]> Pileus Git - ~andy/linux/blob - drivers/staging/zram/zram_drv.c
Merge tag 'for-linus-3.4-20120513' of git://git.infradead.org/linux-mtd
[~andy/linux] / drivers / staging / zram / zram_drv.c
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *
6  * This code is released using a dual license strategy: BSD/GPL
7  * You can choose the licence that better fits your requirements.
8  *
9  * Released under the terms of 3-clause BSD License
10  * Released under the terms of GNU General Public License Version 2.0
11  *
12  * Project home: http://compcache.googlecode.com
13  */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
21
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
35
36 #include "zram_drv.h"
37
38 /* Globals */
39 static int zram_major;
40 struct zram *zram_devices;
41
42 /* Module params (documentation at end) */
43 static unsigned int num_devices;
44
45 static void zram_stat_inc(u32 *v)
46 {
47         *v = *v + 1;
48 }
49
50 static void zram_stat_dec(u32 *v)
51 {
52         *v = *v - 1;
53 }
54
55 static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
56 {
57         spin_lock(&zram->stat64_lock);
58         *v = *v + inc;
59         spin_unlock(&zram->stat64_lock);
60 }
61
62 static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
63 {
64         spin_lock(&zram->stat64_lock);
65         *v = *v - dec;
66         spin_unlock(&zram->stat64_lock);
67 }
68
69 static void zram_stat64_inc(struct zram *zram, u64 *v)
70 {
71         zram_stat64_add(zram, v, 1);
72 }
73
74 static int zram_test_flag(struct zram *zram, u32 index,
75                         enum zram_pageflags flag)
76 {
77         return zram->table[index].flags & BIT(flag);
78 }
79
80 static void zram_set_flag(struct zram *zram, u32 index,
81                         enum zram_pageflags flag)
82 {
83         zram->table[index].flags |= BIT(flag);
84 }
85
86 static void zram_clear_flag(struct zram *zram, u32 index,
87                         enum zram_pageflags flag)
88 {
89         zram->table[index].flags &= ~BIT(flag);
90 }
91
92 static int page_zero_filled(void *ptr)
93 {
94         unsigned int pos;
95         unsigned long *page;
96
97         page = (unsigned long *)ptr;
98
99         for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
100                 if (page[pos])
101                         return 0;
102         }
103
104         return 1;
105 }
106
107 static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
108 {
109         if (!zram->disksize) {
110                 pr_info(
111                 "disk size not provided. You can use disksize_kb module "
112                 "param to specify size.\nUsing default: (%u%% of RAM).\n",
113                 default_disksize_perc_ram
114                 );
115                 zram->disksize = default_disksize_perc_ram *
116                                         (totalram_bytes / 100);
117         }
118
119         if (zram->disksize > 2 * (totalram_bytes)) {
120                 pr_info(
121                 "There is little point creating a zram of greater than "
122                 "twice the size of memory since we expect a 2:1 compression "
123                 "ratio. Note that zram uses about 0.1%% of the size of "
124                 "the disk when not in use so a huge zram is "
125                 "wasteful.\n"
126                 "\tMemory Size: %zu kB\n"
127                 "\tSize you selected: %llu kB\n"
128                 "Continuing anyway ...\n",
129                 totalram_bytes >> 10, zram->disksize
130                 );
131         }
132
133         zram->disksize &= PAGE_MASK;
134 }
135
136 static void zram_free_page(struct zram *zram, size_t index)
137 {
138         void *handle = zram->table[index].handle;
139
140         if (unlikely(!handle)) {
141                 /*
142                  * No memory is allocated for zero filled pages.
143                  * Simply clear zero page flag.
144                  */
145                 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
146                         zram_clear_flag(zram, index, ZRAM_ZERO);
147                         zram_stat_dec(&zram->stats.pages_zero);
148                 }
149                 return;
150         }
151
152         if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
153                 __free_page(handle);
154                 zram_clear_flag(zram, index, ZRAM_UNCOMPRESSED);
155                 zram_stat_dec(&zram->stats.pages_expand);
156                 goto out;
157         }
158
159         zs_free(zram->mem_pool, handle);
160
161         if (zram->table[index].size <= PAGE_SIZE / 2)
162                 zram_stat_dec(&zram->stats.good_compress);
163
164 out:
165         zram_stat64_sub(zram, &zram->stats.compr_size,
166                         zram->table[index].size);
167         zram_stat_dec(&zram->stats.pages_stored);
168
169         zram->table[index].handle = NULL;
170         zram->table[index].size = 0;
171 }
172
173 static void handle_zero_page(struct bio_vec *bvec)
174 {
175         struct page *page = bvec->bv_page;
176         void *user_mem;
177
178         user_mem = kmap_atomic(page);
179         memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
180         kunmap_atomic(user_mem);
181
182         flush_dcache_page(page);
183 }
184
185 static void handle_uncompressed_page(struct zram *zram, struct bio_vec *bvec,
186                                      u32 index, int offset)
187 {
188         struct page *page = bvec->bv_page;
189         unsigned char *user_mem, *cmem;
190
191         user_mem = kmap_atomic(page);
192         cmem = kmap_atomic(zram->table[index].handle);
193
194         memcpy(user_mem + bvec->bv_offset, cmem + offset, bvec->bv_len);
195         kunmap_atomic(cmem);
196         kunmap_atomic(user_mem);
197
198         flush_dcache_page(page);
199 }
200
201 static inline int is_partial_io(struct bio_vec *bvec)
202 {
203         return bvec->bv_len != PAGE_SIZE;
204 }
205
206 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
207                           u32 index, int offset, struct bio *bio)
208 {
209         int ret;
210         size_t clen;
211         struct page *page;
212         struct zobj_header *zheader;
213         unsigned char *user_mem, *cmem, *uncmem = NULL;
214
215         page = bvec->bv_page;
216
217         if (zram_test_flag(zram, index, ZRAM_ZERO)) {
218                 handle_zero_page(bvec);
219                 return 0;
220         }
221
222         /* Requested page is not present in compressed area */
223         if (unlikely(!zram->table[index].handle)) {
224                 pr_debug("Read before write: sector=%lu, size=%u",
225                          (ulong)(bio->bi_sector), bio->bi_size);
226                 handle_zero_page(bvec);
227                 return 0;
228         }
229
230         /* Page is stored uncompressed since it's incompressible */
231         if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
232                 handle_uncompressed_page(zram, bvec, index, offset);
233                 return 0;
234         }
235
236         if (is_partial_io(bvec)) {
237                 /* Use  a temporary buffer to decompress the page */
238                 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
239                 if (!uncmem) {
240                         pr_info("Error allocating temp memory!\n");
241                         return -ENOMEM;
242                 }
243         }
244
245         user_mem = kmap_atomic(page);
246         if (!is_partial_io(bvec))
247                 uncmem = user_mem;
248         clen = PAGE_SIZE;
249
250         cmem = zs_map_object(zram->mem_pool, zram->table[index].handle);
251
252         ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
253                                     zram->table[index].size,
254                                     uncmem, &clen);
255
256         if (is_partial_io(bvec)) {
257                 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
258                        bvec->bv_len);
259                 kfree(uncmem);
260         }
261
262         zs_unmap_object(zram->mem_pool, zram->table[index].handle);
263         kunmap_atomic(user_mem);
264
265         /* Should NEVER happen. Return bio error if it does. */
266         if (unlikely(ret != LZO_E_OK)) {
267                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
268                 zram_stat64_inc(zram, &zram->stats.failed_reads);
269                 return ret;
270         }
271
272         flush_dcache_page(page);
273
274         return 0;
275 }
276
277 static int zram_read_before_write(struct zram *zram, char *mem, u32 index)
278 {
279         int ret;
280         size_t clen = PAGE_SIZE;
281         struct zobj_header *zheader;
282         unsigned char *cmem;
283
284         if (zram_test_flag(zram, index, ZRAM_ZERO) ||
285             !zram->table[index].handle) {
286                 memset(mem, 0, PAGE_SIZE);
287                 return 0;
288         }
289
290         cmem = zs_map_object(zram->mem_pool, zram->table[index].handle);
291
292         /* Page is stored uncompressed since it's incompressible */
293         if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
294                 memcpy(mem, cmem, PAGE_SIZE);
295                 kunmap_atomic(cmem);
296                 return 0;
297         }
298
299         ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
300                                     zram->table[index].size,
301                                     mem, &clen);
302         zs_unmap_object(zram->mem_pool, zram->table[index].handle);
303
304         /* Should NEVER happen. Return bio error if it does. */
305         if (unlikely(ret != LZO_E_OK)) {
306                 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
307                 zram_stat64_inc(zram, &zram->stats.failed_reads);
308                 return ret;
309         }
310
311         return 0;
312 }
313
314 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
315                            int offset)
316 {
317         int ret;
318         u32 store_offset;
319         size_t clen;
320         void *handle;
321         struct zobj_header *zheader;
322         struct page *page, *page_store;
323         unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
324
325         page = bvec->bv_page;
326         src = zram->compress_buffer;
327
328         if (is_partial_io(bvec)) {
329                 /*
330                  * This is a partial IO. We need to read the full page
331                  * before to write the changes.
332                  */
333                 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
334                 if (!uncmem) {
335                         pr_info("Error allocating temp memory!\n");
336                         ret = -ENOMEM;
337                         goto out;
338                 }
339                 ret = zram_read_before_write(zram, uncmem, index);
340                 if (ret) {
341                         kfree(uncmem);
342                         goto out;
343                 }
344         }
345
346         /*
347          * System overwrites unused sectors. Free memory associated
348          * with this sector now.
349          */
350         if (zram->table[index].handle ||
351             zram_test_flag(zram, index, ZRAM_ZERO))
352                 zram_free_page(zram, index);
353
354         user_mem = kmap_atomic(page);
355
356         if (is_partial_io(bvec))
357                 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
358                        bvec->bv_len);
359         else
360                 uncmem = user_mem;
361
362         if (page_zero_filled(uncmem)) {
363                 kunmap_atomic(user_mem);
364                 if (is_partial_io(bvec))
365                         kfree(uncmem);
366                 zram_stat_inc(&zram->stats.pages_zero);
367                 zram_set_flag(zram, index, ZRAM_ZERO);
368                 ret = 0;
369                 goto out;
370         }
371
372         ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
373                                zram->compress_workmem);
374
375         kunmap_atomic(user_mem);
376         if (is_partial_io(bvec))
377                         kfree(uncmem);
378
379         if (unlikely(ret != LZO_E_OK)) {
380                 pr_err("Compression failed! err=%d\n", ret);
381                 goto out;
382         }
383
384         /*
385          * Page is incompressible. Store it as-is (uncompressed)
386          * since we do not want to return too many disk write
387          * errors which has side effect of hanging the system.
388          */
389         if (unlikely(clen > max_zpage_size)) {
390                 clen = PAGE_SIZE;
391                 page_store = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
392                 if (unlikely(!page_store)) {
393                         pr_info("Error allocating memory for "
394                                 "incompressible page: %u\n", index);
395                         ret = -ENOMEM;
396                         goto out;
397                 }
398
399                 store_offset = 0;
400                 zram_set_flag(zram, index, ZRAM_UNCOMPRESSED);
401                 zram_stat_inc(&zram->stats.pages_expand);
402                 handle = page_store;
403                 src = kmap_atomic(page);
404                 cmem = kmap_atomic(page_store);
405                 goto memstore;
406         }
407
408         handle = zs_malloc(zram->mem_pool, clen + sizeof(*zheader));
409         if (!handle) {
410                 pr_info("Error allocating memory for compressed "
411                         "page: %u, size=%zu\n", index, clen);
412                 ret = -ENOMEM;
413                 goto out;
414         }
415         cmem = zs_map_object(zram->mem_pool, handle);
416
417 memstore:
418 #if 0
419         /* Back-reference needed for memory defragmentation */
420         if (!zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)) {
421                 zheader = (struct zobj_header *)cmem;
422                 zheader->table_idx = index;
423                 cmem += sizeof(*zheader);
424         }
425 #endif
426
427         memcpy(cmem, src, clen);
428
429         if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
430                 kunmap_atomic(cmem);
431                 kunmap_atomic(src);
432         } else {
433                 zs_unmap_object(zram->mem_pool, handle);
434         }
435
436         zram->table[index].handle = handle;
437         zram->table[index].size = clen;
438
439         /* Update stats */
440         zram_stat64_add(zram, &zram->stats.compr_size, clen);
441         zram_stat_inc(&zram->stats.pages_stored);
442         if (clen <= PAGE_SIZE / 2)
443                 zram_stat_inc(&zram->stats.good_compress);
444
445         return 0;
446
447 out:
448         if (ret)
449                 zram_stat64_inc(zram, &zram->stats.failed_writes);
450         return ret;
451 }
452
453 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
454                         int offset, struct bio *bio, int rw)
455 {
456         int ret;
457
458         if (rw == READ) {
459                 down_read(&zram->lock);
460                 ret = zram_bvec_read(zram, bvec, index, offset, bio);
461                 up_read(&zram->lock);
462         } else {
463                 down_write(&zram->lock);
464                 ret = zram_bvec_write(zram, bvec, index, offset);
465                 up_write(&zram->lock);
466         }
467
468         return ret;
469 }
470
471 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
472 {
473         if (*offset + bvec->bv_len >= PAGE_SIZE)
474                 (*index)++;
475         *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
476 }
477
478 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
479 {
480         int i, offset;
481         u32 index;
482         struct bio_vec *bvec;
483
484         switch (rw) {
485         case READ:
486                 zram_stat64_inc(zram, &zram->stats.num_reads);
487                 break;
488         case WRITE:
489                 zram_stat64_inc(zram, &zram->stats.num_writes);
490                 break;
491         }
492
493         index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
494         offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
495
496         bio_for_each_segment(bvec, bio, i) {
497                 int max_transfer_size = PAGE_SIZE - offset;
498
499                 if (bvec->bv_len > max_transfer_size) {
500                         /*
501                          * zram_bvec_rw() can only make operation on a single
502                          * zram page. Split the bio vector.
503                          */
504                         struct bio_vec bv;
505
506                         bv.bv_page = bvec->bv_page;
507                         bv.bv_len = max_transfer_size;
508                         bv.bv_offset = bvec->bv_offset;
509
510                         if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
511                                 goto out;
512
513                         bv.bv_len = bvec->bv_len - max_transfer_size;
514                         bv.bv_offset += max_transfer_size;
515                         if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
516                                 goto out;
517                 } else
518                         if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
519                             < 0)
520                                 goto out;
521
522                 update_position(&index, &offset, bvec);
523         }
524
525         set_bit(BIO_UPTODATE, &bio->bi_flags);
526         bio_endio(bio, 0);
527         return;
528
529 out:
530         bio_io_error(bio);
531 }
532
533 /*
534  * Check if request is within bounds and aligned on zram logical blocks.
535  */
536 static inline int valid_io_request(struct zram *zram, struct bio *bio)
537 {
538         if (unlikely(
539                 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
540                 (bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
541                 (bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
542
543                 return 0;
544         }
545
546         /* I/O request is valid */
547         return 1;
548 }
549
550 /*
551  * Handler function for all zram I/O requests.
552  */
553 static void zram_make_request(struct request_queue *queue, struct bio *bio)
554 {
555         struct zram *zram = queue->queuedata;
556
557         if (unlikely(!zram->init_done) && zram_init_device(zram))
558                 goto error;
559
560         down_read(&zram->init_lock);
561         if (unlikely(!zram->init_done))
562                 goto error_unlock;
563
564         if (!valid_io_request(zram, bio)) {
565                 zram_stat64_inc(zram, &zram->stats.invalid_io);
566                 goto error_unlock;
567         }
568
569         __zram_make_request(zram, bio, bio_data_dir(bio));
570         up_read(&zram->init_lock);
571
572         return;
573
574 error_unlock:
575         up_read(&zram->init_lock);
576 error:
577         bio_io_error(bio);
578 }
579
580 void __zram_reset_device(struct zram *zram)
581 {
582         size_t index;
583
584         zram->init_done = 0;
585
586         /* Free various per-device buffers */
587         kfree(zram->compress_workmem);
588         free_pages((unsigned long)zram->compress_buffer, 1);
589
590         zram->compress_workmem = NULL;
591         zram->compress_buffer = NULL;
592
593         /* Free all pages that are still in this zram device */
594         for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
595                 void *handle = zram->table[index].handle;
596                 if (!handle)
597                         continue;
598
599                 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
600                         __free_page(handle);
601                 else
602                         zs_free(zram->mem_pool, handle);
603         }
604
605         vfree(zram->table);
606         zram->table = NULL;
607
608         zs_destroy_pool(zram->mem_pool);
609         zram->mem_pool = NULL;
610
611         /* Reset stats */
612         memset(&zram->stats, 0, sizeof(zram->stats));
613
614         zram->disksize = 0;
615 }
616
617 void zram_reset_device(struct zram *zram)
618 {
619         down_write(&zram->init_lock);
620         __zram_reset_device(zram);
621         up_write(&zram->init_lock);
622 }
623
624 int zram_init_device(struct zram *zram)
625 {
626         int ret;
627         size_t num_pages;
628
629         down_write(&zram->init_lock);
630
631         if (zram->init_done) {
632                 up_write(&zram->init_lock);
633                 return 0;
634         }
635
636         zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);
637
638         zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
639         if (!zram->compress_workmem) {
640                 pr_err("Error allocating compressor working memory!\n");
641                 ret = -ENOMEM;
642                 goto fail_no_table;
643         }
644
645         zram->compress_buffer =
646                 (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
647         if (!zram->compress_buffer) {
648                 pr_err("Error allocating compressor buffer space\n");
649                 ret = -ENOMEM;
650                 goto fail_no_table;
651         }
652
653         num_pages = zram->disksize >> PAGE_SHIFT;
654         zram->table = vzalloc(num_pages * sizeof(*zram->table));
655         if (!zram->table) {
656                 pr_err("Error allocating zram address table\n");
657                 ret = -ENOMEM;
658                 goto fail_no_table;
659         }
660
661         set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
662
663         /* zram devices sort of resembles non-rotational disks */
664         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
665
666         zram->mem_pool = zs_create_pool("zram", GFP_NOIO | __GFP_HIGHMEM);
667         if (!zram->mem_pool) {
668                 pr_err("Error creating memory pool\n");
669                 ret = -ENOMEM;
670                 goto fail;
671         }
672
673         zram->init_done = 1;
674         up_write(&zram->init_lock);
675
676         pr_debug("Initialization done!\n");
677         return 0;
678
679 fail_no_table:
680         /* To prevent accessing table entries during cleanup */
681         zram->disksize = 0;
682 fail:
683         __zram_reset_device(zram);
684         up_write(&zram->init_lock);
685         pr_err("Initialization failed: err=%d\n", ret);
686         return ret;
687 }
688
689 static void zram_slot_free_notify(struct block_device *bdev,
690                                 unsigned long index)
691 {
692         struct zram *zram;
693
694         zram = bdev->bd_disk->private_data;
695         zram_free_page(zram, index);
696         zram_stat64_inc(zram, &zram->stats.notify_free);
697 }
698
699 static const struct block_device_operations zram_devops = {
700         .swap_slot_free_notify = zram_slot_free_notify,
701         .owner = THIS_MODULE
702 };
703
704 static int create_device(struct zram *zram, int device_id)
705 {
706         int ret = 0;
707
708         init_rwsem(&zram->lock);
709         init_rwsem(&zram->init_lock);
710         spin_lock_init(&zram->stat64_lock);
711
712         zram->queue = blk_alloc_queue(GFP_KERNEL);
713         if (!zram->queue) {
714                 pr_err("Error allocating disk queue for device %d\n",
715                         device_id);
716                 ret = -ENOMEM;
717                 goto out;
718         }
719
720         blk_queue_make_request(zram->queue, zram_make_request);
721         zram->queue->queuedata = zram;
722
723          /* gendisk structure */
724         zram->disk = alloc_disk(1);
725         if (!zram->disk) {
726                 blk_cleanup_queue(zram->queue);
727                 pr_warning("Error allocating disk structure for device %d\n",
728                         device_id);
729                 ret = -ENOMEM;
730                 goto out;
731         }
732
733         zram->disk->major = zram_major;
734         zram->disk->first_minor = device_id;
735         zram->disk->fops = &zram_devops;
736         zram->disk->queue = zram->queue;
737         zram->disk->private_data = zram;
738         snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
739
740         /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
741         set_capacity(zram->disk, 0);
742
743         /*
744          * To ensure that we always get PAGE_SIZE aligned
745          * and n*PAGE_SIZED sized I/O requests.
746          */
747         blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
748         blk_queue_logical_block_size(zram->disk->queue,
749                                         ZRAM_LOGICAL_BLOCK_SIZE);
750         blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
751         blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
752
753         add_disk(zram->disk);
754
755         ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
756                                 &zram_disk_attr_group);
757         if (ret < 0) {
758                 pr_warning("Error creating sysfs group");
759                 goto out;
760         }
761
762         zram->init_done = 0;
763
764 out:
765         return ret;
766 }
767
768 static void destroy_device(struct zram *zram)
769 {
770         sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
771                         &zram_disk_attr_group);
772
773         if (zram->disk) {
774                 del_gendisk(zram->disk);
775                 put_disk(zram->disk);
776         }
777
778         if (zram->queue)
779                 blk_cleanup_queue(zram->queue);
780 }
781
782 unsigned int zram_get_num_devices(void)
783 {
784         return num_devices;
785 }
786
787 static int __init zram_init(void)
788 {
789         int ret, dev_id;
790
791         if (num_devices > max_num_devices) {
792                 pr_warning("Invalid value for num_devices: %u\n",
793                                 num_devices);
794                 ret = -EINVAL;
795                 goto out;
796         }
797
798         zram_major = register_blkdev(0, "zram");
799         if (zram_major <= 0) {
800                 pr_warning("Unable to get major number\n");
801                 ret = -EBUSY;
802                 goto out;
803         }
804
805         if (!num_devices) {
806                 pr_info("num_devices not specified. Using default: 1\n");
807                 num_devices = 1;
808         }
809
810         /* Allocate the device array and initialize each one */
811         pr_info("Creating %u devices ...\n", num_devices);
812         zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
813         if (!zram_devices) {
814                 ret = -ENOMEM;
815                 goto unregister;
816         }
817
818         for (dev_id = 0; dev_id < num_devices; dev_id++) {
819                 ret = create_device(&zram_devices[dev_id], dev_id);
820                 if (ret)
821                         goto free_devices;
822         }
823
824         return 0;
825
826 free_devices:
827         while (dev_id)
828                 destroy_device(&zram_devices[--dev_id]);
829         kfree(zram_devices);
830 unregister:
831         unregister_blkdev(zram_major, "zram");
832 out:
833         return ret;
834 }
835
836 static void __exit zram_exit(void)
837 {
838         int i;
839         struct zram *zram;
840
841         for (i = 0; i < num_devices; i++) {
842                 zram = &zram_devices[i];
843
844                 destroy_device(zram);
845                 if (zram->init_done)
846                         zram_reset_device(zram);
847         }
848
849         unregister_blkdev(zram_major, "zram");
850
851         kfree(zram_devices);
852         pr_debug("Cleanup done!\n");
853 }
854
855 module_param(num_devices, uint, 0);
856 MODULE_PARM_DESC(num_devices, "Number of zram devices");
857
858 module_init(zram_init);
859 module_exit(zram_exit);
860
861 MODULE_LICENSE("Dual BSD/GPL");
862 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
863 MODULE_DESCRIPTION("Compressed RAM Block Device");