]> Pileus Git - ~andy/linux/blob - drivers/staging/wlan-ng/hfa384x_usb.c
Linux 3.14
[~andy/linux] / drivers / staging / wlan-ng / hfa384x_usb.c
1 /* src/prism2/driver/hfa384x_usb.c
2 *
3 * Functions that talk to the USB variantof the Intersil hfa384x MAC
4 *
5 * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
6 * --------------------------------------------------------------------
7 *
8 * linux-wlan
9 *
10 *   The contents of this file are subject to the Mozilla Public
11 *   License Version 1.1 (the "License"); you may not use this file
12 *   except in compliance with the License. You may obtain a copy of
13 *   the License at http://www.mozilla.org/MPL/
14 *
15 *   Software distributed under the License is distributed on an "AS
16 *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
17 *   implied. See the License for the specific language governing
18 *   rights and limitations under the License.
19 *
20 *   Alternatively, the contents of this file may be used under the
21 *   terms of the GNU Public License version 2 (the "GPL"), in which
22 *   case the provisions of the GPL are applicable instead of the
23 *   above.  If you wish to allow the use of your version of this file
24 *   only under the terms of the GPL and not to allow others to use
25 *   your version of this file under the MPL, indicate your decision
26 *   by deleting the provisions above and replace them with the notice
27 *   and other provisions required by the GPL.  If you do not delete
28 *   the provisions above, a recipient may use your version of this
29 *   file under either the MPL or the GPL.
30 *
31 * --------------------------------------------------------------------
32 *
33 * Inquiries regarding the linux-wlan Open Source project can be
34 * made directly to:
35 *
36 * AbsoluteValue Systems Inc.
37 * info@linux-wlan.com
38 * http://www.linux-wlan.com
39 *
40 * --------------------------------------------------------------------
41 *
42 * Portions of the development of this software were funded by
43 * Intersil Corporation as part of PRISM(R) chipset product development.
44 *
45 * --------------------------------------------------------------------
46 *
47 * This file implements functions that correspond to the prism2/hfa384x
48 * 802.11 MAC hardware and firmware host interface.
49 *
50 * The functions can be considered to represent several levels of
51 * abstraction.  The lowest level functions are simply C-callable wrappers
52 * around the register accesses.  The next higher level represents C-callable
53 * prism2 API functions that match the Intersil documentation as closely
54 * as is reasonable.  The next higher layer implements common sequences
55 * of invocations of the API layer (e.g. write to bap, followed by cmd).
56 *
57 * Common sequences:
58 * hfa384x_drvr_xxx      Highest level abstractions provided by the
59 *                       hfa384x code.  They are driver defined wrappers
60 *                       for common sequences.  These functions generally
61 *                       use the services of the lower levels.
62 *
63 * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
64 *                       functions are wrappers for the RID get/set
65 *                       sequence. They call copy_[to|from]_bap() and
66 *                       cmd_access(). These functions operate on the
67 *                       RIDs and buffers without validation. The caller
68 *                       is responsible for that.
69 *
70 * API wrapper functions:
71 * hfa384x_cmd_xxx       functions that provide access to the f/w commands.
72 *                       The function arguments correspond to each command
73 *                       argument, even command arguments that get packed
74 *                       into single registers.  These functions _just_
75 *                       issue the command by setting the cmd/parm regs
76 *                       & reading the status/resp regs.  Additional
77 *                       activities required to fully use a command
78 *                       (read/write from/to bap, get/set int status etc.)
79 *                       are implemented separately.  Think of these as
80 *                       C-callable prism2 commands.
81 *
82 * Lowest Layer Functions:
83 * hfa384x_docmd_xxx     These functions implement the sequence required
84 *                       to issue any prism2 command.  Primarily used by the
85 *                       hfa384x_cmd_xxx functions.
86 *
87 * hfa384x_bap_xxx       BAP read/write access functions.
88 *                       Note: we usually use BAP0 for non-interrupt context
89 *                        and BAP1 for interrupt context.
90 *
91 * hfa384x_dl_xxx        download related functions.
92 *
93 * Driver State Issues:
94 * Note that there are two pairs of functions that manage the
95 * 'initialized' and 'running' states of the hw/MAC combo.  The four
96 * functions are create(), destroy(), start(), and stop().  create()
97 * sets up the data structures required to support the hfa384x_*
98 * functions and destroy() cleans them up.  The start() function gets
99 * the actual hardware running and enables the interrupts.  The stop()
100 * function shuts the hardware down.  The sequence should be:
101 * create()
102 * start()
103 *  .
104 *  .  Do interesting things w/ the hardware
105 *  .
106 * stop()
107 * destroy()
108 *
109 * Note that destroy() can be called without calling stop() first.
110 * --------------------------------------------------------------------
111 */
112
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/sched.h>
116 #include <linux/types.h>
117 #include <linux/slab.h>
118 #include <linux/wireless.h>
119 #include <linux/netdevice.h>
120 #include <linux/timer.h>
121 #include <linux/io.h>
122 #include <linux/delay.h>
123 #include <asm/byteorder.h>
124 #include <linux/bitops.h>
125 #include <linux/list.h>
126 #include <linux/usb.h>
127 #include <linux/byteorder/generic.h>
128
129 #define SUBMIT_URB(u, f)  usb_submit_urb(u, f)
130
131 #include "p80211types.h"
132 #include "p80211hdr.h"
133 #include "p80211mgmt.h"
134 #include "p80211conv.h"
135 #include "p80211msg.h"
136 #include "p80211netdev.h"
137 #include "p80211req.h"
138 #include "p80211metadef.h"
139 #include "p80211metastruct.h"
140 #include "hfa384x.h"
141 #include "prism2mgmt.h"
142
143 enum cmd_mode {
144         DOWAIT = 0,
145         DOASYNC
146 };
147
148 #define THROTTLE_JIFFIES        (HZ/8)
149 #define URB_ASYNC_UNLINK 0
150 #define USB_QUEUE_BULK 0
151
152 #define ROUNDUP64(a) (((a)+63)&~63)
153
154 #ifdef DEBUG_USB
155 static void dbprint_urb(struct urb *urb);
156 #endif
157
158 static void
159 hfa384x_int_rxmonitor(wlandevice_t *wlandev, hfa384x_usb_rxfrm_t *rxfrm);
160
161 static void hfa384x_usb_defer(struct work_struct *data);
162
163 static int submit_rx_urb(hfa384x_t *hw, gfp_t flags);
164
165 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t flags);
166
167 /*---------------------------------------------------*/
168 /* Callbacks */
169 static void hfa384x_usbout_callback(struct urb *urb);
170 static void hfa384x_ctlxout_callback(struct urb *urb);
171 static void hfa384x_usbin_callback(struct urb *urb);
172
173 static void
174 hfa384x_usbin_txcompl(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
175
176 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb);
177
178 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin);
179
180 static void
181 hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout);
182
183 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
184                                int urb_status);
185
186 /*---------------------------------------------------*/
187 /* Functions to support the prism2 usb command queue */
188
189 static void hfa384x_usbctlxq_run(hfa384x_t *hw);
190
191 static void hfa384x_usbctlx_reqtimerfn(unsigned long data);
192
193 static void hfa384x_usbctlx_resptimerfn(unsigned long data);
194
195 static void hfa384x_usb_throttlefn(unsigned long data);
196
197 static void hfa384x_usbctlx_completion_task(unsigned long data);
198
199 static void hfa384x_usbctlx_reaper_task(unsigned long data);
200
201 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
202
203 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
204
205 struct usbctlx_completor {
206         int (*complete) (struct usbctlx_completor *);
207 };
208
209 static int
210 hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
211                               hfa384x_usbctlx_t *ctlx,
212                               struct usbctlx_completor *completor);
213
214 static int
215 unlocked_usbctlx_cancel_async(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx);
216
217 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
218
219 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx);
220
221 static int
222 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
223                    hfa384x_cmdresult_t *result);
224
225 static void
226 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
227                        hfa384x_rridresult_t *result);
228
229 /*---------------------------------------------------*/
230 /* Low level req/resp CTLX formatters and submitters */
231 static int
232 hfa384x_docmd(hfa384x_t *hw,
233               enum cmd_mode mode,
234               hfa384x_metacmd_t *cmd,
235               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
236
237 static int
238 hfa384x_dorrid(hfa384x_t *hw,
239                enum cmd_mode mode,
240                u16 rid,
241                void *riddata,
242                unsigned int riddatalen,
243                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
244
245 static int
246 hfa384x_dowrid(hfa384x_t *hw,
247                enum cmd_mode mode,
248                u16 rid,
249                void *riddata,
250                unsigned int riddatalen,
251                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
252
253 static int
254 hfa384x_dormem(hfa384x_t *hw,
255                enum cmd_mode mode,
256                u16 page,
257                u16 offset,
258                void *data,
259                unsigned int len,
260                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
261
262 static int
263 hfa384x_dowmem(hfa384x_t *hw,
264                enum cmd_mode mode,
265                u16 page,
266                u16 offset,
267                void *data,
268                unsigned int len,
269                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
270
271 static int hfa384x_isgood_pdrcode(u16 pdrcode);
272
273 static inline const char *ctlxstr(CTLX_STATE s)
274 {
275         static const char *ctlx_str[] = {
276                 "Initial state",
277                 "Complete",
278                 "Request failed",
279                 "Request pending",
280                 "Request packet submitted",
281                 "Request packet completed",
282                 "Response packet completed"
283         };
284
285         return ctlx_str[s];
286 };
287
288 static inline hfa384x_usbctlx_t *get_active_ctlx(hfa384x_t *hw)
289 {
290         return list_entry(hw->ctlxq.active.next, hfa384x_usbctlx_t, list);
291 }
292
293 #ifdef DEBUG_USB
294 void dbprint_urb(struct urb *urb)
295 {
296         pr_debug("urb->pipe=0x%08x\n", urb->pipe);
297         pr_debug("urb->status=0x%08x\n", urb->status);
298         pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
299         pr_debug("urb->transfer_buffer=0x%08x\n",
300                  (unsigned int)urb->transfer_buffer);
301         pr_debug("urb->transfer_buffer_length=0x%08x\n",
302                  urb->transfer_buffer_length);
303         pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
304         pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
305         pr_debug("urb->setup_packet(ctl)=0x%08x\n",
306                  (unsigned int)urb->setup_packet);
307         pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
308         pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
309         pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
310         pr_debug("urb->timeout=0x%08x\n", urb->timeout);
311         pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
312         pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
313 }
314 #endif
315
316 /*----------------------------------------------------------------
317 * submit_rx_urb
318 *
319 * Listen for input data on the BULK-IN pipe. If the pipe has
320 * stalled then schedule it to be reset.
321 *
322 * Arguments:
323 *       hw              device struct
324 *       memflags        memory allocation flags
325 *
326 * Returns:
327 *       error code from submission
328 *
329 * Call context:
330 *       Any
331 ----------------------------------------------------------------*/
332 static int submit_rx_urb(hfa384x_t *hw, gfp_t memflags)
333 {
334         struct sk_buff *skb;
335         int result;
336
337         skb = dev_alloc_skb(sizeof(hfa384x_usbin_t));
338         if (skb == NULL) {
339                 result = -ENOMEM;
340                 goto done;
341         }
342
343         /* Post the IN urb */
344         usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
345                           hw->endp_in,
346                           skb->data, sizeof(hfa384x_usbin_t),
347                           hfa384x_usbin_callback, hw->wlandev);
348
349         hw->rx_urb_skb = skb;
350
351         result = -ENOLINK;
352         if (!hw->wlandev->hwremoved &&
353                         !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
354                 result = SUBMIT_URB(&hw->rx_urb, memflags);
355
356                 /* Check whether we need to reset the RX pipe */
357                 if (result == -EPIPE) {
358                         netdev_warn(hw->wlandev->netdev,
359                                "%s rx pipe stalled: requesting reset\n",
360                                hw->wlandev->netdev->name);
361                         if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
362                                 schedule_work(&hw->usb_work);
363                 }
364         }
365
366         /* Don't leak memory if anything should go wrong */
367         if (result != 0) {
368                 dev_kfree_skb(skb);
369                 hw->rx_urb_skb = NULL;
370         }
371
372 done:
373         return result;
374 }
375
376 /*----------------------------------------------------------------
377 * submit_tx_urb
378 *
379 * Prepares and submits the URB of transmitted data. If the
380 * submission fails then it will schedule the output pipe to
381 * be reset.
382 *
383 * Arguments:
384 *       hw              device struct
385 *       tx_urb          URB of data for tranmission
386 *       memflags        memory allocation flags
387 *
388 * Returns:
389 *       error code from submission
390 *
391 * Call context:
392 *       Any
393 ----------------------------------------------------------------*/
394 static int submit_tx_urb(hfa384x_t *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396         struct net_device *netdev = hw->wlandev->netdev;
397         int result;
398
399         result = -ENOLINK;
400         if (netif_running(netdev)) {
401
402                 if (!hw->wlandev->hwremoved
403                     && !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
404                         result = SUBMIT_URB(tx_urb, memflags);
405
406                         /* Test whether we need to reset the TX pipe */
407                         if (result == -EPIPE) {
408                                 netdev_warn(hw->wlandev->netdev,
409                                        "%s tx pipe stalled: requesting reset\n",
410                                        netdev->name);
411                                 set_bit(WORK_TX_HALT, &hw->usb_flags);
412                                 schedule_work(&hw->usb_work);
413                         } else if (result == 0) {
414                                 netif_stop_queue(netdev);
415                         }
416                 }
417         }
418
419         return result;
420 }
421
422 /*----------------------------------------------------------------
423 * hfa394x_usb_defer
424 *
425 * There are some things that the USB stack cannot do while
426 * in interrupt context, so we arrange this function to run
427 * in process context.
428 *
429 * Arguments:
430 *       hw      device structure
431 *
432 * Returns:
433 *       nothing
434 *
435 * Call context:
436 *       process (by design)
437 ----------------------------------------------------------------*/
438 static void hfa384x_usb_defer(struct work_struct *data)
439 {
440         hfa384x_t *hw = container_of(data, struct hfa384x, usb_work);
441         struct net_device *netdev = hw->wlandev->netdev;
442
443         /* Don't bother trying to reset anything if the plug
444          * has been pulled ...
445          */
446         if (hw->wlandev->hwremoved)
447                 return;
448
449         /* Reception has stopped: try to reset the input pipe */
450         if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
451                 int ret;
452
453                 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
454
455                 ret = usb_clear_halt(hw->usb, hw->endp_in);
456                 if (ret != 0) {
457                         netdev_err(hw->wlandev->netdev,
458                                "Failed to clear rx pipe for %s: err=%d\n",
459                                netdev->name, ret);
460                 } else {
461                         netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
462                                netdev->name);
463                         clear_bit(WORK_RX_HALT, &hw->usb_flags);
464                         set_bit(WORK_RX_RESUME, &hw->usb_flags);
465                 }
466         }
467
468         /* Resume receiving data back from the device. */
469         if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
470                 int ret;
471
472                 ret = submit_rx_urb(hw, GFP_KERNEL);
473                 if (ret != 0) {
474                         netdev_err(hw->wlandev->netdev,
475                                "Failed to resume %s rx pipe.\n", netdev->name);
476                 } else {
477                         clear_bit(WORK_RX_RESUME, &hw->usb_flags);
478                 }
479         }
480
481         /* Transmission has stopped: try to reset the output pipe */
482         if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
483                 int ret;
484
485                 usb_kill_urb(&hw->tx_urb);
486                 ret = usb_clear_halt(hw->usb, hw->endp_out);
487                 if (ret != 0) {
488                         netdev_err(hw->wlandev->netdev,
489                                "Failed to clear tx pipe for %s: err=%d\n",
490                                netdev->name, ret);
491                 } else {
492                         netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
493                                netdev->name);
494                         clear_bit(WORK_TX_HALT, &hw->usb_flags);
495                         set_bit(WORK_TX_RESUME, &hw->usb_flags);
496
497                         /* Stopping the BULK-OUT pipe also blocked
498                          * us from sending any more CTLX URBs, so
499                          * we need to re-run our queue ...
500                          */
501                         hfa384x_usbctlxq_run(hw);
502                 }
503         }
504
505         /* Resume transmitting. */
506         if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
507                 netif_wake_queue(hw->wlandev->netdev);
508 }
509
510 /*----------------------------------------------------------------
511 * hfa384x_create
512 *
513 * Sets up the hfa384x_t data structure for use.  Note this
514 * does _not_ initialize the actual hardware, just the data structures
515 * we use to keep track of its state.
516 *
517 * Arguments:
518 *       hw              device structure
519 *       irq             device irq number
520 *       iobase          i/o base address for register access
521 *       membase         memory base address for register access
522 *
523 * Returns:
524 *       nothing
525 *
526 * Side effects:
527 *
528 * Call context:
529 *       process
530 ----------------------------------------------------------------*/
531 void hfa384x_create(hfa384x_t *hw, struct usb_device *usb)
532 {
533         memset(hw, 0, sizeof(hfa384x_t));
534         hw->usb = usb;
535
536         /* set up the endpoints */
537         hw->endp_in = usb_rcvbulkpipe(usb, 1);
538         hw->endp_out = usb_sndbulkpipe(usb, 2);
539
540         /* Set up the waitq */
541         init_waitqueue_head(&hw->cmdq);
542
543         /* Initialize the command queue */
544         spin_lock_init(&hw->ctlxq.lock);
545         INIT_LIST_HEAD(&hw->ctlxq.pending);
546         INIT_LIST_HEAD(&hw->ctlxq.active);
547         INIT_LIST_HEAD(&hw->ctlxq.completing);
548         INIT_LIST_HEAD(&hw->ctlxq.reapable);
549
550         /* Initialize the authentication queue */
551         skb_queue_head_init(&hw->authq);
552
553         tasklet_init(&hw->reaper_bh,
554                      hfa384x_usbctlx_reaper_task, (unsigned long)hw);
555         tasklet_init(&hw->completion_bh,
556                      hfa384x_usbctlx_completion_task, (unsigned long)hw);
557         INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
558         INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
559
560         init_timer(&hw->throttle);
561         hw->throttle.function = hfa384x_usb_throttlefn;
562         hw->throttle.data = (unsigned long)hw;
563
564         init_timer(&hw->resptimer);
565         hw->resptimer.function = hfa384x_usbctlx_resptimerfn;
566         hw->resptimer.data = (unsigned long)hw;
567
568         init_timer(&hw->reqtimer);
569         hw->reqtimer.function = hfa384x_usbctlx_reqtimerfn;
570         hw->reqtimer.data = (unsigned long)hw;
571
572         usb_init_urb(&hw->rx_urb);
573         usb_init_urb(&hw->tx_urb);
574         usb_init_urb(&hw->ctlx_urb);
575
576         hw->link_status = HFA384x_LINK_NOTCONNECTED;
577         hw->state = HFA384x_STATE_INIT;
578
579         INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
580         init_timer(&hw->commsqual_timer);
581         hw->commsqual_timer.data = (unsigned long)hw;
582         hw->commsqual_timer.function = prism2sta_commsqual_timer;
583 }
584
585 /*----------------------------------------------------------------
586 * hfa384x_destroy
587 *
588 * Partner to hfa384x_create().  This function cleans up the hw
589 * structure so that it can be freed by the caller using a simple
590 * kfree.  Currently, this function is just a placeholder.  If, at some
591 * point in the future, an hw in the 'shutdown' state requires a 'deep'
592 * kfree, this is where it should be done.  Note that if this function
593 * is called on a _running_ hw structure, the drvr_stop() function is
594 * called.
595 *
596 * Arguments:
597 *       hw              device structure
598 *
599 * Returns:
600 *       nothing, this function is not allowed to fail.
601 *
602 * Side effects:
603 *
604 * Call context:
605 *       process
606 ----------------------------------------------------------------*/
607 void hfa384x_destroy(hfa384x_t *hw)
608 {
609         struct sk_buff *skb;
610
611         if (hw->state == HFA384x_STATE_RUNNING)
612                 hfa384x_drvr_stop(hw);
613         hw->state = HFA384x_STATE_PREINIT;
614
615         kfree(hw->scanresults);
616         hw->scanresults = NULL;
617
618         /* Now to clean out the auth queue */
619         while ((skb = skb_dequeue(&hw->authq)))
620                 dev_kfree_skb(skb);
621 }
622
623 static hfa384x_usbctlx_t *usbctlx_alloc(void)
624 {
625         hfa384x_usbctlx_t *ctlx;
626
627         ctlx = kmalloc(sizeof(*ctlx), in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
628         if (ctlx != NULL) {
629                 memset(ctlx, 0, sizeof(*ctlx));
630                 init_completion(&ctlx->done);
631         }
632
633         return ctlx;
634 }
635
636 static int
637 usbctlx_get_status(const hfa384x_usb_cmdresp_t *cmdresp,
638                    hfa384x_cmdresult_t *result)
639 {
640         result->status = le16_to_cpu(cmdresp->status);
641         result->resp0 = le16_to_cpu(cmdresp->resp0);
642         result->resp1 = le16_to_cpu(cmdresp->resp1);
643         result->resp2 = le16_to_cpu(cmdresp->resp2);
644
645         pr_debug("cmdresult:status=0x%04x "
646                  "resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
647                  result->status, result->resp0, result->resp1, result->resp2);
648
649         return result->status & HFA384x_STATUS_RESULT;
650 }
651
652 static void
653 usbctlx_get_rridresult(const hfa384x_usb_rridresp_t *rridresp,
654                        hfa384x_rridresult_t *result)
655 {
656         result->rid = le16_to_cpu(rridresp->rid);
657         result->riddata = rridresp->data;
658         result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
659
660 }
661
662 /*----------------------------------------------------------------
663 * Completor object:
664 * This completor must be passed to hfa384x_usbctlx_complete_sync()
665 * when processing a CTLX that returns a hfa384x_cmdresult_t structure.
666 ----------------------------------------------------------------*/
667 struct usbctlx_cmd_completor {
668         struct usbctlx_completor head;
669
670         const hfa384x_usb_cmdresp_t *cmdresp;
671         hfa384x_cmdresult_t *result;
672 };
673
674 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
675 {
676         struct usbctlx_cmd_completor *complete;
677
678         complete = (struct usbctlx_cmd_completor *) head;
679         return usbctlx_get_status(complete->cmdresp, complete->result);
680 }
681
682 static inline struct usbctlx_completor *init_cmd_completor(
683                                                 struct usbctlx_cmd_completor
684                                                         *completor,
685                                                 const hfa384x_usb_cmdresp_t
686                                                         *cmdresp,
687                                                 hfa384x_cmdresult_t *result)
688 {
689         completor->head.complete = usbctlx_cmd_completor_fn;
690         completor->cmdresp = cmdresp;
691         completor->result = result;
692         return &(completor->head);
693 }
694
695 /*----------------------------------------------------------------
696 * Completor object:
697 * This completor must be passed to hfa384x_usbctlx_complete_sync()
698 * when processing a CTLX that reads a RID.
699 ----------------------------------------------------------------*/
700 struct usbctlx_rrid_completor {
701         struct usbctlx_completor head;
702
703         const hfa384x_usb_rridresp_t *rridresp;
704         void *riddata;
705         unsigned int riddatalen;
706 };
707
708 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
709 {
710         struct usbctlx_rrid_completor *complete;
711         hfa384x_rridresult_t rridresult;
712
713         complete = (struct usbctlx_rrid_completor *) head;
714         usbctlx_get_rridresult(complete->rridresp, &rridresult);
715
716         /* Validate the length, note body len calculation in bytes */
717         if (rridresult.riddata_len != complete->riddatalen) {
718                 printk(KERN_WARNING
719                        "RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
720                        rridresult.rid,
721                        complete->riddatalen, rridresult.riddata_len);
722                 return -ENODATA;
723         }
724
725         memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
726         return 0;
727 }
728
729 static inline struct usbctlx_completor *init_rrid_completor(
730                                                 struct usbctlx_rrid_completor
731                                                         *completor,
732                                                 const hfa384x_usb_rridresp_t
733                                                         *rridresp,
734                                                 void *riddata,
735                                                 unsigned int riddatalen)
736 {
737         completor->head.complete = usbctlx_rrid_completor_fn;
738         completor->rridresp = rridresp;
739         completor->riddata = riddata;
740         completor->riddatalen = riddatalen;
741         return &(completor->head);
742 }
743
744 /*----------------------------------------------------------------
745 * Completor object:
746 * Interprets the results of a synchronous RID-write
747 ----------------------------------------------------------------*/
748 typedef struct usbctlx_cmd_completor usbctlx_wrid_completor_t;
749 #define init_wrid_completor  init_cmd_completor
750
751 /*----------------------------------------------------------------
752 * Completor object:
753 * Interprets the results of a synchronous memory-write
754 ----------------------------------------------------------------*/
755 typedef struct usbctlx_cmd_completor usbctlx_wmem_completor_t;
756 #define init_wmem_completor  init_cmd_completor
757
758 /*----------------------------------------------------------------
759 * Completor object:
760 * Interprets the results of a synchronous memory-read
761 ----------------------------------------------------------------*/
762 struct usbctlx_rmem_completor {
763         struct usbctlx_completor head;
764
765         const hfa384x_usb_rmemresp_t *rmemresp;
766         void *data;
767         unsigned int len;
768 };
769 typedef struct usbctlx_rmem_completor usbctlx_rmem_completor_t;
770
771 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
772 {
773         usbctlx_rmem_completor_t *complete = (usbctlx_rmem_completor_t *) head;
774
775         pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
776         memcpy(complete->data, complete->rmemresp->data, complete->len);
777         return 0;
778 }
779
780 static inline struct usbctlx_completor *init_rmem_completor(
781                                                 usbctlx_rmem_completor_t
782                                                         *completor,
783                                                 hfa384x_usb_rmemresp_t
784                                                         *rmemresp,
785                                                 void *data,
786                                                 unsigned int len)
787 {
788         completor->head.complete = usbctlx_rmem_completor_fn;
789         completor->rmemresp = rmemresp;
790         completor->data = data;
791         completor->len = len;
792         return &(completor->head);
793 }
794
795 /*----------------------------------------------------------------
796 * hfa384x_cb_status
797 *
798 * Ctlx_complete handler for async CMD type control exchanges.
799 * mark the hw struct as such.
800 *
801 * Note: If the handling is changed here, it should probably be
802 *       changed in docmd as well.
803 *
804 * Arguments:
805 *       hw              hw struct
806 *       ctlx            completed CTLX
807 *
808 * Returns:
809 *       nothing
810 *
811 * Side effects:
812 *
813 * Call context:
814 *       interrupt
815 ----------------------------------------------------------------*/
816 static void hfa384x_cb_status(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
817 {
818         if (ctlx->usercb != NULL) {
819                 hfa384x_cmdresult_t cmdresult;
820
821                 if (ctlx->state != CTLX_COMPLETE) {
822                         memset(&cmdresult, 0, sizeof(cmdresult));
823                         cmdresult.status =
824                             HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
825                 } else {
826                         usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
827                 }
828
829                 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
830         }
831 }
832
833 /*----------------------------------------------------------------
834 * hfa384x_cb_rrid
835 *
836 * CTLX completion handler for async RRID type control exchanges.
837 *
838 * Note: If the handling is changed here, it should probably be
839 *       changed in dorrid as well.
840 *
841 * Arguments:
842 *       hw              hw struct
843 *       ctlx            completed CTLX
844 *
845 * Returns:
846 *       nothing
847 *
848 * Side effects:
849 *
850 * Call context:
851 *       interrupt
852 ----------------------------------------------------------------*/
853 static void hfa384x_cb_rrid(hfa384x_t *hw, const hfa384x_usbctlx_t *ctlx)
854 {
855         if (ctlx->usercb != NULL) {
856                 hfa384x_rridresult_t rridresult;
857
858                 if (ctlx->state != CTLX_COMPLETE) {
859                         memset(&rridresult, 0, sizeof(rridresult));
860                         rridresult.rid = le16_to_cpu(ctlx->outbuf.rridreq.rid);
861                 } else {
862                         usbctlx_get_rridresult(&ctlx->inbuf.rridresp,
863                                                &rridresult);
864                 }
865
866                 ctlx->usercb(hw, &rridresult, ctlx->usercb_data);
867         }
868 }
869
870 static inline int hfa384x_docmd_wait(hfa384x_t *hw, hfa384x_metacmd_t *cmd)
871 {
872         return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
873 }
874
875 static inline int
876 hfa384x_docmd_async(hfa384x_t *hw,
877                     hfa384x_metacmd_t *cmd,
878                     ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
879 {
880         return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
881 }
882
883 static inline int
884 hfa384x_dorrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
885                     unsigned int riddatalen)
886 {
887         return hfa384x_dorrid(hw, DOWAIT,
888                               rid, riddata, riddatalen, NULL, NULL, NULL);
889 }
890
891 static inline int
892 hfa384x_dorrid_async(hfa384x_t *hw,
893                      u16 rid, void *riddata, unsigned int riddatalen,
894                      ctlx_cmdcb_t cmdcb,
895                      ctlx_usercb_t usercb, void *usercb_data)
896 {
897         return hfa384x_dorrid(hw, DOASYNC,
898                               rid, riddata, riddatalen,
899                               cmdcb, usercb, usercb_data);
900 }
901
902 static inline int
903 hfa384x_dowrid_wait(hfa384x_t *hw, u16 rid, void *riddata,
904                     unsigned int riddatalen)
905 {
906         return hfa384x_dowrid(hw, DOWAIT,
907                               rid, riddata, riddatalen, NULL, NULL, NULL);
908 }
909
910 static inline int
911 hfa384x_dowrid_async(hfa384x_t *hw,
912                      u16 rid, void *riddata, unsigned int riddatalen,
913                      ctlx_cmdcb_t cmdcb,
914                      ctlx_usercb_t usercb, void *usercb_data)
915 {
916         return hfa384x_dowrid(hw, DOASYNC,
917                               rid, riddata, riddatalen,
918                               cmdcb, usercb, usercb_data);
919 }
920
921 static inline int
922 hfa384x_dormem_wait(hfa384x_t *hw,
923                     u16 page, u16 offset, void *data, unsigned int len)
924 {
925         return hfa384x_dormem(hw, DOWAIT,
926                               page, offset, data, len, NULL, NULL, NULL);
927 }
928
929 static inline int
930 hfa384x_dormem_async(hfa384x_t *hw,
931                      u16 page, u16 offset, void *data, unsigned int len,
932                      ctlx_cmdcb_t cmdcb,
933                      ctlx_usercb_t usercb, void *usercb_data)
934 {
935         return hfa384x_dormem(hw, DOASYNC,
936                               page, offset, data, len,
937                               cmdcb, usercb, usercb_data);
938 }
939
940 static inline int
941 hfa384x_dowmem_wait(hfa384x_t *hw,
942                     u16 page, u16 offset, void *data, unsigned int len)
943 {
944         return hfa384x_dowmem(hw, DOWAIT,
945                               page, offset, data, len, NULL, NULL, NULL);
946 }
947
948 static inline int
949 hfa384x_dowmem_async(hfa384x_t *hw,
950                      u16 page,
951                      u16 offset,
952                      void *data,
953                      unsigned int len,
954                      ctlx_cmdcb_t cmdcb,
955                      ctlx_usercb_t usercb, void *usercb_data)
956 {
957         return hfa384x_dowmem(hw, DOASYNC,
958                               page, offset, data, len,
959                               cmdcb, usercb, usercb_data);
960 }
961
962 /*----------------------------------------------------------------
963 * hfa384x_cmd_initialize
964 *
965 * Issues the initialize command and sets the hw->state based
966 * on the result.
967 *
968 * Arguments:
969 *       hw              device structure
970 *
971 * Returns:
972 *       0               success
973 *       >0              f/w reported error - f/w status code
974 *       <0              driver reported error
975 *
976 * Side effects:
977 *
978 * Call context:
979 *       process
980 ----------------------------------------------------------------*/
981 int hfa384x_cmd_initialize(hfa384x_t *hw)
982 {
983         int result = 0;
984         int i;
985         hfa384x_metacmd_t cmd;
986
987         cmd.cmd = HFA384x_CMDCODE_INIT;
988         cmd.parm0 = 0;
989         cmd.parm1 = 0;
990         cmd.parm2 = 0;
991
992         result = hfa384x_docmd_wait(hw, &cmd);
993
994         pr_debug("cmdresp.init: "
995                  "status=0x%04x, resp0=0x%04x, "
996                  "resp1=0x%04x, resp2=0x%04x\n",
997                  cmd.result.status,
998                  cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
999         if (result == 0) {
1000                 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
1001                         hw->port_enabled[i] = 0;
1002         }
1003
1004         hw->link_status = HFA384x_LINK_NOTCONNECTED;
1005
1006         return result;
1007 }
1008
1009 /*----------------------------------------------------------------
1010 * hfa384x_cmd_disable
1011 *
1012 * Issues the disable command to stop communications on one of
1013 * the MACs 'ports'.
1014 *
1015 * Arguments:
1016 *       hw              device structure
1017 *       macport         MAC port number (host order)
1018 *
1019 * Returns:
1020 *       0               success
1021 *       >0              f/w reported failure - f/w status code
1022 *       <0              driver reported error (timeout|bad arg)
1023 *
1024 * Side effects:
1025 *
1026 * Call context:
1027 *       process
1028 ----------------------------------------------------------------*/
1029 int hfa384x_cmd_disable(hfa384x_t *hw, u16 macport)
1030 {
1031         int result = 0;
1032         hfa384x_metacmd_t cmd;
1033
1034         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
1035             HFA384x_CMD_MACPORT_SET(macport);
1036         cmd.parm0 = 0;
1037         cmd.parm1 = 0;
1038         cmd.parm2 = 0;
1039
1040         result = hfa384x_docmd_wait(hw, &cmd);
1041
1042         return result;
1043 }
1044
1045 /*----------------------------------------------------------------
1046 * hfa384x_cmd_enable
1047 *
1048 * Issues the enable command to enable communications on one of
1049 * the MACs 'ports'.
1050 *
1051 * Arguments:
1052 *       hw              device structure
1053 *       macport         MAC port number
1054 *
1055 * Returns:
1056 *       0               success
1057 *       >0              f/w reported failure - f/w status code
1058 *       <0              driver reported error (timeout|bad arg)
1059 *
1060 * Side effects:
1061 *
1062 * Call context:
1063 *       process
1064 ----------------------------------------------------------------*/
1065 int hfa384x_cmd_enable(hfa384x_t *hw, u16 macport)
1066 {
1067         int result = 0;
1068         hfa384x_metacmd_t cmd;
1069
1070         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1071             HFA384x_CMD_MACPORT_SET(macport);
1072         cmd.parm0 = 0;
1073         cmd.parm1 = 0;
1074         cmd.parm2 = 0;
1075
1076         result = hfa384x_docmd_wait(hw, &cmd);
1077
1078         return result;
1079 }
1080
1081 /*----------------------------------------------------------------
1082 * hfa384x_cmd_monitor
1083 *
1084 * Enables the 'monitor mode' of the MAC.  Here's the description of
1085 * monitor mode that I've received thus far:
1086 *
1087 *  "The "monitor mode" of operation is that the MAC passes all
1088 *  frames for which the PLCP checks are correct. All received
1089 *  MPDUs are passed to the host with MAC Port = 7, with a
1090 *  receive status of good, FCS error, or undecryptable. Passing
1091 *  certain MPDUs is a violation of the 802.11 standard, but useful
1092 *  for a debugging tool."  Normal communication is not possible
1093 *  while monitor mode is enabled.
1094 *
1095 * Arguments:
1096 *       hw              device structure
1097 *       enable          a code (0x0b|0x0f) that enables/disables
1098 *                       monitor mode. (host order)
1099 *
1100 * Returns:
1101 *       0               success
1102 *       >0              f/w reported failure - f/w status code
1103 *       <0              driver reported error (timeout|bad arg)
1104 *
1105 * Side effects:
1106 *
1107 * Call context:
1108 *       process
1109 ----------------------------------------------------------------*/
1110 int hfa384x_cmd_monitor(hfa384x_t *hw, u16 enable)
1111 {
1112         int result = 0;
1113         hfa384x_metacmd_t cmd;
1114
1115         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1116             HFA384x_CMD_AINFO_SET(enable);
1117         cmd.parm0 = 0;
1118         cmd.parm1 = 0;
1119         cmd.parm2 = 0;
1120
1121         result = hfa384x_docmd_wait(hw, &cmd);
1122
1123         return result;
1124 }
1125
1126 /*----------------------------------------------------------------
1127 * hfa384x_cmd_download
1128 *
1129 * Sets the controls for the MAC controller code/data download
1130 * process.  The arguments set the mode and address associated
1131 * with a download.  Note that the aux registers should be enabled
1132 * prior to setting one of the download enable modes.
1133 *
1134 * Arguments:
1135 *       hw              device structure
1136 *       mode            0 - Disable programming and begin code exec
1137 *                       1 - Enable volatile mem programming
1138 *                       2 - Enable non-volatile mem programming
1139 *                       3 - Program non-volatile section from NV download
1140 *                           buffer.
1141 *                       (host order)
1142 *       lowaddr
1143 *       highaddr        For mode 1, sets the high & low order bits of
1144 *                       the "destination address".  This address will be
1145 *                       the execution start address when download is
1146 *                       subsequently disabled.
1147 *                       For mode 2, sets the high & low order bits of
1148 *                       the destination in NV ram.
1149 *                       For modes 0 & 3, should be zero. (host order)
1150 *                       NOTE: these are CMD format.
1151 *       codelen         Length of the data to write in mode 2,
1152 *                       zero otherwise. (host order)
1153 *
1154 * Returns:
1155 *       0               success
1156 *       >0              f/w reported failure - f/w status code
1157 *       <0              driver reported error (timeout|bad arg)
1158 *
1159 * Side effects:
1160 *
1161 * Call context:
1162 *       process
1163 ----------------------------------------------------------------*/
1164 int hfa384x_cmd_download(hfa384x_t *hw, u16 mode, u16 lowaddr,
1165                          u16 highaddr, u16 codelen)
1166 {
1167         int result = 0;
1168         hfa384x_metacmd_t cmd;
1169
1170         pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1171                  mode, lowaddr, highaddr, codelen);
1172
1173         cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1174                    HFA384x_CMD_PROGMODE_SET(mode));
1175
1176         cmd.parm0 = lowaddr;
1177         cmd.parm1 = highaddr;
1178         cmd.parm2 = codelen;
1179
1180         result = hfa384x_docmd_wait(hw, &cmd);
1181
1182         return result;
1183 }
1184
1185 /*----------------------------------------------------------------
1186 * hfa384x_corereset
1187 *
1188 * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1189 * structure is in its "created" state.  That is, it is initialized
1190 * with proper values.  Note that if a reset is done after the
1191 * device has been active for awhile, the caller might have to clean
1192 * up some leftover cruft in the hw structure.
1193 *
1194 * Arguments:
1195 *       hw              device structure
1196 *       holdtime        how long (in ms) to hold the reset
1197 *       settletime      how long (in ms) to wait after releasing
1198 *                       the reset
1199 *
1200 * Returns:
1201 *       nothing
1202 *
1203 * Side effects:
1204 *
1205 * Call context:
1206 *       process
1207 ----------------------------------------------------------------*/
1208 int hfa384x_corereset(hfa384x_t *hw, int holdtime, int settletime, int genesis)
1209 {
1210         int result = 0;
1211
1212         result = usb_reset_device(hw->usb);
1213         if (result < 0) {
1214                 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1215                        result);
1216         }
1217
1218         return result;
1219 }
1220
1221 /*----------------------------------------------------------------
1222 * hfa384x_usbctlx_complete_sync
1223 *
1224 * Waits for a synchronous CTLX object to complete,
1225 * and then handles the response.
1226 *
1227 * Arguments:
1228 *       hw              device structure
1229 *       ctlx            CTLX ptr
1230 *       completor       functor object to decide what to
1231 *                       do with the CTLX's result.
1232 *
1233 * Returns:
1234 *       0               Success
1235 *       -ERESTARTSYS    Interrupted by a signal
1236 *       -EIO            CTLX failed
1237 *       -ENODEV         Adapter was unplugged
1238 *       ???             Result from completor
1239 *
1240 * Side effects:
1241 *
1242 * Call context:
1243 *       process
1244 ----------------------------------------------------------------*/
1245 static int hfa384x_usbctlx_complete_sync(hfa384x_t *hw,
1246                                          hfa384x_usbctlx_t *ctlx,
1247                                          struct usbctlx_completor *completor)
1248 {
1249         unsigned long flags;
1250         int result;
1251
1252         result = wait_for_completion_interruptible(&ctlx->done);
1253
1254         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1255
1256         /*
1257          * We can only handle the CTLX if the USB disconnect
1258          * function has not run yet ...
1259          */
1260 cleanup:
1261         if (hw->wlandev->hwremoved) {
1262                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1263                 result = -ENODEV;
1264         } else if (result != 0) {
1265                 int runqueue = 0;
1266
1267                 /*
1268                  * We were probably interrupted, so delete
1269                  * this CTLX asynchronously, kill the timers
1270                  * and the URB, and then start the next
1271                  * pending CTLX.
1272                  *
1273                  * NOTE: We can only delete the timers and
1274                  *       the URB if this CTLX is active.
1275                  */
1276                 if (ctlx == get_active_ctlx(hw)) {
1277                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1278
1279                         del_singleshot_timer_sync(&hw->reqtimer);
1280                         del_singleshot_timer_sync(&hw->resptimer);
1281                         hw->req_timer_done = 1;
1282                         hw->resp_timer_done = 1;
1283                         usb_kill_urb(&hw->ctlx_urb);
1284
1285                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1286
1287                         runqueue = 1;
1288
1289                         /*
1290                          * This scenario is so unlikely that I'm
1291                          * happy with a grubby "goto" solution ...
1292                          */
1293                         if (hw->wlandev->hwremoved)
1294                                 goto cleanup;
1295                 }
1296
1297                 /*
1298                  * The completion task will send this CTLX
1299                  * to the reaper the next time it runs. We
1300                  * are no longer in a hurry.
1301                  */
1302                 ctlx->reapable = 1;
1303                 ctlx->state = CTLX_REQ_FAILED;
1304                 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1305
1306                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1307
1308                 if (runqueue)
1309                         hfa384x_usbctlxq_run(hw);
1310         } else {
1311                 if (ctlx->state == CTLX_COMPLETE) {
1312                         result = completor->complete(completor);
1313                 } else {
1314                         netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1315                                le16_to_cpu(ctlx->outbuf.type),
1316                                ctlxstr(ctlx->state));
1317                         result = -EIO;
1318                 }
1319
1320                 list_del(&ctlx->list);
1321                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1322                 kfree(ctlx);
1323         }
1324
1325         return result;
1326 }
1327
1328 /*----------------------------------------------------------------
1329 * hfa384x_docmd
1330 *
1331 * Constructs a command CTLX and submits it.
1332 *
1333 * NOTE: Any changes to the 'post-submit' code in this function
1334 *       need to be carried over to hfa384x_cbcmd() since the handling
1335 *       is virtually identical.
1336 *
1337 * Arguments:
1338 *       hw              device structure
1339 *       mode            DOWAIT or DOASYNC
1340 *       cmd             cmd structure.  Includes all arguments and result
1341 *                       data points.  All in host order. in host order
1342 *       cmdcb           command-specific callback
1343 *       usercb          user callback for async calls, NULL for DOWAIT calls
1344 *       usercb_data     user supplied data pointer for async calls, NULL
1345 *                       for DOASYNC calls
1346 *
1347 * Returns:
1348 *       0               success
1349 *       -EIO            CTLX failure
1350 *       -ERESTARTSYS    Awakened on signal
1351 *       >0              command indicated error, Status and Resp0-2 are
1352 *                       in hw structure.
1353 *
1354 * Side effects:
1355 *
1356 *
1357 * Call context:
1358 *       process
1359 ----------------------------------------------------------------*/
1360 static int
1361 hfa384x_docmd(hfa384x_t *hw,
1362               enum cmd_mode mode,
1363               hfa384x_metacmd_t *cmd,
1364               ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1365 {
1366         int result;
1367         hfa384x_usbctlx_t *ctlx;
1368
1369         ctlx = usbctlx_alloc();
1370         if (ctlx == NULL) {
1371                 result = -ENOMEM;
1372                 goto done;
1373         }
1374
1375         /* Initialize the command */
1376         ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1377         ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1378         ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1379         ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1380         ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1381
1382         ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1383
1384         pr_debug("cmdreq: cmd=0x%04x "
1385                  "parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1386                  cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1387
1388         ctlx->reapable = mode;
1389         ctlx->cmdcb = cmdcb;
1390         ctlx->usercb = usercb;
1391         ctlx->usercb_data = usercb_data;
1392
1393         result = hfa384x_usbctlx_submit(hw, ctlx);
1394         if (result != 0) {
1395                 kfree(ctlx);
1396         } else if (mode == DOWAIT) {
1397                 struct usbctlx_cmd_completor completor;
1398
1399                 result =
1400                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1401                                                   init_cmd_completor(&completor,
1402                                                                      &ctlx->
1403                                                                      inbuf.
1404                                                                      cmdresp,
1405                                                                      &cmd->
1406                                                                      result));
1407         }
1408
1409 done:
1410         return result;
1411 }
1412
1413 /*----------------------------------------------------------------
1414 * hfa384x_dorrid
1415 *
1416 * Constructs a read rid CTLX and issues it.
1417 *
1418 * NOTE: Any changes to the 'post-submit' code in this function
1419 *       need to be carried over to hfa384x_cbrrid() since the handling
1420 *       is virtually identical.
1421 *
1422 * Arguments:
1423 *       hw              device structure
1424 *       mode            DOWAIT or DOASYNC
1425 *       rid             Read RID number (host order)
1426 *       riddata         Caller supplied buffer that MAC formatted RID.data
1427 *                       record will be written to for DOWAIT calls. Should
1428 *                       be NULL for DOASYNC calls.
1429 *       riddatalen      Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1430 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1431 *       usercb          user callback for async calls, NULL for DOWAIT calls
1432 *       usercb_data     user supplied data pointer for async calls, NULL
1433 *                       for DOWAIT calls
1434 *
1435 * Returns:
1436 *       0               success
1437 *       -EIO            CTLX failure
1438 *       -ERESTARTSYS    Awakened on signal
1439 *       -ENODATA        riddatalen != macdatalen
1440 *       >0              command indicated error, Status and Resp0-2 are
1441 *                       in hw structure.
1442 *
1443 * Side effects:
1444 *
1445 * Call context:
1446 *       interrupt (DOASYNC)
1447 *       process (DOWAIT or DOASYNC)
1448 ----------------------------------------------------------------*/
1449 static int
1450 hfa384x_dorrid(hfa384x_t *hw,
1451                enum cmd_mode mode,
1452                u16 rid,
1453                void *riddata,
1454                unsigned int riddatalen,
1455                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1456 {
1457         int result;
1458         hfa384x_usbctlx_t *ctlx;
1459
1460         ctlx = usbctlx_alloc();
1461         if (ctlx == NULL) {
1462                 result = -ENOMEM;
1463                 goto done;
1464         }
1465
1466         /* Initialize the command */
1467         ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1468         ctlx->outbuf.rridreq.frmlen =
1469             cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1470         ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1471
1472         ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1473
1474         ctlx->reapable = mode;
1475         ctlx->cmdcb = cmdcb;
1476         ctlx->usercb = usercb;
1477         ctlx->usercb_data = usercb_data;
1478
1479         /* Submit the CTLX */
1480         result = hfa384x_usbctlx_submit(hw, ctlx);
1481         if (result != 0) {
1482                 kfree(ctlx);
1483         } else if (mode == DOWAIT) {
1484                 struct usbctlx_rrid_completor completor;
1485
1486                 result =
1487                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1488                                                   init_rrid_completor
1489                                                   (&completor,
1490                                                    &ctlx->inbuf.rridresp,
1491                                                    riddata, riddatalen));
1492         }
1493
1494 done:
1495         return result;
1496 }
1497
1498 /*----------------------------------------------------------------
1499 * hfa384x_dowrid
1500 *
1501 * Constructs a write rid CTLX and issues it.
1502 *
1503 * NOTE: Any changes to the 'post-submit' code in this function
1504 *       need to be carried over to hfa384x_cbwrid() since the handling
1505 *       is virtually identical.
1506 *
1507 * Arguments:
1508 *       hw              device structure
1509 *       enum cmd_mode   DOWAIT or DOASYNC
1510 *       rid             RID code
1511 *       riddata         Data portion of RID formatted for MAC
1512 *       riddatalen      Length of the data portion in bytes
1513 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1514 *       usercb          user callback for async calls, NULL for DOWAIT calls
1515 *       usercb_data     user supplied data pointer for async calls
1516 *
1517 * Returns:
1518 *       0               success
1519 *       -ETIMEDOUT      timed out waiting for register ready or
1520 *                       command completion
1521 *       >0              command indicated error, Status and Resp0-2 are
1522 *                       in hw structure.
1523 *
1524 * Side effects:
1525 *
1526 * Call context:
1527 *       interrupt (DOASYNC)
1528 *       process (DOWAIT or DOASYNC)
1529 ----------------------------------------------------------------*/
1530 static int
1531 hfa384x_dowrid(hfa384x_t *hw,
1532                enum cmd_mode mode,
1533                u16 rid,
1534                void *riddata,
1535                unsigned int riddatalen,
1536                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1537 {
1538         int result;
1539         hfa384x_usbctlx_t *ctlx;
1540
1541         ctlx = usbctlx_alloc();
1542         if (ctlx == NULL) {
1543                 result = -ENOMEM;
1544                 goto done;
1545         }
1546
1547         /* Initialize the command */
1548         ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1549         ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1550                                                    (ctlx->outbuf.wridreq.rid) +
1551                                                    riddatalen + 1) / 2);
1552         ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1553         memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1554
1555         ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1556             sizeof(ctlx->outbuf.wridreq.frmlen) +
1557             sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1558
1559         ctlx->reapable = mode;
1560         ctlx->cmdcb = cmdcb;
1561         ctlx->usercb = usercb;
1562         ctlx->usercb_data = usercb_data;
1563
1564         /* Submit the CTLX */
1565         result = hfa384x_usbctlx_submit(hw, ctlx);
1566         if (result != 0) {
1567                 kfree(ctlx);
1568         } else if (mode == DOWAIT) {
1569                 usbctlx_wrid_completor_t completor;
1570                 hfa384x_cmdresult_t wridresult;
1571
1572                 result = hfa384x_usbctlx_complete_sync(hw,
1573                                                        ctlx,
1574                                                        init_wrid_completor
1575                                                        (&completor,
1576                                                         &ctlx->inbuf.wridresp,
1577                                                         &wridresult));
1578         }
1579
1580 done:
1581         return result;
1582 }
1583
1584 /*----------------------------------------------------------------
1585 * hfa384x_dormem
1586 *
1587 * Constructs a readmem CTLX and issues it.
1588 *
1589 * NOTE: Any changes to the 'post-submit' code in this function
1590 *       need to be carried over to hfa384x_cbrmem() since the handling
1591 *       is virtually identical.
1592 *
1593 * Arguments:
1594 *       hw              device structure
1595 *       mode            DOWAIT or DOASYNC
1596 *       page            MAC address space page (CMD format)
1597 *       offset          MAC address space offset
1598 *       data            Ptr to data buffer to receive read
1599 *       len             Length of the data to read (max == 2048)
1600 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1601 *       usercb          user callback for async calls, NULL for DOWAIT calls
1602 *       usercb_data     user supplied data pointer for async calls
1603 *
1604 * Returns:
1605 *       0               success
1606 *       -ETIMEDOUT      timed out waiting for register ready or
1607 *                       command completion
1608 *       >0              command indicated error, Status and Resp0-2 are
1609 *                       in hw structure.
1610 *
1611 * Side effects:
1612 *
1613 * Call context:
1614 *       interrupt (DOASYNC)
1615 *       process (DOWAIT or DOASYNC)
1616 ----------------------------------------------------------------*/
1617 static int
1618 hfa384x_dormem(hfa384x_t *hw,
1619                enum cmd_mode mode,
1620                u16 page,
1621                u16 offset,
1622                void *data,
1623                unsigned int len,
1624                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1625 {
1626         int result;
1627         hfa384x_usbctlx_t *ctlx;
1628
1629         ctlx = usbctlx_alloc();
1630         if (ctlx == NULL) {
1631                 result = -ENOMEM;
1632                 goto done;
1633         }
1634
1635         /* Initialize the command */
1636         ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1637         ctlx->outbuf.rmemreq.frmlen =
1638             cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1639                         sizeof(ctlx->outbuf.rmemreq.page) + len);
1640         ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1641         ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1642
1643         ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1644
1645         pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1646                  ctlx->outbuf.rmemreq.type,
1647                  ctlx->outbuf.rmemreq.frmlen,
1648                  ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1649
1650         pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1651
1652         ctlx->reapable = mode;
1653         ctlx->cmdcb = cmdcb;
1654         ctlx->usercb = usercb;
1655         ctlx->usercb_data = usercb_data;
1656
1657         result = hfa384x_usbctlx_submit(hw, ctlx);
1658         if (result != 0) {
1659                 kfree(ctlx);
1660         } else if (mode == DOWAIT) {
1661                 usbctlx_rmem_completor_t completor;
1662
1663                 result =
1664                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1665                                                   init_rmem_completor
1666                                                   (&completor,
1667                                                    &ctlx->inbuf.rmemresp, data,
1668                                                    len));
1669         }
1670
1671 done:
1672         return result;
1673 }
1674
1675 /*----------------------------------------------------------------
1676 * hfa384x_dowmem
1677 *
1678 * Constructs a writemem CTLX and issues it.
1679 *
1680 * NOTE: Any changes to the 'post-submit' code in this function
1681 *       need to be carried over to hfa384x_cbwmem() since the handling
1682 *       is virtually identical.
1683 *
1684 * Arguments:
1685 *       hw              device structure
1686 *       mode            DOWAIT or DOASYNC
1687 *       page            MAC address space page (CMD format)
1688 *       offset          MAC address space offset
1689 *       data            Ptr to data buffer containing write data
1690 *       len             Length of the data to read (max == 2048)
1691 *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1692 *       usercb          user callback for async calls, NULL for DOWAIT calls
1693 *       usercb_data     user supplied data pointer for async calls.
1694 *
1695 * Returns:
1696 *       0               success
1697 *       -ETIMEDOUT      timed out waiting for register ready or
1698 *                       command completion
1699 *       >0              command indicated error, Status and Resp0-2 are
1700 *                       in hw structure.
1701 *
1702 * Side effects:
1703 *
1704 * Call context:
1705 *       interrupt (DOWAIT)
1706 *       process (DOWAIT or DOASYNC)
1707 ----------------------------------------------------------------*/
1708 static int
1709 hfa384x_dowmem(hfa384x_t *hw,
1710                enum cmd_mode mode,
1711                u16 page,
1712                u16 offset,
1713                void *data,
1714                unsigned int len,
1715                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1716 {
1717         int result;
1718         hfa384x_usbctlx_t *ctlx;
1719
1720         pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1721
1722         ctlx = usbctlx_alloc();
1723         if (ctlx == NULL) {
1724                 result = -ENOMEM;
1725                 goto done;
1726         }
1727
1728         /* Initialize the command */
1729         ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1730         ctlx->outbuf.wmemreq.frmlen =
1731             cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1732                         sizeof(ctlx->outbuf.wmemreq.page) + len);
1733         ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1734         ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1735         memcpy(ctlx->outbuf.wmemreq.data, data, len);
1736
1737         ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1738             sizeof(ctlx->outbuf.wmemreq.frmlen) +
1739             sizeof(ctlx->outbuf.wmemreq.offset) +
1740             sizeof(ctlx->outbuf.wmemreq.page) + len;
1741
1742         ctlx->reapable = mode;
1743         ctlx->cmdcb = cmdcb;
1744         ctlx->usercb = usercb;
1745         ctlx->usercb_data = usercb_data;
1746
1747         result = hfa384x_usbctlx_submit(hw, ctlx);
1748         if (result != 0) {
1749                 kfree(ctlx);
1750         } else if (mode == DOWAIT) {
1751                 usbctlx_wmem_completor_t completor;
1752                 hfa384x_cmdresult_t wmemresult;
1753
1754                 result = hfa384x_usbctlx_complete_sync(hw,
1755                                                        ctlx,
1756                                                        init_wmem_completor
1757                                                        (&completor,
1758                                                         &ctlx->inbuf.wmemresp,
1759                                                         &wmemresult));
1760         }
1761
1762 done:
1763         return result;
1764 }
1765
1766 /*----------------------------------------------------------------
1767 * hfa384x_drvr_commtallies
1768 *
1769 * Send a commtallies inquiry to the MAC.  Note that this is an async
1770 * call that will result in an info frame arriving sometime later.
1771 *
1772 * Arguments:
1773 *       hw              device structure
1774 *
1775 * Returns:
1776 *       zero            success.
1777 *
1778 * Side effects:
1779 *
1780 * Call context:
1781 *       process
1782 ----------------------------------------------------------------*/
1783 int hfa384x_drvr_commtallies(hfa384x_t *hw)
1784 {
1785         hfa384x_metacmd_t cmd;
1786
1787         cmd.cmd = HFA384x_CMDCODE_INQ;
1788         cmd.parm0 = HFA384x_IT_COMMTALLIES;
1789         cmd.parm1 = 0;
1790         cmd.parm2 = 0;
1791
1792         hfa384x_docmd_async(hw, &cmd, NULL, NULL, NULL);
1793
1794         return 0;
1795 }
1796
1797 /*----------------------------------------------------------------
1798 * hfa384x_drvr_disable
1799 *
1800 * Issues the disable command to stop communications on one of
1801 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1802 * APs may also disable macports 1-6.  Only ports that have been
1803 * previously enabled may be disabled.
1804 *
1805 * Arguments:
1806 *       hw              device structure
1807 *       macport         MAC port number (host order)
1808 *
1809 * Returns:
1810 *       0               success
1811 *       >0              f/w reported failure - f/w status code
1812 *       <0              driver reported error (timeout|bad arg)
1813 *
1814 * Side effects:
1815 *
1816 * Call context:
1817 *       process
1818 ----------------------------------------------------------------*/
1819 int hfa384x_drvr_disable(hfa384x_t *hw, u16 macport)
1820 {
1821         int result = 0;
1822
1823         if ((!hw->isap && macport != 0) ||
1824             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1825             !(hw->port_enabled[macport])) {
1826                 result = -EINVAL;
1827         } else {
1828                 result = hfa384x_cmd_disable(hw, macport);
1829                 if (result == 0)
1830                         hw->port_enabled[macport] = 0;
1831         }
1832         return result;
1833 }
1834
1835 /*----------------------------------------------------------------
1836 * hfa384x_drvr_enable
1837 *
1838 * Issues the enable command to enable communications on one of
1839 * the MACs 'ports'.  Only macport 0 is valid  for stations.
1840 * APs may also enable macports 1-6.  Only ports that are currently
1841 * disabled may be enabled.
1842 *
1843 * Arguments:
1844 *       hw              device structure
1845 *       macport         MAC port number
1846 *
1847 * Returns:
1848 *       0               success
1849 *       >0              f/w reported failure - f/w status code
1850 *       <0              driver reported error (timeout|bad arg)
1851 *
1852 * Side effects:
1853 *
1854 * Call context:
1855 *       process
1856 ----------------------------------------------------------------*/
1857 int hfa384x_drvr_enable(hfa384x_t *hw, u16 macport)
1858 {
1859         int result = 0;
1860
1861         if ((!hw->isap && macport != 0) ||
1862             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1863             (hw->port_enabled[macport])) {
1864                 result = -EINVAL;
1865         } else {
1866                 result = hfa384x_cmd_enable(hw, macport);
1867                 if (result == 0)
1868                         hw->port_enabled[macport] = 1;
1869         }
1870         return result;
1871 }
1872
1873 /*----------------------------------------------------------------
1874 * hfa384x_drvr_flashdl_enable
1875 *
1876 * Begins the flash download state.  Checks to see that we're not
1877 * already in a download state and that a port isn't enabled.
1878 * Sets the download state and retrieves the flash download
1879 * buffer location, buffer size, and timeout length.
1880 *
1881 * Arguments:
1882 *       hw              device structure
1883 *
1884 * Returns:
1885 *       0               success
1886 *       >0              f/w reported error - f/w status code
1887 *       <0              driver reported error
1888 *
1889 * Side effects:
1890 *
1891 * Call context:
1892 *       process
1893 ----------------------------------------------------------------*/
1894 int hfa384x_drvr_flashdl_enable(hfa384x_t *hw)
1895 {
1896         int result = 0;
1897         int i;
1898
1899         /* Check that a port isn't active */
1900         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1901                 if (hw->port_enabled[i]) {
1902                         pr_debug("called when port enabled.\n");
1903                         return -EINVAL;
1904                 }
1905         }
1906
1907         /* Check that we're not already in a download state */
1908         if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1909                 return -EINVAL;
1910
1911         /* Retrieve the buffer loc&size and timeout */
1912         result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1913                                         &(hw->bufinfo), sizeof(hw->bufinfo));
1914         if (result)
1915                 return result;
1916
1917         hw->bufinfo.page = le16_to_cpu(hw->bufinfo.page);
1918         hw->bufinfo.offset = le16_to_cpu(hw->bufinfo.offset);
1919         hw->bufinfo.len = le16_to_cpu(hw->bufinfo.len);
1920         result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1921                                           &(hw->dltimeout));
1922         if (result)
1923                 return result;
1924
1925         hw->dltimeout = le16_to_cpu(hw->dltimeout);
1926
1927         pr_debug("flashdl_enable\n");
1928
1929         hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1930
1931         return result;
1932 }
1933
1934 /*----------------------------------------------------------------
1935 * hfa384x_drvr_flashdl_disable
1936 *
1937 * Ends the flash download state.  Note that this will cause the MAC
1938 * firmware to restart.
1939 *
1940 * Arguments:
1941 *       hw              device structure
1942 *
1943 * Returns:
1944 *       0               success
1945 *       >0              f/w reported error - f/w status code
1946 *       <0              driver reported error
1947 *
1948 * Side effects:
1949 *
1950 * Call context:
1951 *       process
1952 ----------------------------------------------------------------*/
1953 int hfa384x_drvr_flashdl_disable(hfa384x_t *hw)
1954 {
1955         /* Check that we're already in the download state */
1956         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1957                 return -EINVAL;
1958
1959         pr_debug("flashdl_enable\n");
1960
1961         /* There isn't much we can do at this point, so I don't */
1962         /*  bother  w/ the return value */
1963         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1964         hw->dlstate = HFA384x_DLSTATE_DISABLED;
1965
1966         return 0;
1967 }
1968
1969 /*----------------------------------------------------------------
1970 * hfa384x_drvr_flashdl_write
1971 *
1972 * Performs a FLASH download of a chunk of data. First checks to see
1973 * that we're in the FLASH download state, then sets the download
1974 * mode, uses the aux functions to 1) copy the data to the flash
1975 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1976 * compare.  Lather rinse, repeat as many times an necessary to get
1977 * all the given data into flash.
1978 * When all data has been written using this function (possibly
1979 * repeatedly), call drvr_flashdl_disable() to end the download state
1980 * and restart the MAC.
1981 *
1982 * Arguments:
1983 *       hw              device structure
1984 *       daddr           Card address to write to. (host order)
1985 *       buf             Ptr to data to write.
1986 *       len             Length of data (host order).
1987 *
1988 * Returns:
1989 *       0               success
1990 *       >0              f/w reported error - f/w status code
1991 *       <0              driver reported error
1992 *
1993 * Side effects:
1994 *
1995 * Call context:
1996 *       process
1997 ----------------------------------------------------------------*/
1998 int hfa384x_drvr_flashdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
1999 {
2000         int result = 0;
2001         u32 dlbufaddr;
2002         int nburns;
2003         u32 burnlen;
2004         u32 burndaddr;
2005         u16 burnlo;
2006         u16 burnhi;
2007         int nwrites;
2008         u8 *writebuf;
2009         u16 writepage;
2010         u16 writeoffset;
2011         u32 writelen;
2012         int i;
2013         int j;
2014
2015         pr_debug("daddr=0x%08x len=%d\n", daddr, len);
2016
2017         /* Check that we're in the flash download state */
2018         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
2019                 return -EINVAL;
2020
2021         netdev_info(hw->wlandev->netdev, "Download %d bytes to flash @0x%06x\n", len, daddr);
2022
2023         /* Convert to flat address for arithmetic */
2024         /* NOTE: dlbuffer RID stores the address in AUX format */
2025         dlbufaddr =
2026             HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
2027         pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
2028                  hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
2029
2030 #if 0
2031         netdev_warn(hw->wlandev->netdev, "dlbuf@0x%06lx len=%d to=%d\n", dlbufaddr,
2032                hw->bufinfo.len, hw->dltimeout);
2033 #endif
2034         /* Calculations to determine how many fills of the dlbuffer to do
2035          * and how many USB wmemreq's to do for each fill.  At this point
2036          * in time, the dlbuffer size and the wmemreq size are the same.
2037          * Therefore, nwrites should always be 1.  The extra complexity
2038          * here is a hedge against future changes.
2039          */
2040
2041         /* Figure out how many times to do the flash programming */
2042         nburns = len / hw->bufinfo.len;
2043         nburns += (len % hw->bufinfo.len) ? 1 : 0;
2044
2045         /* For each flash program cycle, how many USB wmemreq's are needed? */
2046         nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
2047         nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
2048
2049         /* For each burn */
2050         for (i = 0; i < nburns; i++) {
2051                 /* Get the dest address and len */
2052                 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
2053                     hw->bufinfo.len : (len - (hw->bufinfo.len * i));
2054                 burndaddr = daddr + (hw->bufinfo.len * i);
2055                 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
2056                 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
2057
2058                 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
2059                        burnlen, burndaddr);
2060
2061                 /* Set the download mode */
2062                 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
2063                                               burnlo, burnhi, burnlen);
2064                 if (result) {
2065                         netdev_err(hw->wlandev->netdev, "download(NV,lo=%x,hi=%x,len=%x) "
2066                                "cmd failed, result=%d. Aborting d/l\n",
2067                                burnlo, burnhi, burnlen, result);
2068                         goto exit_proc;
2069                 }
2070
2071                 /* copy the data to the flash download buffer */
2072                 for (j = 0; j < nwrites; j++) {
2073                         writebuf = buf +
2074                             (i * hw->bufinfo.len) +
2075                             (j * HFA384x_USB_RWMEM_MAXLEN);
2076
2077                         writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
2078                                                 (j * HFA384x_USB_RWMEM_MAXLEN));
2079                         writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2080                                                 (j * HFA384x_USB_RWMEM_MAXLEN));
2081
2082                         writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2083                         writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2084                             HFA384x_USB_RWMEM_MAXLEN : writelen;
2085
2086                         result = hfa384x_dowmem_wait(hw,
2087                                                      writepage,
2088                                                      writeoffset,
2089                                                      writebuf, writelen);
2090                 }
2091
2092                 /* set the download 'write flash' mode */
2093                 result = hfa384x_cmd_download(hw,
2094                                               HFA384x_PROGMODE_NVWRITE,
2095                                               0, 0, 0);
2096                 if (result) {
2097                         netdev_err(hw->wlandev->netdev,
2098                                "download(NVWRITE,lo=%x,hi=%x,len=%x) "
2099                                "cmd failed, result=%d. Aborting d/l\n",
2100                                burnlo, burnhi, burnlen, result);
2101                         goto exit_proc;
2102                 }
2103
2104                 /* TODO: We really should do a readback and compare. */
2105         }
2106
2107 exit_proc:
2108
2109         /* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
2110         /*  actually disable programming mode.  Remember, that will cause the */
2111         /*  the firmware to effectively reset itself. */
2112
2113         return result;
2114 }
2115
2116 /*----------------------------------------------------------------
2117 * hfa384x_drvr_getconfig
2118 *
2119 * Performs the sequence necessary to read a config/info item.
2120 *
2121 * Arguments:
2122 *       hw              device structure
2123 *       rid             config/info record id (host order)
2124 *       buf             host side record buffer.  Upon return it will
2125 *                       contain the body portion of the record (minus the
2126 *                       RID and len).
2127 *       len             buffer length (in bytes, should match record length)
2128 *
2129 * Returns:
2130 *       0               success
2131 *       >0              f/w reported error - f/w status code
2132 *       <0              driver reported error
2133 *       -ENODATA        length mismatch between argument and retrieved
2134 *                       record.
2135 *
2136 * Side effects:
2137 *
2138 * Call context:
2139 *       process
2140 ----------------------------------------------------------------*/
2141 int hfa384x_drvr_getconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2142 {
2143         return hfa384x_dorrid_wait(hw, rid, buf, len);
2144 }
2145
2146 /*----------------------------------------------------------------
2147  * hfa384x_drvr_getconfig_async
2148  *
2149  * Performs the sequence necessary to perform an async read of
2150  * of a config/info item.
2151  *
2152  * Arguments:
2153  *       hw              device structure
2154  *       rid             config/info record id (host order)
2155  *       buf             host side record buffer.  Upon return it will
2156  *                       contain the body portion of the record (minus the
2157  *                       RID and len).
2158  *       len             buffer length (in bytes, should match record length)
2159  *       cbfn            caller supplied callback, called when the command
2160  *                       is done (successful or not).
2161  *       cbfndata        pointer to some caller supplied data that will be
2162  *                       passed in as an argument to the cbfn.
2163  *
2164  * Returns:
2165  *       nothing         the cbfn gets a status argument identifying if
2166  *                       any errors occur.
2167  * Side effects:
2168  *       Queues an hfa384x_usbcmd_t for subsequent execution.
2169  *
2170  * Call context:
2171  *       Any
2172  ----------------------------------------------------------------*/
2173 int
2174 hfa384x_drvr_getconfig_async(hfa384x_t *hw,
2175                              u16 rid, ctlx_usercb_t usercb, void *usercb_data)
2176 {
2177         return hfa384x_dorrid_async(hw, rid, NULL, 0,
2178                                     hfa384x_cb_rrid, usercb, usercb_data);
2179 }
2180
2181 /*----------------------------------------------------------------
2182  * hfa384x_drvr_setconfig_async
2183  *
2184  * Performs the sequence necessary to write a config/info item.
2185  *
2186  * Arguments:
2187  *       hw              device structure
2188  *       rid             config/info record id (in host order)
2189  *       buf             host side record buffer
2190  *       len             buffer length (in bytes)
2191  *       usercb          completion callback
2192  *       usercb_data     completion callback argument
2193  *
2194  * Returns:
2195  *       0               success
2196  *       >0              f/w reported error - f/w status code
2197  *       <0              driver reported error
2198  *
2199  * Side effects:
2200  *
2201  * Call context:
2202  *       process
2203  ----------------------------------------------------------------*/
2204 int
2205 hfa384x_drvr_setconfig_async(hfa384x_t *hw,
2206                              u16 rid,
2207                              void *buf,
2208                              u16 len, ctlx_usercb_t usercb, void *usercb_data)
2209 {
2210         return hfa384x_dowrid_async(hw, rid, buf, len,
2211                                     hfa384x_cb_status, usercb, usercb_data);
2212 }
2213
2214 /*----------------------------------------------------------------
2215 * hfa384x_drvr_ramdl_disable
2216 *
2217 * Ends the ram download state.
2218 *
2219 * Arguments:
2220 *       hw              device structure
2221 *
2222 * Returns:
2223 *       0               success
2224 *       >0              f/w reported error - f/w status code
2225 *       <0              driver reported error
2226 *
2227 * Side effects:
2228 *
2229 * Call context:
2230 *       process
2231 ----------------------------------------------------------------*/
2232 int hfa384x_drvr_ramdl_disable(hfa384x_t *hw)
2233 {
2234         /* Check that we're already in the download state */
2235         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2236                 return -EINVAL;
2237
2238         pr_debug("ramdl_disable()\n");
2239
2240         /* There isn't much we can do at this point, so I don't */
2241         /*  bother  w/ the return value */
2242         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2243         hw->dlstate = HFA384x_DLSTATE_DISABLED;
2244
2245         return 0;
2246 }
2247
2248 /*----------------------------------------------------------------
2249 * hfa384x_drvr_ramdl_enable
2250 *
2251 * Begins the ram download state.  Checks to see that we're not
2252 * already in a download state and that a port isn't enabled.
2253 * Sets the download state and calls cmd_download with the
2254 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2255 *
2256 * Arguments:
2257 *       hw              device structure
2258 *       exeaddr         the card execution address that will be
2259 *                       jumped to when ramdl_disable() is called
2260 *                       (host order).
2261 *
2262 * Returns:
2263 *       0               success
2264 *       >0              f/w reported error - f/w status code
2265 *       <0              driver reported error
2266 *
2267 * Side effects:
2268 *
2269 * Call context:
2270 *       process
2271 ----------------------------------------------------------------*/
2272 int hfa384x_drvr_ramdl_enable(hfa384x_t *hw, u32 exeaddr)
2273 {
2274         int result = 0;
2275         u16 lowaddr;
2276         u16 hiaddr;
2277         int i;
2278
2279         /* Check that a port isn't active */
2280         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2281                 if (hw->port_enabled[i]) {
2282                         netdev_err(hw->wlandev->netdev,
2283                                "Can't download with a macport enabled.\n");
2284                         return -EINVAL;
2285                 }
2286         }
2287
2288         /* Check that we're not already in a download state */
2289         if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2290                 netdev_err(hw->wlandev->netdev, "Download state not disabled.\n");
2291                 return -EINVAL;
2292         }
2293
2294         pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2295
2296         /* Call the download(1,addr) function */
2297         lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2298         hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2299
2300         result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2301                                       lowaddr, hiaddr, 0);
2302
2303         if (result == 0) {
2304                 /* Set the download state */
2305                 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2306         } else {
2307                 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2308                          lowaddr, hiaddr, result);
2309         }
2310
2311         return result;
2312 }
2313
2314 /*----------------------------------------------------------------
2315 * hfa384x_drvr_ramdl_write
2316 *
2317 * Performs a RAM download of a chunk of data. First checks to see
2318 * that we're in the RAM download state, then uses the [read|write]mem USB
2319 * commands to 1) copy the data, 2) readback and compare.  The download
2320 * state is unaffected.  When all data has been written using
2321 * this function, call drvr_ramdl_disable() to end the download state
2322 * and restart the MAC.
2323 *
2324 * Arguments:
2325 *       hw              device structure
2326 *       daddr           Card address to write to. (host order)
2327 *       buf             Ptr to data to write.
2328 *       len             Length of data (host order).
2329 *
2330 * Returns:
2331 *       0               success
2332 *       >0              f/w reported error - f/w status code
2333 *       <0              driver reported error
2334 *
2335 * Side effects:
2336 *
2337 * Call context:
2338 *       process
2339 ----------------------------------------------------------------*/
2340 int hfa384x_drvr_ramdl_write(hfa384x_t *hw, u32 daddr, void *buf, u32 len)
2341 {
2342         int result = 0;
2343         int nwrites;
2344         u8 *data = buf;
2345         int i;
2346         u32 curraddr;
2347         u16 currpage;
2348         u16 curroffset;
2349         u16 currlen;
2350
2351         /* Check that we're in the ram download state */
2352         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2353                 return -EINVAL;
2354
2355         netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n", len, daddr);
2356
2357         /* How many dowmem calls?  */
2358         nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2359         nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2360
2361         /* Do blocking wmem's */
2362         for (i = 0; i < nwrites; i++) {
2363                 /* make address args */
2364                 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2365                 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2366                 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2367                 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2368                 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2369                         currlen = HFA384x_USB_RWMEM_MAXLEN;
2370
2371                 /* Do blocking ctlx */
2372                 result = hfa384x_dowmem_wait(hw,
2373                                              currpage,
2374                                              curroffset,
2375                                              data +
2376                                              (i * HFA384x_USB_RWMEM_MAXLEN),
2377                                              currlen);
2378
2379                 if (result)
2380                         break;
2381
2382                 /* TODO: We really should have a readback. */
2383         }
2384
2385         return result;
2386 }
2387
2388 /*----------------------------------------------------------------
2389 * hfa384x_drvr_readpda
2390 *
2391 * Performs the sequence to read the PDA space.  Note there is no
2392 * drvr_writepda() function.  Writing a PDA is
2393 * generally implemented by a calling component via calls to
2394 * cmd_download and writing to the flash download buffer via the
2395 * aux regs.
2396 *
2397 * Arguments:
2398 *       hw              device structure
2399 *       buf             buffer to store PDA in
2400 *       len             buffer length
2401 *
2402 * Returns:
2403 *       0               success
2404 *       >0              f/w reported error - f/w status code
2405 *       <0              driver reported error
2406 *       -ETIMEDOUT      timout waiting for the cmd regs to become
2407 *                       available, or waiting for the control reg
2408 *                       to indicate the Aux port is enabled.
2409 *       -ENODATA        the buffer does NOT contain a valid PDA.
2410 *                       Either the card PDA is bad, or the auxdata
2411 *                       reads are giving us garbage.
2412
2413 *
2414 * Side effects:
2415 *
2416 * Call context:
2417 *       process or non-card interrupt.
2418 ----------------------------------------------------------------*/
2419 int hfa384x_drvr_readpda(hfa384x_t *hw, void *buf, unsigned int len)
2420 {
2421         int result = 0;
2422         u16 *pda = buf;
2423         int pdaok = 0;
2424         int morepdrs = 1;
2425         int currpdr = 0;        /* word offset of the current pdr */
2426         size_t i;
2427         u16 pdrlen;             /* pdr length in bytes, host order */
2428         u16 pdrcode;            /* pdr code, host order */
2429         u16 currpage;
2430         u16 curroffset;
2431         struct pdaloc {
2432                 u32 cardaddr;
2433                 u16 auxctl;
2434         } pdaloc[] = {
2435                 {
2436                 HFA3842_PDA_BASE, 0}, {
2437                 HFA3841_PDA_BASE, 0}, {
2438                 HFA3841_PDA_BOGUS_BASE, 0}
2439         };
2440
2441         /* Read the pda from each known address.  */
2442         for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2443                 /* Make address */
2444                 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2445                 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2446
2447                 /* units of bytes */
2448                 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2449                                                 len);
2450
2451                 if (result) {
2452                         netdev_warn(hw->wlandev->netdev,
2453                                "Read from index %zd failed, continuing\n", i);
2454                         continue;
2455                 }
2456
2457                 /* Test for garbage */
2458                 pdaok = 1;      /* initially assume good */
2459                 morepdrs = 1;
2460                 while (pdaok && morepdrs) {
2461                         pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2462                         pdrcode = le16_to_cpu(pda[currpdr + 1]);
2463                         /* Test the record length */
2464                         if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2465                                 netdev_err(hw->wlandev->netdev, "pdrlen invalid=%d\n", pdrlen);
2466                                 pdaok = 0;
2467                                 break;
2468                         }
2469                         /* Test the code */
2470                         if (!hfa384x_isgood_pdrcode(pdrcode)) {
2471                                 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2472                                        pdrcode);
2473                                 pdaok = 0;
2474                                 break;
2475                         }
2476                         /* Test for completion */
2477                         if (pdrcode == HFA384x_PDR_END_OF_PDA)
2478                                 morepdrs = 0;
2479
2480                         /* Move to the next pdr (if necessary) */
2481                         if (morepdrs) {
2482                                 /* note the access to pda[], need words here */
2483                                 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2484                         }
2485                 }
2486                 if (pdaok) {
2487                         netdev_info(hw->wlandev->netdev,
2488                                "PDA Read from 0x%08x in %s space.\n",
2489                                pdaloc[i].cardaddr,
2490                                pdaloc[i].auxctl == 0 ? "EXTDS" :
2491                                pdaloc[i].auxctl == 1 ? "NV" :
2492                                pdaloc[i].auxctl == 2 ? "PHY" :
2493                                pdaloc[i].auxctl == 3 ? "ICSRAM" :
2494                                "<bogus auxctl>");
2495                         break;
2496                 }
2497         }
2498         result = pdaok ? 0 : -ENODATA;
2499
2500         if (result)
2501                 pr_debug("Failure: pda is not okay\n");
2502
2503         return result;
2504 }
2505
2506 /*----------------------------------------------------------------
2507 * hfa384x_drvr_setconfig
2508 *
2509 * Performs the sequence necessary to write a config/info item.
2510 *
2511 * Arguments:
2512 *       hw              device structure
2513 *       rid             config/info record id (in host order)
2514 *       buf             host side record buffer
2515 *       len             buffer length (in bytes)
2516 *
2517 * Returns:
2518 *       0               success
2519 *       >0              f/w reported error - f/w status code
2520 *       <0              driver reported error
2521 *
2522 * Side effects:
2523 *
2524 * Call context:
2525 *       process
2526 ----------------------------------------------------------------*/
2527 int hfa384x_drvr_setconfig(hfa384x_t *hw, u16 rid, void *buf, u16 len)
2528 {
2529         return hfa384x_dowrid_wait(hw, rid, buf, len);
2530 }
2531
2532 /*----------------------------------------------------------------
2533 * hfa384x_drvr_start
2534 *
2535 * Issues the MAC initialize command, sets up some data structures,
2536 * and enables the interrupts.  After this function completes, the
2537 * low-level stuff should be ready for any/all commands.
2538 *
2539 * Arguments:
2540 *       hw              device structure
2541 * Returns:
2542 *       0               success
2543 *       >0              f/w reported error - f/w status code
2544 *       <0              driver reported error
2545 *
2546 * Side effects:
2547 *
2548 * Call context:
2549 *       process
2550 ----------------------------------------------------------------*/
2551
2552 int hfa384x_drvr_start(hfa384x_t *hw)
2553 {
2554         int result, result1, result2;
2555         u16 status;
2556
2557         might_sleep();
2558
2559         /* Clear endpoint stalls - but only do this if the endpoint
2560          * is showing a stall status. Some prism2 cards seem to behave
2561          * badly if a clear_halt is called when the endpoint is already
2562          * ok
2563          */
2564         result =
2565             usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in, &status);
2566         if (result < 0) {
2567                 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2568                 goto done;
2569         }
2570         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2571                 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2572
2573         result =
2574             usb_get_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out, &status);
2575         if (result < 0) {
2576                 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2577                 goto done;
2578         }
2579         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2580                 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2581
2582         /* Synchronous unlink, in case we're trying to restart the driver */
2583         usb_kill_urb(&hw->rx_urb);
2584
2585         /* Post the IN urb */
2586         result = submit_rx_urb(hw, GFP_KERNEL);
2587         if (result != 0) {
2588                 netdev_err(hw->wlandev->netdev,
2589                        "Fatal, failed to submit RX URB, result=%d\n", result);
2590                 goto done;
2591         }
2592
2593         /* Call initialize twice, with a 1 second sleep in between.
2594          * This is a nasty work-around since many prism2 cards seem to
2595          * need time to settle after an init from cold. The second
2596          * call to initialize in theory is not necessary - but we call
2597          * it anyway as a double insurance policy:
2598          * 1) If the first init should fail, the second may well succeed
2599          *    and the card can still be used
2600          * 2) It helps ensures all is well with the card after the first
2601          *    init and settle time.
2602          */
2603         result1 = hfa384x_cmd_initialize(hw);
2604         msleep(1000);
2605         result = result2 = hfa384x_cmd_initialize(hw);
2606         if (result1 != 0) {
2607                 if (result2 != 0) {
2608                         netdev_err(hw->wlandev->netdev,
2609                                 "cmd_initialize() failed on two attempts, results %d and %d\n",
2610                                 result1, result2);
2611                         usb_kill_urb(&hw->rx_urb);
2612                         goto done;
2613                 } else {
2614                         pr_debug("First cmd_initialize() failed (result %d),\n",
2615                                  result1);
2616                         pr_debug("but second attempt succeeded. All should be ok\n");
2617                 }
2618         } else if (result2 != 0) {
2619                 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2620                         result2);
2621                 netdev_warn(hw->wlandev->netdev,
2622                        "Most likely the card will be functional\n");
2623                 goto done;
2624         }
2625
2626         hw->state = HFA384x_STATE_RUNNING;
2627
2628 done:
2629         return result;
2630 }
2631
2632 /*----------------------------------------------------------------
2633 * hfa384x_drvr_stop
2634 *
2635 * Shuts down the MAC to the point where it is safe to unload the
2636 * driver.  Any subsystem that may be holding a data or function
2637 * ptr into the driver must be cleared/deinitialized.
2638 *
2639 * Arguments:
2640 *       hw              device structure
2641 * Returns:
2642 *       0               success
2643 *       >0              f/w reported error - f/w status code
2644 *       <0              driver reported error
2645 *
2646 * Side effects:
2647 *
2648 * Call context:
2649 *       process
2650 ----------------------------------------------------------------*/
2651 int hfa384x_drvr_stop(hfa384x_t *hw)
2652 {
2653         int result = 0;
2654         int i;
2655
2656         might_sleep();
2657
2658         /* There's no need for spinlocks here. The USB "disconnect"
2659          * function sets this "removed" flag and then calls us.
2660          */
2661         if (!hw->wlandev->hwremoved) {
2662                 /* Call initialize to leave the MAC in its 'reset' state */
2663                 hfa384x_cmd_initialize(hw);
2664
2665                 /* Cancel the rxurb */
2666                 usb_kill_urb(&hw->rx_urb);
2667         }
2668
2669         hw->link_status = HFA384x_LINK_NOTCONNECTED;
2670         hw->state = HFA384x_STATE_INIT;
2671
2672         del_timer_sync(&hw->commsqual_timer);
2673
2674         /* Clear all the port status */
2675         for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2676                 hw->port_enabled[i] = 0;
2677
2678         return result;
2679 }
2680
2681 /*----------------------------------------------------------------
2682 * hfa384x_drvr_txframe
2683 *
2684 * Takes a frame from prism2sta and queues it for transmission.
2685 *
2686 * Arguments:
2687 *       hw              device structure
2688 *       skb             packet buffer struct.  Contains an 802.11
2689 *                       data frame.
2690 *       p80211_hdr      points to the 802.11 header for the packet.
2691 * Returns:
2692 *       0               Success and more buffs available
2693 *       1               Success but no more buffs
2694 *       2               Allocation failure
2695 *       4               Buffer full or queue busy
2696 *
2697 * Side effects:
2698 *
2699 * Call context:
2700 *       interrupt
2701 ----------------------------------------------------------------*/
2702 int hfa384x_drvr_txframe(hfa384x_t *hw, struct sk_buff *skb,
2703                          union p80211_hdr *p80211_hdr,
2704                          struct p80211_metawep *p80211_wep)
2705 {
2706         int usbpktlen = sizeof(hfa384x_tx_frame_t);
2707         int result;
2708         int ret;
2709         char *ptr;
2710
2711         if (hw->tx_urb.status == -EINPROGRESS) {
2712                 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2713                 result = 3;
2714                 goto exit;
2715         }
2716
2717         /* Build Tx frame structure */
2718         /* Set up the control field */
2719         memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2720
2721         /* Setup the usb type field */
2722         hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2723
2724         /* Set up the sw_support field to identify this frame */
2725         hw->txbuff.txfrm.desc.sw_support = 0x0123;
2726
2727 /* Tx complete and Tx exception disable per dleach.  Might be causing
2728  * buf depletion
2729  */
2730 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2731 #if defined(DOBOTH)
2732         hw->txbuff.txfrm.desc.tx_control =
2733             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2734             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2735 #elif defined(DOEXC)
2736         hw->txbuff.txfrm.desc.tx_control =
2737             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2738             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2739 #else
2740         hw->txbuff.txfrm.desc.tx_control =
2741             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2742             HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2743 #endif
2744         hw->txbuff.txfrm.desc.tx_control =
2745             cpu_to_le16(hw->txbuff.txfrm.desc.tx_control);
2746
2747         /* copy the header over to the txdesc */
2748         memcpy(&(hw->txbuff.txfrm.desc.frame_control), p80211_hdr,
2749                sizeof(union p80211_hdr));
2750
2751         /* if we're using host WEP, increase size by IV+ICV */
2752         if (p80211_wep->data) {
2753                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2754                 usbpktlen += 8;
2755         } else {
2756                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2757         }
2758
2759         usbpktlen += skb->len;
2760
2761         /* copy over the WEP IV if we are using host WEP */
2762         ptr = hw->txbuff.txfrm.data;
2763         if (p80211_wep->data) {
2764                 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2765                 ptr += sizeof(p80211_wep->iv);
2766                 memcpy(ptr, p80211_wep->data, skb->len);
2767         } else {
2768                 memcpy(ptr, skb->data, skb->len);
2769         }
2770         /* copy over the packet data */
2771         ptr += skb->len;
2772
2773         /* copy over the WEP ICV if we are using host WEP */
2774         if (p80211_wep->data)
2775                 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2776
2777         /* Send the USB packet */
2778         usb_fill_bulk_urb(&(hw->tx_urb), hw->usb,
2779                           hw->endp_out,
2780                           &(hw->txbuff), ROUNDUP64(usbpktlen),
2781                           hfa384x_usbout_callback, hw->wlandev);
2782         hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2783
2784         result = 1;
2785         ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2786         if (ret != 0) {
2787                 netdev_err(hw->wlandev->netdev, "submit_tx_urb() failed, error=%d\n", ret);
2788                 result = 3;
2789         }
2790
2791 exit:
2792         return result;
2793 }
2794
2795 void hfa384x_tx_timeout(wlandevice_t *wlandev)
2796 {
2797         hfa384x_t *hw = wlandev->priv;
2798         unsigned long flags;
2799
2800         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2801
2802         if (!hw->wlandev->hwremoved) {
2803                 int sched;
2804
2805                 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2806                 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2807                 if (sched)
2808                         schedule_work(&hw->usb_work);
2809         }
2810
2811         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2812 }
2813
2814 /*----------------------------------------------------------------
2815 * hfa384x_usbctlx_reaper_task
2816 *
2817 * Tasklet to delete dead CTLX objects
2818 *
2819 * Arguments:
2820 *       data    ptr to a hfa384x_t
2821 *
2822 * Returns:
2823 *
2824 * Call context:
2825 *       Interrupt
2826 ----------------------------------------------------------------*/
2827 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2828 {
2829         hfa384x_t *hw = (hfa384x_t *) data;
2830         struct list_head *entry;
2831         struct list_head *temp;
2832         unsigned long flags;
2833
2834         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2835
2836         /* This list is guaranteed to be empty if someone
2837          * has unplugged the adapter.
2838          */
2839         list_for_each_safe(entry, temp, &hw->ctlxq.reapable) {
2840                 hfa384x_usbctlx_t *ctlx;
2841
2842                 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2843                 list_del(&ctlx->list);
2844                 kfree(ctlx);
2845         }
2846
2847         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2848
2849 }
2850
2851 /*----------------------------------------------------------------
2852 * hfa384x_usbctlx_completion_task
2853 *
2854 * Tasklet to call completion handlers for returned CTLXs
2855 *
2856 * Arguments:
2857 *       data    ptr to hfa384x_t
2858 *
2859 * Returns:
2860 *       Nothing
2861 *
2862 * Call context:
2863 *       Interrupt
2864 ----------------------------------------------------------------*/
2865 static void hfa384x_usbctlx_completion_task(unsigned long data)
2866 {
2867         hfa384x_t *hw = (hfa384x_t *) data;
2868         struct list_head *entry;
2869         struct list_head *temp;
2870         unsigned long flags;
2871
2872         int reap = 0;
2873
2874         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2875
2876         /* This list is guaranteed to be empty if someone
2877          * has unplugged the adapter ...
2878          */
2879         list_for_each_safe(entry, temp, &hw->ctlxq.completing) {
2880                 hfa384x_usbctlx_t *ctlx;
2881
2882                 ctlx = list_entry(entry, hfa384x_usbctlx_t, list);
2883
2884                 /* Call the completion function that this
2885                  * command was assigned, assuming it has one.
2886                  */
2887                 if (ctlx->cmdcb != NULL) {
2888                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2889                         ctlx->cmdcb(hw, ctlx);
2890                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2891
2892                         /* Make sure we don't try and complete
2893                          * this CTLX more than once!
2894                          */
2895                         ctlx->cmdcb = NULL;
2896
2897                         /* Did someone yank the adapter out
2898                          * while our list was (briefly) unlocked?
2899                          */
2900                         if (hw->wlandev->hwremoved) {
2901                                 reap = 0;
2902                                 break;
2903                         }
2904                 }
2905
2906                 /*
2907                  * "Reapable" CTLXs are ones which don't have any
2908                  * threads waiting for them to die. Hence they must
2909                  * be delivered to The Reaper!
2910                  */
2911                 if (ctlx->reapable) {
2912                         /* Move the CTLX off the "completing" list (hopefully)
2913                          * on to the "reapable" list where the reaper task
2914                          * can find it. And "reapable" means that this CTLX
2915                          * isn't sitting on a wait-queue somewhere.
2916                          */
2917                         list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2918                         reap = 1;
2919                 }
2920
2921                 complete(&ctlx->done);
2922         }
2923         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2924
2925         if (reap)
2926                 tasklet_schedule(&hw->reaper_bh);
2927 }
2928
2929 /*----------------------------------------------------------------
2930 * unlocked_usbctlx_cancel_async
2931 *
2932 * Mark the CTLX dead asynchronously, and ensure that the
2933 * next command on the queue is run afterwards.
2934 *
2935 * Arguments:
2936 *       hw      ptr to the hfa384x_t structure
2937 *       ctlx    ptr to a CTLX structure
2938 *
2939 * Returns:
2940 *       0       the CTLX's URB is inactive
2941 * -EINPROGRESS  the URB is currently being unlinked
2942 *
2943 * Call context:
2944 *       Either process or interrupt, but presumably interrupt
2945 ----------------------------------------------------------------*/
2946 static int unlocked_usbctlx_cancel_async(hfa384x_t *hw,
2947                                          hfa384x_usbctlx_t *ctlx)
2948 {
2949         int ret;
2950
2951         /*
2952          * Try to delete the URB containing our request packet.
2953          * If we succeed, then its completion handler will be
2954          * called with a status of -ECONNRESET.
2955          */
2956         hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2957         ret = usb_unlink_urb(&hw->ctlx_urb);
2958
2959         if (ret != -EINPROGRESS) {
2960                 /*
2961                  * The OUT URB had either already completed
2962                  * or was still in the pending queue, so the
2963                  * URB's completion function will not be called.
2964                  * We will have to complete the CTLX ourselves.
2965                  */
2966                 ctlx->state = CTLX_REQ_FAILED;
2967                 unlocked_usbctlx_complete(hw, ctlx);
2968                 ret = 0;
2969         }
2970
2971         return ret;
2972 }
2973
2974 /*----------------------------------------------------------------
2975 * unlocked_usbctlx_complete
2976 *
2977 * A CTLX has completed.  It may have been successful, it may not
2978 * have been. At this point, the CTLX should be quiescent.  The URBs
2979 * aren't active and the timers should have been stopped.
2980 *
2981 * The CTLX is migrated to the "completing" queue, and the completing
2982 * tasklet is scheduled.
2983 *
2984 * Arguments:
2985 *       hw              ptr to a hfa384x_t structure
2986 *       ctlx            ptr to a ctlx structure
2987 *
2988 * Returns:
2989 *       nothing
2990 *
2991 * Side effects:
2992 *
2993 * Call context:
2994 *       Either, assume interrupt
2995 ----------------------------------------------------------------*/
2996 static void unlocked_usbctlx_complete(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
2997 {
2998         /* Timers have been stopped, and ctlx should be in
2999          * a terminal state. Retire it from the "active"
3000          * queue.
3001          */
3002         list_move_tail(&ctlx->list, &hw->ctlxq.completing);
3003         tasklet_schedule(&hw->completion_bh);
3004
3005         switch (ctlx->state) {
3006         case CTLX_COMPLETE:
3007         case CTLX_REQ_FAILED:
3008                 /* This are the correct terminating states. */
3009                 break;
3010
3011         default:
3012                 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
3013                        le16_to_cpu(ctlx->outbuf.type), ctlxstr(ctlx->state));
3014                 break;
3015         }                       /* switch */
3016 }
3017
3018 /*----------------------------------------------------------------
3019 * hfa384x_usbctlxq_run
3020 *
3021 * Checks to see if the head item is running.  If not, starts it.
3022 *
3023 * Arguments:
3024 *       hw      ptr to hfa384x_t
3025 *
3026 * Returns:
3027 *       nothing
3028 *
3029 * Side effects:
3030 *
3031 * Call context:
3032 *       any
3033 ----------------------------------------------------------------*/
3034 static void hfa384x_usbctlxq_run(hfa384x_t *hw)
3035 {
3036         unsigned long flags;
3037
3038         /* acquire lock */
3039         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3040
3041         /* Only one active CTLX at any one time, because there's no
3042          * other (reliable) way to match the response URB to the
3043          * correct CTLX.
3044          *
3045          * Don't touch any of these CTLXs if the hardware
3046          * has been removed or the USB subsystem is stalled.
3047          */
3048         if (!list_empty(&hw->ctlxq.active) ||
3049             test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
3050                 goto unlock;
3051
3052         while (!list_empty(&hw->ctlxq.pending)) {
3053                 hfa384x_usbctlx_t *head;
3054                 int result;
3055
3056                 /* This is the first pending command */
3057                 head = list_entry(hw->ctlxq.pending.next,
3058                                   hfa384x_usbctlx_t, list);
3059
3060                 /* We need to split this off to avoid a race condition */
3061                 list_move_tail(&head->list, &hw->ctlxq.active);
3062
3063                 /* Fill the out packet */
3064                 usb_fill_bulk_urb(&(hw->ctlx_urb), hw->usb,
3065                                   hw->endp_out,
3066                                   &(head->outbuf), ROUNDUP64(head->outbufsize),
3067                                   hfa384x_ctlxout_callback, hw);
3068                 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
3069
3070                 /* Now submit the URB and update the CTLX's state */
3071                 result = SUBMIT_URB(&hw->ctlx_urb, GFP_ATOMIC);
3072                 if (result == 0) {
3073                         /* This CTLX is now running on the active queue */
3074                         head->state = CTLX_REQ_SUBMITTED;
3075
3076                         /* Start the OUT wait timer */
3077                         hw->req_timer_done = 0;
3078                         hw->reqtimer.expires = jiffies + HZ;
3079                         add_timer(&hw->reqtimer);
3080
3081                         /* Start the IN wait timer */
3082                         hw->resp_timer_done = 0;
3083                         hw->resptimer.expires = jiffies + 2 * HZ;
3084                         add_timer(&hw->resptimer);
3085
3086                         break;
3087                 }
3088
3089                 if (result == -EPIPE) {
3090                         /* The OUT pipe needs resetting, so put
3091                          * this CTLX back in the "pending" queue
3092                          * and schedule a reset ...
3093                          */
3094                         netdev_warn(hw->wlandev->netdev,
3095                                "%s tx pipe stalled: requesting reset\n",
3096                                hw->wlandev->netdev->name);
3097                         list_move(&head->list, &hw->ctlxq.pending);
3098                         set_bit(WORK_TX_HALT, &hw->usb_flags);
3099                         schedule_work(&hw->usb_work);
3100                         break;
3101                 }
3102
3103                 if (result == -ESHUTDOWN) {
3104                         netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
3105                                hw->wlandev->netdev->name);
3106                         break;
3107                 }
3108
3109                 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
3110                        le16_to_cpu(head->outbuf.type), result);
3111                 unlocked_usbctlx_complete(hw, head);
3112         }                       /* while */
3113
3114 unlock:
3115         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3116 }
3117
3118 /*----------------------------------------------------------------
3119 * hfa384x_usbin_callback
3120 *
3121 * Callback for URBs on the BULKIN endpoint.
3122 *
3123 * Arguments:
3124 *       urb             ptr to the completed urb
3125 *
3126 * Returns:
3127 *       nothing
3128 *
3129 * Side effects:
3130 *
3131 * Call context:
3132 *       interrupt
3133 ----------------------------------------------------------------*/
3134 static void hfa384x_usbin_callback(struct urb *urb)
3135 {
3136         wlandevice_t *wlandev = urb->context;
3137         hfa384x_t *hw;
3138         hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) urb->transfer_buffer;
3139         struct sk_buff *skb = NULL;
3140         int result;
3141         int urb_status;
3142         u16 type;
3143
3144         enum USBIN_ACTION {
3145                 HANDLE,
3146                 RESUBMIT,
3147                 ABORT
3148         } action;
3149
3150         if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3151                 goto exit;
3152
3153         hw = wlandev->priv;
3154         if (!hw)
3155                 goto exit;
3156
3157         skb = hw->rx_urb_skb;
3158         BUG_ON(!skb || (skb->data != urb->transfer_buffer));
3159
3160         hw->rx_urb_skb = NULL;
3161
3162         /* Check for error conditions within the URB */
3163         switch (urb->status) {
3164         case 0:
3165                 action = HANDLE;
3166
3167                 /* Check for short packet */
3168                 if (urb->actual_length == 0) {
3169                         ++(wlandev->linux_stats.rx_errors);
3170                         ++(wlandev->linux_stats.rx_length_errors);
3171                         action = RESUBMIT;
3172                 }
3173                 break;
3174
3175         case -EPIPE:
3176                 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3177                        wlandev->netdev->name);
3178                 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3179                         schedule_work(&hw->usb_work);
3180                 ++(wlandev->linux_stats.rx_errors);
3181                 action = ABORT;
3182                 break;
3183
3184         case -EILSEQ:
3185         case -ETIMEDOUT:
3186         case -EPROTO:
3187                 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3188                     !timer_pending(&hw->throttle)) {
3189                         mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3190                 }
3191                 ++(wlandev->linux_stats.rx_errors);
3192                 action = ABORT;
3193                 break;
3194
3195         case -EOVERFLOW:
3196                 ++(wlandev->linux_stats.rx_over_errors);
3197                 action = RESUBMIT;
3198                 break;
3199
3200         case -ENODEV:
3201         case -ESHUTDOWN:
3202                 pr_debug("status=%d, device removed.\n", urb->status);
3203                 action = ABORT;
3204                 break;
3205
3206         case -ENOENT:
3207         case -ECONNRESET:
3208                 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3209                 action = ABORT;
3210                 break;
3211
3212         default:
3213                 pr_debug("urb status=%d, transfer flags=0x%x\n",
3214                          urb->status, urb->transfer_flags);
3215                 ++(wlandev->linux_stats.rx_errors);
3216                 action = RESUBMIT;
3217                 break;
3218         }
3219
3220         urb_status = urb->status;
3221
3222         if (action != ABORT) {
3223                 /* Repost the RX URB */
3224                 result = submit_rx_urb(hw, GFP_ATOMIC);
3225
3226                 if (result != 0) {
3227                         netdev_err(hw->wlandev->netdev,
3228                                "Fatal, failed to resubmit rx_urb. error=%d\n",
3229                                result);
3230                 }
3231         }
3232
3233         /* Handle any USB-IN packet */
3234         /* Note: the check of the sw_support field, the type field doesn't
3235          *       have bit 12 set like the docs suggest.
3236          */
3237         type = le16_to_cpu(usbin->type);
3238         if (HFA384x_USB_ISRXFRM(type)) {
3239                 if (action == HANDLE) {
3240                         if (usbin->txfrm.desc.sw_support == 0x0123) {
3241                                 hfa384x_usbin_txcompl(wlandev, usbin);
3242                         } else {
3243                                 skb_put(skb, sizeof(*usbin));
3244                                 hfa384x_usbin_rx(wlandev, skb);
3245                                 skb = NULL;
3246                         }
3247                 }
3248                 goto exit;
3249         }
3250         if (HFA384x_USB_ISTXFRM(type)) {
3251                 if (action == HANDLE)
3252                         hfa384x_usbin_txcompl(wlandev, usbin);
3253                 goto exit;
3254         }
3255         switch (type) {
3256         case HFA384x_USB_INFOFRM:
3257                 if (action == ABORT)
3258                         goto exit;
3259                 if (action == HANDLE)
3260                         hfa384x_usbin_info(wlandev, usbin);
3261                 break;
3262
3263         case HFA384x_USB_CMDRESP:
3264         case HFA384x_USB_WRIDRESP:
3265         case HFA384x_USB_RRIDRESP:
3266         case HFA384x_USB_WMEMRESP:
3267         case HFA384x_USB_RMEMRESP:
3268                 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3269                 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3270                 break;
3271
3272         case HFA384x_USB_BUFAVAIL:
3273                 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3274                          usbin->bufavail.frmlen);
3275                 break;
3276
3277         case HFA384x_USB_ERROR:
3278                 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3279                          usbin->usberror.errortype);
3280                 break;
3281
3282         default:
3283                 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3284                          usbin->type, urb_status);
3285                 break;
3286         }                       /* switch */
3287
3288 exit:
3289
3290         if (skb)
3291                 dev_kfree_skb(skb);
3292 }
3293
3294 /*----------------------------------------------------------------
3295 * hfa384x_usbin_ctlx
3296 *
3297 * We've received a URB containing a Prism2 "response" message.
3298 * This message needs to be matched up with a CTLX on the active
3299 * queue and our state updated accordingly.
3300 *
3301 * Arguments:
3302 *       hw              ptr to hfa384x_t
3303 *       usbin           ptr to USB IN packet
3304 *       urb_status      status of this Bulk-In URB
3305 *
3306 * Returns:
3307 *       nothing
3308 *
3309 * Side effects:
3310 *
3311 * Call context:
3312 *       interrupt
3313 ----------------------------------------------------------------*/
3314 static void hfa384x_usbin_ctlx(hfa384x_t *hw, hfa384x_usbin_t *usbin,
3315                                int urb_status)
3316 {
3317         hfa384x_usbctlx_t *ctlx;
3318         int run_queue = 0;
3319         unsigned long flags;
3320
3321 retry:
3322         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3323
3324         /* There can be only one CTLX on the active queue
3325          * at any one time, and this is the CTLX that the
3326          * timers are waiting for.
3327          */
3328         if (list_empty(&hw->ctlxq.active))
3329                 goto unlock;
3330
3331         /* Remove the "response timeout". It's possible that
3332          * we are already too late, and that the timeout is
3333          * already running. And that's just too bad for us,
3334          * because we could lose our CTLX from the active
3335          * queue here ...
3336          */
3337         if (del_timer(&hw->resptimer) == 0) {
3338                 if (hw->resp_timer_done == 0) {
3339                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3340                         goto retry;
3341                 }
3342         } else {
3343                 hw->resp_timer_done = 1;
3344         }
3345
3346         ctlx = get_active_ctlx(hw);
3347
3348         if (urb_status != 0) {
3349                 /*
3350                  * Bad CTLX, so get rid of it. But we only
3351                  * remove it from the active queue if we're no
3352                  * longer expecting the OUT URB to complete.
3353                  */
3354                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3355                         run_queue = 1;
3356         } else {
3357                 const u16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3358
3359                 /*
3360                  * Check that our message is what we're expecting ...
3361                  */
3362                 if (ctlx->outbuf.type != intype) {
3363                         netdev_warn(hw->wlandev->netdev,
3364                                "Expected IN[%d], received IN[%d] - ignored.\n",
3365                                le16_to_cpu(ctlx->outbuf.type),
3366                                le16_to_cpu(intype));
3367                         goto unlock;
3368                 }
3369
3370                 /* This URB has succeeded, so grab the data ... */
3371                 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3372
3373                 switch (ctlx->state) {
3374                 case CTLX_REQ_SUBMITTED:
3375                         /*
3376                          * We have received our response URB before
3377                          * our request has been acknowledged. Odd,
3378                          * but our OUT URB is still alive...
3379                          */
3380                         pr_debug("Causality violation: please reboot Universe\n");
3381                         ctlx->state = CTLX_RESP_COMPLETE;
3382                         break;
3383
3384                 case CTLX_REQ_COMPLETE:
3385                         /*
3386                          * This is the usual path: our request
3387                          * has already been acknowledged, and
3388                          * now we have received the reply too.
3389                          */
3390                         ctlx->state = CTLX_COMPLETE;
3391                         unlocked_usbctlx_complete(hw, ctlx);
3392                         run_queue = 1;
3393                         break;
3394
3395                 default:
3396                         /*
3397                          * Throw this CTLX away ...
3398                          */
3399                         netdev_err(hw->wlandev->netdev,
3400                                "Matched IN URB, CTLX[%d] in invalid state(%s)."
3401                                " Discarded.\n",
3402                                le16_to_cpu(ctlx->outbuf.type),
3403                                ctlxstr(ctlx->state));
3404                         if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3405                                 run_queue = 1;
3406                         break;
3407                 }               /* switch */
3408         }
3409
3410 unlock:
3411         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3412
3413         if (run_queue)
3414                 hfa384x_usbctlxq_run(hw);
3415 }
3416
3417 /*----------------------------------------------------------------
3418 * hfa384x_usbin_txcompl
3419 *
3420 * At this point we have the results of a previous transmit.
3421 *
3422 * Arguments:
3423 *       wlandev         wlan device
3424 *       usbin           ptr to the usb transfer buffer
3425 *
3426 * Returns:
3427 *       nothing
3428 *
3429 * Side effects:
3430 *
3431 * Call context:
3432 *       interrupt
3433 ----------------------------------------------------------------*/
3434 static void hfa384x_usbin_txcompl(wlandevice_t *wlandev,
3435                                   hfa384x_usbin_t *usbin)
3436 {
3437         u16 status;
3438
3439         status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3440
3441         /* Was there an error? */
3442         if (HFA384x_TXSTATUS_ISERROR(status))
3443                 prism2sta_ev_txexc(wlandev, status);
3444         else
3445                 prism2sta_ev_tx(wlandev, status);
3446 }
3447
3448 /*----------------------------------------------------------------
3449 * hfa384x_usbin_rx
3450 *
3451 * At this point we have a successful received a rx frame packet.
3452 *
3453 * Arguments:
3454 *       wlandev         wlan device
3455 *       usbin           ptr to the usb transfer buffer
3456 *
3457 * Returns:
3458 *       nothing
3459 *
3460 * Side effects:
3461 *
3462 * Call context:
3463 *       interrupt
3464 ----------------------------------------------------------------*/
3465 static void hfa384x_usbin_rx(wlandevice_t *wlandev, struct sk_buff *skb)
3466 {
3467         hfa384x_usbin_t *usbin = (hfa384x_usbin_t *) skb->data;
3468         hfa384x_t *hw = wlandev->priv;
3469         int hdrlen;
3470         struct p80211_rxmeta *rxmeta;
3471         u16 data_len;
3472         u16 fc;
3473
3474         /* Byte order convert once up front. */
3475         usbin->rxfrm.desc.status = le16_to_cpu(usbin->rxfrm.desc.status);
3476         usbin->rxfrm.desc.time = le32_to_cpu(usbin->rxfrm.desc.time);
3477
3478         /* Now handle frame based on port# */
3479         switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3480         case 0:
3481                 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3482
3483                 /* If exclude and we receive an unencrypted, drop it */
3484                 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3485                     !WLAN_GET_FC_ISWEP(fc)) {
3486                         goto done;
3487                 }
3488
3489                 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3490
3491                 /* How much header data do we have? */
3492                 hdrlen = p80211_headerlen(fc);
3493
3494                 /* Pull off the descriptor */
3495                 skb_pull(skb, sizeof(hfa384x_rx_frame_t));
3496
3497                 /* Now shunt the header block up against the data block
3498                  * with an "overlapping" copy
3499                  */
3500                 memmove(skb_push(skb, hdrlen),
3501                         &usbin->rxfrm.desc.frame_control, hdrlen);
3502
3503                 skb->dev = wlandev->netdev;
3504                 skb->dev->last_rx = jiffies;
3505
3506                 /* And set the frame length properly */
3507                 skb_trim(skb, data_len + hdrlen);
3508
3509                 /* The prism2 series does not return the CRC */
3510                 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3511
3512                 skb_reset_mac_header(skb);
3513
3514                 /* Attach the rxmeta, set some stuff */
3515                 p80211skb_rxmeta_attach(wlandev, skb);
3516                 rxmeta = P80211SKB_RXMETA(skb);
3517                 rxmeta->mactime = usbin->rxfrm.desc.time;
3518                 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3519                 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3520                 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3521
3522                 prism2sta_ev_rx(wlandev, skb);
3523
3524                 break;
3525
3526         case 7:
3527                 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3528                         /* Copy to wlansnif skb */
3529                         hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3530                         dev_kfree_skb(skb);
3531                 } else {
3532                         pr_debug("Received monitor frame: FCSerr set\n");
3533                 }
3534                 break;
3535
3536         default:
3537                 netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3538                        HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3539                 goto done;
3540                 break;
3541         }
3542
3543 done:
3544         return;
3545 }
3546
3547 /*----------------------------------------------------------------
3548 * hfa384x_int_rxmonitor
3549 *
3550 * Helper function for int_rx.  Handles monitor frames.
3551 * Note that this function allocates space for the FCS and sets it
3552 * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3553 * higher layers expect it.  0xffffffff is used as a flag to indicate
3554 * the FCS is bogus.
3555 *
3556 * Arguments:
3557 *       wlandev         wlan device structure
3558 *       rxfrm           rx descriptor read from card in int_rx
3559 *
3560 * Returns:
3561 *       nothing
3562 *
3563 * Side effects:
3564 *       Allocates an skb and passes it up via the PF_PACKET interface.
3565 * Call context:
3566 *       interrupt
3567 ----------------------------------------------------------------*/
3568 static void hfa384x_int_rxmonitor(wlandevice_t *wlandev,
3569                                   hfa384x_usb_rxfrm_t *rxfrm)
3570 {
3571         hfa384x_rx_frame_t *rxdesc = &(rxfrm->desc);
3572         unsigned int hdrlen = 0;
3573         unsigned int datalen = 0;
3574         unsigned int skblen = 0;
3575         u8 *datap;
3576         u16 fc;
3577         struct sk_buff *skb;
3578         hfa384x_t *hw = wlandev->priv;
3579
3580         /* Remember the status, time, and data_len fields are in host order */
3581         /* Figure out how big the frame is */
3582         fc = le16_to_cpu(rxdesc->frame_control);
3583         hdrlen = p80211_headerlen(fc);
3584         datalen = le16_to_cpu(rxdesc->data_len);
3585
3586         /* Allocate an ind message+framesize skb */
3587         skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3588
3589         /* sanity check the length */
3590         if (skblen >
3591             (sizeof(struct p80211_caphdr) +
3592              WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3593                 pr_debug("overlen frm: len=%zd\n",
3594                          skblen - sizeof(struct p80211_caphdr));
3595         }
3596
3597         skb = dev_alloc_skb(skblen);
3598         if (skb == NULL) {
3599                 netdev_err(hw->wlandev->netdev,
3600                        "alloc_skb failed trying to allocate %d bytes\n",
3601                        skblen);
3602                 return;
3603         }
3604
3605         /* only prepend the prism header if in the right mode */
3606         if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3607             (hw->sniffhdr != 0)) {
3608                 struct p80211_caphdr *caphdr;
3609                 /* The NEW header format! */
3610                 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3611                 caphdr = (struct p80211_caphdr *) datap;
3612
3613                 caphdr->version = htonl(P80211CAPTURE_VERSION);
3614                 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3615                 caphdr->mactime = __cpu_to_be64(rxdesc->time) * 1000;
3616                 caphdr->hosttime = __cpu_to_be64(jiffies);
3617                 caphdr->phytype = htonl(4);     /* dss_dot11_b */
3618                 caphdr->channel = htonl(hw->sniff_channel);
3619                 caphdr->datarate = htonl(rxdesc->rate);
3620                 caphdr->antenna = htonl(0);     /* unknown */
3621                 caphdr->priority = htonl(0);    /* unknown */
3622                 caphdr->ssi_type = htonl(3);    /* rssi_raw */
3623                 caphdr->ssi_signal = htonl(rxdesc->signal);
3624                 caphdr->ssi_noise = htonl(rxdesc->silence);
3625                 caphdr->preamble = htonl(0);    /* unknown */
3626                 caphdr->encoding = htonl(1);    /* cck */
3627         }
3628
3629         /* Copy the 802.11 header to the skb
3630            (ctl frames may be less than a full header) */
3631         datap = skb_put(skb, hdrlen);
3632         memcpy(datap, &(rxdesc->frame_control), hdrlen);
3633
3634         /* If any, copy the data from the card to the skb */
3635         if (datalen > 0) {
3636                 datap = skb_put(skb, datalen);
3637                 memcpy(datap, rxfrm->data, datalen);
3638
3639                 /* check for unencrypted stuff if WEP bit set. */
3640                 if (*(datap - hdrlen + 1) & 0x40)       /* wep set */
3641                         if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3642                                 /* clear wep; it's the 802.2 header! */
3643                                 *(datap - hdrlen + 1) &= 0xbf;
3644         }
3645
3646         if (hw->sniff_fcs) {
3647                 /* Set the FCS */
3648                 datap = skb_put(skb, WLAN_CRC_LEN);
3649                 memset(datap, 0xff, WLAN_CRC_LEN);
3650         }
3651
3652         /* pass it back up */
3653         prism2sta_ev_rx(wlandev, skb);
3654
3655         return;
3656 }
3657
3658 /*----------------------------------------------------------------
3659 * hfa384x_usbin_info
3660 *
3661 * At this point we have a successful received a Prism2 info frame.
3662 *
3663 * Arguments:
3664 *       wlandev         wlan device
3665 *       usbin           ptr to the usb transfer buffer
3666 *
3667 * Returns:
3668 *       nothing
3669 *
3670 * Side effects:
3671 *
3672 * Call context:
3673 *       interrupt
3674 ----------------------------------------------------------------*/
3675 static void hfa384x_usbin_info(wlandevice_t *wlandev, hfa384x_usbin_t *usbin)
3676 {
3677         usbin->infofrm.info.framelen =
3678             le16_to_cpu(usbin->infofrm.info.framelen);
3679         prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3680 }
3681
3682 /*----------------------------------------------------------------
3683 * hfa384x_usbout_callback
3684 *
3685 * Callback for URBs on the BULKOUT endpoint.
3686 *
3687 * Arguments:
3688 *       urb             ptr to the completed urb
3689 *
3690 * Returns:
3691 *       nothing
3692 *
3693 * Side effects:
3694 *
3695 * Call context:
3696 *       interrupt
3697 ----------------------------------------------------------------*/
3698 static void hfa384x_usbout_callback(struct urb *urb)
3699 {
3700         wlandevice_t *wlandev = urb->context;
3701         hfa384x_usbout_t *usbout = urb->transfer_buffer;
3702
3703 #ifdef DEBUG_USB
3704         dbprint_urb(urb);
3705 #endif
3706
3707         if (wlandev && wlandev->netdev) {
3708
3709                 switch (urb->status) {
3710                 case 0:
3711                         hfa384x_usbout_tx(wlandev, usbout);
3712                         break;
3713
3714                 case -EPIPE:
3715                         {
3716                                 hfa384x_t *hw = wlandev->priv;
3717                                 netdev_warn(hw->wlandev->netdev,
3718                                        "%s tx pipe stalled: requesting reset\n",
3719                                        wlandev->netdev->name);
3720                                 if (!test_and_set_bit
3721                                     (WORK_TX_HALT, &hw->usb_flags))
3722                                         schedule_work(&hw->usb_work);
3723                                 ++(wlandev->linux_stats.tx_errors);
3724                                 break;
3725                         }
3726
3727                 case -EPROTO:
3728                 case -ETIMEDOUT:
3729                 case -EILSEQ:
3730                         {
3731                                 hfa384x_t *hw = wlandev->priv;
3732
3733                                 if (!test_and_set_bit
3734                                     (THROTTLE_TX, &hw->usb_flags)
3735                                     && !timer_pending(&hw->throttle)) {
3736                                         mod_timer(&hw->throttle,
3737                                                   jiffies + THROTTLE_JIFFIES);
3738                                 }
3739                                 ++(wlandev->linux_stats.tx_errors);
3740                                 netif_stop_queue(wlandev->netdev);
3741                                 break;
3742                         }
3743
3744                 case -ENOENT:
3745                 case -ESHUTDOWN:
3746                         /* Ignorable errors */
3747                         break;
3748
3749                 default:
3750                         netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3751                                urb->status);
3752                         ++(wlandev->linux_stats.tx_errors);
3753                         break;
3754                 }               /* switch */
3755         }
3756 }
3757
3758 /*----------------------------------------------------------------
3759 * hfa384x_ctlxout_callback
3760 *
3761 * Callback for control data on the BULKOUT endpoint.
3762 *
3763 * Arguments:
3764 *       urb             ptr to the completed urb
3765 *
3766 * Returns:
3767 * nothing
3768 *
3769 * Side effects:
3770 *
3771 * Call context:
3772 * interrupt
3773 ----------------------------------------------------------------*/
3774 static void hfa384x_ctlxout_callback(struct urb *urb)
3775 {
3776         hfa384x_t *hw = urb->context;
3777         int delete_resptimer = 0;
3778         int timer_ok = 1;
3779         int run_queue = 0;
3780         hfa384x_usbctlx_t *ctlx;
3781         unsigned long flags;
3782
3783         pr_debug("urb->status=%d\n", urb->status);
3784 #ifdef DEBUG_USB
3785         dbprint_urb(urb);
3786 #endif
3787         if ((urb->status == -ESHUTDOWN) ||
3788             (urb->status == -ENODEV) || (hw == NULL))
3789                 return;
3790
3791 retry:
3792         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3793
3794         /*
3795          * Only one CTLX at a time on the "active" list, and
3796          * none at all if we are unplugged. However, we can
3797          * rely on the disconnect function to clean everything
3798          * up if someone unplugged the adapter.
3799          */
3800         if (list_empty(&hw->ctlxq.active)) {
3801                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3802                 return;
3803         }
3804
3805         /*
3806          * Having something on the "active" queue means
3807          * that we have timers to worry about ...
3808          */
3809         if (del_timer(&hw->reqtimer) == 0) {
3810                 if (hw->req_timer_done == 0) {
3811                         /*
3812                          * This timer was actually running while we
3813                          * were trying to delete it. Let it terminate
3814                          * gracefully instead.
3815                          */
3816                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3817                         goto retry;
3818                 }
3819         } else {
3820                 hw->req_timer_done = 1;
3821         }
3822
3823         ctlx = get_active_ctlx(hw);
3824
3825         if (urb->status == 0) {
3826                 /* Request portion of a CTLX is successful */
3827                 switch (ctlx->state) {
3828                 case CTLX_REQ_SUBMITTED:
3829                         /* This OUT-ACK received before IN */
3830                         ctlx->state = CTLX_REQ_COMPLETE;
3831                         break;
3832
3833                 case CTLX_RESP_COMPLETE:
3834                         /* IN already received before this OUT-ACK,
3835                          * so this command must now be complete.
3836                          */
3837                         ctlx->state = CTLX_COMPLETE;
3838                         unlocked_usbctlx_complete(hw, ctlx);
3839                         run_queue = 1;
3840                         break;
3841
3842                 default:
3843                         /* This is NOT a valid CTLX "success" state! */
3844                         netdev_err(hw->wlandev->netdev,
3845                                 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3846                                 le16_to_cpu(ctlx->outbuf.type),
3847                                 ctlxstr(ctlx->state), urb->status);
3848                         break;
3849                 }               /* switch */
3850         } else {
3851                 /* If the pipe has stalled then we need to reset it */
3852                 if ((urb->status == -EPIPE) &&
3853                     !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3854                         netdev_warn(hw->wlandev->netdev,
3855                                "%s tx pipe stalled: requesting reset\n",
3856                                hw->wlandev->netdev->name);
3857                         schedule_work(&hw->usb_work);
3858                 }
3859
3860                 /* If someone cancels the OUT URB then its status
3861                  * should be either -ECONNRESET or -ENOENT.
3862                  */
3863                 ctlx->state = CTLX_REQ_FAILED;
3864                 unlocked_usbctlx_complete(hw, ctlx);
3865                 delete_resptimer = 1;
3866                 run_queue = 1;
3867         }
3868
3869 delresp:
3870         if (delete_resptimer) {
3871                 timer_ok = del_timer(&hw->resptimer);
3872                 if (timer_ok != 0)
3873                         hw->resp_timer_done = 1;
3874         }
3875
3876         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3877
3878         if (!timer_ok && (hw->resp_timer_done == 0)) {
3879                 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3880                 goto delresp;
3881         }
3882
3883         if (run_queue)
3884                 hfa384x_usbctlxq_run(hw);
3885 }
3886
3887 /*----------------------------------------------------------------
3888 * hfa384x_usbctlx_reqtimerfn
3889 *
3890 * Timer response function for CTLX request timeouts.  If this
3891 * function is called, it means that the callback for the OUT
3892 * URB containing a Prism2.x XXX_Request was never called.
3893 *
3894 * Arguments:
3895 *       data            a ptr to the hfa384x_t
3896 *
3897 * Returns:
3898 *       nothing
3899 *
3900 * Side effects:
3901 *
3902 * Call context:
3903 *       interrupt
3904 ----------------------------------------------------------------*/
3905 static void hfa384x_usbctlx_reqtimerfn(unsigned long data)
3906 {
3907         hfa384x_t *hw = (hfa384x_t *) data;
3908         unsigned long flags;
3909
3910         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3911
3912         hw->req_timer_done = 1;
3913
3914         /* Removing the hardware automatically empties
3915          * the active list ...
3916          */
3917         if (!list_empty(&hw->ctlxq.active)) {
3918                 /*
3919                  * We must ensure that our URB is removed from
3920                  * the system, if it hasn't already expired.
3921                  */
3922                 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3923                 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3924                         hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3925
3926                         ctlx->state = CTLX_REQ_FAILED;
3927
3928                         /* This URB was active, but has now been
3929                          * cancelled. It will now have a status of
3930                          * -ECONNRESET in the callback function.
3931                          *
3932                          * We are cancelling this CTLX, so we're
3933                          * not going to need to wait for a response.
3934                          * The URB's callback function will check
3935                          * that this timer is truly dead.
3936                          */
3937                         if (del_timer(&hw->resptimer) != 0)
3938                                 hw->resp_timer_done = 1;
3939                 }
3940         }
3941
3942         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3943 }
3944
3945 /*----------------------------------------------------------------
3946 * hfa384x_usbctlx_resptimerfn
3947 *
3948 * Timer response function for CTLX response timeouts.  If this
3949 * function is called, it means that the callback for the IN
3950 * URB containing a Prism2.x XXX_Response was never called.
3951 *
3952 * Arguments:
3953 *       data            a ptr to the hfa384x_t
3954 *
3955 * Returns:
3956 *       nothing
3957 *
3958 * Side effects:
3959 *
3960 * Call context:
3961 *       interrupt
3962 ----------------------------------------------------------------*/
3963 static void hfa384x_usbctlx_resptimerfn(unsigned long data)
3964 {
3965         hfa384x_t *hw = (hfa384x_t *) data;
3966         unsigned long flags;
3967
3968         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3969
3970         hw->resp_timer_done = 1;
3971
3972         /* The active list will be empty if the
3973          * adapter has been unplugged ...
3974          */
3975         if (!list_empty(&hw->ctlxq.active)) {
3976                 hfa384x_usbctlx_t *ctlx = get_active_ctlx(hw);
3977
3978                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3979                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3980                         hfa384x_usbctlxq_run(hw);
3981                         return;
3982                 }
3983         }
3984         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3985 }
3986
3987 /*----------------------------------------------------------------
3988 * hfa384x_usb_throttlefn
3989 *
3990 *
3991 * Arguments:
3992 *       data    ptr to hw
3993 *
3994 * Returns:
3995 *       Nothing
3996 *
3997 * Side effects:
3998 *
3999 * Call context:
4000 *       Interrupt
4001 ----------------------------------------------------------------*/
4002 static void hfa384x_usb_throttlefn(unsigned long data)
4003 {
4004         hfa384x_t *hw = (hfa384x_t *) data;
4005         unsigned long flags;
4006
4007         spin_lock_irqsave(&hw->ctlxq.lock, flags);
4008
4009         /*
4010          * We need to check BOTH the RX and the TX throttle controls,
4011          * so we use the bitwise OR instead of the logical OR.
4012          */
4013         pr_debug("flags=0x%lx\n", hw->usb_flags);
4014         if (!hw->wlandev->hwremoved &&
4015             ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
4016               !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags))
4017              |
4018              (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
4019               !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
4020             )) {
4021                 schedule_work(&hw->usb_work);
4022         }
4023
4024         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4025 }
4026
4027 /*----------------------------------------------------------------
4028 * hfa384x_usbctlx_submit
4029 *
4030 * Called from the doxxx functions to submit a CTLX to the queue
4031 *
4032 * Arguments:
4033 *       hw              ptr to the hw struct
4034 *       ctlx            ctlx structure to enqueue
4035 *
4036 * Returns:
4037 *       -ENODEV if the adapter is unplugged
4038 *       0
4039 *
4040 * Side effects:
4041 *
4042 * Call context:
4043 *       process or interrupt
4044 ----------------------------------------------------------------*/
4045 static int hfa384x_usbctlx_submit(hfa384x_t *hw, hfa384x_usbctlx_t *ctlx)
4046 {
4047         unsigned long flags;
4048
4049         spin_lock_irqsave(&hw->ctlxq.lock, flags);
4050
4051         if (hw->wlandev->hwremoved) {
4052                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4053                 return -ENODEV;
4054         }
4055
4056         ctlx->state = CTLX_PENDING;
4057         list_add_tail(&ctlx->list, &hw->ctlxq.pending);
4058         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
4059         hfa384x_usbctlxq_run(hw);
4060
4061         return 0;
4062 }
4063
4064 /*----------------------------------------------------------------
4065 * hfa384x_usbout_tx
4066 *
4067 * At this point we have finished a send of a frame.  Mark the URB
4068 * as available and call ev_alloc to notify higher layers we're
4069 * ready for more.
4070 *
4071 * Arguments:
4072 *       wlandev         wlan device
4073 *       usbout          ptr to the usb transfer buffer
4074 *
4075 * Returns:
4076 *       nothing
4077 *
4078 * Side effects:
4079 *
4080 * Call context:
4081 *       interrupt
4082 ----------------------------------------------------------------*/
4083 static void hfa384x_usbout_tx(wlandevice_t *wlandev, hfa384x_usbout_t *usbout)
4084 {
4085         prism2sta_ev_alloc(wlandev);
4086 }
4087
4088 /*----------------------------------------------------------------
4089 * hfa384x_isgood_pdrcore
4090 *
4091 * Quick check of PDR codes.
4092 *
4093 * Arguments:
4094 *       pdrcode         PDR code number (host order)
4095 *
4096 * Returns:
4097 *       zero            not good.
4098 *       one             is good.
4099 *
4100 * Side effects:
4101 *
4102 * Call context:
4103 ----------------------------------------------------------------*/
4104 static int hfa384x_isgood_pdrcode(u16 pdrcode)
4105 {
4106         switch (pdrcode) {
4107         case HFA384x_PDR_END_OF_PDA:
4108         case HFA384x_PDR_PCB_PARTNUM:
4109         case HFA384x_PDR_PDAVER:
4110         case HFA384x_PDR_NIC_SERIAL:
4111         case HFA384x_PDR_MKK_MEASUREMENTS:
4112         case HFA384x_PDR_NIC_RAMSIZE:
4113         case HFA384x_PDR_MFISUPRANGE:
4114         case HFA384x_PDR_CFISUPRANGE:
4115         case HFA384x_PDR_NICID:
4116         case HFA384x_PDR_MAC_ADDRESS:
4117         case HFA384x_PDR_REGDOMAIN:
4118         case HFA384x_PDR_ALLOWED_CHANNEL:
4119         case HFA384x_PDR_DEFAULT_CHANNEL:
4120         case HFA384x_PDR_TEMPTYPE:
4121         case HFA384x_PDR_IFR_SETTING:
4122         case HFA384x_PDR_RFR_SETTING:
4123         case HFA384x_PDR_HFA3861_BASELINE:
4124         case HFA384x_PDR_HFA3861_SHADOW:
4125         case HFA384x_PDR_HFA3861_IFRF:
4126         case HFA384x_PDR_HFA3861_CHCALSP:
4127         case HFA384x_PDR_HFA3861_CHCALI:
4128         case HFA384x_PDR_3842_NIC_CONFIG:
4129         case HFA384x_PDR_USB_ID:
4130         case HFA384x_PDR_PCI_ID:
4131         case HFA384x_PDR_PCI_IFCONF:
4132         case HFA384x_PDR_PCI_PMCONF:
4133         case HFA384x_PDR_RFENRGY:
4134         case HFA384x_PDR_HFA3861_MANF_TESTSP:
4135         case HFA384x_PDR_HFA3861_MANF_TESTI:
4136                 /* code is OK */
4137                 return 1;
4138                 break;
4139         default:
4140                 if (pdrcode < 0x1000) {
4141                         /* code is OK, but we don't know exactly what it is */
4142                         pr_debug("Encountered unknown PDR#=0x%04x, "
4143                                  "assuming it's ok.\n", pdrcode);
4144                         return 1;
4145                 } else {
4146                         /* bad code */
4147                         pr_debug("Encountered unknown PDR#=0x%04x, "
4148                                  "(>=0x1000), assuming it's bad.\n", pdrcode);
4149                         return 0;
4150                 }
4151                 break;
4152         }
4153         return 0;               /* avoid compiler warnings */
4154 }