]> Pileus Git - ~andy/linux/blob - drivers/staging/zsmalloc/zsmalloc-main.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[~andy/linux] / drivers / staging / zsmalloc / zsmalloc-main.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the license that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  */
12
13 #ifdef CONFIG_ZSMALLOC_DEBUG
14 #define DEBUG
15 #endif
16
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bitops.h>
20 #include <linux/errno.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/slab.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgtable.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpu.h>
29 #include <linux/vmalloc.h>
30
31 #include "zsmalloc.h"
32 #include "zsmalloc_int.h"
33
34 /*
35  * A zspage's class index and fullness group
36  * are encoded in its (first)page->mapping
37  */
38 #define CLASS_IDX_BITS  28
39 #define FULLNESS_BITS   4
40 #define CLASS_IDX_MASK  ((1 << CLASS_IDX_BITS) - 1)
41 #define FULLNESS_MASK   ((1 << FULLNESS_BITS) - 1)
42
43 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
44 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
45
46 static int is_first_page(struct page *page)
47 {
48         return test_bit(PG_private, &page->flags);
49 }
50
51 static int is_last_page(struct page *page)
52 {
53         return test_bit(PG_private_2, &page->flags);
54 }
55
56 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
57                                 enum fullness_group *fullness)
58 {
59         unsigned long m;
60         BUG_ON(!is_first_page(page));
61
62         m = (unsigned long)page->mapping;
63         *fullness = m & FULLNESS_MASK;
64         *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
65 }
66
67 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
68                                 enum fullness_group fullness)
69 {
70         unsigned long m;
71         BUG_ON(!is_first_page(page));
72
73         m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
74                         (fullness & FULLNESS_MASK);
75         page->mapping = (struct address_space *)m;
76 }
77
78 static int get_size_class_index(int size)
79 {
80         int idx = 0;
81
82         if (likely(size > ZS_MIN_ALLOC_SIZE))
83                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
84                                 ZS_SIZE_CLASS_DELTA);
85
86         return idx;
87 }
88
89 static enum fullness_group get_fullness_group(struct page *page)
90 {
91         int inuse, max_objects;
92         enum fullness_group fg;
93         BUG_ON(!is_first_page(page));
94
95         inuse = page->inuse;
96         max_objects = page->objects;
97
98         if (inuse == 0)
99                 fg = ZS_EMPTY;
100         else if (inuse == max_objects)
101                 fg = ZS_FULL;
102         else if (inuse <= max_objects / fullness_threshold_frac)
103                 fg = ZS_ALMOST_EMPTY;
104         else
105                 fg = ZS_ALMOST_FULL;
106
107         return fg;
108 }
109
110 static void insert_zspage(struct page *page, struct size_class *class,
111                                 enum fullness_group fullness)
112 {
113         struct page **head;
114
115         BUG_ON(!is_first_page(page));
116
117         if (fullness >= _ZS_NR_FULLNESS_GROUPS)
118                 return;
119
120         head = &class->fullness_list[fullness];
121         if (*head)
122                 list_add_tail(&page->lru, &(*head)->lru);
123
124         *head = page;
125 }
126
127 static void remove_zspage(struct page *page, struct size_class *class,
128                                 enum fullness_group fullness)
129 {
130         struct page **head;
131
132         BUG_ON(!is_first_page(page));
133
134         if (fullness >= _ZS_NR_FULLNESS_GROUPS)
135                 return;
136
137         head = &class->fullness_list[fullness];
138         BUG_ON(!*head);
139         if (list_empty(&(*head)->lru))
140                 *head = NULL;
141         else if (*head == page)
142                 *head = (struct page *)list_entry((*head)->lru.next,
143                                         struct page, lru);
144
145         list_del_init(&page->lru);
146 }
147
148 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
149                                                 struct page *page)
150 {
151         int class_idx;
152         struct size_class *class;
153         enum fullness_group currfg, newfg;
154
155         BUG_ON(!is_first_page(page));
156
157         get_zspage_mapping(page, &class_idx, &currfg);
158         newfg = get_fullness_group(page);
159         if (newfg == currfg)
160                 goto out;
161
162         class = &pool->size_class[class_idx];
163         remove_zspage(page, class, currfg);
164         insert_zspage(page, class, newfg);
165         set_zspage_mapping(page, class_idx, newfg);
166
167 out:
168         return newfg;
169 }
170
171 /*
172  * We have to decide on how many pages to link together
173  * to form a zspage for each size class. This is important
174  * to reduce wastage due to unusable space left at end of
175  * each zspage which is given as:
176  *      wastage = Zp - Zp % size_class
177  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
178  *
179  * For example, for size class of 3/8 * PAGE_SIZE, we should
180  * link together 3 PAGE_SIZE sized pages to form a zspage
181  * since then we can perfectly fit in 8 such objects.
182  */
183 static int get_zspage_order(int class_size)
184 {
185         int i, max_usedpc = 0;
186         /* zspage order which gives maximum used size per KB */
187         int max_usedpc_order = 1;
188
189         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
190                 int zspage_size;
191                 int waste, usedpc;
192
193                 zspage_size = i * PAGE_SIZE;
194                 waste = zspage_size % class_size;
195                 usedpc = (zspage_size - waste) * 100 / zspage_size;
196
197                 if (usedpc > max_usedpc) {
198                         max_usedpc = usedpc;
199                         max_usedpc_order = i;
200                 }
201         }
202
203         return max_usedpc_order;
204 }
205
206 /*
207  * A single 'zspage' is composed of many system pages which are
208  * linked together using fields in struct page. This function finds
209  * the first/head page, given any component page of a zspage.
210  */
211 static struct page *get_first_page(struct page *page)
212 {
213         if (is_first_page(page))
214                 return page;
215         else
216                 return page->first_page;
217 }
218
219 static struct page *get_next_page(struct page *page)
220 {
221         struct page *next;
222
223         if (is_last_page(page))
224                 next = NULL;
225         else if (is_first_page(page))
226                 next = (struct page *)page->private;
227         else
228                 next = list_entry(page->lru.next, struct page, lru);
229
230         return next;
231 }
232
233 /* Encode <page, obj_idx> as a single handle value */
234 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
235 {
236         unsigned long handle;
237
238         if (!page) {
239                 BUG_ON(obj_idx);
240                 return NULL;
241         }
242
243         handle = page_to_pfn(page) << OBJ_INDEX_BITS;
244         handle |= (obj_idx & OBJ_INDEX_MASK);
245
246         return (void *)handle;
247 }
248
249 /* Decode <page, obj_idx> pair from the given object handle */
250 static void obj_handle_to_location(void *handle, struct page **page,
251                                 unsigned long *obj_idx)
252 {
253         unsigned long hval = (unsigned long)handle;
254
255         *page = pfn_to_page(hval >> OBJ_INDEX_BITS);
256         *obj_idx = hval & OBJ_INDEX_MASK;
257 }
258
259 static unsigned long obj_idx_to_offset(struct page *page,
260                                 unsigned long obj_idx, int class_size)
261 {
262         unsigned long off = 0;
263
264         if (!is_first_page(page))
265                 off = page->index;
266
267         return off + obj_idx * class_size;
268 }
269
270 static void reset_page(struct page *page)
271 {
272         clear_bit(PG_private, &page->flags);
273         clear_bit(PG_private_2, &page->flags);
274         set_page_private(page, 0);
275         page->mapping = NULL;
276         page->freelist = NULL;
277         reset_page_mapcount(page);
278 }
279
280 static void free_zspage(struct page *first_page)
281 {
282         struct page *nextp, *tmp, *head_extra;
283
284         BUG_ON(!is_first_page(first_page));
285         BUG_ON(first_page->inuse);
286
287         head_extra = (struct page *)page_private(first_page);
288
289         reset_page(first_page);
290         __free_page(first_page);
291
292         /* zspage with only 1 system page */
293         if (!head_extra)
294                 return;
295
296         list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
297                 list_del(&nextp->lru);
298                 reset_page(nextp);
299                 __free_page(nextp);
300         }
301         reset_page(head_extra);
302         __free_page(head_extra);
303 }
304
305 /* Initialize a newly allocated zspage */
306 static void init_zspage(struct page *first_page, struct size_class *class)
307 {
308         unsigned long off = 0;
309         struct page *page = first_page;
310
311         BUG_ON(!is_first_page(first_page));
312         while (page) {
313                 struct page *next_page;
314                 struct link_free *link;
315                 unsigned int i, objs_on_page;
316
317                 /*
318                  * page->index stores offset of first object starting
319                  * in the page. For the first page, this is always 0,
320                  * so we use first_page->index (aka ->freelist) to store
321                  * head of corresponding zspage's freelist.
322                  */
323                 if (page != first_page)
324                         page->index = off;
325
326                 link = (struct link_free *)kmap_atomic(page) +
327                                                 off / sizeof(*link);
328                 objs_on_page = (PAGE_SIZE - off) / class->size;
329
330                 for (i = 1; i <= objs_on_page; i++) {
331                         off += class->size;
332                         if (off < PAGE_SIZE) {
333                                 link->next = obj_location_to_handle(page, i);
334                                 link += class->size / sizeof(*link);
335                         }
336                 }
337
338                 /*
339                  * We now come to the last (full or partial) object on this
340                  * page, which must point to the first object on the next
341                  * page (if present)
342                  */
343                 next_page = get_next_page(page);
344                 link->next = obj_location_to_handle(next_page, 0);
345                 kunmap_atomic(link);
346                 page = next_page;
347                 off = (off + class->size) % PAGE_SIZE;
348         }
349 }
350
351 /*
352  * Allocate a zspage for the given size class
353  */
354 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
355 {
356         int i, error;
357         struct page *first_page = NULL;
358
359         /*
360          * Allocate individual pages and link them together as:
361          * 1. first page->private = first sub-page
362          * 2. all sub-pages are linked together using page->lru
363          * 3. each sub-page is linked to the first page using page->first_page
364          *
365          * For each size class, First/Head pages are linked together using
366          * page->lru. Also, we set PG_private to identify the first page
367          * (i.e. no other sub-page has this flag set) and PG_private_2 to
368          * identify the last page.
369          */
370         error = -ENOMEM;
371         for (i = 0; i < class->zspage_order; i++) {
372                 struct page *page, *prev_page;
373
374                 page = alloc_page(flags);
375                 if (!page)
376                         goto cleanup;
377
378                 INIT_LIST_HEAD(&page->lru);
379                 if (i == 0) {   /* first page */
380                         set_bit(PG_private, &page->flags);
381                         set_page_private(page, 0);
382                         first_page = page;
383                         first_page->inuse = 0;
384                 }
385                 if (i == 1)
386                         first_page->private = (unsigned long)page;
387                 if (i >= 1)
388                         page->first_page = first_page;
389                 if (i >= 2)
390                         list_add(&page->lru, &prev_page->lru);
391                 if (i == class->zspage_order - 1)       /* last page */
392                         set_bit(PG_private_2, &page->flags);
393
394                 prev_page = page;
395         }
396
397         init_zspage(first_page, class);
398
399         first_page->freelist = obj_location_to_handle(first_page, 0);
400         /* Maximum number of objects we can store in this zspage */
401         first_page->objects = class->zspage_order * PAGE_SIZE / class->size;
402
403         error = 0; /* Success */
404
405 cleanup:
406         if (unlikely(error) && first_page) {
407                 free_zspage(first_page);
408                 first_page = NULL;
409         }
410
411         return first_page;
412 }
413
414 static struct page *find_get_zspage(struct size_class *class)
415 {
416         int i;
417         struct page *page;
418
419         for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
420                 page = class->fullness_list[i];
421                 if (page)
422                         break;
423         }
424
425         return page;
426 }
427
428
429 /*
430  * If this becomes a separate module, register zs_init() with
431  * module_init(), zs_exit with module_exit(), and remove zs_initialized
432 */
433 static int zs_initialized;
434
435 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
436                                 void *pcpu)
437 {
438         int cpu = (long)pcpu;
439         struct mapping_area *area;
440
441         switch (action) {
442         case CPU_UP_PREPARE:
443                 area = &per_cpu(zs_map_area, cpu);
444                 if (area->vm)
445                         break;
446                 area->vm = alloc_vm_area(2 * PAGE_SIZE, area->vm_ptes);
447                 if (!area->vm)
448                         return notifier_from_errno(-ENOMEM);
449                 break;
450         case CPU_DEAD:
451         case CPU_UP_CANCELED:
452                 area = &per_cpu(zs_map_area, cpu);
453                 if (area->vm)
454                         free_vm_area(area->vm);
455                 area->vm = NULL;
456                 break;
457         }
458
459         return NOTIFY_OK;
460 }
461
462 static struct notifier_block zs_cpu_nb = {
463         .notifier_call = zs_cpu_notifier
464 };
465
466 static void zs_exit(void)
467 {
468         int cpu;
469
470         for_each_online_cpu(cpu)
471                 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
472         unregister_cpu_notifier(&zs_cpu_nb);
473 }
474
475 static int zs_init(void)
476 {
477         int cpu, ret;
478
479         register_cpu_notifier(&zs_cpu_nb);
480         for_each_online_cpu(cpu) {
481                 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
482                 if (notifier_to_errno(ret))
483                         goto fail;
484         }
485         return 0;
486 fail:
487         zs_exit();
488         return notifier_to_errno(ret);
489 }
490
491 struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
492 {
493         int i, error, ovhd_size;
494         struct zs_pool *pool;
495
496         if (!name)
497                 return NULL;
498
499         ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
500         pool = kzalloc(ovhd_size, GFP_KERNEL);
501         if (!pool)
502                 return NULL;
503
504         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
505                 int size;
506                 struct size_class *class;
507
508                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
509                 if (size > ZS_MAX_ALLOC_SIZE)
510                         size = ZS_MAX_ALLOC_SIZE;
511
512                 class = &pool->size_class[i];
513                 class->size = size;
514                 class->index = i;
515                 spin_lock_init(&class->lock);
516                 class->zspage_order = get_zspage_order(size);
517
518         }
519
520         /*
521          * If this becomes a separate module, register zs_init with
522          * module_init, and remove this block
523         */
524         if (!zs_initialized) {
525                 error = zs_init();
526                 if (error)
527                         goto cleanup;
528                 zs_initialized = 1;
529         }
530
531         pool->flags = flags;
532         pool->name = name;
533
534         error = 0; /* Success */
535
536 cleanup:
537         if (error) {
538                 zs_destroy_pool(pool);
539                 pool = NULL;
540         }
541
542         return pool;
543 }
544 EXPORT_SYMBOL_GPL(zs_create_pool);
545
546 void zs_destroy_pool(struct zs_pool *pool)
547 {
548         int i;
549
550         for (i = 0; i < ZS_SIZE_CLASSES; i++) {
551                 int fg;
552                 struct size_class *class = &pool->size_class[i];
553
554                 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
555                         if (class->fullness_list[fg]) {
556                                 pr_info("Freeing non-empty class with size "
557                                         "%db, fullness group %d\n",
558                                         class->size, fg);
559                         }
560                 }
561         }
562         kfree(pool);
563 }
564 EXPORT_SYMBOL_GPL(zs_destroy_pool);
565
566 /**
567  * zs_malloc - Allocate block of given size from pool.
568  * @pool: pool to allocate from
569  * @size: size of block to allocate
570  * @page: page no. that holds the object
571  * @offset: location of object within page
572  *
573  * On success, <page, offset> identifies block allocated
574  * and 0 is returned. On failure, <page, offset> is set to
575  * 0 and -ENOMEM is returned.
576  *
577  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
578  */
579 void *zs_malloc(struct zs_pool *pool, size_t size)
580 {
581         void *obj;
582         struct link_free *link;
583         int class_idx;
584         struct size_class *class;
585
586         struct page *first_page, *m_page;
587         unsigned long m_objidx, m_offset;
588
589         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
590                 return NULL;
591
592         class_idx = get_size_class_index(size);
593         class = &pool->size_class[class_idx];
594         BUG_ON(class_idx != class->index);
595
596         spin_lock(&class->lock);
597         first_page = find_get_zspage(class);
598
599         if (!first_page) {
600                 spin_unlock(&class->lock);
601                 first_page = alloc_zspage(class, pool->flags);
602                 if (unlikely(!first_page))
603                         return NULL;
604
605                 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
606                 spin_lock(&class->lock);
607                 class->pages_allocated += class->zspage_order;
608         }
609
610         obj = first_page->freelist;
611         obj_handle_to_location(obj, &m_page, &m_objidx);
612         m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
613
614         link = (struct link_free *)kmap_atomic(m_page) +
615                                         m_offset / sizeof(*link);
616         first_page->freelist = link->next;
617         memset(link, POISON_INUSE, sizeof(*link));
618         kunmap_atomic(link);
619
620         first_page->inuse++;
621         /* Now move the zspage to another fullness group, if required */
622         fix_fullness_group(pool, first_page);
623         spin_unlock(&class->lock);
624
625         return obj;
626 }
627 EXPORT_SYMBOL_GPL(zs_malloc);
628
629 void zs_free(struct zs_pool *pool, void *obj)
630 {
631         struct link_free *link;
632         struct page *first_page, *f_page;
633         unsigned long f_objidx, f_offset;
634
635         int class_idx;
636         struct size_class *class;
637         enum fullness_group fullness;
638
639         if (unlikely(!obj))
640                 return;
641
642         obj_handle_to_location(obj, &f_page, &f_objidx);
643         first_page = get_first_page(f_page);
644
645         get_zspage_mapping(first_page, &class_idx, &fullness);
646         class = &pool->size_class[class_idx];
647         f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
648
649         spin_lock(&class->lock);
650
651         /* Insert this object in containing zspage's freelist */
652         link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
653                                                         + f_offset);
654         link->next = first_page->freelist;
655         kunmap_atomic(link);
656         first_page->freelist = obj;
657
658         first_page->inuse--;
659         fullness = fix_fullness_group(pool, first_page);
660
661         if (fullness == ZS_EMPTY)
662                 class->pages_allocated -= class->zspage_order;
663
664         spin_unlock(&class->lock);
665
666         if (fullness == ZS_EMPTY)
667                 free_zspage(first_page);
668 }
669 EXPORT_SYMBOL_GPL(zs_free);
670
671 void *zs_map_object(struct zs_pool *pool, void *handle)
672 {
673         struct page *page;
674         unsigned long obj_idx, off;
675
676         unsigned int class_idx;
677         enum fullness_group fg;
678         struct size_class *class;
679         struct mapping_area *area;
680
681         BUG_ON(!handle);
682
683         obj_handle_to_location(handle, &page, &obj_idx);
684         get_zspage_mapping(get_first_page(page), &class_idx, &fg);
685         class = &pool->size_class[class_idx];
686         off = obj_idx_to_offset(page, obj_idx, class->size);
687
688         area = &get_cpu_var(zs_map_area);
689         if (off + class->size <= PAGE_SIZE) {
690                 /* this object is contained entirely within a page */
691                 area->vm_addr = kmap_atomic(page);
692         } else {
693                 /* this object spans two pages */
694                 struct page *nextp;
695
696                 nextp = get_next_page(page);
697                 BUG_ON(!nextp);
698
699
700                 set_pte(area->vm_ptes[0], mk_pte(page, PAGE_KERNEL));
701                 set_pte(area->vm_ptes[1], mk_pte(nextp, PAGE_KERNEL));
702
703                 /* We pre-allocated VM area so mapping can never fail */
704                 area->vm_addr = area->vm->addr;
705         }
706
707         return area->vm_addr + off;
708 }
709 EXPORT_SYMBOL_GPL(zs_map_object);
710
711 void zs_unmap_object(struct zs_pool *pool, void *handle)
712 {
713         struct page *page;
714         unsigned long obj_idx, off;
715
716         unsigned int class_idx;
717         enum fullness_group fg;
718         struct size_class *class;
719         struct mapping_area *area;
720
721         BUG_ON(!handle);
722
723         obj_handle_to_location(handle, &page, &obj_idx);
724         get_zspage_mapping(get_first_page(page), &class_idx, &fg);
725         class = &pool->size_class[class_idx];
726         off = obj_idx_to_offset(page, obj_idx, class->size);
727
728         area = &__get_cpu_var(zs_map_area);
729         if (off + class->size <= PAGE_SIZE) {
730                 kunmap_atomic(area->vm_addr);
731         } else {
732                 set_pte(area->vm_ptes[0], __pte(0));
733                 set_pte(area->vm_ptes[1], __pte(0));
734                 __flush_tlb_one((unsigned long)area->vm_addr);
735                 __flush_tlb_one((unsigned long)area->vm_addr + PAGE_SIZE);
736         }
737         put_cpu_var(zs_map_area);
738 }
739 EXPORT_SYMBOL_GPL(zs_unmap_object);
740
741 u64 zs_get_total_size_bytes(struct zs_pool *pool)
742 {
743         int i;
744         u64 npages = 0;
745
746         for (i = 0; i < ZS_SIZE_CLASSES; i++)
747                 npages += pool->size_class[i].pages_allocated;
748
749         return npages << PAGE_SHIFT;
750 }
751 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);