]> Pileus Git - ~andy/linux/blob - drivers/staging/vt6656/dpc.c
staging: vt6656: sparse fixes: dpc.c missing dpc.h
[~andy/linux] / drivers / staging / vt6656 / dpc.c
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: dpc.c
20  *
21  * Purpose: handle dpc rx functions
22  *
23  * Author: Lyndon Chen
24  *
25  * Date: May 20, 2003
26  *
27  * Functions:
28  *      device_receive_frame - Rcv 802.11 frame function
29  *      s_bAPModeRxCtl- AP Rcv frame filer Ctl.
30  *      s_bAPModeRxData- AP Rcv data frame handle
31  *      s_bHandleRxEncryption- Rcv decrypted data via on-fly
32  *      s_bHostWepRxEncryption- Rcv encrypted data via host
33  *      s_byGetRateIdx- get rate index
34  *      s_vGetDASA- get data offset
35  *      s_vProcessRxMACHeader- Rcv 802.11 and translate to 802.3
36  *
37  * Revision History:
38  *
39  */
40
41 #include "dpc.h"
42 #include "device.h"
43 #include "rxtx.h"
44 #include "tether.h"
45 #include "card.h"
46 #include "bssdb.h"
47 #include "mac.h"
48 #include "baseband.h"
49 #include "michael.h"
50 #include "tkip.h"
51 #include "tcrc.h"
52 #include "wctl.h"
53 #include "hostap.h"
54 #include "rf.h"
55 #include "iowpa.h"
56 #include "aes_ccmp.h"
57 #include "datarate.h"
58 #include "usbpipe.h"
59
60 //static int          msglevel                =MSG_LEVEL_DEBUG;
61 static int          msglevel                =MSG_LEVEL_INFO;
62
63 static const u8 acbyRxRate[MAX_RATE] =
64 {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
65
66 static u8 s_byGetRateIdx(u8 byRate);
67
68 static
69 void
70 s_vGetDASA(
71       u8 * pbyRxBufferAddr,
72      unsigned int *pcbHeaderSize,
73      struct ethhdr *psEthHeader
74     );
75
76 static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
77         u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
78         u32 *pcbHeadSize);
79
80 static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
81         s32 iSANodeIndex);
82
83 static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
84         u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex);
85
86 static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
87         u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
88         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
89
90 static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
91         u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
92         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16);
93
94 /*+
95  *
96  * Description:
97  *    Translate Rcv 802.11 header to 802.3 header with Rx buffer
98  *
99  * Parameters:
100  *  In:
101  *      pDevice
102  *      dwRxBufferAddr  - Address of Rcv Buffer
103  *      cbPacketSize    - Rcv Packet size
104  *      bIsWEP          - If Rcv with WEP
105  *  Out:
106  *      pcbHeaderSize   - 802.11 header size
107  *
108  * Return Value: None
109  *
110 -*/
111
112 static void s_vProcessRxMACHeader(struct vnt_private *pDevice,
113         u8 *pbyRxBufferAddr, u32 cbPacketSize, int bIsWEP, int bExtIV,
114         u32 *pcbHeadSize)
115 {
116         u8 *pbyRxBuffer;
117         u32 cbHeaderSize = 0;
118         u16 *pwType;
119         struct ieee80211_hdr *pMACHeader;
120         int ii;
121
122     pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
123
124     s_vGetDASA((u8 *)pMACHeader, &cbHeaderSize, &pDevice->sRxEthHeader);
125
126     if (bIsWEP) {
127         if (bExtIV) {
128             // strip IV&ExtIV , add 8 byte
129             cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 8);
130         } else {
131             // strip IV , add 4 byte
132             cbHeaderSize += (WLAN_HDR_ADDR3_LEN + 4);
133         }
134     }
135     else {
136         cbHeaderSize += WLAN_HDR_ADDR3_LEN;
137     };
138
139     pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
140     if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_Bridgetunnel)) {
141         cbHeaderSize += 6;
142     } else if (ether_addr_equal(pbyRxBuffer, pDevice->abySNAP_RFC1042)) {
143         cbHeaderSize += 6;
144         pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
145         if ((*pwType == cpu_to_be16(ETH_P_IPX)) ||
146             (*pwType == cpu_to_le16(0xF380))) {
147                 cbHeaderSize -= 8;
148             pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
149             if (bIsWEP) {
150                 if (bExtIV) {
151                     *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8);    // 8 is IV&ExtIV
152                 } else {
153                     *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4);    // 4 is IV
154                 }
155             }
156             else {
157                 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
158             }
159         }
160     }
161     else {
162         cbHeaderSize -= 2;
163         pwType = (u16 *) (pbyRxBufferAddr + cbHeaderSize);
164         if (bIsWEP) {
165             if (bExtIV) {
166                 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 8);    // 8 is IV&ExtIV
167             } else {
168                 *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN - 4);    // 4 is IV
169             }
170         }
171         else {
172             *pwType = htons(cbPacketSize - WLAN_HDR_ADDR3_LEN);
173         }
174     }
175
176     cbHeaderSize -= (ETH_ALEN * 2);
177     pbyRxBuffer = (u8 *) (pbyRxBufferAddr + cbHeaderSize);
178     for (ii = 0; ii < ETH_ALEN; ii++)
179         *pbyRxBuffer++ = pDevice->sRxEthHeader.h_dest[ii];
180     for (ii = 0; ii < ETH_ALEN; ii++)
181         *pbyRxBuffer++ = pDevice->sRxEthHeader.h_source[ii];
182
183     *pcbHeadSize = cbHeaderSize;
184 }
185
186 static u8 s_byGetRateIdx(u8 byRate)
187 {
188     u8    byRateIdx;
189
190     for (byRateIdx = 0; byRateIdx <MAX_RATE ; byRateIdx++) {
191         if (acbyRxRate[byRateIdx%MAX_RATE] == byRate)
192             return byRateIdx;
193     }
194     return 0;
195 }
196
197 static
198 void
199 s_vGetDASA (
200       u8 * pbyRxBufferAddr,
201      unsigned int *pcbHeaderSize,
202      struct ethhdr *psEthHeader
203     )
204 {
205         unsigned int            cbHeaderSize = 0;
206         struct ieee80211_hdr *pMACHeader;
207         int             ii;
208
209         pMACHeader = (struct ieee80211_hdr *) (pbyRxBufferAddr + cbHeaderSize);
210
211         if ((pMACHeader->frame_control & FC_TODS) == 0) {
212                 if (pMACHeader->frame_control & FC_FROMDS) {
213                         for (ii = 0; ii < ETH_ALEN; ii++) {
214                                 psEthHeader->h_dest[ii] =
215                                         pMACHeader->addr1[ii];
216                                 psEthHeader->h_source[ii] =
217                                         pMACHeader->addr3[ii];
218                         }
219                 } else {
220                         /* IBSS mode */
221                         for (ii = 0; ii < ETH_ALEN; ii++) {
222                                 psEthHeader->h_dest[ii] =
223                                         pMACHeader->addr1[ii];
224                                 psEthHeader->h_source[ii] =
225                                         pMACHeader->addr2[ii];
226                         }
227                 }
228         } else {
229                 /* Is AP mode.. */
230                 if (pMACHeader->frame_control & FC_FROMDS) {
231                         for (ii = 0; ii < ETH_ALEN; ii++) {
232                                 psEthHeader->h_dest[ii] =
233                                         pMACHeader->addr3[ii];
234                                 psEthHeader->h_source[ii] =
235                                         pMACHeader->addr4[ii];
236                                 cbHeaderSize += 6;
237                         }
238                 } else {
239                         for (ii = 0; ii < ETH_ALEN; ii++) {
240                                 psEthHeader->h_dest[ii] =
241                                         pMACHeader->addr3[ii];
242                                 psEthHeader->h_source[ii] =
243                                         pMACHeader->addr2[ii];
244                         }
245                 }
246         };
247     *pcbHeaderSize = cbHeaderSize;
248 }
249
250 int RXbBulkInProcessData(struct vnt_private *pDevice, struct vnt_rcb *pRCB,
251         unsigned long BytesToIndicate)
252 {
253         struct net_device_stats *pStats = &pDevice->stats;
254         struct sk_buff *skb;
255         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
256         struct vnt_rx_mgmt *pRxPacket = &pMgmt->sRxPacket;
257         struct ieee80211_hdr *p802_11Header;
258         u8 *pbyRsr, *pbyNewRsr, *pbyRSSI, *pbyFrame;
259         u64 *pqwTSFTime;
260         u32 bDeFragRx = false;
261         u32 cbHeaderOffset, cbIVOffset;
262         u32 FrameSize;
263         u16 wEtherType = 0;
264         s32 iSANodeIndex = -1, iDANodeIndex = -1;
265         int ii;
266         u8 *pbyRxSts, *pbyRxRate, *pbySQ, *pby3SQ;
267         u32 cbHeaderSize;
268         PSKeyItem pKey = NULL;
269         u16 wRxTSC15_0 = 0;
270         u32 dwRxTSC47_16 = 0;
271         SKeyItem STempKey;
272         /* signed long ldBm = 0; */
273         int bIsWEP = false; int bExtIV = false;
274         u32 dwWbkStatus;
275         struct vnt_rcb *pRCBIndicate = pRCB;
276         u8 *pbyDAddress;
277         u16 *pwPLCP_Length;
278         u8 abyVaildRate[MAX_RATE]
279                 = {2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108};
280         u16 wPLCPwithPadding;
281         struct ieee80211_hdr *pMACHeader;
282         int bRxeapol_key = false;
283
284     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---------- RXbBulkInProcessData---\n");
285
286     skb = pRCB->skb;
287
288         /* [31:16]RcvByteCount ( not include 4-byte Status ) */
289         dwWbkStatus = *((u32 *)(skb->data));
290         FrameSize = dwWbkStatus >> 16;
291         FrameSize += 4;
292
293         if (BytesToIndicate != FrameSize) {
294                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"------- WRONG Length 1\n");
295                 pStats->rx_frame_errors++;
296                 return false;
297         }
298
299     if ((BytesToIndicate > 2372) || (BytesToIndicate <= 40)) {
300         // Frame Size error drop this packet.
301         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "---------- WRONG Length 2\n");
302         pStats->rx_frame_errors++;
303         return false;
304     }
305
306     pbyDAddress = (u8 *)(skb->data);
307     pbyRxSts = pbyDAddress+4;
308     pbyRxRate = pbyDAddress+5;
309
310     //real Frame Size = USBFrameSize -4WbkStatus - 4RxStatus - 8TSF - 4RSR - 4SQ3 - ?Padding
311     //if SQ3 the range is 24~27, if no SQ3 the range is 20~23
312     //real Frame size in PLCPLength field.
313     pwPLCP_Length = (u16 *) (pbyDAddress + 6);
314     //Fix hardware bug => PLCP_Length error
315     if ( ((BytesToIndicate - (*pwPLCP_Length)) > 27) ||
316          ((BytesToIndicate - (*pwPLCP_Length)) < 24) ||
317          (BytesToIndicate < (*pwPLCP_Length)) ) {
318
319         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong PLCP Length %x\n", (int) *pwPLCP_Length);
320         pStats->rx_frame_errors++;
321         return false;
322     }
323     for ( ii=RATE_1M;ii<MAX_RATE;ii++) {
324         if ( *pbyRxRate == abyVaildRate[ii] ) {
325             break;
326         }
327     }
328     if ( ii==MAX_RATE ) {
329         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Wrong RxRate %x\n",(int) *pbyRxRate);
330         return false;
331     }
332
333     wPLCPwithPadding = ( (*pwPLCP_Length / 4) + ( (*pwPLCP_Length % 4) ? 1:0 ) ) *4;
334
335         pqwTSFTime = (u64 *)(pbyDAddress + 8 + wPLCPwithPadding);
336   if(pDevice->byBBType == BB_TYPE_11G)  {
337       pby3SQ = pbyDAddress + 8 + wPLCPwithPadding + 12;
338       pbySQ = pby3SQ;
339     }
340   else {
341    pbySQ = pbyDAddress + 8 + wPLCPwithPadding + 8;
342    pby3SQ = pbySQ;
343   }
344     pbyNewRsr = pbyDAddress + 8 + wPLCPwithPadding + 9;
345     pbyRSSI = pbyDAddress + 8 + wPLCPwithPadding + 10;
346     pbyRsr = pbyDAddress + 8 + wPLCPwithPadding + 11;
347
348     FrameSize = *pwPLCP_Length;
349
350     pbyFrame = pbyDAddress + 8;
351
352     pMACHeader = (struct ieee80211_hdr *) pbyFrame;
353
354 //mike add: to judge if current AP is activated?
355     if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
356         (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
357        if (pMgmt->sNodeDBTable[0].bActive) {
358          if (ether_addr_equal(pMgmt->abyCurrBSSID, pMACHeader->addr2)) {
359             if (pMgmt->sNodeDBTable[0].uInActiveCount != 0)
360                   pMgmt->sNodeDBTable[0].uInActiveCount = 0;
361            }
362        }
363     }
364
365     if (!is_multicast_ether_addr(pMACHeader->addr1)) {
366         if (WCTLbIsDuplicate(&(pDevice->sDupRxCache), (struct ieee80211_hdr *) pbyFrame)) {
367             return false;
368         }
369
370         if (!ether_addr_equal(pDevice->abyCurrentNetAddr, pMACHeader->addr1)) {
371                 return false;
372         }
373     }
374
375     // Use for TKIP MIC
376     s_vGetDASA(pbyFrame, &cbHeaderSize, &pDevice->sRxEthHeader);
377
378     if (ether_addr_equal((u8 *)pDevice->sRxEthHeader.h_source,
379                          pDevice->abyCurrentNetAddr))
380         return false;
381
382     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) || (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA)) {
383         if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
384             p802_11Header = (struct ieee80211_hdr *) (pbyFrame);
385             // get SA NodeIndex
386             if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(p802_11Header->addr2), &iSANodeIndex)) {
387                 pMgmt->sNodeDBTable[iSANodeIndex].ulLastRxJiffer = jiffies;
388                 pMgmt->sNodeDBTable[iSANodeIndex].uInActiveCount = 0;
389             }
390         }
391     }
392
393     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
394         if (s_bAPModeRxCtl(pDevice, pbyFrame, iSANodeIndex) == true) {
395             return false;
396         }
397     }
398
399     if (IS_FC_WEP(pbyFrame)) {
400         bool     bRxDecryOK = false;
401
402         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"rx WEP pkt\n");
403         bIsWEP = true;
404         if ((pDevice->bEnableHostWEP) && (iSANodeIndex >= 0)) {
405             pKey = &STempKey;
406             pKey->byCipherSuite = pMgmt->sNodeDBTable[iSANodeIndex].byCipherSuite;
407             pKey->dwKeyIndex = pMgmt->sNodeDBTable[iSANodeIndex].dwKeyIndex;
408             pKey->uKeyLength = pMgmt->sNodeDBTable[iSANodeIndex].uWepKeyLength;
409             pKey->dwTSC47_16 = pMgmt->sNodeDBTable[iSANodeIndex].dwTSC47_16;
410             pKey->wTSC15_0 = pMgmt->sNodeDBTable[iSANodeIndex].wTSC15_0;
411             memcpy(pKey->abyKey,
412                 &pMgmt->sNodeDBTable[iSANodeIndex].abyWepKey[0],
413                 pKey->uKeyLength
414                 );
415
416             bRxDecryOK = s_bHostWepRxEncryption(pDevice,
417                                                 pbyFrame,
418                                                 FrameSize,
419                                                 pbyRsr,
420                                                 pMgmt->sNodeDBTable[iSANodeIndex].bOnFly,
421                                                 pKey,
422                                                 pbyNewRsr,
423                                                 &bExtIV,
424                                                 &wRxTSC15_0,
425                                                 &dwRxTSC47_16);
426         } else {
427             bRxDecryOK = s_bHandleRxEncryption(pDevice,
428                                                 pbyFrame,
429                                                 FrameSize,
430                                                 pbyRsr,
431                                                 pbyNewRsr,
432                                                 &pKey,
433                                                 &bExtIV,
434                                                 &wRxTSC15_0,
435                                                 &dwRxTSC47_16);
436         }
437
438         if (bRxDecryOK) {
439             if ((*pbyNewRsr & NEWRSR_DECRYPTOK) == 0) {
440                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV Fail\n");
441                 if ( (pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
442                     (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
443                     (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
444                     (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
445                     (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
446                 }
447                 return false;
448             }
449         } else {
450             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"WEP Func Fail\n");
451             return false;
452         }
453         if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_CCMP))
454             FrameSize -= 8;         // Message Integrity Code
455         else
456             FrameSize -= 4;         // 4 is ICV
457     }
458
459     //
460     // RX OK
461     //
462     /* remove the FCS/CRC length */
463     FrameSize -= ETH_FCS_LEN;
464
465     if ( !(*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) && // unicast address
466         (IS_FRAGMENT_PKT((pbyFrame)))
467         ) {
468         // defragment
469         bDeFragRx = WCTLbHandleFragment(pDevice, (struct ieee80211_hdr *) (pbyFrame), FrameSize, bIsWEP, bExtIV);
470         if (bDeFragRx) {
471             // defrag complete
472             // TODO skb, pbyFrame
473             skb = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].skb;
474             FrameSize = pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx].cbFrameLength;
475             pbyFrame = skb->data + 8;
476         }
477         else {
478             return false;
479         }
480     }
481
482     //
483     // Management & Control frame Handle
484     //
485     if ((IS_TYPE_DATA((pbyFrame))) == false) {
486         // Handle Control & Manage Frame
487
488         if (IS_TYPE_MGMT((pbyFrame))) {
489             u8 * pbyData1;
490             u8 * pbyData2;
491
492             pRxPacket = &(pRCB->sMngPacket);
493             pRxPacket->p80211Header = (PUWLAN_80211HDR)(pbyFrame);
494             pRxPacket->cbMPDULen = FrameSize;
495             pRxPacket->uRSSI = *pbyRSSI;
496             pRxPacket->bySQ = *pbySQ;
497                 pRxPacket->qwLocalTSF = cpu_to_le64(*pqwTSFTime);
498             if (bIsWEP) {
499                 // strip IV
500                 pbyData1 = WLAN_HDR_A3_DATA_PTR(pbyFrame);
501                 pbyData2 = WLAN_HDR_A3_DATA_PTR(pbyFrame) + 4;
502                 for (ii = 0; ii < (FrameSize - 4); ii++) {
503                     *pbyData1 = *pbyData2;
504                      pbyData1++;
505                      pbyData2++;
506                 }
507             }
508
509             pRxPacket->byRxRate = s_byGetRateIdx(*pbyRxRate);
510
511             if ( *pbyRxSts == 0 ) {
512                 //Discard beacon packet which channel is 0
513                 if ( (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_BEACON) ||
514                      (WLAN_GET_FC_FSTYPE((pRxPacket->p80211Header->sA3.wFrameCtl)) == WLAN_FSTYPE_PROBERESP) ) {
515                         return false;
516                 }
517             }
518             pRxPacket->byRxChannel = (*pbyRxSts) >> 2;
519
520             // hostap Deamon handle 802.11 management
521             if (pDevice->bEnableHostapd) {
522                     skb->dev = pDevice->apdev;
523                     //skb->data += 4;
524                     //skb->tail += 4;
525                     skb->data += 8;
526                     skb->tail += 8;
527                 skb_put(skb, FrameSize);
528                 skb_reset_mac_header(skb);
529                     skb->pkt_type = PACKET_OTHERHOST;
530                 skb->protocol = htons(ETH_P_802_2);
531                     memset(skb->cb, 0, sizeof(skb->cb));
532                     netif_rx(skb);
533                 return true;
534                 }
535
536             //
537             // Insert the RCB in the Recv Mng list
538             //
539             EnqueueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList, pRCBIndicate);
540             pDevice->NumRecvMngList++;
541             if ( bDeFragRx == false) {
542                 pRCB->Ref++;
543             }
544             if (pDevice->bIsRxMngWorkItemQueued == false) {
545                 pDevice->bIsRxMngWorkItemQueued = true;
546                 schedule_work(&pDevice->rx_mng_work_item);
547             }
548
549         }
550         else {
551             // Control Frame
552         };
553         return false;
554     }
555     else {
556         if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
557             //In AP mode, hw only check addr1(BSSID or RA) if equal to local MAC.
558             if ( !(*pbyRsr & RSR_BSSIDOK)) {
559                 if (bDeFragRx) {
560                     if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
561                         DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
562                         pDevice->dev->name);
563                     }
564                 }
565                 return false;
566             }
567         }
568         else {
569             // discard DATA packet while not associate || BSSID error
570             if ((pDevice->bLinkPass == false) ||
571                 !(*pbyRsr & RSR_BSSIDOK)) {
572                 if (bDeFragRx) {
573                     if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
574                         DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
575                         pDevice->dev->name);
576                     }
577                 }
578                 return false;
579             }
580    //mike add:station mode check eapol-key challenge--->
581           {
582             u8  Protocol_Version;    //802.1x Authentication
583             u8  Packet_Type;           //802.1x Authentication
584             u8  Descriptor_type;
585              u16 Key_info;
586               if (bIsWEP)
587                   cbIVOffset = 8;
588               else
589                   cbIVOffset = 0;
590               wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
591                           skb->data[cbIVOffset + 8 + 24 + 6 + 1];
592               Protocol_Version = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1];
593               Packet_Type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1];
594              if (wEtherType == ETH_P_PAE) {         //Protocol Type in LLC-Header
595                   if(((Protocol_Version==1) ||(Protocol_Version==2)) &&
596                      (Packet_Type==3)) {  //802.1x OR eapol-key challenge frame receive
597                         bRxeapol_key = true;
598                       Descriptor_type = skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2];
599                       Key_info = (skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+1]<<8) |skb->data[cbIVOffset + 8 + 24 + 6 + 1 +1+1+1+2+2] ;
600                       if(Descriptor_type==2) {    //RSN
601                          //  printk("WPA2_Rx_eapol-key_info<-----:%x\n",Key_info);
602                       }
603                      else  if(Descriptor_type==254) {
604                         //  printk("WPA_Rx_eapol-key_info<-----:%x\n",Key_info);
605                      }
606                   }
607               }
608           }
609     //mike add:station mode check eapol-key challenge<---
610         }
611     }
612
613 // Data frame Handle
614
615     if (pDevice->bEnablePSMode) {
616         if (IS_FC_MOREDATA((pbyFrame))) {
617             if (*pbyRsr & RSR_ADDROK) {
618                 //PSbSendPSPOLL((PSDevice)pDevice);
619             }
620         }
621         else {
622             if (pMgmt->bInTIMWake == true) {
623                 pMgmt->bInTIMWake = false;
624             }
625         }
626     }
627
628     // Now it only supports 802.11g Infrastructure Mode, and support rate must up to 54 Mbps
629     if (pDevice->bDiversityEnable && (FrameSize>50) &&
630        (pDevice->eOPMode == OP_MODE_INFRASTRUCTURE) &&
631        (pDevice->bLinkPass == true)) {
632         BBvAntennaDiversity(pDevice, s_byGetRateIdx(*pbyRxRate), 0);
633     }
634
635     // ++++++++ For BaseBand Algorithm +++++++++++++++
636     pDevice->uCurrRSSI = *pbyRSSI;
637     pDevice->byCurrSQ = *pbySQ;
638
639     // todo
640 /*
641     if ((*pbyRSSI != 0) &&
642         (pMgmt->pCurrBSS!=NULL)) {
643         RFvRSSITodBm(pDevice, *pbyRSSI, &ldBm);
644         // Monitor if RSSI is too strong.
645         pMgmt->pCurrBSS->byRSSIStatCnt++;
646         pMgmt->pCurrBSS->byRSSIStatCnt %= RSSI_STAT_COUNT;
647         pMgmt->pCurrBSS->ldBmAverage[pMgmt->pCurrBSS->byRSSIStatCnt] = ldBm;
648         for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
649                 if (pMgmt->pCurrBSS->ldBmAverage[ii] != 0) {
650                         pMgmt->pCurrBSS->ldBmMAX =
651                                 max(pMgmt->pCurrBSS->ldBmAverage[ii], ldBm);
652                 }
653         }
654     }
655 */
656
657     // -----------------------------------------------
658
659     if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->bEnable8021x == true)){
660         u8    abyMacHdr[24];
661
662         // Only 802.1x packet incoming allowed
663         if (bIsWEP)
664             cbIVOffset = 8;
665         else
666             cbIVOffset = 0;
667         wEtherType = (skb->data[cbIVOffset + 8 + 24 + 6] << 8) |
668                     skb->data[cbIVOffset + 8 + 24 + 6 + 1];
669
670             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"wEtherType = %04x \n", wEtherType);
671         if (wEtherType == ETH_P_PAE) {
672             skb->dev = pDevice->apdev;
673
674             if (bIsWEP == true) {
675                 // strip IV header(8)
676                 memcpy(&abyMacHdr[0], (skb->data + 8), 24);
677                 memcpy((skb->data + 8 + cbIVOffset), &abyMacHdr[0], 24);
678             }
679
680             skb->data +=  (cbIVOffset + 8);
681             skb->tail +=  (cbIVOffset + 8);
682             skb_put(skb, FrameSize);
683             skb_reset_mac_header(skb);
684             skb->pkt_type = PACKET_OTHERHOST;
685             skb->protocol = htons(ETH_P_802_2);
686             memset(skb->cb, 0, sizeof(skb->cb));
687             netif_rx(skb);
688             return true;
689
690         }
691         // check if 802.1x authorized
692         if (!(pMgmt->sNodeDBTable[iSANodeIndex].dwFlags & WLAN_STA_AUTHORIZED))
693             return false;
694     }
695
696     if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
697         if (bIsWEP) {
698             FrameSize -= 8;  //MIC
699         }
700     }
701
702     //--------------------------------------------------------------------------------
703     // Soft MIC
704     if ((pKey != NULL) && (pKey->byCipherSuite == KEY_CTL_TKIP)) {
705         if (bIsWEP) {
706             u32 *          pdwMIC_L;
707             u32 *          pdwMIC_R;
708             u32           dwMIC_Priority;
709             u32           dwMICKey0 = 0, dwMICKey1 = 0;
710             u32           dwLocalMIC_L = 0;
711             u32           dwLocalMIC_R = 0;
712
713             if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
714                 dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
715                 dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
716             }
717             else {
718                 if (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) {
719                     dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
720                     dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
721                 } else if ((pKey->dwKeyIndex & BIT28) == 0) {
722                     dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[16]));
723                     dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[20]));
724                 } else {
725                     dwMICKey0 = cpu_to_le32(*(u32 *)(&pKey->abyKey[24]));
726                     dwMICKey1 = cpu_to_le32(*(u32 *)(&pKey->abyKey[28]));
727                 }
728             }
729
730             MIC_vInit(dwMICKey0, dwMICKey1);
731             MIC_vAppend((u8 *)&(pDevice->sRxEthHeader.h_dest[0]), 12);
732             dwMIC_Priority = 0;
733             MIC_vAppend((u8 *)&dwMIC_Priority, 4);
734             // 4 is Rcv buffer header, 24 is MAC Header, and 8 is IV and Ext IV.
735             MIC_vAppend((u8 *)(skb->data + 8 + WLAN_HDR_ADDR3_LEN + 8),
736                         FrameSize - WLAN_HDR_ADDR3_LEN - 8);
737             MIC_vGetMIC(&dwLocalMIC_L, &dwLocalMIC_R);
738             MIC_vUnInit();
739
740             pdwMIC_L = (u32 *)(skb->data + 8 + FrameSize);
741             pdwMIC_R = (u32 *)(skb->data + 8 + FrameSize + 4);
742
743             if ((cpu_to_le32(*pdwMIC_L) != dwLocalMIC_L) || (cpu_to_le32(*pdwMIC_R) != dwLocalMIC_R) ||
744                 (pDevice->bRxMICFail == true)) {
745                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"MIC comparison is fail!\n");
746                 pDevice->bRxMICFail = false;
747                 if (bDeFragRx) {
748                     if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
749                         DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
750                             pDevice->dev->name);
751                     }
752                 }
753                                 //send event to wpa_supplicant
754                                 //if(pDevice->bWPASuppWextEnabled == true)
755                                 {
756                                         union iwreq_data wrqu;
757                                         struct iw_michaelmicfailure ev;
758                                         int keyidx = pbyFrame[cbHeaderSize+3] >> 6; //top two-bits
759                                         memset(&ev, 0, sizeof(ev));
760                                         ev.flags = keyidx & IW_MICFAILURE_KEY_ID;
761                                         if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
762                                                         (pMgmt->eCurrState == WMAC_STATE_ASSOC) &&
763                                                                 (*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) {
764                                                 ev.flags |= IW_MICFAILURE_PAIRWISE;
765                                         } else {
766                                                 ev.flags |= IW_MICFAILURE_GROUP;
767                                         }
768
769                                         ev.src_addr.sa_family = ARPHRD_ETHER;
770                                         memcpy(ev.src_addr.sa_data, pMACHeader->addr2, ETH_ALEN);
771                                         memset(&wrqu, 0, sizeof(wrqu));
772                                         wrqu.data.length = sizeof(ev);
773                         PRINT_K("wireless_send_event--->IWEVMICHAELMICFAILURE\n");
774                                         wireless_send_event(pDevice->dev, IWEVMICHAELMICFAILURE, &wrqu, (char *)&ev);
775
776                                 }
777
778                 return false;
779
780             }
781         }
782     } //---end of SOFT MIC-----------------------------------------------------------------------
783
784     // ++++++++++ Reply Counter Check +++++++++++++
785
786     if ((pKey != NULL) && ((pKey->byCipherSuite == KEY_CTL_TKIP) ||
787                            (pKey->byCipherSuite == KEY_CTL_CCMP))) {
788         if (bIsWEP) {
789             u16        wLocalTSC15_0 = 0;
790             u32       dwLocalTSC47_16 = 0;
791             unsigned long long       RSC = 0;
792             // endian issues
793             RSC = *((unsigned long long *) &(pKey->KeyRSC));
794             wLocalTSC15_0 = (u16) RSC;
795             dwLocalTSC47_16 = (u32) (RSC>>16);
796
797             RSC = dwRxTSC47_16;
798             RSC <<= 16;
799             RSC += wRxTSC15_0;
800                 memcpy(&(pKey->KeyRSC), &RSC,  sizeof(u64));
801
802                 if (pDevice->vnt_mgmt.eCurrMode == WMAC_MODE_ESS_STA &&
803                         pDevice->vnt_mgmt.eCurrState == WMAC_STATE_ASSOC) {
804                         /* check RSC */
805                 if ( (wRxTSC15_0 < wLocalTSC15_0) &&
806                      (dwRxTSC47_16 <= dwLocalTSC47_16) &&
807                      !((dwRxTSC47_16 == 0) && (dwLocalTSC47_16 == 0xFFFFFFFF))) {
808                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC is illegal~~!\n ");
809
810                     if (bDeFragRx) {
811                         if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
812                             DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
813                                 pDevice->dev->name);
814                         }
815                     }
816                     return false;
817                 }
818             }
819         }
820     } // ----- End of Reply Counter Check --------------------------
821
822     s_vProcessRxMACHeader(pDevice, (u8 *)(skb->data+8), FrameSize, bIsWEP, bExtIV, &cbHeaderOffset);
823     FrameSize -= cbHeaderOffset;
824     cbHeaderOffset += 8;        // 8 is Rcv buffer header
825
826     // Null data, framesize = 12
827     if (FrameSize < 12)
828         return false;
829
830     if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
831         if (s_bAPModeRxData(pDevice,
832                             skb,
833                             FrameSize,
834                             cbHeaderOffset,
835                             iSANodeIndex,
836                             iDANodeIndex
837                             ) == false) {
838
839             if (bDeFragRx) {
840                 if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
841                     DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
842                     pDevice->dev->name);
843                 }
844             }
845             return false;
846         }
847
848     }
849
850         skb->data += cbHeaderOffset;
851         skb->tail += cbHeaderOffset;
852     skb_put(skb, FrameSize);
853     skb->protocol=eth_type_trans(skb, skb->dev);
854     skb->ip_summed=CHECKSUM_NONE;
855     pStats->rx_bytes +=skb->len;
856     pStats->rx_packets++;
857     netif_rx(skb);
858     if (bDeFragRx) {
859         if (!device_alloc_frag_buf(pDevice, &pDevice->sRxDFCB[pDevice->uCurrentDFCBIdx])) {
860             DBG_PRT(MSG_LEVEL_ERR,KERN_ERR "%s: can not alloc more frag bufs\n",
861                 pDevice->dev->name);
862         }
863         return false;
864     }
865
866     return true;
867 }
868
869 static int s_bAPModeRxCtl(struct vnt_private *pDevice, u8 *pbyFrame,
870         s32 iSANodeIndex)
871 {
872         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
873         struct ieee80211_hdr *p802_11Header;
874         CMD_STATUS Status;
875
876     if (IS_CTL_PSPOLL(pbyFrame) || !IS_TYPE_CONTROL(pbyFrame)) {
877
878         p802_11Header = (struct ieee80211_hdr *) (pbyFrame);
879         if (!IS_TYPE_MGMT(pbyFrame)) {
880
881             // Data & PS-Poll packet
882             // check frame class
883             if (iSANodeIndex > 0) {
884                 // frame class 3 fliter & checking
885                 if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_AUTH) {
886                     // send deauth notification
887                     // reason = (6) class 2 received from nonauth sta
888                     vMgrDeAuthenBeginSta(pDevice,
889                                          pMgmt,
890                                          (u8 *)(p802_11Header->addr2),
891                                          (WLAN_MGMT_REASON_CLASS2_NONAUTH),
892                                          &Status
893                                          );
894                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 1\n");
895                     return true;
896                 }
897                 if (pMgmt->sNodeDBTable[iSANodeIndex].eNodeState < NODE_ASSOC) {
898                     // send deassoc notification
899                     // reason = (7) class 3 received from nonassoc sta
900                     vMgrDisassocBeginSta(pDevice,
901                                          pMgmt,
902                                          (u8 *)(p802_11Header->addr2),
903                                          (WLAN_MGMT_REASON_CLASS3_NONASSOC),
904                                          &Status
905                                          );
906                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDisassocBeginSta 2\n");
907                     return true;
908                 }
909
910                 if (pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable) {
911                     // delcare received ps-poll event
912                     if (IS_CTL_PSPOLL(pbyFrame)) {
913                         pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
914                         bScheduleCommand((void *) pDevice,
915                                          WLAN_CMD_RX_PSPOLL,
916                                          NULL);
917                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 1\n");
918                     }
919                     else {
920                         // check Data PS state
921                         // if PW bit off, send out all PS bufferring packets.
922                         if (!IS_FC_POWERMGT(pbyFrame)) {
923                             pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
924                             pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
925                                 bScheduleCommand((void *) pDevice,
926                                                  WLAN_CMD_RX_PSPOLL,
927                                                  NULL);
928                             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 2\n");
929                         }
930                     }
931                 }
932                 else {
933                    if (IS_FC_POWERMGT(pbyFrame)) {
934                        pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = true;
935                        // Once if STA in PS state, enable multicast bufferring
936                        pMgmt->sNodeDBTable[0].bPSEnable = true;
937                    }
938                    else {
939                       // clear all pending PS frame.
940                       if (pMgmt->sNodeDBTable[iSANodeIndex].wEnQueueCnt > 0) {
941                           pMgmt->sNodeDBTable[iSANodeIndex].bPSEnable = false;
942                           pMgmt->sNodeDBTable[iSANodeIndex].bRxPSPoll = true;
943                         bScheduleCommand((void *) pDevice,
944                                          WLAN_CMD_RX_PSPOLL,
945                                          NULL);
946                          DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: WLAN_CMD_RX_PSPOLL 3\n");
947
948                       }
949                    }
950                 }
951             }
952             else {
953                   vMgrDeAuthenBeginSta(pDevice,
954                                        pMgmt,
955                                        (u8 *)(p802_11Header->addr2),
956                                        (WLAN_MGMT_REASON_CLASS2_NONAUTH),
957                                        &Status
958                                        );
959                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: send vMgrDeAuthenBeginSta 3\n");
960                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "BSSID:%pM\n",
961                                 p802_11Header->addr3);
962                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR2:%pM\n",
963                                 p802_11Header->addr2);
964                         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "ADDR1:%pM\n",
965                                 p802_11Header->addr1);
966                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "dpc: frame_control= %x\n", p802_11Header->frame_control);
967                     return true;
968             }
969         }
970     }
971     return false;
972
973 }
974
975 static int s_bHandleRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
976         u32 FrameSize, u8 *pbyRsr, u8 *pbyNewRsr, PSKeyItem *pKeyOut,
977         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
978 {
979         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
980         u32 PayloadLen = FrameSize;
981         u8 *pbyIV;
982         u8 byKeyIdx;
983         PSKeyItem pKey = NULL;
984         u8 byDecMode = KEY_CTL_WEP;
985
986     *pwRxTSC15_0 = 0;
987     *pdwRxTSC47_16 = 0;
988
989     pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
990     if ( WLAN_GET_FC_TODS(*(u16 *)pbyFrame) &&
991          WLAN_GET_FC_FROMDS(*(u16 *)pbyFrame) ) {
992          pbyIV += 6;             // 6 is 802.11 address4
993          PayloadLen -= 6;
994     }
995     byKeyIdx = (*(pbyIV+3) & 0xc0);
996     byKeyIdx >>= 6;
997     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
998
999     if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA) ||
1000         (pMgmt->eAuthenMode == WMAC_AUTH_WPAPSK) ||
1001         (pMgmt->eAuthenMode == WMAC_AUTH_WPANONE) ||
1002         (pMgmt->eAuthenMode == WMAC_AUTH_WPA2) ||
1003         (pMgmt->eAuthenMode == WMAC_AUTH_WPA2PSK)) {
1004         if (((*pbyRsr & (RSR_ADDRBROAD | RSR_ADDRMULTI)) == 0) &&
1005             (pMgmt->byCSSPK != KEY_CTL_NONE)) {
1006             // unicast pkt use pairwise key
1007             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt\n");
1008             if (KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, 0xFFFFFFFF, &pKey) == true) {
1009                 if (pMgmt->byCSSPK == KEY_CTL_TKIP)
1010                     byDecMode = KEY_CTL_TKIP;
1011                 else if (pMgmt->byCSSPK == KEY_CTL_CCMP)
1012                     byDecMode = KEY_CTL_CCMP;
1013             }
1014             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"unicast pkt: %d, %p\n", byDecMode, pKey);
1015         } else {
1016             // use group key
1017             KeybGetKey(&(pDevice->sKey), pDevice->abyBSSID, byKeyIdx, &pKey);
1018             if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1019                 byDecMode = KEY_CTL_TKIP;
1020             else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1021                 byDecMode = KEY_CTL_CCMP;
1022             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"group pkt: %d, %d, %p\n", byKeyIdx, byDecMode, pKey);
1023         }
1024     }
1025     // our WEP only support Default Key
1026     if (pKey == NULL) {
1027         // use default group key
1028         KeybGetKey(&(pDevice->sKey), pDevice->abyBroadcastAddr, byKeyIdx, &pKey);
1029         if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1030             byDecMode = KEY_CTL_TKIP;
1031         else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1032             byDecMode = KEY_CTL_CCMP;
1033     }
1034     *pKeyOut = pKey;
1035
1036     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
1037
1038     if (pKey == NULL) {
1039         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pKey == NULL\n");
1040         return false;
1041     }
1042     if (byDecMode != pKey->byCipherSuite) {
1043         *pKeyOut = NULL;
1044         return false;
1045     }
1046     if (byDecMode == KEY_CTL_WEP) {
1047         // handle WEP
1048         if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
1049                 (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true)) {
1050             // Software WEP
1051             // 1. 3253A
1052             // 2. WEP 256
1053
1054             PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
1055             memcpy(pDevice->abyPRNG, pbyIV, 3);
1056             memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
1057             rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
1058             rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
1059
1060             if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
1061                 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1062             }
1063         }
1064     } else if ((byDecMode == KEY_CTL_TKIP) ||
1065                (byDecMode == KEY_CTL_CCMP)) {
1066         // TKIP/AES
1067
1068         PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
1069         *pdwRxTSC47_16 = cpu_to_le32(*(u32 *)(pbyIV + 4));
1070         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
1071         if (byDecMode == KEY_CTL_TKIP) {
1072             *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
1073         } else {
1074             *pwRxTSC15_0 = cpu_to_le16(*(u16 *)pbyIV);
1075         }
1076         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
1077
1078         if ((byDecMode == KEY_CTL_TKIP) &&
1079             (pDevice->byLocalID <= REV_ID_VT3253_A1)) {
1080             // Software TKIP
1081             // 1. 3253 A
1082             struct ieee80211_hdr *pMACHeader = (struct ieee80211_hdr *) (pbyFrame);
1083             TKIPvMixKey(pKey->abyKey, pMACHeader->addr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
1084             rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
1085             rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
1086             if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
1087                 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1088                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
1089             } else {
1090                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
1091                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
1092             }
1093         }
1094     }// end of TKIP/AES
1095
1096     if ((*(pbyIV+3) & 0x20) != 0)
1097         *pbExtIV = true;
1098     return true;
1099 }
1100
1101 static int s_bHostWepRxEncryption(struct vnt_private *pDevice, u8 *pbyFrame,
1102         u32 FrameSize, u8 *pbyRsr, int bOnFly, PSKeyItem pKey, u8 *pbyNewRsr,
1103         s32 *pbExtIV, u16 *pwRxTSC15_0, u32 *pdwRxTSC47_16)
1104 {
1105         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1106         struct ieee80211_hdr *pMACHeader;
1107         u32 PayloadLen = FrameSize;
1108         u8 *pbyIV;
1109         u8 byKeyIdx;
1110         u8 byDecMode = KEY_CTL_WEP;
1111
1112         *pwRxTSC15_0 = 0;
1113         *pdwRxTSC47_16 = 0;
1114
1115     pbyIV = pbyFrame + WLAN_HDR_ADDR3_LEN;
1116     if ( WLAN_GET_FC_TODS(*(u16 *)pbyFrame) &&
1117          WLAN_GET_FC_FROMDS(*(u16 *)pbyFrame) ) {
1118          pbyIV += 6;             // 6 is 802.11 address4
1119          PayloadLen -= 6;
1120     }
1121     byKeyIdx = (*(pbyIV+3) & 0xc0);
1122     byKeyIdx >>= 6;
1123     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"\nKeyIdx: %d\n", byKeyIdx);
1124
1125     if (pMgmt->byCSSGK == KEY_CTL_TKIP)
1126         byDecMode = KEY_CTL_TKIP;
1127     else if (pMgmt->byCSSGK == KEY_CTL_CCMP)
1128         byDecMode = KEY_CTL_CCMP;
1129
1130     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"AES:%d %d %d\n", pMgmt->byCSSPK, pMgmt->byCSSGK, byDecMode);
1131
1132     if (byDecMode != pKey->byCipherSuite) {
1133         return false;
1134     }
1135
1136     if (byDecMode == KEY_CTL_WEP) {
1137         // handle WEP
1138         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"byDecMode == KEY_CTL_WEP\n");
1139         if ((pDevice->byLocalID <= REV_ID_VT3253_A1) ||
1140                 (((PSKeyTable)(pKey->pvKeyTable))->bSoftWEP == true) ||
1141             (bOnFly == false)) {
1142             // Software WEP
1143             // 1. 3253A
1144             // 2. WEP 256
1145             // 3. NotOnFly
1146
1147             PayloadLen -= (WLAN_HDR_ADDR3_LEN + 4 + 4); // 24 is 802.11 header,4 is IV, 4 is crc
1148             memcpy(pDevice->abyPRNG, pbyIV, 3);
1149             memcpy(pDevice->abyPRNG + 3, pKey->abyKey, pKey->uKeyLength);
1150             rc4_init(&pDevice->SBox, pDevice->abyPRNG, pKey->uKeyLength + 3);
1151             rc4_encrypt(&pDevice->SBox, pbyIV+4, pbyIV+4, PayloadLen);
1152
1153             if (ETHbIsBufferCrc32Ok(pbyIV+4, PayloadLen)) {
1154                 *pbyNewRsr |= NEWRSR_DECRYPTOK;
1155             }
1156         }
1157     } else if ((byDecMode == KEY_CTL_TKIP) ||
1158                (byDecMode == KEY_CTL_CCMP)) {
1159         // TKIP/AES
1160
1161         PayloadLen -= (WLAN_HDR_ADDR3_LEN + 8 + 4); // 24 is 802.11 header, 8 is IV&ExtIV, 4 is crc
1162         *pdwRxTSC47_16 = cpu_to_le32(*(u32 *)(pbyIV + 4));
1163         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ExtIV: %x\n", *pdwRxTSC47_16);
1164
1165         if (byDecMode == KEY_CTL_TKIP) {
1166             *pwRxTSC15_0 = cpu_to_le16(MAKEWORD(*(pbyIV+2), *pbyIV));
1167         } else {
1168             *pwRxTSC15_0 = cpu_to_le16(*(u16 *)pbyIV);
1169         }
1170         DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"TSC0_15: %x\n", *pwRxTSC15_0);
1171
1172         if (byDecMode == KEY_CTL_TKIP) {
1173
1174             if ((pDevice->byLocalID <= REV_ID_VT3253_A1) || (bOnFly == false)) {
1175                 // Software TKIP
1176                 // 1. 3253 A
1177                 // 2. NotOnFly
1178                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_TKIP \n");
1179                 pMACHeader = (struct ieee80211_hdr *) (pbyFrame);
1180                 TKIPvMixKey(pKey->abyKey, pMACHeader->addr2, *pwRxTSC15_0, *pdwRxTSC47_16, pDevice->abyPRNG);
1181                 rc4_init(&pDevice->SBox, pDevice->abyPRNG, TKIP_KEY_LEN);
1182                 rc4_encrypt(&pDevice->SBox, pbyIV+8, pbyIV+8, PayloadLen);
1183                 if (ETHbIsBufferCrc32Ok(pbyIV+8, PayloadLen)) {
1184                     *pbyNewRsr |= NEWRSR_DECRYPTOK;
1185                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV OK!\n");
1186                 } else {
1187                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"ICV FAIL!!!\n");
1188                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"PayloadLen = %d\n", PayloadLen);
1189                 }
1190             }
1191         }
1192
1193         if (byDecMode == KEY_CTL_CCMP) {
1194             if (bOnFly == false) {
1195                 // Software CCMP
1196                 // NotOnFly
1197                 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"soft KEY_CTL_CCMP\n");
1198                 if (AESbGenCCMP(pKey->abyKey, pbyFrame, FrameSize)) {
1199                     *pbyNewRsr |= NEWRSR_DECRYPTOK;
1200                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC compare OK!\n");
1201                 } else {
1202                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"CCMP MIC fail!\n");
1203                 }
1204             }
1205         }
1206
1207     }// end of TKIP/AES
1208
1209     if ((*(pbyIV+3) & 0x20) != 0)
1210         *pbExtIV = true;
1211     return true;
1212 }
1213
1214 static int s_bAPModeRxData(struct vnt_private *pDevice, struct sk_buff *skb,
1215         u32 FrameSize, u32 cbHeaderOffset, s32 iSANodeIndex, s32 iDANodeIndex)
1216 {
1217         struct sk_buff *skbcpy;
1218         struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1219         int  bRelayAndForward = false;
1220         int bRelayOnly = false;
1221         u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
1222         u16 wAID;
1223
1224     if (FrameSize > CB_MAX_BUF_SIZE)
1225         return false;
1226     // check DA
1227     if (is_multicast_ether_addr((u8 *)(skb->data+cbHeaderOffset))) {
1228        if (pMgmt->sNodeDBTable[0].bPSEnable) {
1229
1230            skbcpy = dev_alloc_skb((int)pDevice->rx_buf_sz);
1231
1232         // if any node in PS mode, buffer packet until DTIM.
1233            if (skbcpy == NULL) {
1234                DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "relay multicast no skb available \n");
1235            }
1236            else {
1237                skbcpy->dev = pDevice->dev;
1238                skbcpy->len = FrameSize;
1239                memcpy(skbcpy->data, skb->data+cbHeaderOffset, FrameSize);
1240                skb_queue_tail(&(pMgmt->sNodeDBTable[0].sTxPSQueue), skbcpy);
1241                pMgmt->sNodeDBTable[0].wEnQueueCnt++;
1242                // set tx map
1243                pMgmt->abyPSTxMap[0] |= byMask[0];
1244            }
1245        }
1246        else {
1247            bRelayAndForward = true;
1248        }
1249     }
1250     else {
1251         // check if relay
1252         if (BSSbIsSTAInNodeDB(pDevice, (u8 *)(skb->data+cbHeaderOffset), &iDANodeIndex)) {
1253             if (pMgmt->sNodeDBTable[iDANodeIndex].eNodeState >= NODE_ASSOC) {
1254                 if (pMgmt->sNodeDBTable[iDANodeIndex].bPSEnable) {
1255                     // queue this skb until next PS tx, and then release.
1256
1257                         skb->data += cbHeaderOffset;
1258                         skb->tail += cbHeaderOffset;
1259                     skb_put(skb, FrameSize);
1260                     skb_queue_tail(&pMgmt->sNodeDBTable[iDANodeIndex].sTxPSQueue, skb);
1261
1262                     pMgmt->sNodeDBTable[iDANodeIndex].wEnQueueCnt++;
1263                     wAID = pMgmt->sNodeDBTable[iDANodeIndex].wAID;
1264                     pMgmt->abyPSTxMap[wAID >> 3] |=  byMask[wAID & 7];
1265                     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "relay: index= %d, pMgmt->abyPSTxMap[%d]= %d\n",
1266                                iDANodeIndex, (wAID >> 3), pMgmt->abyPSTxMap[wAID >> 3]);
1267                     return true;
1268                 }
1269                 else {
1270                     bRelayOnly = true;
1271                 }
1272             }
1273         }
1274     }
1275
1276     if (bRelayOnly || bRelayAndForward) {
1277         // relay this packet right now
1278         if (bRelayAndForward)
1279             iDANodeIndex = 0;
1280
1281         if ((pDevice->uAssocCount > 1) && (iDANodeIndex >= 0)) {
1282                 bRelayPacketSend(pDevice, (u8 *) (skb->data + cbHeaderOffset),
1283                                  FrameSize, (unsigned int) iDANodeIndex);
1284         }
1285
1286         if (bRelayOnly)
1287             return false;
1288     }
1289     // none associate, don't forward
1290     if (pDevice->uAssocCount == 0)
1291         return false;
1292
1293     return true;
1294 }
1295
1296 void RXvWorkItem(struct work_struct *work)
1297 {
1298         struct vnt_private *pDevice =
1299                 container_of(work, struct vnt_private, read_work_item);
1300         int ntStatus;
1301         struct vnt_rcb *pRCB = NULL;
1302
1303         if (pDevice->Flags & fMP_DISCONNECTED)
1304                 return;
1305
1306     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Polling Thread\n");
1307     spin_lock_irq(&pDevice->lock);
1308
1309     while ((pDevice->Flags & fMP_POST_READS) &&
1310             MP_IS_READY(pDevice) &&
1311             (pDevice->NumRecvFreeList != 0) ) {
1312         pRCB = pDevice->FirstRecvFreeList;
1313         pDevice->NumRecvFreeList--;
1314         DequeueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList);
1315         ntStatus = PIPEnsBulkInUsbRead(pDevice, pRCB);
1316     }
1317     pDevice->bIsRxWorkItemQueued = false;
1318     spin_unlock_irq(&pDevice->lock);
1319
1320 }
1321
1322 void RXvFreeRCB(struct vnt_rcb *pRCB, int bReAllocSkb)
1323 {
1324         struct vnt_private *pDevice = pRCB->pDevice;
1325
1326     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->RXvFreeRCB\n");
1327
1328         if (bReAllocSkb == false) {
1329                 kfree_skb(pRCB->skb);
1330                 bReAllocSkb = true;
1331         }
1332
1333     if (bReAllocSkb == true) {
1334         pRCB->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
1335         // todo error handling
1336         if (pRCB->skb == NULL) {
1337             DBG_PRT(MSG_LEVEL_ERR,KERN_ERR" Failed to re-alloc rx skb\n");
1338         }else {
1339             pRCB->skb->dev = pDevice->dev;
1340         }
1341     }
1342     //
1343     // Insert the RCB back in the Recv free list
1344     //
1345     EnqueueRCB(pDevice->FirstRecvFreeList, pDevice->LastRecvFreeList, pRCB);
1346     pDevice->NumRecvFreeList++;
1347
1348     if ((pDevice->Flags & fMP_POST_READS) && MP_IS_READY(pDevice) &&
1349         (pDevice->bIsRxWorkItemQueued == false) ) {
1350
1351         pDevice->bIsRxWorkItemQueued = true;
1352         schedule_work(&pDevice->read_work_item);
1353     }
1354     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"<----RXFreeRCB %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
1355 }
1356
1357 void RXvMngWorkItem(struct work_struct *work)
1358 {
1359         struct vnt_private *pDevice =
1360                 container_of(work, struct vnt_private, rx_mng_work_item);
1361         struct vnt_rcb *pRCB = NULL;
1362         struct vnt_rx_mgmt *pRxPacket;
1363         int bReAllocSkb = false;
1364
1365         if (pDevice->Flags & fMP_DISCONNECTED)
1366                 return;
1367
1368     DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"---->Rx Mng Thread\n");
1369
1370     spin_lock_irq(&pDevice->lock);
1371     while (pDevice->NumRecvMngList!=0)
1372     {
1373         pRCB = pDevice->FirstRecvMngList;
1374         pDevice->NumRecvMngList--;
1375         DequeueRCB(pDevice->FirstRecvMngList, pDevice->LastRecvMngList);
1376         if(!pRCB){
1377             break;
1378         }
1379         pRxPacket = &(pRCB->sMngPacket);
1380         vMgrRxManagePacket(pDevice, &pDevice->vnt_mgmt, pRxPacket);
1381         pRCB->Ref--;
1382         if(pRCB->Ref == 0) {
1383             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"RxvFreeMng %d %d\n",pDevice->NumRecvFreeList, pDevice->NumRecvMngList);
1384             RXvFreeRCB(pRCB, bReAllocSkb);
1385         } else {
1386             DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Rx Mng Only we have the right to free RCB\n");
1387         }
1388     }
1389
1390         pDevice->bIsRxMngWorkItemQueued = false;
1391         spin_unlock_irq(&pDevice->lock);
1392
1393 }
1394