unsigned char *cdb,
2264         struct se_cmd *cmd,
2265         int *ret)
2266 {
2267         struct se_device *dev = cmd->se_dev;
2268
2269         /*
2270          * Assume TYPE_DISK for non struct se_device objects.
2271          * Use 32-bit sector value.
2272          */
2273         if (!dev)
2274                 goto type_disk;
2275
2276         /*
2277          * XXX_12 is not defined in SSC, throw an exception
2278          */
2279         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2280                 *ret = -EINVAL;
2281                 return 0;
2282         }
2283
2284         /*
2285          * Everything else assume TYPE_DISK Sector CDB location.
2286          * Use 32-bit sector value.
2287          */
2288 type_disk:
2289         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2290 }
2291
2292 static inline u32 transport_get_sectors_16(
2293         unsigned char *cdb,
2294         struct se_cmd *cmd,
2295         int *ret)
2296 {
2297         struct se_device *dev = cmd->se_dev;
2298
2299         /*
2300          * Assume TYPE_DISK for non struct se_device objects.
2301          * Use 32-bit sector value.
2302          */
2303         if (!dev)
2304                 goto type_disk;
2305
2306         /*
2307          * Use 24-bit allocation length for TYPE_TAPE.
2308          */
2309         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2310                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2311
2312 type_disk:
2313         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2314                     (cdb[12] << 8) + cdb[13];
2315 }
2316
2317 /*
2318  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2319  */
2320 static inline u32 transport_get_sectors_32(
2321         unsigned char *cdb,
2322         struct se_cmd *cmd,
2323         int *ret)
2324 {
2325         /*
2326          * Assume TYPE_DISK for non struct se_device objects.
2327          * Use 32-bit sector value.
2328          */
2329         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2330                     (cdb[30] << 8) + cdb[31];
2331
2332 }
2333
2334 static inline u32 transport_get_size(
2335         u32 sectors,
2336         unsigned char *cdb,
2337         struct se_cmd *cmd)
2338 {
2339         struct se_device *dev = cmd->se_dev;
2340
2341         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2342                 if (cdb[1] & 1) { /* sectors */
2343                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2344                 } else /* bytes */
2345                         return sectors;
2346         }
2347 #if 0
2348         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2349                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2350                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2351                         dev->transport->name);
2352 #endif
2353         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2354 }
2355
2356 static void transport_xor_callback(struct se_cmd *cmd)
2357 {
2358         unsigned char *buf, *addr;
2359         struct scatterlist *sg;
2360         unsigned int offset;
2361         int i;
2362         int count;
2363         /*
2364          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2365          *
2366          * 1) read the specified logical block(s);
2367          * 2) transfer logical blocks from the data-out buffer;
2368          * 3) XOR the logical blocks transferred from the data-out buffer with
2369          *    the logical blocks read, storing the resulting XOR data in a buffer;
2370          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2371          *    blocks transferred from the data-out buffer; and
2372          * 5) transfer the resulting XOR data to the data-in buffer.
2373          */
2374         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2375         if (!buf) {
2376                 pr_err("Unable to allocate xor_callback buf\n");
2377                 return;
2378         }
2379         /*
2380          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2381          * into the locally allocated *buf
2382          */
2383         sg_copy_to_buffer(cmd->t_data_sg,
2384                           cmd->t_data_nents,
2385                           buf,
2386                           cmd->data_length);
2387
2388         /*
2389          * Now perform the XOR against the BIDI read memory located at
2390          * cmd->t_mem_bidi_list
2391          */
2392
2393         offset = 0;
2394         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2395                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2396                 if (!addr)
2397                         goto out;
2398
2399                 for (i = 0; i < sg->length; i++)
2400                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2401
2402                 offset += sg->length;
2403                 kunmap_atomic(addr, KM_USER0);
2404         }
2405
2406 out:
2407         kfree(buf);
2408 }
2409
2410 /*
2411  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2412  */
2413 static int transport_get_sense_data(struct se_cmd *cmd)
2414 {
2415         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2416         struct se_device *dev = cmd->se_dev;
2417         struct se_task *task = NULL, *task_tmp;
2418         unsigned long flags;
2419         u32 offset = 0;
2420
2421         WARN_ON(!cmd->se_lun);
2422
2423         if (!dev)
2424                 return 0;
2425
2426         spin_lock_irqsave(&cmd->t_state_lock, flags);
2427         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2428                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2429                 return 0;
2430         }
2431
2432         list_for_each_entry_safe(task, task_tmp,
2433                                 &cmd->t_task_list, t_list) {
2434                 if (!(task->task_flags & TF_HAS_SENSE))
2435                         continue;
2436
2437                 if (!dev->transport->get_sense_buffer) {
2438                         pr_err("dev->transport->get_sense_buffer"
2439                                         " is NULL\n");
2440                         continue;
2441                 }
2442
2443                 sense_buffer = dev->transport->get_sense_buffer(task);
2444                 if (!sense_buffer) {
2445                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2446                                 " sense buffer for task with sense\n",
2447                                 cmd->se_tfo->get_task_tag(cmd), task);
2448                         continue;
2449                 }
2450                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2451
2452                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2453                                 TRANSPORT_SENSE_BUFFER);
2454
2455                 memcpy(&buffer[offset], sense_buffer,
2456                                 TRANSPORT_SENSE_BUFFER);
2457                 cmd->scsi_status = task->task_scsi_status;
2458                 /* Automatically padded */
2459                 cmd->scsi_sense_length =
2460                                 (TRANSPORT_SENSE_BUFFER + offset);
2461
2462                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2463                                 " and sense\n",
2464                         dev->se_hba->hba_id, dev->transport->name,
2465                                 cmd->scsi_status);
2466                 return 0;
2467         }
2468         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2469
2470         return -1;
2471 }
2472
2473 static inline long long transport_dev_end_lba(struct se_device *dev)
2474 {
2475         return dev->transport->get_blocks(dev) + 1;
2476 }
2477
2478 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2479 {
2480         struct se_device *dev = cmd->se_dev;
2481         u32 sectors;
2482
2483         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2484                 return 0;
2485
2486         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2487
2488         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2489                 pr_err("LBA: %llu Sectors: %u exceeds"
2490                         " transport_dev_end_lba(): %llu\n",
2491                         cmd->t_task_lba, sectors,
2492                         transport_dev_end_lba(dev));
2493                 return -EINVAL;
2494         }
2495
2496         return 0;
2497 }
2498
2499 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2500 {
2501         /*
2502          * Determine if the received WRITE_SAME is used to for direct
2503          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2504          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2505          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2506          */
2507         int passthrough = (dev->transport->transport_type ==
2508                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2509
2510         if (!passthrough) {
2511                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2512                         pr_err("WRITE_SAME PBDATA and LBDATA"
2513                                 " bits not supported for Block Discard"
2514                                 " Emulation\n");
2515                         return -ENOSYS;
2516                 }
2517                 /*
2518                  * Currently for the emulated case we only accept
2519                  * tpws with the UNMAP=1 bit set.
2520                  */
2521                 if (!(flags[0] & 0x08)) {
2522                         pr_err("WRITE_SAME w/o UNMAP bit not"
2523                                 " supported for Block Discard Emulation\n");
2524                         return -ENOSYS;
2525                 }
2526         }
2527
2528         return 0;
2529 }
2530
2531 /*      transport_generic_cmd_sequencer():
2532  *
2533  *      Generic Command Sequencer that should work for most DAS transport
2534  *      drivers.
2535  *
2536  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2537  *      RX Thread.
2538  *
2539  *      FIXME: Need to support other SCSI OPCODES where as well.
2540  */
2541 static int transport_generic_cmd_sequencer(
2542         struct se_cmd *cmd,
2543         unsigned char *cdb)
2544 {
2545         struct se_device *dev = cmd->se_dev;
2546         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2547         int ret = 0, sector_ret = 0, passthrough;
2548         u32 sectors = 0, size = 0, pr_reg_type = 0;
2549         u16 service_action;
2550         u8 alua_ascq = 0;
2551         /*
2552          * Check for an existing UNIT ATTENTION condition
2553          */
2554         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2555                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2556                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2557                 return -EINVAL;
2558         }
2559         /*
2560          * Check status of Asymmetric Logical Unit Assignment port
2561          */
2562         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2563         if (ret != 0) {
2564                 /*
2565                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2566                  * The ALUA additional sense code qualifier (ASCQ) is determined
2567                  * by the ALUA primary or secondary access state..
2568                  */
2569                 if (ret > 0) {
2570 #if 0
2571                         pr_debug("[%s]: ALUA TG Port not available,"
2572                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2573                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2574 #endif
2575                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2576                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2577                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2578                         return -EINVAL;
2579                 }
2580                 goto out_invalid_cdb_field;
2581         }
2582         /*
2583          * Check status for SPC-3 Persistent Reservations
2584          */
2585         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2586                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2587                                         cmd, cdb, pr_reg_type) != 0) {
2588                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2589                         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2590                         cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2591                         return -EBUSY;
2592                 }
2593                 /*
2594                  * This means the CDB is allowed for the SCSI Initiator port
2595                  * when said port is *NOT* holding the legacy SPC-2 or
2596                  * SPC-3 Persistent Reservation.
2597                  */
2598         }
2599
2600         /*
2601          * If we operate in passthrough mode we skip most CDB emulation and
2602          * instead hand the commands down to the physical SCSI device.
2603          */
2604         passthrough =
2605                 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2606
2607         switch (cdb[0]) {
2608         case READ_6:
2609                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2610                 if (sector_ret)
2611                         goto out_unsupported_cdb;
2612                 size = transport_get_size(sectors, cdb, cmd);
2613                 cmd->t_task_lba = transport_lba_21(cdb);
2614                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2615                 break;
2616         case READ_10:
2617                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2618                 if (sector_ret)
2619                         goto out_unsupported_cdb;
2620                 size = transport_get_size(sectors, cdb, cmd);
2621                 cmd->t_task_lba = transport_lba_32(cdb);
2622                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2623                 break;
2624         case READ_12:
2625                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2626                 if (sector_ret)
2627                         goto out_unsupported_cdb;
2628                 size = transport_get_size(sectors, cdb, cmd);
2629                 cmd->t_task_lba = transport_lba_32(cdb);
2630                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2631                 break;
2632         case READ_16:
2633                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2634                 if (sector_ret)
2635                         goto out_unsupported_cdb;
2636                 size = transport_get_size(sectors, cdb, cmd);
2637                 cmd->t_task_lba = transport_lba_64(cdb);
2638                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2639                 break;
2640         case WRITE_6:
2641                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2642                 if (sector_ret)
2643                         goto out_unsupported_cdb;
2644                 size = transport_get_size(sectors, cdb, cmd);
2645                 cmd->t_task_lba = transport_lba_21(cdb);
2646                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2647                 break;
2648         case WRITE_10:
2649                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2650                 if (sector_ret)
2651                         goto out_unsupported_cdb;
2652                 size = transport_get_size(sectors, cdb, cmd);
2653                 cmd->t_task_lba = transport_lba_32(cdb);
2654                 if (cdb[1] & 0x8)
2655                         cmd->se_cmd_flags |= SCF_FUA;
2656                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2657                 break;
2658         case WRITE_12:
2659                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2660                 if (sector_ret)
2661                         goto out_unsupported_cdb;
2662                 size = transport_get_size(sectors, cdb, cmd);
2663                 cmd->t_task_lba = transport_lba_32(cdb);
2664                 if (cdb[1] & 0x8)
2665                         cmd->se_cmd_flags |= SCF_FUA;
2666                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2667                 break;
2668         case WRITE_16:
2669                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2670                 if (sector_ret)
2671                         goto out_unsupported_cdb;
2672                 size = transport_get_size(sectors, cdb, cmd);
2673                 cmd->t_task_lba = transport_lba_64(cdb);
2674                 if (cdb[1] & 0x8)
2675                         cmd->se_cmd_flags |= SCF_FUA;
2676                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2677                 break;
2678         case XDWRITEREAD_10:
2679                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2680                     !(cmd->se_cmd_flags & SCF_BIDI))
2681                         goto out_invalid_cdb_field;
2682                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2683                 if (sector_ret)
2684                         goto out_unsupported_cdb;
2685                 size = transport_get_size(sectors, cdb, cmd);
2686                 cmd->t_task_lba = transport_lba_32(cdb);
2687                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2688
2689                 /*
2690                  * Do now allow BIDI commands for passthrough mode.
2691                  */
2692                 if (passthrough)
2693                         goto out_unsupported_cdb;
2694
2695                 /*
2696                  * Setup BIDI XOR callback to be run after I/O completion.
2697                  */
2698                 cmd->transport_complete_callback = &transport_xor_callback;
2699                 if (cdb[1] & 0x8)
2700                         cmd->se_cmd_flags |= SCF_FUA;
2701                 break;
2702         case VARIABLE_LENGTH_CMD:
2703                 service_action = get_unaligned_be16(&cdb[8]);
2704                 switch (service_action) {
2705                 case XDWRITEREAD_32:
2706                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2707                         if (sector_ret)
2708                                 goto out_unsupported_cdb;
2709                         size = transport_get_size(sectors, cdb, cmd);
2710                         /*
2711                          * Use WRITE_32 and READ_32 opcodes for the emulated
2712                          * XDWRITE_READ_32 logic.
2713                          */
2714                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2715                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2716
2717                         /*
2718                          * Do now allow BIDI commands for passthrough mode.
2719                          */
2720                         if (passthrough)
2721                                 goto out_unsupported_cdb;
2722
2723                         /*
2724                          * Setup BIDI XOR callback to be run during after I/O
2725                          * completion.
2726                          */
2727                         cmd->transport_complete_callback = &transport_xor_callback;
2728                         if (cdb[1] & 0x8)
2729                                 cmd->se_cmd_flags |= SCF_FUA;
2730                         break;
2731                 case WRITE_SAME_32:
2732                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2733                         if (sector_ret)
2734                                 goto out_unsupported_cdb;
2735
2736                         if (sectors)
2737                                 size = transport_get_size(1, cdb, cmd);
2738                         else {
2739                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2740                                        " supported\n");
2741                                 goto out_invalid_cdb_field;
2742                         }
2743
2744                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2745                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2746
2747                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2748                                 goto out_unsupported_cdb;
2749                         if (!passthrough)
2750                                 cmd->execute_task = target_emulate_write_same;
2751                         break;
2752                 default:
2753                         pr_err("VARIABLE_LENGTH_CMD service action"
2754                                 " 0x%04x not supported\n", service_action);
2755                         goto out_unsupported_cdb;
2756                 }
2757                 break;
2758         case MAINTENANCE_IN:
2759                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2760                         /* MAINTENANCE_IN from SCC-2 */
2761                         /*
2762                          * Check for emulated MI_REPORT_TARGET_PGS.
2763                          */
2764                         if (cdb[1] == MI_REPORT_TARGET_PGS &&
2765                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2766                                 cmd->execute_task =
2767                                         target_emulate_report_target_port_groups;
2768                         }
2769                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2770                                (cdb[8] << 8) | cdb[9];
2771                 } else {
2772                         /* GPCMD_SEND_KEY from multi media commands */
2773                         size = (cdb[8] << 8) + cdb[9];
2774                 }
2775                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2776                 break;
2777         case MODE_SELECT:
2778                 size = cdb[4];
2779                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2780                 break;
2781         case MODE_SELECT_10:
2782                 size = (cdb[7] << 8) + cdb[8];
2783                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2784                 break;
2785         case MODE_SENSE:
2786                 size = cdb[4];
2787                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2788                 if (!passthrough)
2789                         cmd->execute_task = target_emulate_modesense;
2790                 break;
2791         case MODE_SENSE_10:
2792                 size = (cdb[7] << 8) + cdb[8];
2793                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2794                 if (!passthrough)
2795                         cmd->execute_task = target_emulate_modesense;
2796                 break;
2797         case GPCMD_READ_BUFFER_CAPACITY:
2798         case GPCMD_SEND_OPC:
2799         case LOG_SELECT:
2800         case LOG_SENSE:
2801                 size = (cdb[7] << 8) + cdb[8];
2802                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2803                 break;
2804         case READ_BLOCK_LIMITS:
2805                 size = READ_BLOCK_LEN;
2806                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2807                 break;
2808         case GPCMD_GET_CONFIGURATION:
2809         case GPCMD_READ_FORMAT_CAPACITIES:
2810         case GPCMD_READ_DISC_INFO:
2811         case GPCMD_READ_TRACK_RZONE_INFO:
2812                 size = (cdb[7] << 8) + cdb[8];
2813                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2814                 break;
2815         case PERSISTENT_RESERVE_IN:
2816                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2817                         cmd->execute_task = target_scsi3_emulate_pr_in;
2818                 size = (cdb[7] << 8) + cdb[8];
2819                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2820                 break;
2821         case PERSISTENT_RESERVE_OUT:
2822                 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2823                         cmd->execute_task = target_scsi3_emulate_pr_out;
2824                 size = (cdb[7] << 8) + cdb[8];
2825                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2826                 break;
2827         case GPCMD_MECHANISM_STATUS:
2828         case GPCMD_READ_DVD_STRUCTURE:
2829                 size = (cdb[8] << 8) + cdb[9];
2830                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2831                 break;
2832         case READ_POSITION:
2833                 size = READ_POSITION_LEN;
2834                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2835                 break;
2836         case MAINTENANCE_OUT:
2837                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2838                         /* MAINTENANCE_OUT from SCC-2
2839                          *
2840                          * Check for emulated MO_SET_TARGET_PGS.
2841                          */
2842                         if (cdb[1] == MO_SET_TARGET_PGS &&
2843                             su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2844                                 cmd->execute_task =
2845                                         target_emulate_set_target_port_groups;
2846                         }
2847
2848                         size = (cdb[6] << 24) | (cdb[7] << 16) |
2849                                (cdb[8] << 8) | cdb[9];
2850                 } else  {
2851                         /* GPCMD_REPORT_KEY from multi media commands */
2852                         size = (cdb[8] << 8) + cdb[9];
2853                 }
2854                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855                 break;
2856         case INQUIRY:
2857                 size = (cdb[3] << 8) + cdb[4];
2858                 /*
2859                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2860                  * See spc4r17 section 5.3
2861                  */
2862                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2863                         cmd->sam_task_attr = MSG_HEAD_TAG;
2864                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2865                 if (!passthrough)
2866                         cmd->execute_task = target_emulate_inquiry;
2867                 break;
2868         case READ_BUFFER:
2869                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2870                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2871                 break;
2872         case READ_CAPACITY:
2873                 size = READ_CAP_LEN;
2874                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2875                 if (!passthrough)
2876                         cmd->execute_task = target_emulate_readcapacity;
2877                 break;
2878         case READ_MEDIA_SERIAL_NUMBER:
2879         case SECURITY_PROTOCOL_IN:
2880         case SECURITY_PROTOCOL_OUT:
2881                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2882                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2883                 break;
2884         case SERVICE_ACTION_IN:
2885                 switch (cmd->t_task_cdb[1] & 0x1f) {
2886                 case SAI_READ_CAPACITY_16:
2887                         if (!passthrough)
2888                                 cmd->execute_task =
2889                                         target_emulate_readcapacity_16;
2890                         break;
2891                 default:
2892                         if (passthrough)
2893                                 break;
2894
2895                         pr_err("Unsupported SA: 0x%02x\n",
2896                                 cmd->t_task_cdb[1] & 0x1f);
2897                         goto out_unsupported_cdb;
2898                 }
2899                 /*FALLTHROUGH*/
2900         case ACCESS_CONTROL_IN:
2901         case ACCESS_CONTROL_OUT:
2902         case EXTENDED_COPY:
2903         case READ_ATTRIBUTE:
2904         case RECEIVE_COPY_RESULTS:
2905         case WRITE_ATTRIBUTE:
2906                 size = (cdb[10] << 24) | (cdb[11] << 16) |
2907                        (cdb[12] << 8) | cdb[13];
2908                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2909                 break;
2910         case RECEIVE_DIAGNOSTIC:
2911         case SEND_DIAGNOSTIC:
2912                 size = (cdb[3] << 8) | cdb[4];
2913                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2914                 break;
2915 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2916 #if 0
2917         case GPCMD_READ_CD:
2918                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2919                 size = (2336 * sectors);
2920                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2921                 break;
2922 #endif
2923         case READ_TOC:
2924                 size = cdb[8];
2925                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2926                 break;
2927         case REQUEST_SENSE:
2928                 size = cdb[4];
2929                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2930                 if (!passthrough)
2931                         cmd->execute_task = target_emulate_request_sense;
2932                 break;
2933         case READ_ELEMENT_STATUS:
2934                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2935                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2936                 break;
2937         case WRITE_BUFFER:
2938                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2939                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2940                 break;
2941         case RESERVE:
2942         case RESERVE_10:
2943                 /*
2944                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2945                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2946                  */
2947                 if (cdb[0] == RESERVE_10)
2948                         size = (cdb[7] << 8) | cdb[8];
2949                 else
2950                         size = cmd->data_length;
2951
2952                 /*
2953                  * Setup the legacy emulated handler for SPC-2 and
2954                  * >= SPC-3 compatible reservation handling (CRH=1)
2955                  * Otherwise, we assume the underlying SCSI logic is
2956                  * is running in SPC_PASSTHROUGH, and wants reservations
2957                  * emulation disabled.
2958                  */
2959                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2960                         cmd->execute_task = target_scsi2_reservation_reserve;
2961                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2962                 break;
2963         case RELEASE:
2964         case RELEASE_10:
2965                 /*
2966                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2967                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
2968                 */
2969                 if (cdb[0] == RELEASE_10)
2970                         size = (cdb[7] << 8) | cdb[8];
2971                 else
2972                         size = cmd->data_length;
2973
2974                 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2975                         cmd->execute_task = target_scsi2_reservation_release;
2976                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2977                 break;
2978         case SYNCHRONIZE_CACHE:
2979         case SYNCHRONIZE_CACHE_16:
2980                 /*
2981                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2982                  */
2983                 if (cdb[0] == SYNCHRONIZE_CACHE) {
2984                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2985                         cmd->t_task_lba = transport_lba_32(cdb);
2986                 } else {
2987                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2988                         cmd->t_task_lba = transport_lba_64(cdb);
2989                 }
2990                 if (sector_ret)
2991                         goto out_unsupported_cdb;
2992
2993                 size = transport_get_size(sectors, cdb, cmd);
2994                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2995
2996                 if (passthrough)
2997                         break;
2998
2999                 /*
3000                  * Check to ensure that LBA + Range does not exceed past end of
3001                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3002                  */
3003                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3004                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3005                                 goto out_invalid_cdb_field;
3006                 }
3007                 cmd->execute_task = target_emulate_synchronize_cache;
3008                 break;
3009         case UNMAP:
3010                 size = get_unaligned_be16(&cdb[7]);
3011                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3012                 if (!passthrough)
3013                         cmd->execute_task = target_emulate_unmap;
3014                 break;
3015         case WRITE_SAME_16:
3016                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3017                 if (sector_ret)
3018                         goto out_unsupported_cdb;
3019
3020                 if (sectors)
3021                         size = transport_get_size(1, cdb, cmd);
3022                 else {
3023                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3024                         goto out_invalid_cdb_field;
3025                 }
3026
3027                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3028                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3029
3030                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3031                         goto out_unsupported_cdb;
3032                 if (!passthrough)
3033                         cmd->execute_task = target_emulate_write_same;
3034                 break;
3035         case WRITE_SAME:
3036                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3037                 if (sector_ret)
3038                         goto out_unsupported_cdb;
3039
3040                 if (sectors)
3041                         size = transport_get_size(1, cdb, cmd);
3042                 else {
3043                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3044                         goto out_invalid_cdb_field;
3045                 }
3046
3047                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3048                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3049                 /*
3050                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3051                  * of byte 1 bit 3 UNMAP instead of original reserved field
3052                  */
3053                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3054                         goto out_unsupported_cdb;
3055                 if (!passthrough)
3056                         cmd->execute_task = target_emulate_write_same;
3057                 break;
3058         case ALLOW_MEDIUM_REMOVAL:
3059         case ERASE:
3060         case REZERO_UNIT:
3061         case SEEK_10:
3062         case SPACE:
3063         case START_STOP:
3064         case TEST_UNIT_READY:
3065         case VERIFY:
3066         case WRITE_FILEMARKS:
3067                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3068                 if (!passthrough)
3069                         cmd->execute_task = target_emulate_noop;
3070                 break;
3071         case GPCMD_CLOSE_TRACK:
3072         case INITIALIZE_ELEMENT_STATUS:
3073         case GPCMD_LOAD_UNLOAD:
3074         case GPCMD_SET_SPEED:
3075         case MOVE_MEDIUM:
3076                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3077                 break;
3078         case REPORT_LUNS:
3079                 cmd->execute_task = target_report_luns;
3080                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3081                 /*
3082                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3083                  * See spc4r17 section 5.3
3084                  */
3085                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3086                         cmd->sam_task_attr = MSG_HEAD_TAG;
3087                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3088                 break;
3089         default:
3090                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3091                         " 0x%02x, sending CHECK_CONDITION.\n",
3092                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3093                 goto out_unsupported_cdb;
3094         }
3095
3096         if (size != cmd->data_length) {
3097                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3098                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3099                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3100                                 cmd->data_length, size, cdb[0]);
3101
3102                 cmd->cmd_spdtl = size;
3103
3104                 if (cmd->data_direction == DMA_TO_DEVICE) {
3105                         pr_err("Rejecting underflow/overflow"
3106                                         " WRITE data\n");
3107                         goto out_invalid_cdb_field;
3108                 }
3109                 /*
3110                  * Reject READ_* or WRITE_* with overflow/underflow for
3111                  * type SCF_SCSI_DATA_SG_IO_CDB.
3112                  */
3113                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3114                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3115                                 " CDB on non 512-byte sector setup subsystem"
3116                                 " plugin: %s\n", dev->transport->name);
3117                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3118                         goto out_invalid_cdb_field;
3119                 }
3120
3121                 if (size > cmd->data_length) {
3122                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3123                         cmd->residual_count = (size - cmd->data_length);
3124                 } else {
3125                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3126                         cmd->residual_count = (cmd->data_length - size);
3127                 }
3128                 cmd->data_length = size;
3129         }
3130
3131         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB &&
3132             sectors > dev->se_sub_dev->se_dev_attrib.fabric_max_sectors) {
3133                 printk_ratelimited(KERN_ERR "SCSI OP %02xh with too big sectors %u\n",
3134                                    cdb[0], sectors);
3135                 goto out_invalid_cdb_field;
3136         }
3137
3138         /* reject any command that we don't have a handler for */
3139         if (!(passthrough || cmd->execute_task ||
3140              (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3141                 goto out_unsupported_cdb;
3142
3143         transport_set_supported_SAM_opcode(cmd);
3144         return ret;
3145
3146 out_unsupported_cdb:
3147         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3148         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3149         return -EINVAL;
3150 out_invalid_cdb_field:
3151         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3152         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3153         return -EINVAL;
3154 }
3155
3156 /*
3157  * Called from I/O completion to determine which dormant/delayed
3158  * and ordered cmds need to have their tasks added to the execution queue.
3159  */
3160 static void transport_complete_task_attr(struct se_cmd *cmd)
3161 {
3162         struct se_device *dev = cmd->se_dev;
3163         struct se_cmd *cmd_p, *cmd_tmp;
3164         int new_active_tasks = 0;
3165
3166         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3167                 atomic_dec(&dev->simple_cmds);
3168                 smp_mb__after_atomic_dec();
3169                 dev->dev_cur_ordered_id++;
3170                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3171                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3172                         cmd->se_ordered_id);
3173         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3174                 dev->dev_cur_ordered_id++;
3175                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3176                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3177                         cmd->se_ordered_id);
3178         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3179                 atomic_dec(&dev->dev_ordered_sync);
3180                 smp_mb__after_atomic_dec();
3181
3182                 dev->dev_cur_ordered_id++;
3183                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3184                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3185         }
3186         /*
3187          * Process all commands up to the last received
3188          * ORDERED task attribute which requires another blocking
3189          * boundary
3190          */
3191         spin_lock(&dev->delayed_cmd_lock);
3192         list_for_each_entry_safe(cmd_p, cmd_tmp,
3193                         &dev->delayed_cmd_list, se_delayed_node) {
3194
3195                 list_del(&cmd_p->se_delayed_node);
3196                 spin_unlock(&dev->delayed_cmd_lock);
3197
3198                 pr_debug("Calling add_tasks() for"
3199                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3200                         " Dormant -> Active, se_ordered_id: %u\n",
3201                         cmd_p->t_task_cdb[0],
3202                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3203
3204                 transport_add_tasks_from_cmd(cmd_p);
3205                 new_active_tasks++;
3206
3207                 spin_lock(&dev->delayed_cmd_lock);
3208                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3209                         break;
3210         }
3211         spin_unlock(&dev->delayed_cmd_lock);
3212         /*
3213          * If new tasks have become active, wake up the transport thread
3214          * to do the processing of the Active tasks.
3215          */
3216         if (new_active_tasks != 0)
3217                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3218 }
3219
3220 static void transport_complete_qf(struct se_cmd *cmd)
3221 {
3222         int ret = 0;
3223
3224         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3225                 transport_complete_task_attr(cmd);
3226
3227         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3228                 ret = cmd->se_tfo->queue_status(cmd);
3229                 if (ret)
3230                         goto out;
3231         }
3232
3233         switch (cmd->data_direction) {
3234         case DMA_FROM_DEVICE:
3235                 ret = cmd->se_tfo->queue_data_in(cmd);
3236                 break;
3237         case DMA_TO_DEVICE:
3238                 if (cmd->t_bidi_data_sg) {
3239                         ret = cmd->se_tfo->queue_data_in(cmd);
3240                         if (ret < 0)
3241                                 break;
3242                 }
3243                 /* Fall through for DMA_TO_DEVICE */
3244         case DMA_NONE:
3245                 ret = cmd->se_tfo->queue_status(cmd);
3246                 break;
3247         default:
3248                 break;
3249         }
3250
3251 out:
3252         if (ret < 0) {
3253                 transport_handle_queue_full(cmd, cmd->se_dev);
3254                 return;
3255         }
3256         transport_lun_remove_cmd(cmd);
3257         transport_cmd_check_stop_to_fabric(cmd);
3258 }
3259
3260 static void transport_handle_queue_full(
3261         struct se_cmd *cmd,
3262         struct se_device *dev)
3263 {
3264         spin_lock_irq(&dev->qf_cmd_lock);
3265         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3266         atomic_inc(&dev->dev_qf_count);
3267         smp_mb__after_atomic_inc();
3268         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3269
3270         schedule_work(&cmd->se_dev->qf_work_queue);
3271 }
3272
3273 static void target_complete_ok_work(struct work_struct *work)
3274 {
3275         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3276         int reason = 0, ret;
3277
3278         /*
3279          * Check if we need to move delayed/dormant tasks from cmds on the
3280          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3281          * Attribute.
3282          */
3283         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3284                 transport_complete_task_attr(cmd);
3285         /*
3286          * Check to schedule QUEUE_FULL work, or execute an existing
3287          * cmd->transport_qf_callback()
3288          */
3289         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3290                 schedule_work(&cmd->se_dev->qf_work_queue);
3291
3292         /*
3293          * Check if we need to retrieve a sense buffer from
3294          * the struct se_cmd in question.
3295          */
3296         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3297                 if (transport_get_sense_data(cmd) < 0)
3298                         reason = TCM_NON_EXISTENT_LUN;
3299
3300                 /*
3301                  * Only set when an struct se_task->task_scsi_status returned
3302                  * a non GOOD status.
3303                  */
3304                 if (cmd->scsi_status) {
3305                         ret = transport_send_check_condition_and_sense(
3306                                         cmd, reason, 1);
3307                         if (ret == -EAGAIN || ret == -ENOMEM)
3308                                 goto queue_full;
3309
3310                         transport_lun_remove_cmd(cmd);
3311                         transport_cmd_check_stop_to_fabric(cmd);
3312                         return;
3313                 }
3314         }
3315         /*
3316          * Check for a callback, used by amongst other things
3317          * XDWRITE_READ_10 emulation.
3318          */
3319         if (cmd->transport_complete_callback)
3320                 cmd->transport_complete_callback(cmd);
3321
3322         switch (cmd->data_direction) {
3323         case DMA_FROM_DEVICE:
3324                 spin_lock(&cmd->se_lun->lun_sep_lock);
3325                 if (cmd->se_lun->lun_sep) {
3326                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3327                                         cmd->data_length;
3328                 }
3329                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3330
3331                 ret = cmd->se_tfo->queue_data_in(cmd);
3332                 if (ret == -EAGAIN || ret == -ENOMEM)
3333                         goto queue_full;
3334                 break;
3335         case DMA_TO_DEVICE:
3336                 spin_lock(&cmd->se_lun->lun_sep_lock);
3337                 if (cmd->se_lun->lun_sep) {
3338                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3339                                 cmd->data_length;
3340                 }
3341                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3342                 /*
3343                  * Check if we need to send READ payload for BIDI-COMMAND
3344                  */
3345                 if (cmd->t_bidi_data_sg) {
3346                         spin_lock(&cmd->se_lun->lun_sep_lock);
3347                         if (cmd->se_lun->lun_sep) {
3348                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3349                                         cmd->data_length;
3350                         }
3351                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3352                         ret = cmd->se_tfo->queue_data_in(cmd);
3353                         if (ret == -EAGAIN || ret == -ENOMEM)
3354                                 goto queue_full;
3355                         break;
3356                 }
3357                 /* Fall through for DMA_TO_DEVICE */
3358         case DMA_NONE:
3359                 ret = cmd->se_tfo->queue_status(cmd);
3360                 if (ret == -EAGAIN || ret == -ENOMEM)
3361                         goto queue_full;
3362                 break;
3363         default:
3364                 break;
3365         }
3366
3367         transport_lun_remove_cmd(cmd);
3368         transport_cmd_check_stop_to_fabric(cmd);
3369         return;
3370
3371 queue_full:
3372         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3373                 " data_direction: %d\n", cmd, cmd->data_direction);
3374         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3375         transport_handle_queue_full(cmd, cmd->se_dev);
3376 }
3377
3378 static void transport_free_dev_tasks(struct se_cmd *cmd)
3379 {
3380         struct se_task *task, *task_tmp;
3381         unsigned long flags;
3382         LIST_HEAD(dispose_list);
3383
3384         spin_lock_irqsave(&cmd->t_state_lock, flags);
3385         list_for_each_entry_safe(task, task_tmp,
3386                                 &cmd->t_task_list, t_list) {
3387                 if (!(task->task_flags & TF_ACTIVE))
3388                         list_move_tail(&task->t_list, &dispose_list);
3389         }
3390         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3391
3392         while (!list_empty(&dispose_list)) {
3393                 task = list_first_entry(&dispose_list, struct se_task, t_list);
3394
3395                 if (task->task_sg != cmd->t_data_sg &&
3396                     task->task_sg != cmd->t_bidi_data_sg)
3397                         kfree(task->task_sg);
3398
3399                 list_del(&task->t_list);
3400
3401                 cmd->se_dev->transport->free_task(task);
3402         }
3403 }
3404
3405 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3406 {
3407         struct scatterlist *sg;
3408         int count;
3409
3410         for_each_sg(sgl, sg, nents, count)
3411                 __free_page(sg_page(sg));
3412
3413         kfree(sgl);
3414 }
3415
3416 static inline void transport_free_pages(struct se_cmd *cmd)
3417 {
3418         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3419                 return;
3420
3421         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3422         cmd->t_data_sg = NULL;
3423         cmd->t_data_nents = 0;
3424
3425         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3426         cmd->t_bidi_data_sg = NULL;
3427         cmd->t_bidi_data_nents = 0;
3428 }
3429
3430 /**
3431  * transport_release_cmd - free a command
3432  * @cmd:       command to free
3433  *
3434  * This routine unconditionally frees a command, and reference counting
3435  * or list removal must be done in the caller.
3436  */
3437 static void transport_release_cmd(struct se_cmd *cmd)
3438 {
3439         BUG_ON(!cmd->se_tfo);
3440
3441         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
3442                 core_tmr_release_req(cmd->se_tmr_req);
3443         if (cmd->t_task_cdb != cmd->__t_task_cdb)
3444                 kfree(cmd->t_task_cdb);
3445         /*
3446          * If this cmd has been setup with target_get_sess_cmd(), drop
3447          * the kref and call ->release_cmd() in kref callback.
3448          */
3449          if (cmd->check_release != 0) {
3450                 target_put_sess_cmd(cmd->se_sess, cmd);
3451                 return;
3452         }
3453         cmd->se_tfo->release_cmd(cmd);
3454 }
3455
3456 /**
3457  * transport_put_cmd - release a reference to a command
3458  * @cmd:       command to release
3459  *
3460  * This routine releases our reference to the command and frees it if possible.
3461  */
3462 static void transport_put_cmd(struct se_cmd *cmd)
3463 {
3464         unsigned long flags;
3465         int free_tasks = 0;
3466
3467         spin_lock_irqsave(&cmd->t_state_lock, flags);
3468         if (atomic_read(&cmd->t_fe_count)) {
3469                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3470                         goto out_busy;
3471         }
3472
3473         if (atomic_read(&cmd->t_se_count)) {
3474                 if (!atomic_dec_and_test(&cmd->t_se_count))
3475                         goto out_busy;
3476         }
3477
3478         if (cmd->transport_state & CMD_T_DEV_ACTIVE) {
3479                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
3480                 transport_all_task_dev_remove_state(cmd);
3481                 free_tasks = 1;
3482         }
3483         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3484
3485         if (free_tasks != 0)
3486                 transport_free_dev_tasks(cmd);
3487
3488         transport_free_pages(cmd);
3489         transport_release_cmd(cmd);
3490         return;
3491 out_busy:
3492         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3493 }
3494
3495 /*
3496  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3497  * allocating in the core.
3498  * @cmd:  Associated se_cmd descriptor
3499  * @mem:  SGL style memory for TCM WRITE / READ
3500  * @sg_mem_num: Number of SGL elements
3501  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3502  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3503  *
3504  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3505  * of parameters.
3506  */
3507 int transport_generic_map_mem_to_cmd(
3508         struct se_cmd *cmd,
3509         struct scatterlist *sgl,
3510         u32 sgl_count,
3511         struct scatterlist *sgl_bidi,
3512         u32 sgl_bidi_count)
3513 {
3514         if (!sgl || !sgl_count)
3515                 return 0;
3516
3517         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3518             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3519                 /*
3520                  * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3521                  * scatterlists already have been set to follow what the fabric
3522                  * passes for the original expected data transfer length.
3523                  */
3524                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3525                         pr_warn("Rejecting SCSI DATA overflow for fabric using"
3526                                 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3527                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3528                         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3529                         return -EINVAL;
3530                 }
3531
3532                 cmd->t_data_sg = sgl;
3533                 cmd->t_data_nents = sgl_count;
3534
3535                 if (sgl_bidi && sgl_bidi_count) {
3536                         cmd->t_bidi_data_sg = sgl_bidi;
3537                         cmd->t_bidi_data_nents = sgl_bidi_count;
3538                 }
3539                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3540         }
3541
3542         return 0;
3543 }
3544 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3545
3546 void *transport_kmap_data_sg(struct se_cmd *cmd)
3547 {
3548         struct scatterlist *sg = cmd->t_data_sg;
3549         struct page **pages;
3550         int i;
3551
3552         BUG_ON(!sg);
3553         /*
3554          * We need to take into account a possible offset here for fabrics like
3555          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3556          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3557          */
3558         if (!cmd->t_data_nents)
3559                 return NULL;
3560         else if (cmd->t_data_nents == 1)
3561                 return kmap(sg_page(sg)) + sg->offset;
3562
3563         /* >1 page. use vmap */
3564         pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3565         if (!pages)
3566                 return NULL;
3567
3568         /* convert sg[] to pages[] */
3569         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3570                 pages[i] = sg_page(sg);
3571         }
3572
3573         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
3574         kfree(pages);
3575         if (!cmd->t_data_vmap)
3576                 return NULL;
3577
3578         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3579 }
3580 EXPORT_SYMBOL(transport_kmap_data_sg);
3581
3582 void transport_kunmap_data_sg(struct se_cmd *cmd)
3583 {
3584         if (!cmd->t_data_nents) {
3585                 return;
3586         } else if (cmd->t_data_nents == 1) {
3587                 kunmap(sg_page(cmd->t_data_sg));
3588                 return;
3589         }
3590
3591         vunmap(cmd->t_data_vmap);
3592         cmd->t_data_vmap = NULL;
3593 }
3594 EXPORT_SYMBOL(transport_kunmap_data_sg);
3595
3596 static int
3597 transport_generic_get_mem(struct se_cmd *cmd)
3598 {
3599         u32 length = cmd->data_length;
3600         unsigned int nents;
3601         struct page *page;
3602         gfp_t zero_flag;
3603         int i = 0;
3604
3605         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3606         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3607         if (!cmd->t_data_sg)
3608                 return -ENOMEM;
3609
3610         cmd->t_data_nents = nents;
3611         sg_init_table(cmd->t_data_sg, nents);
3612
3613         zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3614
3615         while (length) {
3616                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3617                 page = alloc_page(GFP_KERNEL | zero_flag);
3618                 if (!page)
3619                         goto out;
3620
3621                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3622                 length -= page_len;
3623                 i++;
3624         }
3625         return 0;
3626
3627 out:
3628         while (i >= 0) {
3629                 __free_page(sg_page(&cmd->t_data_sg[i]));
3630                 i--;
3631         }
3632         kfree(cmd->t_data_sg);
3633         cmd->t_data_sg = NULL;
3634         return -ENOMEM;
3635 }
3636
3637 /* Reduce sectors if they are too long for the device */
3638 static inline sector_t transport_limit_task_sectors(
3639         struct se_device *dev,
3640         unsigned long long lba,
3641         sector_t sectors)
3642 {
3643         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3644
3645         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3646                 if ((lba + sectors) > transport_dev_end_lba(dev))
3647                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3648
3649         return sectors;
3650 }
3651
3652
3653 /*
3654  * This function can be used by HW target mode drivers to create a linked
3655  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3656  * This is intended to be called during the completion path by TCM Core
3657  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3658  */
3659 void transport_do_task_sg_chain(struct se_cmd *cmd)
3660 {
3661         struct scatterlist *sg_first = NULL;
3662         struct scatterlist *sg_prev = NULL;
3663         int sg_prev_nents = 0;
3664         struct scatterlist *sg;
3665         struct se_task *task;
3666         u32 chained_nents = 0;
3667         int i;
3668
3669         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3670
3671         /*
3672          * Walk the struct se_task list and setup scatterlist chains
3673          * for each contiguously allocated struct se_task->task_sg[].
3674          */
3675         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3676                 if (!task->task_sg)
3677                         continue;
3678
3679                 if (!sg_first) {
3680                         sg_first = task->task_sg;
3681                         chained_nents = task->task_sg_nents;
3682                 } else {
3683                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3684                         chained_nents += task->task_sg_nents;
3685                 }
3686                 /*
3687                  * For the padded tasks, use the extra SGL vector allocated
3688                  * in transport_allocate_data_tasks() for the sg_prev_nents
3689                  * offset into sg_chain() above.
3690                  *
3691                  * We do not need the padding for the last task (or a single
3692                  * task), but in that case we will never use the sg_prev_nents
3693                  * value below which would be incorrect.
3694                  */
3695                 sg_prev_nents = (task->task_sg_nents + 1);
3696                 sg_prev = task->task_sg;
3697         }
3698         /*
3699          * Setup the starting pointer and total t_tasks_sg_linked_no including
3700          * padding SGs for linking and to mark the end.
3701          */
3702         cmd->t_tasks_sg_chained = sg_first;
3703         cmd->t_tasks_sg_chained_no = chained_nents;
3704
3705         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3706                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3707                 cmd->t_tasks_sg_chained_no);
3708
3709         for_each_sg(cmd->t_tasks_sg_chained, sg,
3710                         cmd->t_tasks_sg_chained_no, i) {
3711
3712                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3713                         i, sg, sg_page(sg), sg->length, sg->offset);
3714                 if (sg_is_chain(sg))
3715                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3716                 if (sg_is_last(sg))
3717                         pr_debug("SG: %p sg_is_last=1\n", sg);
3718         }
3719 }
3720 EXPORT_SYMBOL(transport_do_task_sg_chain);
3721
3722 /*
3723  * Break up cmd into chunks transport can handle
3724  */
3725 static int
3726 transport_allocate_data_tasks(struct se_cmd *cmd,
3727         enum dma_data_direction data_direction,
3728         struct scatterlist *cmd_sg, unsigned int sgl_nents)
3729 {
3730         struct se_device *dev = cmd->se_dev;
3731         int task_count, i;
3732         unsigned long long lba;
3733         sector_t sectors, dev_max_sectors;
3734         u32 sector_size;
3735
3736         if (transport_cmd_get_valid_sectors(cmd) < 0)
3737                 return -EINVAL;
3738
3739         dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3740         sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3741
3742         WARN_ON(cmd->data_length % sector_size);
3743
3744         lba = cmd->t_task_lba;
3745         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3746         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3747
3748         /*
3749          * If we need just a single task reuse the SG list in the command
3750          * and avoid a lot of work.
3751          */
3752         if (task_count == 1) {
3753                 struct se_task *task;
3754                 unsigned long flags;
3755
3756                 task = transport_generic_get_task(cmd, data_direction);
3757                 if (!task)
3758                         return -ENOMEM;
3759
3760                 task->task_sg = cmd_sg;
3761                 task->task_sg_nents = sgl_nents;
3762
3763                 task->task_lba = lba;
3764                 task->task_sectors = sectors;
3765                 task->task_size = task->task_sectors * sector_size;
3766
3767                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3768                 list_add_tail(&task->t_list, &cmd->t_task_list);
3769                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3770
3771                 return task_count;
3772         }
3773
3774         for (i = 0; i < task_count; i++) {
3775                 struct se_task *task;
3776                 unsigned int task_size, task_sg_nents_padded;
3777                 struct scatterlist *sg;
3778                 unsigned long flags;
3779                 int count;
3780
3781                 task = transport_generic_get_task(cmd, data_direction);
3782                 if (!task)
3783                         return -ENOMEM;
3784
3785                 task->task_lba = lba;
3786                 task->task_sectors = min(sectors, dev_max_sectors);
3787                 task->task_size = task->task_sectors * sector_size;
3788
3789                 /*
3790                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3791                  * in order to calculate the number per task SGL entries
3792                  */
3793                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3794                 /*
3795                  * Check if the fabric module driver is requesting that all
3796                  * struct se_task->task_sg[] be chained together..  If so,
3797                  * then allocate an extra padding SG entry for linking and
3798                  * marking the end of the chained SGL for every task except
3799                  * the last one for (task_count > 1) operation, or skipping
3800                  * the extra padding for the (task_count == 1) case.
3801                  */
3802                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3803                         task_sg_nents_padded = (task->task_sg_nents + 1);
3804                 } else
3805                         task_sg_nents_padded = task->task_sg_nents;
3806
3807                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3808                                         task_sg_nents_padded, GFP_KERNEL);
3809                 if (!task->task_sg) {
3810                         cmd->se_dev->transport->free_task(task);
3811                         return -ENOMEM;
3812                 }
3813
3814                 sg_init_table(task->task_sg, task_sg_nents_padded);
3815
3816                 task_size = task->task_size;
3817
3818                 /* Build new sgl, only up to task_size */
3819                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3820                         if (cmd_sg->length > task_size)
3821                                 break;
3822
3823                         *sg = *cmd_sg;
3824                         task_size -= cmd_sg->length;
3825                         cmd_sg = sg_next(cmd_sg);
3826                 }
3827
3828                 lba += task->task_sectors;
3829                 sectors -= task->task_sectors;
3830
3831                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3832                 list_add_tail(&task->t_list, &cmd->t_task_list);
3833                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3834         }
3835
3836         return task_count;
3837 }
3838
3839 static int
3840 transport_allocate_control_task(struct se_cmd *cmd)
3841 {
3842         struct se_task *task;
3843         unsigned long flags;
3844
3845         /* Workaround for handling zero-length control CDBs */
3846         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3847             !cmd->data_length)
3848                 return 0;
3849
3850         task = transport_generic_get_task(cmd, cmd->data_direction);
3851         if (!task)
3852                 return -ENOMEM;
3853
3854         task->task_sg = cmd->t_data_sg;
3855         task->task_size = cmd->data_length;
3856         task->task_sg_nents = cmd->t_data_nents;
3857
3858         spin_lock_irqsave(&cmd->t_state_lock, flags);
3859         list_add_tail(&task->t_list, &cmd->t_task_list);
3860         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3861
3862         /* Success! Return number of tasks allocated */
3863         return 1;
3864 }
3865
3866 /*
3867  * Allocate any required ressources to execute the command, and either place
3868  * it on the execution queue if possible.  For writes we might not have the
3869  * payload yet, thus notify the fabric via a call to ->write_pending instead.
3870  */
3871 int transport_generic_new_cmd(struct se_cmd *cmd)
3872 {
3873         struct se_device *dev = cmd->se_dev;
3874         int task_cdbs, task_cdbs_bidi = 0;
3875         int set_counts = 1;
3876         int ret = 0;
3877
3878         /*
3879          * Determine is the TCM fabric module has already allocated physical
3880          * memory, and is directly calling transport_generic_map_mem_to_cmd()
3881          * beforehand.
3882          */
3883         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3884             cmd->data_length) {
3885                 ret = transport_generic_get_mem(cmd);
3886                 if (ret < 0)
3887                         goto out_fail;
3888         }
3889
3890         /*
3891          * For BIDI command set up the read tasks first.
3892          */
3893         if (cmd->t_bidi_data_sg &&
3894             dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3895                 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3896
3897                 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3898                                 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3899                                 cmd->t_bidi_data_nents);
3900                 if (task_cdbs_bidi <= 0)
3901                         goto out_fail;
3902
3903                 atomic_inc(&cmd->t_fe_count);
3904                 atomic_inc(&cmd->t_se_count);
3905                 set_counts = 0;
3906         }
3907
3908         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3909                 task_cdbs = transport_allocate_data_tasks(cmd,
3910                                         cmd->data_direction, cmd->t_data_sg,
3911                                         cmd->t_data_nents);
3912         } else {
3913                 task_cdbs = transport_allocate_control_task(cmd);
3914         }
3915
3916         if (task_cdbs < 0)
3917                 goto out_fail;
3918         else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3919                 spin_lock_irq(&cmd->t_state_lock);
3920                 cmd->t_state = TRANSPORT_COMPLETE;
3921                 cmd->transport_state |= CMD_T_ACTIVE;
3922                 spin_unlock_irq(&cmd->t_state_lock);
3923
3924                 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3925                         u8 ua_asc = 0, ua_ascq = 0;
3926
3927                         core_scsi3_ua_clear_for_request_sense(cmd,
3928                                         &ua_asc, &ua_ascq);
3929                 }
3930
3931                 INIT_WORK(&cmd->work, target_complete_ok_work);
3932                 queue_work(target_completion_wq, &cmd->work);
3933                 return 0;
3934         }
3935
3936         if (set_counts) {
3937                 atomic_inc(&cmd->t_fe_count);
3938                 atomic_inc(&cmd->t_se_count);
3939         }
3940
3941         cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3942         atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3943         atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3944
3945         /*
3946          * For WRITEs, let the fabric know its buffer is ready..
3947          * This WRITE struct se_cmd (and all of its associated struct se_task's)
3948          * will be added to the struct se_device execution queue after its WRITE
3949          * data has arrived. (ie: It gets handled by the transport processing
3950          * thread a second time)
3951          */
3952         if (cmd->data_direction == DMA_TO_DEVICE) {
3953                 transport_add_tasks_to_state_queue(cmd);
3954                 return transport_generic_write_pending(cmd);
3955         }
3956         /*
3957          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3958          * to the execution queue.
3959          */
3960         transport_execute_tasks(cmd);
3961         return 0;
3962
3963 out_fail:
3964         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3965         cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3966         return -EINVAL;
3967 }
3968 EXPORT_SYMBOL(transport_generic_new_cmd);
3969
3970 /*      transport_generic_process_write():
3971  *
3972  *
3973  */
3974 void transport_generic_process_write(struct se_cmd *cmd)
3975 {
3976         transport_execute_tasks(cmd);
3977 }
3978 EXPORT_SYMBOL(transport_generic_process_write);
3979
3980 static void transport_write_pending_qf(struct se_cmd *cmd)
3981 {
3982         int ret;
3983
3984         ret = cmd->se_tfo->write_pending(cmd);
3985         if (ret == -EAGAIN || ret == -ENOMEM) {
3986                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3987                          cmd);
3988                 transport_handle_queue_full(cmd, cmd->se_dev);
3989         }
3990 }
3991
3992 static int transport_generic_write_pending(struct se_cmd *cmd)
3993 {
3994         unsigned long flags;
3995         int ret;
3996
3997         spin_lock_irqsave(&cmd->t_state_lock, flags);
3998         cmd->t_state = TRANSPORT_WRITE_PENDING;
3999         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4000
4001         /*
4002          * Clear the se_cmd for WRITE_PENDING status in order to set
4003          * CMD_T_ACTIVE so that transport_generic_handle_data can be called
4004          * from HW target mode interrupt code.  This is safe to be called
4005          * with transport_off=1 before the cmd->se_tfo->write_pending
4006          * because the se_cmd->se_lun pointer is not being cleared.
4007          */
4008         transport_cmd_check_stop(cmd, 1, 0);
4009
4010         /*
4011          * Call the fabric write_pending function here to let the
4012          * frontend know that WRITE buffers are ready.
4013          */
4014         ret = cmd->se_tfo->write_pending(cmd);
4015         if (ret == -EAGAIN || ret == -ENOMEM)
4016                 goto queue_full;
4017         else if (ret < 0)
4018                 return ret;
4019
4020         return 1;
4021
4022 queue_full:
4023         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4024         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4025         transport_handle_queue_full(cmd, cmd->se_dev);
4026         return 0;
4027 }
4028
4029 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4030 {
4031         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4032                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
4033                          transport_wait_for_tasks(cmd);
4034
4035                 transport_release_cmd(cmd);
4036         } else {
4037                 if (wait_for_tasks)
4038                         transport_wait_for_tasks(cmd);
4039
4040                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4041
4042                 if (cmd->se_lun)
4043                         transport_lun_remove_cmd(cmd);
4044
4045                 transport_free_dev_tasks(cmd);
4046
4047                 transport_put_cmd(cmd);
4048         }
4049 }
4050 EXPORT_SYMBOL(transport_generic_free_cmd);
4051
4052 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
4053  * @se_sess:    session to reference
4054  * @se_cmd:     command descriptor to add
4055  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
4056  */
4057 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4058                         bool ack_kref)
4059 {
4060         unsigned long flags;
4061
4062         kref_init(&se_cmd->cmd_kref);
4063         /*
4064          * Add a second kref if the fabric caller is expecting to handle
4065          * fabric acknowledgement that requires two target_put_sess_cmd()
4066          * invocations before se_cmd descriptor release.
4067          */
4068         if (ack_kref == true) {
4069                 kref_get(&se_cmd->cmd_kref);
4070                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
4071         }
4072
4073         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4074         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4075         se_cmd->check_release = 1;
4076         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4077 }
4078 EXPORT_SYMBOL(target_get_sess_cmd);
4079
4080 static void target_release_cmd_kref(struct kref *kref)
4081 {
4082         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4083         struct se_session *se_sess = se_cmd->se_sess;
4084         unsigned long flags;
4085
4086         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4087         if (list_empty(&se_cmd->se_cmd_list)) {
4088                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4089                 se_cmd->se_tfo->release_cmd(se_cmd);
4090                 return;
4091         }
4092         if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4093                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4094                 complete(&se_cmd->cmd_wait_comp);
4095                 return;
4096         }
4097         list_del(&se_cmd->se_cmd_list);
4098         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4099
4100         se_cmd->se_tfo->release_cmd(se_cmd);
4101 }
4102
4103 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4104  * @se_sess:    session to reference
4105  * @se_cmd:     command descriptor to drop
4106  */
4107 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4108 {
4109         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4110 }
4111 EXPORT_SYMBOL(target_put_sess_cmd);
4112
4113 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4114  * @se_sess:    session to split
4115  */
4116 void target_splice_sess_cmd_list(struct se_session *se_sess)
4117 {
4118         struct se_cmd *se_cmd;
4119         unsigned long flags;
4120
4121         WARN_ON(!list_empty(&se_sess->sess_wait_list));
4122         INIT_LIST_HEAD(&se_sess->sess_wait_list);
4123
4124         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4125         se_sess->sess_tearing_down = 1;
4126
4127         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4128
4129         list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4130                 se_cmd->cmd_wait_set = 1;
4131
4132         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4133 }
4134 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4135
4136 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4137  * @se_sess:    session to wait for active I/O
4138  * @wait_for_tasks:     Make extra transport_wait_for_tasks call
4139  */
4140 void target_wait_for_sess_cmds(
4141         struct se_session *se_sess,
4142         int wait_for_tasks)
4143 {
4144         struct se_cmd *se_cmd, *tmp_cmd;
4145         bool rc = false;
4146
4147         list_for_each_entry_safe(se_cmd, tmp_cmd,
4148                                 &se_sess->sess_wait_list, se_cmd_list) {
4149                 list_del(&se_cmd->se_cmd_list);
4150
4151                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4152                         " %d\n", se_cmd, se_cmd->t_state,
4153                         se_cmd->se_tfo->get_cmd_state(se_cmd));
4154
4155                 if (wait_for_tasks) {
4156                         pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4157                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4158                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4159
4160                         rc = transport_wait_for_tasks(se_cmd);
4161
4162                         pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4163                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4164                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4165                 }
4166
4167                 if (!rc) {
4168                         wait_for_completion(&se_cmd->cmd_wait_comp);
4169                         pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4170                                 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4171                                 se_cmd->se_tfo->get_cmd_state(se_cmd));
4172                 }
4173
4174                 se_cmd->se_tfo->release_cmd(se_cmd);
4175         }
4176 }
4177 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4178
4179 /*      transport_lun_wait_for_tasks():
4180  *
4181  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4182  *      an struct se_lun to be successfully shutdown.
4183  */
4184 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4185 {
4186         unsigned long flags;
4187         int ret;
4188         /*
4189          * If the frontend has already requested this struct se_cmd to
4190          * be stopped, we can safely ignore this struct se_cmd.
4191          */
4192         spin_lock_irqsave(&cmd->t_state_lock, flags);
4193         if (cmd->transport_state & CMD_T_STOP) {
4194                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4195
4196                 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
4197                          cmd->se_tfo->get_task_tag(cmd));
4198                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4199                 transport_cmd_check_stop(cmd, 1, 0);
4200                 return -EPERM;
4201         }
4202         cmd->transport_state |= CMD_T_LUN_FE_STOP;
4203         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4204
4205         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4206
4207         ret = transport_stop_tasks_for_cmd(cmd);
4208
4209         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4210                         " %d\n", cmd, cmd->t_task_list_num, ret);
4211         if (!ret) {
4212                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4213                                 cmd->se_tfo->get_task_tag(cmd));
4214                 wait_for_completion(&cmd->transport_lun_stop_comp);
4215                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4216                                 cmd->se_tfo->get_task_tag(cmd));
4217         }
4218         transport_remove_cmd_from_queue(cmd);
4219
4220         return 0;
4221 }
4222
4223 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4224 {
4225         struct se_cmd *cmd = NULL;
4226         unsigned long lun_flags, cmd_flags;
4227         /*
4228          * Do exception processing and return CHECK_CONDITION status to the
4229          * Initiator Port.
4230          */
4231         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4232         while (!list_empty(&lun->lun_cmd_list)) {
4233                 cmd = list_first_entry(&lun->lun_cmd_list,
4234                        struct se_cmd, se_lun_node);
4235                 list_del_init(&cmd->se_lun_node);
4236
4237                 /*
4238                  * This will notify iscsi_target_transport.c:
4239                  * transport_cmd_check_stop() that a LUN shutdown is in
4240                  * progress for the iscsi_cmd_t.
4241                  */
4242                 spin_lock(&cmd->t_state_lock);
4243                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4244                         "_lun_stop for  ITT: 0x%08x\n",
4245                         cmd->se_lun->unpacked_lun,
4246                         cmd->se_tfo->get_task_tag(cmd));
4247                 cmd->transport_state |= CMD_T_LUN_STOP;
4248                 spin_unlock(&cmd->t_state_lock);
4249
4250                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4251
4252                 if (!cmd->se_lun) {
4253                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4254                                 cmd->se_tfo->get_task_tag(cmd),
4255                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4256                         BUG();
4257                 }
4258                 /*
4259                  * If the Storage engine still owns the iscsi_cmd_t, determine
4260                  * and/or stop its context.
4261                  */
4262                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4263                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4264                         cmd->se_tfo->get_task_tag(cmd));
4265
4266                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4267                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4268                         continue;
4269                 }
4270
4271                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4272                         "_wait_for_tasks(): SUCCESS\n",
4273                         cmd->se_lun->unpacked_lun,
4274                         cmd->se_tfo->get_task_tag(cmd));
4275
4276                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4277                 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
4278                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4279                         goto check_cond;
4280                 }
4281                 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
4282                 transport_all_task_dev_remove_state(cmd);
4283                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4284
4285                 transport_free_dev_tasks(cmd);
4286                 /*
4287                  * The Storage engine stopped this struct se_cmd before it was
4288                  * send to the fabric frontend for delivery back to the
4289                  * Initiator Node.  Return this SCSI CDB back with an
4290                  * CHECK_CONDITION status.
4291                  */
4292 check_cond:
4293                 transport_send_check_condition_and_sense(cmd,
4294                                 TCM_NON_EXISTENT_LUN, 0);
4295                 /*
4296                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4297                  * be released, notify the waiting thread now that LU has
4298                  * finished accessing it.
4299                  */
4300                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4301                 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
4302                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4303                                 " struct se_cmd: %p ITT: 0x%08x\n",
4304                                 lun->unpacked_lun,
4305                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4306
4307                         spin_unlock_irqrestore(&cmd->t_state_lock,
4308                                         cmd_flags);
4309                         transport_cmd_check_stop(cmd, 1, 0);
4310                         complete(&cmd->transport_lun_fe_stop_comp);
4311                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4312                         continue;
4313                 }
4314                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4315                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4316
4317                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4318                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4319         }
4320         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4321 }
4322
4323 static int transport_clear_lun_thread(void *p)
4324 {
4325         struct se_lun *lun = p;
4326
4327         __transport_clear_lun_from_sessions(lun);
4328         complete(&lun->lun_shutdown_comp);
4329
4330         return 0;
4331 }
4332
4333 int transport_clear_lun_from_sessions(struct se_lun *lun)
4334 {
4335         struct task_struct *kt;
4336
4337         kt = kthread_run(transport_clear_lun_thread, lun,
4338                         "tcm_cl_%u", lun->unpacked_lun);
4339         if (IS_ERR(kt)) {
4340                 pr_err("Unable to start clear_lun thread\n");
4341                 return PTR_ERR(kt);
4342         }
4343         wait_for_completion(&lun->lun_shutdown_comp);
4344
4345         return 0;
4346 }
4347
4348 /**
4349  * transport_wait_for_tasks - wait for completion to occur
4350  * @cmd:        command to wait
4351  *
4352  * Called from frontend fabric context to wait for storage engine
4353  * to pause and/or release frontend generated struct se_cmd.
4354  */
4355 bool transport_wait_for_tasks(struct se_cmd *cmd)
4356 {
4357         unsigned long flags;
4358
4359         spin_lock_irqsave(&cmd->t_state_lock, flags);
4360         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
4361             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4362                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4363                 return false;
4364         }
4365         /*
4366          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4367          * has been set in transport_set_supported_SAM_opcode().
4368          */
4369         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
4370             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
4371                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4372                 return false;
4373         }
4374         /*
4375          * If we are already stopped due to an external event (ie: LUN shutdown)
4376          * sleep until the connection can have the passed struct se_cmd back.
4377          * The cmd->transport_lun_stopped_sem will be upped by
4378          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4379          * has completed its operation on the struct se_cmd.
4380          */
4381         if (cmd->transport_state & CMD_T_LUN_STOP) {
4382                 pr_debug("wait_for_tasks: Stopping"
4383                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4384                         "_stop_comp); for ITT: 0x%08x\n",
4385                         cmd->se_tfo->get_task_tag(cmd));
4386                 /*
4387                  * There is a special case for WRITES where a FE exception +
4388                  * LUN shutdown means ConfigFS context is still sleeping on
4389                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4390                  * We go ahead and up transport_lun_stop_comp just to be sure
4391                  * here.
4392                  */
4393                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4394                 complete(&cmd->transport_lun_stop_comp);
4395                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4396                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4397
4398                 transport_all_task_dev_remove_state(cmd);
4399                 /*
4400                  * At this point, the frontend who was the originator of this
4401                  * struct se_cmd, now owns the structure and can be released through
4402                  * normal means below.
4403                  */
4404                 pr_debug("wait_for_tasks: Stopped"
4405                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4406                         "stop_comp); for ITT: 0x%08x\n",
4407                         cmd->se_tfo->get_task_tag(cmd));
4408
4409                 cmd->transport_state &= ~CMD_T_LUN_STOP;
4410         }
4411
4412         if (!(cmd->transport_state & CMD_T_ACTIVE)) {
4413                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4414                 return false;
4415         }
4416
4417         cmd->transport_state |= CMD_T_STOP;
4418
4419         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4420                 " i_state: %d, t_state: %d, CMD_T_STOP\n",
4421                 cmd, cmd->se_tfo->get_task_tag(cmd),
4422                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4423
4424         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4425
4426         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4427
4428         wait_for_completion(&cmd->t_transport_stop_comp);
4429
4430         spin_lock_irqsave(&cmd->t_state_lock, flags);
4431         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
4432
4433         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4434                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4435                 cmd->se_tfo->get_task_tag(cmd));
4436
4437         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4438
4439         return true;
4440 }
4441 EXPORT_SYMBOL(transport_wait_for_tasks);
4442
4443 static int transport_get_sense_codes(
4444         struct se_cmd *cmd,
4445         u8 *asc,
4446         u8 *ascq)
4447 {
4448         *asc = cmd->scsi_asc;
4449         *ascq = cmd->scsi_ascq;
4450
4451         return 0;
4452 }
4453
4454 static int transport_set_sense_codes(
4455         struct se_cmd *cmd,
4456         u8 asc,
4457         u8 ascq)
4458 {
4459         cmd->scsi_asc = asc;
4460         cmd->scsi_ascq = ascq;
4461
4462         return 0;
4463 }
4464
4465 int transport_send_check_condition_and_sense(
4466         struct se_cmd *cmd,
4467         u8 reason,
4468         int from_transport)
4469 {
4470         unsigned char *buffer = cmd->sense_buffer;
4471         unsigned long flags;
4472         int offset;
4473         u8 asc = 0, ascq = 0;
4474
4475         spin_lock_irqsave(&cmd->t_state_lock, flags);
4476         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4477                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4478                 return 0;
4479         }
4480         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4481         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4482
4483         if (!reason && from_transport)
4484                 goto after_reason;
4485
4486         if (!from_transport)
4487                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4488         /*
4489          * Data Segment and SenseLength of the fabric response PDU.
4490          *
4491          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4492          * from include/scsi/scsi_cmnd.h
4493          */
4494         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4495                                 TRANSPORT_SENSE_BUFFER);
4496         /*
4497          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4498          * SENSE KEY values from include/scsi/scsi.h
4499          */
4500         switch (reason) {
4501         case TCM_NON_EXISTENT_LUN:
4502                 /* CURRENT ERROR */
4503                 buffer[offset] = 0x70;
4504                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4505                 /* ILLEGAL REQUEST */
4506                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4507                 /* LOGICAL UNIT NOT SUPPORTED */
4508                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4509                 break;
4510         case TCM_UNSUPPORTED_SCSI_OPCODE:
4511         case TCM_SECTOR_COUNT_TOO_MANY:
4512                 /* CURRENT ERROR */
4513                 buffer[offset] = 0x70;
4514                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4515                 /* ILLEGAL REQUEST */
4516                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4517                 /* INVALID COMMAND OPERATION CODE */
4518                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4519                 break;
4520         case TCM_UNKNOWN_MODE_PAGE:
4521                 /* CURRENT ERROR */
4522                 buffer[offset] = 0x70;
4523                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4524                 /* ILLEGAL REQUEST */
4525                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4526                 /* INVALID FIELD IN CDB */
4527                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4528                 break;
4529         case TCM_CHECK_CONDITION_ABORT_CMD:
4530                 /* CURRENT ERROR */
4531                 buffer[offset] = 0x70;
4532                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4533                 /* ABORTED COMMAND */
4534                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4535                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4536                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4537                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4538                 break;
4539         case TCM_INCORRECT_AMOUNT_OF_DATA:
4540                 /* CURRENT ERROR */
4541                 buffer[offset] = 0x70;
4542                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4543                 /* ABORTED COMMAND */
4544                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4545                 /* WRITE ERROR */
4546                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4547                 /* NOT ENOUGH UNSOLICITED DATA */
4548                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4549                 break;
4550         case TCM_INVALID_CDB_FIELD:
4551                 /* CURRENT ERROR */
4552                 buffer[offset] = 0x70;
4553                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4554                 /* ILLEGAL REQUEST */
4555                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4556                 /* INVALID FIELD IN CDB */
4557                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4558                 break;
4559         case TCM_INVALID_PARAMETER_LIST:
4560                 /* CURRENT ERROR */
4561                 buffer[offset] = 0x70;
4562                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4563                 /* ILLEGAL REQUEST */
4564                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4565                 /* INVALID FIELD IN PARAMETER LIST */
4566                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4567                 break;
4568         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4569                 /* CURRENT ERROR */
4570                 buffer[offset] = 0x70;
4571                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4572                 /* ABORTED COMMAND */
4573                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4574                 /* WRITE ERROR */
4575                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4576                 /* UNEXPECTED_UNSOLICITED_DATA */
4577                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4578                 break;
4579         case TCM_SERVICE_CRC_ERROR:
4580                 /* CURRENT ERROR */
4581                 buffer[offset] = 0x70;
4582                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4583                 /* ABORTED COMMAND */
4584                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4585                 /* PROTOCOL SERVICE CRC ERROR */
4586                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4587                 /* N/A */
4588                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4589                 break;
4590         case TCM_SNACK_REJECTED:
4591                 /* CURRENT ERROR */
4592                 buffer[offset] = 0x70;
4593                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4594                 /* ABORTED COMMAND */
4595                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4596                 /* READ ERROR */
4597                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4598                 /* FAILED RETRANSMISSION REQUEST */
4599                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4600                 break;
4601         case TCM_WRITE_PROTECTED:
4602                 /* CURRENT ERROR */
4603                 buffer[offset] = 0x70;
4604                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4605                 /* DATA PROTECT */
4606                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4607                 /* WRITE PROTECTED */
4608                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4609                 break;
4610         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4611                 /* CURRENT ERROR */
4612                 buffer[offset] = 0x70;
4613                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4614                 /* UNIT ATTENTION */
4615                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4616                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4617                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4618                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4619                 break;
4620         case TCM_CHECK_CONDITION_NOT_READY:
4621                 /* CURRENT ERROR */
4622                 buffer[offset] = 0x70;
4623                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4624                 /* Not Ready */
4625                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4626                 transport_get_sense_codes(cmd, &asc, &ascq);
4627                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4628                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4629                 break;
4630         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4631         default:
4632                 /* CURRENT ERROR */
4633                 buffer[offset] = 0x70;
4634                 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4635                 /* ILLEGAL REQUEST */
4636                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4637                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4638                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4639                 break;
4640         }
4641         /*
4642          * This code uses linux/include/scsi/scsi.h SAM status codes!
4643          */
4644         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4645         /*
4646          * Automatically padded, this value is encoded in the fabric's
4647          * data_length response PDU containing the SCSI defined sense data.
4648          */
4649         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4650
4651 after_reason:
4652         return cmd->se_tfo->queue_status(cmd);
4653 }
4654 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4655
4656 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4657 {
4658         int ret = 0;
4659
4660         if (cmd->transport_state & CMD_T_ABORTED) {
4661                 if (!send_status ||
4662                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4663                         return 1;
4664 #if 0
4665                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4666                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4667                         cmd->t_task_cdb[0],
4668                         cmd->se_tfo->get_task_tag(cmd));
4669 #endif
4670                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4671                 cmd->se_tfo->queue_status(cmd);
4672                 ret = 1;
4673         }
4674         return ret;
4675 }
4676 EXPORT_SYMBOL(transport_check_aborted_status);
4677
4678 void transport_send_task_abort(struct se_cmd *cmd)
4679 {
4680         unsigned long flags;
4681
4682         spin_lock_irqsave(&cmd->t_state_lock, flags);
4683         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4684                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4685                 return;
4686         }
4687         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4688
4689         /*
4690          * If there are still expected incoming fabric WRITEs, we wait
4691          * until until they have completed before sending a TASK_ABORTED
4692          * response.  This response with TASK_ABORTED status will be
4693          * queued back to fabric module by transport_check_aborted_status().
4694          */
4695         if (cmd->data_direction == DMA_TO_DEVICE) {
4696                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4697                         cmd->transport_state |= CMD_T_ABORTED;
4698                         smp_mb__after_atomic_inc();
4699                 }
4700         }
4701         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4702 #if 0
4703         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4704                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4705                 cmd->se_tfo->get_task_tag(cmd));
4706 #endif
4707         cmd->se_tfo->queue_status(cmd);
4708 }
4709
4710 static int transport_generic_do_tmr(struct se_cmd *cmd)
4711 {
4712         struct se_device *dev = cmd->se_dev;
4713         struct se_tmr_req *tmr = cmd->se_tmr_req;
4714         int ret;
4715
4716         switch (tmr->function) {
4717         case TMR_ABORT_TASK:
4718                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
4719                 break;
4720         case TMR_ABORT_TASK_SET:
4721         case TMR_CLEAR_ACA:
4722         case TMR_CLEAR_TASK_SET:
4723                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4724                 break;
4725         case TMR_LUN_RESET:
4726                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4727                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4728                                          TMR_FUNCTION_REJECTED;
4729                 break;
4730         case TMR_TARGET_WARM_RESET:
4731                 tmr->response = TMR_FUNCTION_REJECTED;
4732                 break;
4733         case TMR_TARGET_COLD_RESET:
4734                 tmr->response = TMR_FUNCTION_REJECTED;
4735                 break;
4736         default:
4737                 pr_err("Uknown TMR function: 0x%02x.\n",
4738                                 tmr->function);
4739                 tmr->response = TMR_FUNCTION_REJECTED;
4740                 break;
4741         }
4742
4743         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4744         cmd->se_tfo->queue_tm_rsp(cmd);
4745
4746         transport_cmd_check_stop_to_fabric(cmd);
4747         return 0;
4748 }
4749
4750 /*      transport_processing_thread():
4751  *
4752  *
4753  */
4754 static int transport_processing_thread(void *param)
4755 {
4756         int ret;
4757         struct se_cmd *cmd;
4758         struct se_device *dev = param;
4759
4760         while (!kthread_should_stop()) {
4761                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4762                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4763                                 kthread_should_stop());
4764                 if (ret < 0)
4765                         goto out;
4766
4767 get_cmd:
4768                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4769                 if (!cmd)
4770                         continue;
4771
4772                 switch (cmd->t_state) {
4773                 case TRANSPORT_NEW_CMD:
4774                         BUG();
4775                         break;
4776                 case TRANSPORT_NEW_CMD_MAP:
4777                         if (!cmd->se_tfo->new_cmd_map) {
4778                                 pr_err("cmd->se_tfo->new_cmd_map is"
4779                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4780                                 BUG();
4781                         }
4782                         ret = cmd->se_tfo->new_cmd_map(cmd);
4783                         if (ret < 0) {
4784                                 transport_generic_request_failure(cmd);
4785                                 break;
4786                         }
4787                         ret = transport_generic_new_cmd(cmd);
4788                         if (ret < 0) {
4789                                 transport_generic_request_failure(cmd);
4790                                 break;
4791                         }
4792                         break;
4793                 case TRANSPORT_PROCESS_WRITE:
4794                         transport_generic_process_write(cmd);
4795                         break;
4796                 case TRANSPORT_PROCESS_TMR:
4797                         transport_generic_do_tmr(cmd);
4798                         break;
4799                 case TRANSPORT_COMPLETE_QF_WP:
4800                         transport_write_pending_qf(cmd);
4801                         break;
4802                 case TRANSPORT_COMPLETE_QF_OK:
4803                         transport_complete_qf(cmd);
4804                         break;
4805                 default:
4806                         pr_err("Unknown t_state: %d  for ITT: 0x%08x "
4807                                 "i_state: %d on SE LUN: %u\n",
4808                                 cmd->t_state,
4809                                 cmd->se_tfo->get_task_tag(cmd),
4810                                 cmd->se_tfo->get_cmd_state(cmd),
4811                                 cmd->se_lun->unpacked_lun);
4812                         BUG();
4813                 }
4814
4815                 goto get_cmd;
4816         }
4817
4818 out:
4819         WARN_ON(!list_empty(&dev->state_task_list));
4820         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4821         dev->process_thread = NULL;
4822         return 0;
4823 }