]> Pileus Git - ~andy/linux/blob - drivers/staging/vt6656/dpc.c
Merge tag 'iio-for-3.14b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[~andy/linux] / drivers / staging / vt6656 / dpc.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: dpc.c
20  *
21  * Purpose: handle dpc rx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      device_receive_frame - Rcv 802.11 frame function
29  *      s_bAPModeRxCtl- AP Rcv frame filer Ctl.
30  *      s_bAPModeRxData- AP Rcv data frame handle
31  *      s_bHandleRxEncryption- Rcv decrypted data via on-fly
32  *      s_bHostWepRxEncryption- Rcv encrypted data via host
33  *      s_byGetRateIdx- get rate index
34  *      s_vGetDASA- get data offset
35  *      s_vProcessRxMACHeader- Rcv 802.11 and translate to 802.3
36  *
37  * Revision History:
38  *
39  */
40
41 #include "device.h"
42 #include "rxtx.h"
43 #include "tether.h"
44 #include "card.h"
45 #include "bssdb.h"
46 #include "mac.h"
47 #include "baseband.h"
48 #include "michael.h"
49 #include "tkip.h"
50 #include "tcrc.h"
51 #include "wctl.h"
52 #include "hostap.h"
53 #include "rf.h"
54 #include "iowpa.h"
55 #include "aes_ccmp.h"
56 #include "datarate.h"
57 #include "usbpipe.h"
58
59 //static int          msglevel                =MSG_LEVEL_DEBUG;
60 static int          msglevel                =MSG_LEVEL_INFO;
61
62 static const u8 acbyRxRate[MAX_RATE] =
63 {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
64
65 static u8 s_byGetRateIdx(u8 byRate);
66
67 static
68 void
69 s_vGetDASA(
70       u8 * pbyRxBufferAddr,
71      unsigned int *pcbHeaderSize,
72      struct ethhdr *psEthHeader
73     );
74
75 static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
76         u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
77         u32 *pcbHeadSize);
78
79 static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
80         s32 iSANodeIndex);
81
82 static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
83         u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex);
84
85 static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
86         u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
87         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
88
89 static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
90         u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
91         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
92
93 /*+
94  *
95  * Description:
96  *    Translate Rcv 802.11 header to 802.3 header with Rx buffer
97  *
98  * Parameters:
99  *  In:
100  *      pDevice
101  *      dwRxBufferAddr  - Address of Rcv Buffer
102  *      cbPacketSize    - Rcv Packet size
103  *      bIsWEP          - If Rcv with WEP
104  *  Out:
105  *      pcbHeaderSize   - 802.11 header size
106  *
107  * Return Value: None
108  *
109 -*/
110
111 static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
112         u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
113         u32 *pcbHeadSize)
114 {
115         u8 *pbyRxBuffer;
116         u32 cbHeaderSize = 0;
117         u16 *pwType;
118         struct ieee80211_hdr *pMACHeader;
119         int ii;
120
121     pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
122
123     s_vGetDASA((u8 *)pMACHeader, &cbHeaderSize, &pDevice->sRxEthHeader);
124
125     if (bIsWEP) {
126         if (bExtIV) {
127             // strip IV&ExtIV , add 8 byte
128             cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 8);
129         } else {
130             // strip IV , add 4 byte
131             cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 4);
132         }
133     }
134     else {
135         cbHeaderSize += WLAN_HDR_ADDR3_LEN;
136     };
137
138     pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
139     if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_Bridgetunnel)) {
140         cbHeaderSize += 6;
141     } else if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_RFC1042)) {
142         cbHeaderSize += 6;
143         pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
144         if ((*pwType == cpu_to_be16(ETH_P_IPX)) ||
145             (*pwType == cpu_to_le16(0xF380))) {
146                 cbHeaderSize -= 8;
147             pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
148             if (bIsWEP) {
149                 if (bExtIV) {
150                     *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8);    // 8 is IV&ExtIV
151                 } else {
152                     *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4);    // 4 is IV
153                 }
154             }
155             else {
156                 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
157             }
158         }
159     }
160     else {
161         cbHeaderSize -= 2;
162         pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
163         if (bIsWEP) {
164             if (bExtIV) {
165                 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8);    // 8 is IV&ExtIV
166             } else {
167                 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4);    // 4 is IV
168             }
169         }
170         else {
171             *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
172         }
173     }
174
175     cbHeaderSize -= (ETH_ALEN * 2);
176     pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
177     for (ii = 0; ii < ETH_ALEN; ii++)
178         *pbyRxBuffer++ = pDevice->sRxEthHeader.h_dest[ii];
179     for (ii = 0; ii < ETH_ALEN; ii++)
180         *pbyRxBuffer++ = pDevice->sRxEthHeader.h_source[ii];
181
182     *pcbHeadSize = cbHeaderSize;
183 }
184
185 static u8 s_byGetRateIdx(u8 byRate)
186 {
187     u8    byRateIdx;
188
189     for (byRateIdx = 0; byRateIdx <MAX_RATE ; byRateIdx++) {
190         if (acbyRxRate[byRateIdx%MAX_RATE] == byRate)
191             return byRateIdx;
192     }
193     return 0;
194 }
195
196 static
197 void
198 s_vGetDASA (
199       u8 * pbyRxBufferAddr,
200      unsigned int *pcbHeaderSize,
201      struct ethhdr *psEthHeader
202     )
203 {
204         unsigned int            cbHeaderSize = 0;
205         struct ieee80211_hdr *pMACHeader;
206         int             ii;
207
208         pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
209
210         if ((pMACHeader->frame_control & FC_TODS) == 0) {
211                 if (pMACHeader->frame_control & FC_FROMDS) {
212                         for (ii = 0; ii < ETH_ALEN; ii++) {
213                                 psEthHeader->h_dest[ii] =
214                                         pMACHeader->addr1[ii];
215                                 psEthHeader->h_source[ii] =
216                                         pMACHeader->addr3[ii];
217                         }
218                 } else {
219                         /* IBSS mode */
220                         for (ii = 0; ii < ETH_ALEN; ii++) {
221                                 psEthHeader->h_dest[ii] =
222                                         pMACHeader->addr1[ii];
223                                 psEthHeader->h_source[ii] =
224                                         pMACHeader->addr2[ii];
225                         }
226                 }
227         } else {
228                 /* Is AP mode.. */
229                 if (pMACHeader->frame_control & FC_FROMDS) {
230                         for (ii = 0; ii < ETH_ALEN; ii++) {
231                                 psEthHeader->h_dest[ii] =
232                                         pMACHeader->addr3[ii];
233                                 psEthHeader->h_source[ii] =
234                                         pMACHeader->addr4[ii];
235                                 cbHeaderSize += 6;
236                         }
237                 } else {
238                         for (ii = 0; ii < ETH_ALEN; ii++) {
239                                 psEthHeader->h_dest[ii] =
240                                         pMACHeader->addr3[ii];
241                                 psEthHeader->h_source[ii] =
242                                         pMACHeader->addr2[ii];
243                         }
244                 }
245         };
246     *pcbHeaderSize = cbHeaderSize;
247 }
248
249 int RXbBulkInProcessData(struct vnt_private *pDevice, struct vnt_rcb *pRCB,
250         unsigned long BytesToIndicate)
251 {
252         struct net_device_stats *pStats = &pDevice->stats;
253         struct sk_buff *skb;
254         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
255         struct vnt_rx_mgmt *pRxPacket = &pMgmt->sRxPacket;
256         struct ieee80211_hdr *p802_11Header;
257         u8 *pbyRsr, *pbyNewRsr, *pbyRSSI, *pbyFrame;
258         u64 *pqwTSFTime;
259         u32 bDeFragRx = false;
260         u32 cbHeaderOffset, cbIVOffset;
261         u32 FrameSize;
262         u16 wEtherType = 0;
263         s32 iSANodeIndex = -1, iDANodeIndex = -1;
264         int ii;
265         u8 *pbyRxSts, *pbyRxRate, *pbySQ, *pby3SQ;
266         u32 cbHeaderSize;
267         PSKeyItem pKey = NULL;
268         u16 wRxTSC15_0 = 0;
269         u32 dwRxTSC47_16 = 0;
270         SKeyItem STempKey;
271         /* signed long ldBm = 0; */
272         int bIsWEP = false; int bExtIV = false;
273         u32 dwWbkStatus;
274         struct vnt_rcb *pRCBIndicate = pRCB;
275         u8 *pbyDAddress;
276         u16 *pwPLCP_Length;
277         u8 abyVaildRate[MAX_RATE]
278                 = {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
279         u16 wPLCPwithPadding;
280         struct ieee80211_hdr *pMACHeader;
281         int bRxeapol_key = false;
282
283     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- RXbBulkInProcessData---\n");
284
285     skb = pRCB->skb;
286
287         /* [31:16]RcvByteCount ( not include 4-byte Status ) */
288         dwWbkStatus = *((u32 *)(skb->data));
289         FrameSize = dwWbkStatus >> 16;
290         FrameSize += 4;
291
292         if (BytesToIndicate != FrameSize) {
293                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"------- WRONG Length 1\n");
294                 pStats->rx_frame_errors++;
295                 return false;
296         }
297
298     if ((BytesToIndicate > 2372) || (BytesToIndicate <= 40)) {
299         // Frame Size error drop this packet.
300         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 2\n");
301         pStats->rx_frame_errors++;
302         return false;
303     }
304
305     pbyDAddress = (u8 *)(skb->data);
306     pbyRxSts = pbyDAddress+4;
307     pbyRxRate = pbyDAddress+5;
308
309     //real Frame Size = USBFrameSize -4WbkStatus - 4RxStatus - 8TSF - 4RSR - 4SQ3 - ?Padding
310     //if SQ3 the range is 24~27, if no SQ3 the range is 20~23
311     //real Frame size in PLCPLength field.
312     pwPLCP_Length = (u16 *) (pbyDAddress + 6);
313     //Fix hardware bug => PLCP_Length error
314     if ( ((BytesToIndicate - (*pwPLCP_Length)) > 27) ||
315          ((BytesToIndicate - (*pwPLCP_Length)) < 24) ||
316          (BytesToIndicate < (*pwPLCP_Length)) ) {
317
318         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong PLCP Length %x\n", (int) *pwPLCP_Length);
319         pStats->rx_frame_errors++;
320         return false;
321     }
322     for ( ii=RATE_1M;ii<MAX_RATE;ii++) {
323         if ( *pbyRxRate == abyVaildRate[ii] ) {
324             break;
325         }
326     }
327     if ( ii==MAX_RATE ) {
328         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong RxRate %x\n",(int) *pbyRxRate);
329         return false;
330     }
331
332     wPLCPwithPadding = ( (*pwPLCP_Length / 4) + ( (*pwPLCP_Length % 4) ? 1:0 ) ) *4;
333
334         pqwTSFTime = (u64 *)(pbyDAddress + 8 + wPLCPwithPadding);
335   if(pDevice->byBBType == BB_TYPE_11G)  {
336       pby3SQ = pbyDAddress + 8 + wPLCPwithPadding + 12;
337       pbySQ = pby3SQ;
338     }
339   else {
340    pbySQ = pbyDAddress + 8 + wPLCPwithPadding + 8;
341    pby3SQ = pbySQ;
342   }
343     pbyNewRsr = pbyDAddress + 8 + wPLCPwithPadding + 9;
344     pbyRSSI = pbyDAddress + 8 + wPLCPwithPadding + 10;
345     pbyRsr = pbyDAddress + 8 + wPLCPwithPadding + 11;
346
347     FrameSize = *pwPLCP_Length;
348
349     pbyFrame = pbyDAddress + 8;
350
351     pMACHeader = (struct ieee80211_hdr *) pbyFrame;
352
353 //mike add: to judge if current AP is activated?
354     if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
355         (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
356        if (pMgmt->sNodeDBTable[0].bActive) {
357          if (ether_addr_equal(pMgmt->abyCurrBSSID, pMACHeader->addr2)) {
358             if (pMgmt->sNodeDBTable[0].uInActiveCount != 0)
359                   pMgmt->sNodeDBTable[0].uInActiveCount = 0;
360            }
361        }
362     }
363
364     if (!is_multicast_ether_addr(pMACHeader->addr1)) {
365         if (WCTLbIsDuplicate(&(pDevice->sDupRxCache), (struct ieee80211_hdr *) pbyFrame)) {
366             return false;
367         }
368
369         if (!ether_addr_equal(pDevice->abyCurrentNetAddr, pMACHeader->addr1)) {
370                 return false;
371         }
372     }
373
374     // Use for TKIP MIC
375     s_vGetDASA(pbyFrame, &cbHeaderSize, &pDevice->sRxEthHeader);
376
377     if (ether_addr_equal((u8 *)pDevice->sRxEthHeader.h_source,
378                          pDevice->abyCurrentNetAddr))
379         return false;
380
381     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
382         if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
383             p802_11Header = (struct ieee80211_hdr *) (pbyFrame);
384             // get SA NodeIndex
385             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p802_11Header->addr2), &iSANodeIndex)) {
386                 pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
387                 pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
388             }
389         }
390     }
391
392     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
393         if (s_bAPModeRxCtl(pDevice, pbyFrame, iSANodeIndex) == true) {
394             return false;
395         }
396     }
397
398     if (IS_FC_WEP(pbyFrame)) {
399         bool     bRxDecryOK = false;
400
401         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"rx WEP pkt\n");
402         bIsWEP = true;
403         if ((pDevice->bEnableHostWEP) && (iSANodeIndex >= 0)) {
404             pKey = &STempKey;
405             pKey->byCipherSuite = pMgmt->sNodeDBTable[iSANodeIndex].byCipherSuite;
406             pKey->dwKeyIndex = pMgmt->sNodeDBTable[iSANodeIndex].dwKeyIndex;
407             pKey->uKeyLength = pMgmt->sNodeDBTable[iSANodeIndex].uWepKeyLength;
408             pKey->dwTSC47_16 = pMgmt->sNodeDBTable[iSANodeIndex].dwTSC47_16;
409             pKey->wTSC15_0 = pMgmt->sNodeDBTable[iSANodeIndex].wTSC15_0;
410             memcpy(pKey->abyKey,
411                 &pMgmt->sNodeDBTable[iSANodeIndex].abyWepKey[0],
412                 pKey->uKeyLength
413                 );
414
415             bRxDecryOK = s_bHostWepRxEncryption(pDevice,
416                                                 pbyFrame,
417                                                 FrameSize,
418                                                 pbyRsr,
419                                                 pMgmt->sNodeDBTable[iSANodeIndex].bOnFly,
420                                                 pKey,
421                                                 pbyNewRsr,
422                                                 &bExtIV,
423                                                 &wRxTSC15_0,
424                                                 &dwRxTSC47_16);
425         } else {
426             bRxDecryOK = s_bHandleRxEncryption(pDevice,
427                                                 pbyFrame,
428                                                 FrameSize,
429                                                 pbyRsr,
430                                                 pbyNewRsr,
431                                                 &pKey,
432                                                 &bExtIV,
433                                                 &wRxTSC15_0,
434                                                 &dwRxTSC47_16);
435         }
436
437         if (bRxDecryOK) {
438             if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
439                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV Fail\n");
440                 if ( (pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
441                     (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
442                     (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
443                     (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
444                     (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
445                 }
446                 return false;
447             }
448         } else {
449             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"WEP Func Fail\n");
450             return false;
451         }
452         if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
453             FrameSize -= 8;         // Message Integrity Code
454         else
455             FrameSize -= 4;         // 4 is ICV
456     }
457
458     //
459     // RX OK
460     //
461     /* remove the FCS/CRC length */
462     FrameSize -= ETH_FCS_LEN;
463
464     if ( !(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) && // unicast address
465         (IS_FRAGMENT_PKT((pbyFrame)))
466         ) {
467         // defragment
468         bDeFragRx = WCTLbHandleFragment(pDevice, (struct ieee80211_hdr *) (pbyFrame), FrameSize, bIsWEP, bExtIV);
469         if (bDeFragRx) {
470             // defrag complete
471             // TODO skb, pbyFrame
472             skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
473             FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;
474             pbyFrame = skb->data + 8;
475         }
476         else {
477             return false;
478         }
479     }
480
481     //
482     // Management & Control frame Handle
483     //
484     if ((IS_TYPE_DATA((pbyFrame))) == false) {
485         // Handle Control & Manage Frame
486
487         if (IS_TYPE_MGMT((pbyFrame))) {
488             u8 * pbyData1;
489             u8 * pbyData2;
490
491             pRxPacket = &(pRCB->sMngPacket);
492             pRxPacket->p80211Header = (PUWLAN_80211HDR)(pbyFrame);
493             pRxPacket->cbMPDULen = FrameSize;
494             pRxPacket->uRSSI = *pbyRSSI;
495             pRxPacket->bySQ = *pbySQ;
496                 pRxPacket->qwLocalTSF = cpu_to_le64(*pqwTSFTime);
497             if (bIsWEP) {
498                 // strip IV
499                 pbyData1 = WLAN_HDR_A3_DATA_PTR(pbyFrame);
500                 pbyData2 = WLAN_HDR_A3_DATA_PTR(pbyFrame) + 4;
501                 for (ii = 0; ii < (FrameSize - 4); ii++) {
502                     *pbyData1 = *pbyData2;
503                      pbyData1++;
504                      pbyData2++;
505                 }
506             }
507
508             pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);
509
510             if ( *pbyRxSts == 0 ) {
511                 //Discard beacon packet which channel is 0
512                 if ( (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_BEACON) ||
513                      (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_PROBERESP) ) {
514                         return false;
515                 }
516             }
517             pRxPacket->byRxChannel = (*pbyRxSts) >> 2;
518
519             // hostap Deamon handle 802.11 management
520             if (pDevice->bEnableHostapd) {
521                     skb->dev = pDevice->apdev;
522                     //skb->data += 4;
523                     //skb->tail += 4;
524                     skb->data += 8;
525                     skb->tail += 8;
526                 skb_put(skb, FrameSize);
527                 skb_reset_mac_header(skb);
528                     skb->pkt_type = PACKET_OTHERHOST;
529                 skb->protocol = htons(ETH_P_802_2);
530                     memset(skb->cb, 0, sizeof(skb->cb));
531                     netif_rx(skb);
532                 return true;
533                 }
534
535             //
536             // Insert the RCB in the Recv Mng list
537             //
538             EnqueueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList, pRCBIndicate);
539             pDevice->NumRecvMngList++;
540             if ( bDeFragRx == false) {
541                 pRCB->Ref++;
542             }
543             if (pDevice->bIsRxMngWorkItemQueued == false) {
544                 pDevice->bIsRxMngWorkItemQueued = true;
545                 schedule_work(&pDevice->rx_mng_work_item);
546             }
547
548         }
549         else {
550             // Control Frame
551         };
552         return false;
553     }
554     else {
555         if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
556             //In AP mode, hw only check addr1(BSSID or RA) if equal to local MAC.
557             if ( !(*pbyRsr & RSR_BSSIDOK)) {
558                 if (bDeFragRx) {
559                     if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
560                         DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
561                         pDevice->dev->name);
562                     }
563                 }
564                 return false;
565             }
566         }
567         else {
568             // discard DATA packet while not associate || BSSID error
569             if ((pDevice->bLinkPass == false) ||
570                 !(*pbyRsr & RSR_BSSIDOK)) {
571                 if (bDeFragRx) {
572                     if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
573                         DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
574                         pDevice->dev->name);
575                     }
576                 }
577                 return false;
578             }
579    //mike add:station mode check eapol-key challenge--->
580           {
581             u8  Protocol_Version;    //802.1x Authentication
582             u8  Packet_Type;           //802.1x Authentication
583             u8  Descriptor_type;
584              u16 Key_info;
585               if (bIsWEP)
586                   cbIVOffset = 8;
587               else
588                   cbIVOffset = 0;
589               wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
590                           skb->data[cbIVOffset + 8 + 24 + 6 + 1];
591               Protocol_Version = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1];
592               Packet_Type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1];
593              if (wEtherType == ETH_P_PAE) {         //Protocol Type in LLC-Header
594                   if(((Protocol_Version==1) ||(Protocol_Version==2)) &&
595                      (Packet_Type==3)) {  //802.1x OR eapol-key challenge frame receive
596                         bRxeapol_key = true;
597                       Descriptor_type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2];
598                       Key_info = (skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+1]<<8) |skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+2] ;
599                       if(Descriptor_type==2) {    //RSN
600                          //  printk("WPA2_Rx_eapol-key_info<-----:%x\n",Key_info);
601                       }
602                      else  if(Descriptor_type==254) {
603                         //  printk("WPA_Rx_eapol-key_info<-----:%x\n",Key_info);
604                      }
605                   }
606               }
607           }
608     //mike add:station mode check eapol-key challenge<---
609         }
610     }
611
612 // Data frame Handle
613
614     if (pDevice->bEnablePSMode) {
615         if (IS_FC_MOREDATA((pbyFrame))) {
616             if (*pbyRsr & RSR_ADDROK) {
617                 //PSbSendPSPOLL((PSDevice)pDevice);
618             }
619         }
620         else {
621             if (pMgmt->bInTIMWake == true) {
622                 pMgmt->bInTIMWake = false;
623             }
624         }
625     }
626
627     // Now it only supports 802.11g Infrastructure Mode, and support rate must up to 54 Mbps
628     if (pDevice->bDiversityEnable && (FrameSize>50) &&
629        (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
630        (pDevice->bLinkPass == true)) {
631         BBvAntennaDiversity(pDevice, s_byGetRateIdx(*pbyRxRate), 0);
632     }
633
634     // ++++++++ For BaseBand Algorithm +++++++++++++++
635     pDevice->uCurrRSSI = *pbyRSSI;
636     pDevice->byCurrSQ = *pbySQ;
637
638     // todo
639 /*
640     if ((*pbyRSSI != 0) &&
641         (pMgmt->pCurrBSS!=NULL)) {
642         RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
643         // Monitor if RSSI is too strong.
644         pMgmt->pCurrBSS->byRSSIStatCnt++;
645         pMgmt->pCurrBSS->byRSSIStatCnt %= RSSI_STAT_COUNT;
646         pMgmt->pCurrBSS->ldBmAverage[pMgmt->pCurrBSS->byRSSIStatCnt] = ldBm;
647         for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
648                 if (pMgmt->pCurrBSS->ldBmAverage[ii] != 0) {
649                         pMgmt->pCurrBSS->ldBmMAX =
650                                 max(pMgmt->pCurrBSS->ldBmAverage[ii], ldBm);
651                 }
652         }
653     }
654 */
655
656     // -----------------------------------------------
657
658     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->bEnable8021x == true)){
659         u8    abyMacHdr[24];
660
661         // Only 802.1x packet incoming allowed
662         if (bIsWEP)
663             cbIVOffset = 8;
664         else
665             cbIVOffset = 0;
666         wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
667                     skb->data[cbIVOffset + 8 + 24 + 6 + 1];
668
669             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"wEtherType = %04x \n", wEtherType);
670         if (wEtherType == ETH_P_PAE) {
671             skb->dev = pDevice->apdev;
672
673             if (bIsWEP == true) {
674                 // strip IV header(8)
675                 memcpy(&abyMacHdr[0], (skb->data + 8), 24);
676                 memcpy((skb->data + 8 + cbIVOffset), &abyMacHdr[0], 24);
677             }
678
679             skb->data +=  (cbIVOffset + 8);
680             skb->tail +=  (cbIVOffset + 8);
681             skb_put(skb, FrameSize);
682             skb_reset_mac_header(skb);
683             skb->pkt_type = PACKET_OTHERHOST;
684             skb->protocol = htons(ETH_P_802_2);
685             memset(skb->cb, 0, sizeof(skb->cb));
686             netif_rx(skb);
687             return true;
688
689         }
690         // check if 802.1x authorized
691         if (!(pMgmt->sNodeDBTable[iSANodeIndex].dwFlags & WLAN_STA_AUTHORIZED))
692             return false;
693     }
694
695     if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
696         if (bIsWEP) {
697             FrameSize -= 8;  //MIC
698         }
699     }
700
701     //--------------------------------------------------------------------------------
702     // Soft MIC
703     if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
704         if (bIsWEP) {
705             u32 *          pdwMIC_L;
706             u32 *          pdwMIC_R;
707             u32           dwMIC_Priority;
708             u32           dwMICKey0 = 0, dwMICKey1 = 0;
709             u32           dwLocalMIC_L = 0;
710             u32           dwLocalMIC_R = 0;
711
712             if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
713                 dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
714                 dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
715             }
716             else {
717                 if (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) {
718                     dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
719                     dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
720                 } else if ((pKey->dwKeyIndex & BIT28) == 0) {
721                     dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
722                     dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
723                 } else {
724                     dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
725                     dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
726                 }
727             }
728
729             MIC_vInit(dwMICKey0, dwMICKey1);
730             MIC_vAppend((u8 *)&(pDevice->sRxEthHeader.h_dest[0]), 12);
731             dwMIC_Priority = 0;
732             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
733             // 4 is Rcv buffer header, 24 is MAC Header, and 8 is IV and Ext IV.
734             MIC_vAppend((u8 *)(skb->data + 8 + WLAN_HDR_ADDR3_LEN + 8),
735                         FrameSize - WLAN_HDR_ADDR3_LEN - 8);
736             MIC_vGetMIC(&dwLocalMIC_L, &dwLocalMIC_R);
737             MIC_vUnInit();
738
739             pdwMIC_L = (u32 *)(skb->data + 8 + FrameSize);
740             pdwMIC_R = (u32 *)(skb->data + 8 + FrameSize + 4);
741
742             if ((cpu_to_le32(*pdwMIC_L) != dwLocalMIC_L) || (cpu_to_le32(*pdwMIC_R) != dwLocalMIC_R) ||
743                 (pDevice->bRxMICFail == true)) {
744                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC comparison is fail!\n");
745                 pDevice->bRxMICFail = false;
746                 if (bDeFragRx) {
747                     if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
748                         DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
749                             pDevice->dev->name);
750                     }
751                 }
752                                 //send event to wpa_supplicant
753                                 //if(pDevice->bWPASuppWextEnabled == true)
754                                 {
755                                         union iwreq_data wrqu;
756                                         struct iw_michaelmicfailure ev;
757                                         int keyidx = pbyFrame[cbHeaderSize+3] >> 6; //top two-bits
758                                         memset(&ev, 0, sizeof(ev));
759                                         ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
760                                         if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
761                                                         (pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
762                                                                 (*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
763                                                 ev.flags |= IW_MICFAILURE_PAIRWISE;
764                                         } else {
765                                                 ev.flags |= IW_MICFAILURE_GROUP;
766                                         }
767
768                                         ev.src_addr.sa_family = ARPHRD_ETHER;
769                                         memcpy(ev.src_addr.sa_data, pMACHeader->addr2, ETH_ALEN);
770                                         memset(&wrqu, 0, sizeof(wrqu));
771                                         wrqu.data.length = sizeof(ev);
772                         PRINT_K("wireless_send_event--->IWEVMICHAELMICFAILURE\n");
773                                         wireless_send_event(pDevice->dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
774
775                                 }
776
777                 return false;
778
779             }
780         }
781     } //---end of SOFT MIC-----------------------------------------------------------------------
782
783     // ++++++++++ Reply Counter Check +++++++++++++
784
785     if ((pKey != NULL) && ((pKey->byCipherSuite == KEY_CTL_TKIP) ||
786                            (pKey->byCipherSuite == KEY_CTL_CCMP))) {
787         if (bIsWEP) {
788             u16        wLocalTSC15_0 = 0;
789             u32       dwLocalTSC47_16 = 0;
790             unsigned long long       RSC = 0;
791             // endian issues
792             RSC = *((unsigned long long *) &(pKey->KeyRSC));
793             wLocalTSC15_0 = (u16) RSC;
794             dwLocalTSC47_16 = (u32) (RSC>>16);
795
796             RSC = dwRxTSC47_16;
797             RSC <<= 16;
798             RSC += wRxTSC15_0;
799                 memcpy(&(pKey->KeyRSC), &RSC,  sizeof(u64));
800
801                 if (pDevice->vnt_mgmt.eCurrMode == WMAC_MODE_ESS_STA &&
802                         pDevice->vnt_mgmt.eCurrState == WMAC_STATE_ASSOC) {
803                         /* check RSC */
804                 if ( (wRxTSC15_0 < wLocalTSC15_0) &&
805                      (dwRxTSC47_16 <= dwLocalTSC47_16) &&
806                      !((dwRxTSC47_16 == 0) && (dwLocalTSC47_16 == 0xFFFFFFFF))) {
807                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC is illegal~~!\n ");
808
809                     if (bDeFragRx) {
810                         if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
811                             DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
812                                 pDevice->dev->name);
813                         }
814                     }
815                     return false;
816                 }
817             }
818         }
819     } // ----- End of Reply Counter Check --------------------------
820
821     s_vProcessRxMACHeader(pDevice, (u8 *)(skb->data+8), FrameSize, bIsWEP, bExtIV, &cbHeaderOffset);
822     FrameSize -= cbHeaderOffset;
823     cbHeaderOffset += 8;        // 8 is Rcv buffer header
824
825     // Null data, framesize = 12
826     if (FrameSize < 12)
827         return false;
828
829     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
830         if (s_bAPModeRxData(pDevice,
831                             skb,
832                             FrameSize,
833                             cbHeaderOffset,
834                             iSANodeIndex,
835                             iDANodeIndex
836                             ) == false) {
837
838             if (bDeFragRx) {
839                 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
840                     DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
841                     pDevice->dev->name);
842                 }
843             }
844             return false;
845         }
846
847     }
848
849         skb->data += cbHeaderOffset;
850         skb->tail += cbHeaderOffset;
851     skb_put(skb, FrameSize);
852     skb->protocol=eth_type_trans(skb, skb->dev);
853     skb->ip_summed=CHECKSUM_NONE;
854     pStats->rx_bytes +=skb->len;
855     pStats->rx_packets++;
856     netif_rx(skb);
857     if (bDeFragRx) {
858         if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
859             DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
860                 pDevice->dev->name);
861         }
862         return false;
863     }
864
865     return true;
866 }
867
868 static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
869         s32 iSANodeIndex)
870 {
871         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
872         struct ieee80211_hdr *p802_11Header;
873         CMD_STATUS Status;
874
875     if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
876
877         p802_11Header = (struct ieee80211_hdr *) (pbyFrame);
878         if (!IS_TYPE_MGMT(pbyFrame)) {
879
880             // Data & PS-Poll packet
881             // check frame class
882             if (iSANodeIndex > 0) {
883                 // frame class 3 fliter & checking
884                 if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_AUTH) {
885                     // send deauth notification
886                     // reason = (6) class 2 received from nonauth sta
887                     vMgrDeAuthenBeginSta(pDevice,
888                                          pMgmt,
889                                          (u8 *)(p802_11Header->addr2),
890                                          (WLAN_MGMT_REASON_CLASS2_NONAUTH),
891                                          &Status
892                                          );
893                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 1\n");
894                     return true;
895                 }
896                 if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_ASSOC) {
897                     // send deassoc notification
898                     // reason = (7) class 3 received from nonassoc sta
899                     vMgrDisassocBeginSta(pDevice,
900                                          pMgmt,
901                                          (u8 *)(p802_11Header->addr2),
902                                          (WLAN_MGMT_REASON_CLASS3_NONASSOC),
903                                          &Status
904                                          );
905                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDisassocBeginSta 2\n");
906                     return true;
907                 }
908
909                 if (pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable) {
910                     // delcare received ps-poll event
911                     if (IS_CTL_PSPOLL(pbyFrame)) {
912                         pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
913                         bScheduleCommand((void *) pDevice,
914                                          WLAN_CMD_RX_PSPOLL,
915                                          NULL);
916                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 1\n");
917                     }
918                     else {
919                         // check Data PS state
920                         // if PW bit off, send out all PS bufferring packets.
921                         if (!IS_FC_POWERMGT(pbyFrame)) {
922                             pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
923                             pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
924                                 bScheduleCommand((void *) pDevice,
925                                                  WLAN_CMD_RX_PSPOLL,
926                                                  NULL);
927                             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 2\n");
928                         }
929                     }
930                 }
931                 else {
932                    if (IS_FC_POWERMGT(pbyFrame)) {
933                        pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = true;
934                        // Once if STA in PS state, enable multicast bufferring
935                        pMgmt->sNodeDBTable[0].bPSEnable = true;
936                    }
937                    else {
938                       // clear all pending PS frame.
939                       if (pMgmt->sNodeDBTable[iSANodeIndex].wEnQueueCnt > 0) {
940                           pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
941                           pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
942                         bScheduleCommand((void *) pDevice,
943                                          WLAN_CMD_RX_PSPOLL,
944                                          NULL);
945                          DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 3\n");
946
947                       }
948                    }
949                 }
950             }
951             else {
952                   vMgrDeAuthenBeginSta(pDevice,
953                                        pMgmt,
954                                        (u8 *)(p802_11Header->addr2),
955                                        (WLAN_MGMT_REASON_CLASS2_NONAUTH),
956                                        &Status
957                                        );
958                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 3\n");
959                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSID:%pM\n",
960                                 p802_11Header->addr3);
961                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR2:%pM\n",
962                                 p802_11Header->addr2);
963                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR1:%pM\n",
964                                 p802_11Header->addr1);
965                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: frame_control= %x\n", p802_11Header->frame_control);
966                     return true;
967             }
968         }
969     }
970     return false;
971
972 }
973
974 static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
975         u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
976         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
977 {
978         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
979         u32 PayloadLen = FrameSize;
980         u8 *pbyIV;
981         u8 byKeyIdx;
982         PSKeyItem pKey = NULL;
983         u8 byDecMode = KEY_CTL_WEP;
984
985     *pwRxTSC15_0 = 0;
986     *pdwRxTSC47_16 = 0;
987
988     pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
989     if ( WLAN_GET_FC_TODS(*(u16 *)pbyFrame) &&
990          WLAN_GET_FC_FROMDS(*(u16 *)pbyFrame) ) {
991          pbyIV += 6;             // 6 is 802.11 address4
992          PayloadLen -= 6;
993     }
994     byKeyIdx = (*(pbyIV+3) & 0xc0);
995     byKeyIdx >>= 6;
996     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
997
998     if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
999         (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
1000         (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
1001         (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
1002         (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
1003         if (((*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) &&
1004             (pMgmt->byCSSPK != KEY_CTL_NONE)) {
1005             // unicast pkt use pairwise key
1006             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt\n");
1007             if (KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, 0xFFFFFFFF, &pKey) == true) {
1008                 if (pMgmt->byCSSPK == KEY_CTL_TKIP)
1009                     byDecMode = KEY_CTL_TKIP;
1010                 else if (pMgmt->byCSSPK == KEY_CTL_CCMP)
1011                     byDecMode = KEY_CTL_CCMP;
1012             }
1013             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt: %d, %p\n", byDecMode, pKey);
1014         } else {
1015             // use group key
1016             KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, byKeyIdx, &pKey);
1017             if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1018                 byDecMode = KEY_CTL_TKIP;
1019             else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1020                 byDecMode = KEY_CTL_CCMP;
1021             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"group pkt: %d, %d, %p\n", byKeyIdx, byDecMode, pKey);
1022         }
1023     }
1024     // our WEP only support Default Key
1025     if (pKey == NULL) {
1026         // use default group key
1027         KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, byKeyIdx, &pKey);
1028         if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1029             byDecMode = KEY_CTL_TKIP;
1030         else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1031             byDecMode = KEY_CTL_CCMP;
1032     }
1033     *pKeyOut = pKey;
1034
1035     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
1036
1037     if (pKey == NULL) {
1038         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pKey == NULL\n");
1039         return false;
1040     }
1041     if (byDecMode != pKey->byCipherSuite) {
1042         *pKeyOut = NULL;
1043         return false;
1044     }
1045     if (byDecMode == KEY_CTL_WEP) {
1046         // handle WEP
1047         if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
1048                 (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true)) {
1049             // Software WEP
1050             // 1. 3253A
1051             // 2. WEP 256
1052
1053             PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
1054             memcpy(pDevice->abyPRNG, pbyIV, 3);
1055             memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
1056             rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
1057             rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
1058
1059             if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
1060                 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1061             }
1062         }
1063     } else if ((byDecMode == KEY_CTL_TKIP) ||
1064                (byDecMode == KEY_CTL_CCMP)) {
1065         // TKIP/AES
1066
1067         PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
1068         *pdwRxTSC47_16 = cpu_to_le32(*(u32 *)(pbyIV + 4));
1069         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
1070         if (byDecMode == KEY_CTL_TKIP) {
1071             *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
1072         } else {
1073             *pwRxTSC15_0 = cpu_to_le16(*(u16 *)pbyIV);
1074         }
1075         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
1076
1077         if ((byDecMode == KEY_CTL_TKIP) &&
1078             (pDevice->byLocalID <= REV_ID_VT3253_A1)) {
1079             // Software TKIP
1080             // 1. 3253 A
1081             struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *) (pbyFrame);
1082             TKIPvMixKey(pKey->abyKey, pMACHeader->addr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
1083             rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
1084             rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
1085             if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
1086                 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1087                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
1088             } else {
1089                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
1090                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
1091             }
1092         }
1093     }// end of TKIP/AES
1094
1095     if ((*(pbyIV+3) & 0x20) != 0)
1096         *pbExtIV = true;
1097     return true;
1098 }
1099
1100 static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
1101         u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
1102         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
1103 {
1104         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1105         struct ieee80211_hdr *pMACHeader;
1106         u32 PayloadLen = FrameSize;
1107         u8 *pbyIV;
1108         u8 byKeyIdx;
1109         u8 byDecMode = KEY_CTL_WEP;
1110
1111         *pwRxTSC15_0 = 0;
1112         *pdwRxTSC47_16 = 0;
1113
1114     pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
1115     if ( WLAN_GET_FC_TODS(*(u16 *)pbyFrame) &&
1116          WLAN_GET_FC_FROMDS(*(u16 *)pbyFrame) ) {
1117          pbyIV += 6;             // 6 is 802.11 address4
1118          PayloadLen -= 6;
1119     }
1120     byKeyIdx = (*(pbyIV+3) & 0xc0);
1121     byKeyIdx >>= 6;
1122     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
1123
1124     if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1125         byDecMode = KEY_CTL_TKIP;
1126     else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1127         byDecMode = KEY_CTL_CCMP;
1128
1129     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
1130
1131     if (byDecMode != pKey->byCipherSuite) {
1132         return false;
1133     }
1134
1135     if (byDecMode == KEY_CTL_WEP) {
1136         // handle WEP
1137         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"byDecMode == KEY_CTL_WEP\n");
1138         if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
1139                 (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true) ||
1140             (bOnFly == false)) {
1141             // Software WEP
1142             // 1. 3253A
1143             // 2. WEP 256
1144             // 3. NotOnFly
1145
1146             PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
1147             memcpy(pDevice->abyPRNG, pbyIV, 3);
1148             memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
1149             rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
1150             rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
1151
1152             if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
1153                 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1154             }
1155         }
1156     } else if ((byDecMode == KEY_CTL_TKIP) ||
1157                (byDecMode == KEY_CTL_CCMP)) {
1158         // TKIP/AES
1159
1160         PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
1161         *pdwRxTSC47_16 = cpu_to_le32(*(u32 *)(pbyIV + 4));
1162         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
1163
1164         if (byDecMode == KEY_CTL_TKIP) {
1165             *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
1166         } else {
1167             *pwRxTSC15_0 = cpu_to_le16(*(u16 *)pbyIV);
1168         }
1169         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
1170
1171         if (byDecMode == KEY_CTL_TKIP) {
1172
1173             if ((pDevice->byLocalID <= REV_ID_VT3253_A1) || (bOnFly == false)) {
1174                 // Software TKIP
1175                 // 1. 3253 A
1176                 // 2. NotOnFly
1177                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_TKIP \n");
1178                 pMACHeader = (struct ieee80211_hdr *) (pbyFrame);
1179                 TKIPvMixKey(pKey->abyKey, pMACHeader->addr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
1180                 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
1181                 rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
1182                 if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
1183                     *pbyNewRsr |= NEWRSR_DECRYPTOK;
1184                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
1185                 } else {
1186                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
1187                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
1188                 }
1189             }
1190         }
1191
1192         if (byDecMode == KEY_CTL_CCMP) {
1193             if (bOnFly == false) {
1194                 // Software CCMP
1195                 // NotOnFly
1196                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_CCMP\n");
1197                 if (AESbGenCCMP(pKey->abyKey, pbyFrame, FrameSize)) {
1198                     *pbyNewRsr |= NEWRSR_DECRYPTOK;
1199                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC compare OK!\n");
1200                 } else {
1201                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC fail!\n");
1202                 }
1203             }
1204         }
1205
1206     }// end of TKIP/AES
1207
1208     if ((*(pbyIV+3) & 0x20) != 0)
1209         *pbExtIV = true;
1210     return true;
1211 }
1212
1213 static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
1214         u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex)
1215 {
1216         struct sk_buff *skbcpy;
1217         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1218         int  bRelayAndForward = false;
1219         int bRelayOnly = false;
1220         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
1221         u16 wAID;
1222
1223     if (FrameSize > CB_MAX_BUF_SIZE)
1224         return false;
1225     // check DA
1226     if (is_multicast_ether_addr((u8 *)(skb->data+cbHeaderOffset))) {
1227        if (pMgmt->sNodeDBTable[0].bPSEnable) {
1228
1229            skbcpy = dev_alloc_skb((int)pDevice->rx_buf_sz);
1230
1231         // if any node in PS mode, buffer packet until DTIM.
1232            if (skbcpy == NULL) {
1233                DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "relay multicast no skb available \n");
1234            }
1235            else {
1236                skbcpy->dev = pDevice->dev;
1237                skbcpy->len = FrameSize;
1238                memcpy(skbcpy->data, skb->data+cbHeaderOffset, FrameSize);
1239                skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skbcpy);
1240                pMgmt->sNodeDBTable[0].wEnQueueCnt++;
1241                // set tx map
1242                pMgmt->abyPSTxMap[0] |= byMask[0];
1243            }
1244        }
1245        else {
1246            bRelayAndForward = true;
1247        }
1248     }
1249     else {
1250         // check if relay
1251         if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data+cbHeaderOffset), &iDANodeIndex)) {
1252             if (pMgmt->sNodeDBTable[iDANodeIndex].eNodeState >= NODE_ASSOC) {
1253                 if (pMgmt->sNodeDBTable[iDANodeIndex].bPSEnable) {
1254                     // queue this skb until next PS tx, and then release.
1255
1256                         skb->data += cbHeaderOffset;
1257                         skb->tail += cbHeaderOffset;
1258                     skb_put(skb, FrameSize);
1259                     skb_queue_tail(&pMgmt->sNodeDBTable[iDANodeIndex].sTxPSQueue, skb);
1260
1261                     pMgmt->sNodeDBTable[iDANodeIndex].wEnQueueCnt++;
1262                     wAID = pMgmt->sNodeDBTable[iDANodeIndex].wAID;
1263                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
1264                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "relay: index= %d, pMgmt->abyPSTxMap[%d]= %d\n",
1265                                iDANodeIndex, (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
1266                     return true;
1267                 }
1268                 else {
1269                     bRelayOnly = true;
1270                 }
1271             }
1272         }
1273     }
1274
1275     if (bRelayOnly || bRelayAndForward) {
1276         // relay this packet right now
1277         if (bRelayAndForward)
1278             iDANodeIndex = 0;
1279
1280         if ((pDevice->uAssocCount > 1) && (iDANodeIndex >= 0)) {
1281                 bRelayPacketSend(pDevice, (u8 *) (skb->data + cbHeaderOffset),
1282                                  FrameSize, (unsigned int) iDANodeIndex);
1283         }
1284
1285         if (bRelayOnly)
1286             return false;
1287     }
1288     // none associate, don't forward
1289     if (pDevice->uAssocCount == 0)
1290         return false;
1291
1292     return true;
1293 }
1294
1295 void RXvWorkItem(struct work_struct *work)
1296 {
1297         struct vnt_private *pDevice =
1298                 container_of(work, struct vnt_private, read_work_item);
1299         int ntStatus;
1300         struct vnt_rcb *pRCB = NULL;
1301
1302         if (pDevice->Flags & fMP_DISCONNECTED)
1303                 return;
1304
1305     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Polling Thread\n");
1306     spin_lock_irq(&pDevice->lock);
1307
1308     while ((pDevice->Flags & fMP_POST_READS) &&
1309             MP_IS_READY(pDevice) &&
1310             (pDevice->NumRecvFreeList != 0) ) {
1311         pRCB = pDevice->FirstRecvFreeList;
1312         pDevice->NumRecvFreeList--;
1313         DequeueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList);
1314         ntStatus = PIPEnsBulkInUsbRead(pDevice, pRCB);
1315     }
1316     pDevice->bIsRxWorkItemQueued = false;
1317     spin_unlock_irq(&pDevice->lock);
1318
1319 }
1320
1321 void RXvFreeRCB(struct vnt_rcb *pRCB, int bReAllocSkb)
1322 {
1323         struct vnt_private *pDevice = pRCB->pDevice;
1324
1325     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->RXvFreeRCB\n");
1326
1327         if (bReAllocSkb == false) {
1328                 kfree_skb(pRCB->skb);
1329                 bReAllocSkb = true;
1330         }
1331
1332     if (bReAllocSkb == true) {
1333         pRCB->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
1334         // todo error handling
1335         if (pRCB->skb == NULL) {
1336             DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to re-alloc rx skb\n");
1337         }else {
1338             pRCB->skb->dev = pDevice->dev;
1339         }
1340     }
1341     //
1342     // Insert the RCB back in the Recv free list
1343     //
1344     EnqueueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList, pRCB);
1345     pDevice->NumRecvFreeList++;
1346
1347     if ((pDevice->Flags & fMP_POST_READS) && MP_IS_READY(pDevice) &&
1348         (pDevice->bIsRxWorkItemQueued == false) ) {
1349
1350         pDevice->bIsRxWorkItemQueued = true;
1351         schedule_work(&pDevice->read_work_item);
1352     }
1353     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----RXFreeRCB %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
1354 }
1355
1356 void RXvMngWorkItem(struct work_struct *work)
1357 {
1358         struct vnt_private *pDevice =
1359                 container_of(work, struct vnt_private, rx_mng_work_item);
1360         struct vnt_rcb *pRCB = NULL;
1361         struct vnt_rx_mgmt *pRxPacket;
1362         int bReAllocSkb = false;
1363
1364         if (pDevice->Flags & fMP_DISCONNECTED)
1365                 return;
1366
1367     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Mng Thread\n");
1368
1369     spin_lock_irq(&pDevice->lock);
1370     while (pDevice->NumRecvMngList!=0)
1371     {
1372         pRCB = pDevice->FirstRecvMngList;
1373         pDevice->NumRecvMngList--;
1374         DequeueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList);
1375         if(!pRCB){
1376             break;
1377         }
1378         pRxPacket = &(pRCB->sMngPacket);
1379         vMgrRxManagePacket(pDevice, &pDevice->vnt_mgmt, pRxPacket);
1380         pRCB->Ref--;
1381         if(pRCB->Ref == 0) {
1382             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"RxvFreeMng %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
1383             RXvFreeRCB(pRCB, bReAllocSkb);
1384         } else {
1385             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Rx Mng Only we have the right to free RCB\n");
1386         }
1387     }
1388
1389         pDevice->bIsRxMngWorkItemQueued = false;
1390         spin_unlock_irq(&pDevice->lock);
1391
1392 }
1393